Science.gov

Sample records for hovering flight control

  1. Stability and control of VTOL capable airships in hovering flight

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Sumantran, V.

    1985-01-01

    The stability and control characteristics of an airship equipped with lifting rotors to provide a modest VTOL capability are discussed. The rotors are used for control and maneuvering in near-hovering flight. Configurations with two, three, and four lifting rotors are examined and compared with respect to control capabilities and dynamic response characteristics. Linearized models of the dynamics are employed for this study. A new approach to the prediction of rotor derivatives for operation near zero thrust in hover is presented. It is found that all three configurations have similar control and response characteristics. The responses are characterized by long time constants and low levels of angular damping.

  2. Hummingbirds control hovering flight by stabilizing visual motion.

    PubMed

    Goller, Benjamin; Altshuler, Douglas L

    2014-12-23

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position. PMID:25489117

  3. Controlled Hover Test Flight No. 4

    NASA Video Gallery

    This video collage provides several views of the robotic lander prototype during its second free flight test. The lander is captured in flight from overhead and side mounted cameras in high definit...

  4. Numerical study of insect free hovering flight

    NASA Astrophysics Data System (ADS)

    Wu, Di; Yeo, Khoon Seng; Lim, Tee Tai; Fluid lab, Mechanical Engineering, National University of Singapore Team

    2012-11-01

    In this paper we present the computational fluid dynamics study of three-dimensional flow field around a free hovering fruit fly integrated with unsteady FSI analysis and the adaptive flight control system for the first time. The FSI model being specified for fruitfly hovering is achieved by coupling a structural problem based on Newton's second law with a rigorous CFD solver concerning generalized finite difference method. In contrast to the previous hovering flight research, the wing motion employed here is not acquired from experimental data but governed by our proposed control systems. Two types of hovering control strategies i.e. stroke plane adjustment mode and paddling mode are explored, capable of generating the fixed body position and orientation characteristic of hovering flight. Hovering flight associated with multiple wing kinematics and body orientations are shown as well, indicating the means by which fruitfly actually maintains hovering may have considerable freedom and therefore might be influenced by many other factors beyond the physical and aerodynamic requirements. Additionally, both the near- and far-field flow and vortex structure agree well with the results from other researchers, demonstrating the reliability of our current model.

  5. Flight evaluations of several hover control and display combinations for precise blind vertical landings

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Merrick, V. K.

    1990-01-01

    Several control and display concepts were evaluated on a variable-stability helicopter prior to future evaluations on a modified Harrier. The control and display concepts had been developed to enable precise hover maneuvers, station keeping, and vertical landings in simulated zero-visibility conditions and had been evaluated extensively in previous piloted simulations. Flight evaluations early in the program revealed several inadequacies in the display drive laws that were later corrected using an alternative design approach that integrated the control and display characteristics with the desired guidance law. While hooded, three pilots performed landing-pad captures followed by vertical landings with attitude-rate, attitude, and translation-velocity-command control systems. The latter control system incorporated a modified version of state-rate-feedback implicit-model following. Precise landing within 2 ft of the desired touchdown point were achieved.

  6. Preliminary results of a flight investigation of rotorcraft control and display laws for hover

    NASA Technical Reports Server (NTRS)

    Eshow, Michelle M.; Aiken, Edwin W.; Hindson, William S.

    1987-01-01

    A flight experiment designed to evaluate the effects of compatible versus incompatible display and control system response characteristics, and to evaluate a candidate display law design methodology, is described. The experiment was conducted on the NASA/Army CH-47B variable-stability helicopter using its model-following control system and a color, panel-mounted display. Three control response types representative of modern highly augmented rotorcraft and three corresponding sets of display dynamics were considered for three hover and low-speed tasks performed in simulated instrument conditions. Preliminary results based on pilot handling qualities ratings and comments indicate that performance and workload can be significantly affected by certain control and display combinations and that the display design methodology shows promise for improving the handling qualities of rotorcraft operating in conditions of low visibility.

  7. A piloted simulation study of the effects of controller force gradient in VTOL hovering flight

    NASA Technical Reports Server (NTRS)

    Fry, E. B.; Gerdes, R. M.; Schroers, L. G.

    1973-01-01

    A study of the effect of control force gradient on the VTOL visual hovering task was conducted on the NASA-Ames Research Center Six-Degree-of-Freedom Motion Simulator. Lateral control force-gradient characteristics were evaluated in combination with three different types of stabilization systems: An unstabilized (acceleration) system, a rate-stabilized system, and two attitude-stabilized systems. The effects of gust disturbances were included in the control force evaluation for the attitude systems. A force gradient of 1.0 lb/in was within the optimum range for all control systems and conditions evaluated in this study.

  8. The wake of hovering flight in bats.

    PubMed

    Håkansson, Jonas; Hedenström, Anders; Winter, York; Johansson, L Christoffer

    2015-08-01

    Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%. PMID:26179990

  9. Moving base simulation of an integrated flight and propulsion control system for an ejector-augmentor STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Mcneill, Walter, E.; Chung, William W.; Stortz, Michael W.

    1995-01-01

    A piloted motion simulator evaluation, using the NASA Ames Vertical Motion Simulator, was conducted in support of a NASA Lewis Contractual study of the integration of flight and propulsion systems of a STOVL aircraft. Objectives of the study were to validate the Design Methods for Integrated Control Systems (DMICS) concept, to evaluate the handling qualities, and to assess control power usage. The E-7D ejector-augmentor STOVL fighter design served as the basis for the simulation. Handling-qualities ratings were obtained during precision hover and shipboard landing tasks. Handling-qualities ratings for these tasks ranged from satisfactory to adequate. Further improvement of the design process to fully validate the DMICS concept appears to be warranted.

  10. Optimization Study for Hovering Flapping Flight

    NASA Astrophysics Data System (ADS)

    Bocanegra Evans, Humberto; Allen, James J.; Balakumar, B. J.

    2009-11-01

    A scaled robotic hummingbird model was used to perform a flow analysis of hovering flight at a range of Reynolds numbers (1,750hovers (Re 3600), which suggests that hummingbirds hover in a highly efficient manner.

  11. Rotor-state feedback in the design of flight control laws for a hovering helicopter

    NASA Technical Reports Server (NTRS)

    Takahashi, Marc D.

    1994-01-01

    The use of rigid-body and rotor-state feedback gains in the design of helicopter flight control laws was investigated analytically on a blade element, articulated rotor, helicopter model. The study was conducted while designing a control law to meet an existing military rotorcraft handling qualities design specification (ADS-33C) in low-speed flight. A systematic approach to meet this specification was developed along with an assessment of the function of these gains in the feedback loops. Using the results of this assessment, the pitch and roll crossover behavior was easily modified by adjusting the body attitude and rotor-flap feedback gains. Critical to understanding the feedback gains is that the roll and pitch rate dynamics each have second-order behavior, not the classic first-order behavior, which arises from a quasi-static rotor, six degree-of-freedom model.

  12. Unsteady Aerodynamic Behavior Measured in Hovering Flight

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Kufeld, Robert M.; Warmbrodt, William (Technical Monitor)

    1994-01-01

    A highly-instrumented UH-60A aircraft was tested at NASA-Ames Research Center from August 1993 to February 1994 obtaining an extensive data base for level flight, maneuvers, acoustics (both with respect to ground microphone arrays and inflight microphones), and flight dynamics. A majority of the data obtained are now in an electronic data base, however, only a small fraction of the data have been examined. The proposed paper will examine the issue of hovering steadiness in more detail. In particular, a single set of data obtained during ground acoustic testing may provide considerable insight as the wind speeds were measured at a hover height of 250 feet and the aircraft was positioned in 15 deg. steps in heading from 0 to 180 deg. Also, hover housekeeping data were obtained for many of the 31 flights and these will also allow a characterization of the unsteadiness. The variation in section lift will be examined in terms of the induced flow angle variation and this will be related to possible physical explanations.

  13. Investigation of the flight mechanics simulation of a hovering helicopter

    NASA Technical Reports Server (NTRS)

    Chaimovich, M.; Rosen, A.; Rand, O.; Mansur, M. H.; Tischler, M. B.

    1992-01-01

    The flight mechanics simulation of a hovering helicopter is investigated by comparing the results of two different numerical models with flight test data for a hovering AH-64 Apache. The two models are the U.S. Army BEMAP and the Technion model. These nonlinear models are linearized by applying a numerical linearization procedure. The results of the linear models are compared with identification results in terms of eigenvalues, stability and control derivatives, and frequency responses. Detailed time histories of the responses of the complete nonlinear models, as a result of various pilots' inputs, are compared with flight test results. In addition the sensitivity of the models to various effects are also investigated. The results are discussed and problematic aspects of the simulation are identified.

  14. Hover...

    NASA Astrophysics Data System (ADS)

    Mrongovius, Martina; Wilksch, Philip

    2005-04-01

    Working with the geometry and form of light Martina Mrongovius is a holographic artist and physicist. Martina"s holographics capture a strange beauty through layers of aesthetic. This paper is based on her Honours thesis in Applied Physics. The exhibition Hover consisted of seven different holographic scanning and projection geometries. These devices used a range of mechanics to scan holograms through laser beams and laser beams through holographic arrays. The recorded holograms as well as the contraptions by which they are replayed captured the form and flight of a reconstructed dragonfly. In designing the holographic displays safety was an important consideration. The projection devices were also constructed to accommodate a range of laser sources and be easily adjusted to project dragonflies with wingspans from 30 to 2000 mm. Hover was the installation of these stochastic contraptions into a surreal optical habitat of animated projections. Being part of the 2004 Next Wave Festival for the arts Hover attracted a large and diverse audience. The intent of the exhibition was to engage with this audience on many levels while illustrating the nature of holographic recordings. The results of this investigation into the geometry and dynamics of projection are presented along with the design considerations, construction methods and audience response.

  15. Dynamic flight stability of hovering insects

    NASA Astrophysics Data System (ADS)

    Sun, Mao; Wang, Jikang; Xiong, Yan

    2007-06-01

    The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the “rigid body” assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157 Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the “rigid body” assumption is tested and how differences in size and wing kinematics influence the applicability of the “rigid body” assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the “rigid body” assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the “rigid body” assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative M u (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Z w (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.

  16. Effect of stabilization on VTOL aircraft in hovering flight

    NASA Technical Reports Server (NTRS)

    Greif, R. K.; Fry, E. B.; Gerdes, R. M.; Gossett, T. D.

    1972-01-01

    A motion simulator study was conducted to determine the effects of roll and pitch stabilization on the handling qualities and control power requirements of VTOL aircraft during hover and short-distance maneuvering flight. Three levels of stabilization complexity were compared: (1) no stabilization, (2) rate stabilization, and (3) attitude stabilization. Control sensitivities and stabilization gains were optimized prior to comparison. Results are presented to show how the optimum systems were determined and how they compared with each other at different levels of control power. Comparisons were made both in calm air and in the presence of roll disturbances. Results indicate the attitude-stabilized system provides the best handling qualities for the least amount of control power.

  17. The Aerodynamics of Hovering Insect Flight. III. Kinematics

    NASA Astrophysics Data System (ADS)

    Ellington, C. P.

    1984-02-01

    Insects in free flight were filmed at 5000 frames per second to determine the motion of their wings and bodies. General comments are offered on flight behaviour and manoeuvrability. Changes in the tilt of the stroke plane with respect to the horizontal provides kinematic control of manoeuvres, analogous to the type of control used for helicopters. A projection analysis technique is described that solves for the orientation of the animal with respect to a camera-based coordinate system, giving full kinematic details for the longitudinal wing and body axes from single-view films. The technique can be applied to all types of flight where the wing motions are bilaterally symmetrical: forward, backward and hovering flight, as well as properly banked turns. An analysis of the errors of the technique is presented, and shows that the reconstructed angles for wing position should be accurate to within 1-2^circ in general. Although measurement of the angles of attack was not possible, visual estimations are given. Only 11 film sequences show flight velocities and accelerations that are small enough for the flight to be considered as `hovering'. Two sequences are presented for a hover-fly using an inclined stroke plane, and nine sequences of hovering with a horizontal stroke plane by another hover-fly, two crane-flies, a drone-fly, a ladybird beetle, a honey bee, and two bumble bees. In general, oscillations in the body position from its mean motion are within measurement error, about 1-2% of the wing length. The amplitudes of oscillation for the body angle are only a few degrees, but the phase relation of this oscillation to the wingbeat cycle could be determined for a few sequences. The phase indicates that the pitching moments governing the oscillations result from the wing lift at the ends of the wingbeat, and not from the wing drag or inertial forces. The mean pitching moment of the wings, which determines the mean body angle, is controlled by shifting the centre of lift

  18. Coupled rotor-body equations of motion hover flight

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Mckillip, R. M., Jr.

    1990-01-01

    A set of linearized equations of motion to predict the linearized dynamic response of a single rotor helicopter in a hover trim condition to cyclic pitch control inputs is described. The equations of motion assume four fuselage degrees of freedom: lateral and longitudinal translation, roll angle, pitch angle: four rotor degrees of freedom: flapping (lateral and longitudinal tilt of the tip path plane), lagging (lateral and longitudinal displacement of the rotor plane center of mass); and dynamic inflow (harmonic components). These ten degrees of freedom correspond to a system with eighteen dynamic states. In addition to examination of the full system dynamics, the computer code supplied with this report permits the examination of various reduced order models. The code is presented in a specific form such that the dynamic response of a helicopter in flight can be investigated. With minor modifications to the code the dynamics of a rotor mounted on a flexible support can also be studied.

  19. Hovering and forward flight energetics in Anna's and Allen's hummingbirds.

    PubMed

    Clark, Christopher James; Dudley, Robert

    2010-01-01

    Aerodynamic theory predicts that the mechanical costs of flight are lowest at intermediate flight speeds; metabolic costs of flight should trend similarly if muscle efficiency is constant. We measured metabolic rates for nine Anna's hummingbirds (Calypte anna) and two male Allen's hummingbirds (Selasphorus sasin) feeding during flight from a free-standing mask over a range of airspeeds. Ten of 11 birds exhibited higher metabolic costs during hovering than during flight at intermediate airspeeds, whereas one individual exhibited comparable costs at hovering and during forward flight up to speeds of approximately 7 m s(-1). Flight costs of all hummingbirds increased at higher airspeeds. Relative to Anna's hummingbirds, Allen's hummingbirds exhibited deeper minima in the power curve, possibly due to higher wing loadings and greater associated costs of induced drag. Although feeding at a mask in an airstream may reduce body drag and, thus, the contributions of parasite power to overall metabolic expenditure, these results suggest that hummingbird power curves are characterized by energetic minima at intermediate speeds relative to hovering costs. PMID:20455711

  20. Nonlinear flight dynamics and stability of hovering model insects

    PubMed Central

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  1. Controlled Hover Test No. 4

    NASA Video Gallery

    NASA's Robotic Lander Development Project at Marshall Space Flight Center in Huntsville, Ala. conducts the second free-flight test of a robotic lander prototype. During test the lander successfully...

  2. The physics of flight: III. Hovering

    NASA Astrophysics Data System (ADS)

    Linton, J. Oliver

    2007-09-01

    In 1934 the French etymologist August Magnan wrote in the introduction to his book Le Vol Des Insects that it was aerodynamically impossible for a honey bee to fly. In 1984 Ellington (1984 Phil. Trans. R. Soc. B 305 1 15) published a seminal series of articles which seemed to lend support to the idea that insects were performing aerodynamic feats which could not be easily explained, and this resulted in an explosion of interest in insect and bird flight which continues unabated to this day. Recent advances in experimental and computational techniques have enabled us to measure, visualize, and calculate the flow round an insect's wings in ever greater detail, and for a comprehensive summary of the present state of research into the area I would recommend a review paper by Sane (2003 J. Exp. Biol. 206 4191 208). He describes at least four effects which purport to increase the amount of lift that would be expected on the basis of conventional aerodynamics. But how bad was the old 'back of the envelope' calculation? Is it really necessary to invoke such complicated mechanisms to explain something which happens before our very eyes every day of the week? If the old calculations give an answer within an order of magnitude, I would be happy with that. If the old calculations are more than a factor of 10 out, no amount of tweaking with 'delayed stall' or 'wake capture' will make up the deficit, and we will have to conclude that the flight of insects and hummingbirds is literally a miracle. Hopefully it will not come to that. This article attempts to find out.

  3. Untethered hovering flapping flight of a 3D-printed mechanical insect.

    PubMed

    Richter, Charles; Lipson, Hod

    2011-01-01

    This project focuses on developing a flapping-wing hovering insect using 3D-printed wings and mechanical parts. The use of 3D printing technology has greatly expanded the possibilities for wing design, allowing wing shapes to replicate those of real insects or virtually any other shape. It has also reduced the time of a wing design cycle to a matter of minutes. An ornithopter with a mass of 3.89 g has been constructed using the 3D printing technique and has demonstrated an 85-s passively stable untethered hovering flight. This flight exhibits the functional utility of printed materials for flapping-wing experimentation and ornithopter construction and for understanding the mechanical principles underlying insect flight and control. PMID:21370958

  4. Performance optimization for rotors in hover and axial flight

    NASA Technical Reports Server (NTRS)

    Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.

    1989-01-01

    Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.

  5. CMG-Augmented Control of a Hovering VTOL Platform

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Moerder, D. D.

    2007-01-01

    This paper describes how Control Moment Gyroscopes (CMGs) can be used for stability augmentation to a thrust vectoring system for a generic Vertical Take-Off and Landing platform. The response characteristics of the platform which uses only thrust vectoring and a second configuration which includes a single-gimbal CMG array are simulated and compared for hovering flight while subject to severe air turbulence. Simulation results demonstrate the effectiveness of a CMG array in its ability to significantly reduce the agility requirement on the thrust vectoring system. Albeit simplifying physical assumptions on a generic CMG configuration, the numerical results also suggest that reasonably sized CMGs will likely be sufficient for a small hovering vehicle.

  6. 14 CFR 133.41 - Flight characteristics requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... adequate directional control while hovering. (3) Acceleration from a hover. (4) Horizontal flight at... external load. (2) Demonstration of adequate directional control while hovering. (3) Acceleration from...

  7. Heat dissipation during hovering and forward flight in hummingbirds

    PubMed Central

    Powers, Donald R.; Tobalske, Bret W.; Wilson, J. Keaton; Woods, H. Arthur; Corder, Keely R.

    2015-01-01

    Flying animals generate large amounts of heat, which must be dissipated to avoid overheating. In birds, heat dissipation is complicated by feathers, which cover most body surfaces and retard heat loss. To understand how birds manage heat budgets during flight, it is critical to know how heat moves from the skin to the external environment. Hummingbirds are instructive because they fly at speeds from 0 to more than 12 m s−1, during which they transit from radiative to convective heat loss. We used infrared thermography and particle image velocimetry to test the effects of flight speed on heat loss from specific body regions in flying calliope hummingbirds (Selasphorus calliope). We measured heat flux in a carcass with and without plumage to test the effectiveness of the insulation layer. In flying hummingbirds, the highest thermal gradients occurred in key heat dissipation areas (HDAs) around the eyes, axial region and feet. Eye and axial surface temperatures were 8°C or more above air temperature, and remained relatively constant across speeds suggesting physiological regulation of skin surface temperature. During hovering, birds dangled their feet, which enhanced radiative heat loss. In addition, during hovering, near-body induced airflows from the wings were low except around the feet (approx. 2.5 m s−1), which probably enhanced convective heat loss. Axial HDA and maximum surface temperature exhibited a shallow U-shaped pattern across speeds, revealing a localized relationship with power production in flight in the HDA closest to the primary flight muscles. We conclude that hummingbirds actively alter routes of heat dissipation as a function of flight speed. PMID:27019742

  8. Heat dissipation during hovering and forward flight in hummingbirds.

    PubMed

    Powers, Donald R; Tobalske, Bret W; Wilson, J Keaton; Woods, H Arthur; Corder, Keely R

    2015-12-01

    Flying animals generate large amounts of heat, which must be dissipated to avoid overheating. In birds, heat dissipation is complicated by feathers, which cover most body surfaces and retard heat loss. To understand how birds manage heat budgets during flight, it is critical to know how heat moves from the skin to the external environment. Hummingbirds are instructive because they fly at speeds from 0 to more than 12 m s(-1), during which they transit from radiative to convective heat loss. We used infrared thermography and particle image velocimetry to test the effects of flight speed on heat loss from specific body regions in flying calliope hummingbirds (Selasphorus calliope). We measured heat flux in a carcass with and without plumage to test the effectiveness of the insulation layer. In flying hummingbirds, the highest thermal gradients occurred in key heat dissipation areas (HDAs) around the eyes, axial region and feet. Eye and axial surface temperatures were 8°C or more above air temperature, and remained relatively constant across speeds suggesting physiological regulation of skin surface temperature. During hovering, birds dangled their feet, which enhanced radiative heat loss. In addition, during hovering, near-body induced airflows from the wings were low except around the feet (approx. 2.5 m s(-1)), which probably enhanced convective heat loss. Axial HDA and maximum surface temperature exhibited a shallow U-shaped pattern across speeds, revealing a localized relationship with power production in flight in the HDA closest to the primary flight muscles. We conclude that hummingbirds actively alter routes of heat dissipation as a function of flight speed. PMID:27019742

  9. Design and evaluation of a cockpit display for hovering flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Gorder, Peter James

    1988-01-01

    A simulator evaluation of a cockpit display format for hovering flight is described. The display format is based on the position-velocity-acceleration representation (PVA) similar to that used in the Pilot Night Vision System in the Army AH-64 helicopter. By only varying the nature of the display law driving the primary indicator in the PVA format, i.e., the acceleration symbol, three candidate displays are created and evaluated. These range from a Status display in which the primary indicator provides true acceleration information to a Command display, in which the primary indicator provides flight director information. Simulation results indicate that two of the three displays offer performance and handling qualities which make them excellent candidates for future helicopter cockpit display systems.

  10. Design and evaluation of a cockpit display for hovering flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Gorder, Peter James

    1988-01-01

    A simulator evaluation of a cockpit display format for hovering flight is described. The display format is based upon the position-velocity-acceleration representation (PVA) similar to that used in the Pilot Night Vision System in the Army AH-64 helicopter. By only varying the nature of the display law driving the 'primary' indicator in the PVA format, i.e. the acceleration symbol, three candidate displays are created and evaluated. These range from a Status display in which the primary indicator provides true acceleration information to a Command display, in which the primary indicator provides flight director information. Simulation results indicate that two of the three displays offer performance and handling qualities which make them excellent candidates for future helicopter cockpit display systems.

  11. Vertical Axis Rotational Motion Cues in Hovering Flight Simulation

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffrey A.; Johnson, Walter W.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    A previous study that examined how yaw motion affected a pilot's ability to perform realistic hovering flight tasks indicated that any amount of pure yaw motion had little-to-no effect on pilot performance or opinion. In that experiment, pilots were located at the vehicle's center of rotation; thus lateral or longitudinal accelerations were absent. The purpose of the new study described here was to investigate further these unanticipated results for additional flight tasks, but with the introduction of linear accelerations associated with yaw rotations when the pilot is not at the center of rotation. The question of whether a yaw motion degree-of-freedom is necessary or not is important to government regulators who specify what simulator motions are necessary according to prescribed levels of simulator sophistication. Currently, specifies two levels of motion sophistication for flight simulators: full 6-degree-of-freedom and 3-degree-of-freedom. For the less sophisticated simulator, the assumed three degrees of freedom are pitch, roll, and heave. If other degrees of freedom are selected, which are different f rom these three, they must be qualified on a case-by-case basis. Picking the assumed three axes is reasonable and based upon experience, but little empirical data are available to support the selection of critical axes. Thus, the research described here is aimed at answering this question. The yaw and lateral degrees of freedom were selected to be examined first, and maneuvers were defined to uncouple these motions from changes in the gravity vector with respect to the pilot. This approach simplifies the problem to be examined. For this experiment, the NASA Ames Vertical Motion Simulator was used in a comprehensive investigation. The math model was an AH-64 Apache in hover, which was identified from flight test data and had previously been validated by several AH-64 pilots. The pilot's head was located 4.5 ft in front of the vehicle center of gravity, which is

  12. Optimal Aerodynamic Design of Conventional and Coaxial Helicopter Rotors in Hover and Forward Flight

    NASA Astrophysics Data System (ADS)

    Giovanetti, Eli B.

    This dissertation investigates the optimal aerodynamic performance and design of conventional and coaxial helicopters in hover and forward flight using conventional and higher harmonic blade pitch control. First, we describe a method for determining the blade geometry, azimuthal blade pitch inputs, optimal shaft angle (rotor angle of attack), and division of propulsive and lifting forces among the components that minimize the total power for a given forward flight condition. The optimal design problem is cast as a variational statement that is discretized using a vortex lattice wake to model inviscid forces, combined with two-dimensional drag polars to model profile losses. The resulting nonlinear constrained optimization problem is solved via Newton iteration. We investigate the optimal design of a compound vehicle in forward flight comprised of a coaxial rotor system, a propeller, and optionally, a fixed wing. We show that higher harmonic control substantially reduces required power, and that both rotor and propeller efficiencies play an important role in determining the optimal shaft angle, which in turn affects the optimal design of each component. Second, we present a variational approach for determining the optimal (minimum power) torque-balanced coaxial hovering rotor using Blade Element Momentum Theory including swirl. We show that the optimal hovering coaxial rotor generates only a small percentage of its total thrust on the portion of the lower rotor operating in the upper rotor's contracted wake, resulting in an optimal design with very different upper and lower rotor twist and chord distributions. We also show that the swirl component of induced velocity has a relatively small effect on rotor performance at the disk loadings typical of helicopter rotors. Third, we describe a more refined model of the wake of a hovering conventional or coaxial rotor. We approximate the rotor or coaxial rotors as actuator disks (though not necessarily uniformly loaded

  13. Lift and power requirements of hovering insect flight

    NASA Astrophysics Data System (ADS)

    Mao, Sun; Gang, Du

    2003-10-01

    Lift and power requirements for hovering flight of eight species of insects are studied by solving the Navier-Stokes equation numerically. The solution provides velocity and pressure fields, from which unsteady aerodynamic forces and moments are obtained. The inertial torque of wing mass are computed analytically. The wing length of the insects ranges from 2 mm (fruit fly) to 52mm (hawkmoth); Reynolds numbers Re (based on mean flapping speed and mean chord length) ranges from 75 to 3 850. The primary findings are shown in the following: (1) Either small ( R=2mm, Re=75), medium ( R≈10mm, Re≈500) or large ( R≈50 mm, Re≈4000) insects mainly employ the same high-lift mechanism, delayed stall, to produce lift in hovering flight. The midstroke angle of attack needed to produce a mean lift equal to the insect weight is approximately in the range of 25° to 45°, which is approximately in agreement with observation. (2) For the small insect (fruit fly) and for the medium and large insects with relatively small wingbeat frequency (cranefly, ladybird and hawkmoth), the specific power ranges from 18 to 39 W·kg-1, the major part of the power is due to aerodynamic force, and the elastic storage of negatige work does not change the specific power greatly. However for medium and large insects with relatively large wingbeat frequency (hoverfly, dronefly, honey bee and bumble bee), the specific power ranges from 39 to 61 W·kg-1, the major part of the power is due to wing inertia, and the elastic storage of negative work can decrease the specific power by approximately 33%. (3) For the case of power being mainly contributed by aerodynamic force (fruit fly, cranefly, ladybird and hawkmoth), the specific power is proportional to the product of the wingbeat frequency, the stroke amplitude, the wing length and the drag-to-lift ratio. For the case of power being mainly contributed by wing inertia (hoverfly, dronefly, honey bee and bumble bee), the specific power (without

  14. Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures.

    PubMed

    Dudley, Robert; Winter, York

    2002-12-01

    Existing estimates of flight energetics in glossophagine flower bats, the heaviest hovering vertebrate taxon, suggest disproportionately high expenditure of mechanical power. We determined wingbeat kinematics and mechanical power expenditure for one of the largest flower bats (Leptonycteris curasoae Martinez and Villa) during hovering flight in normodense and hypodense gas mixtures. Additional experiments examined the effects of supplemental oxygen availability on maximum flight performance. Bats failed to sustain hovering flight at normoxic air densities averaging 63% that of normodense air. Kinematic responses to hypodense aerodynamic challenge involved increases in wing positional angles and in total stroke amplitude; wingbeat frequency was unchanged. At near-failure air densities, total power expenditure assuming perfect elastic energy storage was 17-42% greater than that for hovering in normodense air, depending on the assumed value for the profile drag coefficient. Assuming a flight muscle ratio of 26%, the associated muscle-mass-specific power output at the point of near-failure varied between 90.8 W kg(-1) (profile drag coefficient of 0.02) to 175.6 W kg(-1) (profile drag coefficient of 0.2). Hyperoxia did not enhance hovering performance in hypodense air, and, with the exception of a small increase (10%) in stroke plane angle, yielded no significant change in any of the kinematic parameters studied. Revised energetic estimates suggest that mechanical power expenditure of hovering glossophagines is comparable with that in slow forward flight. PMID:12409493

  15. Effect of wing flexibility in dragonfly hovering flight

    NASA Astrophysics Data System (ADS)

    Naidu, Vishal; Young, John; Lai, Joseph

    2011-11-01

    Dragonflies have two pairs of tandem wings, which can be operated independently. Most studies on tandem wings are based on rigid wings, which is in strong contradiction to the natural, flexible dragonfly wings. The effect of wing flexibility in tandem wings is little known. We carry out a comparative, computational study between rigid and flexible, dragonfly shaped wings for hovering flight. In rigid wings during downstroke, a leading edge vortex (LEV) is formed on the upper surface, which forms a low pressure zone. This conical LEV joins the tip vortex and shortly after the mid downstroke when the wing starts to rotate, these vortices are gradually shed resulting in a drop in lift. The vortex system creates a net downwards momentum in the form of a jet. The flexible wings while in motion deform due to aerodynamic and inertial forces. Since there is a strong interaction between wing deformation and air flow around the deformed wings, flexible wing simulations are carried out using a two way fluid structure interaction. The effect of wing flexibility on the flow structure and the subsequent effect on the aerodynamic forces will be studied and presented.

  16. Assessment of JVX Proprotor Performance Data in Hover and Airplane-Mode Flight Conditions

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2016-01-01

    A 0.656-scale V-22 proprotor, the Joint Vertical Experimental (JVX) rotor, was tested at the NASA Ames Research Center in both hover and airplane-mode (high-speed axial flow) flight conditions, up to an advance ratio of 0.562 (231 knots). This paper examines the two principal data sets generated by those tests, and includes investigations of hub spinner tares, torque/thrust measurement interactions, tunnel blockage effects, and other phenomena suspected of causing erroneous measurements or predictions. Uncertainties in hover and high-speed data are characterized. The results are reported here to provide guidance for future wind tunnel tests, data processing, and data analysis.

  17. An exploratory investigation of the flight dynamics effects of rotor rpm variations and rotor state feedback in hover

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.

    1992-01-01

    This paper presents the results of an analytical study conducted to investigate airframe/engine interface dynamics, and the influence of rotor speed variations on the flight dynamics of the helicopter in hover, and to explore the potential benefits of using rotor states as additional feedback signals in the flight control system. The analytical investigation required the development of a parametric high-order helicopter hover model, which included heave/yaw body motion, the rotor speed degree of freedom, rotor blade motion in flapping and lead-lag, inflow dynamics, a drive train model with a flexible rotor shaft, and an engine/rpm governor. First, the model was used to gain insight into the engine/drive train/rotor system dynamics and to obtain an improved simple formula for easy estimation of the dominant first torsional mode, which is important in the dynamic integration of the engine and airframe system. Then, a linearized version of the model was used to investigate the effects of rotor speed variations and rotor state feedback on helicopter flight dynamics. Results show that, by including rotor speed variations, the effective vertical damping decreases significantly from that calculated with a constant speed assumption, thereby providing a better correlation with flight test data. Higher closed-loop bandwidths appear to be more readily achievable with rotor state feedback. The results also indicate that both aircraft and rotor flapping responses to gust disturbance are significantly attenuated when rotor state feedback is used.

  18. An experimental investigation of the aeromechanical stability of a hingeless rotor in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Hamouda, M-Nabil H.; Mantay, Wayne R.

    1987-01-01

    Analysis and testing were conducted in the Langley Transonic Dynamics Tunnel to investigate the aeromechanical stability of a soft inplane hingeless rotor model. Rotor stability data were obtained in hover and in forward flight up to an advance ratio of 0.35. Model rotor parameters evaluated were blade sweep and droop, pre-cone of the blade feathering axis, and blade pitch-flap coupling. Data obtained during these tests are presented without analysis.

  19. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.

    PubMed

    Vance, Jason T; Altshuler, Douglas L; Dickson, William B; Dickinson, Michael H; Roberts, Stephen P

    2014-01-01

    During hovering flight, animals can increase the wing velocity and therefore the net aerodynamic force per stroke by increasing wingbeat frequency, wing stroke amplitude, or both. The magnitude and orientation of aerodynamic forces are also influenced by the geometric angle of attack, timing of wing rotation, wing contact, and pattern of deviation from the primary stroke plane. Most of the kinematic data available for flying animals are average values for wing stroke amplitude and wingbeat frequency because these features are relatively easy to measure, but it is frequently suggested that the more subtle and difficult-to-measure features of wing kinematics can explain variation in force production for different flight behaviors. Here, we test this hypothesis with multicamera high-speed recording and digitization of wing kinematics of honeybees (Apis mellifera) hovering and ascending in air and hovering in a hypodense gas (heliox: 21% O2, 79% He). Bees employed low stroke amplitudes (86.7° ± 7.9°) and high wingbeat frequencies (226.8 ± 12.8 Hz) when hovering in air. When ascending in air or hovering in heliox, bees increased stroke amplitude by 30%-45%, which yielded a much higher wing tip velocity relative to that during simple hovering in air. Across the three flight conditions, there were no statistical differences in the amplitude of wing stroke deviation, minimum and stroke-averaged geometric angle of attack, maximum wing rotation velocity, or even wingbeat frequency. We employed a quasi-steady aerodynamic model to estimate the effects of wing tip velocity and geometric angle of attack on lift and drag. Lift forces were sensitive to variation in wing tip velocity, whereas drag was sensitive to both variation in wing tip velocity and angle of attack. Bees utilized kinematic patterns that did not maximize lift production but rather maintained lift-to-drag ratio. Thus, our data indicate that, at least for honeybees, the overall time course of wing angles is

  20. Hover and forward flight acoustics and performance of a small-scale helicopter rotor system

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Shinoda, P.

    1985-01-01

    A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.

  1. Energetic cost of hovering flight in a nectar-feeding bat measured with fast-response respirometry.

    PubMed

    Winter, Y

    1998-08-01

    Hover-feeding glossophagine bats provide, in addition to the hummingbirds, a second vertebrate model for the analysis of hovering flight based on metabolic measurement and aerodynamic theory. In this study, the power input of hovering Glossophaga soricina bats (11.9 g) was measured by standard respirometry and fast-response (< 0.2 s) oxygen analysis. Bats needed 5-7 s after a rest-to-flight transition to return to a respiratory steady state. Therefore, only hovering events preceeded by a 7-s flight interval were evaluated. VO2 during hovering fluctuated with a frequency of 3-5 Hz, which corresponded in frequency to the licking movement of the tongue. During hovering, bats often may have hypoventilated as indicated by reduced VO2 and a respiratory exchange ratio (RER) well below the steady-state value of 1. Steady-state oxygen consumption (and derived power input) during hovering was estimated to be 27 (25-29) ml O2 g-1 h-1 (158 W kg-1 or 1.88 W) in the 11.9-g bats as indicated by three independent findings: (1) VO2 was 26 ml O2 g-1 h-1 after 6.5 s of hovering, (2) the mean RER during single hovering events was at its steady-state level of 1 only at oxygen uptake rates of 25-29 ml g-1 h-1, and (3) when the oxygen potentially released from estimated oxygen stores was added to the measured oxygen uptake, the upper limit for oxygen consumption during hovering was found to be 29 ml O2 g-1 h-1. Hovering power input was about 1.2 times the value of minimum flight power input (Winter and von Helversen 1998) and thus well below the 1.7-2.6 difference in power output postulated by aerodynamic theory (Norberg et al. 1993). Mass specific power input was 40% less than in hummingbirds. Thus, within the possible modes of hovering flight, Glossophaga bats seem to operate at the high-efficiency end of the spectrum. PMID:9747523

  2. Frequency-Domain Identification of XV-15 Tilt-Rotor Aircraft Dynamics in Hovering Flight

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Leung, Joseph G. M.; Dugan, Daniel C.

    1985-01-01

    Frequency-domain methods are used to identify the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight tests. Piloting and data analysis techniques are presented to determine frequency response plots and equivalent transfer function models. The open-loop pitch and roll dynamics for the hover flight condition exhibit unstable low-frequency oscillations, whereas the dynamics in the remaining degrees of freedom are lightly damped and generally decoupled. Comparisons of XV-15 flight-test and simulator data are more favorable for high-frequency inputs (omega greater than 1.0 rad/sec) than low-frequency inputs. Time-domain comparisons of the extracted transfer functions with step response flight data are very favorable, even for large amplitude motions. The results presented in this paper demonstrate the utility of the frequency-domain techniques for dynamics identification and simulator fidelity studies.

  3. Sugar flux through the flight muscles of hovering vertebrate nectarivores: a review.

    PubMed

    Welch, Kenneth C; Chen, Chris C W

    2014-12-01

    In most vertebrates, uptake and oxidation of circulating sugars by locomotor muscles rises with increasing exercise intensity. However, uptake rate by muscle plateaus at moderate aerobic exercise intensities and intracellular fuels dominate at oxygen consumption rates of 50% of maximum or more. Further, uptake and oxidation of circulating fructose by muscle is negligible. In contrast, hummingbirds and nectar bats are capable of fueling expensive hovering flight exclusively, or nearly completely, with dietary sugar. In addition, hummingbirds and nectar bats appear capable of fueling hovering flight completely with fructose. Three crucial steps are believed to be rate limiting to muscle uptake of circulating glucose or fructose in vertebrates: (1) delivery to muscle; (2) transport into muscle through glucose transporter proteins (GLUTs); and (3) phosphorylation of glucose by hexokinase (HK) within the muscle. In this review, we summarize what is known about the functional upregulation of exogenous sugar flux at each of these steps in hummingbirds and nectar bats. High cardiac output, capillary density, and blood sugar levels in hummingbirds and bats enhance sugar delivery to muscles (step 1). Hummingbird and nectar bat flight muscle fibers have relatively small cross-sectional areas and thus relatively high surface areas across which transport can occur (step 2). Maximum HK activities in each species are enough for carbohydrate flux through glycolysis to satisfy 100 % of hovering oxidative demand (step 3). However, qualitative patterns of GLUT expression in the muscle (step 2) raise more questions than they answer regarding sugar transport in hummingbirds and suggest major differences in the regulation of sugar flux compared to nectar bats. Behavioral and physiological similarities among hummingbirds, nectar bats, and other vertebrates suggest enhanced capacities for exogenous fuel use during exercise may be more wide spread than previously appreciated. Further, how

  4. The Rufous Hummingbird in hovering flight -- full-body 3D immersed boundary simulation

    NASA Astrophysics Data System (ADS)

    Ferreira de Sousa, Paulo; Luo, Haoxiang; Bocanegra Evans, Humberto

    2009-11-01

    Hummingbirds are an interesting case study for the development of micro-air vehicles since they combine the high flight stability of insects with the low metabolic power per unit of body mass of bats, during hovering flight. In this study, simulations of a full-body hummingbird in hovering flight were performed at a Reynolds number around 3600. The simulations employ a versatile sharp-interface immersed boundary method recently enhanced at our lab that can treat thin membranes and solid bodies alike. Implemented on a Cartesian mesh, the numerical method allows us to capture the vortex dynamics of the wake accurately and efficiently. The whole-body simulation will allow us to clearly identify the three general patterns of flow velocity around the body of the hummingbird referred in Altshuler et al. (Exp Fluids 46 (5), 2009). One focus of the current study is to understand the interaction between the wakes of the two wings at the end of the upstroke, and how the tail actively defects the flow to contribute to pitch stability. Another focus of the study will be to identify the pair of unconnected loops underneath each wing.

  5. Adaptive nonlinear flight control

    NASA Astrophysics Data System (ADS)

    Rysdyk, Rolf Theoduor

    1998-08-01

    Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator

  6. Model-based analysis of control/display interaction in the hover task

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Garg, Sanjay

    1987-01-01

    The effect of Control/Display interaction in the hover task is analyzed using an optimal control approach to modeling pilot control behavior. The control/display configurations considered are those previously evaluated in a flight research program. The experimental data-base is reviewed and the procedure for modeling the task and the displayed information is presented in detail. All model-based results, time-domain as well as frequency-domain, are found to correlate extremely well with the subjective pilot ratings and comments. Time-domain measures consist of root mean-square errors and control inputs, attention allocation to displayed quantities, and magnitudes of task objective function. Frequency-domain measures include bandwidth, stability margins, and pilot phase compensation. Results are also shown to agree with previous findings on task interference in multi-axis tasks.

  7. Hovering and Transition Flight Tests of a 1/5-Scale Model of a Jet-Powered Vertical-Attitude VTOL Research Airplane

    NASA Technical Reports Server (NTRS)

    Smith, Charles C., Jr.

    1961-01-01

    An experimental investigation has been made to determine the dynamic stability and control characteristics of a 1/5-scale flying model of a jet-powered vertical-attitude VTOL research airplane in hovering and transition flight. The model was powered with either a hydrogen peroxide rocket motor or a compressed-air jet exhausting through an ejector tube to simulate the turbojet engine of the airplane. The gyroscopic effects of the engine were simulated by a flywheel driven by compressed-air jets. In hovering flight the model was controlled by jet-reaction controls which consisted of a swiveling nozzle on the main jet and a movable nozzle on each wing tip; and in forward flight the model was controlled by elevons and a rudder. If the gyroscopic effects of the jet engine were not represented, the model could be flown satisfactorily in hovering flight without any automatic stabilization devices. When the gyroscopic effects of the jet engine were represented, however, the model could not be controlled without the aid of artificial stabilizing devices because of the gyroscopic coupling of the yawing and pitching motions. The use of pitch and yaw dampers made these motions completely stable and the model could then be controlled very easily. In the transition flight tests, which were performed only with the automatic pitch and yaw dampers operating, it was found that the transition was very easy to perform either with or without the engine gyroscopic effects simulated, although the model had a tendency to fly in a rolled and sideslipped attitude at angles of attack between approximately 25 deg and 45 deg because of static directional instability in this range.

  8. Hovering and Transition Flight Tests of a 1/5-Scale Model of a Jet-Powered Vertical-Attitude VTOL Research Airplane

    NASA Technical Reports Server (NTRS)

    Smith, Charles C., Jr.

    1958-01-01

    An experimental investigation has been made to determine the dynamic stability and control characteristics of a 1/5-scale flying model of a jet-powered vertical-attitude VTOL research airplane in hovering and transition flight. The model was powered with either a hydrogen peroxide rocket motor or a compressed-air jet exhausting through an ejector tube to simulate the turbojet engine of the airplane. The gyroscopic effects of the engine were simulated by a flywheel driven by compressed-air jets. In hovering flight the model was controlled by jet-reaction controls which consisted of a swiveling nozzle on the main jet and a movable nozzle on each wing tip; and in forward flight the model was controlled by elevons and a rudder. If the gyroscopic effects of the jet engine were not represented, the model could be flown satisfactorily in hovering flight without any automatic stabilization devices. When the gyroscopic effects of the jet engine were represented, however, the model could not be controlled without the aid of artificial stabilizing devices because of the gyroscopic coupling of the yawing and pitching motions. The use of pitch and yaw dampers made these motions completely stable and the model could then be controlled very easily. In the transition flight tests, which were performed only with the automatic pitch and yaw dampers operating, it was found that the transition was very easy to perform either with or without the engine gyroscopic effects simulated, although the model had a tendency to fly in a rolled and sideslipped attitude at angles of attack between approximately 25 and 45 deg because of static directional instability in this range.

  9. Flag-lag-torsional dynamics or extensional and inextensional rotor blades in hover and in forward flight

    NASA Technical Reports Server (NTRS)

    Crespodasilva, M. R. M.

    1981-01-01

    The differential equations describing the flap-lag-torsional motion of a flexible rotor blade including third-order nonlinearities were derived for hover and forward flight. Making use of the two boundary conditions, those equations were reduced to a set of three integro partial differential equations written in terms of the flexural deflections and the torsional variable.

  10. The Implications of Handling Qualities in Civil Helicopter Accidents Involving Hover and Low Speed Flight

    NASA Technical Reports Server (NTRS)

    Dugan, Daniel C.; Delamer, Kevin J.

    2005-01-01

    Because of increasing accident rates in Army helicopters in hover and low speed flight, a study was made in 1999 of accidents which could be attributed to inadequate stability augmentation. A study of civil helicopter accidents from 1993-2004 was then undertaken to pursue the issue of poor handling qualities in helicopters which, in almost all cases, had no stability augmentation. The vast majority of the mishaps studied occurred during daylight in visual meteorological condition, reducing the impact of degraded visual environments (DVE) on the results. Based on the Cooper-Harper Rating Scale, the handling qualities of many of the helicopters studied could be described as having from "very objectionable" to "major" deficiencies. These costly deficiencies have resulted in unnecessary loss of life, injury, and high dollar damage. Low cost and lightweight augmentation systems for helicopters have been developed in the past and are still being investigated. They offer the potential for significant reductions in the accident rate.

  11. Effect of Forewing and Hindwing Interactions on Aerodynamic Forces and Power in Hovering Dragonfly Flight

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane; Russell, David

    2007-10-01

    Dragonflies are four-winged insects that have the ability to control aerodynamic performance by modulating the phase lag (ϕ) between forewings and hindwings. We film the wing motion of a tethered dragonfly and compute the aerodynamic force and power as a function of the phase. We find that the out-of-phase motion as seen in steady hovering uses nearly minimal power to generate the required force to balance the weight, and the in-phase motion seen in takeoffs provides an additional force to accelerate. We explain the main hydrodynamic interaction that causes this phase dependence.

  12. The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight.

    PubMed

    Taha, Haithem E; Tahmasian, Sevak; Woolsey, Craig A; Nayfeh, Ali H; Hajj, Muhammad R

    2015-01-01

    Because of the relatively high flapping frequency associated with hovering insects and flapping wing micro-air vehicles (FWMAVs), dynamic stability analysis typically involves direct averaging of the time-periodic dynamics over a flapping cycle. However, direct application of the averaging theorem may lead to false conclusions about the dynamics and stability of hovering insects and FWMAVs. Higher-order averaging techniques may be needed to understand the dynamics of flapping wing flight and to analyze its stability. We use second-order averaging to analyze the hovering dynamics of five insects in response to high-amplitude, high-frequency, periodic wing motion. We discuss the applicability of direct averaging versus second-order averaging for these insects. PMID:25561166

  13. Validations of Coupled CSD/CFD and Particle Vortex Transport Method for Rotorcraft Applications: Hover, Transition, and High Speed Flights

    NASA Technical Reports Server (NTRS)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.

  14. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight

    PubMed Central

    Nabawy, Mostafa R. A.; Crowthe, William J.

    2015-01-01

    A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657

  15. On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2014-05-01

    This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping. PMID:24554578

  16. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight.

    PubMed

    Nabawy, Mostafa R A; Crowthe, William J

    2015-01-01

    A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657

  17. Robust flight control of rotorcraft

    NASA Astrophysics Data System (ADS)

    Pechner, Adam Daniel

    With recent design improvement in fixed wing aircraft, there has been a considerable interest in the design of robust flight control systems to compensate for the inherent instability necessary to achieve desired performance. Such systems are designed for maximum available retention of stability and performance in the presence of significant vehicle damage or system failure. The rotorcraft industry has shown similar interest in adopting these reconfigurable flight control schemes specifically because of their ability to reject disturbance inputs and provide a significant amount of robustness for all but the most catastrophic of situations. The research summarized herein focuses on the extension of the pseudo-sliding mode control design procedure interpreted in the frequency domain. Application of the technique is employed and simulated on two well known helicopters, a simplified model of a hovering Sikorsky S-61 and the military's Black Hawk UH-60A also produced by Sikorsky. The Sikorsky helicopter model details are readily available and was chosen because it can be limited to pitch and roll motion reducing the number of degrees of freedom and yet contains two degrees of freedom, which is the minimum requirement in proving the validity of the pseudo-sliding control technique. The full order model of a hovering Black Hawk system was included both as a comparison to the S-61 helicopter design system and as a means to demonstrate the scaleability and effectiveness of the control technique on sophisticated systems where design robustness is of critical concern.

  18. Flap-lag damping in hover and forward flight with a three-dimensional wake

    NASA Technical Reports Server (NTRS)

    Manjunath, A. R.; Nagabhushanam, J.; Gaonkar, Gopal H.; Peters, David A.; Su, AY

    1993-01-01

    Prediction of lag damping is difficult owing to the delicate balance of drag, induced drag and Coriolis forces in the in-plane direction. Moreover, induced drag is sensitive to dynamic wake, both shed and trailing components, and thus its prediction requires adequate unsteady-wake representation. Accordingly, rigid-blade flap-lag equations are coupled with a three-dimensional finite-state wake model; three isolated rotor configurations with three, four and five blades are treated over a range of thrust levels, Lock numbers, lag frequencies and advance ratios. The investigation includes convergence characteristics of damping with respect to the number of radial shape functions and harmonics of the wake model for multiblade modes of low frequency (less than 1/rev.) to high frequency (greater than 1/rev.). Predicted flap and lag damping levels are then compared with similar predictions with (1) rigid wake (no unsteady induced flow, (2) Loewy lift defficiency and (3) dynamic inflow. The coverage also includes correlations with the measured lag regressive-mode damping in hover and forward flight and comparisons with similar correlations with dynamic wake model are consistently higher than the predictions with the dynamic inflow model; even for the low frequency lag regressive mode, the number of wake harmonics should at least be equal to twice the number of blades.

  19. Aerodynamic force variation in an inclined hovering motion by kinematic and geometric controls

    NASA Astrophysics Data System (ADS)

    Park, Hyungmin; Choi, Haecheon

    2009-11-01

    Due to the excellent flight capability with a high maneuverability, dragonfly flight has been a great interest in various fields. In the present study, we construct a one-paired dynamically scaled dragonfly wing model, perform an inclined hovering motion by wing flapping in a white-oil tank, and measure the normal and tangential forces on the wing. First, we investigate the effect of kinematic parameters of wing motion such as the attack angle (α), pitching duration, pitching timing, etc. The Reynolds number is 1,900 or 2,430 depending on the wing shape. We find that the aerodynamic forces vary greatly with these kinematic parameters. On the other hand, the corrugation on the wing surface has been found to increase the lift force in gliding flight. In this study, we investigate the effect of surface corrugation on the force of the flapping wing. With the corrugation, the drag force slightly increases during a downstroke (high α) and the lift force increases during an upstroke (small α), respectively, resulting in the increase of the mean vertical force by 10 ˜30% depending on the wing trajectory. We further investigate the force variation by kinematic and geometric controls using flow visualization and the result will be shown in the presentation.

  20. Helicopter flight-control design using an H(2) method

    NASA Technical Reports Server (NTRS)

    Takahashi, Marc D.

    1991-01-01

    Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.

  1. Theoretical and experimental investigation of the aeroelastic stability of an advanced bearingless rotor in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Wang, James M.; Chopra, Inderjit; Samak, D. K.; Green, Michael; Graham, Todd

    1989-01-01

    The aeroelastic stability of a shaft-fixed, 1/8th Froude scaled bearingless rotor was investigated in a series of wind tunnel experiments simulating a wide range of operating conditions. A finite element formulation was used to perform a parallel theoretical analysis, with the goal of determining whether a bearingless rotor system could be made aeroelastically stable without the incorporation of auxilliary dampers. A quick estimate of lag mode damping was provided by a refined moving-block analysis implemented in real time which predicted similar damping values. Model rotor and blade properties were also determined, and these properties were used as inputs for a newly refined bearingless rotor analysis. Predicted results were compared with experimental results in hover and forward flight. Results indicated that soft pitch link stiffness increases pitch-lag coupling and stabilizes lag mode stability in hover and at low advance ratios, but destabilizes at higher advance ratios.

  2. Interaction between the fore- and hind-wings in hovering flight of modelled dragonfly

    NASA Astrophysics Data System (ADS)

    Kweon, Jihoon; Choi, Haecheon

    2009-11-01

    In the present study, we investigate the interaction between the fore- and hind-wings in hovering flight of modelled dragonfly using 3D numerical simulation. The three-dimensional wing shape is based on that of Aeschna juncea (Norberg 1972) and numerically realized using an immersed boundary method (Kim et al. 2001). The wing flapping motion is modelled using a sinusoidal function and the stroke plane angle is 60^o. We consider 12 different phase differences between the fore- and hind-wings (φ=0^o ˜ 330^o). The Reynolds number is 1,000 based on the maximum translational velocity and mean chord length. In counter stroke (φ=180^o), the wing-tip vortices from both wings are connected, generating an entangled wing-tip vortex (e-WTV). A strong downward motion induced by this vortex decreases the vertical force in the following stroke (Kweon & Choi 2008). In parallel stroke (φ=0^o), both wings meet e-WTV during the upstroke and thus the decrease of vertical force is small. At φ=270^o, although e-WTV is generated on a relatively narrow region, the hind-wing moves downward along with e-WTV, resulting in a significant reduction of vertical force on the hind-wing. Therefore, the sum of vertical forces on both wings is maximum with parallel stroke and minimum at φ=270^o. The power required has a similar trend to the vertical force and thus the efficiency does not show a large variation with the phase difference.

  3. Sliding mode control for Lorentz-augmented spacecraft hovering around elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang; Zhang, Hua

    2014-10-01

    A Lorentz spacecraft is an electrostatically charged space vehicle that could actively modulate its surface charge to generate Lorentz force as it moves through the planetary magnetic field. The induced Lorentz force provides propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft hovering that the chaser thrusts continuously to create an equilibrium state at the desired position relative to the target. Due to the fact that the direction of Lorentz force is determined by the local magnetic field and the velocity of the spacecraft with respect to the local magnetic field, which does not necessarily coincide with that of the required control acceleration for hovering, thus, in most cases, the Lorentz force works as a means of auxiliary propulsion to reduce the expenditure of fuel onboard. And that is why it is called Lorentz-augmented hovering. A dynamical model for Lorentz-augmented hovering around elliptic orbits is developed based upon the assumption that the Earth's magnetic field could be modeled as a tilted dipole that corotates with Earth. Fuel-optimal open-loop control laws are then derived based on the proposed dynamical model, presenting the optimal trajectories of the required specific charge of Lorentz spacecraft and the thruster-generated control acceleration. Considering the external disturbances that may drift the desired hovering position, a closed-loop integral sliding mode controller is also designed to guarantee the tracking of optimal control trajectories, ensuring the robustness of the system against perturbations. Numerical simulations are presented to analyze the characteristics of Lorentz-augmented hovering around eccentric orbits and the results substantiate the validity of the proposed open-loop and closed-loop control methods.

  4. Stabilization control of a hovering model insect: lateral motion

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lai; Sun, Mao

    2011-10-01

    Our previous study shows that the lateral disturbance motion of a model drone fly does not have inherent stability (passive stability), because of the existence of an unstable divergence mode. But drone flies are observed to fly stably. Constantly active control must be applied to stabilize the flight. In this study, we investigate the lateral stabilization control of the model drone fly. The method of computational fluid dynamics is used to compute the lateral control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that although inherently unstable, the lateral disturbance motion is controllable. By feeding back the state variables (i.e. lateral translation velocity, yaw rate, roll rate and roll angle, which can be measured by the sensory system of the insect) to produce anti-symmetrical changes in stroke amplitude and/or in angle of attack between the left and right wings, the motion can be stabilized, explaining why the drone flies can fly stably even if the flight is passively unstable.

  5. A comparison of theory and experiment for coupled rotor body stability of a bearingless rotor model in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Mirick, Paul H.

    1988-01-01

    Seven cases were selected for correlation from a 1/5.86 Froude-scale experiment that examined several rotor designs which were being considered for full-scale flight testing as part of the Bearingless Main Rotor (BMR) program. The model rotor hub used in these tests consisted of back-to-back C-beams as flexbeam elements with a torque tube for pitch control. The first four cases selected from the experiment were hover tests which examined the effects on rotor stability of variations in hub-to-flexbeam coning, hub-to-flexbeam pitch, flexbeam-to-blade coning, and flexbeam-to-blade pitch. The final three cases were selected from the forward flight tests of optimum rotor configuration as defined during the hover test. The selected cases examined the effects of variations in forward speed, rotor speed, and shaft angle. Analytical results from Bell Helicopter Textron, Boeing Vertol, Sikorsky Aircraft, and the U.S. Army Aeromechanics Laboratory were compared with the data and the correlations ranged from poor-to-fair to fair-to-good.

  6. A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.

    1979-01-01

    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.

  7. Controls design with crossfeeds for hovering rotorcraft using quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Biezad, Daniel J.; Cheng, Rendy

    1996-01-01

    A multi-input, multi-output controls design with dynamic crossfeed pre-compensation is presented for rotorcraft in near-hovering flight using Quantitative Feedback Theory (QFT). The resulting closed-loop control system bandwidth allows the rotorcraft to be considered for use as an inflight simulator. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets most handling qualities specifications relative to the decoupling of off-axis responses. Handling qualities are Level 1 for both low-gain tasks and high-gain tasks in the roll, pitch, and yaw axes except for the 10 deg/sec moderate-amplitude yaw command where the rotorcraft exhibits Level 2 handling qualities in the yaw axis caused by phase lag. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensators successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective. This is an area to be investigated in future research.

  8. Controller partitioning for integrated flight/propulsion control implementation

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1993-01-01

    The notion of partitioning a centralized controller into a decentralized, hierarchical structure suitable for integrated flight/propulsion control (IFPC) implementation is discussed. A systematic procedure is developed for determining partitioned airframe and engine subsystem controllers (subcontrollers), with the desired interconnection structure, that approximate the closed-loop performance and robustness characteristics of a given centralized controller. The procedure is demonstrated by application to IFPC design for a Short Take-Off and Vertical Landing (STOVL) aircraft in the landing approach to hover transition flight phase.

  9. Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight

    NASA Astrophysics Data System (ADS)

    Jardin, T.; David, Laurent; Farcy, A.

    2009-05-01

    Flight agility, resistance to gusts, capability to hover coupled with a low noise generation might have been some of the reasons why insects are among the oldest species observed in nature. Biologists and aerodynamicists focused on analyzing such flight performances for diverse purposes: understanding the essence of flapping wings aerodynamics and applying this wing concept to the development of micro-air vehicles (MAVs). In order to put into evidence the fundamentally non-linear unsteady mechanisms responsible for the amount of lift generated by a flapping wing (Dickinson et al. in Science 284:1954-1960, 1999), experimental and numerical studies were carried out on typical insect model wings and kinematics. On the other hand, in the recent context of MAVs development, it is of particular interest to study simplified non-biological flapping configurations which could lead to lift and/or efficiency enhancement. In this paper, we propose a parametrical study of a NACA0012 profile undergoing asymmetric hovering flapping motions at Reynolds 1000. On the contrary to normal hovering, which has been widely studied as being the most common configuration observed in the world of insects, asymmetric hovering is characterized by an inclined stroke plane. Besides the fact that the vertical force is hence a combination of both lift and drag (Wang in J Exp Biol 207:1137-1150, 2004), the specificity of such motions resides in the vortex dynamics which present distinct behaviours, whether the upstroke angle of attack leads to a partially attached or a strong separated flow, giving more or less importance to the wake capture phenomenon. A direct consequence of the previous remarks relies on the enhancement of aerodynamic efficiency with asymmetry. If several studies reported results based on the asymmetric flapping motion of dragonfly, only few works concentrated on parametrizing asymmetric motions (e.g. Wang in Phys Rev Lett 85:2216-2219, 2000). The present study relies on TR

  10. Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight

    NASA Astrophysics Data System (ADS)

    Jardin, T.; David, Laurent; Farcy, A.

    Flight agility, resistance to gusts, capability to hover coupled with a low noise generation might have been some of the reasons why insects are among the oldest species observed in nature. Biologists and aerodynamicists focused on analyzing such flight performances for diverse purposes: understanding the essence of flapping wings aerodynamics and applying this wing concept to the development of micro-air vehicles (MAVs). In order to put into evidence the fundamentally non-linear unsteady mechanisms responsible for the amount of lift generated by a flapping wing (Dickinson et al. in Science 284:1954- 1960, 1999), experimental and numerical studies were carried out on typical insect model wings and kinematics. On the other hand, in the recent context of MAVs development, it is of particular interest to study simplified nonbiological flapping configurations which could lead to lift and/or efficiency enhancement. In this paper, we propose a parametrical study of a NACA0012 profile undergoing asymmetric hovering flapping motions at Reynolds 1000. On the contrary to normal hovering, which has been widely studied as being the most common configuration observed in the world of insects, asymmetric hovering is characterized by an inclined stroke plane. Besides the fact that the vertical force is hence a combination of both lift and drag (Wang in J Exp Biol 207:1137-1150, 2004), the specificity of such motions resides in the vortex dynamics which present distinct behaviours, whether the upstroke angle of attack leads to a partially attached or a strong separated flow, giving more or less importance to the wake capture phenomenon. A direct consequence of the previous remarks relies on the enhancement of aerodynamic efficiency with asymmetry. If several studies reported results based on the asymmetric flapping motion of dragonfly, only few works concentrated on parametrizing asymmetric motions (e.g. Wang in Phys Rev Lett 85:2216-2219, 2000). The present study relies on TR

  11. Body-fixed orbit-attitude hovering control over an asteroid using non-canonical Hamiltonian structure

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Xu, Shijie

    2015-12-01

    The orbit-attitude hovering means that both the position and attitude of the spacecraft are kept to be stationary in the asteroid body-fixed frame. The orbit-attitude hovering is discussed in the framework of the gravitationally coupled orbit-attitude dynamics, also called the full dynamics, in which the spacecraft is modeled as a rigid body to take into account the gravitational orbit-attitude coupling naturally. A feedback hovering control law is proposed by using the non-canonical Hamiltonian structure of the problem, which is consisted of two potential shapings and one energy dissipation. The first potential shaping is to create an artificial equilibrium at the desired hovering position-attitude. Then, the second potential shaping modifies the potential further so that the artificial equilibrium is a minimum of the modified Hamiltonian on the invariant manifold. Finally, the energy dissipation leads the motion to converge asymptotically to the minimum of the modified Hamiltonian, i.e., the artificial equilibrium for hovering. The feasibility of the hovering control law is verified through numerical simulations. The proposed hovering control law has a simple form and can be implemented by the spacecraft autonomously with little computation. This feature can be attributed to the utilization of the Hamiltonian structure and natural dynamical behaviors of the system in the control law design.

  12. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    PubMed

    Sridhar, Madhu; Kang, Chang-kwon

    2015-06-01

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces. PMID:25946079

  13. An experimental investigation of ground effect on a quad tilt rotor in hover and low speed forward flight

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Anand

    The performance of a Quad Tilt Rotor (QTR) in helicopter mode was experimentally studied in ground effect (IGE) and out of ground effect (OGE). A 0.03 geometrically scaled fuselage/wing model of the QTR was tested in hover and very low speed forward flight. Fixed-pitch propellers were used to model the rotors. In order to avoid the boundary layer problems associated with wind tunnel testing of rotorcraft IGE, a unique moving setup was developed for testing in forward flight. The effect of ground proximity was tested by varying the height of the model above the ground. Download on the airframe; thrust, torque and rpm of the rotors, and pressures along the centerline of the bottom of the fuselage were measured. The downwash distributions of the rotors were measured and found to compare well with V-22 rotor measurements. Tuft flow visualization was used to identify the physical processes causing changes in the download and pressure measurements. An uncertainty analysis was performed on the measured quantities to determine the 95% confidence levels. A strong download (9% of the rotor thrust) was observed in hover, OGE. The download reduced substantially IGE and become an upload (9% of the rotor thrust), when the wheels of the QTR were on the ground. The upload IGE was found to be caused by the entrapment of the rotor wakes under the fuselage. The upload was observed to persist in forward flight IGE, but reduced slightly at certain low skew angles. The measured downloads, coupled with power measurements, indicate that for a given power, the available vehicle thrust greatly increases IGE. Therefore, the QTR displays a potential for significant increase in payload carrying capacity by operating IGE.

  14. Application of the shadowgraph flow visualization technique to a full-scale helicopter rotor in hover and forward flight

    NASA Astrophysics Data System (ADS)

    Swanson, Alexandra A.

    The wide-field shadowgraph flow visualization technique was used for the first time with a full-scale helicopter rotor. This was accomplished during testing of a Sikorsky S-76 main rotor in the NASA Ames National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel. Hover, low-speed forward flight, and descent operating conditions were studied. Preliminary results are very promising with rotor wake tip vortices visible up to an advance ratio of 0.25. In addition, many details of the rotor wake were visible, including tip vortex roll-up, inboard wake vorticity, and flow unsteadiness due to test section recirculation effects in hover. Shadowgraphs of blade/vortex interactions were also acquired. Simultaneous top and side view shadowgraphs of the rotor wake were acquired by a newly developed synchronized digital imaging system. The imaging system proved to be a highly successful tool which made real-time examination of selected regions of the rotor wake possible.

  15. Helicopter control response types for hover and low-speed near-earth tasks in degraded visual conditions

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L.; Hart, Daniel C.; Hoh, Roger H.

    1991-01-01

    The NASA-Ames Vertical Motion Simulator and Dig 1 Computer Image Generator (CIG) have been used to simulate a helicopter cockpit in a degraded visual environment in order to assess several control-response types during low-level flight. CIG visibility was reduced to the point where the horizon and other far-field cues were indiscernible. The control-response types encompassed a rate command, an attitude command/hold, and a translational rate command; piloting tasks were hover, vertical landing, a pirouette, acceleration/deceleration, and a sidestep maneuver. Visual cue ratings with a rate-command response type were initially collected to set the usable cue environment at 3. A rate-command response type provided poor Level 2 handling qualities.

  16. YAV-8B reaction control system bleed and control power usage in hover and transition

    NASA Technical Reports Server (NTRS)

    Borchers, Paul F.; Moralez, Ernesto, III; Merrick, Vernon K.; Stortz, Michael W.

    1994-01-01

    Using a calibrated Rolls-Royce Pegasus engine and existing aircraft instrumentation and pressure taps, total and individual nozzle reaction control system (RCS) bleed flow rates have been measured on a YAV-8B Harrier during typical short takeoff, transition, hover, and vertical landing maneuvers. RCS thrust forces were calculated from RCS nozzle total pressure measurements, and control power was determined from the moments produced by these thrusts and the aircraft's moments of inertia. These data document the characteristics of the YAV-8B RCS with its basic stability augmentation system (SAS) engaged. Advanced control system designs for the YAV-8B can be compared to the original SAS based on the total bleed use and the percentage of available bleed used. In addition, the peak and mean values of the bleed and control power data can be used for sizing the reaction controls for a future short takeoff and vertical landing (STOVL) aircraft.

  17. On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2014-04-01

    An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length. PMID:24522785

  18. On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor

    PubMed Central

    Nabawy, Mostafa R. A.; Crowther, William J.

    2014-01-01

    An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length. PMID:24522785

  19. Unsteady aerodynamics in time and frequency domains for finite time arbitrary motion of rotary wings in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Dinyavari, M. A. H.; Friedmann, P. P.

    1984-01-01

    Several incompressible finite-time arbitrary-motion airfoil theories suitable for coupled flap-lag-torsional aeroelastic analysis of helicopter rotors in hover and forward flight are derived. These theories include generalized Greenberg's theory, generalized Loewy's theory, and a staggered cascade theory. The generalized Greenberg's and staggered cascade theories were derived directly in Laplace domain considering the finite length of the wake and using operational methods. The load expressions are presented in Laplace, frequency, and time domains. Approximate time domain loads for the various generalized theories, discussed in the paper, are obtained by developing finite state models using the Pade approximant of the appropriate lift deficiency functions. Three different methods for constructing Pade approximants of the lift deficiency functions were considered and the more flexible one was used. Pade approximants of Loewy's lift deficiency function, for various wake spacing and radial location parameters of a helicopter typical rotor blade section, are presented.

  20. Flap-lag-torsional dynamics of extensional and inextensional rotor blades in hover and in forward flight

    NASA Technical Reports Server (NTRS)

    Dasilva, C.

    1982-01-01

    The reduction of the O(cu epsilon) integro differential equations to ordinary differential equations using a set of orthogonal functions is described. Attention was focused on the hover flight condition. The set of Galerkin integrals that appear in the reduced equations was evaluated by making use of nonrotating beam modes. Although a large amount of computer time was needed to accomplish this task, the Galerkin integrals so evaluated were stored on tape on a permanent basis. Several of the coefficients were also obtained in closed form in order to check the accuracy of the numerical computations. The equilibrium solution to the set of 3n equations obtained was determined as the solution to a minimization problem.

  1. Flight Tests of a Model of a High-wing Transport Vertical-take-off Airplane with Tilting Wing and Propellers and with Jet Controls at the Rear of the Fuselage for Pitch and Yaw Control

    NASA Technical Reports Server (NTRS)

    Lovell, Powell M , Jr; Parlett, Lysle P

    1957-01-01

    An investigation of the stability and control of a high-wing transport vertical-take-off airplane with four engines during constant-altitude transitions from hovering to normal forward flight was conducted with a remotely controlled free-flight model. The model had four propellers distributed along the wing with the thrust axes in the wing chord plane. The wing could be rotated to 90 degrees incidence so that the propeller thrust axes were vertical for hovering flight. An air jet at the rear of the fuselage provided pitch and yaw control for hovering and low-speed flight.

  2. A comparison of theory and flight test of the BO 105/BMR in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Mirick, Paul H.

    1988-01-01

    Four cases were selected for comparison with theoretical predictions using stability data obtained during the flight test of the Bearingless Main Rotor (BMR) on a Messerschmidt-Boelkow-Blohm BO 105 helicopter. The four cases selected form the flight test included two ground resonance cases and two air resonance cases. The BMR used four modified BO 105 blades attached to a bearingless hub. The hub consisted of dual fiberglass C-channel beams attached to the hub center at 0.0238R and attached to the blade root at 0.25R with blade pitch control provided by a torque tube. Analyses from Bell Helicopter Textron, Boeing Vertol, and Sikorsky Aircraft were compared with the data and the correlation ranged from very poor-to-poor to poor-to-fair.

  3. Flight control experiences

    NASA Technical Reports Server (NTRS)

    Musgrave, F. S.

    1977-01-01

    A multidisciplinary medical-management team at mission control provided Skylab crew support by monitoring health, retrieving and compiling experimental data, assisting in the development of flight plans, and by contributing to in-flight procedures and checklists. Real time computers assisted the flight crews in performing medical and other experiments.

  4. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  5. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight

    PubMed Central

    Cheng, Xin; Sun, Mao

    2016-01-01

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a “clap and fling” motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial “clap and fling” motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1–1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so. PMID:27168523

  6. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.

    PubMed

    Cheng, Xin; Sun, Mao

    2016-01-01

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so. PMID:27168523

  7. Experimental investigation on the wing-wake interaction at the mid stroke in hovering flight of dragonfly

    NASA Astrophysics Data System (ADS)

    Lai, GuoJun; Shen, GongXin

    2012-11-01

    This paper focuses on flow structures of the wing-wake interaction between the hind wing and the wake of the forewing in hovering flight of a dragonfly since there are arguments whether the wing-wake interaction is useful or not. A mechanical flapping model with two tandem wings is used to study the interaction. In the device, two identical simplified model wings are mounted to the flapping model and they are both scaled up to keep the Reynolds number similar to those of dragonfly in hovering flight since our experiment is conducted in a water tank. The kinetic pattern of dragonfly ( Aeschna juncea) is chosen because of its special interesting asymmetry. A multi-slice phase-locked stereo particle image velocimetry (PIV) system is used to record flow structures around the hind wing at the mid downstroke ( t/ T=0.25) and the mid upstroke ( t/ T=0.75). To make comparison of the flow field between with and without the influence of the wake, flow structures around a single flapping wing (hind wing without the existence of the forewing) at these two stroke phases are also recorded. A local vortex identification scheme called swirling strength is applied to determine the vortices around the wing and they are visualized with the iso-surface of swirling strength. This paper also presents contour lines of ω z at each spanwise position of the hind wing, the vortex core position of the leading edge vortex (LEV) of hind wing with respect to the upper surface of hind wing, the circulation of the hind wing LEV at each spanwise position and so on. Experimental results show that dimension and strength of the hind wing LEV are impaired at the mid stroke in comparison with the single wing LEV because of the downwash from the forewing. Our results also reveal that a wake vortex from the forewing traverses the upper surface of the hind wing at the mid downstroke and its distance to the upper surface is about 40% of the wing chord length. At the instant, the distance of the hind wing

  8. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    NASA Technical Reports Server (NTRS)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  9. Integrated flight/propulsion control for supersonic STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Mihaloew, James R.

    1990-01-01

    A technology program to investigate integrated flight/propulsion control-system design for STOVL fighter aircraft is described. Integrated control systems being developed by U.S. industry for specific STOVL concepts are discussed. Attention is given to NASA involvement in the definition of control concepts, design-methods and flying-qualities criteria, and the evaluation of these concepts and criteria in analytical design studies, in ground-based experiments, and in flight on the Harrier V/STOL research aircraft. Initial fixed-base simulation experiments conducted for two STOVL fighter concepts are discussed. These simulations defined acceptable transition flight envelopes, determined control power used during transition and hover, and provided evaluations of the integration of the flight and propulsion controls to achieve good flying qualities throughout the low-speed flight envelope.

  10. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  11. Bat wing sensors support flight control

    PubMed Central

    Sterbing-D'Angelo, Susanne; Chadha, Mohit; Chiu, Chen; Falk, Ben; Xian, Wei; Barcelo, Janna; Zook, John M.; Moss, Cynthia F.

    2011-01-01

    Bats are the only mammals capable of powered flight, and they perform impressive aerial maneuvers like tight turns, hovering, and perching upside down. The bat wing contains five digits, and its specialized membrane is covered with stiff, microscopically small, domed hairs. We provide here unique empirical evidence that the tactile receptors associated with these hairs are involved in sensorimotor flight control by providing aerodynamic feedback. We found that neurons in bat primary somatosensory cortex respond with directional sensitivity to stimulation of the wing hairs with low-speed airflow. Wing hairs mostly preferred reversed airflow, which occurs under flight conditions when the airflow separates and vortices form. This finding suggests that the hairs act as an array of sensors to monitor flight speed and/or airflow conditions that indicate stall. Depilation of different functional regions of the bats’ wing membrane altered the flight behavior in obstacle avoidance tasks by reducing aerial maneuverability, as indicated by decreased turning angles and increased flight speed. PMID:21690408

  12. Survey of piloting factors in V/STOL aircraft with implications for flight control system design

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Craig, S. J.

    1977-01-01

    Flight control system design factors involved for pilot workload relief are identified. Major contributors to pilot workload include configuration management and control and aircraft stability and response qualities. A digital fly by wire stability augmentation, configuration management, and configuration control system is suggested for reduction of pilot workload during takeoff, hovering, and approach.

  13. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  14. The aerodynamics and control of free flight manoeuvres in Drosophila.

    PubMed

    Dickinson, Michael H; Muijres, Florian T

    2016-09-26

    A firm understanding of how fruit flies hover has emerged over the past two decades, and recent work has focused on the aerodynamic, biomechanical and neurobiological mechanisms that enable them to manoeuvre and resist perturbations. In this review, we describe how flies manipulate wing movement to control their body motion during active manoeuvres, and how these actions are regulated by sensory feedback. We also discuss how the application of control theory is providing new insight into the logic and structure of the circuitry that underlies flight stability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528778

  15. Optimal control theory (OWEM) applied to a helicopter in the hover and approach phase

    NASA Technical Reports Server (NTRS)

    Born, G. J.; Kai, T.

    1975-01-01

    A major difficulty in the practical application of linear-quadratic regulator theory is how to choose the weighting matrices in quadratic cost functions. The control system design with optimal weighting matrices was applied to a helicopter in the hover and approach phase. The weighting matrices were calculated to extremize the closed loop total system damping subject to constraints on the determinants. The extremization is really a minimization of the effects of disturbances, and interpreted as a compromise between the generalized system accuracy and the generalized system response speed. The trade-off between the accuracy and the response speed is adjusted by a single parameter, the ratio of determinants. By this approach an objective measure can be obtained for the design of a control system. The measure is to be determined by the system requirements.

  16. Flight Control System Development for the BURRO Autonomous UAV

    NASA Technical Reports Server (NTRS)

    Colbourne, Jason D.; Frost, Chad R.; Tischler, Mark B.; Ciolani, Luigi; Sahai, Ranjana; Tomoshofski, Chris; LaMontagne, Troy; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    Developing autonomous flying vehicles has been a growing field in aeronautical research within the last decade and will continue into the next century. With concerns about safety, size, and cost of manned aircraft, several autonomous vehicle projects are currently being developed; uninhabited rotorcraft offer solutions to requirements for hover, vertical take-off and landing, as well as slung load transportation capabilities. The newness of the technology requires flight control engineers to question what design approaches, control law architectures, and performance criteria apply to control law development and handling quality evaluation. To help answer these questions, this paper documents the control law design process for Kaman Aerospace BURRO project. This paper will describe the approach taken to design control laws and develop math models which will be used to convert the manned K-MAX into the BURRO autonomous rotorcraft. With the ability of the K-MAX to lift its own weight (6000 lb) the load significantly affects the dynamics of the system; the paper addresses the additional design requirements for slung load autonomous flight. The approach taken in this design was to: 1) generate accurate math models of the K-MAX helicopter with and without slung loads, 2) select design specifications that would deliver good performance as well as satisfy mission criteria, and 3) develop and tune the control system architecture to meet the design specs and mission criteria. An accurate math model was desired for control system development. The Comprehensive Identification from Frequency Responses (CIFER(R)) software package was used to identify a linear math model for unloaded and loaded flight at hover, 50 kts, and 100 kts. The results of an eight degree-of-freedom CIFER(R)-identified linear model for the unloaded hover flight condition are presented herein, and the identification of the two-body slung-load configuration is in progress.

  17. Low-speed Wind-Tunnel Study of Reaction Control-jet Effectiveness for Hover and Transition of a STOVL Fighter Concept

    NASA Technical Reports Server (NTRS)

    Riley, Donald R.; Shah, Gautam H.; Kuhn, Richard E.

    1989-01-01

    A brief wind-tunnel study was conducted in the Langley 12-Foot Low-Speed Tunnel to determine reaction control-jet effectiveness and some associated aerodynamic characteristics of a 15 percent scale model of the General Dynamics E-7A STOVL fighter/attack aircraft concept applicable to hover and transition flight. Tests were made with the model at various attitude angles in the tunnel test section and at various tunnel airspeeds for a range of control-jet nozzle pressure ratios. Eight reaction control-jets were tested individually. Four jets were at the design baseline locations providing roll, pitch, and yaw control. Comparisons of measured data with values calculated using empirical methods were made where possible.

  18. Controls design with crossfeeds for hovering rotorcraft using quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.

    1994-01-01

    This work is extending the research accomplished on project NCC2-751. A newly implemented helicopter model has been used to simulate 25 flight configurations near hover for the UH-60 RASCAL aircraft. A new engine model has been installed in the FORECAST simulation (alias UMGENHEL) for the better prediction of the yaw and heave responses. By applying the decoupling metric from project NCC 751 it was determined that the aileron to pitch and the elevator to yaw responses do not indicate the need for crossfeeds since both of them have a decoupling metric value over 20 dB (less than 10 percent coupling). In the case of the aileron to heave and the elevator to heave responses, the large size and the overlapping of the templates indicate that a low-order dynamic crossfeed cannot be found. The low-order dynamic crossfeed selection is proceeding, however, for the remaining eight crossfeeds. Note that most of them have successfully decoupled the system by 20 dB or more, except for the rudder to heave crossfeed (18.2 dB). It is probable that the engine model needs more accuracy to further improve the heave to yaw crossfeed decoupling metric value. To see how the new low-order dynamic crossfeeds perform, a simulation was accomplished using MATLAB SIMULINK.

  19. An experimental investigation of the flap-lag stability of a hingeless rotor with comparable levels of hub and blade stiffness in hovering flight

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Putman, W. F.

    1976-01-01

    An experimental investigation of the flap-lag stability of a hingeless rotor in hovering flight is presented and discussed. The rotor blade and hub configuration were selected such that the hub and blade had comparable levels of bending stiffness. Experimental measurements of the lag damping were made for various values of rotor rotational speed and blade pitch angle. Specifically at a blade pitch angle of 8 deg at three-quarters radius, the lag damping was determined over a range of rotational speeds from 200 RPM to 320 RPM and also over a range of blade pitch angles from 0 deg to 8 deg.

  20. Compensator-based 6-DOF control for probe asteroid-orbital-frame hovering with actuator limitations

    NASA Astrophysics Data System (ADS)

    Liu, Xiaosong; Zhang, Peng; Liu, Keping; Li, Yuanchun

    2016-05-01

    This paper is concerned with 6-DOF control of a probe hovering in the orbital frame of an asteroid. Considering the requirements of the scientific instruments pointing direction and orbital position in practical missions, the coordinate control of relative attitude and orbit between the probe and target asteroid is imperative. A 6-DOF dynamic equation describing the relative translational and rotational motion of a probe in the asteroid's orbital frame is derived, taking the irregular gravitation, model and parameter uncertainties and external disturbances into account. An adaptive sliding mode controller is employed to guarantee the convergence of the state error, where the adaptation law is used to estimate the unknown upper bound of system uncertainty. Then the controller is improved to deal with the practical problem of actuator limitations by introducing a RBF neural network compensator, which is used to approximate the difference between the actual control with magnitude constraint and the designed nominal control law. The closed-loop system is proved to be asymptotically stable through the Lyapunov stability analysis. Numerical simulations are performed to compare the performances of the preceding designed control laws. Simulation results demonstrate the validity of the control scheme using the compensator-based adaptive sliding mode control law in the presence of actuator limitations, system uncertainty and external disturbance.

  1. Control-oriented reduced order modeling of dipteran flapping flight

    NASA Astrophysics Data System (ADS)

    Faruque, Imraan

    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.

  2. Controlled flight of a biologically inspired, insect-scale robot.

    PubMed

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J

    2013-05-01

    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight. PMID:23641114

  3. A unique facility for V/STOL aircraft hover testing

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.

    1979-01-01

    The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.

  4. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  5. Free-flight model investigation of a vertical-attitude VTOL fighter with twin vertical tails

    NASA Technical Reports Server (NTRS)

    Grafton, S. B.; Anglin, E. L.

    1975-01-01

    Free-flight tests were conducted in the Langley full-scale tunnel to determine the stability and control characteristics of a vertical-attitude VTOL fighter having twin vertical tails and a pivoted fuselage forebody (nose-cockpit) arrangement. The flight tests included hovering flights and transition flights from hover to conventional forward flight. Static force tests were also made to aid in the analysis of the flight tests. The model exhibited satisfactory stability and control characteristics, and the transition from hovering flight to conventional forward flight was relatively smooth and straightforward.

  6. The use of an aircraft test stand for VTOL handling qualities studies. [pilot evaluation of flight controllability

    NASA Technical Reports Server (NTRS)

    Pauli, F. A.; Corliss, L. D.; Selan, S. D.; Gerdes, R. M.; Gossett, T. D.

    1974-01-01

    The VTOL flight tests stand for testing control concepts on the X-14B VSS aircraft in hover, is described. This stand permits realistic and safe piloted evaluation and checkout of various control systems and of parameter variations within each system to determine acceptability to the pilot. Pilots can use it as a practical training tool to practice procedures and flying techniques and become familiar with the aircraft characteristics. Some examples of test experience are given. The test stand allows the X14B to maneuver in hover from centered position + or - 9.7 deg in roll and + or - 9.3 deg in pitch, about + or - 6 deg in yaw, and + or - 15 cm in vertical translation. The unique vertical free flight freedom enables study of liftoffs and landings with power conditions duplicated. The response on the stand agrees well with that measured in free hovering flight, and pilot comments confirm this.

  7. Flight loads and control

    NASA Technical Reports Server (NTRS)

    Mowery, D. K.; Winder, S. W.

    1972-01-01

    The prediction of flight loads and their potential reduction, using various control logics for the space shuttle vehicles, is very complex. Some factors, not found on previous launch vehicles, that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. Discussed are these load producing factors and load reducing techniques. Identification of potential technology areas is included.

  8. Hover training display: rationale and implementation

    NASA Astrophysics Data System (ADS)

    Still, David L.; Temme, Leonard A.

    2008-04-01

    Hover is an essential component of rotary wing aviation but learning to hover is extremely difficult. From the viewpoint inside the cockpit, the beginning student neither sees nor understands what needs to be done to control the aircraft. This is because the out-the-window real world visual cues suffer from two primary shortcomings. First, the real world visual cues are ambiguous. For example, the relative motion of the ground moving under the nose may indicate forward flight, pitching upward, vertical ascent, or any combination of these. Second, human ability to judge aircraft pitch by itself is insufficient to stabilize the aircraft; such other clues as relative motion or parallax are needed to augment pitch judgments to set aircraft attitude adequately. We report a training display (TD) designed to assist training rotary wing hover. The TD is specifically constructed to communicate aircraft performance and attitude to the student pilot and to disambiguate the external world's features and motions cues into symbology that allows each cue independently to support sufficient levels of parameter resolution. Our preliminary observations, based on pilot data collected during the design, parameterization, and calibration of the TD indicate that it meets its goals in a fashion that enables beginning flight students to understand and interpret the motion cues of the real world out-the-window view.

  9. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  10. Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  11. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization.

    PubMed

    Kim, Joong-Kwan; Han, Jong-Seob; Lee, Jun-Seong; Han, Jae-Hung

    2015-10-01

    We show that the forward flight speed affects the stability characteristics of the longitudinal and lateral dynamics of a flying hawkmoth; dynamic modal structures of both the planes of motion are altered due to variations in the stability derivatives. The forward flight speed u e is changed from 0.00 to 1.00 m s(-1) with an increment of 0.25 m s(-1). (The equivalent advance ratio is 0.00 to 0.38; the advance ratio is the ratio of the forward flight speed to the average wing tip speed.) As the flight speed increases, for the longitudinal dynamics, an unstable oscillatory mode becomes more unstable. Also, we show that the up/down (w(b)) dynamics become more significant at a faster flight speed due to the prominent increase in the stability derivative Z(u) (up/down force due to the forward/backward velocity). For the lateral dynamics, the decrease in the stability derivative L(v) (roll moment due to side slip velocity) at a faster flight speed affects a slightly damped stable oscillatory mode, causing it to become more stable; however, the t(half) (the time taken to reach half the amplitude) of this slightly damped stable oscillatory mode remains relatively long (∼12T at u(e) = 1 m s(-1); T is wingbeat period) compared to the other modes of motion, meaning that this mode represents the most vulnerable dynamics among the lateral dynamics at all flight speeds. To obtain the stability derivatives, trim conditions for linearization are numerically searched to find the exact trim trajectory and wing kinematics using an algorithm that uses the gradient information of a control effectiveness matrix and fully coupled six-degrees of freedom nonlinear multibody equations of motion. With this algorithm, trim conditions that consider the coupling between the dynamics and aerodynamics can be obtained. The body and wing morphology, and the wing kinematics used in this study are based on actual measurement data from the relevant literature. The aerodynamic model of the flapping

  12. Enabling efficient vertical takeoff/landing and forward flight of unmanned aerial vehicles: Design and control of tandem wing-tip mounted rotor mechanisms

    NASA Astrophysics Data System (ADS)

    Mancuso, Peter Timothy

    Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies. Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.

  13. Technology review of flight crucial flight controls

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany.

  14. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  15. Robust Crossfeed Design for Hovering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Catapang, David R.

    1993-01-01

    Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

  16. Analysis of a VTOL hover task with predictor displays using an optimal control model of the human operator

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Govindaraj, T.

    1978-01-01

    The influence of different types of predictor displays in a longitudinal VTOL hover task is analyzed in a theoretical study. It was assumed that pitch angle and position are presented to the pilot in separate displays namely the artificial horizon and position display. The predictive information is calculated by means of a Taylor series. From earlier experimental studies it is well known that predictor displays improve human and system performance and result in reducing human workload. In this study, an optimal control model is used to prove this effect theoretically. Several cases with differing amounts of predictive and rate information are compared.

  17. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  18. Hovering performance of Anna's hummingbirds (Calypte anna) in ground effect

    PubMed Central

    Kim, Erica J.; Wolf, Marta; Ortega-Jimenez, Victor Manuel; Cheng, Stanley H.; Dudley, Robert

    2014-01-01

    Aerodynamic performance and energetic savings for flight in ground effect are theoretically maximized during hovering, but have never been directly measured for flying animals. We evaluated flight kinematics, metabolic rates and induced flow velocities for Anna's hummingbirds hovering at heights (relative to wing length R = 5.5 cm) of 0.7R, 0.9R, 1.1R, 1.7R, 2.2R and 8R above a solid surface. Flight at heights less than or equal to 1.1R resulted in significant reductions in the body angle, tail angle, anatomical stroke plane angle, wake-induced velocity, and mechanical and metabolic power expenditures when compared with flight at the control height of 8R. By contrast, stroke plane angle relative to horizontal, wingbeat amplitude and wingbeat frequency were unexpectedly independent of height from ground. Qualitative smoke visualizations suggest that each wing generates a vortex ring during both down- and upstroke. These rings expand upon reaching the ground and present a complex turbulent interaction below the bird's body. Nonetheless, hovering near surfaces results in substantial energetic benefits for hummingbirds, and by inference for all volant taxa that either feed at flowers or otherwise fly close to plant or other surfaces. PMID:24990291

  19. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two control law design techniques are compared and the performance of the resulting controllers evaluated. The design requirement is for a flight test trajectory controller (FTTC) capable of closed-loop, outer-loop control of an F-15 aircraft performing high-quality research flight test maneuvers. The maneuver modeling, linearization, and design methodologies utilized in this research, are detailed. The results of applying these FTTCs to a nonlinear F-15 simulation are presented.

  20. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two design techniques for linear flight test trajectory controllers (FTTCs) are described: Eigenstructure assignment and the minimum error excitation technique. The two techniques are used to design FTTCs for an F-15 aircraft model for eight different maneuvers at thirty different flight conditions. An evaluation of the FTTCs is presented.

  1. Integrity in flight control systems

    NASA Technical Reports Server (NTRS)

    Kurzhals, P. R.; Deloach, R.

    1977-01-01

    In connection with advances in technology, mainly in the electronic area, aircraft flight control applications have evolved from simple pilot-relief autopilots to flight-critical and redundant fly-by-wire and active control systems. For flight-critical implementations which required accommodation of inflight failures, additional levels of redundancy were incorporated to provide fail-safe and fail-operative performance. The current status of flight control systems reliability is examined and high-reliability approaches are discussed. Attention is given to the design of ring laser gyros and magnetohydrodynamic rate sensors, redundancy configurations for component failure protection, improvements of hydraulic actuators made on the component level, integrated actuators, problems of software reliability, lightning considerations, and failure detection methods for component and system failures.

  2. Output Tracking for Systems with Non-Hyperbolic and Near Non-Hyperbolic Internal Dynamics: Helicopter Hover Control

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1996-01-01

    A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.

  3. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  4. Flight experience with flight control redundancy management

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Larson, R. R.; Glover, R. D.

    1980-01-01

    Flight experience with both current and advanced redundancy management schemes was gained in recent flight research programs using the F-8 digital fly by wire aircraft. The flight performance of fault detection, isolation, and reconfiguration (FDIR) methods for sensors, computers, and actuators is reviewed. Results of induced failures as well as of actual random failures are discussed. Deficiencies in modeling and implementation techniques are also discussed. The paper also presents comparison off multisensor tracking in smooth air, in turbulence, during large maneuvers, and during maneuvers typical of those of large commercial transport aircraft. The results of flight tests of an advanced analytic redundancy management algorithm are compared with the performance of a contemporary algorithm in terms of time to detection, false alarms, and missed alarms. The performance of computer redundancy management in both iron bird and flight tests is also presented.

  5. Pointing and stabilization system for use in a high-altitude hovering helicopter

    NASA Astrophysics Data System (ADS)

    Murphy, Kevin; Goldblatt, Scott; Warren, Jeffery W.; Chapman, Rickey; Hemler, James B.; Mitchell, Craig A.; Moe, George W.

    1999-07-01

    A pointing and stabilization system has been developed and flight tested which permits an optical payload to be operated for an extended time period from a nearly stationary point in the air aboard a hovering helicopter. The system is assembled primarily from commercial 'off the shelf' components and is capable of pointing the payload as desired to image geo-referenced aim points on the earth's surface. The payload contains two digital cameras and laser illuminator. The payload is mounted in a 20-inch diameter, two axis stabilized ball gimbal available form a previous program. The payload also contains a dynamically tuned gyro- based inertial measurement unit, which with GPS-aiding provides ball gimbal position and pointing information. The processed data is used to accurately register images in ground coordinates. The inertial measurement data is also used in real time to control pointing of the ball gimbal and to generate a hover display for the pilots of the SH-60 helicopter. The system has been successfully flight tested. The longest test sequence to data is a 30 minute long hover at 7000 ft altitude during which the payload was staring at a fixed aim point. During this half-hour period, pilots maintained the helicopter at its hover point within a circle of approximately 150 meters radius. Similar hover accuracy is routinely obtained. This system provides a unique research capability to observe ground phenomena from a fixed airborne perspective and to register the resulting data into fixed ground coordinates.

  6. V/STOL tilt rotor study. Volume 6: Hover, low speed and conversion tests of a tilt rotor aeroelastic model (Model 300)

    NASA Technical Reports Server (NTRS)

    Marr, R. L.; Sambell, K. W.; Neal, G. T.

    1973-01-01

    Stability and control tests of a scale model of a tilt rotor research aircraft were conducted. The characteristics of the model for hover, low speed, and conversion flight were analyzed. Hover tests were conducted in a rotor whirl cage. Helicopter and conversion tests were conducted in a low speed wind tunnel. Data obtained from the tests are presented as tables and graphs. Diagrams and illustrations of the test equipment are provided.

  7. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.

    PubMed

    Percin, M; van Oudheusden, B W; de Croon, G C H E; Remes, B

    2016-06-01

    The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum conditions. Comparison of the results for different flapping frequencies reveals different wing kinematics and deformation characteristics. The high flapping frequency case produces higher forces throughout the complete flapping cycle. Moreover, a phase difference occurs in the variation of the forces, such that the low flapping frequency case precedes the high frequency case. A similar phase lag is observed in the temporal evolution of the wing deformation characteristics, suggesting that there is a direct link between the two phenomena. A considerable camber formation occurs during stroke reversals, which is mainly determined by the stiffener orientation. The wing with the thinner surface membrane displays very similar characteristics to the baseline wing, which implies the dominance of the stiffeners in terms of providing rigidity to the wing. Wing span has a significant effect on the aerodynamic efficiency such that increasing the span length by 4 cm results in a 6% enhancement in the cycle-averaged X-force to power consumption ratio compared to the standard DelFly II wings with a span length of 28 cm. PMID:27194392

  8. Aero-optimum hovering kinematics.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2015-08-01

    Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible. PMID:26248884

  9. Simulation investigation of the effects of helicopter hovering dynamics on pilot performance

    NASA Technical Reports Server (NTRS)

    Aponso, Bimal L.; Mitchell, David G.; Hoh, Roger H.

    1987-01-01

    A fixed base simulation has been performed to investigate the handling qualities requirements for the mid-term pitch response of a helicopter at hover and in low-speed flight. Pilot rating results from this simulation were compared with those from previous experiments to develop handling qualities limits on the frequency and damping of the oscillatory mode in the hovering cubic. Pilot performance data obtained during the experiment were used to confirm the pilot rating results. These data show the pilot performance to closely match that predicted by the theory of piloted control. A means of predicting pilot ratings from the open-loop aircraft dynamics is presented.

  10. Autorotation flight control system

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward N. (Inventor); Lee, Dong-Chan (Inventor); Aponso, Bimal L. (Inventor)

    2011-01-01

    The present invention provides computer implemented methodology that permits the safe landing and recovery of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe operating area of the height-velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization algorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a nonlinear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an autonomous rotorcraft. The formulation of the optimal control problem has been carefully tailored so the solutions resemble those of an expert pilot, accounting for the performance limitations of the rotorcraft and safety concerns.

  11. 14 CFR 29.151 - Flight controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight controls. 29.151 Section 29.151... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force,...

  12. 14 CFR 27.151 - Flight controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight controls. 27.151 Section 27.151... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force,...

  13. A simulation investigation of scout/attack helicopter directional control requirements for hover and low-speed tasks

    NASA Technical Reports Server (NTRS)

    Bivens, Courtland C.; Guercio, Joseph G.

    1987-01-01

    A piloted simulator experiment was conducted to investigate directional axis handling qualities requirements for low speed and hover tasks performed by a Scout/Attack helicopter. Included were the directional characteristics of various candidate light helicopter family configurations. Also, the experiment focused on conventional single main/tail rotor configurations of the OH-58 series aircraft, where the first-order yaw-axis dynamic effects that contributed to the loss of tail rotor control were modeled. Five pilots flew 22 configurations under various wind conditions. Cooper-Harper handling quality ratings were used as the primary measure of merit of each configuration. The results of the experiment indicate that rotorcraft configurations with high directional gust sensitivity require greater minimum yaw damping to maintain satisfactory handling qualities during nap-of-the-Earth flying tasks. It was also determined that both yaw damping and control response are critical handling qualities parameters in performing the air-to-air target acquisition and tracking task. Finally, the lack of substantial yaw damping and larger values of gust sensitivity increased the possibility of loss of directional control at low airspeeds for the single main/tail rotor configurations.

  14. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  15. Flight test trajectory control analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  16. 14 CFR 29.151 - Flight controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 29.151 Section 29.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls....

  17. 14 CFR 27.151 - Flight controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 27.151 Section 27.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls....

  18. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  19. An informal analysis of flight control tasks

    NASA Technical Reports Server (NTRS)

    Andersen, George J.

    1991-01-01

    Issues important in rotorcraft flight control are discussed. A perceptual description is suggested of what is believed to be the major issues in flight control. When the task is considered of a pilot controlling a helicopter in flight, the task is decomposed in several subtasks. These subtasks include: (1) the control of altitude, (2) the control of speed, (3) the control of heading, (4) the control of orientation, (5) the control of flight over obstacles, and (6) the control of flight to specified positions in the world. The first four subtasks can be considered to be primary control tasks as they are not dependent on any other subtasks. However, the latter two subtasks can be considered hierarchical tasks as they are dependent on other subtasks. For example, the task of flight control over obstacles can be decomposed as a task requiring the control of speed, altitude, and heading. Thus, incorrect control of altitude should result in poor control of flight over an obstacle.

  20. Flying in the rain: hovering performance of Anna's hummingbirds under varied precipitation

    PubMed Central

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2012-01-01

    Flight in rain represents a greater challenge for smaller animals because the relative effects of water loading and drop impact are greater at reduced scales given the increased ratios of surface area to mass. Nevertheless, it is well known that small volant taxa such as hummingbirds can continue foraging even in extreme precipitation. Here, we evaluated the effect of four rain intensities (i.e. zero, light, moderate and heavy) on the hovering performance of Anna's hummingbirds (Calypte anna) under laboratory conditions. Light-to-moderate rain had only a marginal effect on flight kinematics; wingbeat frequency of individuals in moderate rain was reduced by 7 per cent relative to control conditions. By contrast, birds hovering in heavy rain adopted more horizontal body and tail positions, and also increased wingbeat frequency substantially, while reducing stroke amplitude when compared with control conditions. The ratio between peak forces produced by single drops on a wing and on a solid surface suggests that feathers can absorb associated impact forces by up to approximately 50 per cent. Remarkably, hummingbirds hovered well even under heavy precipitation (i.e. 270 mm h−1) with no apparent loss of control, although mechanical power output assuming perfect and zero storage of elastic energy was estimated to be about 9 and 57 per cent higher, respectively, compared with normal hovering. PMID:22810431

  1. Flying in the rain: hovering performance of Anna's hummingbirds under varied precipitation.

    PubMed

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2012-10-01

    Flight in rain represents a greater challenge for smaller animals because the relative effects of water loading and drop impact are greater at reduced scales given the increased ratios of surface area to mass. Nevertheless, it is well known that small volant taxa such as hummingbirds can continue foraging even in extreme precipitation. Here, we evaluated the effect of four rain intensities (i.e. zero, light, moderate and heavy) on the hovering performance of Anna's hummingbirds (Calypte anna) under laboratory conditions. Light-to-moderate rain had only a marginal effect on flight kinematics; wingbeat frequency of individuals in moderate rain was reduced by 7 per cent relative to control conditions. By contrast, birds hovering in heavy rain adopted more horizontal body and tail positions, and also increased wingbeat frequency substantially, while reducing stroke amplitude when compared with control conditions. The ratio between peak forces produced by single drops on a wing and on a solid surface suggests that feathers can absorb associated impact forces by up to approximately 50 per cent. Remarkably, hummingbirds hovered well even under heavy precipitation (i.e. 270 mm h(-1)) with no apparent loss of control, although mechanical power output assuming perfect and zero storage of elastic energy was estimated to be about 9 and 57 per cent higher, respectively, compared with normal hovering. PMID:22810431

  2. Handling Qualities of Large Rotorcraft in Hover and Low Speed

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos; Theodore, Colin R.; Lawrence , Ben; Blanken, Chris L.

    2015-01-01

    According to a number of system studies, large capacity advanced rotorcraft with a capability of high cruise speeds (approx.350 mph) as well as vertical and/or short take-off and landing (V/STOL) flight could alleviate anticipated air transportation capacity issues by making use of non-primary runways, taxiways, and aprons. These advanced aircraft pose a number of design challenges, as well as unknown issues in the flight control and handling qualities domains. A series of piloted simulation experiments have been conducted on the NASA Ames Research Center Vertical Motion Simulator (VMS) in recent years to systematically investigate the fundamental flight control and handling qualities issues associated with the characteristics of large rotorcraft, including tiltrotors, in hover and low-speed maneuvering.

  3. Simulation evaluation of transition and hover flying qualities of the E-7A STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Gerdes, Ronald M.; Hardy, Gordon H.; Martin, James L.; Engelland, Shawn A.

    1988-01-01

    The generalized simulation model developed for the E-7A STOVL fighter-type aircraft configuration has attempted to define the limits of acceptibility for a vertical-to-horizontal-to-vertical flight transition envelope. An effort was also made to determine the control power required during hover and transition, and to evaluate whether the integration of flight and propulsion controls thus far effected achieves good flying qualities throughout the low-speed flight envelope. The results thus obtained furnish a general view of the acceptable transition corridor, expressed in terms of the minimum-climb capability.

  4. Optimum hovering wing planform.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2016-10-01

    Theoretical analysis is used to identify the optimum wing planform of a flapping/revolving wing in hover. This solution is of interest as a benchmark to which hovering wing geometries driven by broader multidisciplinary evolutionary or engineering constraints can be compared. Furthermore, useful insights into the aerodynamic performance of untwisted hovering wings are delivered. It is shown that profile power is minimised by using an untwisted elliptical planform whereas induced power is minimised by a more highly tapered planform similar to that of a hummingbird. PMID:27329340

  5. Robust crossfeed design for hovering rotorcraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Catapang, David R.

    1993-01-01

    Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust.' A new low-order matching method is presented here to design robost crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw, and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily-used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.

  6. Hovering and Low-Speed Performance and Control Characteristics of the Kaman Helicopter Rotor System as Determined on the Langley Helicopter Tower. TED No. NACA DE 205

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul J.; Paulnock, Russell S.

    1949-01-01

    An investigation has been conducted with the Langley helicopter tower to obtain basic performance and control characteristics of the Raman rotor system. Blade-pitch control is obtained in this configuration by utilizing an auxiliary flap to twist the blades. Rotor thrust and power required were measured for the hovering condition and over a range of wind velocities from 0 to 30 miles per hour. The control characteristics and the transient response of the rotor to various control movements were also measured. The hovering-performance data are presented as a survey of the wake velocities and the variation of torque coefficient with thrust coefficient. The power required for the test rotor to hover at a thrust of 1350 pounds and a rotor speed of 240 rpm is approximately 6.5 percent greater than that estimated for a conventional rotor of the same diameter and solidity. It is believed that most of this difference is caused by th e flap servomechanism. The reduction in total power required for sustentation of the single-rotor configuration tested at various wind velocities and at the normal operating rotor thrust was found to be similar to the theoretical and experimental results for ro tors with conventionally actuated pitch. The control effectiveness was determined as a function of rotor speed. Sufficient control was available to give a thrust range of 0 to 1500 pounds and a rotor tilt of plus or minus 7 degrees. The time lag between flap motion and blade-pitch response is approximately 0.02 to 0.03 second. The response of the rotor following the blade-pitch response is similar to that of a rotor with conventionally actuated pitch changes. The over-all characteristics of the rotor investigated indicate that satisfactory performance and control characteristics were obtained.

  7. Bias Momentum Sizing for Hovering Dual-Spin Platforms

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Shin, Jong-Yeob; Moerder, Daniel D.

    2006-01-01

    An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and attitude control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias aligned with the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes a methodical approach for trading off angular momentum bias level needed with desired levels of vehicle response due to the design disturbance environment given a vehicle's physical parameters. It also describes several simplifications that provide a more physical and intuitive understanding of dual-spin dynamics for hovering atmospheric vehicles. This approach also mitigates the need for control torques and inadvertent actuator saturation difficulties in trying to stabilize a vehicle via control torques produced by unsteady aerodynamics, thrust vectoring, and unsteady throttling. Simulation results, based on a subscale laboratory test flying platform, demonstrate significant improvements in the attitude control robustness of the vehicle with respect to both wind disturbances and off-center of gravity payload changes during flight.

  8. Transition-flight Tests of a Model of a Low-wing Transport Vertical-take-off Airplane with Tilting Wing and Propellers

    NASA Technical Reports Server (NTRS)

    Lovell, Powell M , Jr; Parlett, Lysle P

    1956-01-01

    An investigation of the stability and control of a low-wing four-engine transport vertical-take-off airplane during the transition from hovering to normal forward flight has been conducted with a remotely controlled free-flight model. The model had four propellers distributed along the wing with the thrust axes in the wing-chord plane. The wing could be rotated to 90 degrees incidence so that the propeller thrust axes were vertical for hovering flight.

  9. EVA Systems Flight Controller Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, EVA Systems Flight Controller Sandy Fletcher participates in a Digital Learning Network (DLN) event with students from Northtowne Ele...

  10. Fighter aircraft flight control technology design requirements

    NASA Technical Reports Server (NTRS)

    Nelson, W. E., Jr.

    1984-01-01

    The evolution of fighter aircraft flight control technology is briefly surveyed. Systems engineering, battle damage considerations for adaptive flutter suppression, in-flight simulation, and artificial intelligence are briefly discussed.

  11. Hovering of a jellyfish-like flying machine

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Childress, Stephen

    2013-11-01

    Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving maneuverability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct, and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Lift measurements and high-speed video of free-flight are used to inform an aerodynamic model that explains the stabilization mechanism. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.

  12. Flight Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  13. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  14. Stable hovering of a jellyfish-like flying machine

    PubMed Central

    Ristroph, Leif; Childress, Stephen

    2014-01-01

    Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving manoeuvrability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Measurements of lift show the benefits of wing flexing and the importance of selecting a wing size appropriate to the motor. Furthermore, we use high-speed video and motion tracking to show that the body orientation is stable during ascending, forward and hovering flight modes. Our experimental measurements are used to inform an aerodynamic model of stability that reveals the importance of centre-of-mass location and the coupling of body translation and rotation. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals. PMID:24430122

  15. Stable hovering of a jellyfish-like flying machine.

    PubMed

    Ristroph, Leif; Childress, Stephen

    2014-03-01

    Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving manoeuvrability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Measurements of lift show the benefits of wing flexing and the importance of selecting a wing size appropriate to the motor. Furthermore, we use high-speed video and motion tracking to show that the body orientation is stable during ascending, forward and hovering flight modes. Our experimental measurements are used to inform an aerodynamic model of stability that reveals the importance of centre-of-mass location and the coupling of body translation and rotation. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals. PMID:24430122

  16. Asteroid body-fixed hovering using nonideal solar sails

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang-Yuan; Jiang, Fang-Hua; Li, Jun-Feng

    2015-04-01

    The problem of body-fixed hovering over an asteroid using a compact form of nonideal solar sails with a controllable area is investigated. Nonlinear dynamic equations describing the hovering problem are constructed for a spherically symmetric asteroid. Numerical solutions of the feasible region for body-fixed hovering are obtained. Different sail models, including the cases of ideal, optical, parametric and solar photon thrust, on the feasible region is studied through numerical simulations. The influence of the asteroid spinning rate and the sail area-to-mass ratio on the feasible region is discussed. The required orientations for the sail and their corresponding variable lightness numbers are given for different hovering radii to identify the feasible region of the body-fixed hovering. An attractive scenario for a mission is introduced to take advantage of solar sail hovering.

  17. Flight Investigation of the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-Wing Vertical-Take-Off-and-Landing Aircraft

    NASA Technical Reports Server (NTRS)

    Tosti, Louis P.

    1959-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.

  18. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  19. Flight Test Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  20. Design techniques for mutlivariable flight control systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques which address the multi-input closely coupled nature of advanced flight control applications and digital implementation issues are described and illustrated through flight control examples. The techniques described seek to exploit the advantages of traditional techniques in treating conventional feedback control design specifications and the simplicity of modern approaches for multivariable control system design.

  1. Foreign technology summary of flight crucial flight control systems

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.

    1984-01-01

    A survey of foreign technology in flight crucial flight controls is being conducted to provide a data base for planning future research and technology programs. Only Free World countries were surveyed, and the primary emphasis was on Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The information was collected from open literature, personal communications, and a tour of several companies, government organizations, and research laboratories in the United Kingdom, France, and the Federal Republic of Germany. A summary of the survey results to date is presented.

  2. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  3. Nonclassical Flight Control for Unhealthy Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1997-01-01

    This research set out to investigate flight control of aircraft which has sustained damage in regular flight control effectors, due to jammed control surfaces or complete loss of hydraulic power. It is recognized that in such an extremely difficult situation unconventional measures may need to be taken to regain control and stability of the aircraft. Propulsion controlled aircraft (PCA) concept, initiated at the NASA Dryden Flight Research Center. represents a ground-breaking effort in this direction. In this approach, the engine is used as the only flight control effector in the rare event of complete loss of normal flight control system. Studies and flight testing conducted at NASA Dryden have confirmed the feasibility of the PCA concept. During the course of this research (March 98, 1997 to November 30, 1997), a comparative study has been done using the full nonlinear model of an F-18 aircraft. Linear controllers and nonlinear controllers based on a nonlinear predictive control method have been designed for normal flight control system and propulsion controlled aircraft. For the healthy aircraft with normal flight control, the study shows that an appropriately designed linear controller can perform as well as a nonlinear controller. On the other hand. when the normal flight control is lost and the engine is the only available means of flight control, a nonlinear PCA controller can significantly increase the size of the recoverable region in which the stability of the unstable aircraft can be attained by using only thrust modulation. The findings and controller design methods have been summarized in an invited paper entitled.

  4. F-15 IFCS: Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2007-01-01

    This viewgraph presentation describes the F-15 Intelligent Flight Control System (IFCS). The goals of this project include: 1) Demonstrate revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions; and 2) Demonstrate advance neural network-based flight control technology for new aerospace systems designs.

  5. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  6. Research in digital adaptive flight controllers

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  7. Flight Dynamics and Controls Discipline Overview

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.

    2012-01-01

    This presentation will touch topics, including but not limited to, the objectives and challenges of flight dynamics and controls that deal with the pilot and the cockpit's technology, the flight dynamics and controls discipline tasks, and the full envelope of flight dynamics modeling. In addition, the LCTR 7x10-ft wind tunnel test will also be included along with the optimal trajectories for noise abatement and its investigations on handling quality. Furthermore, previous experiments and their complying results will also be discussed.

  8. Modeling the pilot in visually controlled flight

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Phatak, Anil V.

    1991-01-01

    The simplest model for a human operator is a gain with a time delay. However, there have been no comprehensive studies evaluating human control strategies in visually controlled flight. The results of preliminary studies on this topic are described. Human visually guided flight control is important both in low level flight, where it predominates, and in higher altitude flights, where instrument failure is always a potential danger. Two general approaches to this problem, one founded on high order perceptual psychophysics and the other on control systems engineering, are described. Initial results show that the use of control engineering modeling techniques, together with a psychophysical analysis of information in the perspective scene, holds promise for capturing the manual control strategies used during visual flight.

  9. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  10. Design and piloted simulation evaluation of integrated flight/propulsion controls for STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Engelland, Shawn A.

    1991-01-01

    Integrated flight/propulsion control systems have been designed for operation of STOVL aircraft over the low speed powered-lift flight envelope. The control system employs command modes for attitude, flightpath angle and flightpath acceleration during transition, and translational velocity command for hover and vertical landing. The command modes and feedback control are implemented in the form of a state-rate feedback implicit model follower to achieve the desired flying qualities and to suppress the effects of external disturbances and variations in the aircraft characteristics over the low speed envelope. A nonlinear inverse system was used to translate the output from these commands and feedback control into commands for the various aerodynamic and propulsion control effectors that are employed in powered-lift flight. Piloted evaluations of these STOVL integrated control designs have been conducted on Ames Research Center's Vertical Motion Simulator to assess flying qualities over the low-speed flight envelope. Results indicate that Level 1 flying qualities are achieved with this control system concept for each of these low-speed operations over a wide range of wind, atmospheric turbulence, and visibility conditions.

  11. Simulation evaluation of transition and hover flying qualities of a mixed-flow, remote-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Engelland, Shawn A.; Hardy, Gordon H.; Martin, James L.

    1989-01-01

    Using a generalized simulation model developed for piloted evaluations of STOVL aircraft, an initial fixed-base simulation of a mixed-flow, remote-lift configuration has been completed. Objectives were to evaluate the integration of the aircraft's flight and propulsion controls to achieve good flying qualities throughout the low-speed flight envelope; to determine control power used during transition, hover, and vertical landing; and to evaluate the transition flight envelope considering the influence of thrust deflection of the remote-lift component. Pilots' evaluations indicated that Level 1 flying qualities could be achieved for deceleration to hover in instrument conditions, for airfield landings, and for recovery to a small ship when attitude and velocity stabilization and command augmentation control modes were provided. Level 2 flying qualities were obtained for these same tasks when only the attitude command mode was used, leaving the pilot to perform the task of thrust management required to control the flight-path and speed in transition and the horizontal and vertical translational velocities in hover. Thrust margins were defined for vertical landing as a function of ground effect and hot-gas ingestion.

  12. Remote Radio Control of Insect Flight

    PubMed Central

    Sato, Hirotaka; Berry, Christopher W.; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E.; Lavella, Gabriel; VandenBrooks, John M.; Harrison, Jon F.; Maharbiz, Michel M.

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses. PMID:20161808

  13. Dragonfly hover is primarily mediated by vision

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Mizutani, Akiko

    2014-03-01

    The sensory means by which hover is achieved could be inertial, visual or an unexplained sensory modality. Dragonflies in their natural habitat were shown not to maintain a stationary position in wind. Their position fluctuated significantly while returning to the original position. The movement of the dragonfly is correlated with the movement of vertically standing vegetation. This response would be non-causal with wind for an inertial or putative pressure based internal sensory system. It is postulated that with a substrate of moving water, sensitivity to movement on the visual horizon for controlling hover is a robust strategy.

  14. Transition Flight Control Room Automation

    NASA Technical Reports Server (NTRS)

    Welborn, Curtis Ray

    1990-01-01

    The Workstation Prototype Laboratory is currently working on a number of projects which we feel can have a direct impact on ground operations automation. These projects include: The Fuel Cell Monitoring System (FCMS), which will monitor and detect problems with the fuel cells on the Shuttle. FCMS will use a combination of rules (forward/backward) and multi-threaded procedures which run concurrently with the rules, to implement the malfunction algorithms of the EGIL flight controllers. The combination of rule based reasoning and procedural reasoning allows us to more easily map the malfunction algorithms into a real-time system implementation. A graphical computation language (AGCOMPL). AGCOMPL is an experimental prototype to determine the benefits and drawbacks of using a graphical language to design computations (algorithms) to work on Shuttle or Space Station telemetry and trajectory data. The design of a system which will allow a model of an electrical system, including telemetry sensors, to be configured on the screen graphically using previously defined electrical icons. This electrical model would then be used to generate rules and procedures for detecting malfunctions in the electrical components of the model. A generic message management (GMM) system. GMM is being designed as a message management system for real-time applications which send advisory messages to a user. The primary purpose of GMM is to reduce the risk of overloading a user with information when multiple failures occurs and in assisting the developer in devising an explanation facility. The emphasis of our work is to develop practical tools and techniques, while determining the feasibility of a given approach, including identification of appropriate software tools to support research, application and tool building activities.

  15. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls,...

  16. Quantitative Feedback Theory (QFT) applied to the design of a rotorcraft flight control system

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Gorder, P. J.

    1992-01-01

    Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. Quantitative Feedback Theory is applied to the design of the longitudinal flight control system for a linear uncertain model of the AH-64 rotorcraft. In this model, the uncertainty is assigned, and is assumed to be attributable to actual uncertainty in the dynamic model and to the changes in the vehicle aerodynamic characteristics which occur near hover. The model includes an approximation to the rotor and actuator dynamics. The design example indicates the manner in which handling qualities criteria may be incorporated into the design of realistic rotorcraft control systems in which significant uncertainty exists in the vehicle model.

  17. Aid For Simulating Digital Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hartman, Richard M.

    1991-01-01

    DIVERS translator is computer program to convert descriptions of digital flight-control systems (DFCS) into computer program. Language developed to represent design charts of DFCS. Translator converts DIVERS source code into easily transportable language, while minimizing probability that results are affected by interpretation of programmer. Final translated program used as standard of comparison to verify operation of actual flight-control systems. Applicable to simulation of other control systems; for example, electrical circuits and logic processes. Written in C.

  18. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  19. Implementation of a Helicopter Flight Simulator with Individual Blade Control

    NASA Astrophysics Data System (ADS)

    Zinchiak, Andrew G.

    2011-12-01

    Nearly all modern helicopters are designed with a swashplate-based system for control of the main rotor blades. However, the swashplate-based approach does not provide the level of redundancy necessary to cope with abnormal actuator conditions. For example, if an actuator fails (becomes locked) on the main rotor, the cyclic inputs are consequently fixed and the helicopter may become stuck in a flight maneuver. This can obviously be seen as a catastrophic failure, and would likely lead to a crash. These types of failures can be overcome with the application of individual blade control (IBC). IBC is achieved using the blade pitch control method, which provides complete authority of the aerodynamic characteristics of each rotor blade at any given time by replacing the normally rigid pitch links between the swashplate and the pitch horn of the blade with hydraulic or electronic actuators. Thus, IBC can provide the redundancy necessary for subsystem failure accommodation. In this research effort, a simulation environment is developed to investigate the potential of the IBC main rotor configuration for fault-tolerant control. To examine the applications of IBC to failure scenarios and fault-tolerant controls, a conventional, swashplate-based linear model is first developed for hover and forward flight scenarios based on the UH-60 Black Hawk helicopter. The linear modeling techniques for the swashplate-based helicopter are then adapted and expanded to include IBC. Using these modified techniques, an IBC based mathematical model of the UH-60 helicopter is developed for the purposes of simulation and analysis. The methodology can be used to model and implement a different aircraft if geometric, gravimetric, and general aerodynamic data are available. Without the kinetic restrictions of the swashplate, the IBC model effectively decouples the cyclic control inputs between different blades. Simulations of the IBC model prove that the primary control functions can be manually

  20. Low bandwidth robust controllers for flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  1. Low Bandwidth Robust Controllers for Flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  2. An insect-inspired flapping wing micro air vehicle with double wing clap-fling effects and capability of sustained hovering

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc-Viet; Chan, Woei Leong; Debiasi, Marco

    2015-03-01

    We present our recent flying insect-inspired Flapping-Wing Micro Air Vehicle (FW-MAV) capable of hovering flight which we have recently achieved. The FW-MAV has wing span of 22 cm (wing tip-to-wing tip), weighs about 16.6 grams with onboard integration of radio control system including a radio receiver, an electronic speed control (ESC) for brushless motor, three servos for attitude flight controls of roll, pitch, and yaw, and a single cell lithium-polymer (LiPo) battery (3.7 V). The proposed gear box enables the FW-MAV to use one DC brushless motor to synchronously drive four wings and take advantage of the double clap-and-fling effects during one flapping cycle. Moreover, passive wing rotation is utilized to simplify the design, in addition to passive stabilizing surfaces for flight stability. Powered by a single cell LiPo battery (3.7 V), the FW-MAV flaps at 13.7 Hz and produces an average vertical force or thrust of about 28 grams, which is sufficient for take-off and hovering flight. Finally, free flight tests in terms of vertical take-off, hovering, and manual attitude control flight have been conducted to verify the performance of the FW-MAV.

  3. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  4. A survey of nonuniform inflow models for rotorcraft flight dynamics and control applications

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.

    1989-01-01

    The results of a brief survey of nonuniform inflow models was summarized for the calculation of induced velocities at and near a lifting rotor in and out of ground effect. The survey, conducted from the perspective of flight dynamics and control applications, covers a spectrum of flight conditions including hover, vertical flight, and low-speed and high-speed forward flight, and reviews both static and dynamic aspects of the inflow. A primary emphasis is on the evaluation of various simple first harmonic inflow models developed over the years, in comparison with more sophisticated methods developed for use in performance and airload computations. The results of correlation with several sets of test data obtained at the rotor out of ground effect indicate that the Pitt/Peters first harmonic inflow model works well overall. For inflow near the rotor or in ground effect, it is suggested that charts similar to those of Heyson/Katzoff and Castles/De Leeuw of NACA be produced using modern free-wake methods for use in flight dynamic analyses and simulations.

  5. Technical Seminar: "Towards Intelligent Flight Control"

    NASA Video Gallery

    The idea behind intelligent flight control is to provide more autonomy in an aircraft cockpit. Such systems must allow for all different kinds of situations and for human factors that occur in loss...

  6. Flight Controller Software Protects Lightweight Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Lightweight flexible aircraft may be the future of aviation, but a major problem is their susceptibility to flutter-uncontrollable vibrations that can destroy wings. Armstrong Flight Research Center awarded SBIR funding to Minneapolis, Minnesota-based MUSYN Inc. to develop software that helps program flight controllers to suppress flutter. The technology is now available for aircraft manufacturers and other industries that use equipment with automated controls.

  7. Identification and simulation evaluation of an AH-64 helicopter hover math model

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Watson, D. C.; Tischler, M. B.; Eshow, M. M.

    1991-01-01

    Frequency-domain parameter-identification techniques were used to develop a hover mathematical model of the AH-64 Apache helicopter from flight data. The unstable AH-64 bare-airframe characteristics without a stability-augmentation system were parameterized in the convectional stability-derivative form. To improve the model's vertical response, a simple transfer-function model approximating the effects of dynamic inflow was developed. Additional subcomponents of the vehicle were also modeled and simulated, such as a basic engine response for hover and the vehicle stick dynamic characteristics. The model, with and without stability augmentation, was then evaluated by AH-64 pilots in a moving-base simulation. It was the opinion of the pilots that the simulation was a satisfactory representation of the aircraft for the tasks of interest. The principal negative comment was that height control was more difficult in the simulation than in the aircraft.

  8. Bias Momentum Sizing for Hovering Dual-Spin Platforms

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, J-Y.; Moerder, D. D.

    2005-01-01

    An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias about the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes an approach for specifying the appropriate size of such angular momentum bias, based on the vehicle s physical parameters and its disturbance environment. It also describes several simplifications that provide a more physical and intuitive understanding of the dynamics. This will enhance the possibility of practically applying this technology to a flying vehicle.

  9. ACSYNT inner loop flight control design study

    NASA Technical Reports Server (NTRS)

    Bortins, Richard; Sorensen, John A.

    1993-01-01

    The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between

  10. Ares I Flight Control System Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedrossian, Nazareth; Hall, Charles; Ryan, Stephen; Jackson, Mark

    2010-01-01

    The Ares I launch vehicle represents a challenging flex-body structural environment for flight control system design. This paper presents a design methodology for employing numerical optimization to develop the Ares I flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares I time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time launch control systems in the presence of parametric uncertainty. Flex filters in the flight control system are designed to minimize the flex components in the error signals before they are sent to the attitude controller. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constraints minimizes performance degradation caused by the addition of the flex filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The flight control system designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC 6DOF nonlinear time domain simulation.

  11. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  12. Prototype Common Bus Spacecraft: Hover Test Implementation and Results. Revision, Feb. 26, 2009

    NASA Technical Reports Server (NTRS)

    Hine, Butler Preston; Turner, Mark; Marshall, William S.

    2009-01-01

    In order to develop the capability to evaluate control system technologies, NASA Ames Research Center (Ames) began a test program to build a Hover Test Vehicle (HTV) - a ground-based simulated flight vehicle. The HTV would integrate simulated propulsion, avionics, and sensors into a simulated flight structure, and fly that test vehicle in terrestrial conditions intended to simulate a flight environment, in particular for attitude control. The ultimate purpose of the effort at Ames is to determine whether the low-cost hardware and flight software techniques are viable for future low cost missions. To enable these engineering goals, the project sought to develop a team, processes and procedures capable of developing, building and operating a fully functioning vehicle including propulsion, GN&C, structure, power and diagnostic sub-systems, through the development of the simulated vehicle.

  13. Improvements in hover display dynamics for a combat helicopter

    NASA Technical Reports Server (NTRS)

    Eshow, Michelle M.; Schroeder, Jeffery A.

    1993-01-01

    This paper describes a piloted simulation conducted on the NASA Ames Vertical Motion Simulator. The objective of the experiment was to investigate the handling qualities benefits attainable using new display law design methods for hover displays. The new display laws provide improved methods to specify the behavior of the display symbol that predicts the vehicle's ground velocity in the horizontal plane; it is the primary symbol that the pilot uses to control aircraft horizontal position. The display law design was applied to the Apache helmet-mounted display format, using the Apache vehicle dynamics to tailor the dynamics of the velocity predictor symbol. The representations of the Apache vehicle used in the display design process and in the simulation were derived from flight data. During the simulation, the new symbol dynamics were seen to improve the pilots' ability to maneuver about hover in poor visual cuing environments. The improvements were manifested in pilot handling qualities ratings and in measured task performance. The paper details the display design techniques, the experiment design and conduct, and the results.

  14. Adaptive Flight Control Research at NASA

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  15. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... COMMUTER CATEGORY AIRPLANES Design and Construction Fire Protection § 23.865 Fire protection of flight controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other...

  16. Dynamic assertion testing of flight control software

    NASA Technical Reports Server (NTRS)

    Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.

    1985-01-01

    Digital Flight Control System (DFCS) software was used as a test case for assertion testing. The assertions were written and embedded in the code, then errors were inserted (seeded) one at a time and the code executed. Results indicate that assertion testing is an effective and efficient method of detecting errors in flight software. Most errors are eliminate at an earlier stage in the development than before.

  17. Structural Pain Compensating Flight Control

    NASA Technical Reports Server (NTRS)

    Miller, Chris J.

    2014-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. Designers must design the aircraft structure and the control architecture to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to build the structure with high margins, restrict control surface commands to known good combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage.

  18. Square tracking sensor for autonomous helicopter hover stabilization

    NASA Astrophysics Data System (ADS)

    Oertel, Carl-Henrik

    1995-06-01

    Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.

  19. Aircraft digital flight control technical review

    NASA Technical Reports Server (NTRS)

    Davenport, Otha B.; Leggett, David B.

    1993-01-01

    The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

  20. Control concept for maneuvering in hypersonic flight

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Lallman, Frederick J.

    1991-01-01

    This research investigates an approach to provide precise, coordinated maneuver control during excursions from a hypersonic cruise flight path while observing the necessary flight condition constraints. The approach achieves specified guidance commands by resolving altitude and cross-range errors into a load factor and bank angle command through a coordinate transformation which acts as an interface between outer loop guidance controls and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle-of-attack and dynamic pressure perturbations while prioritizing altitude regulation over crossrange. An unpiloted test simulation, in which the resolver was used to drive inner-loop flight controls, produced time histories of responses to guidance commands at Mach numbers of 6, 10, 15, and 20. It is shown that angle-of-attack and throttle perturbation constraints, combined with high-speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle. Turn rate, climb rate, and descent rate limits are expressed in terms of these constraints.

  1. Flight control electronics reliability/maintenance study

    NASA Technical Reports Server (NTRS)

    Dade, W. W.; Edwards, R. H.; Katt, G. T.; Mcclellan, K. L.; Shomber, H. A.

    1977-01-01

    Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics.

  2. Next Generation Flight Controller Trainer System

    NASA Technical Reports Server (NTRS)

    Arnold, Scott; Barry, Matthew R.; Benton, Isaac; Bishop, Michael M.; Evans, Steven; Harvey, Jason; King, Timothy; Martin, Jacob; Mercier, Al; Miller, Walt; Payne, Dan L.; Phu, Hanh; Thompson, James C.; Aadsen, Ron

    2008-01-01

    The Next Generation Flight Controller Trainer (NGFCT) is a relatively inexpensive system of hardware and software that provides high-fidelity training for spaceshuttle flight controllers. NGFCT provides simulations into which are integrated the behaviors of emulated space-shuttle vehicle onboard general-purpose computers (GPCs), mission-control center (MCC) displays, and space-shuttle systems as represented by high-fidelity shuttle mission simulator (SMS) mathematical models. The emulated GPC computers enable the execution of onboard binary flight-specific software. The SMS models include representations of system malfunctions that can be easily invoked. The NGFCT software has a flexible design that enables independent updating of its GPC, SMS, and MCC components.

  3. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  4. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III

    1996-01-01

    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for

  5. 'Mighty Eagle' Takes Flight

    NASA Video Gallery

    The "Mighty Eagle," a NASA robotic prototype lander, had a successful first untethered flight Aug. 8 at the Marshall Center. During the 34-second flight, the Mighty Eagle soared and hovered at 30 f...

  6. Rotorcraft flight control design using quantitative feedback theory and dynamic crossfeeds

    NASA Technical Reports Server (NTRS)

    Cheng, Rendy P.

    1995-01-01

    A multi-input, multi-output controls design with robust crossfeeds is presented for a rotorcraft in near-hovering flight using quantitative feedback theory (QFT). Decoupling criteria are developed for dynamic crossfeed design and implementation. Frequency dependent performance metrics focusing on piloted flight are developed and tested on 23 flight configurations. The metrics show that the resulting design is superior to alternative control system designs using conventional fixed-gain crossfeeds and to feedback-only designs which rely on high gains to suppress undesired off-axis responses. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets current handling qualities specifications relative to the decoupling of off-axis responses. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensator successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective.

  7. Orion Entry Flight Control Stability and Performance

    NASA Technical Reports Server (NTRS)

    Strahan, Alan L.; Loe, Greg R.; Seiler, Pete

    2007-01-01

    The Orion Spacecraft will be required to perform entry and landing functions for both Low Earth Orbit (LEO) and Lunar return missions, utilizing only the Command Module (CM) with its unique systems and GN&C design. This paper presents the current CM Flight Control System (FCS) design to support entry and landing, with a focus on analyses that have supported its development to date. The CM FCS will have to provide for spacecraft stability and control while following guidance or manual commands during exo-atmospheric flight, after Service Module separation, translational powered flight required of the CM, atmospheric flight supporting both direct entry and skip trajectories down to drogue chute deploy, and during roll attitude reorientation just prior to touchdown. Various studies and analyses have been performed or are on-going supporting an overall FCS design with reasonably sized Reaction Control System (RCS) jets, that minimizes fuel usage, that provides appropriate command following but with reasonable stability and control margin. Results from these efforts to date are included, with particular attention on design issues that have emerged, such as the struggle to accommodate sub-sonic pitch and yaw control without using excessively large jets that could have a detrimental impact on vehicle weight. Apollo, with a similar shape, struggled with this issue as well. Outstanding CM FCS related design and analysis issues, planned for future effort, are also briefly be discussed.

  8. Flight test of a displacement sidearm controller

    NASA Technical Reports Server (NTRS)

    Lippay, A. L.; Kruk, R.; King, M.; Morgan, M.

    1986-01-01

    A six-axis displacement-stick sidearm controller was developed to enable single-handed control of remote manipulator operations in space. With a working model available, piloted evaluation became possible in a fly-by-computer variable-stability research aircraft, originally a Bell 205 helicopter. The original mechanization was limited to three rotational axes and a linear one, analogous to the collective stick. A newly designed short stickgrip was mounted and the spring force pattern adjusted to suit the helicopter flight control environment. A standard set of test maneuvers was flown by four experimental pilots with conventional helicopter flight controls and with sidearm controllers equipped with two different handgrips. Existing data from flight tests with an isometric-stick controller were added to complete the comparison. The displacement controller consistently achieved a rating of 3.0 to 3.5 on the Cooper-Harper scale, on par with the conventional controls. The same basic controller design was tested in spacecraft and remote manipulator simulations with very promising results. In each application operator/system integration was rapid and positive. The results demonstrate feasibility and support the design philosphy of using deflection as well as force to generate proprioceptive feedback.

  9. Aerodynamics of Dragonfly in Hover: Force measurements and PIV results

    NASA Astrophysics Data System (ADS)

    Deng, Xinyan; Hu, Zheng

    2009-11-01

    We useda pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in hover, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in hovering flight, wing-wing interaction causes force reduction for both wings at most of the phase angle differences except around 0 degree (when the wings are beating in-phase).

  10. Control information in visual flight

    NASA Technical Reports Server (NTRS)

    Naish, J. M.

    1972-01-01

    The purpose of the inquiry is to determine how precisely a pilot can estimate the movements of his vehicle, and thus exercise control, during an unaided visual approach. The method is to relate changes in the forward view, due to movements along and across the approach path, to human visual thresholds and errors. The scope is restricted to effects of inclination, expansion, size, and rotation in runway features during approaches at small angles of elevation. Quantitative relations are given which provide a basis for ranking the several information mechanisms. Alignment by inclination of a ground line is found to be an accurate lateral mechanism, probably superior to the expansion mechanism. Vertical control mechanisms are complex, of questionable accuracy, and difficult to rank. The results throw some doubt on the usefulness of a runway symbol as a source of displayed information.

  11. Ares I Flight Control System Overview

    NASA Technical Reports Server (NTRS)

    Hall, Charles; Lee, Chong; Jackson, Mark; Whorton, Mark; West, mark; Brandon, Jay; Hall, Rob A.; Jang, Jimmy; Bedrossian, Naz; Compton, Jimmy; Rutherford, Chad

    2008-01-01

    This paper describes the control challenges posed by the Ares I vehicle, the flight control system design and performance analyses used to test and verify the design. The major challenges in developing the control system are structural dynamics, dynamic effects from the powerful first stage booster, aerodynamics, first stage separation and large uncertainties in the dynamic models for all these. Classical control techniques were employed using innovative methods for structural mode filter design and an anti-drift feature to compensate for translational and rotational disturbances. This design was coded into an integrated vehicle flight simulation and tested by Monte Carlo methods. The product of this effort is a linear, robust controller design that is easy to implement, verify and test.

  12. Space Shuttle flying qualities and flight control system assessment study

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, D.

    1982-01-01

    The suitability of existing and proposed flying quality and flight control system criteria for application to the space shuttle orbiter during atmospheric flight phases was assessed. An orbiter experiment for flying qualities and flight control system design criteria is discussed. Orbiter longitudinal and lateral-directional flying characteristics, flight control system lag and time delay considerations, and flight control manipulator characteristics are included. Data obtained from conventional aircraft may be inappropriate for application to the shuttle orbiter.

  13. NASA develops new digital flight control system

    NASA Technical Reports Server (NTRS)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  14. Air Traffic Control: Economics of Flight

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2004-01-01

    Contents include the following: 1. Commercial flight is a partnership. Airlines. Pilots. Air traffic control. 2. Airline schedules and weather problems can cause delays at the airport. Delays are inevitable in de-regulated industry due to simple economics. 3.Delays can be mitigated. Build more runways/technology. Increase airspace supply. 4. Cost/benefit analysis determine justification.

  15. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  16. Guidance and control of flight vehicles

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.; Bryson, A. E., Jr.; Franklin, G. F.

    1971-01-01

    Progress reports on guidance and attitude control mechanisms of different flight vehicles are presented. The vehicles considered include orbiting spacecraft, supersonic aircraft, and general aviation aircraft. Data also cover orbital transfer using low thrust, automatic landing logic for aircraft, optimal and three dimensional turns for supersonic aircraft, and orbital rendezvous.

  17. Entry flight control system downmoding evaluation

    NASA Technical Reports Server (NTRS)

    Barnes, H. A.

    1978-01-01

    A method to desensitize the entry flight control system to structural vibration feedback which might induce an oscillatory instability is described. Trends in vehicle response and handling characteristics as a function of gain combinations in the FCS forward and rate feedback loops were described as observed in a man-in-the-loop simulation. Among the flight conditions considered are the effects of downmoding with APU failures, off-nominal trajectory conditions, sensed angle of attack errors, the impact on RCS fuel consumption, performance in the presence of aero variations, recovery from large FCS upsets, and default gains.

  18. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Gorder, Peter James

    1993-01-01

    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  19. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  20. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1992-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flown. The objective of the TCSE on the LDEF was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post-flight analyses of thermal control surfaces to determine the effects of exposure to the low Earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in the lab. The performance of the TCSE flight system on the LDEF was excellent.

  1. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    NASA Astrophysics Data System (ADS)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.

    2012-12-01

    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not

  2. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    NASA Astrophysics Data System (ADS)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.

    2013-01-01

    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not

  3. Low bandwidth robust controllers for flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1992-01-01

    During the final reporting period (Jun. - Dec. 1992), analyses of the longitudinal and lateral flying qualities were made for propulsive-only flight control (POFC) of a Boeing 720 aircraft model. Performance resulting from compensators developed using Quantitative Feedback Theory (QFT) is documented and analyzed. This report is a first draft of a thesis to be presented by graduate student Hwei-Lan Chou. The final thesis will be presented to NASA when it is completed later this year. The latest landing metrics related to bandwidth criteria and based on the Neal-Smith approach to flying qualities prediction were used in developing performance criteria for the controllers. The compensator designs were tested on the NASA simulator and exhibited adequate performance for piloted flight. There was no significant impact of QFT on performance of the propulsive-only flight controllers in either the longitudinal or lateral modes of flight. This was attributed to the physical limits of thrust available and the engine rate of response, both of whiih severely limited the available bandwidth of the closed-loop system.

  4. A direct application of the non-linear inverse transformation flight control system design on a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. W.; Mcneill, W. E.; Stortz, M. W.

    1993-01-01

    The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.

  5. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  6. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight crewmembers at controls. 121.543... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.543 Flight crewmembers at controls. (a) Except as provided in paragraph (b) of this section, each required flight crewmember...

  7. Flight simulation for flight control computer S/N 0104-1 (ASTP)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

  8. Cost Estimation and Control for Flight Systems

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Vanhook, Michael E. (Technical Monitor)

    2002-01-01

    Good program management practices, cost analysis, cost estimation, and cost control for aerospace flight systems are interrelated and depend upon each other. The best cost control process cannot overcome poor design or poor systems trades that lead to the wrong approach. The project needs robust Technical, Schedule, Cost, Risk, and Cost Risk practices before it can incorporate adequate Cost Control. Cost analysis both precedes and follows cost estimation -- the two are closely coupled with each other and with Risk analysis. Parametric cost estimating relationships and computerized models are most often used. NASA has learned some valuable lessons in controlling cost problems, and recommends use of a summary Project Manager's checklist as shown here.

  9. Predictions of Control Inputs, Periodic Responses and Damping Levels of an Isolated Experimental Rotor in Trimmed Flight

    NASA Technical Reports Server (NTRS)

    Gaonkar, G. H.; Subramanian, S.

    1996-01-01

    Since the early 1990s the Aeroflightdynamics Directorate at the Ames Research Center has been conducting tests on isolated hingeless rotors in hover and forward flight. The primary objective is to generate a database on aeroelastic stability in trimmed flight for torsionally soft rotors at realistic tip speeds. The rotor test model has four soft inplane blades of NACA 0012 airfoil section with low torsional stiffness. The collective pitch and shaft tilt are set prior to each test run, and then the rotor is trimmed in the following sense: the longitudinal and lateral cyclic pitch controls are adjusted through a swashplate to minimize the 1/rev flapping moment at the 12 percent radial station. In hover, the database comprises lag regressive-mode damping with pitch variations. In forward flight the database comprises cyclic pitch controls, root flap moment and lag regressive-mode damping with advance ratio, shaft angle and pitch variations. This report presents the predictions and their correlation with the database. A modal analysis is used, in which nonrotating modes in flap bending, lag bending and torsion are computed from the measured blade mass and stiffness distributions. The airfoil aerodynamics is represented by the ONERA dynamic stall models of lift, drag and pitching moment, and the wake dynamics is represented by a state-space wake model. The trim analysis of finding, the cyclic controls and the corresponding, periodic responses is based on periodic shooting with damped Newton iteration; the Floquet transition matrix (FTM) comes out as a byproduct. The stabillty analysis of finding the frequencies and damping levels is based on the eigenvalue-eigenvector analysis of the FTM. All the structural and aerodynamic states are included from modeling to trim analysis. A major finding is that dynamic wake dramatically improves the correlation for the lateral cyclic pitch control. Overall, the correlation is fairly good.

  10. Experimental Investigation of a Shrouded Rotor Micro Air Vehicle in Hover and in Edgewise Gusts

    NASA Astrophysics Data System (ADS)

    Hrishikeshavan, Vikram

    Due to the hover capability of rotary wing Micro Air Vehicles (MAVs), it is of interest to improve their aerodynamic performance, and hence hover endurance (or payload capability). In this research, a shrouded rotor configuration is studied and implemented, that has the potential to offer two key operational benefits: enhanced system thrust for a given input power, and improved structural rigidity and crashworthiness of an MAV platform. The main challenges involved in realising such a system for a lightweight craft are: design of a lightweight and stiff shroud, and increased sensitivity to external flow disturbances that can affect flight stability. These key aspects are addressed and studied in order to assess the capability of the shrouded rotor as a platform of choice for MAV applications. A fully functional shrouded rotor vehicle (disk loading 60 N/ m2) was designed and constructed with key shroud design variables derived from previous studies on micro shrouded rotors. The vehicle weighed about 280 g (244 mm rotor diameter). The shrouded rotor had a 30% increase in power loading in hover compared to an unshrouded rotor. Due to the stiff, lightweight shroud construction, a net payload benefit of 20-30 g was achieved. The different components such as the rotor, stabilizer bar, yaw control vanes and the shroud were systematically studied for system efficiency and overall aerodynamic improvements. Analysis of the data showed that the chosen shroud dimensions was close to optimum for a design payload of 250 g. Risk reduction prototypes were built to sequentially arrive at the final configuration. In order to prevent periodic oscillations in ight, a hingeless rotor was incorporated in the shroud. The vehicle was successfully ight tested in hover with a proportional-integralderivative feedback controller. A flybarless rotor was incorporated for efficiency and control moment improvements. Time domain system identification of the attitude dynamics of the flybar and

  11. A multimodal micro air vehicle for autonomous flight in near-earth environments

    NASA Astrophysics Data System (ADS)

    Green, William Edward

    Reconnaissance, surveillance, and search-and-rescue missions in near-Earth environments such as caves, forests, and urban areas pose many new challenges to command and control (C2) teams. Of great significance is how to acquire situational awareness when access to the scene is blocked by enemy fire, rubble, or other occlusions. Small bird-sized aerial robots are expendable and can fly over obstacles and through small openings to assist in the acquisition and distribution of intelligence. However, limited flying space and densely populated obstacle fields requires a vehicle that is capable of hovering, but also maneuverable. A secondary flight mode was incorporated into a fixed-wing aircraft to preserve its maneuverability while adding the capability of hovering. An inertial measurement sensor and onboard flight control system were interfaced and used to transition the hybrid prototype from cruise to hover flight and sustain a hover autonomously. Furthermore, the hovering flight mode can be used to maneuver the aircraft through small openings such as doorways. An ultrasonic and infrared sensor suite was designed to follow exterior building walls until an ingress route was detected. Reactive control was then used to traverse the doorway and gather reconnaissance. Entering a dangerous environment to gather intelligence autonomously will provide an invaluable resource to any C2 team. The holistic approach of platform development, sensor suite design, and control serves as the philosophy of this work.

  12. In-flight cabin smoke control.

    PubMed

    Eklund, T I

    1996-12-31

    Fatal accidents originating from in-flight cabin fires comprise only about 1% of all fatal accidents in the civil jet transport fleet. Nevertheless, the impossibility of escape during flight accentuates the hazards resulting from low visibility and toxic gases. Control of combustion products in an aircraft cabin is affected by several characteristics that make the aircraft cabin environment unique. The aircraft fuselage is pressurized in flight and has an air distribution system which provides ventilation jets from the ceiling level air inlets running along the cabin length. A fixed quantity of ventilation air is metered into the cabin and air discharge is handled primarily by pressure controlling outflow valves in the rear lower part of the fuselage. Earlier airplane flight tests on cabin smoke control used generators producing minimally buoyant smoke products that moved with and served as a telltales for overall cabin ventilation flows. Analytical studies were done with localized smoke production to predict the percent of cabin length that would remain smoke-free during continuous generation. Development of a buoyant smoke generator allowed simulation of a fire plume with controllable simulated temperature and heat release rates. Tests on a Boeing 757, modified to allow smoke venting out through the top of the cabin, showed that the buoyant smoke front moved at 0.46m/s (1.5ft/sec) with and 0.27m/sec (0.9ft/sec) against, the axial ventilation airflow. Flight tests in a modified Boeing 727 showed that a ceiling level counterflow of about 0.55m/sec (1.8ft/sec) was required to arrest the forward movement of buoyant smoke. A design goal of 0.61m/s (2ft/sec) axial cabin flow would require a flow rate of 99m3/min (3500ft3/min) in a furnished Boeing 757. The current maximum fresh air cabin ventilation flow is 78m3/min (2756 ft3/min). Experimental results indicate that buoyancy effects cause smoke movement behaviour that is not predicted by traditional design analyses and

  13. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  14. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  15. Perception and control of rotorcraft flight

    NASA Technical Reports Server (NTRS)

    Owen, Dean H.

    1991-01-01

    Three topics which can be applied to rotorcraft flight are examined: (1) the nature of visual information; (2) what visual information is informative about; and (3) the control of visual information. The anchorage of visual perception is defined as the distribution of structure in the surrounding optical array or the distribution of optical structure over the retinal surface. A debate was provoked about whether the referent of visual event perception, and in turn control, is optical motion, kinetics, or dynamics. The interface of control theory and visual perception is also considered. The relationships among these problems is the basis of this article.

  16. Floquet stability analysis of the longitudinal dynamics of two hovering model insects

    PubMed Central

    Wu, Jiang Hao; Sun, Mao

    2012-01-01

    Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980

  17. Adaptive Flight Control for Aircraft Safety Enhancements

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.

    2008-01-01

    This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.

  18. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  19. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  20. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  1. Manual Control Aspects of Orbital Flight

    NASA Technical Reports Server (NTRS)

    Brody, Adam R. (Editor); Ellis, Stephen R. (Editor)

    1990-01-01

    A brief description of several laboratories' current research in the general area of manual control of orbital flight is presented. With an operational-space-station era (and its increased traffic levels) approaching, now is an opportune time to investigate issues such as docking and rendezvous profiles and course-planning aids. The tremendous increase in the capabilities of computers and computer graphics has made extensive study possible and economical. It is time to study these areas, from a human factors and manual control perspective in order to preclude the occurrence of problems analogous to those that occurred in the airline and other related industries.

  2. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  3. View of USSR flight controllers in Mission Control during touchdown

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overall view of the group of Soviet Union flight controllers who served at the Mission Control Center during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission. They are applauding the successful touchdown of the Soyuz spacecraft in Central Asia. The television monitor had just shown the land landing of the Soyuz descent vehicle.

  4. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  5. Balancing Training Techniques for Flight Controller Certification

    NASA Technical Reports Server (NTRS)

    Gosling, Christina

    2011-01-01

    Training of ground control teams has been a difficult task in space operations. There are several intangible skills that must be learned to become the steely eyed men and women of mission control who respond to spacecraft failures that can lead to loss of vehicle or crew if handled improperly. And as difficult as training is, it can also be costly. Every day, month or year an operator is in training, is a day that not only they are being trained without direct benefit to the organization, but potentially an instructor or mentor is also being paid for hours spent assisting them. Therefore, optimization of the training flow is highly desired. Recently the Expedition Division (DI) at Johnson Space Flight Center has recreated their training flows for the purpose of both moving to an operator/specialist/instructor hierarchy and to address past inefficiencies in the training flow. This paper will discuss the types of training DI is utilizing in their new flows, and the balance that has been struck between the ideal learning environments and realistic constraints. Specifically, the past training flow for the ISS Attitude Determination and Control Officer will be presented, including drawbacks that were encountered. Then the new training flow will be discussed and how a new approach utilizes more training methods and teaching techniques. We will look at how DI has integrated classes, workshops, checkouts, module reviews, scenarios, OJT, paper sims, Mini Sims, and finally Integrated Sims to balance the cost and timing of training a new flight controller.

  6. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  7. Quadrocopter Control Design and Flight Operation

    NASA Technical Reports Server (NTRS)

    Karwoski, Katherine

    2011-01-01

    A limiting factor in control system design and analysis for spacecraft is the inability to physically test new algorithms quickly and cheaply. Test flights of space vehicles are costly and take much preparation. As such, EV41 recently acquired a small research quadrocopter that has the ability to be a test bed for new control systems. This project focused on learning how to operate, fly, and maintain the quadrocopter, as well as developing and testing protocols for its use. In parallel to this effort, developing a model in Simulink facilitated the design and analysis of simple control systems for the quadrocopter. Software provided by the manufacturer enabled testing of the Simulink control system on the vehicle.

  8. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  9. Aerodynamic interaction between forewing and hindwing of a hovering dragonfly

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Deng, Xin-Yan

    2014-12-01

    The phase change between the forewing and hindwing is a distinct feature that sets dragonfly apart from other insects. In this paper, we investigated the aerodynamic effects of varying forewing-hindwing phase difference with a 60° inclined stroke plane during hovering flight. Force measurements on a pair of mechanical wing models showed that in-phase flight enhanced the forewing lift by 17% and the hindwing lift was reduced at most phase differences. The total lift of both wings was also reduced at most phase differences and only increased at a phase range around in-phase. The results may explain the commonly observed behavior of the dragonfly where 0° is employed in acceleration. We further investigated the wing-wing interaction mechanism using the digital particle image velocimetry (PIV) system, and found that the forewing generated a downwash flow which is responsible for the lift reduction on the hindwing. On the other hand, an upwash flow resulted from the leading edge vortex of the hindwing helps to enhance lift on the forewing. The results suggest that the dragonflies alter the phase differences to control timing of the occurrence of flow interactions to achieve certain aerodynamic effects.

  10. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.