Science.gov

Sample records for hpge detector efficiencies

  1. An exponential model for HPGe detector efficiencies

    SciTech Connect

    Winn, W.G.

    1991-06-11

    Interest in reducing the labor-intensive requirements for calibrating HPGe detectors has resulted in various efficiency models. The present study examines a method for predicting the efficiencies over ranges of sample geometries, whereby only a few measurements are required. The method has been appraised against extensive HPGe calibrations, and has been used for a ``nondestructive`` calibration for samples from a NASA satellite.

  2. An exponential model for HPGe detector efficiencies

    SciTech Connect

    Winn, W.G.

    1991-06-11

    Interest in reducing the labor-intensive requirements for calibrating HPGe detectors has resulted in various efficiency models. The present study examines a method for predicting the efficiencies over ranges of sample geometries, whereby only a few measurements are required. The method has been appraised against extensive HPGe calibrations, and has been used for a nondestructive'' calibration for samples from a NASA satellite.

  3. A software for simulation of efficiency of HPGe detectors

    NASA Astrophysics Data System (ADS)

    Khiem, L. H.; Trong, T. D.

    2015-05-01

    Computer software named GE_EFF for calculation of detection efficiency of High Purity Ge detectors recently developed by us is presented. A Monte-Carlo method has been used for simulation. The software has been written in Visual Basic language. The calculated efficiencies for our detectors are in agreement with the measured values using a standard γ-ray sources. The software has been used at our laboratory of Institute of Physics for gamma radiation measurements.

  4. Coincidence corrected efficiency calibration of Compton-suppressed HPGe detectors

    SciTech Connect

    Aucott, T.

    2015-04-20

    The authors present a reliable method to calibrate the full-energy efficiency and the coincidence correction factors using a commonly-available mixed source gamma standard. This is accomplished by measuring the peak areas from both summing and non-summing decay schemes and simultaneously fitting both the full-energy efficiency, as well as the total efficiency, as functions of energy. By using known decay schemes, these functions can then be used to provide correction factors for other nuclides not included in the calibration standard.

  5. New approach for calibration the efficiency of HpGe detectors

    NASA Astrophysics Data System (ADS)

    Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Siong, W. B.; Elias, M. S.

    2014-02-01

    This work evaluates the efficiency calibrating of HpGe detector coupled with Canberra GC3018 with Genie 2000 software and Ortec GEM25-76-XLB-C with Gamma Vision software; available at Neutron activation analysis laboratory in Malaysian Nuclear Agency (NM). The efficiency calibration curve was constructed from measurement of an IAEA, standard gamma-point sources set composed by 214Am, 57Co, 133Ba, 152Eu, 137Cs and 60Co. The efficiency calibrations were performed for three different geometries: 5, 10 and 15 cm distances from the end cap detector. The polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points. The efficiency equation was established from the known fitted parameters which allow for the efficiency evaluation at particular energy of interest. The study shows that significant deviations in the efficiency, depending on the source-detector distance and photon energy.

  6. Evaluation of ANGLE(R), a code for calculating HPGe detector efficiencies

    SciTech Connect

    Homan, Victoria M

    2010-10-25

    This paper evaluates the ANGLE(reg sign) software package, an advanced efficiency calibration software for high purity germanium detectors that is distributed by ORTEC(reg sign). ANGLE(reg sign) uses a semi-empirical approach, by way of the efficiency transfer method, based on the calculated effective solid angle. This approach would have an advantage over the traditional relative and stochastic methods by decreasing the chances for systematic errors and reducing sensitivity to uncertainties in detector parameters. For experimental confirmation, a closed-end coaxial HPGe detector was used with sample geometries frequently encountered at the Los Alamos National Laboratory. The results obtained were sufficient for detector-source configurations which included intercepting layers of plexiglass and carbon graphite, but somewhat insufficient for bare source configurations.

  7. The determination of the efficiency of a Compton suppressed HPGe detector using Monte Carlo simulations.

    PubMed

    McNamara, A L; Heijnis, H; Fierro, D; Reinhard, M I

    2012-04-01

    A Compton suppressed high-purity germanium (HPGe) detector is well suited to the analysis of low levels of radioactivity in environmental samples. The difference in geometry, density and composition of environmental calibration standards (e.g. soil) can contribute to excessive experimental uncertainty to the measured efficiency curve. Furthermore multiple detectors, like those used in a Compton suppressed system, can add complexities to the calibration process. Monte Carlo simulations can be a powerful complement in calibrating these types of detector systems, provided enough physical information on the system is known. A full detector model using the Geant4 simulation toolkit is presented and the system is modelled in both the suppressed and unsuppressed mode of operation. The full energy peak efficiencies of radionuclides from a standard source sample is calculated and compared to experimental measurements. The experimental results agree relatively well with the simulated values (within ∼5 - 20%). The simulations show that coincidence losses in the Compton suppression system can cause radionuclide specific effects on the detector efficiency, especially in the Compton suppressed mode of the detector. Additionally since low energy photons are more sensitive to small inaccuracies in the computational detector model than high energy photons, large discrepancies may occur at energies lower than ∼100 keV. PMID:22304994

  8. A quick technique to improve the geometry characterisation of aged HPGe detectors for MC code efficiency calculation.

    PubMed

    Moser, H; Maringer, F J

    2016-03-01

    During the EMRP JRP MetroMETAL project a detector image of an aged HPGe gamma-ray detector was created for MC efficiency calculation. Using the nominal construction parameters of the detector, the simulation showed unacceptably high deviations from the assured activity values. This paper describes an optimisation of a virtual detector to obtain better results using limited resources and offers comparisons of efficiency values of point and voluminous sources calculated by LABSOCS® and PENELOPE 2011. PMID:26688355

  9. New approach for calibration the efficiency of HpGe detectors

    SciTech Connect

    Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Siong, W. B.; Elias, M. S.

    2014-02-12

    This work evaluates the efficiency calibrating of HpGe detector coupled with Canberra GC3018 with Genie 2000 software and Ortec GEM25-76-XLB-C with Gamma Vision software; available at Neutron activation analysis laboratory in Malaysian Nuclear Agency (NM). The efficiency calibration curve was constructed from measurement of an IAEA, standard gamma–point sources set composed by {sup 214}Am, {sup 57}Co, {sup 133}Ba, {sup 152}Eu, {sup 137}Cs and {sup 60}Co. The efficiency calibrations were performed for three different geometries: 5, 10 and 15 cm distances from the end cap detector. The polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points. The efficiency equation was established from the known fitted parameters which allow for the efficiency evaluation at particular energy of interest. The study shows that significant deviations in the efficiency, depending on the source-detector distance and photon energy.

  10. Validation of an efficiency calibration procedure for a coaxial n-type and a well-type HPGe detector used for the measurement of environmental radioactivity

    NASA Astrophysics Data System (ADS)

    Morera-Gómez, Yasser; Cartas-Aguila, Héctor A.; Alonso-Hernández, Carlos M.; Nuñez-Duartes, Carlos

    2016-05-01

    To obtain reliable measurements of the environmental radionuclide activity using HPGe (High Purity Germanium) detectors, the knowledge of the absolute peak efficiency is required. This work presents a practical procedure for efficiency calibration of a coaxial n-type and a well-type HPGe detector using experimental and Monte Carlo simulations methods. The method was performed in an energy range from 40 to 1460 keV and it can be used for both, solid and liquid environmental samples. The calibration was initially verified measuring several reference materials provided by the IAEA (International Atomic Energy Agency). Finally, through the participation in two Proficiency Tests organized by IAEA for the members of the ALMERA network (Analytical Laboratories for the Measurement of Environmental Radioactivity) the validity of the developed procedure was confirmed. The validation also showed that measurement of 226Ra should be conducted using coaxial n-type HPGe detector in order to minimize the true coincidence summing effect.

  11. A method for establishing absolute full-energy peak efficiency and its confidence interval for HPGe detectors

    NASA Astrophysics Data System (ADS)

    Rizwan, U.; Chester, A.; Domingo, T.; Starosta, K.; Williams, J.; Voss, P.

    2015-12-01

    A method is proposed for establishing the absolute efficiency calibration of a HPGe detector including the confidence interval in the energy range of 79.6-3451.2 keV. The calibrations were accomplished with the 133Ba, 60Co, 56Co and 152Eu point-like radioactive sources with only the 60Co source being activity calibrated to an accuracy of 2% at the 90% confidence level. All data sets measured from activity calibrated and uncalibrated sources were fit simultaneously using the linearized least squares method. The proposed fit function accounts for scaling of the data taken with activity uncalibrated sources to the data taken with the high accuracy activity calibrated source. The confidence interval for the fit was found analytically using the covariance matrix. Accuracy of the fit was below 3.5% at the 90% confidence level in the 79.6-3451.2 keV energy range.

  12. Development of an absolute method for efficiency calibration of a coaxial HPGe detector for large volume sources

    NASA Astrophysics Data System (ADS)

    Ortiz-Ramírez, Pablo C.

    2015-09-01

    In this work an absolute method for the determination of the full energy peak efficiency of a gamma spectroscopy system for voluminous sources is presented. The method was tested for a high-resolution coaxial HPGe detector and cylindrical homogeneous volume source. The volume source is represented by a set of point sources filling its volume. We found that the absolute efficiency of a volume source can be determined as the average over its volume of the absolute efficiency of each point source. Experimentally, we measure the intrinsic efficiency as a function upon source-detector position. Then, considering the solid angle and the attenuations of the gamma rays emitted to the detector by each point source, considered as embedded in the source matrix, the absolute efficiency for each point source inside of the volume was determined. The factor associate with the solid angle and the self-attenuation of photons in the sample was deduced from first principles without any mathematical approximation. The method was tested by determining the specific activity of 137Cs in cylindrical homogeneous sources, using IAEA reference materials with specific activities between 14.2 Bq/kg and 9640 Bq/kg at the moment of the experimentation. The results obtained shown a good agreement with the expected values. The relative difference was less than 7% in most of the cases. The main advantage of this method is that it does not require of the use of expensive and hard to produce standard materials. In addition it does not require of matrix effect corrections, which are the main cause of error in this type of measurements, and it is easy to implement in any nuclear physics laboratory.

  13. Monte Carlo calculations of the HPGe detector efficiency for radioactivity measurement of large volume environmental samples.

    PubMed

    Azbouche, Ahmed; Belgaid, Mohamed; Mazrou, Hakim

    2015-08-01

    A fully detailed Monte Carlo geometrical model of a High Purity Germanium detector with a (152)Eu source, packed in Marinelli beaker, was developed for routine analysis of large volume environmental samples. Then, the model parameters, in particular, the dead layer thickness were adjusted thanks to a specific irradiation configuration together with a fine-tuning procedure. Thereafter, the calculated efficiencies were compared to the measured ones for standard samples containing (152)Eu source filled in both grass and resin matrices packed in Marinelli beaker. From this comparison, a good agreement between experiment and Monte Carlo calculation results was obtained highlighting thereby the consistency of the geometrical computational model proposed in this work. Finally, the computational model was applied successfully to determine the (137)Cs distribution in soil matrix. From this application, instructive results were achieved highlighting, in particular, the erosion and accumulation zone of the studied site. PMID:25982445

  14. Experimental and MC determination of HPGe detector efficiency in the 40-2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm.

    PubMed

    Dryak, Pavel; Kovar, Petr

    2006-01-01

    A precise model of a 40% relative efficiency p-type HPGe detector was created for photon detection efficiency calculation using the MCNP code. All detector parameters were determined by different experiments. No experimental calibration points were used for the modification of detector parameters. The model was validated by comparing calculated and experimental full energy peak efficiencies in the 40-2754 keV energy range, for point-source geometry with the source-to-detector distance of 25 cm. PMID:16564693

  15. Spectroscopy of Actinide Nuclei - Perspectives with Position Sensitive HPGe Detectors

    NASA Astrophysics Data System (ADS)

    Reiter, P.; Birkenbach, B.; Kotthaus, T.

    Recent advances in in-beam gamma-ray spectroscopy of actinide nuclei are based on highly efficient arrays of escape-suppressed spectrometers. The sensitivity of these detector arrays is greatly enhanced by the combination with powerful mass separators or particle detector systems. This technique is demonstrated by an experiment to investigate excited states in 234U after the one-neutron-transfer reaction 235U(d,t). In coincidence with the outgoing tritons, γ-rays were detected with the highly efficient MINIBALL spectrometer. In the near future an even enhanced sensitivity will be achieved by utilizing position sensitive HPGe detectors which will exploit the novel detection method of gamma-ray energy tracking in electrically segmented germanium detectors. An example for this novel approach is the investigation neutron-rich actinide Th and U nuclei after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL, Italy. A primary 136Xe beam hitting a 238U target was used to produce the nuclei of interest. Beam-like reaction products after neutron transfer were selected by the PRISMA spectrometer. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique, which was successfully exploited in this region.

  16. Experimental and Calculation Study of Absolute Efficiency of {gamma}-Ray Detection with the Coaxial HPGe-Detector GC 5019 at E{gamma}=0.24-18.565 MeV

    SciTech Connect

    Generalov, L.N.; Lebedev, B.L.; Livke, A.V.; Modenov, A.B.; Chirkin, V.A.

    2005-05-24

    In the range E{gamma}=0.24-18.565 MeV investigations were carried out of the absolute efficiency of {gamma}-ray detection with the HPGe-detector GC 5019 (CANBERRA). The investigations were performed in connection with measurements of proton radiation capture reaction cross sections on the lightest nuclei.

  17. A trapezoid approach for the experimental total-to-peak efficiency curve used in the determination of true coincidence summing correction factors in a HPGe detector

    NASA Astrophysics Data System (ADS)

    Şahiner, Eren; Meriç, Niyazi

    2014-03-01

    In this work, a simple method for true coincidence correction is suggested for a voluminous source measured in close detection geometry for a HPGe detector. TrueCoinc program based on Sudár's algorithm was used to determine true coincidence summing correction (TCS) factors by using full energy peak (FEP) efficiency, and total-to-peak (TTP) efficiency curves in which experimental efficiencies are obtained from almost coincident-free radionuclides such as 54Mn, 57Co, 65Zn, 109Cd, 137Cs and 241Am. In order to calculate TTP efficiency curve three different approaches were tested. One of them is new and here called trapezoid approach which was used successfully in determining total count of spectrum for the TTP efficiency curves. According to different TTP determination methods, the changes in true coincidence factors are observed. The FEP efficiency curves are also established for a cylindrical source. Then, TCS factors were determined for the particular peaks of daughters of 226Ra, 238U, and 232Th using the suggested method. Those activities measured from some certified reference materials such as IAEA RGU-1 and RGTh-1 are used to validate the present TCS correction procedure.

  18. Characterization and modeling of a low background HPGe detector

    NASA Astrophysics Data System (ADS)

    Dokania, N.; Singh, V.; Mathimalar, S.; Nanal, V.; Pal, S.; Pillay, R. G.

    2014-05-01

    A high efficiency, low background counting setup has been made at TIFR consisting of a special HPGe detector (~ 70 %) surrounded by a low activity copper+lead shield. Detailed measurements are performed with point and extended geometry sources to obtain a complete response of the detector. An effective model of the detector has been made with GEANT4 based Monte Carlo simulations which agrees with experimental data within 5%. This setup will be used for qualification and selection of radio-pure materials to be used in a cryogenic bolometer for the study of Neutrinoless Double Beta Decay in 124Sn as well as for other rare event studies. Using this setup, radio-impurities in the rock sample from India-based Neutrino Observatory (INO) site have been estimated.

  19. Application of PHOTON simulation software on calibration of HPGe detectors

    NASA Astrophysics Data System (ADS)

    Nikolic, J.; Puzovic, J.; Todorovic, D.; Rajacic, M.

    2015-11-01

    One of the major difficulties in gamma spectrometry of voluminous environmental samples is the efficiency calibration of the detectors used for the measurement. The direct measurement of different calibration sources, containing isolated γ-ray emitters within the energy range of interest, and subsequent fitting to a parametric function, is the most accurate and at the same time most complicated and time consuming method of efficiency calibration. Many other methods are developed in time, some of them using Monte Carlo simulation. One of such methods is a dedicated and user-friendly program PHOTON, developed to simulate the passage of photons through different media with different geometries. This program was used for efficiency calibration of three HPGe detectors, readily used in Laboratory for Environment and Radiation Protection of the Institute for Nuclear Sciences Vinca, Belgrade, Serbia. The simulation produced the spectral response of the detectors for fixed energy and for different sample geometries and matrices. Thus obtained efficiencies were compared to the values obtained by the measurement of the secondary reference materials and to the results obtained by GEANT4 simulation, in order to establish whether the simulated values agree with the experimental ones. To further analyze the results, a realistic measurement of the materials provided by the IAEA within different interlaboratory proficiency tests, was performed. The activities obtained using simulated efficiencies were compared to the reference values provided by the organizer. A good agreement in the mid energy section of the spectrum was obtained, while for low energies the lack of some parameters in the simulation libraries proved to produce unacceptable discrepancies.

  20. A repair station for HpGe detectors

    NASA Astrophysics Data System (ADS)

    Shearman, Robert; Lister, Christopher; Mitchell, A. J.; Copp, Patrick; Jepeal, Steven; Chowdhury, Partha

    2013-10-01

    Hyper-pure Germanium detectors (HpGe) offer the highest energy resolution for gamma-ray nuclear spectroscopy (about 1.5 keV @ 1 MeV), and are used in all the world's leading detector arrays such as GammaSphere, AGATA and GRETINA. The detector crystals are operated in cryostats at 100 K to reduce thermal noise. To maintain low leakage current and low operating temperatures, cryostat hygiene is very important. Detectors must be regularly maintained by using a high-vacuum, oil-free annealing station. At elevated temperatures above 373 K the process of pumping and baking can also anneal away neutron damage to the detector crystals. This poster will show the design and building of a new HpGe repair station at U. Mass Lowell, and make comparisons of results obtained from this new station to the Gammasphere annealing factory at Argonne. This research is funded by the DOE National Nuclear Safety Administration and the Office of Science.

  1. Position Resolution Studies with MSU 32-Fold Segmented HPGe Detector

    SciTech Connect

    Lehner, C E; Vetter, K; Kuhn, A; Schmid, G J; Beckedahl, D A; Blair, J J; Kammeraad, J E; Glasmacher, T

    2001-10-25

    We present position sensitivity measurements obtained with one of the 32-fold segmented HPGe detectors from Michigan State University. These measurements were performed with a collimated beam of {sup 137}Cs gamma rays scattered by 90 degrees. This deposits 374 keV at a given location inside the crystal. A position resolution can be determined over many events by examining the digitally recorded pulse shapes on the 32 electrical contacts. If position resolution is adequate, gamma ray Compton camera imaging may be possible.

  2. Extrapolated HPGe efficiency estimates based on a single calibration measurement

    SciTech Connect

    Winn, W.G.

    1994-07-01

    Gamma spectroscopists often must analyze samples with geometries for which their detectors are not calibrated. The effort to experimentally recalibrate a detector for a new geometry can be quite time consuming, causing delay in reporting useful results. Such concerns have motivated development of a method for extrapolating HPGe efficiency estimates from an existing single measured efficiency. Overall, the method provides useful preliminary results for analyses that do not require exceptional accuracy, while reliably bracketing the credible range. The estimated efficiency {element_of} for a uniform sample in a geometry with volume V is extrapolated from the measured {element_of}{sub 0} of the base sample of volume V{sub 0}. Assuming all samples are centered atop the detector for maximum efficiency, {element_of} decreases monotonically as V increases about V{sub 0}, and vice versa. Extrapolation of high and low efficiency estimates {element_of}{sub h} and {element_of}{sub L} provides an average estimate of {element_of} = 1/2 [{element_of}{sub h} + {element_of}{sub L}] {plus_minus} 1/2 [{element_of}{sub h} {minus} {element_of}{sub L}] (general) where an uncertainty D{element_of} = 1/2 ({element_of}{sub h} {minus} {element_of}{sub L}] brackets limits for a maximum possible error. The {element_of}{sub h} and {element_of}{sub L} both diverge from {element_of}{sub 0} as V deviates from V{sub 0}, causing D{element_of} to increase accordingly. The above concepts guided development of both conservative and refined estimates for {element_of}.

  3. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    NASA Astrophysics Data System (ADS)

    Bruyneel, B.; Birkenbach, B.; Reiter, P.

    2016-03-01

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ-ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed.

  4. RESEARCH NOTE FROM COLLABORATION: NNLC: non-negative least chi-square minimization and application to HPGe detectors

    NASA Astrophysics Data System (ADS)

    Désesquelles, P.; Ha, T. M. H.; Korichi, A.; LeBlanc, F.; Petrache, C. M.; AGATA Collaboration

    2009-03-01

    A new method is proposed for the problem of solving chi-square minimization with a positive solution. This method is embodied in an evolution of the popular NNLS algorithm. Its efficiency with respect to residue minimization is illustrated by the improvement it permits on the location of gamma-interactions inside an AGATA HPGe detector.

  5. Observation of charge-sharing in an HPGe double-sided strip detector

    NASA Astrophysics Data System (ADS)

    Hayward, Jason; Wehe, David

    2007-08-01

    In double-sided strip high-purity germanium (HPGe) detectors, improved position resolution can be obtained through axial and lateral strip interpolation by means of pulse shape analysis. Yet, only a small fraction of events can be interpolated in both the axial and lateral dimensions, meaning that the best possible imaging performance is delivered at the cost of low imaging efficiency. Lateral position interpolation is complicated by the bipolar nature of induced bystander signals, charge-sharing between neighboring strips, and close interaction sequences. The first two complications were observed in our HPGe double-sided strip detector, and their significance is explored. An algorithm has been developed to calculate detector signals for clouds of drifting charge in three dimensions. Simulated bystander signals are in agreement with the family of waveforms produced in our detector. Based upon simulation, the nature of the bipolar signals and fundamental limits on position resolution are discussed. To determine the significance of charge-sharing, our detector was irradiated with high-energy gamma-ray sources, and then preamplifier signals were digitized and analyzed offline. Charge-sharing between adjacent strips was found to increase with gamma-ray energy, occurring for approximately 18% of all Ba-133 interactions (356 keV) and 30% of all Co-60 interactions (1173 and 1333 keV).

  6. Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.

    PubMed

    Chagren, S; Ben Tekaya, M; Reguigui, N; Gharbi, F

    2016-01-01

    In this work we apply the GEANT4 code of CERN to calculate the peak efficiency in High Pure Germanium (HPGe) gamma spectrometry using three different procedures. The first is a direct calculation. The second corresponds to the usual case of efficiency transfer between two different configurations at constant emission energy assuming a reference point detection configuration and the third, a new procedure, consists on the transfer of the peak efficiency between two detection configurations emitting the gamma ray in different energies assuming a "virtual" reference point detection configuration. No pre-optimization of the detector geometrical characteristics was performed before the transfer to test the ability of the efficiency transfer to reduce the effect of the ignorance on their real magnitude on the quality of the transferred efficiency. The obtained and measured efficiencies were found in good agreement for the two investigated methods of efficiency transfer. The obtained agreement proves that Monte Carlo method and especially the GEANT4 code constitute an efficient tool to obtain accurate detection efficiency values. The second investigated efficiency transfer procedure is useful to calibrate the HPGe gamma detector for any emission energy value for a voluminous source using one point source detection efficiency emitting in a different energy as a reference efficiency. The calculations preformed in this work were applied to the measurement exercise of the EUROMET428 project. A measurement exercise where an evaluation of the full energy peak efficiencies in the energy range 60-2000 keV for a typical coaxial p-type HpGe detector and several types of source configuration: point sources located at various distances from the detector and a cylindrical box containing three matrices was performed. PMID:26623928

  7. MSE/SSE discrimination methods of the PC-HPGe detector

    NASA Astrophysics Data System (ADS)

    Lu, Zi-Feng; Li, Yu-Lan; Li, Jin; Yue, Qian; Li, Yuan-Jing

    2012-09-01

    Having advantages of low capacitance and low energy threshold, the PC-HPGe (Point-Contact High Purity Germanium) detector has found its application in the direct detection of WIMP(Weak Interaction Massive Particle) in CDEX (China Darkmatter Experiment). The MSE (Multi-Site Event) and SSE(Single-Site Event) discrimination methods of the PC-HPGe detector are introduced in this article, including their physical basis, the electronics system and the algorithms to implement them. Behaviors of the PC-HPGe detector are studied intensively through this research and finally the experimental results of the LE discrimination method are presented.

  8. Compton rejection for HPGe detectors via real-time pulse shape analysis

    SciTech Connect

    Beckedahl, D; Blair, J J; Friensehner, A; Kammeraad, J E; Kreek, S A; Payne, B; Schmid, G J

    1998-07-31

    A Lawrence Livermore National Laboratory-developed pulse shape analysis (PSA) technique which performs real-time Compton suppression in High Purity Germanium (HPGe) detectors without the use of anti-coincidence detectors is described. Some preliminary measurements of a variety of sources with a standard HPGe detector system and our prototype PSA algorithm have been made and indicate that a reduction in Compton continuum can be achieved via PSA. These measurements represent an initial assessment of the effectiveness of the prototype PSA system for the improvement of spectral quality and future improvements are expected. Additional work is progressing to optimize the effectiveness of the algorithm for Compton rejection in standard HPGe detectors. Work is also progressing to extend the methodology to segmented HPGe detectors which could potentially yield significantly better Compton rejection and gamma-ray ima

  9. Calculation of Coincidence Summing Correction Factors for an HPGe detector using GEANT4.

    PubMed

    Giubrone, G; Ortiz, J; Gallardo, S; Martorell, S; Bas, M C

    2016-07-01

    The aim of this paper was to calculate the True Coincidence Summing Correction Factors (TSCFs) for an HPGe coaxial detector in order to correct the summing effect as a result of the presence of (88)Y and (60)Co in a multigamma source used to obtain a calibration efficiency curve. Results were obtained for three volumetric sources using the Monte Carlo toolkit, GEANT4. The first part of this paper deals with modeling the detector in order to obtain a simulated full energy peak efficiency curve. A quantitative comparison between the measured and simulated values was made across the entire energy range under study. The True Summing Correction Factors were calculated for (88)Y and (60)Co using the full peak efficiencies obtained with GEANT4. This methodology was subsequently applied to (134)Cs, and presented a complex decay scheme. PMID:27085040

  10. HPGe detectors long time behaviour in high-resolution γ spectrometry

    NASA Astrophysics Data System (ADS)

    Sajo-Bohus, L.; Rosso, D.; Sajo Castelli, A. M.; Napoli, D. R.; Fioretto, E.; Menegazzo, R.; Barros, H.; Ur, C. A.; Palacios, D.; Liendo, J.

    2011-08-01

    A large set of data on long term performance of n-type HPGe detectors used in GASP, EUROBALL and CLARA γ spectrometers, as well as environmental measurements have been collected over two decades. In this paper a detailed statistical analysis of this data is given and detector long term behaviour is provided to the scientific community. We include failure, failure mode, repair frequency, repair outcome and its influence in the energy efficiency and energy resolution. A remarkable result is that the life span distribution is exponential. A detector's failure is a memory-less process, where a previous failure does not influence the upcoming one. Repaired spectrometers result in high reliability with deep implications in the management of large scale high-resolution gamma spectrometry related projects. Findings show that on average, detectors initial counting efficiency is slightly lower (∼2%) than that reported by the manufacturers and the repair process (including annealing) does not affect significantly the energy efficiency, even after a long period of use. Repaired detector energy resolution statistics show that the probability, that a repaired detector will be at least as good as it was originally, is more than 3/4.

  11. HPGe well-type detectors for neutron activation measurements on the Frascati Tokamak Upgrade tokamak

    SciTech Connect

    Bertalot, L.; Damiani, M.; Esposito, B.; Lagamba, L.; Podda, S.; Batistoni, P.; De Felice, P.; Biagini, R.

    1997-01-01

    We describe an improvement of the neutron activation system in operation on the Frascati Tokamak Upgrade (FTU) tokamak for the measurement of the total neutron yield. A HPGe well-type detector (200 cm{sup 3} active volume) is used to detect the photoemission from neutron activated samples ({sup 115m}In336.2 keV {gamma} rays from DD neutrons on indium for FTU). Due to their high geometrical efficiency, HPGe well-type detectors are particularly suited to the FTU low-level activity measurements. A particular effort has been devoted to the calibration of the measuring system. In particular, a multi-{gamma} calibration source (59{endash}1332 keV energy range) with a density of 7.31 g/cm{sup 3} consisting of a stack of indium foils has been prepared. This assures that the shape and volume of the calibration source are the same as those of the samples used in the actual measurements. The full-energy-peak efficiency at the {sup 115m}In336.2 keV line is 0.197 with an overall uncertainty of 2{percent} (1{sigma}). For a better characterization of the detector response as a function of the sample density, a further calibration source with the same geometry has been prepared in a gel aqueous solution (density {approximately}1 g/cm{sup 3}). The calibration curves for the well-type detector at the two different density values are compared. {copyright} {ital 1997 American Institute of Physics.}

  12. Calculation of HPGe efficiency for environmental samples: comparison of EFFTRAN and GEANT4

    NASA Astrophysics Data System (ADS)

    Nikolic, Jelena; Vidmar, Tim; Jokovic, Dejan; Rajacic, Milica; Todorovic, Dragana

    2014-11-01

    Determination of full energy peak efficiency is one of the most important tasks that have to be performed before gamma spectrometry of environmental samples. Many methods, including measurement of specific reference materials, Monte Carlo simulations, efficiency transfer and semi empirical calculations, were developed in order to complete this task. Monte Carlo simulation, based on GEANT4 simulation package and EFFTRAN efficiency transfer software are applied for the efficiency calibration of three detectors, readily used in the Environment and Radiation Protection Laboratory of Institute for Nuclear Sciences Vinca, for measurement of environmental samples. Efficiencies were calculated for water, soil and aerosol samples. The aim of this paper is to perform efficiency calculations for HPGe detectors using both GEANT4 simulation and EFFTRAN efficiency transfer software and to compare obtained results with the experimental results. This comparison should show how the two methods agree with experimentally obtained efficiencies of our measurement system and in which part of the spectrum do the discrepancies appear. The detailed knowledge of accuracy and precision of both methods should enable us to choose an appropriate method for each situation that is presented in our and other laboratories on a daily basis.

  13. Comparison of the NDA of HEU Oxide between the AWCC and the HPGe Detector

    SciTech Connect

    Chiang, L. G.; Oberer, R. B.; Gunn, C. A.; Dukes, E. E.; Akin, J. A.

    2009-12-01

    This paper compares the performance of the Active Well Coincidence Counter (AWCC) with the performance of high resolution gamma spectrometry using an HPGe detector to nondestructively assay highly enriched (HEU) oxide. Traditionally the AWCC was considered to be the more appropriate instrument for this measurement. Although the AWCC had a high degree of precision, the HPGe provided the more accurate measurement of this material. The AWCC determines mass of U-235 from the coincident pairs of neutron detections, or doubles rate. The HPGe determines the mass of both U-235 and U238, the enrichment, and the quantity of other radioisotopes. The Tl-208 gamma rays were used to verify the amount of attenuation for the HPGe analysis. Fifty-four cans of enriched U3O8 were shipped to the Y-12 National Security Complex from Los Alamos National Laboratory (LANL) under Scrap Declaration LANL-45. The declared values for net weight, mass of uranium, mass of U-235, and enrichment (percent mass of U-235 to total uranium) are shown in Table A-1. The masses of U-235 range from 104g to 2404g and the enrichment varies from 20% to 98%.

  14. A high-efficiency HPGe coincidence system for environmental analysis.

    PubMed

    Britton, R; Davies, A V; Burnett, J L; Jackson, M J

    2015-08-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a network of certified laboratories which must meet certain sensitivity requirements for CTBT relevant radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a high-efficiency, dual-detector gamma spectroscopy system has been developed to improve the sensitivity of measurements for treaty compliance, greatly reducing the time required for each sample. Utilising list-mode acquisition, each sample can be counted once, and processed multiple times to further improve sensitivity. For the 8 key radionuclides considered, Minimum Detectable Activities (MDA's) were improved by up to 37% in standard mode (when compared to a typical CTBT detector system), with the acquisition time required to achieve the CTBT sensitivity requirements reduced from 6 days to only 3. When utilising the system in coincidence mode, the MDA for (60) Co in a high-activity source was improved by a factor of 34 when compared to a standard CTBT detector, and a factor of 17 when compared to the dual-detector system operating in standard mode. These MDA improvements will allow the accurate and timely quantification of radionuclides that decay via both singular and cascade γ emission, greatly enhancing the effectiveness of CTBT laboratories. PMID:25875083

  15. Optimized digital filtering techniques for radiation detection with HPGe detectors

    NASA Astrophysics Data System (ADS)

    Salathe, Marco; Kihm, Thomas

    2016-02-01

    This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of ~1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.

  16. Alpha Backgrounds for HPGe Detectors in Neutrinoless Double-Beta Decay Experiments

    SciTech Connect

    Johnson, R. A.; Burritt, T. H.; Elliott, S. R.; Gehman, V. M.; Guiseppe, V.E.; Wilkerson, J. F.

    2012-01-01

    The Majorana Experiment will use arrays of enriched HPGe detectors to search for the neutrinoless double-beta decay of 76Ge. Such a decay, if found, would show lepton-number violation and confirm the Majorana nature of the neutrino. Searches for such rare events are hindered by obscuring backgrounds which must be understood and mitigated as much as possible. A potentially important background contribution to this and other double-beta decay experiments could come from decays of alpha-emitting isotopes in the 232Th and 238U decay chains on or near the surfaces of the detectors. An alpha particle emitted external to an HPGe crystal can lose energy before entering the active region of the detector, either in some external-bulk material or within the dead region of the crystal. The measured energy of the event will only correspond to a partial amount of the total kinetic energy of the alpha and might obscure the signal from neutrinoless double-beta decay. A test stand was built and measurements were performed to quantitatively assess this background. We present results from these measurements and compare them to simulations using Geant4. These results are then used to measure the alpha backgrounds in an underground detector in situ. We also make estimates of surface contamination tolerances for double-beta decay experiments using solid-state detectors.

  17. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    NASA Astrophysics Data System (ADS)

    Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong

    2014-12-01

    Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  18. Search for double beta decay with HPGe detectors at the Gran Sasso underground laboratory

    NASA Astrophysics Data System (ADS)

    Chkvorets, Oleg

    2008-12-01

    Neutrinoless double-beta decay is practically the only way to establish the Majorana nature of the neutrino mass and its decay rate provides a probe of an effective neutrino mass. Double beta experiments are long-running underground experiments with specific challenges concerning the background reduction and the long term stability. These problems are addressed in this work for the Heidelberg-Moscow (HdM), GENIUS Test Facility (TF) and GERDA experiments. The HdM experiment collected data with enriched 76Ge high purity (HPGe) detectors from 1990 to 2003. An improved analysis of HdM data is presented, exploiting new calibration and spectral shape measurements with the HdM detectors. GENIUS-TF was a test-facility that verified the feasibility of using bare germanium detectors in liquid nitrogen. The first year results of this experiment are discussed. The GERDA experiment has been designed to further increase the sensitivity by operating bare germanium detectors in a high purity cryogenic liquid, which simultaneously serves as a shielding against background and as a cooling media. In the preparatory stage of GERDA, an external background gamma flux measurement was done at the experimental site in the Hall A of the Gran Sasso laboratory. The characterization of the enriched detectors from the HdM and IGEX experiments was performed in the underground detector laboratory for the GERDA collaboration. Long term stability measurements of a bare HPGe detector in liquid argon were carried out. Based on these measurements, the first lower limit on the half-life of neutrinoless double electron capture of 36Ar was established to be 1.85*10^18 years at 68% C.L.

  19. Fabrication and performance tests of a segmented p-type HPGe detector

    NASA Astrophysics Data System (ADS)

    King, George S.; Avignone, Frank T.; Cox, Christopher E.; Hossbach, Todd W.; Jennings, Wayne; Reeves, James H.

    2008-10-01

    A p-type semi-coaxial HPGe detector has been segmented by cutting, with a diamond saw, and etching four circumferential grooves through the Li-diffused dead layer. The degree of segmentation was tested using a well-collimated low-energy gamma-ray source. An analysis cut that rejected events depositing energy in more than one segment was applied to an energy interval of 2038±5 keV, the region of interest ( Q ββ) for 76Ge 0 νββ decay experiments. This segmentation cut resulted in a reduction of the Compton continuum of 59%.

  20. Simultaneous, coincident 2-D ACAR and DBAR using segmented HPGe detectors incorporating sub-pixel interpolation

    NASA Astrophysics Data System (ADS)

    Williams, Christopher S.; Burggraf, Larry W.; Adamson, Paul E.; Petrosky, James C.; Oxley, Mark E.

    2010-04-01

    A three-dimensional Positron Annihilation Spectrometry System (3D PASS) for determination of 3D electron-positron (e--e+) momentum densities by measuring coincident annihilation photons was designed, constructed and characterized. 3D PASS collects a single data set including correlated photon energies and coincident photon positions which are typically collected separately by two-dimensional angular correlation of annihilation radiation (2D ACAR) and two-detector coincident Doppler broadening of annihilation radiation (CDBAR) spectrometry. 3D PASS is composed of two position-sensitive, high-purity germanium (HPGe) double-sided strip detectors (DSSD(s)) linked together by a 32-channel, 50 MHz digital electronics suite. The DSSDs data were analyzed to determine location of photon detection events using an interpolation method to achieve a spatial resolution less than the 5-mm width of the DSSDs' charge collection strips. The interpolation method relies on measuring a figure-of-merit proportional to the area of the transient charges observed on both strips directly adjacent to the charge collection strip detecting the full charge deposited by the annihilation photon. This sub-pixel resolution, corresponding to the error associated with event location within a sub-pixel was measured for both DSSDs using the approach outlined in Williams et al [1] and was on the order of ± 0.20 mm (± one-standard deviation). As a result of the sub-pixel resolution, the distance between the DSSDs and material sample was reduced by a factor of five compared to what is typically required in 2D ACAR systems was necessary to achieve 0.5-mrad angular resolution. This reduction in the system's footprint decreases attenuation of the annihilation photons in the air between the material sample and the DSSDs and increases the solid angle between the sample and the DSSDs, ultimately resulting in higher system detection efficiency. 3D PASS was characterized in the same manner comparable to state

  1. True coincidence summing corrections for an extended energy range HPGe detector

    SciTech Connect

    Venegas-Argumedo, Y.; Montero-Cabrera, M. E.

    2015-07-23

    True coincidence summing (TCS) effect for natural radioactive families of U-238 and Th-232 represents a problem when an environmental sample with a close source-detector geometry measurement is performed. By using a certified multi-nuclide standard source to calibrate an energy extended range (XtRa) HPGe detector, it is possible to obtain an intensity spectrum slightly affected by the TCS effect with energies from 46 to 1836 keV. In this work, the equations and some other considerations required to calculate the TCS correction factor for isotopes of natural radioactive chains are described. It is projected a validation of the calibration, performed with the IAEA-CU-2006-03 samples (soil and water)

  2. Operation of bare HPGe detectors in LAr/LN2 for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    Barnabé Heider, M.; Cattadori, C.; Chkvorets, O.; di Vacri, A.; Gusev, K.; Schönert, S.; Shirchenko, M.

    2008-11-01

    GERDA is designed to search for 0νββ-decay of 76Ge using high purity germanium detectors (HPGe), enriched (~ 85%) in 76Ge, directly immersed in LAr which acts both as shield against γ radiation and as cooling medium. The cryostat is located in a stainless steel water tank providing an additional shield against external background. The GERDA experiment aims at a background (b) lessapprox10-3 cts/(kg-y-keV) and energy resolution (FWHM) <= 4 keV at Qββ = 2039 keV. GERDA experiment is foreseen to proceed in two phases. For Phase I, eight reprocessed enriched HPGe detectors from the past HdM [C Balysh et al., Phys. Rev. D 66 (1997) 54] and IGEX [C E Aalseth et al., Phys. of Atomic Nuclei 63 (2000) 1225] experiments (~ 18 kg) and six reprocessed natural HPGe detectors (~ 15 kg) from the Genius Test-Facility [H V Klapdor et al., HIM A 481 (2002) 149] will be deployed in strings. GERDA aims at b lessapprox 10-2 cts/(kg·keV·y). With an exposure of ~ 15 kg·y of 76Ge and resolution ~ 3.6 keV, the sensitivity on the half-life will be T0ν1/2 3 · 1025 y (90 % C.L.) corresponding to mee < 270 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. In Phase II, new diodes, able to discriminate between single- and multi-site events, will be added (~ 20 kg of 76Ge with intrinsic b ~ 10-2 cts/(kg·keV·y). With an exposure of ~ 120 kg·y, it is expected T0ν1/2 > 1.5 · 1026 y (90% C.L.) corresponding to mee < 110 meV [V A Rodin et al., Nucl. Phys. A 766 (2006) 107]. Three natural p-type HPGe prototypes (different passivation layer designs) are available in the GERDA underground facility at LNGS to investigate the effect of the detector assembly (low-mass low-activity holder), of the handling procedure and of the refurbishment technology on long term stability and spectroscopy performance. The study started on prototype 1 (fully passivated on the borehole side). 60Co γ-irradiation of the detector in LAr resulted in an increase of the leakage current (LC), depending on the

  3. Scoping measurements of radionuclides in L Lake with an underwater HPGe detector

    SciTech Connect

    Dunn, D.L.; Win, W.G.; Bresnahan, P.J.

    1996-06-01

    This study of L Lake was conducted to determine whether the distribution of man-made radiation levels had changed from the time preceding the filling of the newly created lake in 1985. Overflight gamma measurements by EG&G in 1985 mapped the man-made radiation levels, indicating that significant levels were only detected from former stream beds that were to be covered by the lake. the present scoping gamma measurements were consistent with these earlier findings, indicating no major evidence of movement of the radioactivity. These results will be available to guide decisions concerning future plans for the lake. Gamma-emitting radionuclides of L Lake were examined in situ with an underwater HPGe detector and further studied by retrieving various sediment samples for analysis by HPGe gamma spectrometry in the Underground Counting Facility. The predominant man-made radionuclide detected was {sup 137}Cs; it had about 100 times greater activity than {sup 60}Co, which was the only other man-made radionuclide that was detected above trace levels.

  4. Field analyses of (238)U and (226)Ra in two uranium mill tailings piles from Niger using portable HPGe detector.

    PubMed

    Déjeant, Adrien; Bourva, Ludovic; Sia, Radia; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael

    2014-11-01

    The radioactivities of (238)U and (226)Ra in mill tailings from the U mines of COMINAK and SOMAÏR in Niger were measured and quantified using a portable High-Purity Germanium (HPGe) detector. The (238)U and (226)Ra activities were measured under field conditions on drilling cores with 600s measurements and without any sample preparation. Field results were compared with those obtained by Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and emanometry techniques. This comparison indicates that gamma-ray absorption by such geological samples does not cause significant deviations. This work shows the feasibility of using portable HPGe detector in the field as a preliminary method to observe variations of radionuclides concentration with the aim of identifying samples of interest. The HPGe is particularly useful for samples with strong secular disequilibrium such as mill tailings. PMID:25036918

  5. Double β experiments with the help of scintillation and HPGe detectors at Gran Sasso

    NASA Astrophysics Data System (ADS)

    Barabash, A.; Belli, P.; Bernabei, R.; Boiko, R. S.; Brudanin, V. B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; Danevich, F. A.; d'Angelo, S.; Di Marco, A.; Di Vacri, M. L.; Dossovitskiyj, A. E.; Galashov, E. N.; Grinyov, B. V.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Kovtun, G. P.; Kropivyansky, B. N.; Kudovbenko, V. M.; Laubenstein, M.; Mikhlin, A. L.; Nagornaya, L. L.; Nagorny, S. S.; Nagornyi, P. G.; Nisi, S.; Poda, D. V.; Podviyanuk, R. B.; Prosperi, D.; Polischuk, O. G.; Shcherban, A. P.; Shlegel, V. N.; Solopikhin, D. A.; Stenin, Y. G.; Suhonen, J.; Tolmachev, A. V.; Tretyak, V. I.; Umatov, V. I.; Vasiliev, Y. V.; Virich, V. D.; Vyshnevskyi, I. M.; Yavetskiy, R. P.; Yurchenko, S. S.

    2011-12-01

    A search for double beta decay of 64,70Zn, 180,186W was carried out by using low background ZnWO4 crystal scintillators, while a CeCl3 scintillation detector was applied to investigate 2β processes in 136,138,142Ce. A search for 2β decay of 96,104Ru, 156,158Dy, 190,198Pt and study of 2ν2β decay of 100Mo to the first excited 0+ level of 100Ru were realized by ultra-low background HPGe γ spectrometry. Moreover, CdWO4 crystal scintillators from enriched 106Cd and 116Cd isotopes were developed to search for 2β decay of 106Cd and 116Cd. Finally, experiments aimed to investigate 96,104Ru and 116Cd are in progress and a new phase of the experiment to search for 2β processes in 106Cd is in preparation.

  6. Measurements of radionuclide in Par Pond sediments with an underwater HPGe detector

    SciTech Connect

    Winn, W.G.

    1993-11-01

    Savannah River Site (SRS) effluent gamma emitting radionuclides in Par Pond sediment were examined in situ with an underwater HPGe detector prior to and following a 19 ft drawdown of the pond in 1991 to address dam repairs. These measurements provide a map of the {sup 137}Cs concentrations of the pond sediment, indicating that 9.4 {plus_minus} 1.5 Ci is exposed by the drawdown and that 46.6 {plus_minus} 7.2 Ci is the entire pond inventory. The highest individual {sup 137}Cs concentration was 25 {mu}Ci/m{sup 2} for the exposed sediment and 50 {mu}Ci/m{sup 2} for the entire pond. The results are consistent with parallel studies conducted by SREL, as well as historical data. Aside from {sup 137}Cs, the only other SRS-produced isotope observed was {sup 60}Co, with activity of only about 1% of that for {sup 137}Cs. This observation was also confirmed in grab samples of pond sediment and vegetation, which were returned to the laboratory for ultra-low-level gamma spectrometry analysis. A special effort was required to calibrate the underwater HPGe detector, where both measurements and calculational models were used. The effects of sediment depth profiles for density and {sup 137}Cs concentration were addressed in the calibration. Calibration factors for sediment surface concentrations ({mu}Ci/m{sup 2}/cpm) and sediment mass concentrations (pCi/kg/cpm) were obtained. In general, the {mu}Ci/m{sup 2}/cpm factor is recommended, as the pCi/kg/cpm factor depends on the depth location of the sediment of interest. However, a pCi/kg/cpm factor, which is dependent on the depth within the sediment is presented to address dose calculations that require it.

  7. Identifying and quantifying short-lived fission products from thermal fission of HEU using portable HPGe detectors

    SciTech Connect

    Pierson, Bruce D.; Finn, Erin C.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Kephart, Rosara F.; Metz, Lori A.

    2013-03-01

    Due to the emerging potential for trafficking of special nuclear material, research programs are investigating current capabilities of commercially available portable gamma ray detection systems. Presented in this paper are the results of three different portable high-purity germanium (HPGe) detectors used to identify short-lived fission products generated from thermal neutron interrogation of small samples of highly enriched uranium. Samples were irradiated at the Washington State University (WSU) Nuclear Radiation Center’s 1MW TRIGA reactor. The three portable, HPGe detectors used were the ORTEC MicroDetective, the ORTEC Detective, and the Canberra Falcon. Canberra’s GENIE-2000 software was used to analyze the spectral data collected from each detector. Ultimately, these three portable detectors were able to identify a large range of fission products showing potential for material discrimination.

  8. Spectral Study of a Broad Energy HPGe Detector for First Measurement of Coherent Neutrino Scattering

    NASA Astrophysics Data System (ADS)

    Surbrook, Jason; Green, Matthew

    2014-09-01

    Intense neutrino flux at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) in the energy domain below Eν = 50 MeV makes SNS a suitable location for measurement of Coherent Neutrino Scattering. Coherent scattering is assumed to occupy vital roles in supernovae (SN) events and measurement offers promising insight into SN mechanics and advancements in SN- ν detection. Furthermore, this interaction is well-calculable and therefore, a strong test of the Standard Model. P-Type Point Contact High-purity germanium detectors are excellent candidates for this measurement due to their sensitivity to low-energy nuclear recoils. One such, a Canberra Broad Energy HPGe detector, was tested for quality degradation from exposure to fast neutrons in the SNS target building, to assess usefulness in a future coherent scattering experiment. Analysis of the lead-shielded spectra was handled using tools developed for the Majorana Demonstrator neutrinoless double-beta decay experiment. Broad spectrum energy resolution and 68Ge decay rates were calculated. This poster will present findings that will help determine this detector's eligibility and exposure limitations for measurement in a future coherent neutrino scattering experiment at the SNS.

  9. Evaluation of real-time digital pulse shapers with various HPGe and silicon radiation detectors

    NASA Astrophysics Data System (ADS)

    Menaa, N.; D'Agostino, P.; Zakrzewski, B.; Jordanov, V. T.

    2011-10-01

    Real-time digital pulse shaping techniques allow synthesis of pulse shapes that have been difficult to realize using the traditional analog methods. Using real-time digital shapers, triangular/trapezoidal filters can be synthesized in real time. These filters exhibit digital control on the rise time, fall time, and flat-top of the trapezoidal shape. Thus, the trapezoidal shape can be adjusted for optimum performance at different distributions of the series and parallel noise. The trapezoidal weighting function (WF) represents the optimum time-limited pulse shape when only parallel and series noises are present in the detector system. In the presence of 1/ F noise, the optimum WF changes depending on the 1/ F noise contribution. In this paper, we report on the results of the evaluation of new filter types for processing signals from CANBERRA high purity germanium (HPGe) and passivated, implanted, planar silicon (PIPS) detectors. The objective of the evaluation is to determine improvements in performance over the current trapezoidal (digital) filter. The evaluation is performed using a customized CANBERRA digital signal processing unit that is fitted with new FPGA designs and any required firmware modifications to support operation of the new filters. The evaluated filters include the Cusp, one-over-F (1/ F), and pseudo-Gaussian filters. The results are compared with the CANBERRA trapezoidal shaper.

  10. Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors

    NASA Astrophysics Data System (ADS)

    Söderström, P.-A.; Recchia, F.; Nyberg, J.; Al-Adili, A.; Ataç, A.; Aydin, S.; Bazzacco, D.; Bednarczyk, P.; Birkenbach, B.; Bortolato, D.; Boston, A. J.; Boston, H. C.; Bruyneel, B.; Bucurescu, D.; Calore, E.; Colosimo, S.; Crespi, F. C. L.; Dosme, N.; Eberth, J.; Farnea, E.; Filmer, F.; Gadea, A.; Gottardo, A.; Grave, X.; Grebosz, J.; Griffiths, R.; Gulmini, M.; Habermann, T.; Hess, H.; Jaworski, G.; Jones, P.; Joshi, P.; Judson, D. S.; Kempley, R.; Khaplanov, A.; Legay, E.; Lersch, D.; Ljungvall, J.; Lopez-Martens, A.; Meczynski, W.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Orlandi, R.; Pascovici, G.; Pullia, A.; Reiter, P.; Sahin, E.; Smith, J. F.; Strachan, J.; Tonev, D.; Unsworth, C.; Ur, C. A.; Valiente-Dobón, J. J.; Veyssiere, C.; Wiens, A.; Agata Collaboration

    2011-05-01

    The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected γ-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted γ-ray. The γ-ray tracking was used to determine the full energy of the γ-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1 mm in the FWHM of the interaction position resolution for the γ-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a 30Si beam at 64 MeV on a thin 12C target. Pulse-shape analysis of the digitized detector waveforms and γ-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the γ-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FWHM of the interaction position resolution varies roughly linearly as a function of γ-ray energy from 8.5 mm at 250 keV to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the γ-ray energy range from 1.5 to 4 MeV.

  11. Evaluation of radioactive background rejection in 76Ge neutrino-lessdouble-beta decay experiments using a highly segmented HPGe detector

    SciTech Connect

    Chan, Yuen-Dat; Campbell, D.B.; Vetter, K.; Henning, R.; Lesko, K.; Chan, Y.D.; Poon, A.W.P.; Perry, M.; Hurley, D.; Smith, A.R.

    2007-02-05

    A highly segmented coaxial HPGe detector was operated in a low background counting facility for over 1 year to experimentally evaluate possible segmentation strategies for the proposed Majorana neutrino-less double-beta decay experiment. Segmentation schemes were evaluated on their ability to reject multi-segment events while retaining single-segment events. To quantify a segmentation scheme's acceptance efficiency the percentage of peak area due to single segment events was calculated for peaks located in the energy region 911-2614 keV. Single interaction site events were represented by the double-escape peak from the 2614 keV decay in {sup 208}Tl located at 1592 keV. In spite of its prototypical nature, the detector performed well under realistic operating conditions and required only minimal human interaction. Though the energy resolution for events with interactions in multiple segments was impacted by inter-segment cross-talk, the implementation of a cross-talk correlation matrix restored acceptable resolution. Additionally, simulations utilizing the MaGe simulation package were performed and found to be in good agreement with experimental observations verifying the external nature of the background radiation.

  12. Neutron capture gamma-ray data and calculations for HPGe detector-based applications

    NASA Astrophysics Data System (ADS)

    McNabb, Dennis P.; Firestone, Richard B.

    2004-10-01

    Recently an IAEA Coordinated Research Project published an evaluation of thermal neutron capture gamma-ray cross sections, measured to 1-5% uncertainty, for over 80 elements [1] and produced the Evaluated Gamma-ray Activation File (EGAF) [2] containing nearly 35,000 primary and secondary gamma-rays is available from the IAEA Nuclear Data Section. We have begun an effort to model the quasi-continuum gamma-ray cascade following neutron capture using the approach outlined by Becvar et al. [3] while constraining the calculation to reproduce the measured cross sections deexciting low-lying levels. Our goal is to provide complete neutron capture gamma ray data in ENDF formatted files to use as accurate event generators for high-resolution HPGe detector based applications. The results will be benchmarked to experimental spectroscopic data and compared with existing gamma-decay widths and level densities. [1] Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, IAEA-TECDOC-DRAFT (December, 2003); http://www-nds.iaea.org/pgaa/tecdoc.pdf. [2] Evaluated Gamma-ray Activation File maintained by the International Atomic Energy Agency; http://www-nds.iaea.org/pgaa/. [3] F. Becvar, Nucl Instr. Meth. A417, 434 (1998).

  13. Double {beta} experiments with the help of scintillation and HPGe detectors at Gran Sasso

    SciTech Connect

    Barabash, A.; Konovalov, S. I.; Umatov, V. I.; Belli, P.; D'Angelo, S.; Di Marco, A.; Bernabei, R.; Boiko, R. S.; Chernyak, D. M.; Danevich, F. A.; Kobychev, V. V.; Kropivyansky, B. N.; Kudovbenko, V. M.; Nagorny, S. S.; Podviyanuk, R. B.; Polischuk, O. G.; Tretyak, V. I.; Vyshnevskyi, I. M.; Yurchenko, S. S.; Brudanin, V. B.; and others

    2011-12-16

    A search for double beta decay of {sup 64,70}Zn, {sup 180,186}W was carried out by using low background ZnWO{sub 4} crystal scintillators, while a CeCl{sub 3} scintillation detector was applied to investigate 2{beta} processes in {sup 136,138,142}Ce. A search for 2{beta} decay of {sup 96,104}Ru, {sup 156,158}Dy, {sup 190,198}Pt and study of 2{nu}2{beta} decay of {sup 100}Mo to the first excited 0{sup +} level of {sup 100}Ru were realized by ultra-low background HPGe {gamma} spectrometry. Moreover, CdWO{sub 4} crystal scintillators from enriched {sup 106}Cd and {sup 116}Cd isotopes were developed to search for 2{beta} decay of {sup 106}Cd and {sup 116}Cd. Finally, experiments aimed to investigate {sup 96,104}Ru and {sup 116}Cd are in progress and a new phase of the experiment to search for 2{beta} processes in {sup 106}Cd is in preparation.

  14. Validation of Monte Carlo model of HPGe detector for field-station measurement of airborne radioactivity

    NASA Astrophysics Data System (ADS)

    Šolc, J.; Kovář, P.; Dryák, P.

    2016-03-01

    A Monte Carlo (MC) model of a mechanically-cooled High Purity Germanium detection system IDM-200-V™ manufactured by ORTEC® was created, optimized and validated within the scope of the Joint Research Project ENV57 ``Metrology for radiological early warning networks in Europe''. The validation was performed for a planar source homogeneously distributed on a filter placed on top of the detector end cap and for point sources positioned farther from the detector by comparing simulated full-energy peak (FEP) detection efficiencies with the ones measured with two or three different pieces of the IDM detector. True coincidence summing correction factors were applied to the measured FEP efficiencies. Relative differences of FEP efficiencies laid within 8% that is fully satisfactory for the intended use of the detectors as instruments for airborne radioactivity measurement in field-stations. The validated MC model of the IDM-200-V™ detector is now available for further MC calculations planned in the ENV57 project.

  15. Low background HPGe spectrometer in investigations of 2β decay

    SciTech Connect

    Rukhadze, Ekaterina [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a Collaboration: OBELIX Collaboration; TGV Collaboration; SuperNEMO Collaboration; and others

    2013-08-08

    The low background high sensitive HPGe spectrometer called OBELIX is briefly described. The calibration measurements using {sup 152}Eu, {sup 133}Ba and La{sub 2}O{sub 3} sources in different geometries, the obtained efficiency curves for OBELIX HPGe detector, the results of measurements of radioactivity of the NEMO-3 sources ({sup 100}Mo, {sup 150}Nd) as well as future plans for OBELIX detector (e.g. 0νEC/EC decay of {sup 106}Cd) are presented.

  16. Determination of LaBr3(Ce) internal background using a HPGe detector and Monte Carlo simulations.

    PubMed

    Camp, Anna; Vargas, Arturo; Fernández-Varea, José M

    2016-03-01

    The presence of (138)La and (227)Ac impurities in LaBr3(Ce) scintillator crystals is a drawback for their use in environmental radiation monitoring. A method is presented to evaluate the internal (138)La activity. Firstly, an experimental set-up is prepared with the LaBr3(Ce) crystal acting as the radiation source and an HPGe detector that acquires the photon spectrum. Then, the internal background spectrum is simulated with a modified version of the PENELOPE/penEasy Monte Carlo code. The simulated spectra agree with measurements conducted at ultra-low-background facilities. PMID:26688364

  17. Charged-particle induced radiation damage of a HPGe gamma-ray detector during spaceflight

    NASA Astrophysics Data System (ADS)

    Evans, L. G.; Starr, R.; Brückner, J.; Boynton, W. V.; Bailey, S. H.; Trombka, J. I.

    1999-02-01

    The Mars Observer spacecraft was launched on September 26, 1992 with a planned arrival at Mars after an 11-month cruise. Among the scientific instruments carried on the spacecraft was a Gamma-Ray Spectrometer (GRS) experiment to measure the composition of Mars. The GRS used a passively cooled high-purity germanium detector for measurements in the 0.2-10MeV region. The sensor was a closed-end co-axial detector, 5.5cm diameter by 5.5cm long, and had an efficiency along its axis of 28% at 1332keV relative to a standard NaI(Tl) detector. The sensor was surrounded by a thin (0.5cm) plastic charged-particle shield. This was the first planetary mission to use a cooled Ge detector. It was expected that the long duration in space of three years would cause an increase in the energy resolution of the detector due to radiation damage and could affect the expected science return of the GRS. Shortly before arrival, on August 21, 1993, contact was lost with the spacecraft following the pressurization of the propellent tank for the orbital-insertion rocket motor. During much of the cruise to Mars, the GRS was actively collecting background data. The instrument provided over 1200h of data collection during periods of both quiescent sun and solar flares. From the charged particle interactions in the shield, the total number of cosmic ray hits on the detector could be determined. The average cosmic ray flux at the MO GRS was about 2.5cm-2s-1. The estimated fluence of charged particles during cruise was about 108 particles cm-2 with 31% of these occurring during a single solar proton event of approximately 10 days duration. During cruise, the detector energy resolution determined from a background gamma-ray at 1312keV degraded from 2.4keV full-width at half-maximum shortly after launch to 6.4keV 11 months later. This result agrees well with measurements from ground-based accelerator irradiations (at 1.5GeV) on a similar size detector.

  18. Monte-Carlo optimisation of a Compton suppression system for use with a broad-energy HPGe detector

    NASA Astrophysics Data System (ADS)

    Britton, R.; Burnett, J. L.; Davies, A. V.; Regan, P. H.

    2014-10-01

    Monte-Carlo simulations are used to evaluate and optimise multiple components of a Compton Suppression System based upon a Broad-energy HPGe primary detector. Several materials for the secondary crystal are evaluated, including NaI(Tl), BGO and LaBr3(Ce). BGO was found to be the most effective across the required energy range, with the sizes of the proposed veto detector then optimised to extract the maximum performance for a given volume of material. Suppression factors are calculated for a range of nuclides (both single and cascade emitters) with improvements of 2 for the Compton Suppression Factors, and 10 for the continuum reduction when compared to the Compton suppression system currently in use. This equates to a reduction in the continuum by up to a factor of ~240 for radionuclides such as 60Co, which is crucial for the detection of low-energy, low-activity γ emitters typically swamped by such a continuum.

  19. Study of the response of an ORTEC GMX45 HPGe detector with a multi-radionuclide volume source using Monte Carlo simulations.

    PubMed

    Saraiva, A; Oliveira, C; Reis, M; Portugal, L; Paiva, I; Cruz, C

    2016-07-01

    A model of an n-type ORTEC GMX45 HPGe detector was created using the MCNPX and the MCNP-CP codes. In order to validate the model, experimental efficiency was compared with the Monte Carlo simulations results. The reference source is a NIST traceable multi-gamma volume source in a water-equivalent epoxy resin matrix (1.15gcm(-3) density) containing several radionuclides: (210)Pb, (241)Am, (137)Cs and (60)Co in a cylinder shape container. Two distances of source bottom to end cap front surface of the detector have been considered. The efficiency for the nearest distance is higher than for longer distance. The relative difference between the measured and the simulated full-energy peak efficiency is less than 4.0% except for the 46.5keV energy peak of (210)Pb for the longer distance (6.5%) allowing to consider the model validated. In the absence of adequate standard calibration sources, efficiency and efficiency transfer factors for geometry deviations and matrix effects can be accurately computed by using Monte Carlo methods even if true coincidence could occur as is the case when the (60)Co radioisotope is present in the source. PMID:27131096

  20. Distribution of lake-bottom radionuclides measured with an underwater HPGe detector

    SciTech Connect

    Winn, W.G.; Dunn, D.L.; Bresnahan, P.J.

    1996-07-01

    This study at Savannah River was done to assist decisions on the future of L Lake, an artificial reservoir made in 1983-5 for additional cooling for L Reactor discharges. EG&G overflight NaI mappings prior to filling indicated that most of the man-made radionuclides were {sup 60}Co and (predominantly) {sup 137}Cs in the earlier stream beds lying beneath the lake. An underwater HPGe was used in 1995 to rapidly scope the present radiation levels at 96 locations in the lake. The present levels are in reasonable agreement with the earlier overflight mappings. 1 fig, 4 figs.

  1. Signal recognition efficiencies of artificial neural-network pulse-shape discrimination in HPGe -decay searches

    NASA Astrophysics Data System (ADS)

    Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.

    2015-07-01

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.

  2. Multi-element readout of structured HPGe-detectors for high-resolution x-ray spectroscopy using CUBE-preamplifiers

    NASA Astrophysics Data System (ADS)

    Krings, T.; Spillmann, U.; Protić, D.; Roß, C.; Stöhlker, Th.; Weber, G.; Bombelli, L.; Alberti, R.; Frizzi, T.

    2015-02-01

    Very recently we have shown that CUBE-preamplifiers developed by XGLab s.r.l. can be used for the readout of single elements of thick structured planar HPGe- and Si(Li)-detectors produced by SEMIKON [1]. In this paper we will present the results of a simultaneous multi-element readout of structured detectors using the same preamplifiers for measuring high-energy x-rays (more than 100 keV) with a comparable energy resolution as for the single-element readout. Several high-purity germanium detectors (HPGe-detectors) with different position sensitive structures on one detector contact have been used for the first tests. In addition to that we have modified an existing 16-pixel HPGe-polarimeter from GSI-Darmstadt with the new readout. The detector elements (7 mm × 7 mm each, arranged in a 4 × 4 matrix) are connected to CUBE-preamplifiers used in pulse-reset mode. The technological progress achieved with this detector system resulting in a significant improved energy resolution will contribute a lot to much more precise polarization measurements of x-rays emitted from atom-ion collisions which are part of the physics program of the SPARC collaboration (Stored Particles Atomic Physics Research Collaboration) at GSI and the future FAIR accelerator facility (Facility for Antiproton and Ion Research).

  3. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  4. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  5. Study of accuracy in the position determination with SALSA, a γ-scanning system for the characterization of segmented HPGe detectors

    NASA Astrophysics Data System (ADS)

    Hernandez-Prieto, A.; Quintana, B.; Martìn, S.; Domingo-Pardo, C.

    2016-07-01

    Accurate characterization of the electric response of segmented high-purity germanium (HPGe) detectors as a function of the interaction position is one of the current goals of the Nuclear Physics community seeking to perform γ-ray tracking or even imaging with these detectors. For this purpose, scanning devices must be developed to achieve the signal-position association with the highest precision. With a view to studying the accuracy achieved with SALSA, the SAlamanca Lyso-based Scanning Array, here we report a detailed study on the uncertainty sources and their effect in the position determination inside the HPGe detector to be scanned. The optimization performed on the design of SALSA, aimed at minimizing the effect of the uncertainty sources, afforded an intrinsic uncertainty of ∼2 mm for large coaxial detectors and ∼1 mm for planar ones.

  6. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    NASA Astrophysics Data System (ADS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  7. Application of unfolding technique to HPGe detector using response functions calculated with the EGS4 Monte Carlo code.

    PubMed

    Chun, Kook Jin; Hah, Suck Ho; Kim, Hyun Moon; Yoo, Gwang Ho

    2006-03-01

    The EGS4 Monte Carlo simulation technique was used to obtain the energy spectra of photons arriving at a detector from the pulse height distributions measured by the same detector. First, the measured pulse height distribution for incident photons from several radiation sources such as 60Co, 137Cs, 152Eu and 207Bi with a collimator are compared with those calculated using the EGS4 code to investigate the feasibility of the simulation. The comparison showed good agreement of 98.7% for 60Co, 92.5% for 207Bi on the total counts. Second, the pulse height distributions were measured in the open space and then unfolded. The measurement of the distributions was done with changing the source to detector distance (SDD) from 10 cm to 100 cm for 60Co and 137Cs respectively. In the unfolding process, response functions of a high purity Ge (HPGe) detector were calculated using the EGS4 code. The calculated pulse height distributions were then normalized to the measured ones at the peaks of the incident photon energies. The ratio of the sum of counts of the main peaks to the total count in the unfolded spectra for 60Co varied from 5.4 to 5.7 times greater than those in the measured pulse height distributions, while from 2.5 to 2.9 times for 137Cs. Electron contribution to the unfolded spectra for 137Cs decreased as the source to detector distance increased, becoming negligible above 50 cm. The pulse height distributions at the center of the reference plane at 100 cm from the 60Co and 137Cs dummy sources located inside each irradiator were also measured and unfolded to obtain the real pulse height distribution. In the unfolded spectra, the photons scattered from the surrounding materials were reduced to approximately one fourth of those measured in the open space due to the small size of apertures of the irradiators. The ratio of the sum of counts for the main peaks to the total count was larger than those in the measured pulse height distributions by the factor of 5.0 for 60Co

  8. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    SciTech Connect

    Cox, Christopher

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need by developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry

  9. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    SciTech Connect

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-07

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of {epsilon} = A{Epsilon}{sup a}+B{Epsilon}{sup b}, where {epsilon} is efficiency, {Epsilon} is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a ''knee'' at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  10. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    NASA Astrophysics Data System (ADS)

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-01

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of ɛ = AΕa+BΕb, where ɛ is efficiency, Ε is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a "knee" at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  11. Uranium Isotopic and Quantitative Analysis Using a Mechanically-Cooled HPGe Detector

    SciTech Connect

    Solodov, Alexander A

    2008-01-01

    A new, portable high-resolution spectroscopy system based on a high-purity germanium detector cooled with a miniature Stirling-cycle cooler, ORTEC trans-SPEC, has recently become commercially available. The use of a long-life mechanical cooling system eliminates the need for liquid nitrogen. The purpose of this study was to determine the applicability of this new instrument for isotopic and quantitative analyses of uranium samples. The results of the performance of the trans-SPEC with the combination of PC-FRAM and ISOTOPIC software packages are described in this paper. An optimal set of analysis parameters for uranium measurements is proposed.

  12. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    SciTech Connect

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  13. Calibration of an HPGe detector and self-attenuation correction for 210Pb: Verification by alpha spectrometry of 210Po in environmental samples

    NASA Astrophysics Data System (ADS)

    Saïdou; Bochud, François; Laedermann, Jean-Pascal; Buchillier, Thierry; Njock Moïse, Kwato; Froidevaux, Pascal

    2007-08-01

    In this work the calibration of an HPGe detector for 210Pb measurement is realised by a liquid standard source and the determination of this radionuclide in solid environmental samples by gamma spectrometry takes into account a correction factor for self-attenuation of its 46.5 keV line. Experimental, theoretical and Monte Carlo investigations are undertaken to evaluate self-attenuation for cylindrical sample geometry. To validate this correction factor, 210Po (at equilibrium with 210Pb) alpha spectrometry procedure using microwave acid digestion under pressure is developed and proposed. The different self-attenuation correction methods are in coherence, and corrected 210Pb activities are in good agreement with the results of 210Po. Finally, self-attenuation corrections are proposed for environmental solid samples whose density ranges between 0.8 and 1.4 g/cm 3 and whose mass attenuation coefficient is around 0.4 cm 2/g.

  14. Search for double beta processes in 106Cd with enriched 106CdWO4 crystal scintillator in coincidence with four crystals HPGe detector

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Belli, P.; Bernabei, R.; Brudanin, V. B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; D'Angelo, S.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.; Tupitsyna, I. A.

    2015-10-01

    A radiopure cadmium tungstate crystal scintillator, enriched in 106Cd (106CdWO4), was used to search for double beta decay processes in 106Cd in coincidence with an ultra-low background set-up containing four high purity germanium (HPGe) detectors in a single cryostat. The experiment has been completed after 13085 h of data taking. New improved limits on most of the double beta processes in 106Cd have been set on the level of 1020-1021 yr. Tn particular, the half-life limit on the two neutrino electron capture with positron emission, T1/2 ≥ 1.8 × 1021 yr, reached the region of theoretical predictions.

  15. Applying a low energy HPGe detector gamma ray spectrometric technique for the evaluation of Pu/Am ratio in biological samples.

    PubMed

    Singh, I S; Mishra, Lokpati; Yadav, J R; Nadar, M Y; Rao, D D; Pradeepkumar, K S

    2015-10-01

    The estimation of Pu/(241)Am ratio in the biological samples is an important input for the assessment of internal dose received by the workers. The radiochemical separation of Pu isotopes and (241)Am in a sample followed by alpha spectrometry is a widely used technique for the determination of Pu/(241)Am ratio. However, this method is time consuming and many times quick estimation is required. In this work, Pu/(241)Am ratio in the biological sample was estimated with HPGe detector based measurements using gamma/X-rays emitted by these radionuclides. These results were compared with those obtained from alpha spectroscopy of sample after radiochemical analysis and found to be in good agreement. PMID:26141295

  16. Search for double beta processes in {sup 106}Cd with enriched {sup 106}CdWO{sub 4} crystal scintillator in coincidence with four crystals HPGe detector

    SciTech Connect

    Danevich, F. A. Chernyak, D. M.; Mokina, V. M.; Belli, P.; Bernabei, R.; D’Angelo, S.; Brudanin, V. B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Laubenstein, M.; Incicchitti, A.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.; Tupitsyna, I. A.

    2015-10-28

    A radiopure cadmium tungstate crystal scintillator, enriched in {sup 106}Cd ({sup 106}CdWO{sub 4}), was used to search for double beta decay processes in {sup 106}Cd in coincidence with an ultra-low background set-up containing four high purity germanium (HPGe) detectors in a single cryostat. The experiment has been completed after 13085 h of data taking. New improved limits on most of the double beta processes in {sup 106}Cd have been set on the level of 10{sup 20}−10{sup 21} yr. Tn particular, the half-life limit on the two neutrino electron capture with positron emission, T{sub 1/2} ≥ 1.8 × 10{sup 21} yr, reached the region of theoretical predictions.

  17. The gender-specific chest wall thickness prediction equations for routine measurements of 239Pu and 241Am within the lungs using HPGe detectors.

    PubMed

    Vickers, L R

    1996-03-01

    The current chest wall thickness prediction equation is not applicable to use in routine lung counting measurements for detection of low energy photons (17--60 keV) within the lungs of male and female subjects. The current chest wall thickness prediction equation was derived for the NaI-CsI "phoswich" detection system, which is not the routine detection system in use; the subject position was supine, which is not the routine position; the equation did not account for the intercostal tissue thicknesses of muscle and adipose which significantly attenuate low energy photons (17--60keV); it was derived from male subjects only and is used to predict the chest wall thickness of female subjects for whom it is not applicable. The current chest wall thickness prediction equation yields unacceptable percent errors in the HPGe detection efficiency calibration for 239Pu and 241Am (17- and 59.5-keV photons, respectively) relative to the gender-specific HPGe chest wall thickness prediction equations of this paper (+284% to --73% for 239Pu; (+)42% to --39% for 241Am). As a result, use of the current chest wall thickness prediction equation yields unacceptable percent errors (proportional in magnitude to the percent errors in the detection efficiency calibration) in the calculation of the minimum detectable activity (Bq) or in an initial assessment of a radioactive contamination exposure detected by a routine lung count measurement. PMID:8609026

  18. Metrological tests of a 200 L calibration source for HPGE detector systems for assay of radioactive waste drums.

    PubMed

    Boshkova, T; Mitev, K

    2016-03-01

    In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume (152)Eu source (drum about 200L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. PMID:26640236

  19. Fast Neutron Sensitivity with HPGe

    SciTech Connect

    Seifert, Allen; Hensley, Walter K.; Siciliano, Edward R.; Pitts, W. K.

    2008-01-22

    In addition to being excellent gamma-ray detectors, germanium detectors are also sensitive to fast neutrons. Incident neutrons undergo inelastic scattering {Ge(n,n')Ge*} off germanium nuclei and the resulting excited states emit gamma rays or conversion electrons. The response of a standard 140% high-purity germanium (HPGe) detector with a bismuth germanate (BGO) anti-coincidence shield was measured for several neutron sources to characterize the ability of the HPGe detector to detect fast neutrons. For a sensitivity calculation performed using the characteristic fast neutron response peak that occurs at 692 keV, the 140% germanium detector system exhibited a sensitivity of ~175 counts / kg of WGPumetal in 1000 seconds at a source-detector distance of 1 meter with 4 in. of lead shielding between source and detector. Theoretical work also indicates that it might be possible to use the shape of the fast-neutron inelastic scattering signatures (specifically, the end-point energy of the long high energy tail of the resulting asymmetric peak) to gain additional information about the energy distribution of the incident neutron spectrum. However, the experimentally observed end-point energies appear to be almost identical for each of the fast neutron sources counted. Detailed MCNP calculations show that the neutron energy distributions impingent on the detector for these sources are very similar in this experimental configuration, due to neutron scattering in a lead shield (placed between the neutron source and HPGe detector to reduce the gamma ray flux), the BGO anti-coincidence detector, and the concrete floor.

  20. Development of an anti-Compton veto for HPGe detectors operated in liquid argon using silicon photo-multipliers

    NASA Astrophysics Data System (ADS)

    Janicskó Csáthy, J.; Aghaei Khozani, H.; Caldwell, A.; Liu, X.; Majorovits, B.

    2011-10-01

    A proof of concept detector is presented for scintillation light detection in liquid argon using silicon photo-multipliers. The aim of the work is to build an anti-Compton veto for germanium detectors operated directly in liquid argon as in the GERDA experiment. Wavelength shifting fibers are used to collect the scintillation light and to guide it to Multi-Pixel Photon Counters (MPPC). Sufficient light yield was achieved to realize an effective anti-Compton veto. Properties of the MPPC were studied at cryogenic temperatures and are additionally reported.

  1. Efficient scalable solid-state neutron detector

    SciTech Connect

    Moses, Daniel

    2015-06-15

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a {sup 6}Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m{sup 2}, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.

  2. Efficient scalable solid-state neutron detector

    NASA Astrophysics Data System (ADS)

    Moses, Daniel

    2015-06-01

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a 6Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m2, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.

  3. Efficient scalable solid-state neutron detector.

    PubMed

    Moses, Daniel

    2015-06-01

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a (6)Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m(2), is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security. PMID:26133869

  4. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.

    2016-07-01

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.

  5. Simulation of background reduction and Compton suppression in a low-background HPGe spectrometer at a surface laboratory

    NASA Astrophysics Data System (ADS)

    Niu, Shun-Li; Cai, Xiao; Wu, Zhen-Zhong; Liu, Yi; Xie, Yu-Guang; Yu, Bo-Xiang; Wang, Zhi-Gang; Fang, Jian; Sun, Xi-Lei; Sun, Li-Jun; Liu, Ying-Biao; Gao, Long; Zhang, Xuan; Zhao, Hang; Zhou, Li; Lü, Jun-Guang; Hu, Tao

    2015-08-01

    High-purity germanium (HPGe) detectors are well suited to analyse the radioactivity of samples. In order to reduce the environmental background for an ultra-low background HPGe spectrometer, low-activity lead and oxygen free copper are installed outside the probe to shield from gamma radiation, with an outer plastic scintillator to veto cosmic rays, and an anti-Compton detector to improve the peak-to-Compton ratio. Using Geant4 tools and taking into account a detailed description of the detector, we optimize the sizes of these detectors to reach the design requirements. A set of experimental data from an existing HPGe spectrometer was used to compare with the simulation. For the future low-background HPGe detector simulation, considering different thicknesses of BGO crystals and anti-coincidence efficiency, the simulation results show that the optimal BGO thickness is 5.5 cm, and the peak-to-Compton ratio of 40K is raised to 1000 when the anti-coincidence efficiency is 0.85. In the background simulation, 15 cm oxygen-free copper plus 10 cm lead can reduce the environmental gamma rays to 0.0024 cps/100 cm3 Ge (50 keV-2.8 MeV), which is about 10-5 of the environmental background.

  6. Optimization of statistical methods for HpGe gamma-ray spectrometer used in wide count rate ranges

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Mana, G.; Palmisano, C.

    2016-07-01

    The need to perform γ-ray measurements with HpGe detectors is a common technique in many fields such as nuclear physics, radiochemistry, nuclear medicine and neutron activation analysis. The use of HpGe detectors is chosen in situations where isotope identification is needed because of their excellent resolution. Our challenge is to obtain the "best" spectroscopy data possible in every measurement situation. "Best" is a combination of statistical (number of counts) and spectral quality (peak, width and position) over a wide range of counting rates. In this framework, we applied Bayesian methods and the Ellipsoidal Nested Sampling (a multidimensional integration technique) to study the most likely distribution for the shape of HpGe spectra. In treating these experiments, the prior information suggests to model the likelihood function with a product of Poisson distributions. We present the efforts that have been done in order to optimize the statistical methods to HpGe detector outputs with the aim to evaluate to a better order of precision the detector efficiency, the absolute measured activity and the spectra background. Reaching a more precise knowledge of statistical and systematic uncertainties for the measured physical observables is the final goal of this research project.

  7. Efficient nucleus detector in histopathology images.

    PubMed

    Vink, J P; Van Leeuwen, M B; Van Deurzen, C H M; De Haan, G

    2013-02-01

    In traditional cancer diagnosis, (histo)pathological images of biopsy samples are visually analysed by pathologists. However, this judgment is subjective and leads to variability among pathologists. Digital scanners may enable automated objective assessment, improved quality and reduced throughput time. Nucleus detection is seen as the corner stone for a range of applications in automated assessment of (histo)pathological images. In this paper, we propose an efficient nucleus detector designed with machine learning. We applied colour deconvolution to reconstruct each applied stain. Next, we constructed a large feature set and modified AdaBoost to create two detectors, focused on different characteristics in appearance of nuclei. The proposed modification of AdaBoost enables inclusion of the computational cost of each feature during selection, thus improving the computational efficiency of the resulting detectors. The outputs of the two detectors are merged by a globally optimal active contour algorithm to refine the border of the detected nuclei. With a detection rate of 95% (on average 58 incorrectly found objects per field-of-view) based on 51 field-of-view images of Her2 immunohistochemistry stained breast tissue and a complete analysis in 1 s per field-of-view, our nucleus detector shows good performance and could enable a range of applications in automated assessment of (histo)pathological images. PMID:23252774

  8. An Efficient Ant-Based Edge Detector

    NASA Astrophysics Data System (ADS)

    Aydın, Doğan

    An efficient ant-based edge detector is presented. It is based on the distribution of ants on an image, ants try to find possible edges by using a state transition function based on 5x5 edge structures. Visual comparisons show that the proposed method gives finer details and thinner edges at lesser computational times when compared to earlier ant-based approaches. When compared to standard edge detectors, it shows robustness to Gaussian and Salt & Pepper noise and provides finer details than others with same parameter set in both clear and noisy images.

  9. Determination of Barium and selected rare-earth elements in geological materials employing a HpGe detector by radioisotope excited x-ray fluorescence

    SciTech Connect

    LaBrecque, J.J.; Preiss, I.L.

    1984-01-01

    The laterite material (geological) from Cerro Impacto was first studied by air radiometric techniques in the 1970's and was found to have an abnormally high radioactive background. Further studies showed this deposit to be rich in thorium, columbium, barium and rare-earth elements (mostly La, Ce, Pr and Nd). A similar work has been reported for the analysis of Brazil's lateritic material from Morro do Ferro to determine elemental compositions (including barium and rare-earth elements) and its relationship to the mobilization of thorium from the deposit using a Co-57 radioisotope source. The objective of this work was to develop an analytical method to determine barium and rare-earth element present in Venezuelan lateritic material from Cerro Impacto. We have employed a method before, employing a Si(Li) detector, but due to the low detection efficiencies in the rare-earth K-lines region (about 30 KeV - 40 KeV), we have decided to study the improvement in sensitivities and detection limits using an hyperpure germanium detector.

  10. Measurement of radionuclide activities induced in target components of an IBA CYCLONE 18/9 by gamma-ray spectrometry with HPGe and LaBr3: Ce detectors.

    PubMed

    Tomarchio, Elio

    2014-08-01

    Cyclotrons are used worldwide to produce radiopharmaceuticals by proton irradiation of a suitable target. The intense secondary neutron beam generated by proton interactions with the target induce high radionuclide activities in the target assembly parts that may result in an exposure to high dose levels of the operators during maintenance. The main goal of this work is to evaluate gamma-emitting radionuclide activities induced in Havar foils and titanium windows of a target assembly and carousel stripper forks of an IBA CYCLONE 18/9 cyclotron. The knowledge of radionuclide inventory for each component is required by many companies to assess risk for operators before waste handling and disposal. Gamma-ray spectrometric analyses were carried out with High Purity Germanium (HPGe) and Lanthanum bromide (LaBr3:Ce) scintillation detectors. HPGe is the most used detector for its high energy resolution although it is more suitable for use in a laboratory. The use of LaBr3:Ce can be considered a viable option, particularly in realizing a portable spectrometric system to perform "on-site" measurements and a fast dose rate evaluation before the disposal of activated parts. Due to a high activity of target assembly components replaced after a typical irradiation cycle (about 5000 μAh integrated beam current), gamma-ray spectrometric measurements were performed at a large distance from the detector, even more than 100 cm, or by using a purposely realized Lead-walled collimator. The identification of some key-radionuclides allows to evaluate through simple formulations the dose rate behavior for each component as function of decay time from the last irradiation. The knowledge of the dose rate behavior is a significant piece of information to health physicists for waste handling with safety at work. For an Havar™ foil, the dose rate will be reduced to about 1/1,000 of the starting value after a decay period of approximately 4 y (about 1,500 d), with a relatively safety at

  11. Evaluation of the neutron background in an HPGe target for WIMP direct detection when using a reactor neutrino detector as a neutron veto system

    SciTech Connect

    Ji, Xiangpan; Xu, Ye Lin, Junsong; Feng, Yulong; Li, Haolin

    2013-11-15

    A direct WIMP (weakly interacting massive particle) detector with a neutron veto system is designed to better reject neutrons. The experimental configuration is studied in this paper involves 984 Ge modules placed inside a reactor-neutrino detector. The neutrino detector is used as a neutron veto device. The neutron background for the experimental design is estimated using the Geant4 simulation. The results show that the neutron background can decrease to O(0.01) events per year per tonne of high-purity germanium and it can be ignored in comparison with electron recoils.

  12. Electromechanically cooled germanium radiation detector system

    NASA Astrophysics Data System (ADS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  13. Feasibility studies on the burnup measurement of fuel pebbles with HPGe gamma spectrometer

    NASA Astrophysics Data System (ADS)

    Yan, Wei-Hua; Zhang, Li-Guo; Zhang, Zhao; Xiao, Zhi-Gang

    2013-06-01

    The feasibility of utilizing a High Purity Germanium (HPGe) detector for the fuel element burnup measurement in a future Modular Pebble Bed Reactor (MPBR) was studied. First, the HPGe spectrometer was set-up for running the detector at high count rates while keeping the energy resolution adequately high to discriminate the Cs-137 peak from other interfering peaks. Based on these settings, the geometrical conditions are settled. Next, experiments were performed with Co-60 and Cs-137 sources to mimic the counting rates in real applications. With the aid of KORIGEN and MCNP/G4 simulations, it was demonstrated that the uncertainty of the Cs-137 counting rate can be well controlled within 3.5%. Finally, a full size prototype was tested in comparison with detailed Monte Carlo simulation and the efficiency transfer method was further utilized for efficiency calibration. To reduce the uncertainty in the efficiency transfer process, a standard point source embedded in a graphite sphere was used for efficiency calibration. The correction factor due to pebble self-attenuation was carefully studied.

  14. Quantum Efficient Detectors for Use in Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Faust, Jessica; Eastwood, Michael; Pavri, Betina; Raney, James

    1998-01-01

    The trap or quantum efficient detector has a quantum efficiency of greater than 0.98 for the region from 450 to 900 nm. The region of flattest response is from 600 to 900 nm. The QED consists of three windowless Hamamatsu silicon detectors. The QED was mounted below AVIRIS to monitor the Spectralon panel for changes in radiance during radiometric calibration. The next step is to permanently mount the detector to AVIRIS and monitor the overall radiance of scenes along with calibration.

  15. Search for 2 β decay of 106Cd with an enriched 106CdWO4 crystal scintillator in coincidence with four HPGe detectors

    NASA Astrophysics Data System (ADS)

    Belli, P.; Bernabei, R.; Brudanin, V. B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; Danevich, F. A.; d'Angelo, S.; Di Marco, A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.; Tupitsyna, I. A.

    2016-04-01

    A radiopure cadmium tungstate crystal scintillator, enriched in 106Cd to 66%, with mass of 216 g (106CdWO4 ), was used to search for double-β decay processes in 106Cd in coincidence with four ultra-low-background high-purity germanium detectors in a single cryostat. Improved limits on the double-β processes in 106Cd have been set on the level of 1020-1021 yr after 13 085 h of data taking. In particular, the half-life limit on the two-neutrino electron capture with positron emission, T1/2 2 ν ɛ β+≥1.1 ×1021 yr, has reached the region of theoretical predictions. With this half-life limit the effective nuclear matrix element for the 2 ν ɛ β+ decay is bounded as Meff2 ν ɛ β+≤1.1 . The resonant neutrinoless double-electron captures to the 2718-, 2741-, and 2748-keV excited states of 106Pd are restricted at the level of T1 /2≥(8.5 × 1020-1.4 ×1021 ) yr.

  16. A high-efficiency focusing Cherenkov radiation detector

    SciTech Connect

    Lewis, K.; Moran, M.J.; Hall, J. ); Graser, M. )

    1992-03-01

    A new design uses advanced technology to produce an efficient, high-bandwidth Cherenkov detector for relativistic charged particles. The detector consists of a diamond-lathe machined ultraviolet-grade Lucite radiator, a parabolic focusing mirror, and a photodiode with an S-20 cathode. This article discusses some details of the detector design and describes preliminary measurements of its response characteristics. The data show the detector to have an overall gain of {approx}76 signal electrons per incident electron and a photodiode-limited response time of {approx}450 ps.

  17. High efficiency neutron sensitive amorphous silicon pixel detectors

    SciTech Connect

    Mireshghi, A.; Cho, G.; Drewery, J.S.; Hong, W.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.

    1993-11-01

    A multi-layer a-Si:H based thermal neutron detector was designed, fabricated and simulated by Monte Carlo method. The detector consists of two PECVD deposited a-Si:H pin detectors interfaced with coated layers of Gd, as a thermal neutron converter. Simulation results indicate that a detector consisting of 2 Gd films with thicknesses of 2 and 4 {mu}m, sandwiched properly with two layers of sufficiently thick ({approximately}30{mu}m) amorphous silicon diodes, has the optimum parameters. The detectors have an intrinsic efficiency of about 42% at a threshold setting of 7000 electrons, with an expected average signal size of {approximately}12000 electrons which is well above the noise. This efficiency will be further increased to nearly 63%, if we use Gd with 50% enrichment in {sup 157}Gd. We can fabricate position sensitive detectors with spatial resolution of 300 {mu}m with gamma sensitivity of {approximately}1 {times} 10{sup {minus}5}. These detectors are highly radiation resistant and are good candidates for use in various application, where high efficiency, high resolution, gamma insensitive position sensitive neutron detectors are needed.

  18. Hit efficiency study of CMS prototype forward pixel detectors

    SciTech Connect

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  19. Detective quantum efficiency of electron area detectors in electron microscopy

    PubMed Central

    McMullan, G.; Chen, S.; Henderson, R.; Faruqi, A.R.

    2009-01-01

    Recent progress in detector design has created the need for a careful side-by-side comparison of the modulation transfer function (MTF) and resolution-dependent detective quantum efficiency (DQE) of existing electron detectors with those of detectors based on new technology. We present MTF and DQE measurements for four types of detector: Kodak SO-163 film, TVIPS 224 charge coupled device (CCD) detector, the Medipix2 hybrid pixel detector, and an experimental direct electron monolithic active pixel sensor (MAPS) detector. Film and CCD performance was measured at 120 and 300 keV, while results are presented for the Medipix2 at 120 keV and for the MAPS detector at 300 keV. In the case of film, the effects of electron backscattering from both the holder and the plastic support have been investigated. We also show that part of the response of the emulsion in film comes from light generated in the plastic support. Computer simulations of film and the MAPS detector have been carried out and show good agreement with experiment. The agreement enables us to conclude that the DQE of a backthinned direct electron MAPS detector is likely to be equal to, or better than, that of film at 300 keV. PMID:19497671

  20. Efficiency and Gamma Sensitivity of a Lithium Glass Neutron Detector

    NASA Astrophysics Data System (ADS)

    Wallace, Adam; Rees, Lawrence; Czirr, Bart; Hoggan, Margarita

    2010-10-01

    Neutron detectors are used in national security applications for detecting potential radioactive material entering the country. Due to the shortage of Helium-3 for neutron detectors, Lithium-6 glass scintillators could be a good material for a replacement detector. Lithium-6 has a large neutron capture cross section, which gives high neutron detection rates. Our detector is based on the fact that neutrons are captured by Lithium-6 which rapidly decays into an alpha particle and triton. Those particles induce scintillation in the glass scintillator and are detected in a photomultiplier tube. The orientation of the plastic and Lithium-6 glass changes the efficiency of the detector. Monte Carlo for Neutral Particles (MCNP) calculations have shown that increasing amounts of plastic provide more efficient neutron detection and that placing a layer of glass in the front of the detector is the ideal configuration. Homeland Security requires that a replacement for Helium-3 detectors must have low gamma sensitivity and high neutron detection efficiency. We are measuring the absolute gamma sensitivity of various arrangements of glass and plastic scintillator. Our goal is to meet the Department of Homeland Security requirement for gamma sensitivity of one part in 10,000.

  1. Absolute Efficiency Calibration of a Beta-Gamma Detector

    SciTech Connect

    Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Hayes, James C.; McIntyre, Justin I.; Lidey, Lance S.; Schrom, Brian T.

    2013-04-10

    Abstract- Identification and quantification of nuclear events such as the Fukushima reactor failure and nuclear explosions rely heavily on the accurate measurement of radioxenon releases. One radioxenon detection method depends on detecting beta-gamma coincident events paired with a stable xenon measurement to determine the concentration of a plume. Like all measurements, the beta-gamma method relies on knowing the detection efficiency for each isotope measured. Several methods are commonly used to characterize the detection efficiency for a beta-gamma detector. The most common method is using a NIST certified sealed source to determine the efficiency. A second method determines the detection efficiencies relative to an already characterized detector. Finally, a potentially more accurate method is to use the expected sample to perform an absolute efficiency calibration; in the case of a beta-gamma detector, this relies on radioxenon gas samples. The complication of the first method is it focuses only on the gamma detectors and does not offer a solution for determining the beta efficiency. The second method listed is not similarly constrained, however it relies on another detector to have a well-known efficiency calibration. The final method using actual radioxenon samples to make an absolute efficiency determination is the most desirable, but until recently it was not possible to produce all four isotopically pure radioxenon. The production, by University of Texas (UT), of isotopically pure radioxenon has allowed the beta-gamma detectors to be calibrated using the absolute efficiency method. The first four radioxenon isotope calibration will be discussed is this paper.

  2. High efficiency proportional neutron detector with solid liner internal structures

    DOEpatents

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  3. A high efficiency annular dark field detector for STEM.

    PubMed

    Kirkland, E J; Thomas, M G

    1996-01-01

    A new high efficiency annular dark field (ADF) detector for an HB501 STEM (Scanning Transmission Electron Microscope) has been constructed and tested. This detector uses a single crystal YAP scintillator and a solid quartz light pipe extending from the scintillator (inside the vacuum) to the photomultiplier tube (outside the vacuum). A factor of approximately 100 improvement in signal relative to the original detector has been obtained. This has substantially improved the signal to noise ratio in the recorded high resolution ADF-STEM images. PMID:22666919

  4. Coincidence Efficiency of Sodium Iodide Detectors for Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Eckert, Thomas; Vincett, Laurel; Yuly, Mark; Padalino, Stephen; Russ, Megan; Bienstock, Mollie; Simone, Angela; Ellison, Drew; Desmitt, Holly; Sangster, Craig; Regan, Sean

    2014-10-01

    One possible diagnostic technique for characterizing inertial confinement fusion reactions uses tertiary neutron activation of 12C via the 12C(n, 2n)11C reaction. A recent experiment to measure this cross section involved counting the positron annihilation gamma rays from the 11C decay by using sodium iodide detectors in coincidence. To determine the number of 11C decays requires an accurate value for the full-peak coincidence efficiency for the detector system. A new technique has been developed to measure this coincidence efficiency by detecting the positron prior to its annihilation, and vetoing events in which decay gamma rays other than the 511 keV annihilation gamma rays could enter the detectors. Measurements and simulation results for the absolute coincidence total and full-peak efficiencies are presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  5. Environmental measurements at the Savannah River Site with Underwater gamma detectors

    SciTech Connect

    Winn, W.G.

    1994-12-31

    Underwater NAI(Tl) and HPGe detectors are used in the environmental measurements programs at the Savannah River Site (SRS). A 22.9 cm {times} 10.2 cm NAI(Tl) detector on the Savannah River continuously monitors effluent releases from both SRS (DOE) and Plant Vogtle (Georgia Power). Correlations with known releases indicate a sensitivity of 4 mBq/l for {sup 58}Co with 1500 min spectra; such levels are well below those of hazardous or legal concern. A 30%-efficient HPGE detector has appraised radionuclides in SRS cooling pond sediments; the dominant gamma-emitting radionuclide detected was {sup 137}Cs, at levels ranging up to 2.0 MBq/m{sup 2}. The pond activities were adequately quantified by 1 min counts with the HPGE detector; resulting contour maps of sediment {sup 137}Cs provided guidance for partially draining the ponds for dam repairs.

  6. Existing NaI detectors; an efficient alternative to He-3 detectors

    NASA Astrophysics Data System (ADS)

    Metwally, Walid A.

    2014-11-01

    Neutron detectors are important in various fields of research, safeguards, security, medicine, and industry. The most common methods for detecting neutrons involve utilization of the 10B(n,α), 6Li(n,α), or 3He(n,p) reactions; with the He-3 filled proportional counters being the most widely used because of their high detection efficiency and good gamma ray discrimination. However these counters have severe drawbacks in terms of detector size and scarcity of He-3. The aim of this work is to investigate an alternative neutron detection method by using a boron lining with existing NaI detectors and compare the results with those obtained from a He-3 detector. The results show a good sensitivity of the boron-lined NaI detector to neutrons at different source locations and a considerable improvement in efficiency compared to He-3 detectors. On top of this the NaI detectors are used to detect the gamma rays from the surrounding source and interacting media.

  7. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  8. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  9. Determination of the Quantum Efficiency of a Light Detector

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2008-01-01

    The "quantum efficiency" (QE) is an important property of a light detector. This quantity can be determined in the undergraduate physics laboratory. The experimentally determined QE of a silicon photodiode appeared to be in reasonable agreement with expected values. The experiment confirms the quantum properties of light and seems to be a useful…

  10. Testing the Ge Detectors for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.

  11. Testing the Ge detectors for the MAJORANA DEMONSTRATOR

    DOE PAGESBeta

    Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; et al

    2015-03-24

    High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the ourmore » simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.« less

  12. Testing the Ge detectors for the MAJORANA DEMONSTRATOR

    SciTech Connect

    Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W.P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G.H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.

    2015-03-24

    High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.

  13. GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA

    SciTech Connect

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.

  14. Isotopic Analysis of Spent Nuclear Fuel with an Ultra-High Rate HPGe Spectrometer

    SciTech Connect

    Fast, James E.; Glasgow, Brian D.; Rodriguez, Douglas C.; VanDevender, Brent A.; Wood, Lynn S.

    2014-06-06

    A longstanding challenge is the assay of spent nuclear fuel (SNF). Determining the isotopic content of SNF requires gamma-ray spectroscopy. PNNL has developed new digital filtering and analysis techniques to produce an ultra high-rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This ~40% efficient detector has been operated for SNF measurements at a throughput of about 400k gamma-ray counts per second (kcps) at an input rate of 1.3 Mcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This talk will present the results of a SNF measurement with aged SNF pellets at PNNL’s Radiochemical Processing Laboratory, first results with a FPGA front end processor capable of processing the data in real time, and the development path toward a multi-element system to assay fuel assemblies.

  15. High-efficiency neutron detectors and methods of making same

    DOEpatents

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  16. Efficiency and spatial resolution of the CASCADE thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Köhli, M.; Allmendinger, F.; Häußler, W.; Schröder, T.; Klein, M.; Meven, M.; Schmidt, U.

    2016-08-01

    We report on the CASCADE project - a detection system, which has been designed for the purposes of neutron Spin Echo spectroscopy and which is continuously further developed and adapted to various applications. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid 10B coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard counting gas environment. This multi-layer setup efficiently increases the detection efficiency and by extracting the signal of the charge traversing the stack the conversion layer can be identified allowing a precise determination of the time-of-flight. The spatial resolution is found by optical contrast determination to be σ =(1.39 ± 0.05) mm and by divergence corrected aperture measurements σ =(1.454 ± 0.007) mm , which is in agreement with the simulated detector model. Furthermore this enabled to investigate and describe the non-Gaussian resolution function. At the HEiDi diffractometer the absolute detection efficiency has been studied. At 0.6 Å for the 6 layer detector, which is currently part of the RESEDA spectrometer, an efficiency of 7.8% has been measured, which by means of Monte Carlo simulations translates to (21.0±1.5)% for thermal neutrons at 1.8 Å and (46.9±3.3)% at 5.4 Å.

  17. Obelix, a new low-background HPGe at Modane Underground Laboratory

    SciTech Connect

    Loaiza, P.; Piquemal, F.; Warot, G.; Zampaolo, M.

    2015-08-17

    An ultra-low background coaxial HPGe detector for gamma-ray spectrometry with a relative efficiency of 160%, corresponding to a 600 cm{sup 3} Ge crystal, was installed at the Laboratoire Souterrain de Modane, France (4800 m.w.e). To reduce the instrinsic detector background, all parts involved in the detector cryostat were selected for their low radioactivity contamination. A shielding, composed of an inner layer of roman lead and an external layer of regular lead was installed, together with a system to reduce the Rn level inside the sample chamber. The shielding was designed to allow the measurement of Marinelli-shaped samples. We present the constructional details which lead to a remarkable low detector background of 73 cts/kg·d in [40, 3000] keV. Measured samples showed that sensitivities about 100 μBq/kg in {sup 226}Ra and {sup 228}Th are reached for samples of some kg and 30 days of lifetime.

  18. Measurement of Compton scattering in phantoms by germanium detectors

    SciTech Connect

    Zasadny, K.R.; Koral, K.F. . Medical Center); Floyd, C.E. Jr.; Jaszczak, R.J. . Dept. of Radiology)

    1990-04-01

    Quantitative Anger-camera tomography requires correction for Compton scattering. The Anger camera spectral-fitting technique can measure scatter fractions at designated positions in an image allowing for correction. To permit verification of those measurements for {sup 131}I, the authors have determined scatter fractions with a high-purity germanium (HPGe) detector and various phantom configurations. The scatter fraction values for {sup 99m}Tc were also measured and are compared to results from Monte Carlo simulation. The phantom consisted of a 22.2 cm diameter {times} 18.6 cm high cylinder filled with water and a 6 cm diameter water-filled sphere placed at various locations inside the cylinder. Radioisotope is added to either the sphere or the cylinder. The source is collimated by an Anger camera collimator and the active area of the HPGe detector is defined by a 0.6 cm diameter hole in a lead shielding mask. Corrections include accounting for the HPGe detector efficiency as a function of gamma-ray energy, the finite energy resolution of detector and the HPGe detector energy resolution compared to that for a NaI(Tl) Anger camera.

  19. Investigation of the quantum efficiency of optical heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.

    1984-01-01

    The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.

  20. Data encoding efficiency in pixel detector readout with charge information

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, Maurice; Wang, Xinkang

    2016-04-01

    The average minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the number of bits used by the FE-I4 pixel readout chip of the ATLAS experiment.

  1. Roadmap for High Efficiency Solid-State Neutron Detectors

    SciTech Connect

    Nikolic, R; Cheung, C; Reinhardt, C; Wang, T

    2005-07-12

    Solid-state thermal neutron detectors are generally fabricated in a planar configuration by coating a layer of neutron-to-alpha converter material onto a semiconductor. The as-created alpha particles in the material are expected to impinge the semiconductor and create electron-hole pairs which provide the electrical signal. These devices are limited in efficiency to a range near (2-5%)/cm{sup 2} due to the conflicting thickness requirements of the converter layer. In this case, the layer is required to be thick enough to capture the incoming neutron flux while at the same time adequately thin to allow the alpha particles to reach the semiconductor. A three dimensional matrix structure has great potential to satisfy these two requirements in one device. Such structures can be realized by using PIN diode pillar elements to extend in the third dimension with the converter material filling the rest of the matrix. Our strategy to fabricate this structure is based on both ''top-down'' and ''bottom-up'' approaches. The ''top down'' approach employs high-density plasma etching techniques, while the ''bottom up'' approach draws on the growth of nanowires by chemical vapor deposition. From our simulations for structures with pillar diameters from 2 {micro}m down to 100 nm, the detector efficiency is expected to increase with a decrease in pillar size. Moreover, in the optimized configuration, the detector efficiency could be higher than 75%/cm{sup 2}. Finally, the road map for the relationship between detector diameter and efficiency will be outlined.

  2. Direct determination of the hit locations from experimental HPGe pulses

    NASA Astrophysics Data System (ADS)

    Désesquelles, P.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Dimmock, M. R.; Lazarus, I. H.; Ljungvall, J.; Nelson, L.; Nga, D.-T.; Nolan, P. J.; Rigby, S. V.; Simpson, J.; Van-Oanh, N.-T.

    2013-11-01

    The gamma-tracking technique optimises the determination of the energy and emission angle of gamma-rays detected by modern segmented HPGe detectors. This entails the determination, using the delivered pulse shapes, of the interaction points of the gamma-ray within the crystal. The direct method presented here allows the localisation of the hits using only a large sample of pulses detected in the actual operating conditions. No external crystal scanning system or pulse shape simulation code is needed. In order to validate this method, it is applied to sets of pulses obtained using the University of Liverpool scanning system. The hit locations are determined by the method with good precision.

  3. The SPICE Detector at ISAC

    NASA Astrophysics Data System (ADS)

    Garnsworthy, A. B.; Moukaddam, M.; Bolton, C.; Ketelhut, S.; Evitts, L. J.; Andreoiu, C.; Constable, M.; Hackman, G.; Henderson, R.; Svensson, C. E.

    2013-12-01

    A new ancillary detector system for the TIGRESS HPGe array called SPectrometer for Internal Conversion Electrons (SPICE) is currently under development. SPICE consists of a segmented electron detector, photon shield and a permanent magnetic lens. SPICE will enable in-beam electron spectroscopy and, in coupling to the TIGRESS HPGe array, coincident gamma-electron spectroscopy with stable and radioactive beams.

  4. High quantum efficiency S-20 photocathodes in photon counting detectors

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; DeFazio, J.; Duarte Pinto, S.; Glazenborg, R.; Kernen, E.

    2016-04-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors, which is demonstrated with an MCP photomultiplier tube for single and multi-photoelectron detection.

  5. An efficient circle detector not relying on edge detection

    NASA Astrophysics Data System (ADS)

    Cai, Jia; Huang, Panfeng; Chen, Lu; Zhang, Bin

    2016-06-01

    Accurate and efficient detection of circular modules fixed on non-cooperative target is a key technology for Tethered Space Robot. This paper presents an efficient circle detector based on region-growing of gradient and histogram distribution of Euclidean distance. Region-growing of gradient is applied to generate arc support regions from single point. And the corresponding square fitting areas are defined to accelerate the detection and decrease storage. A histogram is then used to count frequency of the distances that participates in the accumulator and the parameters of each circle are acquired. Finally, a verification strategy of circular integrity is designed to test the detection results. We have tested our algorithm on 35 images dealing with kinds of circles and ellipses. Experimental results demonstrate that our method is able to detect circular objects under occlusion, image noises and moderate shape deformations with a good precision.

  6. Germanium Detectors in Homeland Security at PNNL

    SciTech Connect

    Stave, Sean C.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  7. Germanium detectors in homeland security at PNNL

    SciTech Connect

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  8. Germanium detectors in homeland security at PNNL

    DOE PAGESBeta

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADESmore » HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.« less

  9. Pure sources and efficient detectors for optical quantum information processing

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on

  10. Investigations of 2β decay of {sup 106}Cd and {sup 58}Ni with HPGe spectrometer OBELIX

    SciTech Connect

    Rukhadze, E.; Fajt, L.; Hodák, R.; Špavorová, M.; Štekl, I.; Loaiza, P.

    2015-08-17

    Investigations of double beta decay processes to excited states of daughter nuclei were performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the high sensitivity spectrometer OBELIX [1], which is a common activity of JINR Dubna, IEAP CTU in Prague and LSM. The spectrometer is based on the HPGe detector with the sensitive volume of 600 cm{sup 3} and relative efficiency of 160%. Investigation of resonant neutrino-less double electron capture of {sup 106}Cd was performed with ∼23.2 g of {sup 106}Cd (enrichment of 99.57%) during ∼17 days. The experiment with natural Ni (∼21.7 kg of mass) was also carried out during ∼47 days. The preliminary experimental limits for 0νEC/EC resonant decay to the excited states of {sup 106}Pd and different modes of β β decay {sup 58}Ni are presented.

  11. Determination of TFTR far-field neutron detector efficiencies by local neutron flux spectrum measurement

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.; Ascione, G.; Kugel, H. W.; Roquemore, A. L.; Barcelo, T. W.; Kumar, A.

    1997-01-01

    Neutron detectors have often been located on the tokamak fusion test reactor (TFTR) test cell floor 3 m or more from the vacuum vessel for ease of detector access, to reduce radiation damage, minimize count saturation problems, and to avoid high magnetic fields. These detectors include Si surface-barrier diodes, fission chambers, natural diamond detectors, and T2 production in a moderated 3He cell. To evaluate the performance of these detectors during deuterium-tritium (D-T) operation, we determined the neutron flux spectrum incident on the principal detector enclosure using nuclide sample sets containing Al, Ti, Fe, Co, Cu, Zn, Ni, Zr, Nb, In, and Au activation foils. Foils were installed and then removed after ample exposure to TFTR D-T neutrons. High efficiency, high purity Ge detectors were used for gamma spectroscopy of the irradiated foils. The incident neutron fluence and spectral distribution were unfolded from the measured results, and used to derive absolute detector efficiencies.

  12. Monte Carlo simulations of the response of a plastic scintillator and an HPGe spectrometer in coincidence.

    PubMed

    Joković, D R; Dragić, A; Udovicić, V; Banjanac, R; Puzović, J; Anicin, I

    2009-05-01

    A simulation programme based on the Geant4 toolkit has been developed to simulate the coincident responses of a plastic scintillator and an HPGe detector to the cosmic-ray muons. The detectors are situated in a low-level underground laboratory (25 m.w.e). Primary positions, momentum directions and energies of the muons are sampled from the angular and energy distributions of the cosmic-ray muons at the shallow underground level. Obtained coincident spectra of both detectors are presented and discussed. PMID:19231223

  13. Study of Transport Behavior and Conversion Efficiency in Pillar Structured Neutron Detectors

    SciTech Connect

    Nikolic, R

    2007-04-26

    Room temperature, high efficiency and scalable radiation detectors can be realized by manipulating materials at the micro scale. With micro-semiconductor-pillars, we will advance the thermal neutron detection efficiency of semiconductor detectors to over 70% with 50 mm in detector thickness. New material science, new transport behavior, neutron to alpha conversion dynamics and their relationship with neutron detection will be discovered with the proposed structures.

  14. Implementation of a Portable HPGe for Field Contamination Assay.

    PubMed

    Hayes, Robert Bruce

    2016-06-01

    Using MCNP to construct a detector model based initially on x-ray images of a portable high purity germanium (HPGe) detector followed by normalizing covering material values to also agree with check source responses, a validation of the model was attained. By calibrating the detector parameters using large count spectra, rigorous reproducibility is attained for high activity measurements but does not prevent deviations from normality in error distributions at the very low count events where spectral peaks are not always identifiable. The resulting model was created to allow operational assay of contamination over large areal distributions that could not otherwise be measured, such as the exhaust shaft at the Waste Isolation Pilot Plant (WIPP). Results indicate that contamination levels of activity in the exhaust shaft can be assayed to within a factor of 2. Detection limits are evaluated to be well below the contamination levels, which would constitute a legal environmental release if unfiltered ventilation of the underground facility were used. PMID:27115224

  15. Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications

    SciTech Connect

    Danon, Yaron; Bhat, Ishwara; Jian-Qiang Lu, James

    2013-09-03

    Neutron detection is an important aspect of materials protection, accounting, and control for transmutation (MPACT). Currently He-3 filled thermal neutron detectors are utilized in many applications; these detectors require high-voltage bias for operation, which complicates the system when multiple detectors are used. In addition, due to recent increase in homeland security activity and the nuclear renaissance, there is a shortage of He-3, and these detectors become more expensive. Instead, cheap solid-state detectors that can be mass produced like any other computer chips will be developed. The new detector does not require a bias for operation, has low gamma sensitivity, and a fast response. The detection system is based on a honeycomb-like silicon device, which is filled with B-10 as the neutron converter; while a silicon p-n diode (i.e., solar cell type device) formed on the thin silicon wall of the honeycomb structure detects the energetic charged particles emitted from the B-10 conversion layer. Such a detector has ~40% calculated thermal neutron detection efficiency with an overall detector thickness of about 200 ?m. Stacking of these devices allows over 90% thermal neutron detection efficiency. The goal of the proposed research is to develop a high-efficiency, low-noise, self-powered solid-state neutron detector system based on the promising results of the existing research program. A prototype of this solid-state neutron detector system with sufficient detector size (up to 8-inch diam., but still portable and inexpensive) and integrated with interface electronics (e.g., preamplifier) will be designed, fabricated, and tested as a coincidence counter for MPACT applications. All fabrications proposed are based on silicon-compatible processing; thus, an extremely cheap detector system could be massively produced like any other silicon chips. Such detectors will revolutionize current neutron detection systems by providing a solid-state alternative to

  16. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Colantoni, I.; Cruciani, A.; Di Domizio, S.; Vignati, M.; Bellini, F.; Casali, N.; Castellano, M. G.; Coppolecchia, A.; Cosmelli, C.; Tomei, C.

    2015-08-01

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σE = 154 ± 7 eV and an (18 ± 2)% efficiency.

  17. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    DOEpatents

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  18. DESIGN OF A THERMOSIPHON FOR COOLING LOW-BACKGROUND HPGE ARRAYS

    SciTech Connect

    Aguayo Navarrete, Estanislao; Fast, James E.; Reid, Douglas J.

    2012-11-26

    ABSTRACT A two-phase nitrogen thermosiphon was developed for the new generation of low-background high-purity germanium (HPGe) arrays. The cooling system for these arrays has to be able to handle the heat load (>20 W) presented by a large detector mass while meeting stringent requirements necessary for low-background systems. The HPGe detector modules should operate as close to liquid nitrogen temperature (<80K) as possible to provide adequate operating conditions for a full range of HPGe impurity concentrations. In addition, exceptional temperature stability (<1 K) is needed to reduce electronic gain shifts due to changes in the front-end electronics operating temperature. In order to meet the background requirements of state-of-the-art systems these arrays are enclosed in passive lead and copper shielding up to 1 m thick. In this paper we present a cooling system for low-background experiments that complies with these stringent geometrical restrictions. Active cooling was integrated via a horizontal thermosiphon that can be fabricated using ultra-pure electroformed copper. It was charged with nitrogen to 434 kPa (63 PSIA) at 292 K, which provided a fill ratio of 10%. The results showed that the thermosiphon can effectively remove in excess of 25 W of heat load.

  19. True coincidence summing correction and mathematical efficiency modeling of a well detector

    NASA Astrophysics Data System (ADS)

    Jäderström, H.; Mueller, W. F.; Atrashkevich, V.; Adekola, A. S.

    2015-06-01

    True coincidence summing (TCS) occurs when two or more photons are emitted from the same decay of a radioactive nuclide and are detected within the resolving time of the gamma ray detector. TCS changes the net peak areas of the affected full energy peaks in the spectrum and the nuclide activity is rendered inaccurate if no correction is performed. TCS is independent of the count rate, but it is strongly dependent on the peak and total efficiency, as well as the characteristics of a given nuclear decay. The TCS effects are very prominent for well detectors because of the high efficiencies, and make accounting for TCS a necessity. For CANBERRA's recently released Small Anode Germanium (SAGe) well detector, an extension to CANBERRA's mathematical efficiency calibration method (In Situ Object Calibration Software or ISOCS, and Laboratory SOurceless Calibration Software or LabSOCS) has been developed that allows for calculation of peak and total efficiencies for SAGe well detectors. The extension also makes it possible to calculate TCS corrections for well detectors using the standard algorithm provided with CANBERRAS's Spectroscopy software Genie 2000. The peak and total efficiencies from ISOCS/LabSOCS have been compared to MCNP with agreements within 3% for peak efficiencies and 10% for total efficiencies for energies above 30 keV. A sample containing Ra-226 daughters has been measured within the well and analyzed with and without TCS correction and applying the correction factor shows significant improvement of the activity determination for the energy range 46-2447 keV. The implementation of ISOCS/LabSOCS for well detectors offers a powerful tool for efficiency calibration for these detectors. The automated algorithm to correct for TCS effects in well detectors makes nuclide specific calibration unnecessary and offers flexibility in carrying out gamma spectral analysis.

  20. Lung counting: Comparison of a four detector array that has either metal or carbon fiber end caps, and the effect on array performance characteristics

    NASA Astrophysics Data System (ADS)

    Sabbir Ahmed, Asm; H. Kramer, Gary

    2011-12-01

    This study described the performance of an array of HPGe detectors, made by ORTEC. In the existing system, a metal end cap was used in the detector construction. In general, the natural metal contains some radioactive materials, create high background noises and signals during in vivo counting. ORTEC proposed a novel carbon fiber to be used in end cap, without any radio active content. This paper described the methodology of developing a model of the given HPGe array-detectors, comparing the detection efficiency and cross talk among the detectors using two end cap materials: either metal or carbon fiber and to provide a recommendation about the end cap material. The detector's counting efficiency were studied using point and plane sources. The cross talk among the array detectors were studied using a homogeneous attenuating medium made of tissue equivalent material. The cross talk was significant when single or multiple point sources (simulated to heterogeneous hot spots) were embedded inside the attenuating medium. With carbon fiber, the cross talk increased about 100% for photon energy at about 100 keV. For a uniform distribution of radioactive material, the cross talk increased about 5-10% when the end cap was made of carbon instead of steel. Metal end cap was recommended for the array of HPGe detectors.

  1. Development of a high-count-rate neutron detector with position sensitivity and high efficiency

    SciTech Connect

    Nelson, R.; Sandoval, J.

    1996-10-01

    While the neutron scattering community is bombarded with hints of new technologies that may deliver detectors with high-count-rate capability, high efficiency, gamma-ray insensitivity, and high resolution across large areas, only the time-tested, gas-filled {sup 3}He and scintillation detectors are in widespread use. Future spallation sources with higher fluxes simply must exploit some of the advanced detector schemes that are as yet unproved as production systems. Technologies indicating promise as neutron detectors include pixel arrays of amorphous silicon, silicon microstrips, microstrips with gas, and new scintillation materials. This project sought to study the competing neutron detector technologies and determine which or what combination will lead to a production detector system well suited for use at a high-intensity neutron scattering source.

  2. Efficient Soft-Input Soft-Output MIMO Chase Detectors for Arbitrary Number of Streams

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmad; Jalloul, Louay M.-A.

    2015-08-01

    We present novel soft-input soft-output (SISO) multiple-input multiple-output (MIMO) detectors based on the Chase detection principle [1] in the context of iterative and decoding (IDD). The proposed detector complexity is linear in the signal modulation constellation size and the number of spatial streams. Two variants of the SISO detector are developed, referred to as SISO B-Chase and SISO L-Chase. An efficient method is presented that uses the decoder output to modulate the signal constellation decision boundaries inside the detector leading to the SISO detector architecture. The performance of these detectors significantly improves with just a few number of IDD iterations. The effect of transmit and receive antenna correlation is simulated. For the high-correlation case, the superiority of SISO B-Chase over the SISO L-Chase is demonstrated.

  3. A novel 3D detector configuration enabling high quantum efficiency, low crosstalk, and low output capacitance

    NASA Astrophysics Data System (ADS)

    Aurola, A.; Marochkin, V.; Tuuva, T.

    2016-03-01

    The benefits of pixelated planar direct conversion semiconductor radiation detectors comprising a thick fully depleted substrate are that they offer low crosstalk, small output capacitance, and that the planar configuration simplifies manufacturing. In order to provide high quantum efficiency for high energy X-rays and Gamma-rays such a radiation detector should be as thick as possible. The maximum thickness and thus the maximum quantum efficiency has been limited by the substrate doping concentration: the lower the substrate doping the thicker the detector can be before reaching the semiconductor material's electric breakdown field. Thick direct conversion semiconductor detectors comprising vertical three-dimensional electrodes protruding through the substrate have been previously proposed by Sherwood Parker in order to promote rapid detection of radiation. An additional advantage of these detectors is that their thickness is not limited by the substrate doping, i.e., the size of the maximum electric field value in the detector does not depend on detector thickness. However, the thicker the substrate of such three dimensional detectors is the larger the output capacitance is and thus the larger the output noise is. In the novel direct conversion pixelated radiation detector utilizing a novel three dimensional semiconductor architecture, which is proposed in this work, the detector thickness is not limited by the substrate doping and the output capacitance is small and does not depend on the detector thickness. In addition, by incorporating an additional node to the novel three-dimensional semiconductor architecture it can be utilized as a high voltage transistor that can deliver current across high voltages. Furthermore, it is possible to connect a voltage difference of any size to the proposed novel three dimensional semiconductor architecture provided that it is thick enough—this is a novel feature that has not been previously possible for semiconductor

  4. Towards high efficiency solid-state thermal and fast neutron detectors

    NASA Astrophysics Data System (ADS)

    Danon, Y.; Clinton, J.; Huang, K. C.; LiCausi, N.; Dahal, R.; Lu, J. J. Q.; Bhat, I.

    2012-03-01

    Variety of applications of fast neutron detection utilize thermal neutron detectors and moderators. Examples include homeland security applications such as portal monitors and nuclear safeguards which employ passive systems for detection of fissile materials. These applications mostly rely on gas filled detectors such as 3He, BF3 or plastic scintillators and require high voltage for operation. Recently there was considerable progress in the development of solid-state neutron detectors. These operate by detection of charged particles emitted from neutron interactions with a converter material. In order to increase neutron detection efficiency to a usable level, the thickness of the converter material must exceed the range of the charged particles in the converter, which limits the efficiency of planar detectors to several percent. To overcome this limitation three dimensional structured solid-state devices are considered where the converter can be thicker but still allow the charged particles to escape into the semiconductor. In the research described here this was accomplished by a semiconductor device that resembles a honeycomb with hexagonal holes and thin silicon walls filled with the converter material. Such design can theoretically achieve about 45% thermal neutron detection efficiency, experimentally about 21% was observed with a partially filled detector. Such detectors can be fabricated in variety of sizes enabling designs of directional fast neutron detectors. Other converter materials that allow direct detection of fast neutrons were also considered by both simulation and experiments. Because the semiconductor thickness is less than a few hundred microns, the efficiency of these detectors to γ-ray(s) is very low. With further developments these new solid-state neutron detectors can replace gas ionization based detectors in most applications.

  5. Note: Fast neutron efficiency in CR-39 nuclear track detectors

    SciTech Connect

    Cavallaro, S.

    2015-03-15

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.

  6. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    NASA Astrophysics Data System (ADS)

    Napoli, D. R.; Maggioni, G.; Carturan, S.; Eberth, J.; Gelain, M.; Grimaldi, M. G.; Tatí, S.; Riccetto, S.; Mea, G. Della

    2016-07-01

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  7. Quantum efficiency test set up performances for NIR detector characterization at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; De Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.; Viale, T.

    2014-07-01

    The Payload Technology Validation Section (Future mission preparation Office) at ESTEC is in charge of specific mission oriented validation activities, for science and robotic exploration missions, aiming at reducing development risks in the implementation phase. These activities take place during the early mission phases or during the implementation itself. In this framework, a test set up to characterize the quantum efficiency of near infrared detectors has been developed. The first detector to be tested will an HAWAII-2RG detector with a 2.5μm cut off, it will be used as commissioning device in preparation to the tests of prototypes European detectors developed under ESA funding. The capability to compare on the same setup detectors from different manufacturers will be a unique asset for the future mission preparation office. This publication presents the performances of the quantum efficiency test bench to prepare measurements on the HAWAII-2RG detector. A SOFRADIR Saturn detector has been used as a preliminary test vehicle for the bench. A test set up with a lamp, chopper, monochromator, pinhole and off axis mirrors allows to create a spot of 1mm diameter between 700nm and 2.5μm.The shape of the beam has been measured to match the rms voltage read by the Merlin Lock -in amplifier and the amplitude of the incoming signal. The reference detectors have been inter-calibrated with an uncertainty up to 3 %. For the measurement with HAWAII-2RG detector, the existing cryostat [1] has been modified to adapt cold black baffling, a cold filter wheel and a sapphire window. An statistic uncertainty of +/-2.6% on the quantum efficiency on the detector under test measurement is expected.

  8. Note: fast neutron efficiency in CR-39 nuclear track detectors.

    PubMed

    Cavallaro, S

    2015-03-01

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed. PMID:25832287

  9. Efficient data transmission from silicon wafer strip detectors

    SciTech Connect

    Cooke, B.J.; Lackner, K.S.; Palounek, A.P.T.; Sharp, D.H.; Winter, L.; Ziock, H.J.

    1991-12-31

    An architecture for on-wafer processing is proposed for central silicon-strip tracker systems as they are currently designed for high energy physics experiments at the SSC, and for heavy ion experiments at RHIC. The data compression achievable with on-wafer processing would make it possible to transmit all data generated to the outside of the detector system. A set of data which completely describes the state of the wafer for low occupancy events and which contains important statistical information for more complex events can be transmitted immediately. This information could be used in early trigger decisions. Additional data packages which complete the description of the state of the wafer vary in size and are sent through a second channel. By buffering this channel the required bandwidth can be kept far below the peak data rates which occur in rate but interesting events. 18 refs.

  10. Efficiency of Moderated Neutron Lithium Glass Detectors Using Monte Carlo Techniques

    NASA Astrophysics Data System (ADS)

    James, Brian

    2011-10-01

    Due to national security concerns over the smuggling of special nuclear materials and the small supply of He-3 for use in neutron detectors, there is a great need for a new kind of neutron detector. Using Monte Carlo techniques I have been studying the use of lithium glass in varying configurations for neutron detectors. My research has included the effects of using a detector with two thin sheets of lithium at varying distances apart. I have also researched the effects of varying amounts of shielding a californium source with varying amounts of water. This is important since shielding would likely be used to make nuclear material more difficult to detect. The addition of one sheet of lithium-6 glass on the front surface of the detector significantly improves the efficiency for the detection of neutrons from a moderated fission source.

  11. Quantum efficiency of a double quantum dot microwave photon detector

    NASA Astrophysics Data System (ADS)

    Wong, Clement; Vavilov, Maxim

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we study charge transfer through a double quantum dot (DQD) capacitively coupled to a superconducting cavity subject to a microwave field. We analyze the DQD current response using input-output theory and determine the optimal parameter regime for complete absorption of radiation and efficient conversion of microwave photons to electric current. For experimentally available DQD systems, we show that the cavity-coupled DQD operates as a photon-to-charge converter with quantum efficiencies up to 80% C.W. acknowledges support by the Intelligence Community Postdoctoral Research Fellowship Program.

  12. CHANTI: a fast and efficient charged particle veto detector for the NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Ambrosino, F.; Capussela, T.; Di Filippo, D.; Massarotti, P.; Mirra, M.; Napolitano, M.; Palladino, V.; Saracino, G.; Roscilli, L.; Vanzanella, A.; Corradi, G.; Tagnani, D.; Paglia, U.

    2016-03-01

    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.

  13. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  14. Practical attacks on decoy-state quantum-key-distribution systems with detector efficiency mismatch

    NASA Astrophysics Data System (ADS)

    Fei, Yangyang; Gao, Ming; Wang, Weilong; Li, Chaobo; Ma, Zhi

    2015-05-01

    To the active-basis-choice decoy-state quantum-key-distribution systems with detector efficiency mismatch, we present a modified attack strategy, which is based on the faked states attack, with quantum nondemolition measurement ability to restress the threat of detector efficiency mismatch. Considering that perfect quantum nondemolition measurement ability doesn't exist in real life, we also propose a practical attack strategy using photon number resolving detectors. Theoretical analysis and numerical simulation results show that, without changing the channel, our attack strategies are serious threats to decoy-state quantum-key-distribution systems. The eavesdropper may get some information about the secret key without causing any alarms. Besides, the lower bound of detector efficiency mismatch to run our modified faked states attack successfully with perfect quantum nondemolition measurement ability is also given out, which provides the producers of quantum-key-distribution systems with a reference and can be treated as the approximate secure bound of detector efficiency mismatch in decoy-state quantum-key-distribution systems.

  15. Design of broadband high-efficiency superconducting-nanowire single photon detectors

    NASA Astrophysics Data System (ADS)

    Redaelli, L.; Bulgarini, G.; Dobrovolskiy, S.; Dorenbos, S. N.; Zwiller, V.; Monroy, E.; Gérard, J. M.

    2016-06-01

    In this paper several designs to maximize the absorption efficiency of superconducting-nanowire single-photon detectors are investigated. Using a simple optical cavity consisting of a gold mirror and a SiO2 layer, the absorption efficiency can be boosted to over 97%: this result is confirmed experimentally by the realization of an NbTiN-based detector having an overall system detection efficiency of 85% at 1.31 μm. Calculations show that by sandwiching the nanowire between two dielectric Bragg reflectors, unity absorption (>99.9%) could be reached at the peak wavelength for optimized structures. To achieve broadband high efficiency, a different approach is considered: a waveguide-coupled detector. The calculations performed in this work show that, by correctly dimensioning the waveguide and the nanowire, polarization-insensitive detectors absorbing more than 95% of the injected photons over a wavelength range of several hundred nm can be designed. We propose a detector design making use of GaN/AlN waveguides, since these materials allow lattice-matched epitaxial deposition of Nb(Ti)N films and are transparent on a very wide wavelength range.

  16. Evaluation of HPGe spectrometric devices in monitoring the level of radioactive contamination in metallurgical industry

    NASA Astrophysics Data System (ADS)

    Petrucci, A.; Arnold, D.; Burda, O.; De Felice, P.; Garcia-Toraño, E.; Mejuto, M.; Peyres, V.; Šolc, J.; Vodenik, B.

    2015-10-01

    This paper presents the results of the tests of High Purity Germanium (HPGe) based gamma spectrometers employed for radioactivity control carried out on a daily basis in steel factories. This new application of this type of detector is part of the Joint Research Project (JRP) MetroMETAL supported by the European Metrology Research Programme (EMRP). The final purpose of the project was the improvement and standardisation of the measurement methods and systems for the control of radioactivity of recycled metal scraps at the beginning of the working process and for the certification of the absence of any radioactive contamination above the clearance levels (IAEA-TECDOC-8S5) in final steel products, Clearance levels for radionuclides in solid materials: application of exemption principles). Two prototypes based on HPGe detectors were designed and assembled to suit the needs of steel mills which had been examined previously. The evaluation of the two prototypes, carried out at three steel factories with standard sources of 60Co, 137Cs, 192Ir, 226Ra and 241Am in three different matrices (slag, fume dust and cast steel) and with samples provided on-site by the factories, was successful. The measurements proved the superiority of the prototypes over the scintillation detectors now commonly used regarding energy resolution and multi-nuclide identification capability. The detection limits were assessed and are presented as well.

  17. Development of an underground HPGe array facility for ultra low radioactivity measurements

    NASA Astrophysics Data System (ADS)

    Sala, E.; Hahn, I. S.; Kang, W. G.; Kim, G. W.; Kim, Y. D.; Lee, M. H.; Leonard, D. S.; Park, S. Y.

    2015-08-01

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGe with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example 106Cd and 156Dy) and rare β decays (96Zr, 180mTa , etc ) are under study.

  18. Development of an underground HPGe array facility for ultra low radioactivity measurements

    SciTech Connect

    Sala, E.; Kang, W. G.; Kim, Y. D.; Lee, M. H.; Leonard, D. S.; Hahn, I. S.; Kim, G. W.; Park, S. Y.

    2015-08-17

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGe with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example {sup 106}Cd and {sup 156}Dy) and rare β decays ({sup 96}Zr, {sup 180m}Ta , etc ) are under study.

  19. Efficient nanoplasmonic antennas for fabricating single protein molecule detector

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sharmistha; Dantham, Venkata Ramanaiah; Hussain, Sahid

    2015-06-01

    Real time (label-free) detection and sizing of single protein molecule at its natural state is "holy grail" in biosensing field. This non-destructive technique is useful for predicting the dangerous diseases at very early-stage. Herein, we report the synthesis and characterization of efficient nanoplasmonic antennas, which could be useful to fabricate an ultrasensitive nanoplasmonic-whispering gallery mode hybrid microresonator for the real time detection and sizing of single protein molecule. This hybrid microresonator could be easily converted as an ultrasensitive single molecule biosensor by anchoring suitable anti-bodies on the surface of the plasmonic nanoantenna.

  20. Quantum Efficiency for Electron-Hole Pair Generation by Infrared Irradiation in Germanium Cryogenic Detectors

    NASA Astrophysics Data System (ADS)

    Domange, J.; Broniatowski, A.; Olivieri, E.; Chapellier, M.; Dumoulin, L.

    2009-12-01

    A study is made of the quantum efficiency of a coplanar grid ionization/heat Ge detector operated at cryogenic temperatures for dark matter search. Carrier generation is performed with infra-red LEDs of different wavelengths (1.30, 1.45, and 1.65 μm) near the optical bandgap of germanium. The corresponding quantum efficiency is obtained from an analysis of the Joule (Luke-Neganov) effect. This investigation is part of a program to optimize the reset procedure of the detectors in the Edelweiss-II dark matter search experiment at the Modane Underground Laboratory.

  1. Improved plutonium identification and characterization results with NaI(Tl) detector using ASEDRA

    NASA Astrophysics Data System (ADS)

    Detwiler, R.; Sjoden, G.; Baciak, J.; LaVigne, E.

    2008-04-01

    The ASEDRA algorithm (Advanced Synthetically Enhanced Detector Resolution Algorithm) is a tool developed at the University of Florida to synthetically enhance the resolved photopeaks derived from a characteristically poor resolution spectra collected at room temperature from scintillator crystal-photomultiplier detector, such as a NaI(Tl) system. This work reports on analysis of a side-by-side test comparing the identification capabilities of ASEDRA applied to a NaI(Tl) detector with HPGe results for a Plutonium Beryllium (PuBe) source containing approximately 47 year old weapons-grade plutonium (WGPu), a test case of real-world interest with a complex spectra including plutonium isotopes and 241Am decay products. The analysis included a comparison of photopeaks identified and photopeak energies between the ASEDRA and HPGe detector systems, and the known energies of the plutonium isotopes. ASEDRA's performance in peak area accuracy, also important in isotope identification as well as plutonium quality and age determination, was evaluated for key energy lines by comparing the observed relative ratios of peak areas, adjusted for efficiency and attenuation due to source shielding, to the predicted ratios from known energy line branching and source isotopics. The results show that ASEDRA has identified over 20 lines also found by the HPGe and directly correlated to WGPu energies.

  2. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  3. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    SciTech Connect

    Cardani, L.; Colantoni, I.; Coppolecchia, A.; Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C.; Di Domizio, S.; Castellano, M. G.; Tomei, C.

    2015-08-31

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.

  4. Low-cost fabrication of high efficiency solid-state neutron detectors

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Woei; Huang, Kuan-Chih; Weltz, Adam; English, Erik; Hella, Mona M.; Dahal, Rajendra; Lu, James J.-Q.; Danon, Yaron; Bhat, Ishwara B.

    2016-05-01

    The development of high-efficiency solid state thermal neutron detectors at low cost is critical for a wide range of civilian and defense applications. The use of present neutron detector system for personal radiation detection is limited by the cost, size, weight and power requirements. Chip scale solid state neutron detectors based on silicon technology would provide significant benefits in terms of cost, volume, and allow for wafer level integration with charge preamplifiers and readout electronics. In this paper, anisotropic wet etching of (110) silicon wafers was used to replace deep reactive ion etching (DRIE) to produce microstructured neutron detectors with lower cost and compatibility with mass production. Deep trenches were etched by 30 wt% KOH at 85°C with a highest etch ratio of (110) to (111). A trench-microstructure thermal neutron detector described by the aforementioned processes was fabricated and characterized. The detector—which has a continuous p+-n junction diode—was filled with enriched boron (99% of 10B) as a neutron converter material. The device showed a leakage current of ~ 6.7 × 10-6 A/cm2 at -1V and thermal neutron detection efficiency of ~16.3%. The detector uses custom built charge pre-amplifier, a shaping amplifier, and an analogto- digital converter (ADC) for data acquisition.

  5. Geometric efficiency for a circular detector and a ring source of arbitrary orientation and position

    NASA Astrophysics Data System (ADS)

    Conway, John T.

    2011-06-01

    Two distinct axisymmetric radiation vector potentials are derived for a circular ring source, both of which are given in terms of elliptic integrals. In combination with Stokes's theorem these potentials reduce the surface integral for the geometric efficiency of a ring source and a general detector to a line integral, though only a circular detector is analyzed in detail here. One of the potentials is bounded as the axis of symmetry is approached and it can also be expressed as an integral of Bessel functions. It is used to derive the ring source analogue of Ruby's formula and its noncoaxial generalization. A trigonometric integral is given for the general noncoaxial case and closed form solutions are given for the coaxial case and the case where the ring source is in the detector plane. Numerical data is given for these cases. The second potential is singular along the entire ring axis and Stokes's theorem must be modified when using it whenever the ring axis intersects the detector or its boundary. This potential is used to derive a trigonometric integral for the geometric efficiency of the ring source and a circular detector in the general case where the source and the detector have arbitrary relative position and angular orientation. Numerical data is given for selected geometric parameters when the planes of the ring and disk are perpendicular and for the general case. The intersection of some results for point source radiation vector potentials with vector potentials arising in diffraction theory is given in an Appendix.

  6. Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis

    SciTech Connect

    Casaburi, A.; Ejrnaes, M.; Cristiano, R.; Zen, N.; Ohkubo, M.; Pagano, S.

    2011-01-10

    Fast detectors with large area are required in time-of-flight mass spectrometers for high throughput analysis of biological molecules. We fabricated and characterized subnanosecond 1x1 mm{sup 2} NbN superconducting strip-line detectors. The influence of the strip-line thickness on the temporal characteristics and efficiency of the detector for the impacts of keV accelerated molecules is investigated. We find that the increase of thickness improves both efficiency and response time. In the thicker sample we achieved a rise time of 380 ps, a fall time of 1.38 ns, and a higher count rate. The physics involved in this behavior is investigated.

  7. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Yamaguchi, K.; Yamagajo, T.; Nakano, T.; Kasai, T.; Urano, T.; Azechi, H.; Nakai, S.; Iida, T.

    1999-01-01

    We have developed the highly efficient neutron detector system MANDALA for the inertial-confinement-fusion experiment. The MANDALA system consists of 842 elements plastic scintillation detectors and data acquisition electronics. The detection level is the yield of 1.2×105 for 2.5 MeV and 1×105 for 14.1 MeV neutrons (with 100 detected hits). We have calibrated the intrinsic detection efficiencies of the detector elements using a neutron generator facility. Timing calibration and integrity test of the system were also carried out with a 60Co γ ray source. MANDALA system was applied to the implosion experiments at the GEKKO XII laser facility. The integrity test was carried out by implosion experiments.

  8. Characteristics of GRIFFIN high-purity germanium clover detectors

    NASA Astrophysics Data System (ADS)

    Rizwan, U.; Garnsworthy, A. B.; Andreoiu, C.; Ball, G. C.; Chester, A.; Domingo, T.; Dunlop, R.; Hackman, G.; Rand, E. T.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Voss, P.; Williams, J.

    2016-06-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei, GRIFFIN, is a new experimental facility for radioactive decay studies at the TRIUMF-ISAC laboratory. The performance of the 16 high-purity germanium (HPGe) clover detectors that will make up the GRIFFIN spectrometer is reported. The energy resolution, efficiency, timing resolution, crosstalk and preamplifier properties of each crystal were measured using a combination of analog and digital data acquisition techniques. The absolute efficiency and add-back factors are determined for the energy range of 80-3450 keV. The detectors show excellent performance with an average over all 64 crystals of a FWHM energy resolution of 1.89(6) keV and relative efficiency with respect to a 3 in . × 3 in . NaI detector of 41(1)% at 1.3 MeV.

  9. High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing.

    PubMed

    Calkins, Brice; Mennea, Paolo L; Lita, Adriana E; Metcalf, Benjamin J; Kolthammer, W Steven; Lamas-Linares, Antia; Spring, Justin B; Humphreys, Peter C; Mirin, Richard P; Gates, James C; Smith, Peter G R; Walmsley, Ian A; Gerrits, Thomas; Nam, Sae Woo

    2013-09-23

    The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40 % efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79 % ± 2 % detection efficiency with a single pass, and 88 % ± 3 % at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit - a capability that offers great potential for many quantum optical applications. PMID:24104153

  10. Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Quinn

    High-purity germanium (HPGe) radiation detectors are well established as a valuable tool in nuclear science, astrophysics, and nuclear security applications. HPGe detectors excel in gamma-ray spectroscopy, offering excellent energy resolution with large detector sizes for high radiation detection efficiency. Although a robust fabrication process has been developed, improvement is needed, especially in developing electrical contact and surface passivation technology for position-sensitive detectors. A systematic study is needed to understand how the detector fabrication process impacts detector performance and reliability. In order to provide position sensitivity, the electrical contacts are segmented to form multiple electrodes. This segmentation creates new challenges in the fabrication process and warrants consideration of additional detector effects related to the segmentation. A key area of development is the creation of the electrical contacts in a way that enables reliable operation, provides low electronic noise, and allows fine segmentation of electrodes, giving position sensitivity for radiation interactions in the detector. Amorphous semiconductor contacts have great potential to facilitate new HPGe detector designs by providing a thin, high-resistivity surface coating that is the basis for electrical contacts that block both electrons and holes and can easily be finely segmented. Additionally, amorphous semiconductor coatings form a suitable passivation layer to protect the HPGe crystal surface from contamination. This versatility allows a simple fabrication process for fully passivated, finely segmented detectors. However, the fabrication process for detectors with amorphous semiconductors is not as highly developed as for conventional technologies. The amorphous semiconductor layer properties can vary widely based on how they are created and these can translate into varying performance of HPGe detectors with these contacts. Some key challenges include

  11. Bragg Magnifier: High-efficiency, High-resolution X-ray Detector

    SciTech Connect

    Stampanoni, Marco; Groso, Amela; Abela, Rafael; Borchert, Gunther

    2007-01-19

    X-ray computer microtomography is a powerful tool for non-destructive examinations in medicine, biology, and material sciences. The resolution of the presently used detector systems is restricted by scintillator properties, optical light transfer, and charge-coupled-device (CCD) granularity, which impose a practical limit of about one micrometer spatial resolution at detector efficiencies of a few percent. A recently developed detector, called Bragg Magnifier, achieves a breakthrough in this respect, satisfying the research requirements of an efficient advance towards the submicron range. The Bragg Magnifier uses the properties of asymmetric Bragg diffraction to increase the cross section of the diffracted X-ray beam. Magnifications up to 100x100 can be achieved even at hard X-rays energies (>20 keV). In this way the influence of the detector resolution can be reduced accordingly and the efficiency increased. Such a device has been developed and successfully integrated into the Tomography Station of the Materials Science Beamline of the Swiss Light Source (SLS). The device can be operated at energies ranging from 17.5 keV up to 22.75 keV, reaching theoretical pixel sizes of 140 nm.

  12. High optical efficiency and photon noise limited sensitivity of microwave kinetic inductance detectors using phase readout

    NASA Astrophysics Data System (ADS)

    Janssen, R. M. J.; Baselmans, J. J. A.; Endo, A.; Ferrari, L.; Yates, S. J. C.; Baryshev, A. M.; Klapwijk, T. M.

    2013-11-01

    We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-antenna system used to couple radiation into the MKID and derive an aperture efficiency of 75%. This is close to the theoretical maximum of 80% for a single-moded detector. The beam patterns are verified by a detailed analysis of the optical coupling within our measurement setup.

  13. High optical efficiency and photon noise limited sensitivity of microwave kinetic inductance detectors using phase readout

    SciTech Connect

    Janssen, R. M. J. Endo, A.; Baselmans, J. J. A.; Ferrari, L.; Yates, S. J. C.; Baryshev, A. M.; Klapwijk, T. M.

    2013-11-11

    We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-antenna system used to couple radiation into the MKID and derive an aperture efficiency of 75%. This is close to the theoretical maximum of 80% for a single-moded detector. The beam patterns are verified by a detailed analysis of the optical coupling within our measurement setup.

  14. Effects of the interstrip gap on the efficiency and response of Double Sided Silicon Strip Detectors

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Forneris, J.; Grassi, L.; Acosta, L.; Di Pietro, A.; Figuera, P.; Fisichella, M.; Grilj, V.; Jakic, M.; Lattuada, M.; Mijatovic, T.; Milin, M.; Prepolec, L.; Skukan, N.; Soic, N.; Stanko, D.; Tokic, V.; Uroic, M.; Zadro, M.

    2016-05-01

    In this work the effects of the segmentation of the electrodes of Double Sided Silicon Strip Detectors (DSSSDs) are investigated. In order to characterize the response of the DSSSDs we perform a first experiment by using tandem beams of different energies directly sent on the detector and a second experiment by mean of a proton microbeam. Results show that the effective width of the inter-strip region and the efficiency for full energy detection, varies with both detected energy and bias voltage. The experimental results are qualitatively reproduced by a simplified model based on the Shockley-Ramo-Gunn framework.

  15. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths

    PubMed Central

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283

  16. High performance p-i-n CdTe and CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Khusainov, A. Kh; Dudin, A. L.; Ilves, A. G.; Morozov, V. F.; Pustovoit, A. K.; Arlt, R. D.

    1999-06-01

    A breakthrough in the performance of p-i-n CdTe and CdZnTe detectors is reported. The detector stability has been significantly improved, allowing their use in precise gamma and XRF applications. Detectors with energy resolution close to Si and Ge were produced operating with only -30--35°C cooling (by a Peltier cooler of 15×15×10 mm size and a consumed power less than 5 W). Presently detectors with volume of up to 300 mm 3 are available. In terms of photoelectric effect efficiency it corresponds to HPGe detectors with volumes of about 1.5 cm 3. The possibilities of further improvement of CdTe and CdZnTe detector characteristics are discussed in this paper.

  17. Geometrical and total efficiencies of CdZnTe rectangular parallelepiped detector using arbitrary positioned point, plane, and volumetric sources.

    PubMed

    Hamzawy, A; Badawi, Mohamed S; Thabet, Abouzeid A; Gouda, Mona M; El-Khatib, Ahmed M; Abbas, Mahmoud I

    2016-02-01

    Gamma-ray detectors are widely used in many fields like environmental measurements, medicine, space science, and industry, where the detector geometrical, total, photopeak efficiencies and peak-to-total ratio could be required. The calculation of the detector efficiency depends mainly on the value of the geometrical efficiency, which depends on the solid angle subtended by the source-detector system. The present work introduces a direct analytical method to calculate the geometrical and total efficiencies of CdZnTe gamma-ray detector using off-axis isotropic radiating γ-ray [point, disk, and cylindrical] sources. To test the validity of the present work, the results are compared with some published data and also to prove how much it is important to determine the efficiency of difficult gamma-ray detection arrangement. PMID:26931896

  18. Geometrical and total efficiencies of CdZnTe rectangular parallelepiped detector using arbitrary positioned point, plane, and volumetric sources

    NASA Astrophysics Data System (ADS)

    Hamzawy, A.; Badawi, Mohamed S.; Thabet, Abouzeid A.; Gouda, Mona M.; El-Khatib, Ahmed M.; Abbas, Mahmoud I.

    2016-02-01

    Gamma-ray detectors are widely used in many fields like environmental measurements, medicine, space science, and industry, where the detector geometrical, total, photopeak efficiencies and peak-to-total ratio could be required. The calculation of the detector efficiency depends mainly on the value of the geometrical efficiency, which depends on the solid angle subtended by the source-detector system. The present work introduces a direct analytical method to calculate the geometrical and total efficiencies of CdZnTe gamma-ray detector using off-axis isotropic radiating γ-ray [point, disk, and cylindrical] sources. To test the validity of the present work, the results are compared with some published data and also to prove how much it is important to determine the efficiency of difficult gamma-ray detection arrangement.

  19. Investigations of 2β decay measured by low background HPGe spectrometer OBELIX

    SciTech Connect

    Rukhadze, Ekaterina [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a Collaboration: OBELIX Collaboration; SuperNEMO Collaboration

    2013-12-30

    A low background high sensitive HPGe spectrometer OBELIX was installed at the Modane Underground Laboratory (LSM, France, 4800 m w.e.). The detector was designed to measure a contamination of enriched isotopes and radio-impurities in construction materials, to investigate rare nuclear processes such as resonance neutrinoless double electron capture and two-neutrino double beta decay to excited states of daughter nuclei. Spectrometer sensitivity, contamination of NEMO-3 sources and results of 2ν2β{sup −} decay of {sup 100}Mo to the 0{sup +} (1130 keV) and 2{sup +} (540 keV) excited states as well as future plans for OBELIX detector are given.

  20. First measurement of efficiency and precision of CCD detectors for high energy physics

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Damerell, C. J. S.; English, R. L.; Gillman, A. R.; Lintern, A. L.; Watts, S. J.; Wickens, F. J.

    1983-08-01

    It has been known for some time that a 2-dimensional charge-coupled device (CCD) might be used for detecting high energy particles with high precision and excellent 2-track resolution. Such detectors could be used to distinguish between prompt tracks and decay products in events producing short-lived particles (heavy leptons, charm, beauty etc.). We now present results in which (for the first time) a telescope of CCD detectors has been operated in a beam of high energy particles. The main results are that even these early detectors have excellent performance characteristics, namely efficiency for track detection of 98±2% per plane, spatial resolution of 4.3 μm and 6.1 μm in two orthogonal directions and 2-track resolution of 40 μm in space.

  1. Study of anomalous charge collection efficiency in heavily irradiated silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Mikuž, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Zavrtanik, M.

    2011-04-01

    Anomalous charge collection efficiency observed in heavily irradiated silicon strip detectors operated at high bias voltages has been studied in terms of a simple model and experimentally using 25 ns shaping electronics and transient current technique (TCT) with edge-on laser injection. The model confirmed qualitatively the explanation by electron impact ionization in the high electric field close to the strips, but failed in the quantitative description of the collected charge. First results on a Hamamatsu strip detector irradiated to 5×1015 neq/cm2 and operated at bias voltages in excess of 1000 V exhibit charge collection similar to what obtained on Micron devices. TCT tests with local charge injection by a laser confirm the validity of a linear extrapolation of trapping to very high fluences and reveal significant charge collection from the non-depleted volume of the detector.

  2. The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors

    SciTech Connect

    Renema, J. J.; Rengelink, R. J.; Komen, I.; Wang, Q.; Kes, P.; Aarts, J.; Exter, M. P. van; Dood, M. J. A. de; Gaudio, R.; Hoog, K. P. M. op 't; Zhou, Z.; Fiore, A.; Sahin, D.; Driessen, E. F. C.

    2015-03-02

    We experimentally investigate the effect of a magnetic field on photon detection in superconducting single-photon detectors (SSPDs). At low fields, the effect of a magnetic field is through the direct modification of the quasiparticle density of states of the superconductor, and magnetic field and bias current are interchangeable, as is expected for homogeneous dirty-limit superconductors. At the field where a first vortex enters the detector, the effect of the magnetic field is reduced, up until the point where the critical current of the detector starts to be determined by flux flow. From this field on, increasing the magnetic field does not alter the detection of photons anymore, whereas it does still change the rate of dark counts. This result points at an intrinsic difference in dark and photon counts, and also shows that no enhancement of the intrinsic detection efficiency of a straight SSPD wire is achievable in a magnetic field.

  3. Detective quantum efficiency of an amorphous selenium detector to megavoltage radiation.

    PubMed

    Mah, D; Rawlinson, J A; Rowlands, J A

    1999-05-01

    The spatial frequency dependent detective quantum efficiency (DQE(f)) of a high-resolution selenium-based imaging system has been measured at megavoltage energies. These results have been compared with theoretical calculations. The imaging system was a video tube with a 5 microm amorphous selenium (a-Se) target which was irradiated by 1.25 MeV gamma-rays. The modulation transfer function (MTF) decreased rapidly with spatial frequency (determined by spread of electrons in the build-up material) while the noise power spectrum was constant as a function of spatial frequency. The DQE obtained from these MTF and noise power measurements was compared with a Monte Carlo model of the pulse height spectrum of the detector. The DQE(0) model accounted for the interaction of x rays with the detector as well as the energy-dependent gain (charge generated/energy deposition). Good agreement between the calculated and measured DQE(0) was found. The model was also used to estimate the DQE(f) of a metal plate + a-Se detector which was compared with a metal plate + phosphor system of the same mass thickness. The DQE(f) s of both detectors are very similar, indicating that the choice of which detector is better will be based upon criteria other than DQE(f), such as read-out approach, ease of manufacture or sensitivity. PMID:10368025

  4. Using a superconducting tunnel junction detector to measure the secondary electron emission efficiency for a microchannel plate detector bombarded by large molecular ions

    PubMed

    Westmacott; Frank; Labov; Benner

    2000-01-01

    An energy-sensitive superconducting tunnel junction (STJ) detector was used to measure the secondary electron emission efficiency, epsilon(e), for a microchannel plate (MCP) detector bombarded by large (up to 66 kDa), slow moving (<40 km/s) molecular ions. The method used is new and provides a more direct procedure for measuring the efficiency of secondary electron emission from a surface. Both detectors were exposed simultaneously to nearly identical ion fluxes. By exposing only a small area of the MCP detector to ions, such that the area exposed was effectively the same as the size of the STJ detector, the number of ions detected with each detector were directly comparable. The STJ detector is 100% efficient for detecting ions in the energy regime investigated and therefore it can be used to measure the detection efficiency and secondary electron emission efficiency of the MCP. The results are consistent with measurements made by other groups and provide further characterization of the loss in sensitivity noted previously when MCP detectors have been used to detect high-mass ions. Individual molecular ions of mass 66 kDa with 30 keV kinetic energy were measured to have about a 5% probability of producing one or more electrons when impacting the MCP. When ion energy was reduced to 10 keV, the detection probability decreased to 1 %. The secondary electron yield was calculated from the secondary electron emission efficiency and found to scale linearly with the mass of the impinging molecular ion and to about the fourth power of ion velocity. Secondary electrons were observed for primary ion impacts >5 km/s, regardless of mass, and no evidence of a velocity (detection) threshold was observed. Copyright 2000 John Wiley & Sons, Ltd. PMID:11006596

  5. High photopeak efficiency gamma-ray detector for upcoming Laue Lens missions

    NASA Astrophysics Data System (ADS)

    Clark, D. J.; Dean, A. J.; Bird, A. J.

    2006-06-01

    We present the design for a new detector configuration, specifically tailored to suit the needs of prospective Laue Lens Gamma-ray astronomy missions in the 10keV to 1MeV energy range. A Laue Lens uses transmission diffraction through crystal planes to focus the incoming gamma-rays. Diffraction is highly energy dependant and in order to recreate high resolution images, very accurate measurements of the total energy of the incident photon are necessary, as well as good spatial resolution. The aim is to absorb all the Compton scattered products of the incoming photons. The design uses a cavity geometry with the main germanium pixilated imaging detector embedded position sensitive cavity. The germanium is then enclosed in a veto to reduce background and to clean the imaging of unwanted non-photopeak events. This allows the majority of backscattered photons to be captured producing a detector with a photopeak efficiency of ~90% at 511keV and millimetric spatial resolution. The detector system has the added advantage that it functions extremely efficiently as a gamma-ray polarimeter.

  6. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments

    SciTech Connect

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; Hahn, Robert von; Klinkhamer, Vincent; Vogel, Stephen; Wolf, Andreas; Krantz, Claude; Novotný, Oldřich; Schippers, Stefan

    2015-02-15

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK’s Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  7. Segmented phosphors: MEMS-based high quantum efficiency detectors for megavoltage x-ray imaging.

    PubMed

    Sawant, Amit; Antonuk, Larry E; El-Mohri, Youcef; Li, Yixin; Su, Zhong; Wang, Yi; Yamamoto, Jin; Zhao, Qihua; Du, Hong; Daniel, Jurgen; Street, Robert

    2005-02-01

    Current electronic portal imaging devices (EPIDs) based on active matrix flat panel imager (AMFPI) technology use a metal plate+phosphor screen combination for x-ray conversion. As a result, these devices face a severe trade-off between x-ray quantum efficiency (QE) and spatial resolution, thus, significantly limiting their imaging performance. In this work, we present a novel detector design for indirect detection-based AMFPI EPIDs that aims to circumvent this trade-off. The detectors were developed using micro-electro-mechanical system (MEMS)-based fabrication techniques and consist of a grid of up to approximately 2 mm tall, optically isolated cells of a photoresist material, SU-8. The cells are dimensionally matched to the pixels of the AMFPI array, and packed with a scintillating phosphor. In this paper, various design considerations for such detectors are examined. An empirical evaluation of three small-area (approximately 7 x 7 cm2) prototype detectors is performed in order to study the effects of two design parameters--cell height and phosphor packing density, both of which are important determinants of the imaging performance. Measurements of the x-ray sensitivity, modulation transfer function (MTF) and noise power spectrum (NPS) were performed under radiotherapy conditions (6 MV), and the detective quantum efficiency (DQE) was determined for each prototype SU-8 detector. In addition, theoretical calculations using Monte Carlo simulations were performed to determine the QE of each detector, as well as the inherent spatial resolution due to the spread of absorbed energy. The results of the present studies were compared with corresponding measurements published in an earlier study using a Lanex Fast-B phosphor screen coupled to an indirect detection array of the same design. The SU-8 detectors exhibit up to 3 times higher QE, while achieving spatial resolution comparable or superior to Lanex Fast-B. However, the DQE performance of these early prototypes is

  8. A new measurement of the neutron detection efficiency for the NaI Crystal Ball detector

    NASA Astrophysics Data System (ADS)

    Martemianov, M.; Kulikov, V.; Demissie, B. T.; Marinides, Z.; Akondi, C. S.; Annand, J. R. M.; Arends, H. J.; Beck, R.; Borisov, N.; Braghieri, A.; Briscoe, W. J.; Cherepnya, S.; Collicott, C.; Costanza, S.; Downie, E. J.; Dieterle, M.; Ferretti Bondy, M. I.; Fil'kov, L. V.; Garni, S.; Glazier, D. I.; Glowa, D.; Gradl, W.; Gurevich, G.; Hornidge, D.; Huber, G. M.; Kaeser, A.; Kashevarov, V. L.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lazarev, A.; Linturi, J. M.; Lisin, V.; Livingston, K.; MacGregor, I. J. D.; Manley, D. M.; Martel, P. P.; Middleton, D. G.; Miskimen, R.; Mushkarenkov, A.; Neganov, A.; Neiser, A.; Oberle, M.; Ostrick, M.; Ott, P.; Otte, P. B.; Oussena, B.; Pedroni, P.; Polonski, A.; Prakhov, S.; Ron, G.; Rostomyan, T.; Sarty, A.; Schott, D. M.; Schumann, S.; Sokhoyan, V.; Steffen, O.; Strakovsky, I. I.; Strub, Th.; Supek, I.; Thiel, M.; Thomas, A.; Unverzagt, M.; Usov, Yu. A.; Wagner, S.; Watts, D. P.; Wettig, J.; Werthmüller, D.; Witthauer, L.; Wolfes, M.

    2015-04-01

    We report on a measurement of the neutron detection efficiency in NaI crystals in the Crystal Ball detector obtained from a study of single π0 photoproduction on deuterium using the tagged photon beam at the Mainz Microtron. The results were obtained up to a neutron energy of 400 MeV . They are compared to previous measurements made more than 15 years ago at the pion beam at the BNL AGS.

  9. Note: Determining the detection efficiency of excited neutral atoms by a microchannel plate detector

    SciTech Connect

    Berry, Ben; Zohrabi, M.; Hayes, D.; Ablikim, U.; Jochim, Bethany; Severt, T.; Carnes, K. D.; Ben-Itzhak, I.

    2015-04-15

    We present a method for determining the detection efficiency of neutral atoms relative to keV ions. Excited D* atoms are produced by D{sub 2} fragmentation in a strong laser field. The fragments are detected by a micro-channel plate detector either directly as neutrals or as keV ions following field ionization and acceleration by a static electric field. Moreover, we propose a new mechanism by which neutrals are detected. We show that the ratio of the yield of neutrals and ions can be related to the relative detection efficiency of these species.

  10. Detective quantum efficiency of photon-counting x-ray detectors

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2015-01-15

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  11. Quantum efficiency of Si Hybrid CMOS detectors in the soft X-ray band

    NASA Astrophysics Data System (ADS)

    Prieskorn, Zachary; Bongiorno, Stephen; Burrows, David; Falcone, Abraham; Griffith, Christopher; Nikoleyczik, Jonathan; Wells, Mark; PSU X-ray Instrumentation Group Team

    2015-04-01

    X-ray sensitive Si Hybrid CMOS detectors (HCDs) will potentially replace X-ray CCDs in the focal planes of future X-ray observatories. HCDs improve on the performance of CCDs in numerous areas: faster read out time, windowed read out mode, less susceptibility to radiation & micrometeoroid damage, and lower power consumption. Understanding the detector quantum efficiency (QE) is critical for estimating the sensitivity of an X-ray instrument. We report on the QE for multiple energies in the soft X-ray band of four HCDs based on the Teledyne Imaging Sensors HyViSITM detectors. These detectors have Al optical blocking filters deposited directly on the Si substrate; these filters vary in thickness from 180 - 1000 Å. We estimate the QE with a 1D slab absorption model and find good agreement between the model and our results across an energy range from 0.677 - 8.05 keV. This work was supported by NASA Grants NNG05WC10G, NNX08AI64G, and NNX11AF98G.

  12. Detective quantum efficiency: a standard test to ensure optimal detector performance and low patient exposures

    NASA Astrophysics Data System (ADS)

    Escartin, Terenz R.; Nano, Tomi F.; Cunningham, Ian A.

    2016-03-01

    The detective quantum efficiency (DQE), expressed as a function of spatial frequency, describes the ability of an x-ray detector to produce high signal-to-noise ratio (SNR) images. While regulatory and scientific communities have used the DQE as a primary metric for optimizing detector design, the DQE is rarely used by end users to ensure high system performance is maintained. Of concern is that image quality varies across different systems for the same exposures with no current measures available to describe system performance. Therefore, here we conducted an initial DQE measurement survey of clinical x-ray systems using a DQE-testing instrument to identify their range of performance. Following laboratory validation, experiments revealed that the DQE of five different systems under the same exposure level (8.0 μGy) ranged from 0.36 to 0.75 at low spatial frequencies, and 0.02 to 0.4 at high spatial frequencies (3.5 cycles/mm). Furthermore, the DQE dropped substantially with decreasing detector exposure by a factor of up to 1.5x in the lowest spatial frequency, and a factor of 10x at 3.5 cycles/mm due to the effect of detector readout noise. It is concluded that DQE specifications in purchasing decisions, combined with periodic DQE testing, are important factors to ensure patients receive the health benefits of high-quality images for low x-ray exposures.

  13. Simulations for Light Collection Efficiency (Jlab Hall C 12 GeV Kaon Aerogel Detector)

    NASA Astrophysics Data System (ADS)

    Rothgeb, Laura

    2011-10-01

    Studying the additional flavor degree of freedom in charged kaon production allows for an unexampled insight into the transition from hadronic to partonic degrees of freedom in exclusive processes and specifically the reaction mechanism underlying strangeness production. This unique opportunity has gone greatly unexplored, however, because of the challenges posed by the experimental factors. One of these challenges is determining a method of separation for kaons from pion and proton backgrounds at high momenta. The simplest and most cost-effective solution is the implementation of a kaon aerogel Cherenkov detector. At the Catholic University of America, we are building such a detector for use in the 12GeV Hall C Super High Momentum Spectrometer at Jefferson Lab. The detector will use photo multiplier tubes to collect the Cherenkov radiation given off by the aerogel and convert that signal into analyzable data that will be used to determine the form factor of the kaon, which will yield a greater understanding of the internal structure of the proton. In this presentation I will present the results from the simulations carried out to optimize the aerogel coverage and study the effect of light guides on the efficiency of the detector. Supported in part by NSF grants PHY 1019521 and 1039446.

  14. Evaluation of the relative TL efficiency of the thermoluminescent detectors to heavy charged particles.

    PubMed

    Sądel, M; Bilski, P; Swakoń, J; Weber, A

    2016-01-01

    The relative thermoluminescence efficiency, η, is in general not constant but depends on ionisation density. Evaluation of the η is therefore important especially for correct interpretation of measurements of densely ionising radiation doses in proton radiotherapy or in space dosimetry. The correct determination of the η is not always straightforward especially when more strongly ionising radiation is to be measured. In the present work, the process of calculation of the η based on two kinds of heavy charged particles was studied. Several factors which may influence the value of the η and their significance for the final result were discussed. These include for example non-uniform deposition of the dose within the detector volume, self-attenuation of thermoluminescent light, choice of the reference radiation, etc. The presented approach was applied to the experimental results of η of LiF:Mg,Ti detectors irradiated with two kinds of heavy charged particles, protons and alpha particles. PMID:25656042

  15. Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency.

    PubMed

    Zheng, Fan; Xu, Ruiying; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-01-01

    Superconducting nanowire single photon detectors (SNSPDs) deliver superior performance over their competitors in the near-infrared regime. However, these detectors have an intrinsic polarization dependence on the incident wave because of their one-dimensional meander structure. In this paper, we propose an approach to eliminate the polarization sensitivity of SNSPDs by using near-field optics to increase the absorption of SNSPDs under transverse magnetic (TM) illumination. In addition, an optical cavity is added to our SNSPD to obtain nearly perfect absorption of the incident wave. Numerical simulations show that the maximum absorption of a designed SNSPD can reach 96% at 1550 nm, and indicate that the absorption difference between transverse electric (TE) and TM polarization is less than 0.5% across a wavelength window of 300 nm. Our work provides the first demonstration of the possibility of designing a polarization-insensitive and highly efficient SNSPD without performing device symmetry improvements. PMID:26948672

  16. Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency

    PubMed Central

    Zheng, Fan; Xu, Ruiying; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-01-01

    Superconducting nanowire single photon detectors (SNSPDs) deliver superior performance over their competitors in the near-infrared regime. However, these detectors have an intrinsic polarization dependence on the incident wave because of their one-dimensional meander structure. In this paper, we propose an approach to eliminate the polarization sensitivity of SNSPDs by using near-field optics to increase the absorption of SNSPDs under transverse magnetic (TM) illumination. In addition, an optical cavity is added to our SNSPD to obtain nearly perfect absorption of the incident wave. Numerical simulations show that the maximum absorption of a designed SNSPD can reach 96% at 1550 nm, and indicate that the absorption difference between transverse electric (TE) and TM polarization is less than 0.5% across a wavelength window of 300 nm. Our work provides the first demonstration of the possibility of designing a polarization-insensitive and highly efficient SNSPD without performing device symmetry improvements. PMID:26948672

  17. Noise-free high-efficiency photon-number-resolving detectors

    SciTech Connect

    Rosenberg, Danna; Lita, Adriana E.; Miller, Aaron J.; Nam, Sae Woo

    2005-06-15

    High-efficiency optical detectors that can determine the number of photons in a pulse of monochromatic light have applications in a variety of physics studies, including post-selection-based entanglement protocols for linear optics quantum computing and experiments that simultaneously close the detection and communication loopholes of Bell's inequalities. Here we report on our demonstration of fiber-coupled, noise-free, photon-number-resolving transition-edge sensors with 88% efficiency at 1550 nm. The efficiency of these sensors could be made even higher at any wavelength in the visible and near-infrared spectrum without resulting in a higher dark-count rate or degraded photon-number resolution.

  18. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits

    PubMed Central

    Pernice, W.H.P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.N.; Sergienko, A.V.; Tang, H.X.

    2012-01-01

    Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics. PMID:23271658

  19. Potential of combining iterative reconstruction with noise efficient detector design: aggressive dose reduction in head CT

    PubMed Central

    Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A

    2015-01-01

    Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204

  20. Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast.

    PubMed

    Krajnak, Matus; McGrouther, Damien; Maneuski, Dzmitry; Shea, Val O'; McVitie, Stephen

    2016-06-01

    The application of differential phase contrast imaging to the study of polycrystalline magnetic thin films and nanostructures has been hampered by the strong diffraction contrast resulting from the granular structure of the materials. In this paper we demonstrate how a pixelated detector has been used to detect the bright field disk in aberration corrected scanning transmission electron microscopy (STEM) and subsequent processing of the acquired data allows efficient enhancement of the magnetic contrast in the resulting images. Initial results from a charged coupled device (CCD) camera demonstrate the highly efficient nature of this improvement over previous methods. Further hardware development with the use of a direct radiation detector, the Medipix3, also shows the possibilities where the reduction in collection time is more than an order of magnitude compared to the CCD. We show that this allows subpixel measurement of the beam deflection due to the magnetic induction. While the detection and processing is data intensive we have demonstrated highly efficient DPC imaging whereby pixel by pixel interpretation of the induction variation is realised with great potential for nanomagnetic imaging. PMID:27085170

  1. Low energy response of the NICER detectors and "threshold efficiency" effect

    NASA Astrophysics Data System (ADS)

    Prigozhin, Gregory; Doty, John; LaMarr, Beverly; Malonis, Andrew; Remillard, Ronald A.; Scholze, Frank; Laubis, Christian; Krumrey, Michael

    2016-04-01

    The Neutron Star Interior Composition ExploreR (NICER) is an instrument that is planned to be installed on the International Space Station in 2016 to study time-resolved spectra of the rapidly changing celestial ojects. The focal plane of the instrument consists of 56 Silicon Drift Detectors (SDDs). Signal from each SDD is fed to shaping amplifiers and triggering circuits that determine both amplitude and time of arrival for each "event".Zero crossing timing circuit is used in order to suppress energy dependent "time walk". That is done with a chain producing a derivative of the shaped signal, and the same chain detects threshold crossings marking the arrival of an X-ray photon. Higher noise of the differentiated signal leads to a somewhat extended band of signal amplitudes close to the threshold value, for which detection efficiency is less than 100%. Detection efficiency in this area affects the low energy portion of the detector response, and is very well described by an error function. We will present accurate measurements of this effect, show the consequences for the instrument quantum efficiency and the shape of the response function and will describe the calibration procedures that would allow selection of optimal threshold values for each observation.

  2. Comparison of two HPGe counting system used in activation studies for nuclear astrophysics

    SciTech Connect

    Szücs, T.; Kiss, G. G.; Fülöp, Zs.

    2014-05-09

    The activation method is a widely used technique to measure charged-particle induced cross sections for astrophys-ical applications. This two step technique is used for example to measure alpha-induced cross sections in γ-process related studies. The first step – in which a target is irradiated with a proton/alpha beam – is followed by the determination of the produced activity. Especially in p-process related studies in the heavier mass range, the produced radioactive nuclei decays mainly with electron-capture, resulting intense x-rays. The activity of the reaction products hence can be determine via the counting of these x-rays, and not only by counting the usually much weaker γ-rays. In this paper we compare the minimum detectable activity (MDA) of two High Purity Germanium (HPGe) detectors used for x- and γ-ray counting in activation experiments.

  3. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  4. Parallel Beam Approximation for Calculation of Detection Efficiency of Crystals in PET Detector Arrays

    PubMed Central

    Komarov, Sergey; Song, Tae Yong; Wu, Heyu; Tai, Yuan-Chuan

    2014-01-01

    In this work we propose a parallel beam approximation for the computation of the detection efficiency of crystals in a PET detector array. In this approximation the detection efficiency of a crystal is estimated using the distance between source and the crystal and the pre-calculated detection cross section of the crystal in a crystal array which is calculated for a uniform parallel beam of gammas. The pre-calculated detection cross sections for a few representative incident angles and gamma energies can be used to create a look-up table to be used in simulation studies or practical implementation of scatter or random correction algorithms. Utilizing the symmetries of the square crystal array, the pre-calculated look-up tables can be relatively small. The detection cross sections can be measured experimentally, calculated analytically or simulated using a Monte Carlo (MC) approach. In this work we used a MC simulation that takes into account the energy windowing, Compton scattering and factors in the “block effect”. The parallel beam approximation was validated by a separate MC simulation using point sources located at different positions around a crystal array. Experimentally measured detection efficiencies were compared with Monte Carlo simulated detection efficiencies. Results suggest that the parallel beam approximation provides an efficient and accurate way to compute the crystal detection efficiency, which can be used for estimation of random and scatter coincidences for PET data corrections. PMID:25400292

  5. Numerical Simulations of Pillar Structured Solid State Thermal Neutron Detector Efficiency and Gamma Discrimination

    SciTech Connect

    Conway, A; Wang, T; Deo, N; Cheung, C; Nikolic, R

    2008-06-24

    This work reports numerical simulations of a novel three-dimensionally integrated, {sup 10}boron ({sup 10}B) and silicon p+, intrinsic, n+ (PIN) diode micropillar array for thermal neutron detection. The inter-digitated device structure has a high probability of interaction between the Si PIN pillars and the charged particles (alpha and {sup 7}Li) created from the neutron - {sup 10}B reaction. In this work, the effect of both the 3-D geometry (including pillar diameter, separation and height) and energy loss mechanisms are investigated via simulations to predict the neutron detection efficiency and gamma discrimination of this structure. The simulation results are demonstrated to compare well with the measurement results. This indicates that upon scaling the pillar height, a high efficiency thermal neutron detector is possible.

  6. Virtual detector methods for efficiently computing momentum-resolved dissociation and ionization spectra

    NASA Astrophysics Data System (ADS)

    Kramer, Alex; Thumm, Uwe

    2016-05-01

    We discuss a class of window-transform-based ``virtual detector'' methods for computing momentum-resolved dissociation and ionization spectra by numerically analyzing the motion of nuclear or electronic quantum-mechanical wavepackets at the periphery of their numerical grids. While prior applications of such surface-flux methods considered semi-classical limits to derive ionization and dissociation spectra, we systematically include quantum-mechanical corrections and extensions to higher dimensions, discussing numerical convergence properties and the computational efficiency of our method in comparison with alternative schemes for obtaining momentum distributions. Using the example of atomic ionization by co- and counter-rotating circularly polarized laser pulses, we scrutinize the efficiency of common finite-difference schemes for solving the time-dependent Schrödinger equation in virtual detection and standard Fourier-transformation methods for extracting momentum spectra. Supported by the DoE, NSF, and Alexander von Humboldt foundation.

  7. Validation of Pulse Shape Simulation for Ge detectors in the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Shanks, Benjamin; Majorana Collaboration

    2015-04-01

    The MAJORANA DEMONSTRATOR expects to begin searching for neutrinoless double beta decay using 76 Ge-enriched detectors in 2015. The DEMONSTRATOR high purity germanium (HPGe) detectors are built in the p-type point contact (PPC) geometry. The electrode of a PPC detector is small and shallow, resulting in low intrinsic capacitance and bulk field strengths compared to the traditional coaxial HPGe configuration. These characteristics allow for discrimination of signal event candidates from background using pulse shape analysis (PSA). In order to fully understand the systematics and efficiencies of PSA cuts, the MAJORANA collaboration has developed a software package to simulate signal generation in PPC detectors. This code has been validated by comparing simulated pulses to the pulse shapes generated for given detectors using an external source. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.

  8. Minimum length Pb/SCIN detector for efficient cosmic ray identification

    NASA Technical Reports Server (NTRS)

    Snyder, H. David

    1989-01-01

    A study was made of the performance of a minimal length cosmic ray shower detector that would be light enough for space flight and would provide efficient identification of positions and protons. Cosmic ray positions are mainly produced in the decay chain of: Pion yields Muon yields Positron and they provide a measure of the matter density traversed by primary protons. Present positron flux measurements are consistent with the Leaky Box and Halo models for sources of cosmic rays. Abundant protons in the space environment are a significant source of background that would wash out the positron signal. Protons and positrons produced very distictive showers of particles when they enter matter; many studies have been published on their behavior on large calorimeter detectors. The challenge is to determine the minimal material necessary (minimal calorimeter depth) for positive particles identification. The primary instrument for the investigation is the Monte Carlo code GEANT, a library of programs from CERN that can be used to model experimental geometry, detector responses and particle interaction processes. The use of the Monte Carlo approach is crucial since statistical fluctuations in shower shape are significant. Studies conducted during the 1988 summer program showed that straightforward approaches to the problem achieved 85 to 90 percent correct identification, but left a residue of 10 to 15 percent misidentified particles. This percentage improved to a few percent when multiple shower-cut criteria were applied to the data. This summer, the same study was extended to employ several physical and statistical methods of identifying response of the calorimeter and the efficiency of the optimal shower cuts to off-normal incidence particle was determined.

  9. Measuring the X-ray quantum efficiency of a hybrid CMOS detector with 55Fe

    NASA Astrophysics Data System (ADS)

    Bongiorno, S. D.; Falcone, A. D.; Prieskorn, Z.; Griffith, C.; Burrows, D. N.

    2015-06-01

    Charge coupled devices (CCDs) are currently the workhorse focal plane arrays operating aboard many orbiting astrophysics X-ray telescopes, e.g. Chandra, XMM-Newton, Swift, and Suzaku. In order to meet the count rate, power, and mission duration requirements defined by next-generation X-ray telescopes, future detectors will need to be read out faster, consume less power, and be more resistant to radiation and micrometeoroid damage than current-generation devices. The hybrid CMOS detector (HCD), a type of active pixel sensor, is currently being developed to meet these requirements. With a design architecture that involves bump bonding two semiconductor substrates together at the pixel level, these devices exhibit both the high read speed and low power consumption of CMOS readout circuitry and the high quantum efficiency (QE) of a deeply depleted silicon absorber. These devices are expected to exhibit the same excellent, high-energy quantum efficiency (QE) as deep-depletion CCDs (QE > 0.9 at 6 keV), while at the same time exhibiting superior readout flexibility, power consumption, and radiation hardness than CCDs. In this work we present a QE model for a Teledyne Imaging Sensors HyViSI HCD, which predicts QE=96% at 55Fe source energies (5.89 and 6.49 keV). We then present a QE measurement of the modeled device at the same energies, which shows QE=97±5% and is in good agreement with the model.

  10. Analysis of factors affecting the light collection efficiency in CT detector: CWO+PIN diode

    NASA Astrophysics Data System (ADS)

    Kwak, Sung W.; Kim, Kwang Hyun; Kim, Ho K.; Cho, Gyuseong; Ahn, Seong Kyu; Goh, Sung Min; Lee, Yoon; Park, Jung Byung

    2002-05-01

    The solid-state detector(SSD) for X-CT consists of photodiode coupled to CdWO4$(CWO. It is important to maximize the light collection in respect of a patient's dose, radiation effect and X-ray efficiency. The factors affecting the light collection efficiency are analyzed and optimized by using experimental data and appropriate simulation code. Quantum nomogram is used to investigate the signal propagation characteristics of optimally designed solid-state detector and to ensure at which stage quantum sink occurs. This paper shows that the part of SSD, the CWO of treatment with ground top/ground side yields higher quanta than that of ground top/polish side, which is different from the result of previous studies. We also shows that optimum thickness of SiN passivation and p-layer is 0.12mm and 0.1mm, respectively. From the quantum nomogram calculated for optimal design, it is predicted that the most serious signal degradation occurs at the photodiode.

  11. A Mechanically-Cooled, Highly-Portable, HPGe-Based, Coded-Aperture Gamma-Ray Imager

    SciTech Connect

    Ziock, Klaus-Peter; Boehnen, Chris Bensing; Hayward, Jason P; Raffo-Caiado, Ana Claudia

    2010-01-01

    Coded-aperture gamma-ray imaging is a mature technology that is capable of providing accurate and quantitative images of nuclear materials. Although it is potentially of high value to the safeguards and arms-control communities, it has yet to be fully embraced by those communities. One reason for this is the limited choice, high-cost, and low efficiency of commercial instruments; while instruments made by research organizations are frequently large and / or unsuitable for field work. In this paper we present the results of a project that mates the coded-aperture imaging approach with the latest in commercially-available, position-sensitive, High Purity Germanium (HPGe) detec-tors. The instrument replaces a laboratory prototype that, was unsuitable for other than demonstra-tions. The original instrument, and the cart on which it is mounted to provide mobility and pointing capabilities, has a footprint of ~ 2/3 m x 2 m, weighs ~ 100 Kg, and requires cryogen refills every few days. In contrast, the new instrument is tripod mounted, weighs of order 25 Kg, operates with a laptop computer, and is mechanically cooled. The instrument is being used in a program that is ex-ploring the use of combined radiation and laser scanner imaging. The former provides information on the presence, location, and type of nuclear materials while the latter provides design verification information. To align the gamma-ray images with the laser scanner data, the Ge imager is fitted and aligned to a visible-light stereo imaging unit. This unit generates a locus of 3D points that can be matched to the precise laser scanner data. With this approach, the two instruments can be used completely independently at a facility, and yet the data can be accurately overlaid based on the very structures that are being measured.

  12. Reducing the Read Noise of H2RG Detector Arrays by more Efficient use of Reference Signals

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixen, D. J.; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, D. V.

    2011-01-01

    We present a process for characterizing the correlation properties of the noise in large two-dimensional detector arrays, and describe an efficient process for its removal. In the case of the 2k x 2k HAWAII-2RG detectors (H2RG) detectors from Teledyne which are being used on the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), we find that we can reduce the read noise by thirty percent. Noise on large spatial scales is dramatically reduced. With this relatively simple process, we provide a performance improvement that is equivalent to a significant increase in telescope collecting area for high resolution spectroscopy with NIRSpec.

  13. Efficient waveguide-integrated tunnel junction detectors at 1.6 mum.

    PubMed

    Hobbs, Philip C D; Laibowitz, Robert B; Libsch, Frank R; Labianca, Nancy C; Chiniwalla, Punit P

    2007-12-10

    Near-infrared detectors based on metal-insulator-metal tunnel junctions integrated with planarized silicon nanowire waveguides are presented, which we believe to be the first of their kind. The junction is coupled to the waveguide via a thin-film metal antenna feeding a plasmonic travelling wave structure that includes the tunnel junction. These devices are inherently broadband; the design presented here operates throughout the 1500-1700 nm region. Careful design of the antenna and travelling wave region substantially eliminates losses due to poor mode matching and RC rolloff, allowing efficient operation. The antennas are made from multilayer stacks of gold and nickel, and the active devices are Ni-NiO-Ni edge junctions. The waveguides are made via shallow trench isolation technology, resulting in a planar oxide surface with the waveguides buried a few nanometres beneath.The antennas are fabricated using directional deposition through a suspended Ge shadow mask, using a single level of electron-beam lithography. The waveguides are patterned with conventional 248-nm optical lithography and reactive-ion etching, then planarized using shallow-trench isolation technology. We also present measurements showing overall quantum efficiencies of 6% (responsivity 0.08 A/W at 1.605 mum), thus demonstrating that the previously very low overall quantum efficiencies reported for antenna-coupled tunnel junction devices are due to poor electromagnetic coupling and poor choices of antenna metal, not to any inherent limitations of the technology. PMID:19550928

  14. Optimization of the Efficiency of a Neutron Detector to Measure (α, n) Reaction Cross-Section

    NASA Astrophysics Data System (ADS)

    Perello, Jesus; Montes, Fernando; Ahn, Tony; Meisel, Zach; Joint InstituteNuclear Astrophysics Team

    2015-04-01

    Nucleosynthesis, the origin of elements, is one of the greatest mysteries in physics. A recent particular nucleosynthesis process of interest is the charge-particle process (cpp). In the cpp, elements form by nuclear fusion reactions during supernovae. This process of nuclear fusion, (α,n), will be studied by colliding beam elements produced and accelerated at the National Superconducting Cyclotron Laboratory (NSCL) to a helium-filled cell target. The elements will fuse with α (helium nuclei) and emit neutrons during the reaction. The neutrons will be detected for a count of fused-elements, thus providing us the probability of such reactions. The neutrons will be detected using the Neutron Emission Ratio Observer (NERO). Currently, NERO's efficiency varies for neutrons at the expected energy range (0-12 MeV). To study (α,n), NERO's efficiency must be near-constant at these energies. Monte-Carlo N-Particle Transport Code (MCNP6), a software package that simulates nuclear processes, was used to optimize NERO configuration for the experiment. MCNP6 was used to simulate neutron interaction with different NERO configurations at the expected neutron energies. By adding additional 3He detectors and polyethylene, a near-constant efficiency at these energies was obtained in the simulations. With the new NERO configuration, study of the (α,n) reactions can begin, which may explain how elements are formed in the cpp. SROP MSU, NSF, JINA, McNair Society.

  15. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    PubMed Central

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  16. Measurement of the Charge Collection Efficiency After Heavy Non-Uniform Irradiation in BABAR Silicon Detectors

    SciTech Connect

    Bettarini, S.; Bondioli, M.; Calderini, G.; Forti, F.; Marchiori, G.; Rizzo, G.; Giorgi, M.A.; Bosisio, L.; Dittongo, S.; Campagnari, C.; /UC, Santa Barbara

    2006-03-01

    We have investigated the depletion voltage changes, leakage current increase and charge collection efficiency of a silicon microstrip detector identical to those used in the inner layers of the BABAR Silicon Vertex Tracker (SVT) after heavy nonuniform irradiation. A full SVT module with the front-end electronics connected has been irradiated with a 0.9 GeV electron beam up to a peak fluence of 3.5 x 10{sup 14} e{sup -}/cm{sup 2}, well beyond the level causing substrate type inversion. We have irradiated the silicon with a nonuniform profile having {sigma} = 1.4 mm that simulates the conditions encountered in the BABAR experiment by the modules intersecting the horizontal machine plane. The position dependence of the charge collection properties and the depletion voltage have been investigated in detail using a 1060 nm LED and an innovative measuring technique based only on the digital output of the chip.

  17. Efficient system modeling for a small animal PET scanner with tapered DOI detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-01

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.

  18. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    NASA Astrophysics Data System (ADS)

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  19. Three-dimensional diamond detectors: Charge collection efficiency of graphitic electrodes

    SciTech Connect

    Lagomarsino, S. Parrini, G.; Sciortino, S.; Bellini, M.; Gorelli, F.; Santoro, M.; Corsi, C.

    2013-12-02

    Implementation of 3D-architectures in diamond detectors promises to achieve unreached performances in the radiation-harsh environment of future high-energy physics experiments. This work reports on the collection efficiency under β-irradiation of graphitic 3D-electrodes, created by laser pulses in the domains of nanoseconds (ns-made-sensors) and femtoseconds (fs-made-sensors). Full collection is achieved with the fs-made-sensors, while a loss of 25%–30% is found for the ns-made-sensors. The peculiar behaviour of ns-made sensors has been explained by the presence of a nano-structured sp{sup 3}-carbon layer around the graphitic electrodes, evidenced by micro-Raman imaging, by means of a numerical model of the charge transport near the electrodes.

  20. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  1. High efficiency photon counting detectors for the FAUST Spacelab far ultraviolet astronomy payload

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Vallerga, J.; Bowyer, S.

    1987-01-01

    The performances of sealed tube microchannel-plate position sensitive detectors having transmission CsI photocathodes or opaque CsI photocathodes are compared. These devices were developed for the FAUST Spacelab payload to accomplish imaging surveys in the band between 1300 A and 1800 A. It is demonstrated that photocathode quantum efficiencies in excess of 40 percent at 1216 A have been achieved with the transmission and the opaque CsI photocathodes. The effect of the photoelectron trajectory on the spatial resolution is assessed. Spatial resolution of less than 70 microns FWHM has been obtained and is maintained up to event rates of 50,000/sec. Background rates of 0.55 events sq cm per sec have been achieved and low distortion (less than 1 percent) imaging has been demonstrated.

  2. HAND-HELD GAMMA-RAY SPECTROMETER BASED ON HIGH-EFFICIENCY FRISCH-RING CdZnTe DETECTORS.

    SciTech Connect

    CUI,Y.

    2007-05-01

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution, el% FWHM at 662 keV, and good efficiency for detecting gamma rays. This technique facilitates the application of CdZnTe materials for high efficiency gamma-ray detection. A hand-held gamma-ray spectrometer based on Frisch-ring detectors is being designed at Brookhaven National Laboratory. It employs an 8x8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so that detection efficiency is significantly improved. By using the front-end ASICs developed at BNL, this spectrometer has a small profile and high energy resolution. The spectrometer includes signal processing circuit, digitization and storage circuit, high-voltage module, and USB interface. In this paper, we introduce the details of the system structure and report our test results with it.

  3. Ultra-low noise mechanically cooled germanium detector

    NASA Astrophysics Data System (ADS)

    Barton, P.; Amman, M.; Martin, R.; Vetter, K.

    2016-03-01

    Low capacitance, large volume, high purity germanium (HPGe) radiation detectors have been successfully employed in low-background physics experiments. However, some physical processes may not be detectable with existing detectors whose energy thresholds are limited by electronic noise. In this paper, methods are presented which can lower the electronic noise of these detectors. Through ultra-low vibration mechanical cooling and wire bonding of a CMOS charge sensitive preamplifier to a sub-pF p-type point contact HPGe detector, we demonstrate electronic noise levels below 40 eV-FWHM.

  4. Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency.

    PubMed

    Li, Hao; Zhang, Lu; You, Lixing; Yang, Xiaoyan; Zhang, Weijun; Liu, Xiaoyu; Chen, Sijing; Wang, Zhen; Xie, Xiaoming

    2015-06-29

    Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photonic crystals, which acted as optical cavities to enhance the optical absorption, with a sensitive-area diameter of 50 μm. The fabricated multimode fiber coupled NbN SNSPDs exhibited a maximum system detection efficiency (DE) of up to 82% and a DE of 78% at a dark count rate of 100 Hz at 850-nm wavelength as well as a system jitter of 105 ps. PMID:26191739

  5. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    SciTech Connect

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  6. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. PMID:26773821

  7. Hand-Held Gamma-Ray Spectrometer Based on High-Efficiency Frisch-Ring Cdznte Detectors

    SciTech Connect

    Cui, Y.; Bolotnikov, A; Camarda, G; Hossain, A; James, R; DeGeronimo, G; Fried, J; O'Connor, P; Kargar, A; et. al.

    2008-01-01

    Frisch-ring CdZnTe detectors have demonstrated both good energy resolution, <1% FWHM at 662 keV, and good efficiency in detecting gamma rays, highlighting the strong potential of CdZnTe materials for such applications. We are designing a hand-held gamma-ray spectrometer based on Frisch-ring detectors at Brookhaven National Laboratory. It employs an 8 times 8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so greatly improving detection efficiency. By using the front-end application-specific integrated circuits (ASICs) developed at BNL, this spectrometer has a small profile and high energy-resolution. It includes a signal processing circuit, digitization and storage circuits, a high-voltage module, and a universal serial bus (USB) interface. In this paper, we detail the system's structure and report the results of our tests with it.

  8. HST/WFC3 UVIS Detector: Dark, Charge Transfer Efficiency, and Point Spread Function Calibrations

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Anderson, Jay; Baggett, Sylvia; Bowers, Ariel; MacKenty, John W.; Sahu, Kailash C.

    2015-08-01

    Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument on board the Hubble Space Telescope (HST) that was installed during Servicing Mission 4 in May 2009. As one of two channels available on WFC3, the UVIS detector is comprised of two e2v CCDs and is sensitive to ultraviolet and visible light. Here we provide updates to the characterization and monitoring of the UVIS performance and stability. We present the long-term growth of the dark current and the hot pixel population, as well as the evolution of Charge Transfer Efficiency (CTE). We also discuss updates to the UVIS dark calibration products, which are used to correct for dark current in science images. We examine the impacts of CTE losses and outline some techniques to mitigate CTE effects during and after observation by use of post-flash and pixel-based CTE corrections. Finally, we summarize an investigation of WFC3/UVIS Point Spread Functions (PSFs) and their potential use for characterizing the focus of the instrument.

  9. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    DOE PAGESBeta

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less

  10. Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model

    NASA Astrophysics Data System (ADS)

    Zotova, A. N.; Vodolazov, D. Yu

    2014-12-01

    We theoretically study the dependence of the intrinsic detection efficiency (IDE) of a superconducting nanowire single photon detector on the applied current, I, and magnetic field, H. We find that the current, at which the resistive state appears in the superconducting film, depends on the position of the hot spot (a region with suppressed superconductivity around the place where the photon has been absorbed) with respect to the edges of the film. This circumstance leads to inevitable smooth dependence IDE(I) when IDE ˜ 0.05-1, even for a homogenous straight superconducting film and in the absence of fluctuations. For IDE ≲ 0.05, a much sharper current dependence comes from the fluctuation-assisted vortex entry to the hot spot, which is located near the edge of the film. We find that a weak magnetic field strongly affects IDE when the photon detection is connected with fluctuation-assisted vortex entry to the hot spot (IDE \\ll 1), and it weakly affects IDE when the photon detection is connected with the current-induced vortex nucleation in the film with the hot spot (IDE ˜ 0.05-1).

  11. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    DOE PAGESBeta

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; Murfitt, Matthew F.; Jones, Lewys; Nellist, Peter D.

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phasemore » contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.« less

  12. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    SciTech Connect

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; Murfitt, Matthew F.; Jones, Lewys; Nellist, Peter D.

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.

  13. Development of a new method for measurement of neutron detector efficiency up to 20 MeV

    SciTech Connect

    Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; Brient, C. E.; Carter, D. E.; O'Donnell, J. E.; Bateman, F. B.; Carlson, A. D.; Haight, R. C.; Boukharouba, N.

    2014-09-03

    A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differ substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.

  14. Development of a new method for measurement of neutron detector efficiency up to 20 MeV

    DOE PAGESBeta

    Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; Brient, C. E.; Carter, D. E.; O'Donnell, J. E.; Bateman, F. B.; Carlson, A. D.; Haight, R. C.; Boukharouba, N.

    2014-09-03

    A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differmore » substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.« less

  15. A simulation of a CdTe gamma ray detector based on collection efficiency profiles as determined by lateral IBIC

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Fizzotti, F.; Lo Giudice, A.; Polesello, P.; Manfredotti, C.

    1999-06-01

    Collection efficiency profiles as determined by the ion beam-induced charge (IBIC) technique have been considered to evaluate the spectroscopic performance of a cadmium telluride (CdTe) nuclear radiation detector. The dependence of such profiles on the applied bias voltage and the shaping time are presented and discussed on the basis of a theoretical model, which is also used to evaluate the electron/hole collection lengths profiles. Experimental collection efficiency profiles were used as input data of the "ISIDE" Monte Carlo programme to simulate the CdTe response to gamma rays produced by 57Co. A systematic investigation of such spectra obtained under different detection conditions shows the effects of non constant collection efficiency profiles and ballistic deficit on the energy resolution of the detector.

  16. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and

  17. Charged Particle Induced Radiation damage of Germanium Detectors in Space: Two Mars Observer Gamma-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Bruekner, J.; Koenen, M.; Evans, L. G.; Starr, R.; Bailey, S. H.; Boynton W. V.

    1997-01-01

    The Mars Observer Gamma-Ray Spectrometer (MO GRS) was designed to measure gamma-rays emitted by the Martian surface. This gamma-ray emission is induced by energetic cosmic-ray particles penetrating the Martian surface and producing many secondary particles and gamma rays. The MO GRS consisted of an high-purity germanium (HPGe) detector with a passive cooler. Since radiation damage due to permanent bombardment of energetic cosmic ray particles (with energies up to several GeV) was expected for the MO GRS HPGe crystal, studies on radiation damage effects of HPGe crystals were carried on earth. One of the HPGe crystals (paradoxically called FLIGHT) was similar to the MO GRS crystal. Both detectors, MO GRS and FLIGHT, contained closed-end coaxial n-type HPGe crystals and had the same geometrical dimensions (5.6 x 5.6 cm). Many other parameters, such as HV and operation temperature, differed in space and on earth, which made it somewhat difficult to directly compare the performance of both detector systems. But among other detectors, detector FLIGHT provided many useful data to better understand radiation damage effects.

  18. Charge collection efficiency and space charge formation in CdTe gamma and X-ray detectors

    NASA Astrophysics Data System (ADS)

    Matz, R.; Weidner, M.

    1998-02-01

    A new extended model for the charge collection efficiency in CdTe gamma and X ray detectors is presented which allows to derive from apparent experimental gamma spectra of a quasi-monochromatic source, an 241Am source in the present case, not only the μρ products of electrons and holes individually but also the sign, spatial distribution, and temporal evolution of the net space charge accumulated in the detector. Resistive CdTe and CdZnTe as well as CdTe Schottky detectors are studied. While the resistive type is stable in time and exhibits higher μτ products, the Schottky type shows space charge accumulation which approaches saturation after about 1 h at several 10 11 cm -3. This is attributed to efficient majority carrier depletion, Fermi level shift, and trap filling. Resistive detectors thus appear optimized to the needs of gamma spectroscopy even at low bias voltage, while Schottky types need higher bias to overcome the space charge. They are suited to both, gamma spectroscopy and X-ray detection in analog current mode, where they operate more stably due ρo the higher bias. From the point of view of materials characterization, gamma spectroscopy with Schottky detectors probes and reveals the trap density near the Fermi level (several 10 12 cm -3 eV -1). We find a basically homogeneous spatial distribution suggesting the trap origin being in crystal growth rather than surface processing. Capture of photogenerated charges in traps is detrimental for current-mode operation under high X-ray flux because delayed emission from traps limits the detector's ability to respond to fast signal changes.

  19. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia

    PubMed Central

    Kidney, Darren; Rawson, Benjamin M.; Borchers, David L.; Stevenson, Ben C.; Marques, Tiago A.; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers’ estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method

  20. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.

    PubMed

    Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method

  1. Study of the detective quantum efficiency for the kinestatic charge detector as a megavoltage imaging device

    NASA Astrophysics Data System (ADS)

    Samant, Sanjiv S.; Gopal, Arun; DiBianca, Frank A.

    2003-06-01

    Megavoltage x-ray imaging suffers from relatively poor contrast and spatial resolution compared to diagnostic kilovoltage x-ray imaging due to the dominant Compton scattering in the former. Recently available amorphous silicon/selenium based flat-panel imagers overcome many of the limitations of poor contrast and spatial resolution that affect conventional video based electronic portal imaging devices (EPIDs). An alternative technology is presented here: kinestatic charge detection (KCD). The KCD uses a slot photon beam, high-pressure gas (xenon, 100 atm) and a multi-ion rectangular chamber in scanning mode. An electric field is used to regulate the cation drift velocity. By matching the scanning speed with that of the cation drift, the cations remain static in the object frame of reference, allowing temporal integration of the signal. KCD imaging is characterized by reduced scatter and a high signal-to-noise ratio. Measurements and Monte Carlo simulations of modulation transfer function (MTF), noise power spectrum (NPS) and the detective quantum efficiency (DQE) of a prototype small field of view KCD detector (384 channels, 0.5 mm spacing) were carried out. Measurements yield DQE[0]=0.19 and DQE[0.5cy/mm]=0.01. KCD imaging is compared to film and commercial EPID systems using phantoms, with the KCD requiring an extremely low dose (0.1 cGy) per image. A proposed cylindrical chamber design with a higher ion-collection depth is expected to further improve image quality (DQE[0]>0.25).

  2. Calculation of the absolute detection efficiency of a moderated /sup 235/U neutron detector on the Tokamak Fusion Test Reactor

    SciTech Connect

    Ku, L.P.; Hendel, H.W.; Liew, S.L.

    1989-02-01

    Neutron transport simulations have been carried out to calculate the absolute detection efficiency of a moderated /sup 235/U neutron detector which is used on the TFTR as a part of the primary fission detector diagnostic system for measuring fusion power yields. Transport simulations provide a means by which the effects of variations in various shielding and geometrical parameters can be explored. These effects are difficult to study in calibration experiments. The calculational model, benchmarked against measurements, can be used to complement future detector calibrations, when the high level of radioactivity resulting from machine operation may severely restrict access to the tokamak. We present a coupled forward-adjoint algorithm, employing both the deterministic and Monte Carlo sampling methods, to model the neutron transport in the complex tokamak and detector geometries. Sensitivities of the detector response to the major and minor radii, and angular anisotropy of the neutron emission are discussed. A semi-empirical model based on matching the calculational results with a small set of experiments produces good agreement (+-15%) for a wide range of source energies and geometries. 20 refs., 6 figs., 4 tabs.

  3. Performance of a HPGe System for Surface and Container Measurements - 13582

    SciTech Connect

    Twomey, Timothy R.; Keyser, Ronald M.

    2013-07-01

    The decommissioning of a nuclear facility or post-accident cleanup is an immense engineering effort requiring an array of specialist tools and techniques. The decommissioning and cleanup activities generate large quantities of low activity waste. For economic disposal, it is desirable to certify the waste as suitable for free release. Every container must be assayed to a sufficient degree of accuracy and sensitivity so that it may be certified to be or not to be suitable for 'free release'. In a previous work, the performance of a highly-automated system for free release of large numbers of containers was presented in which the spectroscopy hardware comprised four ORTEC Interchangeable Detector Module (IDM) mechanically cooled HPGe spectrometers in conjunction with ORTEC ISOPlus waste assay software. It was shown that the system was capable of assaying large containers to free release levels in reasonable measurement times. Not all operations have enough waste to justify an automated system or rapid assay results may be required, perhaps in a remote location. To meet this need, a new mobile system has been developed for the assay of smaller objects (drums, boxes, and surfaces) In-Situ. The system incorporates the latest generation IDM-200 and ISOPlus software and a new variant of the ISOCart hardware. This paper will describe the system and performance. (authors)

  4. Self-powered micro-structured solid state neutron detector with very low leakage current and high efficiency

    SciTech Connect

    Dahal, R.; Huang, K. C.; LiCausi, N.; Lu, J.-Q.; Bhat, I.; Clinton, J.; Danon, Y.

    2012-06-11

    We report on the design, fabrication, and performance of solid-state neutron detector based on three-dimensional honeycomb-like silicon micro-structures. The fabricated detectors use boron filled deep holes with aspect ratio of over 12 and showed a very low leakage current density of {approx}7 Multiplication-Sign 10{sup -7} A/cm{sup 2} at -1 V for device sizes varying from 2 Multiplication-Sign 2 to 5 Multiplication-Sign 5 mm{sup 2}. A thermal neutron detection efficiency of 4.5% {+-} 0.5% with discrimination setting of 500 keV and gamma to neutron sensitivity of (1.1 {+-} 0.1) Multiplication-Sign 10{sup -5} for single layer was measured without external bias for these devices. Monte-Carlo simulation predicts a maximum efficiency of 45% for such devices filled with 95% enriched {sup 10}boron.

  5. Self-powered micro-structured solid state neutron detector with very low leakage current and high efficiency

    NASA Astrophysics Data System (ADS)

    Dahal, R.; Huang, K. C.; Clinton, J.; LiCausi, N.; Lu, J.-Q.; Danon, Y.; Bhat, I.

    2012-06-01

    We report on the design, fabrication, and performance of solid-state neutron detector based on three-dimensional honeycomb-like silicon micro-structures. The fabricated detectors use boron filled deep holes with aspect ratio of over 12 and showed a very low leakage current density of ˜7 × 10-7 A/cm2 at -1 V for device sizes varying from 2 × 2 to 5 × 5 mm2. A thermal neutron detection efficiency of 4.5% ± 0.5% with discrimination setting of 500 keV and gamma to neutron sensitivity of (1.1 ± 0.1) × 10-5 for single layer was measured without external bias for these devices. Monte-Carlo simulation predicts a maximum efficiency of 45% for such devices filled with 95% enriched 10boron.

  6. Novel processing and properties of high efficiency superconducting infrared bolometric detectors

    NASA Astrophysics Data System (ADS)

    Moxey, Donovan E.

    1998-12-01

    The work in this dissertation involves the design, fabrication, and analysis of superconducting infrared bolometric detectors. These bolometers have been made from superconducting YBasb2Cusb3Osb{7-delta} (YBCO) deposited on silicon (100) substrates utilizing a buffer layer of yttria stabilized zirconia (YSZ). Thin films of undoped and silver(Ag) doped YBCO, as well as stacked layers of undoped/Ag-doped YBCO have been deposited by pulsed laser deposition (PLD). The microstructure and materials properties of these films have been studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and secondary ion mass spectroscopy (SIMS). The electrical and transport properties of these films have been investigated using four-point resistance versus temperature measurements. The results of the investigations of the materials and electrical properties of these films show that they are of high quality, and exhibit superconducting characteristics that are conducive for bolometer device applications. For the first time superconducting bolometric detectors have been fabricated using a novel photolithographic and anti-reflective coating (ARC) process. This fabrication process can be used to fabricate any type of device structure that utilizes superconducting YBCO. The use of an anti-reflective coating simplifies the overall device fabrication process and allows this process to be easily integrated with conventional silicon device processing steps. The anti-reflective coating serves as a barrier to moisture and other contaminants that react with YBCO, as well as act as an absorption medium that improves the optical collection efficiency of the device. Optical analysis of these three bolometer device structures has been carried out using a helium neon (HeNe; lambda = 632.8nm) laser. At a bias of 1mA, and chopping frequency of 100Hz; we have measured photoresponse as a function of device temperature, calculated responsivity, and

  7. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  8. High efficiency and rapid response superconducting NbN nanowire single photon detector based on asymmetric split ring metamaterial

    SciTech Connect

    Li, Guanhai; Chen, Xiaoshuang; Wang, Shao-Wei Lu, Wei

    2014-06-09

    With asymmetric split ring metamaterial periodically placed on top of the niobium nitride (NbN) nanowire meander, we theoretically propose a kind of metal-insulator-metallic metamaterial nanocavity to enhance absorbing efficiency and shorten response time of the superconducting NbN nanowire single photon detector (SNSPD) operating at wavelength of 1550 nm. Up to 99.6% of the energy is absorbed and 96.5% dissipated in the nanowire. Meanwhile, taking advantage of this high efficiency absorbing cavity, we implement a more sparse arrangement of the NbN nanowire of the filling factor 0.2, which significantly lessens the nanowire and crucially boosts the response time to be only 40% of reset time in previous evenly spaced meander design. Together with trapped mode resonance, a standing wave oscillation mechanism is presented to explain the high efficiency and broad bandwidth properties. To further demonstrate the advantages of the nanocavity, a four-pixel SNSPD on 10 μm × 10 μm area is designed to further reduce 75% reset time while maintaining 70% absorbing efficiency. Utilizing the asymmetric split ring metamaterial, we show a higher efficiency and more rapid response SNSPD configuration to contribute to the development of single photon detectors.

  9. EFFICIENCY STUDY OF A LEGe DETECTOR SYSTEM FOR THE ASSESSMENT OF 241Am IN SKULL AT CIEMAT WHOLE BODY COUNTER.

    PubMed

    Pérez López, B; Navarro, J F; López Ponte, M A; Nogueira, P

    2016-09-01

    (241)Am incorporation due to an incident or chronic exposure causes an internal dose, which can be evaluated from the total activity of this isotope in the skeleton several months after the intake. For this purpose, it is necessary to perform in vivo measurements of this bone-seeker radionuclide in appropriate counting bone geometries with very low attenuation of surrounded tissue and to extrapolate to total activity in the skeleton (ICRP 89, Basic anatomical and physiological data for use in radiological protection: reference values. 2001. 265). The work here presented refers to direct measurements of americium in the Cohen skull phantom at the CIEMAT Whole Body Counter (WBC) using low-energy germanium (LEGe) detectors inside a shielding room. The main goal was to determinate the most adequate head counting geometry for the in vivo detection of americium in the bone. The calibration of the in vivo LEGe system was performed with four detectors with 2 cm of distance to Cohen phantom. Two geometries were measured, on junction of frontal to parietal bones and frontal bone. The efficiencies are very similar in both geometries, the preferred counting geometry is the most comfortable for the person, with the LEGe detectors in the highest part of the frontal bone, near the junction with the parietal bone, CIEMAT WBC participated in a skull intercomparison exercise organised by WG7 of EURADOS (European Radiation Dosimetry Group e.V.). Efficiencies using three different skull phantoms were obtained. Measurements were performed for different head counting positions, four of them in the plane of symmetry and others over the temporal bone. The detector was placed in parallel with the calibration phantom at a distance of 1 cm. The main gamma emission of (241)Am, 59.5 keV (36 %), was used for comparing efficiency values. The lower efficiency was obtained over the frontal and occipital bones. Measurement with one LEGe detector over the parietal bone is the most efficient. The

  10. A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2

    NASA Astrophysics Data System (ADS)

    Strauss, R.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; von Feilitzsch, F.; Ferreiro, N.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Loebell, J.; Münster, A.; Petricca, F.; Potzel, W.; Pröbst, F.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Scholl, S.; Schönert, S.; Seidel, W.; von Sivers, M.; Stanger, M.; Stodolsky, L.; Strandhagen, C.; Tanzke, A.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.

    2015-08-01

    The cryogenic dark matter experiment CRESST-II aims at the direct detection of WIMPs via elastic scattering off nuclei in scintillating CaWO crystals. We present a new, highly improved, detector design installed in the current run of CRESST-II Phase 2 with an efficient active rejection of surface-alpha backgrounds. Using CaWO sticks instead of metal clamps to hold the target crystal, a detector housing with fully-scintillating inner surface could be realized. The presented detector (TUM40) provides an excellent threshold of keV and a resolution of keV (at 2.60 keV). With significantly reduced background levels, TUM40 sets stringent limits on the spin-independent WIMP-nucleon scattering cross section and probes a new region of parameter space for WIMP masses below 3 GeV/c. In this paper, we discuss the novel detector design and the surface-alpha event rejection in detail.

  11. Improvements in the Low Energy Collection Efficiency of Si(Li) X-ray Detectors

    SciTech Connect

    Cox,C.; Fischer, D.; Schwartz, W.; Song, Y.

    2005-01-01

    Soft X-ray beam-line applications are of fundamental importance to material research, and commonly employ high-resolution Si(Li) detectors for energy dispersive spectroscopy. However, the measurement of X-rays below 1 keV is compromised by absorption in the material layers in front of the active crystal and a dead layer at the crystal surface. Various Schottky barrier type contacts were investigated resulting in a 40% reduction of the dead-layer thickness and a factor of two increased sensitivity at carbon K{sub {alpha}} compared to the standard Si(Li) detector. Si(Li) detectors were tested on the U7A soft X-ray beam-line at the National Synchrotron Light Source and on a scanning electron microscope (SEM).

  12. 226Ra as a standard source for efficiency calibration of Ge(Li) detectors

    NASA Astrophysics Data System (ADS)

    Farouk, M. A.; Al-Soraya, A. M.

    1982-09-01

    The relative intensities of gamma-rays resulting from the decay of 226Ra in equilibrium with its short-lived daughters have been measured using two different high resolution Ge(Li) detectors. The accuracy of the measurements does not exceed 2.5%. The most intense components of gamma-rays from thin 226Ra are recommended for use as a calibration standard Ge(Li) detectors in the energy range from 186 keV to 3.050 MeV.

  13. Calibration of the RLS HPGe spectral gamma ray logging system

    SciTech Connect

    Koizumi, C.J.; Brodeur, J.R.; Ulbricht, W.H.; Price, R.K.

    1991-11-01

    Gamma-ray spectral data have been recorded with the Radionuclide Logging System (RLS) high purity germanium (HPGe) system at (1) the American Petroleum Institute (API) spectral gamma-ray calibration center in Houston, Texas; (2) the US Department of Energy (DOE) spectral gamma-ray field calibration facility in Spokane, Washington; and (3) the DOE spectral gamma-ray primary calibration center in Grand Junction, Colorado. Analyses of the Grand Junction data yielded: calibration constants for the natural gamma-ray sources (potassium, uranium and thorium), energy-dependent borehole diameter corrections for the aid-filled borehole, energy-dependent borehole casing corrections for steel casing over a range of thicknesses from 0 to 79 cm (5/16 in.), a casing index function that varies with casing thickness and provides a method for verifying that the correct casing correction is applied, and an energy-dependent inverse function that is the basis for assessment of subsurface concentrations of man-made gamma-ray emitters such as cesium-137 and cobalt-60.

  14. ANGLE v2.1—New version of the computer code for semiconductor detector gamma-efficiency calculations

    NASA Astrophysics Data System (ADS)

    Jovanovic, S.; Dlabac, A.; Mihaljevic, N.

    2010-10-01

    New version of the commercially available ANGLE software for semiconductor detector gamma-efficiency calculations is presented. ANGLE allows for accurate determination of the activities of gamma spectroscopic samples for which no "replicate" standard exists, in terms of geometry and matrix. A semi-empirical ("efficiency transfer") approach is applied, based on the effective solid angle calculations. Advantages of both absolute (Monte Carlo) and relative (calibrated-source-based) methods are combined—while minimizing potential for systematic errors in the former and reducing practical limitations of the latter. ANGLE is broadly applicable, accounting for most of counting arrangements in gamma-spectrometry practice (in respect to detector types and configuration, source shapes and volumes, matrix composition, source-to-detector distance, etc.). Besides the years of practical utilization in many gamma-spectrometry laboratories, accuracy of the software is successfully tested in a recent IAEA-organized intercomparison exercise—ANGLE scored 0.65% average deviation from the exercise mean for E γ>20keV energies.

  15. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector

    PubMed Central

    Boso, Gianluca; Ke, Damei; Korzh, Boris; Bouilloux, Jordan; Lange, Norbert; Zbinden, Hugo

    2015-01-01

    In clinical applications, such as PhotoDynamic Therapy, direct singlet-oxygen detection through its luminescence in the near-infrared range (1270 nm) has been a challenging task due to its low emission probability and the lack of suitable single-photon detectors. Here, we propose a practical setup based on a negative-feedback avalanche diode detector that is a viable alternative to the current state-of-the art for different clinical scenarios, especially where geometric collection efficiency is limited (e.g. fiber-based systems, confocal microscopy, scanning systems etc.). The proposed setup is characterized with Rose Bengal as a standard photosensitizer and it is used to measure the singlet-oxygen quantum yield of a new set of photosensitizers for site-selective photodynamic therapy. PMID:26819830

  16. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    SciTech Connect

    Korzh, B. Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H.

    2014-02-24

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of −110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.

  17. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector.

    PubMed

    Boso, Gianluca; Ke, Damei; Korzh, Boris; Bouilloux, Jordan; Lange, Norbert; Zbinden, Hugo

    2016-01-01

    In clinical applications, such as PhotoDynamic Therapy, direct singlet-oxygen detection through its luminescence in the near-infrared range (1270 nm) has been a challenging task due to its low emission probability and the lack of suitable single-photon detectors. Here, we propose a practical setup based on a negative-feedback avalanche diode detector that is a viable alternative to the current state-of-the art for different clinical scenarios, especially where geometric collection efficiency is limited (e.g. fiber-based systems, confocal microscopy, scanning systems etc.). The proposed setup is characterized with Rose Bengal as a standard photosensitizer and it is used to measure the singlet-oxygen quantum yield of a new set of photosensitizers for site-selective photodynamic therapy. PMID:26819830

  18. The feasibility of using a photoelectric cigarette smoke detector for energy-efficient air quality control

    SciTech Connect

    Nelson, R.M.; Alevantis, L.E.

    1985-01-01

    The object of this study was to determine the feasibility of using a smoke sensor to monitor and control cigarette smoke levels in occupied spaces and also to determine whether the use of such a detector could result in energy savings. A smoke detector was built and tested. The experimental results show that the smoke sensor output is a function of cigarette smoke concentration and that the smoke sensor gives a rapid and continuous response. In addition, a computer program that simulates the transient mass and energy interactions in buildings was modified so that the impact of ventilation strategies on indoor air quality and energy consumption could be studied when smokers are present. The results of the numerical modeling for an arbitrary test case show that the use of a smoke sensor to detect cigarette smoke particulates and to control ventilation can allow indoor air quality to be continuously maintained at acceptable levels while minimizing energy consumption.

  19. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  20. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  1. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  2. Monte Carlo simulation of the BEGe detector response function for in vivo measurements of 241Am in the skull

    NASA Astrophysics Data System (ADS)

    Fantínová, K.; Fojtík, P.

    2014-11-01

    This paper reports on the procedure of the BEGe detector characterization for the Monte Carlo calibrations. A project is under way to improve the counting and operating capabilities of the Whole Body Counter (WBC) installed in SÚRO, v.v.i. (NRPI) Prague, Czech Republic. Possible emergency monitoring should mainly benefit from the rapid, safe and flexible operation of the WBC. The system of the WBC for the detection of low energy X and gamma radiation comprises four HPGe detectors intended for the routine, emergency, and research measurements of persons internally contaminated with low-energy photon emitters, mainly actinides. Among them, 241Am is the main subject of interest. A precise detection efficiency calibration of the detector is required for the measurement of activity in individual organs and tissues. The use of physical phantoms in the calibrations is often supplemented with the application of voxel phantoms and a Monte Carlo technique that are used for the calculation of the detector response function and the full energy peak efficiency. Both experimental and computational approaches have been used for the calibration of the BEGe (Broad Energy Germanium) detector. In this paper, the process of the Monte Carlo simulation of the detector response function and the peak efficiency calculation is described. Results of the simulations are provided in the paper and discussed.

  3. Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping

    SciTech Connect

    Blacksberg, Jordana; Hoenk, Michael E.; Elliott, S. Tom; Holland, Stephen E.; Nikzad, Shouleh

    2005-12-19

    A low temperature process for Sb doping of silicon has been developed as a backsurface treatment for high-purity n-type imaging detectors. Molecular beam epitaxy (MBE) is used to achieve very high dopant incorporation in a thin, surface-confined layer. The growth temperature is kept below 450 deg. C for compatibility with Al-metallized devices. Imaging with MBE-modified 1kx1k charge coupled devices (CCDs) operated in full depletion has been demonstrated. Dark current is comparable to the state-of-the-art process, which requires a high temperature step. Quantum efficiency is improved, especially in the UV, for thin doped layers placed closer to the backsurface. Near 100% internal quantum efficiency has been demonstrated in the ultraviolet for a CCD with a 1.5 nm silicon cap layer.

  4. Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael E.; Elliott, S. Tom; Holland, Stephen E.; Nikzad, Shouleh

    2005-01-01

    A low temperature process for Sb doping of silicon has been developed as a backsurface treatment for high-purity n-type imaging detectors. Molecular beam epitaxy (MBE) is used to achieve very high dopant incorporation in a thin, surface-confined layer. The growth temperature is kept below 450 (deg)C for compatibility with Al-metallized devices. Imaging with MBE-modified 1kx1k charge coupled devices (CCDs) operated in full depletion has been demonstrated. Dark current is comparable to the state-of-the-art process, which requires a high temperature step. Quantum efficiency is improved, especially in the UV, for thin doped layers placed closer to the backsurface. Near 100% internal quantum efficiency has been demonstrated in the ultraviolet for a CCD with a 1.5 nm silicon cap layer.

  5. High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K

    SciTech Connect

    Verma, V. B.; Horansky, R. D.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Korzh, B.; Bussières, F.; Zbinden, H.; Marsili, F.; Shaw, M. D.

    2014-09-22

    We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ∼70% of the superconducting transition temperature (T{sub C}) of 3.4 K. We demonstrate saturation of the system detection efficiency at 78 ± 2% at a wavelength of 1310 nm, with a jitter of 191 ps. We find that the jitter at 2.5 K is limited by the noise of the readout and can be improved through the use of cryogenic amplifiers. Operation of SNSPDs with high efficiency at temperatures very close to T{sub C} appears to be a unique property of amorphous WSi.

  6. High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films.

    PubMed

    Verma, V B; Korzh, B; Bussières, F; Horansky, R D; Dyer, S D; Lita, A E; Vayshenker, I; Marsili, F; Shaw, M D; Zbinden, H; Mirin, R P; Nam, S W

    2015-12-28

    We report on MoSi SNSPDs which achieved high system detection efficiency (87.1 ± 0.5% at 1542 nm) at 0.7 K and we demonstrate that these detectors can also be operated with saturated internal efficiency at a temperature of 2.3 K in a Gifford-McMahon cryocooler. We measured a minimum system jitter of 76 ps, maximum count rate approaching 10 MHz, and polarization dependence as low as 3.3 ± 0.1%. The performance of MoSi SNSPDs at 2.3 K is similar to the performance of WSi SNSPDs at < 1 K. The higher operating temperature of MoSi SNSPDs makes these devices promising for widespread use due to the simpler and less expensive cryogenics required for their operation. PMID:26832040

  7. Calibration Analyses and Efficiency Studies for the Anti Coincidence Detector on the Fermi Gamma Ray Space Telescope

    SciTech Connect

    Kachulis, Chris; /Yale U. /SLAC

    2011-06-22

    The Anti Coincidence Detector (ACD) on the Fermi Gamma Ray Space Telescope provides charged particle rejection for the Large Area Telescope (LAT). We use two calibrations used by the ACD to conduct three studies on the performance of the ACD. We examine the trending of the calibrations to search for damage and find a timescale over which the calibrations can be considered reliable. We also calculated the number of photoelectrons counted by a PMT on the ACD from a normal proton. Third, we calculated the veto efficiencies of the ACD for two different veto settings. The trends of the calibrations exhibited no signs of damage, and indicated timescales of reliability for the calibrations of one to two years. The number of photoelectrons calculated ranged from 5 to 25. Large errors in the effect of the energy spectrum of the charged particles caused these values to have very large errors of around 60 percent. Finally, the veto efficiencies were found to be very high at both veto values, both for charged particles and for the lower energy backsplash spectrum. The Anti Coincidence Detector (ACD) on the Fermi Gamma Ray Space Telescope is a detector system built around the silicon strip tracker on the Large Area Telescope (LAT). The purpose of the ACD is to provide charged particle rejection for the LAT. To do this, the ACD must be calibrated correctly in flight, and must be able to efficiently veto charged particle events while minimizing false vetoes due to 'backsplash' from photons in the calorimeter. There are eleven calibrations used by the ACD. In this paper, we discuss the use of two of these calibrations to preform three studies on the performance of the ACD. The first study examines trending of the calibrations to check for possible hardware degradation. The second study uses the calibrations to explore the efficiency of an on-board hardware veto. The third study uses the calibrations to calculate the number of photoelectrons seen by each PMT when a minimum ionizing

  8. Experimental investigation of the radiation shielding efficiency of a MCP detector in the radiation environment near Jupiter's moon Europa

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Meyer, S.; Lüthi, M.; Lasi, D.; Galli, A.; Piazza, D.; Desorgher, L.; Reggiani, D.; Hajdas, W.; Karlsson, S.; Kalla, L.; Wurz, P.

    2016-09-01

    Neutral Ion Mass spectrometer (NIM) is one of the instruments in the Particle Environmental Package (PEP) designed for the JUICE mission of ESA to the Jupiter system. NIM, equipped with a sensitive MCP ion detector, will conduct detailed measurements of the chemical composition of Jovian icy moons exospheres. To achieve high sensitivity of the instrument, radiation effects due to the high radiation background (high-energy electrons and protons) around Jupiter have to be minimised. We investigate the performance of an Al-Ta-Al composite stack as a potential shielding against high-energy electrons. Experiments were performed at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The facility delivers a particle beam containing e-, μ- and π- with momentum from 17.5 to 345 MeV/c (Hajdas et al., 2014). The measurements of the radiation environment generated during the interaction of primary particles with the Al-Ta-Al material were conducted with dedicated beam diagnostic methods and with the NIM MCP detector. In parallel, modelling studies using GEANT4 and GRAS suites were performed to identify products of the interaction and predict ultimate fluxes and particle rates at the MCP detector. Combination of experiment and modelling studies yields detailed characterisation of the radiation fields produced by the interaction of the incident e- with the shielding material in the range of the beam momentum from 17.5 to 345 MeV/c. We derived the effective MCP detection efficiency to primary and secondary radiation and effective shielding transmission coefficients to incident high-energy electron beam in the range of applied beam momenta. This study shows that the applied shielding attenuates efficiently high-energy electrons. Nevertheless, owing to nearly linear increase of the bremsstrahlung production rate with incident beam energy, above 130 MeV their detection rates measured by the MCP

  9. Search for rare nuclear decays with HPGe detectors at the STELLA facility of the LNGS

    SciTech Connect

    Belli, P.; Di Marco, A.; Bernabei, R.; D'Angelo, S.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Cerulli, R.; Di Vacri, M. L.; Laubenstein, M.; Nisi, S.; Danevich, F. A.; Kobychev, V. V.; Poda, D. V.; Tretyak, V. I.; Kovtun, G. P.; Kovtun, N. G.; Shcherban, A. P.; Solopikhin, D. A.; Polischuk, O. G.; and others

    2013-12-30

    Results on the search for rare nuclear decays with the ultra low background facility STELLA at the LNGS using gamma ray spectrometry are presented. In particular, the best T{sub 1/2} limits were obtained for double beta processes in {sup 96}Ru and {sup 104}Ru. Several isotopes, which potentially decay through different 2β channels, including also possible resonant double electron captures, were investigated for the first time ({sup 156}Dy, {sup 158}Dy, {sup 184}Os, {sup 192}Os, {sup 190}Pt, {sup 198}Pt). Search for resonant absorption of solar {sup 7}Li axions in a LiF crystal gave the best limit for the mass of {sup 7}Li axions (< 8.6 keV). Rare alpha decay of {sup 190}Pt to the first excited level of {sup 186}Os(E{sub exc} = 137.2keV) was observed for the first time.

  10. Approaching the Ultimate Limits of Communication Efficiency with a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris; Moision, Bruce; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We first review the state-of-the-art coherent on-off-keying (OOK) with a photoncounting measurement, illustrating its asymptotic inefficiency relative to the Holevo limit. We show that a commonly made Poisson approximation in thermal noise leads to unbounded photon information efficiencies, violating the conjectured Holevo limit. We analyze two binary-modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with conventional OOK. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  11. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope.

    PubMed

    Wang, Qiang; Renema, Jelmer J; Engel, Andreas; van Exter, Martin P; de Dood, Michiel J A

    2015-09-21

    We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible. PMID:26406688

  12. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    PubMed Central

    Campbell, DL; Peterson, TE

    2014-01-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140-keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a −5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time. PMID:25360792

  13. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Campbell, D. L.; Peterson, T. E.

    2014-11-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  14. Spectral Efficiency and Resolution of Si(Li)-Detectors for Photon Energies between 0.3 keV and 5 keV

    NASA Astrophysics Data System (ADS)

    Riehle, F.; Tegeler, E.; Wende, B.

    1986-01-01

    The spectral efficiencies of energy dispersive Si(Li) photon counters have been measured using the storage ring BESSY as a radiometric standard source of extremely low photon flux of the order of 1 photon/(s eV). The detectors were irradiated with white synchrotron radia-tion when the storage ring was operated with only about 5 electrons stored. For energy calibration and measurement of the energy resolution X-ray emission lines excited by a 55-Fe source were used. Towards lower photon energies the efficiency is drastically decreased by the building-up of an ice-layer on the permanently cooled detector. By this surface contamination also the energy resolution of the detector is affected. The performance of detector can be recovered by a warming-up procedure.

  15. Segmented crystalline scintillators: An initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging

    SciTech Connect

    Sawant, Amit; Antonuk, Larry E.; El-Mohri, Youcef; Zhao Qihua; Li Yixin; Su Zhong; Wang Yi; Yamamoto, Jin; Du Hong; Cunningham, Ian; Klugerman, Misha; Shah, Kanai

    2005-10-15

    Electronic portal imaging devices (EPIDs) based on indirect detection, active matrix flat panel imagers (AMFPIs) have become the technology of choice for geometric verification of patient localization and dose delivery in external beam radiotherapy. However, current AMFPI EPIDs, which are based on powdered-phosphor screens, make use of only {approx}2% of the incident radiation, thus severely limiting their imaging performance as quantified by the detective quantum efficiency (DQE) ({approx}1%, compared to {approx}75% for kilovoltage AMFPIs). With the rapidly increasing adoption of image-guided techniques in virtually every aspect of radiotherapy, there exist strong incentives to develop high-DQE megavoltage x-ray imagers, capable of providing soft-tissue contrast at very low doses in megavoltage tomographic and, potentially, projection imaging. In this work we present a systematic theoretical and preliminary empirical evaluation of a promising, high-quantum-efficiency, megavoltage x-ray detector design based on a two-dimensional matrix of thick, optically isolated, crystalline scintillator elements. The detector is coupled with an indirect detection-based active matrix array, with the center-to-center spacing of the crystalline elements chosen to match the pitch of the underlying array pixels. Such a design enables the utilization of a significantly larger fraction of the incident radiation (up to 80% for a 6 MV beam), through increases in the thickness of the crystalline elements, without loss of spatial resolution due to the spread of optical photons. Radiation damage studies were performed on test samples of two candidate scintillator materials, CsI(Tl) and BGO, under conditions relevant to radiotherapy imaging. A detailed Monte Carlo-based study was performed in order to examine the signal, spatial spreading, and noise properties of the absorbed energy for several segmented detector configurations. Parameters studied included scintillator material, septal wall

  16. Proton-induced radiation damage in germanium detectors

    NASA Technical Reports Server (NTRS)

    Brueckner, J.; Koerfer, M.; Waenke, H.; Schroeder, A. N. F.; Filges, D.; Dragovitsch, P.; Englert, P. A. J.; Starr, R.; Trombka, J. I.

    1991-01-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process, several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10 to the 8th protons/sq cm (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific and engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation, all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage, the detectors were stepwise-annealed at temperatures below 110 C, while kept in their specially designed cryostats. This study shows that n-type HPGe detectors can be used in charged-particle environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  17. Proton-induced radiation damage in germanium detectors

    SciTech Connect

    Bruckner, J.; Korfer, M.; Wanke, H. , Mainz ); Schroeder, A.N.F. ); Figes, D.; Dragovitsch, P. ); Englert, P.A.J. ); Starr, R.; Trombka, J.I. . Goddard Space Flight Center); Taylor, I. ); Drake, D.M.; Shunk, E.R. )

    1991-04-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10{sub 8} protons cm{sup {minus}2} (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific as well as engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage the detectors were stepwise annealed at temperatures T {le} 110{degrees}C while staying specially designed cryostats. This paper shows that n-type HPGe detectors can be used in charged particles environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  18. The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2013-04-15

    Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.

  19. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Winkler, Mark; Gagnon, Daniel; Wang, Wenli

    2015-07-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset.

  20. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events.

    PubMed

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Winkler, Mark; Gagnon, Daniel; Wang, Wenli

    2015-07-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the 'ring' artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset. PMID:26086713

  1. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  2. Wavelength-scanning calibration of detection efficiency of single photon detectors by direct comparison with a photodiode

    NASA Astrophysics Data System (ADS)

    Lee, Hee Jung; Park, Seongchong; Park, Hee Su; Hong, Kee Suk; Lee, Dong-Hoon; Kim, Heonoh; Cha, Myoungsik; Seb Moon, Han

    2016-04-01

    We present a practical calibration method of the detection efficiency (DE) of single photon detectors (SPDs) in a wide wavelength range from 480 nm to 840 nm. The setup consists of a GaN laser diode emitting a broadband luminescence, a tunable bandpass filter, a beam splitter, and a switched integrating amplifier which can measure the photocurrent down to the 100 fA level. The SPD under test with a fibre-coupled beam input is directly compared with a reference photodiode without using any calibrated attenuator. The relative standard uncertainty of the DE of the SPD is evaluated to be from 0.8% to 2.2% varying with wavelength (k  =  1).

  3. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    NASA Technical Reports Server (NTRS)

    Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.

    2008-01-01

    Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent < 7x10(exp -4) over 10 - 45 GHz. We have combined component simulations to predict the overall coupling from waveguide modes to bolometers. The result below shows the planar circuit and waveguide interface can utilize the high beam symmetry of HE11 circular feedhorns with > 99% coupling efficiency over 30% fractional bandwidth.

  4. New measurement of the Fano factor of mercuric iodide. [astronomical x-ray detector charge collection efficiency

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Vallerga, J. V.; Dabrowski, A. J.; Iwanczyk, J. S.; Entine, G.

    1982-01-01

    It is pointed out that mercuric iodide (HgI2) shows great promise as a high-resolution X-ray detector for use in X-ray astronomy. Development of mercuric iodide for astronomical work has required investigation of the temperature dependence of the HgI2 crystal parameters such as leakage current, resolution, and mobility of the charge carriers. The first studies in connection with these investigations have led to a new value of the Fano factor of 0.19 + or - 0.03. The best value previously reported was 0.27 measured at room temperature. The new upper limit of 0.19 for the HgI2 Fano factor was determined by cooling the HgI2 crystal and preamp to -20 C. It is concluded that room-temperature energy resolution of HgI2 is not limited by charge generation statistics but rather by collection efficiency.

  5. Characterization measurement of a thick CdTe detector for BNCT-SPECT - detection efficiency and energy resolution.

    PubMed

    Murata, Isao; Nakamura, Soichiro; Manabe, Masanobu; Miyamaru, Hiroyuki; Kato, Itsuro

    2014-06-01

    Author׳s group is carrying out development of BNCT-SPECT with CdTe device, which monitors the therapy effect of BNCT in real-time. From the design calculations, the dimensions were fixed to 1.5×2×30mm(3). For the collimator it was confirmed that it would have a good spatial resolution and simultaneously the number of counts would be acceptably large. After producing the CdTe crystal, the characterization measurement was carried out. For the detection efficiency an excellent agreement between calculation and measurement was obtained. Also, the detector has a very good energy resolution so that gamma-rays of 478keV and 511keV could be distinguished in the spectrum. PMID:24581600

  6. Fabrication of multi-layered absorption structure for high quantum efficiency photon detectors

    SciTech Connect

    Fujii, Go; Fukuda, Daiji; Numata, Takayuki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Zama, Tatsuya; Inoue, Shuichiro

    2009-12-16

    We report on some efforts to improve a quantum efficiency of titanium-based optical superconducting transition edge sensors using the multi-layered absorption structure for maximizing photon absorption in the Ti layer. Using complex refractive index values of each film measured by a Spectroscopic Ellipsometry, we designed and optimized by a simulation code. An absorption measurement of fabricated structure was in good agreement with the design and was higher than 99% at optimized wavelength of 1550 nm.

  7. Measurement of the efficiency of the pattern recognition of tracks generated by ionizing radiation in a TIMEPIX detector

    NASA Astrophysics Data System (ADS)

    Asbah, N.; Leroy, C.; Pospisil, S.; Soueid, P.

    2014-05-01

    A hybrid silicon pixelated TIMEPIX detector (256 × 256 square pixels with a pitch of 55 μm) operated in Time Over Threshold (TOT) mode was exposed to radioactive sources and protons after Rutherford Backscattering on a thin gold foil of protons beams delivered by the Tandem Accelerator of the Montreal University. Simultaneous exposure of TIMEPIX to radioactive sources and to protons beams on top of the radioactive sources allowed measurements with different mixed radiation fields of protons, alpha-particles, photons and electrons. All measurements were performed in vacuum. The comparison of the experimental activities (determined from the measurement of the number of tracks left in the device by incoming particles) of the radioactive sources with their expected activities allowed the test of the device efficiency for track recognition. The efficiency of track recognition of incident protons of different energies as a function of the incidence angle was measured. The cluster size left by protons in the device was measured as a function of their incident energy at normal and large (75°) incident angles. The operation of TIMEPIX in TOT mode has allowed a 3D mapping of the charge spreading effect in the whole volume of the silicon sensor. The results of the present measurements demonstrate the TIMEPIX capability of differentiating between different types of particles species from mixed radiation fields and measuring their energy deposition. Single track analysis gives a good precision (significantly better than the 55 μm size of one detector pixel) on the coordinates of the impact point of protons with normal incidence interacting in the TIMEPIX silicon layer.

  8. High-detection efficiency and picosecond timing compact detector modules with red-enhanced SPADs

    NASA Astrophysics Data System (ADS)

    Giudice, Andrea; Simmerle, Georg; Veronese, Daniele; Biasi, Roberto; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo; Maccagnani, Piera

    2012-06-01

    In the last years many progresses have been made in the field of silicon Single Photon Avalanche Diodes (SPAD) thanks to the improvements both in device design and in fabrication technology. Particularly, the Dipartimento di Elettronica e Informazione of Politecnico di Milano and the CNR-IMM of Bologna have been in the forefront of this research activity by designing and fabricating a new device structure enabling the fabrication of SPADs with red enhanced photon detection efficiency. In this paper we present a compact photon counting and timing module that fills the gap between the high temporal resolution and the high detection efficiency systems. The module exploits Red-Enhanced SPAD technology to attain a Photon Detection Efficiency (PDE) as high as 37% at 800 nm (peak of 58% at 600 nm) while maintaining a temporal resolution of about 100 ps FWHM, even with light diffused across the whole active area. A thermo-electric cooling system guarantees a noise as low as few counts per second for a 50 μm diameter SPAD while a low threshold avalanche pick-up circuit assures a limited shift in the temporal response.

  9. Quantitative analysis and efficiency study of PSD methods for a LaBr3:Ce detector

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Cang, Jirong; Zeng, Zhi; Yue, Xiaoguang; Cheng, Jianping; Liu, Yinong; Ma, Hao; Li, Junli

    2016-03-01

    The LaBr3:Ce scintillator has been widely studied for nuclear spectroscopy because of its optimal energy resolution (<3%@ 662 keV) and time resolution (~300 ps). Despite these promising properties, the intrinsic radiation background of LaBr3:Ce is a critical issue, and pulse shape discrimination (PSD) has been shown to be an efficient potential method to suppress the alpha background from the 227Ac. In this paper, the charge comparison method (CCM) for alpha and gamma discrimination in LaBr3:Ce is quantitatively analysed and compared with two other typical PSD methods using digital pulse processing. The algorithm parameters and discrimination efficiency are calculated for each method. Moreover, for the CCM, the correlation between the CCM feature value distribution and the total charge (energy) is studied, and a fitting equation for the correlation is inferred and experimentally verified. Using the equations, an energy-dependent threshold can be chosen to optimize the discrimination efficiency. Additionally, the experimental results show a potential application in low-activity high-energy γ measurement by suppressing the alpha background.

  10. An efficient procedure for tomotherapy treatment plan verification using the on-board detector

    NASA Astrophysics Data System (ADS)

    Pisaturo, O.; Miéville, F.; Tercier, P.-A.; Allal, A. S.

    2015-02-01

    In this work, a fast and simple procedure for tomotherapy treatment plan verification using the on-board detector (OBD) has been developed. This procedure allows verification of plans with static and dynamic jaws (TomoEDGE). A convolution-based calculation model has been derived in order to link the leaf control sinogram from the treatment planning system to the data acquired by the OBD during a static couch procedure. The convolution kernel has been optimized using simple plans calculated in the Tomotherapy Cheese phantom. The optimal kernel has been found to be a lorentzian function, whose parameter Γ is 0.186 for the 1 cm jaw opening, 0.232 for the 2.5 cm jaw opening and 0.373 for the 5 cm jaw opening. The evaluation has been performed with a γ-index analysis. The dose criterion was 3% of the 95th percentile of the dose distribution and the distance-to-agreement criterion is 2 mm. In order to validate the procedure, it has been applied to around 50 clinical treatment plans, which had already been validated by the Delta4 phantom (Scandidos, Sweden). 96% of the tested plans have passed the criteria. Concerning the other 4%, significant discrepancies between the leaf pattern in the leaf control sinogram and the OBD data have been shown, which might be due to differences in the leaf open time. This corresponds also to a higher sensitivity of this method over the Delta4, adding the possibility of better monitoring the treatment delivery.

  11. Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility

    NASA Astrophysics Data System (ADS)

    Kuzminchuk-Feuerstein, Natalia; Fabian, Benjamin; Diwisch, Marcel; Plaß, Wolfgang R.; Geissel, Hans; Ayet San Andrés, Samuel; Dickel, Timo; Knöbel, Ronja; Scheidenberger, Christoph; Sun, Baohua; Weick, Helmut

    2016-06-01

    A time-of-flight (TOF) detector is used for Isochronous Mass Spectrometry (IMS) with the projectile fragment separator FRS and the heavy-ion storage ring ESR. Exotic nuclei are spatially separated in flight with the FRS at about 70% of the speed of light and are injected into the ESR. The revolution times of the stored ions circulating in the ESR are measured with a thin transmission foil detector. When the ions penetrate the thin detector foil, secondary electrons (SEs) are emitted from the surface and provide the timing information in combination with microchannel plate (MCP) detectors. The isochronous transport of the SEs is performed by perpendicular superimposed electric and magnetic fields. The detection efficiency and the rate capability of the TOF detector have been studied in simulations and experiments. As a result the performance of the TOF detector has been improved substantially: (i) The SE collection efficiency was doubled by use of an optimized set of electric and magnetic field values; now SEs from almost the full area of the foil are transmitted to the MCP detectors. (ii) The rate capability of the TOF detector was improved by a factor of four by the use of MCPs with 5 μm pore size. (iii) With these MCPs and a carbon foil with a reduced thickness of 10 μg/cm2 the number of recorded revolutions in the ESR has been increased by nearly a factor of 10. The number of recorded revolutions determine the precision of the IMS experiments. Heavy-ion measurements were performed with neon ions at 322 MeV/u and uranium fission fragments at about 370 MeV/u. In addition, measurements with an alpha source were performed in the laboratory with a duplicate of the TOF detector.

  12. Jamming efficiency evaluation of the IR smoke screen against high-orbit IR detector

    NASA Astrophysics Data System (ADS)

    Gao, Gui-qing; Li, Yong-xiang

    2011-08-01

    In order to lower the orientating capability of the DSP satellite, at first the paper analyzes early warning missile satellite detective system, introduces the jamming mechanism of infrared smoke screen, and a model of jamming efficiency evaluation of the IR smoke screen against early warning satellite was built from three sides of absorbency of smoke screen to infrared radiation, dispersion ability and infrared radiation from smoke screen self. At last the correlative conclusion was got based on the brief depiction of Early-warning Satellite.

  13. Large-area NbN superconducting nanowire avalanche photon detectors with saturated detection efficiency

    NASA Astrophysics Data System (ADS)

    Murphy, Ryan P.; Grein, Matthew E.; Gudmundsen, Theodore J.; McCaughan, Adam; Najafi, Faraz; Berggren, Karl K.; Marsili, Francesco; Dauler, Eric A.

    2015-05-01

    Superconducting circuits comprising SNSPDs placed in parallel—superconducting nanowire avalanche photodetectors, or SNAPs—have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 μm with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.

  14. FOUR PI CALIBRATION AND MODELING OF A BARE GERMANIUM DETECTOR IN A CYLINDRICAL FIELD SOURCE

    SciTech Connect

    Dewberry, R.; Young, J.

    2011-04-29

    In reference 1 the authors described {gamma}-ray holdup assay of a Mossbauer spectroscopy instrument where they utilized two axial symmetric cylindrical shell acquisitions and two disk source acquisitions to determine Am-241 and Np-237 contamination. The measured contents of the two species were determined using a general detector efficiency calibration taken from a 12-inch point source.2 The authors corrected the raw spectra for container absorption as well as for geometry corrections to transform the calibration curve to the applicable axial symmetric cylindrical source - and disk source - of contamination. The authors derived the geometry corrections with exact calculus that are shown in equations (1) and (2) of our Experimental section. A cylindrical shell (oven source) acquisition configuration is described in reference 3, where the authors disclosed this configuration to gain improved sensitivity for holdup measure of U-235 in a ten-chamber oven. The oven was a piece of process equipment used in the Savannah River Plant M-Area Uranium Fuel Fabrication plant for which a U-235 holdup measurement was necessary for its decontamination and decommissioning in 2003.4 In reference 4 the authors calibrated a bare NaI detector for these U-235 holdup measurements. In references 5 and 6 the authors calibrated a bare HpGe detector in a cylindrical shell configuration for improved sensitivity measurements of U-235 in other M-Area process equipment. Sensitivity was vastly improved compared to a close field view of the sample, with detection efficiency of greater than 1% for the 185.7-keV {gamma}-ray from U-235. In none of references 3 - 7 did the authors resolve the exact calculus descriptions of the acquisition configurations. Only the empirical efficiency for detection of the 185.7-keV photon from U-235 decay was obtained. Not until the 2010 paper of reference 1 did the authors derive a good theoretical description of the flux of photons onto the front face of a detector

  15. Absolute detection efficiency of a microchannel plate detector to X rays in the 1-100 KeV energy range

    NASA Astrophysics Data System (ADS)

    Burginyon, Gary A.; Jacoby, Barry A.; Wobser, James K.; Ernst, Richard; Ancheta, Dione S.; Tirsell, Kenneth G.

    1993-02-01

    There is little information in the literature on the performance of working micro-channel plate (MCP) detectors at high x-ray energies. We have measured the absolute efficiency of a microchannel-plate-intensified, subnanosecond, one dimensional imaging x-ray detector developed at LLNL in the 1 to 100 keV range and at 1.25 MeV. The detector consists of a gold photocathode deposited on the front surface of the MCP (optimized for Ni K(subscript (alpha) ) x rays) to convert x rays to electrons, an MCP to amplify the electrons, and a fast In:CdS phosphor that converts the electron's kinetic energy to light. The phosphor is coated on a fiber-optic faceplate to transmit the light out of the vacuum system. Electrostatic focusing electrodes compress the electron current out of the MCP in one dimension while preserving spatial resolution in the other. The calibration geometry, dictated by a recent experiment, required grazing incidence x rays (15.6 degree(s)) onto the MCP detector in order to maximize deliverable current. The experiment also used a second detector made up of 0.071 in. thick BC422 plastic scintillator material from the Bicron Corporation. We compare the absolute efficiencies of these two detectors in units of optical W/cm(superscript 2) into 4 (pi) per x ray W/cm(superscript 2) incident. At 7.47 keV and 900 volts MCP bias, the MCP detector delivers approximately 1400 times more light than the scintillator detector.

  16. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  17. Ratio of germanium detector peak efficiencies at photon energies of 4.4 and 11.7 MeV: Experiment versus simulation

    NASA Astrophysics Data System (ADS)

    Carson, Spencer; Iliadis, Christian; Cesaratto, John; Champagne, Art; Downen, Lori; Ivanovic, Marija; Kelley, John; Longland, Richard; Newton, Joseph R.; Rusev, Gencho; Tonchev, Anton P.

    2010-06-01

    Full-energy peak efficiencies of germanium detectors are frequently investigated at γ-ray energies below 4 MeV using calibrated radioactive sources, while very accurate peak efficiencies for higher photon energies are essentially non-existent. Peak efficiencies in the energy range of Eγ=4-12 MeV are crucial for a number of applications, including nuclear astrophysics measurements of fusion reactions and resonance fluorescence experiments. We report on a novel method, using the 163 keV resonance in the B11(p,γ)C12 reaction, of measuring accurately the ratio of full-energy peak efficiencies at 4.44 and 11.66 MeV. We derive this ratio for three different detector-target distances (3, 12 and 26 cm) directly from measured peak intensities and demonstrate that corrections are small ( γ-ray branching ratios, angular correlations, coincidence summing). Our measured full-energy peak efficiency ratios have a precision of 1.4-1.6%. Another important goal of our study was to determine to what precision full-energy peak efficiencies at high γ-ray energies can be predicted using the simulation codes Geant3 and Geant4. We imaged our detector using computed tomography and radiographs in order to extract reliable detector crystal dimensions. Based on these results, extensive computer simulations are performed. We find that the simulation results agree with the measured peak efficiency ratios within an uncertainty of 1.6% for Geant4 and 2.6% for Geant3. Our results are useful for assigning uncertainties when peak efficiencies are extrapolated from low energy data to high energies based on simulations only.

  18. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  19. Studies with a low-background germanium detector in the Holborn Underground laboratory

    NASA Astrophysics Data System (ADS)

    Barton, J. C.

    1995-02-01

    This paper reports on the performance and use of a low background HPGe detector, which was operated in the Holborn Underground laboratory from May 1990 to July 1993, and on some of the results obtained from it. The analysis includes sections on measuring the efficiency of the system and a discussion of the contributions to the background. Most of the materials studied were those being considered for use in the Solar Neutrino Observatory or in the UK Dark Matter programme. Results for the natural radioactivity in various classes of materials include those for the glass used in photomultipliers, the extent of non-equilibrium in the main decay series of thorium and uranium and the presence of protactinium in samples of zirconium oxide. There is also a summary of the cosmogenic isotopes found in the meteorite Glatton which fell in 1991.

  20. GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.

    PubMed

    Alrefae, Tareq

    2014-11-01

    A simple method of efficiency calibration for gamma spectrometry was performed. This method, which focused on measuring airborne radioactivity collected on filter paper, was based on Monte Carlo simulations using the toolkit GEANT4. Experimentally, the efficiency values of an HPGe detector were calculated for a multi-gamma disk source. These efficiency values were compared to their counterparts produced by a computer code that simulated experimental conditions. Such comparison revealed biases of 24, 10, 1, 3, 7, and 3% for the radionuclides (photon energies in keV) of Ce (166), Sn (392), Cs (662), Co (1,173), Co (1,333), and Y (1,836), respectively. The output of the simulation code was in acceptable agreement with the experimental findings, thus validating the proposed method. PMID:25271933

  1. A high quantum efficiency in situ doped mid-wavelength infrared p-on-n homojunction superlattice detector grown by photoassisted molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Harris, K. A.; Myers, T. H.; Yanka, R. W.; Mohnkern, L. M.; Otsuka, N.

    1991-10-01

    HgTe/CdTe superlattices in infrared (IR) detector structures have been theoretically shown to allow for better control over cutoff wavelength, minimize diffusion currents, and greatly reduce band-to-band tunneling currents as compared with the corresponding HgCdTe alloy. However, the few HgTe/CdTe superlattice detectors that have been fabricated exhibit little or no quantum efficiency. In this paper, we report the first high quantum efficiency mid-wavelength infrared (MWIR) detectors based on HgTe/CdTe superlattices. This result is significant because it represents the first experimental verification that IR detectors with useful characteristics can in fact be fabricated from HgTe/CdTe superlattices. The MWIR detectors were fabricated from an in situ doped p-on-n MWIR homojunction superlattice epilayer grown by photoassisted molecular-beam epitaxy (PAMBE). This growth technique produces low defect growth of superlattice material, as is described in this paper. Our development of an extrinsic doping technology using indium and arsenic as the n-type and p-type dopants, respectively, led to the successful doping of the superlattice and is also discussed.

  2. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm

    SciTech Connect

    Comandar, L. C.; Fröhlich, B.; Dynes, J. F.; Sharpe, A. W.; Lucamarini, M.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2015-02-28

    We report on a gated single-photon detector based on InGaAs/InP avalanche photodiodes (APDs) with a single-photon detection efficiency exceeding 55% at 1550 nm. Our detector is gated at 1 GHz and employs the self-differencing technique for gate transient suppression. It can operate nearly dead time free, except for the one clock cycle dead time intrinsic to self-differencing, and we demonstrate a count rate of 500 Mcps. We present a careful analysis of the optimal driving conditions of the APD measured with a dead time free detector characterization setup. It is found that a shortened gate width of 360 ps together with an increased driving signal amplitude and operation at higher temperatures leads to improved performance of the detector. We achieve an afterpulse probability of 7% at 50% detection efficiency with dead time free measurement and a record efficiency for InGaAs/InP APDs of 55% at an afterpulse probability of only 10.2% with a moderate dead time of 10 ns.

  3. Efficiency calibration and coincidence summing correction for large arrays of NaI(Tl) detectors in soccer-ball and castle geometries

    NASA Astrophysics Data System (ADS)

    Anil Kumar, G.; Mazumdar, I.; Gothe, D. A.

    2009-11-01

    Efficiency calibration and coincidence summing correction have been performed for two large arrays of NaI(Tl) detectors in two different configurations. They are, a compact array of 32 conical detectors of pentagonal and hexagonal shapes in soccer-ball geometry and an array of 14 straight hexagonal NaI(Tl) detectors in castle geometry. Both of these arrays provide a large solid angle of detection, leading to considerable coincidence summing of gamma rays. The present work aims to understand the effect of coincidence summing of gamma rays while determining the energy dependence of efficiencies of these two arrays. We have carried out extensive GEANT4 simulations with radio-nuclides that decay with a two-step cascade, considering both arrays in their realistic geometries. The absolute efficiencies have been simulated for gamma energies from 700 to 2800 keV using four different double-photon emitters, namely, 60Co, 46Sc, 94Nb and 24Na. The efficiencies so obtained have been corrected for coincidence summing using the method proposed by Vidmar et al. [11]. The simulations have also been carried out for the same energies assuming mono-energetic point sources, for comparison. Experimental measurements have also been carried out using calibrated point sources of 137Cs and 60Co. The simulated and the experimental results are found to be in good agreement. This demonstrates the reliability of the correction method [11] for efficiency calibration of two large arrays in very different configurations.

  4. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  5. Development of a CZT drift ring detector for X and γ ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Boothman, V.; Veeramani, P.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2015-04-01

    CdTe and CZT detectors are considered better choices for high energy γ and X-ray spectroscopy in comparison to Si and HPGe detectors due to their good quantum efficiency and room temperature operation. The performance limitations in CdTe and CZT detectors are mainly associated with poor hole transport and trapping phenomena. Among many techniques that can be used to eliminate the effect of the poor charge transport properties of holes in CdTe and CZT material, the drift ring technique shows promising results. In this work, the performance of a 2.3 mm thick CZT drift ring detector is investigated. Spatially resolved measurements were carried out with an X-ray microbeam (25 and 75 keV) at the Diamond Light Source synchrotron to study the response uniformity and extent of the active area. Higher energy photon irradiation was also carried out at up to 662 keV using different radioisotopes to complement the microbeam data. Different biasing schemes were investigated in terms of biasing the cathode rear electrode (bulk field) and the ring electrodes (lateral fields). The results show that increasing the bulk field with fixed-ratio ring biases and lateral fields with fixed bulk fields increase the active area of the device significantly, which contrasts with previous studies in CdTe, where only an increasing lateral field resulted in an improvement of device performance. This difference is attributed to the larger thickness of the CZT device reported here.

  6. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions

    SciTech Connect

    Yun, Seungman; Tanguay, Jesse; Cunningham, Ian A.; Kim, Ho Kyung

    2013-04-15

    Purpose: Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. Methods: A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an 'energy-labeled reabsorption' process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. Results: The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. Conclusions: A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20

  7. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources.

    PubMed

    Markoff, Diane M; Cianciolo, Vince; Britton, Chuck L; Cooper, Ronald G; Greene, Geoff L

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented (3)He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using (3)He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  8. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources

    PubMed Central

    Markoff, Diane M.; Cianciolo, Vince; Britton, Chuck L.; Cooper, Ronald G.; Greene, Geoff L.

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented 3He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using 3He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  9. Novel and efficient 10B lined tubelet detector as a replacement for 3He neutron proportional counters

    NASA Astrophysics Data System (ADS)

    Tsorbatzoglou, Kyriakos; McKeag, Robert D.

    2011-10-01

    This paper presents a novel and robust proportional detector which addresses the well publicized shortage of 3He gas by using a 10B lining applied to a tubelet configuration. The advantage of the tubelet structure is that it yields a detector maintaining the form factor of a conventional 3He tube whilst achieving a sensitivity of up to 75% of a 3 atm 3He device. The design and fabrication of the tubelet detector is presented and discussed with test data comparing the new detector to existing 3He and BF 3 tubes. The application of the tubelet design to security and industrial applications including retro-fitting to existing portals and suitability for high integrity oil and gas installations is addressed.

  10. Small Scale Assessment of Spatial and Vertical Redistribution of Fukushima Fallouts Radiocaesium in Contaminated Soil Using in-situ HPGe Gamma Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Patin, J.; Onda, Y.; Yoda, H.; Kato, H.

    2011-12-01

    After Tohoku earthquake on March 11th 2011, the subsequent tsunami and the resulting Fukushima Daiichi Nuclear Power Plant disaster, gamma emitting particles, first release into the atmosphere, were quickly deposited on the soil surface, with potentially harmful level in the surroundings of the nuclear power plant. Thus, the evaluation of soil deposition pattern, depth migration and afterward radionuclides redistribution and export by erosion and hydrological processes is fundamental for contamination assessments and to plan future actions. Our study site is located 37km from Fukushima power plant, inside the evacuated zone. In this study, we used a bounded erosion plot of 22.1m x 5m to assess global export of sediments and 137Cs. This plot, previously cropped with tobacco, is morphologically divided into inter-rill areas separated by rills that formed into former wheel tracks. The bottom of the plot is subject to deposition of sediments. In order to determine and quantify the internal processes responsible of the export of sediment, the depth distribution of 137Cs is estimated using a portable High Purity Germanium (HPGe) detector. Such a portable device, associated to the high radiation levels, allow an acquisition of spatially distributed data within the plot in a reasonable time (1 min/sample). At the same time, depth distribution of 137Cs are measured using the scrapper plate technique, adapted to obtain a fine resolution in the first, highly contaminated, centimeters of soil. Finally, 137Cs depth profiles, associated with in situ and laboratory gamma spectrums acquired with the portable detector, allow for the detector calibration. Although the initial deposit can reasonably be supposed homogeneous at the plot scale, the dataset obtained 3 months later shows high spatial and temporal variability due to erosion processes. Measurements with the portable HPGe detector proved to be useful at this small scale, avoiding the needs of a large number of soil samples

  11. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  12. Strategy of HPGe screening measurements in the SuperNEMO experiment

    SciTech Connect

    Perrot, Frédéric [Université de Bordeaux, Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Chemin du Solarium, Le Haut-Vigneau, BP120, F-33175 Gradignan, France and CNRS Collaboration: SuperNEMO Collaboration

    2013-08-08

    SuperNEMO is a double beta decay experiment that will use a tracko-calorimeter technique. The goal is to reach a sensitivity of T{sub 1/2}(0ν)>10{sup 26} y corresponding to an effective Majorana neutrino mass of 0.04-0.11 eV with 100 kg of {sup 82}Se. The general strategy of the HPGe screening measurements is described for the materials of the SuperNEMO demonstrator, regarding their radiopurity and their location. The two platforms, PRISNA and LSM, used for this screening are also briefly described.

  13. Enhanced Detection Efficiency of Direct Conversion X-ray Detector Using Polyimide as Hole-Blocking Layer

    PubMed Central

    Abbaszadeh, Shiva; Scott, Christopher C.; Bubon, Oleksandr; Reznik, Alla; Karim, Karim S.

    2013-01-01

    In this article we demonstrate the performance of a direct conversion amorphous selenium (a-Se) X-ray detector using biphenyldisnhydride/1,4 phenylenediamine (BPDA/PPD) polyimide (PI) as a hole-blocking layer. The use of a PI layer with a-Se allows detector operation at high electric fields (≥10 V/μm) while maintaining low dark current, without deterioration of transient performance. The hole mobility of the PI/a-Se device is measured by the time-of-flight method at different electric fields to investigate the effect of the PI layer on detector performance. It was found that hole mobility as high as 0.75 cm2/Vs is achievable by increasing the electric field in the PI/a-Se device structure. Avalanche multiplication is also shown to be achievable when using PI as a blocking layer. Increasing the electric field within a-Se reduces the X-ray ionization energy, increases hole mobility, and improves the dynamic range and sensitivity of the detector. PMID:24285255

  14. Enhanced Detection Efficiency of Direct Conversion X-ray Detector Using Polyimide as Hole-Blocking Layer

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Scott, Christopher C.; Bubon, Oleksandr; Reznik, Alla; Karim, Karim S.

    2013-11-01

    In this article we demonstrate the performance of a direct conversion amorphous selenium (a-Se) X-ray detector using biphenyldisnhydride/1,4 phenylenediamine (BPDA/PPD) polyimide (PI) as a hole-blocking layer. The use of a PI layer with a-Se allows detector operation at high electric fields (>=10 V/μm) while maintaining low dark current, without deterioration of transient performance. The hole mobility of the PI/a-Se device is measured by the time-of-flight method at different electric fields to investigate the effect of the PI layer on detector performance. It was found that hole mobility as high as 0.75 cm2/Vs is achievable by increasing the electric field in the PI/a-Se device structure. Avalanche multiplication is also shown to be achievable when using PI as a blocking layer. Increasing the electric field within a-Se reduces the X-ray ionization energy, increases hole mobility, and improves the dynamic range and sensitivity of the detector.

  15. Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer.

    PubMed

    Abbaszadeh, Shiva; Scott, Christopher C; Bubon, Oleksandr; Reznik, Alla; Karim, Karim S

    2013-01-01

    In this article we demonstrate the performance of a direct conversion amorphous selenium (a-Se) X-ray detector using biphenyldisnhydride/1,4 phenylenediamine (BPDA/PPD) polyimide (PI) as a hole-blocking layer. The use of a PI layer with a-Se allows detector operation at high electric fields (≥10 V/μm) while maintaining low dark current, without deterioration of transient performance. The hole mobility of the PI/a-Se device is measured by the time-of-flight method at different electric fields to investigate the effect of the PI layer on detector performance. It was found that hole mobility as high as 0.75 cm(2)/Vs is achievable by increasing the electric field in the PI/a-Se device structure. Avalanche multiplication is also shown to be achievable when using PI as a blocking layer. Increasing the electric field within a-Se reduces the X-ray ionization energy, increases hole mobility, and improves the dynamic range and sensitivity of the detector. PMID:24285255

  16. Efficiency of the cross-correlation statistic for gravitational wave stochastic background signals with non-Gaussian noise and heterogeneous detector sensitivities

    NASA Astrophysics Data System (ADS)

    Martellini, Lionel; Regimbau, Tania

    2015-11-01

    Under standard assumptions including stationary and serially uncorrelated Gaussian gravitational wave stochastic background signal and noise distributions, as well as homogenous detector sensitivities, the standard cross-correlation detection statistic is known to be optimal in the sense of minimizing the probability of a false dismissal at a fixed value of the probability of a false alarm. The focus of this paper is to analyze the comparative efficiency of this statistic, vs a simple alternative statistic obtained by cross-correlating the squared measurements, in situations that deviate from such standard assumptions. We find that differences in detector sensitivities have a large impact on the comparative efficiency of the cross-correlation detection statistic, which is dominated by the alternative statistic when these differences reach 1 order of magnitude. This effect holds even when both the signal and noise distributions are Gaussian. While the presence of non-Gaussian signals has no material impact for reasonable parameter values, the relative inefficiency of the cross-correlation statistic is less prominent for fat-tailed noise distributions, but it is magnified in case noise distributions have skewness parameters of opposite signs. Our results suggest that introducing an alternative detection statistic can lead to noticeable sensitivity gains when noise distributions are possibly non-Gaussian and/or when detector sensitivities exhibit substantial differences, a situation that is expected to hold in joint detections from Advanced LIGO and Advanced Virgo, in particular in the early phases of development of the detectors, or in joint detections from Advanced LIGO and the Einstein Telescope.

  17. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite

    SciTech Connect

    Tanaka, Y. T.; Yoshikawa, I.; Yoshioka, K.; Terasawa, T.; Saito, Y.; Mukai, T.

    2007-03-15

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%{+-}0.71% and 0.21%{+-}0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  18. Beta-gamma coincidence counting efficiency and energy resolution optimization by Geant4 Monte Carlo simulations for a phoswich well detector.

    PubMed

    Zhang, Weihua; Mekarski, Pawel; Ungar, Kurt

    2010-12-01

    A single-channel phoswich well detector has been assessed and analysed in order to improve beta-gamma coincidence measurement sensitivity of (131m)Xe and (133m)Xe. This newly designed phoswich well detector consists of a plastic cell (BC-404) embedded in a CsI(Tl) crystal coupled to a photomultiplier tube (PMT). It can be used to distinguish 30.0-keV X-ray signals of (131m)Xe and (133m)Xe using their unique coincidence signatures between the conversion electrons (CEs) and the 30.0-keV X-rays. The optimum coincidence efficiency signal depends on the energy resolutions of the two CE peaks, which could be affected by relative positions of the plastic cell to the CsI(Tl) because the embedded plastic cell would interrupt scintillation light path from the CsI(Tl) crystal to the PMT. In this study, several relative positions between the embedded plastic cell and the CsI(Tl) crystal have been evaluated using Monte Carlo modeling for its effects on coincidence detection efficiency and X-ray and CE energy resolutions. The results indicate that the energy resolution and beta-gamma coincidence counting efficiency of X-ray and CE depend significantly on the plastic cell locations inside the CsI(Tl). The degraded X-ray and CE peak energy resolutions due to light collection efficiency deterioration by the embedded cell can be minimised. The optimum of CE and X-ray energy resolution, beta-gamma coincidence efficiency as well as the ease of manufacturing could be achieved by varying the embedded plastic cell positions inside the CsI(Tl) and consequently setting the most efficient geometry. PMID:20598559

  19. An experimental method for the determination of spatial-frequency-dependent detective quantum efficiency (DQE) of scintillators used in X-ray imaging detectors

    NASA Astrophysics Data System (ADS)

    Kandarakis, I.; Cavouras, D.; Panayiotakis, G. S.; Triantis, D.; Nomicos, C. D.

    1997-02-01

    The spatial-frequency-dependent detective quantum efficiency (DQE) of imaging scintillators was studied independently of the optical detector (film, photocathode, or photodiode) employed in medical imaging devices. A method was developed to experimentally determine the scintillator DQE in terms of its luminescence efficiency (LE), quantum detection efficiency, modulation transfer function, and light emission spectrum. Gd 2O 2S : Tb, La 2O 2S : Tb, Y 2O 2S : Tb and ZnSCdS : Ag scintillating screens were prepared in laboratory and were excited to luminescence by a medical X-ray tube. Maximum DQE values varied between 0.13 and 0.33 depending on the scintillator material, the screen coating weight, and the tube voltage; Gd 2O 2S : Tb was superior to La 2O 2S : Tb followed by ZnSCdS : Ag and Y 2O 2S : Tb. This ranking was maintained at frequencies up to 100 cycles/cm. Considering the same material, DQE of thin screens was found superior to DQE of thicker screens at medium-to-high frequencies. The proposed method allows for the comparison of imaging characteristics of scintillating materials without the inclusion of optical detector imaging properties.

  20. 500 MHz neutron detector

    SciTech Connect

    Yen, Yi-Fen; Bowman, J.D.; Matsuda, Y.

    1993-12-01

    A {sup 10}B-loaded scintillation detector was built for neutron transmission measurements at the Los Alamos Neutron Scattering Center. The efficiency of the detector is nearly 100% for neutron energies from 0 to 1 keV. The neutron moderation time in the scintillator is about 250 ns and is energy independent. The detector and data processing system are designed to handle an instantaneous rate as high as 500 MHz. The active area of the detector is 40 cm in diameter.

  1. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications.

    PubMed

    Rosenberg, M J; Séguin, F H; Waugh, C J; Rinderknecht, H G; Orozco, D; Frenje, J A; Johnson, M Gatu; Sio, H; Zylstra, A B; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Stoeckl, C; Hohenberger, M; Sangster, T C; LePape, S; Mackinnon, A J; Bionta, R M; Landen, O L; Zacharias, R A; Kim, Y; Herrmann, H W; Kilkenny, J D

    2014-04-01

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5-8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7-4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10(6) cm(-2). A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount. PMID:24784597

  2. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    SciTech Connect

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; Zacharias, R. A.; Kim, Y.; Herrmann, H. W.; Kilkenny, J. D.

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.

  3. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    DOE PAGESBeta

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; et al

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less

  4. Monte Carlo simulation of a PhosWatch detector using Geant4 for xenon isotope beta-gamma coincidence spectrum profile and detection efficiency calculations.

    PubMed

    Mekarski, P; Zhang, W; Ungar, K; Bean, M; Korpach, E

    2009-10-01

    A simulation tool has been developed using the Geant4 Toolkit to simulate a PhosWatch single channel beta-gamma coincidence detection system consisting of a CsI(Tl)/BC404 Phoswich well detector and pulse shape analysis algorithms implemented digital signal processor. The tool can be used to simulate the detector's response for all the gamma rays and beta particles emitted from (135)Xe, (133m)Xe, (133)Xe, (131m)Xe and (214)Pb. Two- and three-dimensional beta-gamma coincidence spectra from the PhosWatch detector can be produced using the simulation tool. The accurately simulated spectra could be used to calculate system coincidence detection efficiency for each xenon isotope, the corrections for the interference from the various spectral components from radon and xenon isotopes, and system gain calibration. Also, it can generate two- and three-dimensional xenon reference spectra to test beta-gamma coincidence spectral deconvolution analysis software. PMID:19647444

  5. On the increase of ultraviolet radiation detection efficiency in nuclear particle detectors with the help of transparent wavelength shifter films

    NASA Astrophysics Data System (ADS)

    Gorin, A. M.; Kakauridze, G. D.; Peresypkin, A. I.; Polyakov, V. A.; Rykalin, V. I.; Tzhadadze, E. G.

    1986-11-01

    The performance of transparent wavelength shifters (WLS) on the base of polymethylmethacrylate and organic luminophors has been studied. Measurements have been carried out in the near and far ultraviolet. Using multicomponent WLS covering the photomultiplier (PM) window, the maximum quantum efficiency of the PM photocathode was increased up to 30%. Due to the use of WLS in the gas Cherenkov counter (radiator Fr-12) a photoelectric efficiency 2.3 times higher than for FEU-110 has been obtained. Now the FEU-110 photoelectric efficiency equals to photoelectric efficiency of the 56DUVP PM.

  6. Investigation of quantum efficiency in mid-wave infrared (MWIR) InAs/GaSb type-II strained layer superlattice (T2SL) detectors

    NASA Astrophysics Data System (ADS)

    Acosta, Lilian; Klein, Brianna; Tian, Zhao-Bing; Frantz, Eric; Myers, Stephen; Gautam, Nutan; Schuler-Sandy, Ted; Plis, Elena; Krishna, Sanjay

    2014-02-01

    The objective of this study is to optimize the absorption in the active region of InAs/GaSb T2SL photodetectors for the realization of high-performance MWIR devices. Two sets of MWIR (λ100% cut-off ~ 5.5μm at 77K) T2SL detectors were realized; one set with varied detector absorber thickness, the other set with varied T2SL period. The T2SL material quality was evaluated on the basis of room temperature photoluminescence (RTPL) and the high-resolution X-ray diffraction (HRXRD) data. Then the device performance was compared using spectral response, dark current and responsivity measurements. Finally, quantum efficiency was calculated and employed as a metric for the definition of the optimal T2SL period and active region thickness. For the first part of the study, a homojunction pin architecture based on 8 monolayers (MLs) InAs/8MLs GaSb T2SL was used. The thickness of the non-intentionally doped absorber layers were 1.5μm, 2.5μm, and 3.5μm. For the second part of the study, unipolar barrier (pBiBn) devices were grown. The thickness of the absorber region and the T2SL constituent InAs layer thicknesses were kept the same (1.5 μm and 8 MLs, respectively) whereas the T2SL constituent GaSb thickness was varied as 6 MLs, 8 MLs, and 10 MLs. We have found that the pin detector with 2.5 μm thick absorber and the pBiBn detector with 8 ML InAs/ 8 ML GaSb T2SL composition are, within the scope of this study, optimal for the realization of MWIR single-element devices and FPAs with corresponding architectures.

  7. Analytical modeling of relative luminescence efficiency of Al2O3:C optically stimulated luminescence detectors exposed to high-energy heavy charged particles.

    PubMed

    Sawakuchi, Gabriel O; Yukihara, Eduardo G

    2012-01-21

    The objective of this work is to test analytical models to calculate the luminescence efficiency of Al(2)O(3):C optically stimulated luminescence detectors (OSLDs) exposed to heavy charged particles with energies relevant to space dosimetry and particle therapy. We used the track structure model to obtain an analytical expression for the relative luminescence efficiency based on the average radial dose distribution produced by the heavy charged particle. We compared the relative luminescence efficiency calculated using seven different radial dose distribution models, including a modified model introduced in this work, with experimental data. The results obtained using the modified radial dose distribution function agreed within 20% with experimental data from Al(2)O(3):C OSLDs relative luminescence efficiency for particles with atomic number ranging from 1 to 54 and linear energy transfer in water from 0.2 up to 1368 keV µm(-1). In spite of the significant improvement over other radial dose distribution models, understanding of the underlying physical processes associated with these radial dose distribution models remain elusive and may represent a limitation of the track structure model. PMID:22173080

  8. Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors

    SciTech Connect

    Lusche, R. Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W.

    2014-07-28

    A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.

  9. Segmented crystalline scintillators: empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(TI) detector.

    PubMed

    Sawant, Amit; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Wang, Yi; Li, Yixin; Du, Hong; Perna, Louis

    2006-04-01

    Modern-day radiotherapy relies on highly sophisticated forms of image guidance in order to implement increasingly conformal treatment plans and achieve precise dose delivery. One of the most important goals of such image guidance is to delineate the clinical target volume from surrounding normal tissue during patient setup and dose delivery, thereby avoiding dependence on surrogates such as bony landmarks. In order to achieve this goal, it is necessary to integrate highly efficient imaging technology, capable of resolving soft-tissue contrast at very low doses, within the treatment setup. In this paper we report on the development of one such modality, which comprises a nonoptimized, prototype electronic portal imaging device (EPID) based on a 40 mm thick, segmented crystalline CsI(Tl) detector incorporated into an indirect-detection active matrix flat panel imager (AMFPI). The segmented detector consists of a matrix of 160 x 160 optically isolated, crystalline CsI(Tl) elements spaced at 1016 microm pitch. The detector was coupled to an indirect detection-based active matrix array having a pixel pitch of 508 microm, with each detector element registered to 2 x 2 array pixels. The performance of the prototype imager was evaluated under very low-dose radiotherapy conditions and compared to that of a conventional megavoltage AMFPI based on a Lanex Fast-B phosphor screen. Detailed quantitative measurements were performed in order to determine the x-ray sensitivity, modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE). In addition, images of a contrast-detail phantom and an anthropomorphic head phantom were also acquired. The prototype imager exhibited approximately 22 times higher zero-frequency DQE (approximately 22%) compared to that of the conventional AMFPI (approximately 1%). The measured zero-frequency DQE was found to be lower than theoretical upper limits (approximately 27%) calculated from Monte Carlo simulations, which

  10. Segmented crystalline scintillators: Empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(Tl) detector

    SciTech Connect

    Sawant, Amit; Antonuk, Larry E.; El-Mohri, Youcef; Zhao Qihua; Wang Yi; Li Yixin; Du Hong; Perna, Louis

    2006-04-15

    Modern-day radiotherapy relies on highly sophisticated forms of image guidance in order to implement increasingly conformal treatment plans and achieve precise dose delivery. One of the most important goals of such image guidance is to delineate the clinical target volume from surrounding normal tissue during patient setup and dose delivery, thereby avoiding dependence on surrogates such as bony landmarks. In order to achieve this goal, it is necessary to integrate highly efficient imaging technology, capable of resolving soft-tissue contrast at very low doses, within the treatment setup. In this paper we report on the development of one such modality, which comprises a nonoptimized, prototype electronic portal imaging device (EPID) based on a 40 mm thick, segmented crystalline CsI(Tl) detector incorporated into an indirect-detection active matrix flat panel imager (AMFPI). The segmented detector consists of a matrix of 160x160 optically isolated, crystalline CsI(Tl) elements spaced at 1016 {mu}m pitch. The detector was coupled to an indirect detection-based active matrix array having a pixel pitch of 508 {mu}m, with each detector element registered to 2x2 array pixels. The performance of the prototype imager was evaluated under very low-dose radiotherapy conditions and compared to that of a conventional megavoltage AMFPI based on a Lanex Fast-B phosphor screen. Detailed quantitative measurements were performed in order to determine the x-ray sensitivity, modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE). In addition, images of a contrast-detail phantom and an anthropomorphic head phantom were also acquired. The prototype imager exhibited approximately 22 times higher zero-frequency DQE ({approx}22%) compared to that of the conventional AMFPI ({approx}1%). The measured zero-frequency DQE was found to be lower than theoretical upper limits ({approx}27%) calculated from Monte Carlo simulations, which were based solely on the x

  11. Mathematical efficiency calibration with uncertain source geometries using smart optimization

    SciTech Connect

    Menaa, N.; Mirolo, L.

    2011-07-01

    The In Situ Object Counting Software (ISOCS), a mathematical method developed by CANBERRA, is a well established technique for computing High Purity Germanium (HPGe) detector efficiencies for a wide variety of source shapes and sizes. In the ISOCS method, the user needs to input the geometry related parameters such as: the source dimensions, matrix composition and density, along with the source-to-detector distance. In many applications, the source dimensions, the matrix material and density may not be well known. Under such circumstances, the efficiencies may not be very accurate since the modeled source geometry may not be very representative of the measured geometry. CANBERRA developed an efficiency optimization software known as 'Advanced ISOCS' that varies the not well known parameters within user specified intervals and determines the optimal efficiency shape and magnitude based on available benchmarks in the measured spectra. The benchmarks could be results from isotopic codes such as MGAU, MGA, IGA, or FRAM, activities from multi-line nuclides, and multiple counts of the same item taken in different geometries (from the side, bottom, top etc). The efficiency optimization is carried out using either a random search based on standard probability distributions, or using numerical techniques that carry out a more directed (referred to as 'smart' in this paper) search. Measurements were carried out using representative source geometries and radionuclide distributions. The radionuclide activities were determined using the optimum efficiency and compared against the true activities. The 'Advanced ISOCS' method has many applications among which are: Safeguards, Decommissioning and Decontamination, Non-Destructive Assay systems and Nuclear reactor outages maintenance. (authors)

  12. The measurement of gamma-emitting radionuclides in beach sand cores of coastal regions of Ramsar, Iran using HPGe detectors.

    PubMed

    Tari, Marziyeh; Moussavi Zarandi, Sayyed Ali; Mohammadi, Kheirollah; Zare, Mohammad Reza

    2013-09-15

    Radionuclides which present in different beach sands are sources of external exposure that contribute to the total radiation exposure of human. (226)Ra, (235)U, (232)Th, (40)K and (137)Cs analysis has been carried out in sand samples collected at six depth levels, from eight locations of the northern coast of Iran, Ramsar, using high-resolution gamma-ray spectroscopy. The average Specific activities of natural radionuclides viz., (226)Ra, (235)U, (232)Th, (40)K and (137)Cs, in the 0-36 cm depth sand were found as: 19.2±0.04, 2.67±0.17, 17.9±0.06, 337.5±0.61 and 3.35±0.12 Bq kg(-1), respectively. The effects of organic matter content and pH value of sand samples on the natural radionuclide levels were also investigated. Finally, the measured radionuclide concentrations in the Ramsar beach were compared with the world average values, as reported by UNSCEAR (2000). None of the studied beaches were considered as a radiological risk. PMID:23850123

  13. Power and area efficient 4-bit column-level ADC in a CMOS pixel sensor for the ILD vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, Ch; Hu, Y.

    2013-01-01

    A 48 × 64 pixels prototype CMOS pixel sensor (CPS) integrated with 4-bit column-level, self triggered ADCs for the outer layers of the ILD vertex detector (VTX) was developed and fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation. The ADCs accommodating the pixel read out in a rolling shutter mode complete the conversion by performing a multi-bit/step approximation. The design was optimised for power saving at sampling frequency. The prototype sensor is currently at the stage of being started testing and evaluation. So what is described is based on post simulation results rather than test data. This 4-bit ADC dissipates, at a 3-V supply and 6.25-MS/s sampling rate, 486 μW in its inactive mode, which is by far the most frequent. This value rises to 714 μW in case of the active mode. Its footprint amounts to 35 × 545 μm2.

  14. Stringed Planar-detectors for Investigation of Rare Event Physics

    NASA Astrophysics Data System (ADS)

    Wei, Wenzhao; Mei, Dongming; Zhang, Chao; Cubed Collaboration

    2013-10-01

    In the detection of rare event physics with HPGe detectors, conventional P-type Point Contact (PPC) or coaxial detectors have no capability of discriminating electron/nuclear recoils. The CDMS-type bolometers, which possess great electron/nuclear recoils discrimination, must be operated in milli-kelvin temperature range with diffusion refrigerator at high price. Alternatively, a new idea of using great granularity and plasma time difference in pulse shape to discriminate nuclear recoils from electronic recoils with conventional germanium detectors is discussed in this paper. Stringed planar germanium detectors have been designed in a Geant4-based Monte Carlo simulation in which radiogenic backgrounds from 60Co, 40K, 238U, 232Th, and (alpha,n) neutrons have been studied. We show the anticipated sensitivity of this new detector array for detecting rare event physics including neutrinoless double-beta decay.

  15. Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Heineck, Daniel; Voss, Lars F.; Wang, Tzu Fang; Shao, Qinghui

    2013-10-15

    Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The open space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.

  16. Charge carrier localization effects on the quantum efficiency and operating temperature range of InAsxP1-x/InP quantum well detectors

    NASA Astrophysics Data System (ADS)

    Vashisht, Geetanjali; Dixit, V. K.; Porwal, S.; Kumar, R.; Sharma, T. K.; Oak, S. M.

    2016-03-01

    The effect of charge carrier localization resulting in "S-shaped" temperature dependence of the photoluminescence peak energy of InAsxP1-x/InP quantum wells (QWs) is distinctly revealed by the temperature dependent surface photo voltage (SPV) and photoconductivity (PC) processes. It is observed that the escape efficiency of carriers from QWs depends on the localization energy, where the carriers are unable to contribute in SPV/PC signal below a critical temperature. Below the critical temperature, carriers are strongly trapped in the localized states and are therefore unable to escape from the QW. Further, the critical temperature increases with the magnitude of localization energy of carriers. Carrier localization thus plays a pivotal role in defining the operating temperature range of InAsxP1-x/InP QW detectors.

  17. Lower limits of spin detection efficiency for two-parameter two-qubit (TPTQ) states with non-ideal ferromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Majd, Nayereh; Ghasemi, Zahra

    2016-07-01

    We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell's inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.

  18. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  19. Intelligent Detector Design

    SciTech Connect

    Graf, N.A.; /SLAC

    2012-06-11

    As the complexity and resolution of imaging detectors increases, the need for detailed simulation of the experimental setup also becomes more important. Designing the detectors requires efficient tools to simulate the detector response and reconstruct the events. We have developed efficient and flexible tools for detailed physics and detector response simulation as well as event reconstruction and analysis. The primary goal has been to develop a software toolkit and computing infrastructure to allow physicists from universities and labs to quickly and easily conduct physics analyses and contribute to detector research and development. The application harnesses the full power of the Geant4 toolkit without requiring the end user to have any experience with either Geant4 or C++, thereby allowing the user to concentrate on the physics of the detector system.

  20. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    SciTech Connect

    Lavietes, A.D.; McQuaid, J.H.; Paulus, T.J.

    1995-09-08

    Lawrence Livermore National Laboratory (LLNL) and EG&G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems.

  1. A new experimental procedure for determination of photoelectric efficiency of a NaI(Tl) detector used for nuclear medicine liquid waste monitoring with traceability to a reference standard radionuclide calibrator.

    PubMed

    Ceccatelli, A; Campanella, F; Ciofetta, G; Marracino, F M; Cannatà, V

    2010-02-01

    To determine photopeak efficiency for (99m)Tc of the NaI(Tl) detector used for liquid waste monitoring at the Nuclear Medicine Unit of IRCCS Paediatric Hospital Bambino Gesù in Rome, a specific experimental procedure, with traceability to primary standards, was developed. Working with the Italian National Institute for Occupational Prevention and Safety, two different calibration source geometries were employed and the detector response dependence on geometry was investigated. The large percentage difference (almost 40%) between the two efficiency values obtained showed that geometrical effects cannot be neglected. PMID:19914080

  2. FILTUS: a desktop GUI for fast and efficient detection of disease-causing variants, including a novel autozygosity detector

    PubMed Central

    Vigeland, Magnus D.; Gjøtterud, Kristina S.; Selmer, Kaja K.

    2016-01-01

    Summary: FILTUS is a stand-alone tool for working with annotated variant files, e.g. when searching for variants causing Mendelian disease. Very flexible in terms of input file formats, FILTUS offers efficient filtering and a range of downstream utilities, including statistical analysis of gene sharing patterns, detection of de novo mutations in trios, quality control plots and autozygosity mapping. The autozygosity mapping is based on a hidden Markov model and enables accurate detection of autozygous regions directly from exome-scale variant files. Availability and implementation: FILTUS is written in Python and runs on Windows, Mac and Linux. Binaries and source code are freely available at http://folk.uio.no/magnusv/filtus.html and on GitHub: https://github.com/magnusdv/filtus. Automatic installation is available via PyPI (e.g. pip install filtus). Contact: magnusdv@medisin.uio.no Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26819469

  3. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras

    SciTech Connect

    Mackin, Dennis; Polf, Jerimy; Peterson, Steve; Beddar, Sam

    2013-01-15

    Purpose: The authors investigated how the characteristics of the detectors used in a three-stage Compton camera (CC) affect the CC's ability to accurately measure the emission distribution and energy spectrum of prompt gammas (PG) emitted by nuclear de-excitations during proton therapy. The detector characteristics they studied included the material (high-purity germanium [HPGe] and cadmium zinc telluride [CZT]), Doppler broadening (DB), and resolution (lateral, depth, and energy). Methods: The authors simulated three-stage HPGe and CZT CCs of various configurations, detecting gammas from point sources with energies ranging from 0.511 to 7.12 MeV. They also simulated a proton pencil beam irradiating a tissue target to study how the detector characteristics affect the PG data measured by CCs in a clinical proton therapy setting. They used three figures of merit: the distance of closest approach (DCA) and the point of closest approach (PCA) between the measured and actual position of the PG emission origin, and the calculated energy resolution. Results: For CCs with HPGe detectors, DB caused the DCA to be greater than 3 mm for 14% of the 6.13 MeV gammas and 20% of the 0.511 MeV gammas. For CCs with CZT detectors, DB caused the DCA to be greater than 3 mm for 18% of the 6.13 MeV gammas and 25% of the 0.511 MeV gammas. The full width at half maximum (FWHM) of the PCA in the z-caret direction for HPGe and CZT detectors ranged from 1.3 to 0.4 mm for gammas with incident energy ranging from 0.511 to 7.12 MeV. For CCs composed of HPGe detectors, the resolution of incident gamma energy calculated by the CC ranged from 6% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For CCs composed of CZT detectors, the resolution of gamma energy calculated by the CC ranged from 10% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For HPGe and CZT CCs in which all detector effect were included, the DCA was less than 3 mm for 75% and 68% of the

  4. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras

    PubMed Central

    Mackin, Dennis; Polf, Jerimy; Peterson, Steve; Beddar, Sam

    2013-01-01

    Purpose: The authors investigated how the characteristics of the detectors used in a three-stage Compton camera (CC) affect the CC's ability to accurately measure the emission distribution and energy spectrum of prompt gammas (PG) emitted by nuclear de-excitations during proton therapy. The detector characteristics they studied included the material (high-purity germanium [HPGe] and cadmium zinc telluride [CZT]), Doppler broadening (DB), and resolution (lateral, depth, and energy). Methods: The authors simulated three-stage HPGe and CZT CCs of various configurations, detecting gammas from point sources with energies ranging from 0.511 to 7.12 MeV. They also simulated a proton pencil beam irradiating a tissue target to study how the detector characteristics affect the PG data measured by CCs in a clinical proton therapy setting. They used three figures of merit: the distance of closest approach (DCA) and the point of closest approach (PCA) between the measured and actual position of the PG emission origin, and the calculated energy resolution. Results: For CCs with HPGe detectors, DB caused the DCA to be greater than 3 mm for 14% of the 6.13 MeV gammas and 20% of the 0.511 MeV gammas. For CCs with CZT detectors, DB caused the DCA to be greater than 3 mm for 18% of the 6.13 MeV gammas and 25% of the 0.511 MeV gammas. The full width at half maximum (FWHM) of the PCA in the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\hat z\\end{equation*} \\end{document}z^ direction for HPGe and CZT detectors ranged from 1.3 to 0.4 mm for gammas with incident energy ranging from 0.511 to 7.12 MeV. For CCs composed of HPGe detectors, the resolution of incident gamma energy calculated by the CC ranged from 6% to 1% for gammas with true incident energies from 0.511 to 7.12 Me

  5. Investigations of quantum efficiency in type-II InAs/GaSb very long wavelength infrared superlattice detectors

    NASA Astrophysics Data System (ADS)

    Li, Xiaochao; Jiang, Dongwei; Zhang, Yong; Liu, Gang; Wang, Dongbo; Yu, Qingjiang; Zhao, Liancheng

    2016-04-01

    In this paper, we have investigated the quantum efficiency (QE) of InAs/GaSb T2SL very long wavelength Infrared (VLWIR) photodetectors with 50% cutoff of 12.7 μm. Due to the small depletion width and similar absorption coefficient in the T2SL material system, the minority-carrier diffusion length was determined as the key element to improve the QE of VLWIR T2SL photodetectors. The minority-carrier diffusion length was estimated by a comparison of the experimental data with the Hovel model. Our result suggest that the short hole diffusion length (Lh ∼ 520 nm) and the large its ratio to the width of this region (xn/Lh) are considered against the photo-excited carrier collection in the T2SL photodetectors. In addition, the influence of surface recombination velocity (Sh) on the QE of the T2SL photodetectors is also studied. The change of QE with Sh is not so significant due to the relatively low absorption coefficient and short hole diffusion length in our photodetector.

  6. Detective quantum efficiency for photon-counting hybrid pixel detectors in the tender X-ray domain: application to Medipix3RX.

    PubMed

    Rinkel, Jean; Magalhães, Debora; Wagner, Franz; Meneau, Florian; Cesar Vicentin, Flavio

    2016-01-01

    Synchrotron-radiation-based X-ray imaging techniques using tender X-rays are facing a growing demand, in particular to probe the K absorption edges of low-Z elements. Here, a mathematical model has been developed for estimating the detective quantum efficiency (DQE) at zero spatial frequency in the tender X-ray energy range for photon-counting detectors by taking into account the influence of electronic noise. The experiments were carried out with a Medipix3RX ASIC bump-bonded to a 300 µm silicon sensor at the Soft X-ray Spectroscopy beamline (D04A-SXS) of the Brazilian Synchrotron Light Laboratory (LNLS, Campinas, Brazil). The results show that Medipix3RX can be used to develop new imaging modalities in the tender X-ray range for energies down to 2 keV. The efficiency and optimal DQE depend on the energy and flux of the photons. The optimal DQE values were found in the 7.9-8.6 keV photon energy range. The DQE deterioration for higher energies due to the lower absorption efficiency of the sensor and for lower energies due to the electronic noise has been quantified. The DQE for 3 keV photons and 1 × 10(4) photons pixel(-1) s(-1) is similar to that obtained with 19 keV photons. Based on our model, the use of Medipix3RX could be extended down to 2 keV which is crucial for coming applications in imaging techniques at modern synchrotron sources. PMID:26698065

  7. A direct comparison of Ge and Si(Li) detectors in the 2--20 keV range

    SciTech Connect

    Rossington, C.S.; Giauque, R.D.; Jaklevic, J.M.

    1991-10-01

    The spectral response of high purity Ge (HPGe) and lithium-drifted Si (Si(Li)) surface barrier detectors of similar geometry has been measured over a range of x-ray energies under identical experimental conditions. Detector characteristics such as spectral background, escape peak intensity, entrance window absorption, and energy resolution are presented and compared. Although these characteristic have been discussed in the literature previously, this paper represents an attempt to consolidate the information by making comparisons under equivalent experimental conditions for the two types of detectors. A primary goal of the study is a comparison of the two types of detectors for use in x-ray fluorescence applications.

  8. Two experiments in neutrino physics: Double beta decay of cadmium-116 and the efficiency of an argon-40 neutrino detector

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Manojeet

    1999-03-01

    This thesis contains work concerning two experiments related to searches for neutrino masses. 1. QRPA calculations of double-β-decays have not been able to reproduce data in the A = 100 system. We propose the A = 116 system-because of its smaller deformation-as a simpler system to test QRPA calculations. We performed two experiments that determine the previously unknown electron capture (EC) decay branch of 116In to be (2.27 ± 0.63) × 10- 2%, from which we deduce logft = 4.39- 0.15+0.10. We then used this EC logft value along with the well known βsp- logft values to predict the 2ν double-β decay rate of 116Cd to the g.s. and the first excited 0+ state of 116Sn. The prediction shows that the contribution to the double-β decay rate from the g.s could exceed the total decay rate indicating a cancellation of contributions from the excited states of 116In. 2. We studied β-delayed proton and γ emission from 40Ti decay. We found t1/over 2 = 53.6 ± 0.6 ms and observed 28 proton groups that we organized into a 40Ti decay with 21 branches. The reduced transition strengths of these decay branches were then used to compute the neutrino detection efficiency of the ICARUS liquid argon time-projection chamber. Our integrated GT strength is about 20% larger than the theoretical prediction. We found 40Ar(/nu,e) cross-sections (for an electron energy threshold W = 5 MeV) of (13.8 ± 0.3) × 10-43cm2, (74.0 ± 1.6) × 10- 43cm2 and (3.2 ± 0.1) × 10- 41cm2 for 8B neutrinos, hep neutrinos and supernova neutrinos characterized by a temperature of 4.5 MeV.

  9. New electronically black neutron detectors

    SciTech Connect

    Drake, D.M.; Feldman, W.C.; Hurlbut, C.

    1986-03-01

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors.

  10. A simultaneous measurement of the $b$-tagging efficiency scale factor and the $t\\bar{t}$ Production Cross Section at the Collider Detector at Fermilab

    SciTech Connect

    Hussain, Nazim; /McGill U.

    2011-07-01

    The ability to compare results between Monte Carlo and data is imperative in modern experimental high-energy physics analyses. The b-tagging efficiency Scale Factor (SF) allows for an accurate comparison of b quark identification in data samples and Monte Carlo. This thesis presents a simultaneous measurement of the SF for the SecVtx algorithm and the t{bar t} production cross section using 5.6 fb{sup -1} of p{bar p} collision data at {radical}s = 1.96 TeV collected by the Collider Detector at Fermilab (CDF) experiment. The t{bar t} cross section was measured to be 7.26 {+-} 0.47 pb, consistent with prior CDF analyses. The tight SF value was measured to be 0.925 {+-} 0.032 and the loose SF value was measured at 0.967 {+-} 0.033. These are the most precise SF SecVtx measurements to be performed at CDF to date.

  11. Multiple detectors "Influence Method".

    PubMed

    Rios, I J; Mayer, R E

    2016-05-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical description was recently published (Rios and Mayer, 2015b) and its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016). With the objective of further reducing the measurement uncertainties, in this article we extend the method for the case of multiple detectors placed one behind the other. The new estimators for the number of particles and the detection efficiency are herein derived. PMID:26943904

  12. Use of silicon pixel detectors in double electron capture experiments

    NASA Astrophysics Data System (ADS)

    Cermak, P.; Stekl, I.; Shitov, Yu A.; Mamedov, F.; Rukhadze, E. N.; Jose, J. M.; Cermak, J.; Rukhadze, N. I.; Brudanin, V. B.; Loaiza, P.

    2011-01-01

    A novel experimental approach to search for double electron capture (EC/EC) is discussed in this article. R&D for a new generation EC/EC spectrometer based on silicon pixel detectors (SPDs) has been conducted since 2009 for an upgrade of the TGV experiment. SPDs built on Timepix technology with a spectroscopic readout from each individual pixel are an effective tool to detect the 2νEC/EC signature of the two low energy X-rays hitting two separate pixels. The ability of SPDs to indentify α/β/γ particles and localize them precisely leads to effective background discrimination and thus considerable improvement of the signal-to-background ratio (S/B). A multi-SPD system, called a Silicon Pixel Telescope (SPT), is planned based on the experimental approach of the TGV calorimeter which measures thin foils of enriched EC/EC-isotope sandwiched between HPGe detectors working in coincidence mode. The sources of SPD internal background have been identified by measuring SPD radiopurity with a low-background HPGe detector as well as by long-term SPD background runs in the Modane underground laboratory (LSM, France), and results of these studies are presented.

  13. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  14. Gammasphere and Orruba:. Dual Detectors for Experimental Structure Studies

    NASA Astrophysics Data System (ADS)

    Ratkiewicz, A.; Cizewski, J. A.; Hardy, S.; Howard, M. E.; Manning, B.; Shand, C. M.; Pain, S. D.; Bardayan, D. W.; Matoš, M.; Blackmon, J. C.; Carpenter, M. P.; Lister, C. J.; Seweryniak, D.; Zhu, S.; Chipps, K. A.; Jones, K. L.; Kozub, R. L.; Peters, W. A.

    2014-09-01

    An outstanding question in nuclear structure is the evolution of single-neutron strength in open-shell neutron-rich nuclei. In the near term, accelerated beams of 252Cf fission fragments will be available with the ATLAS facility at Argonne National Laboratory through the CARIBU initiative. To exploit these beams, the Oak Ridge Rutgers University Barrel Array (ORRUBA) of positionsensitive silicon strip detectors is being coupled to the Gammasphere array of Compton-suppressed HPGe detectors. ORRUBA will be supplemented with up to four annular arrays of silicon strip detectors at backward and forward angles. The realization of this effort will enable high resolution studies of single-neutron excitations populated in (d,p) and (d,t) reaction studies in inverse kinematics with open-shell 252Cf fission fragment beams through the coincident detection of γ rays and particles.

  15. LEDs for Efficient Energy

    ERIC Educational Resources Information Center

    Guerin, David A.

    1978-01-01

    Light-emitting diodes (LEDs) are described and three classroom experiments are given, one to prove the, low power requirements and efficiency of LEDs, an LED on-off detector circuit, and the third an LED photoelectric smoke detector. (BB)

  16. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  17. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  18. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect

    Grudberg, Peter Matthew

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  19. Study of the counting efficiency of a WBC setup by using a computational 3D human body library in sitting position based on polygonal mesh surfaces.

    PubMed

    Fonseca, T C Ferreira; Bogaerts, R; Lebacq, A L; Mihailescu, C L; Vanhavere, F

    2014-04-01

    A realistic computational 3D human body library, called MaMP and FeMP (Male and Female Mesh Phantoms), based on polygonal mesh surface geometry, has been created to be used for numerical calibration of the whole body counter (WBC) system of the nuclear power plant (NPP) in Doel, Belgium. The main objective was to create flexible computational models varying in gender, body height, and mass for studying the morphology-induced variation of the detector counting efficiency (CE) and reducing the measurement uncertainties. First, the counting room and an HPGe detector were modeled using MCNPX (Monte Carlo radiation transport code). The validation of the model was carried out for different sample-detector geometries with point sources and a physical phantom. Second, CE values were calculated for a total of 36 different mesh phantoms in a seated position using the validated Monte Carlo model. This paper reports on the validation process of the in vivo whole body system and the CE calculated for different body heights and weights. The results reveal that the CE is strongly dependent on the individual body shape, size, and gender and may vary by a factor of 1.5 to 3 depending on the morphology aspects of the individual to be measured. PMID:24562069

  20. Photon detectors with gaseous amplification

    SciTech Connect

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  1. New setup for the characterisation of the AGATA detectors

    NASA Astrophysics Data System (ADS)

    Ha, T. M. H.; Korichi, A.; Le Blanc, F.; Désesquelles, P.; Dosme, N.; Grave, X.; Karkour, N.; Leboutelier, S.; Legay, E.; Linget, D.; Travers, B.; Pariset, P.

    2013-01-01

    A crucial step in the process of γ-ray tracking is related to the location of the interaction points of all the γ-rays within the AGATA (Advanced GAmma Tracking Array) segmented detectors. This requires a full understanding of the sensitivity of each highly segmented high-purity germanium (HPGe) detectors via the characterisation of the 2D and 3D position response. In this paper, we describe the experimental scanning setup that we developed at Orsay for the AGATA detectors. A collimated 137Cs source on an automated x-y positioning table was used for the front face scanning of the AGATA symmetric prototype detector. The 3D scanning measurement is performed using coincidence techniques based on γ-ray Compton scattering from the AGATA detector into an ancillary coupled detector. In our setup, TOHR (high resolution tomograph developed for small animal imaging) is used as an ancillary detector. The data is collected using TIGRESS cards for digital signal processing. The data flow, readout and storage is NARVAL as used for the full AGATA project. The analysis of the collected data and the obtained results is shown to illustrate our device performances.

  2. Electron-Photon Coincidence Calibration Of Photon Detectors

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1988-01-01

    Absolute and relative detector efficiencies measured. Apparatus uses coincidence-counting techniques to measure efficiency of ultraviolet or vacuum ultraviolet detector at very low radiation intensity. Crossed electron and atomic beams generate photons used to calibrate photon detector. Pulses from electron counter and photon detector(s) processed by standard coincidence-counting techniques. Used to calibrate other detectors or make absolute measurements of incident photon fluxes.

  3. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  4. Direct Detectors for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Clough, R. N.; Moldovan, G.; Kirkland, A. I.

    2014-06-01

    There is interest in improving the detectors used to capture images in transmission electron microscopy. Detectors with an improved modulation transfer function at high spatial frequencies allow for higher resolution in images at lower magnification, which leads to an increased effective field of view. Detectors with improved detective quantum efficiency are important for low dose applications. One way in which these performance enhancements can be achieved is through direct detection, where primary electrons are converted directly into suitable electrical signals by the detector rather than relying on an indirect electron to photon conversion before detection. In this paper we present the characterisation of detector performance for a number of different direct detection technologies, and compare these technologies to traditional indirect detectors. Overall our results show that direct detection enables a significant improvement in all aspects of detector performance.

  5. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  6. An efficient, FPGA-based, cluster detection algorithm implementation for a strip detector readout system in a Time Projection Chamber polarimeter

    NASA Astrophysics Data System (ADS)

    Gregory, Kyle J.; Hill, Joanne E.; Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-05-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photo- electron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  7. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  8. Evaluation of the efficiency of radioactive decontamination for alkyd and epoxy-urethane coating systems

    NASA Astrophysics Data System (ADS)

    Jevremović, Milutin; Milošević, Bratislav; Lazarević, Nataša

    2010-01-01

    This article presents experimental results obtained by the investigation of the efficiency of radioactive decontamination of a metal surface with alkyd and epoxy-urethane coating systems, which are used for the painting of military equipment. During the evaluation of the efficiency of decontamination, the impact of contaminants on the coating was not examined but the amount of contaminants residual after decontamination was, and was determined by activity measurements of the surface. The samples for testing were painted aluminum plates contaminated by liquid solutions of radioactive isotopes 60Co, 133Ba, 152Eu and 241Am (A=12297.91 Bq/ml). Decontamination of contaminated samples was performed with 0.5% detergent solution on the basis of synthetic surfactants. The activity measurements of samples were conducted using gamma spectroscopy system with a high-resolution high-purity germanium (HPGe) detector of relative efficiency of 50% at 60Co (1.33 MeV). The degree of removal of the radioactivity on the samples was observed as an indicator of the efficiency of decontamination. A comparison of the results is presented in relation to the retention time of the contamination on the surface coating, which is an important factor for the efficiency of decontamination. The samples with an alkyd coating system showed better efficiency of decontamination than the samples with the epoxy-urethane coating system, although the coatings based on epoxy and urethane resin were superior in relation to the alkyd in terms of protection, decorative characteristics and chemical resistance. The difference in the efficiency of decontamination for the examined coatings increases almost linearly in relation to the retention time of the contaminants in the coating.

  9. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  10. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  11. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  12. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  13. Radiation damage of germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.

    1978-01-01

    Energetic particles can produce interstitial-vacancy pairs in a crystal by knocking the atoms from their normal positions. Detectors are unique among semiconductor devices in depending on very low concentrations of electrically active impurities, and also on efficient transport of holes and electrons over relatively large distances. Because the dense regions of damage produced by energetic particles may result in donors and/or acceptors, and also provide trapping sites for holes and electrons, detectors are very sensitive to radiation damage. In addition to these effects occurring within the detector, radiation may also change the characteristics of the exposed surfaces causing unpredictable effects on the detector leakage current. Radiation-induced surface degradation has rarely, if ever, been observed for germanium detectors. The possibility of minimizing hole trapping in charge collection by the use of a high-purity germanium coaxial detector configured with the p (+) contact on the coaxial periphery is discussed.

  14. Mossbauer spectrometer radiation detector

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  15. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  16. Lanthanum Bromide Detectors for Safeguards Measurements

    SciTech Connect

    Wright, J.

    2011-05-25

    Lanthanum bromide has advantages over other popular inorganic scintillator detectors. Lanthanum bromide offers superior resolution, and good efficiency when compared to sodium iodide and lanthanum chloride. It is a good alternative to high purity germanium detectors for some safeguards applications. This paper offers an initial look at lanthanum bromide detectors. Resolution of lanthanum bromide will be compared lanthanum chloride and sodium-iodide detectors through check source measurements. Relative efficiency and angular dependence will be looked at. Nuclear material spectra, to include plutonium and highly enriched uranium, will be compared between detector types.

  17. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    SciTech Connect

    Howard, Chris; Daigle, Stephen; Buckner, Matt; Erikson, Luke E.; Runkle, Robert C.; Stave, Sean C.; Champagne, Art; Cooper, Andrew; Downen, Lori; Glasgow, Brian D.; Kelly, Keegan; Sallaska, Anne

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  18. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Howard, Chris; Daigle, Stephen; Buckner, Matt; Erikson, Luke E.; Runkle, Robert C.; Stave, Sean C.; Champagne, Arthur E.; Cooper, Andrew; Downen, Lori; Glasgow, Brian D.; Kelly, Keegan; Sallaska, Anne

    2015-05-01

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  19. Imaging MAMA detector systems

    NASA Astrophysics Data System (ADS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-07-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  20. Analysis of Cadmium Based Neutron Detector Configurations

    NASA Astrophysics Data System (ADS)

    James, Brian; Rees, Lawrence; Czirr, J. Bart

    2012-10-01

    Due to national security concerns pertaining to the smuggling of special nuclear materials and a small supply of He-3 for use in neutron detectors, there is currently a need for a new kind of neutron detector. Using Monte Carlo techniques I have studied the neutron capture efficiency of an array of cadmium wedge detectors in the presence of a californium source. By using varying numbers of wedges and comparing their capture ratios we will be better able to design future detectors.

  1. A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique and Three Types of Gamma-ray Detectors

    SciTech Connect

    Jorge Navarro; Rahmat Aryaeinejad,; David W. Nigg

    2011-05-01

    A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique1 Rahmat Aryaeinejad, Jorge Navarro, and David W Nigg Idaho National Laboratory Abstract Effective and efficient Advanced Test Reactor (ATR) fuel management require state of the art core modeling tools. These new tools will need isotopic and burnup validation data before they are put into production. To create isotopic, burn up validation libraries and to determine the setup for permanent fuel scanner system a feasibility study was perform. The study consisted in measuring short and long cooling time fuel elements at the ATR canal. Three gamma spectroscopy detectors (HPGe, LaBr3, and HPXe) and two system configurations (above and under water) were used in the feasibility study. The first stage of the study was to investigate which detector and system configuration would be better suited for different scenarios. The second stage of the feasibility study was to create burnup and cooling time calibrations using experimental isotopic data collected and ORIGEN 2.2 burnup data. The results of the study establish that a better spectra resolution is achieve with an above the water configuration and that three detectors can be used in the permanent fuel scanner system for different situations. In addition it was conclude that a number of isotopic ratios and absolute measurements could be used to predict ATR fuel burnup and cooling times. 1This work was supported by the U.S. Depart¬ment of Energy (DOE) under Battelle Energy Alliance, LLC Contract No. DE-AC07-05ID14517.

  2. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. PMID:25757823

  3. Characterization of naturally occurring radioactive materials in Libyan oil pipe scale using a germanium detector and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Habib, A. S.; Shutt, A. L.; Regan, P. H.; Matthews, M. C.; Alsulaiti, H.; Bradley, D. A.

    2014-02-01

    Radioactive scale formation in various oil production facilities is acknowledged to pose a potential significant health and environmental issue. The presence of such an issue in Libyan oil fields was recognized as early as 1998. The naturally occurring radioactive materials (NORM) involved in this matter are radium isotopes (226Ra and 228Ra) and their decay products, precipitating into scales formed on the surfaces of production equipment. A field trip to a number of onshore Libyan oil fields has indicated the existence of elevated levels of specific activity in a number of locations in some of the more mature oil fields. In this study, oil scale samples collected from different parts of Libya have been characterized using gamma spectroscopy through use of a well shielded HPGe spectrometer. To avoid potential alpha-bearing dust inhalation and in accord with safe working practices at this University, the samples, contained in plastic bags and existing in different geometries, are not permitted to be opened. MCNP, a Monte Carlo simulation code, is being used to simulate the spectrometer and the scale samples in order to obtain the system absolute efficiency and then to calculate sample specific activities. The samples are assumed to have uniform densities and homogeneously distributed activity. Present results are compared to two extreme situations that were assumed in a previous study: (i) with the entire activity concentrated at a point on the sample surface proximal to the detector, simulating the sample lowest activity, and; (ii) with the entire activity concentrated at a point on the sample surface distal to the detector, simulating the sample highest activity.

  4. A prototype high-purity germanium detector system with fast photon-counting circuitry for medical imaging.

    PubMed

    Hasegawa, B H; Stebler, B; Rutt, B K; Martinez, A; Gingold, E L; Barker, C S; Faulkner, K G; Cann, C E; Boyd, D P

    1991-01-01

    A data-acquisition system designed for x-ray medical imaging utilizes a segmented high-purity germanium (HPGe) detector array with 2-mm wide and 6-mm thick elements. The detectors are contained within a liquid-nitrogen cryostat designed to minimize heat losses. The 50-ns pulse-shaping time of the preamplifier electronics is selected as the shortest time constant compatible with the 50-ns charge collection time of the detector. This provides the detection system with the fastest count-rate capabilities and immunity from microphonics, with moderate energy resolution performance. A theoretical analysis of the preamplifier electronics shows that its noise performance is limited primarily by its input capacitance, and is independent of detector leakage current up to approximately 100 nA. The system experimentally demonstrates count rates exceeding 1 million counts per second per element with an energy resolution of 7 keV for the 60-keV gamma ray photon from 241Am. The results demonstrate the performance of a data acquisition system utilizing HPGe detector systems which would be suitable for dual-energy imaging as well as systems offering simultaneous x-ray transmission and radionuclide emission imaging. PMID:1961152

  5. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Tang, Xiao-Bin; Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2015-10-01

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr3) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R2=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible.

  6. The CLIC Vertex Detector

    NASA Astrophysics Data System (ADS)

    Dannheim, D.

    2015-03-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a measurement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → Wb will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit timing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin planar or active HV-CMOS sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. This contribution reviews the requirements and design optimisation for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensors, readout and detector integration.

  7. Continuum Background in Space-Borne Gamma-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Trombka, Jacob I; Starr, Richard; Boyton, William V.; Bailey, S.

    1997-01-01

    The background measured with space-borne gamma-ray spectrometers (GRS) in the 100 keV-10 MeV energy region consists of both discrete lines and continuum. The discrete lines originate in the decay of radioactive species. The continuum originates from a number of different processes and can be an important factor in the detection, for example, of weak gamma-ray lines from a planetary surface. Measurements of the gamma-ray background have been made during the cruise portion of a number of planetary missions. The three missions described here are the Apollo 15 and 16 missions each of which carried a 7 cm x 7 cm NaI scintillation detector, the Mars Observer (MO) mission which used a 5.5 cm X 5.5 cm high-purity germanium (HPGe) detector, and the Near Earth Rendezvous Asteroid (NEAR) mission that has a 2.54 cm x 7.6 cm NaI detector. A comparison of the intensity and spectral shape of these background spectra can be useful to help understand how these backgrounds vary with spacecraft size, detector position, and detector size. The use of shields to reduce the background components on these three missions is a test of the effectiveness of different shield designs.

  8. Dedicated 4πβ (LS)-γ (HPGe) digital coincidence system based on synchronous high-speed multichannel data acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Ji-Feng; Song, Ke-Zhu; Liu, Jia-Cheng

    2016-03-01

    A dedicated 4πβ (LS) -γ (HPGe) digital coincidence system with five acquisition channels has been developed. Three ADC acquisition channels with an acquisition resolution of 8 bits and acquisition rate of 1 GSPS are utilized to collect the signals from three PMTs which are used to detect β decay, and two acquisition channels with an acquisition resolution of 16 bits and acquisition rate of 50 MSPS are utilized to collect the signals from high-purity germanium (HPGe), which is used to detect γ decay. In order to increase the accuracy of the coincidence system, all five acquisition channels are synchronous within 500 ps. The data collected by the five acquisition channels will be transmitted to the host PC through a PCI bus and saved as a file. Off-line software is utilized for the 4πβ (LS) -γ (HPGe) coincidence and data analysis as needed in practical applications. Tests of the system show that system can record pulse signals from 4πβ (LS) -γ (HPGe) synchronously for further coincidence calculation and the highest coincidence rate of the system is 20 K/s, which is sufficient for most applications. Compared with traditional coincidence modules like MAC3, the digital coincidence system has a higher flexibility of coincidence algorithm. In addition, due to the use of ADC, the structure of the coincidence system is simplified. This paper introduces the design of the hardware, the synchronization method and the test results of this system. Supported by National Metrology Institute of China

  9. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  10. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  11. MAMA Detector

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  12. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  13. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  14. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  15. The CMS muon detector

    NASA Astrophysics Data System (ADS)

    Giacomelli, P.

    2002-02-01

    The muon detection system of the Compact Muon Solenoid experiment is described. It consists of three different detector technologies: drift tubes in the barrel region, cathode strip chambers in the endcap region and resistive plate chambers in both barrel and endcap regions. The CMS muon detection system ensures excellent muon detection and efficient triggering in the pseudorapidity range 0< η<2.4. The most recent developments and some results from the R&D program will also be discussed.

  16. Novel neutron detectors

    NASA Astrophysics Data System (ADS)

    Burgett, Eric Anthony

    A new set of thermal neutron detectors has been developed as a near term 3He tube replacement. The zinc oxide scintillator is an ultrafast scintillator which can be doped to have performance equal to or superior to 3He tubes. Originally investigated in the early 1950s, this room temperature semiconductor has been evaluated as a thermal neutron scintillator. Zinc oxide can be doped with different nuclei to tune the band gap, improve optical clarity, and improve the thermal neutron detection efficiency. The effects of various dopant effects on the scintillation properties, materials properties, and crystal growth parameters have been analyzed. Two different growth modalities were investigated: bulk melt grown materials as well as thin film scintillators grown by metalorganic chemical vapor deposition (MOCVD). MOCVD has shown significant advantages including precise thickness control, high dopant incorporation, and epitaxial coatings of neutron target nuclei. Detector designs were modeled and simulated to design an improved thermal neutron detector using doped ZnO layers, conformal coatings and light collection improvements including Bragg reflectors and photonic crystal structures. The detectors have been tested for crystalline quality by XRD and FTIR spectroscopy, for scintillation efficiency by photo-luminescence spectroscopy, and for neutron detection efficiency by alpha and neutron radiation tests. Lastly, a novel method for improving light collection efficiency has been investigated, the creation of a photonic crystal scintillator. Here, the flow of optical light photons is controlled through an engineered structure created with the scintillator materials. This work has resulted in a novel radiation detection material for the near term replacement of 3He tubes with performance characteristics equal to or superior to that of 3He.

  17. Extraordinary improvement in scintillation detectors via post-processing with ASEDRA: solution to a 50-year-old problem

    NASA Astrophysics Data System (ADS)

    LaVigne, E.; Sjoden, G.; Baciak, J., Jr.; Detwiler, R.

    2008-04-01

    We have developed a ground-breaking algorithm, ASEDRA, to post-process scintillator detector spectra to render photopeaks with high accuracy. The post-processed spectrum is comparable with resolved full energy peaks rendered by high resolution HPGe semiconductor detectors. ASEDRA, or "Advanced Synthetically Enhanced Detector Resolution Algorithm," is currently applied to NaI(Tl) detectors, which are robust, but suffer from poor energy resolution. ASEDRA rapidly post-processes a NaI(Tl) detector spectrum over a few seconds on a standard laptop without prior knowledge of sources or spectrum features. ASEDRA incorporates a novel denoising algorithm based on an adaptive Chi-square methodology called ACHIP, or "Adaptive Chi-quare Processed denoising." Application of ACHIP is necessary to remove stochastic noise, yet preserve fine detail, and can be used as an independent tool for general noise reduction. Following noise removal, ASEDRA sequentially employs an adaptive detector response algorithm to remove the spectrum attributed to specific gammas. Tests conducted using a 2"×2" NaI(Tl) detector, along with a HPGe detector demonstrate the accuracy of ASEDRA; in this paper, we present results using a 152Eu source. Analysis of ASEDRA results show correct identification of at least 15 photopeaks from 152Eu, with relative yield ratios of major lines to better than a factor of two for most cases (referencing the 152Eu 344 keV photopeak), enabling better than a factor of four improvement in resolving peaks compared with unprocessed NaI(Tl). Moreover, denoising and synthetic resolution enhancement algorithms can be adapted to any detector. ACHIP and ASEDRA are covered under a Provisional Patent, Registration Number #60/971,770, 9/12/2007, USPTO.

  18. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  19. Determination of ionisation chamber collection efficiency in a swept electron beam by means of thermoluminescent detectors and the "two-voltage" method.

    PubMed

    Van Dam, J; Rijnders, A; Ang, K K; Mellaerts, M; Grobet, P

    1985-06-01

    Two methods for determining the collection efficiency of a 0.6 cm3 thimble ionisation chamber exposed to the swept electron beam of a linear accelerator Therac 20 Saturne (CGR MeV) have been compared. In one method the chamber signal has been compared to that of simultaneously exposed thermoluminescent LiF dosemeters (TLD), in the other the "two-voltage" method of Boag, adapted for swept beams, has been used. By variation of the electron energy between 20 and 13 MeV, of the focus-skin-distance (FSD) between 200 and 100 cm and of the monitor rate between 400 monitor units (m.u.) and 100 m.u. per minute, different values could be produced for the peak charge density M. The collection efficiency of the chamber, operating at a standard voltage of 250 V, decreases from 0.99 to 0.84 for a charge density increasing from 0.3 X 10(-4) C/m3 to 7.5 X 10(-4) C/m3, respectively. The maximum deviation observed between the TLD and the "two-voltage" method adopted for similar M is never more than 2% and mostly smaller than 1%. It can be concluded that, under the present experimental conditions, the calculated ionisation chamber collection efficiency is confirmed by the experimental method using TL dosimetry. PMID:3925506

  20. Neutron detectors comprising boron powder

    DOEpatents

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  1. Charged Fusion Product Detector Study

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos

    2014-03-01

    Plasmas are hot ionized gases which may be manipulated by electromagnetic fields in machines called tokamaks, which are experimental reactors created to harness energy when fusion occurs in said plasma. In order to study instabilities within the tokamak plasma, the trajectories of protons were studied with an array of silicon surface barrier detectors. The collection efficiency of the detectors was analyzed in order to make more accurate calculations, where particular attention was paid to the solid angle of acceptance, or the angular distribution through which particles would enter into the detector. Monte Carlo simulations were coded and implemented in the Python language, where a point on the grid acted as a source which one million data points shot at the plane of the detector. The ratio of the hits versus the misses was calculated for varying positions of the source relative to the plane of the detector. These results were compared to an alpha particle spectroscopy experiment, where a radiation source emitting alpha particles was placed at varying positions relative to the detector. The counting rate of the detector was then observed when it was exposed to the source, and this along with the Monte Carlo results were implemented into an efficiency calculation. DOE Grant # DE-SC0001157.

  2. Requirements on high resolution detectors

    SciTech Connect

    Koch, A.

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  3. Spatial resolution attainable in germanium detectors by pulse shape analysis

    SciTech Connect

    Blair, J., Bechtel, NV; Beckedahl, D.; Kammeraad, J.; Schmid, G., LLNL

    1998-05-01

    There are several applications for which it is desirable to calculate the locations and energies of individual gamma-ray interactions within a high purity germanium (HPGe) detector. These include gamma-ray imaging and Compton suppression. With a segmented detector this can be accomplished by analyzing the pulse shapes of the signals from the various segments. We examine the fundamental limits to the spatial resolution attainable with this approach. The primary source of error is the series noise of the field effect transistors (FETs) at the inputs of the charge amplifiers. We show how to calculate the noise spectral density at the output of the charge amplifiers due to an optimally selected FET. This calculation is based only on the detector capacitance and a noise constant for the FET technology. We show how to use this spectral density to calculate the uncertainties in parameters, such as interaction locations and energies, that are derived from pulse shape analysis using maximum likelihood estimation (MLE) applied to filtered and digitized recordings of the charge signals. Example calculations are given to illustrate our approach. Experimental results are given that demonstrate that one can construct complete systems, from detector through data analysis, that come near the theoretical limits.

  4. The Watchman Detector Design

    NASA Astrophysics Data System (ADS)

    Dazeley, Steven

    2014-03-01

    The Watchman collaboration is proposing a kiloton scale antineutrino detector of reactor-based antineutrinos for non-proliferation purposes. As an added bonus the detector will also have the capability to search for evidence of sterile neutrino oscillation, super-nova antineutrinos and, in a second phase, measure the neutrino mass hierarchy. Despite that fact that KamLAND demonstrated the feasibility of kiloton scale, long distance antineutrino detection with liquid scintillator, similar detectors at the megaton scale remain problematic for environmental, cost and light attenuation reasons. Water, with gadolinium added for neutron sensitivity, may be the detection medium of choice if its efficiency can be shown to be competitive with scintillator. The goal of the Watchman project, therefore, is to demonstrate medium distance reactor antineutrino detection, and thus demonstrate the feasibility of moving to water-based megaton scale antineutrino detectors in the future. In this talk I will describe the scope of the experiment, the physics and engineering challenges involved, the proposed design and the predicted performance of the experimental non-proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-648381.

  5. Characteristics of Signals Originating near the Lithium-Diffused N+ Contact of High Purity Germanium P-Type Point Contact Detectors

    SciTech Connect

    Aguayo, E.; Amman, M.; Avignone, F. T.; Barton, P. J.; Beene, James R; Bertrand Jr, Fred E; Boswell, M.; Brudanin, V.; Busch, M.; Chan, Y-D; Christofferson, C. D.; Collar, Juan I.; Combs, D. C.; Detwiler, J.A.; Doe, P. J.; Efremenko, Yuri; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J.E.; Fields, N.; Finnerty, P.; Gehman, V. M.; Giovanetti, G. K.; Green, M. P.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hoppe, E.W.; Horton, M.; Howard, S.; Howe, M. A.; Keeter, K.J.; Kidd, M. F.; Knecht, A.; Kochetov, O.; Konovalov, S.I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Looker, Q.; Luke, P.N.; MacMullin, S.; Martin, R.D.; Merriman, J. H.; Miller, M. L.; Mizouni, L.; Orrell, John L.; Overman, N. R.; Perumpilly, G.; Phillips II, D. G.; et al.

    2013-01-01

    A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a well defined energy to contribute to the continuum of the energy spectrum at lower energies. A novel technique to quantify the contribution from this source of background is introduced. Experiments that operate germanium detectors with a very low energy threshold may benefit from the methods presented herein.

  6. The effect of the first dynode's geometry on the detection efficiency of a 119EM electron multiplier used as a highly charged ion detector

    NASA Astrophysics Data System (ADS)

    Krása, J.; Pfeifer, M.; Stöckli, M. P.; Lehnert, U.; Fry, D.

    1999-05-01

    The ion counting as well as the current gain of an electron multiplier type 119EM with BeCu dynodes having a Venetian blind structure was measured in terms of the dependence on the position where ions impact the surface of the first dynode. The dependence of the 119EM's detection efficiency on the impact position exhibited large variations across the Venetian blind of the first dynode. The highest detection efficiency was localized at the first dynode's surface near its output area into the second dynode region. The lowest one was measured at the input area of the first dynode region that is far from the second dynode. The measurements also show that the 119EM is not very reliable for ion counting. The analog particle gain derived from the mean current gain measured across a single slat increases with increasing charge state as well as with ion energy for Co q+(10⩽ q⩽26) and Ta q+(14⩽ q⩽34) ions with kinetic energy per charge from 33 keV/ q to 163 keV/ q. The gains were derived from comparison with the Faraday cup measurements.

  7. Current state of ring imaging Cherenkov detectors

    SciTech Connect

    Coutrakon, G.B.

    1984-02-01

    This paper reviews several ring imaging Cherenkov detectors which are being used or developed to identify particles in high energy physics experiments. These detectors must have good detection efficiency for single photon-electrons and good spatial resolution over a large area. Emphasis is placed on the efficiencies and resolutions of these detectors as determined from ring imaging beam tests and other experiments. Following a brief review of the ring imaging technique, comparative evaluations are made of different forms of detectors and their respective materials.

  8. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  9. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  10. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  11. Terahertz sources and detectors

    NASA Astrophysics Data System (ADS)

    Crowe, Thomas W.; Porterfield, David W.; Hesler, Jeffrey L.; Bishop, William L.; Kurtz, David S.; Hui, Kai

    2005-05-01

    Through the support of the US Army Research Office we are developing terahertz sources and detectors suitable for use in the spectroscopy of chemical and biological materials as well as for use in imaging systems to detect concealed weapons. Our technology relies on nonlinear diodes to translate the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks that have been developed for this application include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These components rely on planar Schottky diodes and integrated diode circuits and are therefore easy to assemble and robust. They require no mechanical tuners to achieve high efficiency and broad bandwidth. This paper will review the range of performance that has been achieved with these terahertz components and briefly discuss preliminary results achieved with a spectroscopy system and the development of sources for imaging systems.

  12. Resolution and sensitivity as a function of energy and incident geometry for germanium detectors

    NASA Astrophysics Data System (ADS)

    Keyser, Ronald M.

    2004-01-01

    The use of modeling programs such as MCNP to predict the response of HPGe detectors is increasing in importance. Accurate simulation of germanium detectors to incident gamma rays relies on knowledge of the performance of the detector in different detector-source geometries. Two important performance parameters are the resolution and sensitivity. The resolution is the FWHM and FW.1M/FWHM ratio. The IEEE 325-1996 standard only specifies the FWHM measurement at one geometry and two energies. Nearly all measurements are made in a different geometry and at other energies. Other investigators [Specifications for Today's Coaxial HPGe Detectors, 2001 ANS Annual Meeting, Milwaukee, WI; Metzger, private communication, see also: Radionuclide Depth Distribution by Collimated Spectroscopy, 2002 ANS Topical Meeting, Santa Fe, NM], have shown that the sensitivity and resolution change with position of the incident gamma ray on the front of the detector. Such variability has possible implications for the accuracy of peak shape and area determination, since the calibration is potentially a function of angle of incidence. To quantify the sensitivity and resolution variation as a function of energy and point of incidence, measurements have been made on several coaxial detectors of various crystal types and sizes in different source-detector geometries. The full-energy peaks from 59 keV to 2.6 MeV were used. The detectors were placed in a low-background shield to reduce any contribution from external sources. None of the detectors tested was a low-background type. The sources used were an 241Am source, 60Co source and a natural thorium oxide sample. The 241Am 59 keV gamma rays were collimated by a 2 cm thick, 1 mm diameter lead collimator. Several gamma rays from the thorium source were used and collimated by a 10 cm thick and 2 mm diameter tungsten collimator. These collimated sources were used to collect spectra for the incident beam on the front and sides of the detectors. The peak

  13. New class of neutron detectors

    SciTech Connect

    Czirr, J.B.

    1997-09-01

    An optimized neutron scattering instrument design must include all significant components, including the detector. For example, useful beam intensity is limited by detector dead time; detector pixel size determines the optimum beam diameter, sample size, and sample to detector distance; and detector efficiency vs. wavelength determines the available energy range. As an example of the next generation of detectors that could affect overall instrumentation design, we will describe a new scintillator material that is potentially superior to currently available scintillators. We have grown and tested several small, single crystal scintillators based upon the general class of cerium-activated lithium lanthanide borates. The outstanding characteristic of these materials is the high scintillation efficiency-as much as five times that of Li-glass scintillators. This increase in light output permits the practical use of the exothermic B (n, alpha) reaction for low energy neutron detection. This reaction provides a four-fold increase in capture cross section relative to the Li (n, alpha) reaction, and the intriguing possibility of demanding a charged-particle/gamma ray coincidence to reduce background detection rates. These new materials will be useful in the thermal and epithermal energy ran at reactors and pulsed neutron sources.

  14. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  15. Ion detector

    DOEpatents

    Tullis, Andrew M.

    1987-01-01

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  16. Determination of the Crystal Axis Orientations of Ge detectors for the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Xu, Wenqin; Busch, Matthew; Elliott, Steven; Green, Matthew; Hegai, Alex; Henning, Reyco; Ronquest, Michael; Snavely, Kyle; Zitin, Ari

    2013-04-01

    High purity germanium (HPGe) crystals will be used for the Majorana Demonstrator, where they serve as both the source and the detector for neutrinoless double beta decays. Sophisticated pulse shape analysis (PSA) is crucial in distinguishing certain background events in the energy region of interest. It is also well known that the charge-carrier mobility in Ge crystals has considerable dependence on the crystallographic axes, resulting in a crystal axis dependence of the PSA. Meanwhile, as within the Peccei-Quinn solution to the strong CP problem and as a dark matter candidate, axions have been searched for in many experiments. It has been suggested that the postulated solar axions could coherently covert to photons by the Primakeoff effect in a periodic lattice, such as that found in the Ge crystals used by the Demonstrator, with conversion rates depending on the crystal axis orientation. In order to use the Demonstrator to search for solar axions, the Ge crystal axes need to be measured. In this talk, we will present our experimental measurements to characterize crystal axes with P-type point contact (PPC) HPGe detectors, which are cylindrical in shape with point contacts at the bottom.

  17. How noise affects quantum detector tomography

    SciTech Connect

    Wang, Q. Renema, J. J.; Exter, M. P.van; Dood, M. J. A. de; Gaggero, A.; Mattioli, F.; Leoni, R.

    2015-10-07

    We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.

  18. Reverse Schottky-asymmetry spin current detectors

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Appelbaum, Ian

    2010-10-01

    By reversing the Schottky barrier-height asymmetry in hot-electron semiconductor-metal-semiconductor ballistic spin filtering spin detectors, we have achieved the following: (1) demonstration of >50% spin polarization in silicon, resulting from the increase of detection efficiency by elimination of the ferromagnet/silicon interface on the transport channel detector contact and (2) evidence of spin transport at temperatures as high as 260 K, enabled by an increase in detector Schottky barrier height.

  19. THE 15 LAYER SILICON DRIFT DETECTOR TRACKER IN EXPERIMENT 896.

    SciTech Connect

    PANDY,S.U.

    1998-11-08

    Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors.

  20. Analytical response function for planar Ge detectors

    NASA Astrophysics Data System (ADS)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  1. Flexible composite radiation detector

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  2. Reflections From Plasma Would Enhance Infrared Detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1992-01-01

    Quantum efficiency of proposed photoemission semiconductor detector of long-wavelength infrared radiation enhanced by multiple passes of radiation. Device has features of back-to-back heterojunction internal-photoemission (HIP) detector, and Fabry-Perot interferometer. Arrays of devices of this type incorporated into integrated-circuit infrared imaging devices.

  3. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  4. Ice detector

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1988-01-01

    An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.

  5. Pillar Structured Thermal Neutron Detector

    SciTech Connect

    Nikolic, R; Conway, A; Reinhardt, C; Graff, R; Wang, T; Deo, N; Cheung, C

    2008-06-10

    This work describes an innovative solid state device structure that leverages advanced semiconductor fabrication technology to produce an efficient device for thermal neutron detection which we have coined the 'Pillar Detector'. State-of-the-art thermal neutron detectors have shortcomings in simultaneously achieving high efficiency, low operating voltage while maintaining adequate fieldability performance. By using a three dimensional silicon PIN diode pillar array filled with isotopic {sup 10}boron ({sup 10}B), a high efficiency device is theoretically possible. Here we review the design considerations for going from a 2-D to 3-D device and discuss the materials trade-offs. The relationship between the geometrical features and efficiency within our 3-D device is investigated by Monte Carlo radiation transport method coupled with finite element drift-diffusion carrier transport simulations. To benchmark our simulations and validate the predicted efficiency scaling, experimental results of a prototype device are illustrated. The fabricated pillar structures reported in this work are composed of 2 {micro}m diameter silicon pillars with a 2 {micro}m spacing and pillar height of 12 {micro}m. The pillar detector with a 12 {micro}m height achieved a thermal neutron detection efficiency of 7.3% at a reverse bias of -2 V.

  6. Detector requirements for space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Wright, E. L.

    1986-01-01

    Requirements for background-limited (BLIP) detectors are discussed in terms of number of photons falling on each pixel, dark current, high detective quantum efficiencies, large numbers of pixels, and array size.

  7. High precision thermal neutron detectors

    SciTech Connect

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B.

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  8. Efficiency corrections in determining the (137)Cs inventory of environmental soil samples by using relative measurement method and GEANT4 simulations.

    PubMed

    Li, Gang; Liang, Yongfei; Xu, Jiayun; Bai, Lixin

    2015-08-01

    The determination of (137)Cs inventory is widely used to estimate the soil erosion or deposition rate. The generally used method to determine the activity of volumetric samples is the relative measurement method, which employs a calibration standard sample with accurately known activity. This method has great advantages in accuracy and operation only when there is a small difference in elemental composition, sample density and geometry between measuring samples and the calibration standard. Otherwise it needs additional efficiency corrections in the calculating process. The Monte Carlo simulations can handle these correction problems easily with lower financial cost and higher accuracy. This work presents a detailed description to the simulation and calibration procedure for a conventionally used commercial P-type coaxial HPGe detector with cylindrical sample geometry. The effects of sample elemental composition, density and geometry were discussed in detail and calculated in terms of efficiency correction factors. The effect of sample placement was also analyzed, the results indicate that the radioactive nuclides and sample density are not absolutely uniform distributed along the axial direction. At last, a unified binary quadratic functional relationship of efficiency correction factors as a function of sample density and height was obtained by the least square fitting method. This function covers the sample density and height range of 0.8-1.8 g/cm(3) and 3.0-7.25 cm, respectively. The efficiency correction factors calculated by the fitted function are in good agreement with those obtained by the GEANT4 simulations with the determination coefficient value greater than 0.9999. The results obtained in this paper make the above-mentioned relative measurements more accurate and efficient in the routine radioactive analysis of environmental cylindrical soil samples. PMID:25973538

  9. Microradiography with Semiconductor Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiří; Holý, Tomáš; Platkevič, Michal; Pospíšil, Stanislav; Vavřík, Daniel; Vykydal, Zdeněk

    2007-11-01

    High resolution radiography (with X-rays, neutrons, heavy charged particles, …) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  10. Fast skin color detector for face extraction

    NASA Astrophysics Data System (ADS)

    Chen, Lihui; Grecos, Christos

    2005-02-01

    Face detection is the first step for an automatic face recognition system. For color images, skin color filter is considered as an important method for removing non-face pixels. In the paper, we will propose a novel and efficient detector for skin color regions for face extraction. The detector processes the image in four steps: lighting compensation, skin color filter and mask refinement and fast patch identification. Experimental results show that our detector is more robust and efficient than other skin color filters.

  11. Radiation induced polarization in CdTe detectors

    NASA Astrophysics Data System (ADS)

    Vartsky, D.; Goldberg, M.; Eisen, Y.; Shamai, Y.; Dukhan, R.; Siffert, P.; Koebel, J. M.; Regal, R.; Gerber, J.

    1988-01-01

    Polarization induced by irradiation with intense gamma ray sources has been studied in chlorine-compensated CdTe detectors. The influence of several parameters, such as applied field strength, temperature and incident photon flux, on the polarization effect have been investigated. A relationship was found between the degree of polarization, detector efficiency and detector leakage current.

  12. Southwest Research Institute intensified detector development capability

    NASA Astrophysics Data System (ADS)

    Wilkinson, Erik; Vincent, Michael; Kofoed, Christopher; Andrews, John; Brownsberger, Judith; Siegmund, Oswald

    2012-09-01

    Imaging detectors for wavelengths between 10 nm and 105 nm generally rely on microchannel plates (MCPs) to provide photon detection (via the photo-electric effect) and charge amplification. This is because silicon-based detectors (CCD or APS) have near zero quantum detection efficiency (QDE) over this wavelength regime. Combining a MCP based intensifier tube with a silicon detector creates a detector system that can be tuned to the wavelength regime of interest for a variety of applications. Intensified detectors are used in a variety of scientific (e.g. Solar Physics) and commercial applications (spectroscopic test instrumentation, night vision goggles, low intensity cameras, etc.). Building an intensified detector requires the mastery of a variety of technologies involved in integrating and testing of these detector systems. We report on an internally funded development program within the Southwest Research Institute to architect, design, integrate, and test intensified imaging detectors for space-based applications. Through a rigorous hardware program the effort is developing and maturing the technologies necessary to build and test a large format (2k × 2k) UV intensified CCD detector. The intensified CCD is designed around a commercially available CCD that is optically coupled to a UV Intensifier Tube from Sensor Sciences, LLC. The program aims to demonstrate, through hardware validation, the ability to architect and execute the integration steps necessary to produce detector systems suitable for space-based applications.

  13. Waste Characterization Using Gamma Ray Spectrometry with Automated Efficiency Optimization - 13404

    SciTech Connect

    Bosko, A.; Venkataraman, R.; Bronson, F.L.; Ilie, G.; Russ, W.R.

    2013-07-01

    Gamma ray spectrometry using High Purity Germanium (HPGe) detectors is commonly employed in assaying radioactive waste streams from a variety of sources: nuclear power plants, Department of Energy (DOE) laboratories, medical facilities, decontamination and decommissioning activities etc. The radioactive material is typically packaged in boxes or drums (for e.g. B-25 boxes or 208 liter drums) and assayed to identify and quantify radionuclides. Depending on the origin of the waste stream, the radionuclides could be special nuclear materials (SNM), fission products, or activation products. Efficiency calibration of the measurement geometry is a critical step in the achieving accurate quantification of radionuclide content. Due to the large size of the waste items, it is impractical and expensive to manufacture gamma ray standard sources for performing a measurement based calibration. For well over a decade, mathematical efficiency methods such as those in Canberra's In Situ Object Counting System (ISOCS) have been successfully employed in the efficiency calibration of gamma based waste assay systems. In the traditional ISOCS based calibrations, the user provides input data such as the dimensions of the waste item, the average density and fill height of the matrix, and matrix composition. As in measurement based calibrations, the user typically defines a homogeneous matrix with a uniform distribution of radioactivity. Actual waste containers can be quite nonuniform, however. Such simplifying assumptions in the efficiency calibration could lead to a large Total Measurement Uncertainty (TMU), thus limiting the amount of waste that can be disposed of as intermediate or low activity level waste. To improve the accuracy of radionuclide quantification, and reduce the TMU, Canberra has developed the capability to optimize the efficiency calibration using the ISOCS method. The optimization is based on benchmarking the efficiency shape and magnitude to the data available in the

  14. Detector simulation needs for detector designers

    SciTech Connect

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  15. SU-E-I-62: Assessing Radiation Dose Reduction and CT Image Optimization Through the Measurement and Analysis of the Detector Quantum Efficiency (DQE) of CT Images Using Different Beam Hardening Filters

    SciTech Connect

    Collier, J; Aldoohan, S; Gill, K

    2014-06-01

    Purpose: Reducing patient dose while maintaining (or even improving) image quality is one of the foremost goals in CT imaging. To this end, we consider the feasibility of optimizing CT scan protocols in conjunction with the application of different beam-hardening filtrations and assess this augmentation through noise-power spectrum (NPS) and detector quantum efficiency (DQE) analysis. Methods: American College of Radiology (ACR) and Catphan phantoms (The Phantom Laboratory) were scanned with a 64 slice CT scanner when additional filtration of thickness and composition (e.g., copper, nickel, tantalum, titanium, and tungsten) had been applied. A MATLAB-based code was employed to calculate the image of noise NPS. The Catphan Image Owl software suite was then used to compute the modulated transfer function (MTF) responses of the scanner. The DQE for each additional filter, including the inherent filtration, was then computed from these values. Finally, CT dose index (CTDIvol) values were obtained for each applied filtration through the use of a 100 mm pencil ionization chamber and CT dose phantom. Results: NPS, MTF, and DQE values were computed for each applied filtration and compared to the reference case of inherent beam-hardening filtration only. Results showed that the NPS values were reduced between 5 and 12% compared to inherent filtration case. Additionally, CTDIvol values were reduced between 15 and 27% depending on the composition of filtration applied. However, no noticeable changes in image contrast-to-noise ratios were noted. Conclusion: The reduction in the quanta noise section of the NPS profile found in this phantom-based study is encouraging. The reduction in both noise and dose through the application of beam-hardening filters is reflected in our phantom image quality. However, further investigation is needed to ascertain the applicability of this approach to reducing patient dose while maintaining diagnostically acceptable image qualities in a

  16. Future of Semiconductor Based Thermal Neutron Detectors

    SciTech Connect

    Nikolic, R J; Cheung, C L; Reinhardt, C E; Wang, T F

    2006-02-22

    Thermal neutron detectors have seen only incremental improvements over the last decades. In this paper we overview the current technology of choice for thermal neutron detection--{sup 3}He tubes, which suffer from, moderate to poor fieldability, and low absolute efficiency. The need for improved neutron detection is evident due to this technology gap and the fact that neutrons are a highly specific indicator of fissile material. Recognizing this need, we propose to exploit recent advances in microfabrication technology for building the next generation of semiconductor thermal neutron detectors for national security requirements, for applications requiring excellent fieldability of small devices. We have developed an innovative pathway taking advantage of advanced processing and fabrication technology to produce the proposed device. The crucial advantage of our Pillar Detector is that it can simultaneously meet the requirements of high efficiency and fieldability in the optimized configuration, the detector efficiency could be higher than 70%.

  17. Implementation of Gammasphere - ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS)

    NASA Astrophysics Data System (ADS)

    Marsh, Ian; Pain, Steven; Ratkiewicz, Andrew; Burcher, Sean; Goddess Collaboration

    2013-10-01

    Direct reactions involving short-lived nuclei are of great interest to nuclear science. Typically, the light ejectile emitted in the reaction is measured but de-excitation gamma rays from the recoiling nucleus can yield extra information on the states populated and the levels through which they decay. These gamma rays can be measured with significantly better energy resolution than the charged particles. To achieve these measurements, the Oak Ridge Rutgers University Barrel Array of silicon detectors (ORRUBA) is being coupled with Gammasphere, a high-granularity spherical array of Compton-suppressed HPGe detectors. For this coupling the coverage of ORRUBA is extended with custom end-cap detectors, providing a total of 80% azimuthal coverage over 15 - 165 degrees in polar angle. GODDESS hardware (detector mounts, vacuum chamber, preamplifiers) has been developed, installed, and tested at Argonne National Lab, in preparation for radioactive beam experiments. Data from a 249Cf source was collected via digital and analog acquisition systems. Preliminary analysis shows energy and position resolutions of 30 keV and <1 mm for alpha-particles were achieved. Optimization of digital techniques for the readout of position-sensitive silicon detectors is under development. Work funded by the DOE Office of Science.

  18. Three radioactivity detectors for liquid-chromatographic systems compared

    SciTech Connect

    Frey, B.M.; Frey, F.J.

    1982-04-01

    Three radioactivity detectors coupled to a ''high-performance'' liquid-chromatography system are compared with regard to static efficiency, dynamic efficiency, background measurements, and within- and between-day variabilities. Their advantages and disadvantages are discussed.

  19. Testing and Characterization of SuperCDMS Dark Matter Detectors

    SciTech Connect

    Shank, Benjamin

    2014-05-01

    The Cryogenic Dark Matter Search (SuperCDMS) relies on collection of phonons and charge carriers in semiconductors held at tens of milliKelvin as handles for detection of Weakly Interacting Massive Particles (WIMPs). This thesis begins with a brief overview of the direct dark matter search (Chapter 1) and SuperCDMS detectors (Chapter 2). In Chapter 3, a 3He evaporative refrigerator facility is described. Results from experiments performed in-house at Stanford to measure carrier transport in high-purity germanium (HPGe) crystals operated at sub-Kelvin temperatures are presented in Chapter 4. Finally, in Chapter 5 a new numerical model and a time-domain optimal filtering technique are presented, both developed for use with superconducting Transition Edge Sensors (TESs), that provide excellent event reconstruction for single particle interactions in detectors read out with superconducting W-TESs coupled to energy-collecting films of Al. This thesis is not intended to be read straight through. For those new to CDMS or dark matter searches, the first two chapters are meant to be a gentle introduction for experimentalists. They are by no means exhaustive. The remaining chapters each stand alone, with different audiences.

  20. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard X-rays

    NASA Technical Reports Server (NTRS)

    Desai, U. D.; Orwig, Larry E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.

  1. SOI monolithic pixel detector

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Ahmed, M. I.; Arai, Y.; Fujita, Y.; Ikemoto, Y.; Takeda, A.; Tauchi, K.

    2014-05-01

    We are developing monolithic pixel detector using fully-depleted (FD) silicon-on-insulator (SOI) pixel process technology. The SOI substrate is high resistivity silicon with p-n junctions and another layer is a low resistivity silicon for SOI-CMOS circuitry. Tungsten vias are used for the connection between two silicons. Since flip-chip bump bonding process is not used, high sensor gain in a small pixel area can be obtained. In 2010 and 2011, high-resolution integration-type SOI pixel sensors, DIPIX and INTPIX5, have been developed. The characterizations by evaluating pixel-to-pixel crosstalk, quantum efficiency (QE), dark noise, and energy resolution were done. A phase-contrast imaging was demonstrated using the INTPIX5 pixel sensor for an X-ray application. The current issues and future prospect are also discussed.

  2. GADRAS Detector Response Function.

    SciTech Connect

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  3. The MINOS detectors

    SciTech Connect

    Habig, A.; Grashorn, E.W.; /Minnesota U., Duluth

    2005-07-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  4. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  5. Optimizing indium antimonide (InSb) detectors for low background operation. [infrared astronomy

    NASA Technical Reports Server (NTRS)

    Treffers, R. R.

    1978-01-01

    The various noise sources that affect InSb detectors (and similar voltaic devices) are discussed and calculated. Methods are given for measuring detector resistance, photon loading, detector and amplifier capacitance, amplifier frequency response, amplifier noise, and quantum efficiency. A photovoltaic InSb detector with increased sensitivity in the 1 to 5.6 mu region is dicussed.

  6. Detector Simulations for the COREA Project

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Kang, Hyesung

    2006-12-01

    The COREA (COsmic ray Research and Education Array in Korea) project aims to build a ground array of particle detectors distributed over the Korean Peninsular, through collaborations of high school students, educators, and university researchers, in order to study the origin of ultra high energy cosmic rays. COREA array will consist of about 2000 detector stations covering several hundreds of km2 area at its final configuration and detect electrons and muons in extensive air-showers triggered by high energy particles. During the initial pase COREA array will start with a small number of detector stations in Seoul area schools. In this paper, we have studied by Monte Carlo simulations how to select detector sites for optimal detection efficiency for proton triggered air-showers. We considered several model clusters with up to 30 detector stations and calculated the effective number of air-shower events that can be detected per year for each cluster. The greatest detection efficiency is achieved when the mean distance between detector stations of a cluster is comparable to the effective radius of the air-shower of a given proton energy. We find the detection efficiency of a cluster with randomly selected detector sites is comparable to that of clusters with uniform detector spacing. We also considered a hybrid cluster with 60 detector stations that combines a small cluster with Δl ≈ 100 m and a large cluster with Δl ≈ 1 km. We suggest that it can be an ideal configuration for the initial phase study of the COREA project, since it can measure the cosmic rays with a wide energy range, i.e., 1016eV ≤E ≤ 1019eV, with a reasonable detection rate.

  7. Neutron spectrometer for ITER using silicon detectors

    SciTech Connect

    Conroy, Sean W.; Weiszflog, Matthias; Andersson-Sunden, Erik; Ericsson, Goran; Gatu-Johnson, Maria; Hellesen, Carl; Ronchi, Emanuel; Sjostrand, Henrik

    2008-10-15

    High resolution neutron spectrometers provide information about plasma parameters at existing fusion experiments. Such a system may also be employed at ITER. Proton recoil telescopes have classically been used to detect neutrons with good energy resolution but poor efficiency. Using annular silicon detectors, it is possible to greatly increase the solid angle coverage and hence improve efficiency. Based on a simulation (MCNPX) study, the scaling of energy resolution, efficiency, and time to determine an ion temperature to 10% accuracy on foil thickness and detector location is shown. The latter quantity is used to determine the optimum foil thickness and detector geometry for specific plasma temperatures. For a 20 keV deuterium-tritium (DT) plasma, 5.3% resolution with efficiency of 2.9x10{sup -4} n cm{sup 2} is attainable using the available detectors. This gives a temperature measurement with 10% accuracy in 1.1 ms for a neutron flux of 2x10{sup 9} n cm{sup -2}. Multiple detectors can be used to further increase the efficiency if needed. A system of this kind could be tested in a future DT campaign at, for example, JET.

  8. Energy resolution enhancement of mercuric iodide detectors

    NASA Technical Reports Server (NTRS)

    Finger, M.; Prince, T. A.; Padgett, L.; Prickett, B.; Schnepple, W.

    1984-01-01

    A pulse processing technique has been developed which improves the gamma-ray energy resolution of mercuric iodide detectors. The technique employs a fast (100 ns) and a slow (6.4 microsec) pulse height analysis to correct for signal variations due to variations in charge trapping. The capabilities of the technique for energy resolution enhancement are discussed as well as the utility of the technique for examining the trapping characteristics of individual detectors. An energy resolution of 2.6 percent FWHM at 662 keV was achieved with an acceptance efficiency of 100 percent from a mercuric iodide detector which gives 8.3 percent FWHM using standard techniques.

  9. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  10. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  11. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  12. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2010-09-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  13. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2011-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  14. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2012-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  15. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2013-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  16. Noise performance of the D0 layer 0 silicon detector

    SciTech Connect

    Johnson, M.; /Fermilab

    2006-11-01

    A new inner detector called Layer 0 has been added to the existing silicon detector for the DZero colliding beams experiment. This detector has an all carbon fiber support structure that employs thin copper clad Kapton sheets embedded in the surface of the carbon fiber structure to improve the grounding of the structure and a readout system that fully isolates the local detector ground from the rest of the detector. Initial measurements show efficiencies greater than 90% and 0.3 ADC count common mode contribution to the signal noise.

  17. 7Li-induced reactions for fast-timing with LaBr3:Ce detectors

    NASA Astrophysics Data System (ADS)

    Mason, P. J. R.; Podolyàk, Zs.; Mǎrginean, N.; Regan, P. H.; Alexander, T.; Algora, A.; Alharbi, T.; Bowry, M.; Britton, R.; Bucurescu, D.; Bruce, A. M.; Bunce, M.; Cǎta-Danil, G.; Cǎta-Danil, I.; Cooper, N.; Deleanu, D.; Delion, D.; Filipescu, D.; Gelletly, W.; Glodariu, T.; Gheorghe, I.; Ghiťǎ, D.; Ilie, G.; Ivanova, D.; Kisyov, S.; Lalkovski, S.; Lica, R.; Liddick, S. N.; Mǎrginean, R.; Mihai, C.; Mulholland, K.; Negret, A.; Nita, C. R.; Rice, S.; Roberts, O. J.; Sava, T.; Smith, J. F.; Söderström, P.-A.; Stevenson, P. D.; Stroe, L.; Toma, S.; Townsley, C.; Werner, V.; Wilson, E.; Wood, R. T.; Zamfir, N. V.; Zhekova, M.

    2012-10-01

    7Li induced-reactions have been used with a 186W target to populate nuclei around A˜180-190 at the National Institute of Physics and Nuclear Engineering in Bucharest, Romania. An array of high-purity germanium (HPGe) and cerium-doped lanthanum bromide (LaBr3:Ce) detectors have been used to measure sub-nanosecond half-lives with fast-timing techniques. The yrast 2+ state in 190Os was measured to be t1/2 = 375(20)ps, in excellent agreement with the literature value. The previously unreported half-life of the 564-keV state in 189Ir has also been measured and a value of t1/2 = 540(100)ps ps obtained.

  18. Detector developments at DESY.

    PubMed

    Wunderer, Cornelia B; Allahgholi, Aschkan; Bayer, Matthias; Bianco, Laura; Correa, Jonathan; Delfs, Annette; Göttlicher, Peter; Hirsemann, Helmut; Jack, Stefanie; Klyuev, Alexander; Lange, Sabine; Marras, Alessandro; Niemann, Magdalena; Pithan, Florian; Reza, Salim; Sheviakov, Igor; Smoljanin, Sergej; Tennert, Maximilian; Trunk, Ulrich; Xia, Qingqing; Zhang, Jiaguo; Zimmer, Manfred; Das, Dipayan; Guerrini, Nicola; Marsh, Ben; Sedgwick, Iain; Turchetta, Renato; Cautero, Giuseppe; Giuressi, Dario; Menk, Ralf; Khromova, Anastasiya; Pinaroli, Giovanni; Stebel, Luigi; Marchal, Julien; Pedersen, Ulrik; Rees, Nick; Steadman, Paul; Sussmuth, Mark; Tartoni, Nicola; Yousef, Hazem; Hyun, HyoJung; Kim, KyungSook; Rah, Seungyu; Dinapoli, Roberto; Greiffenberg, Dominic; Mezza, Davide; Mozzanica, Aldo; Schmitt, Bernd; Shi, Xintian; Krueger, Hans; Klanner, Robert; Schwandt, Joem; Graafsma, Heinz

    2016-01-01

    With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project - in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory - is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 µm pixels to measure 1 to ∼100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows single-pulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved. PMID:26698052

  19. Microstructured silicon neutron detectors for security applications

    NASA Astrophysics Data System (ADS)

    Esteban, S.; Fleta, C.; Guardiola, C.; Jumilla, C.; Pellegrini, G.; Quirion, D.; Rodriguez, J.; Lozano, M.

    2014-12-01

    In this paper we present the design and performance of a perforated thermal neutron silicon detector with a 6LiF neutron converter. This device was manufactured within the REWARD project workplace whose aim is to develop and enhance technologies for the detection of nuclear and radiological materials. The sensor perforated structure results in a higher efficiency than that obtained with an equivalent planar sensor. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and the intrinsic detection efficiency for thermal neutrons and the gamma sensitivity were obtained. The Geant4 Monte Carlo code was used to simulate the experimental conditions, i.e. thermal neutron beam and the whole detector geometry. An intrinsic thermal neutron detection efficiency of 8.6%±0.4% with a discrimination setting of 450 keV was measured.

  20. Trustworthiness of detectors in quantum key distribution with untrusted detectors

    NASA Astrophysics Data System (ADS)

    Qi, Bing

    2015-02-01

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol has been demonstrated as a viable solution to detector side-channel attacks. Recently, to bridge the strong security of MDI-QKD with the high efficiency of conventional QKD, the detector-device-independent (DDI) QKD has been proposed. One crucial assumption made in DDI-QKD is that the untrusted Bell state measurement (BSM) located inside the receiver's laboratory cannot send any unwanted information to the outside. Here, we show that if the BSM is completely untrusted, a simple scheme would allow the BSM to send information to the outside. Combined with Trojan horse attacks, this scheme could allow an eavesdropper to gain information of the quantum key without being detected. To prevent the above attack, either countermeasures to Trojan horse attacks or some trustworthiness to the "untrusted" BSM device is required.

  1. Multi-segment detector

    NASA Technical Reports Server (NTRS)

    George, Peter K. (Inventor)

    1978-01-01

    A plurality of stretcher detector segments are connected in series whereby detector signals generated when a bubble passes thereby are added together. Each of the stretcher detector segments is disposed an identical propagation distance away from passive replicators wherein bubbles are replicated from a propagation path and applied, simultaneously, to the stretcher detector segments. The stretcher detector segments are arranged to include both dummy and active portions thereof which are arranged to permit the geometry of both the dummy and active portions of the segment to be substantially matched.

  2. CALIFA Barrel prototype detector characterisation

    NASA Astrophysics Data System (ADS)

    Pietras, B.; Gascón, M.; Álvarez-Pol, H.; Bendel, M.; Bloch, T.; Casarejos, E.; Cortina-Gil, D.; Durán, I.; Fiori, E.; Gernhäuser, R.; González, D.; Kröll, T.; Le Bleis, T.; Montes, N.; Nácher, E.; Robles, M.; Perea, A.; Vilán, J. A.; Winkel, M.

    2013-11-01

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R3B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300 MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator - photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma-ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations.

  3. A Lead Astronomical Neutrino Detector: LAND

    NASA Astrophysics Data System (ADS)

    Hargrove, C. K.; Batkin, I.; Sundaresan, M. K.; Dubeau, J.

    1996-08-01

    The development of a sensitive detector for neutrinos of astronomical origin (simply called astronomical neutrinos hereafter) would make possible detailed investigation of supernovae (SN) and open the way for the discovery of new astronomical phenomena. The neutrino weak interaction cross section at energies less than 100 MeV increases with Z due to correlated nucleon effects and the nuclear Coulomb factor (Fermi function). Therefore neutrino detection based on high Z materials will give the largest possible cross sections and best possible neutrino detection efficiency. This physics argument motivated us to study lead as a detector of SN. The neutrino cross section for neutron production on lead through the reaction Pb(νe,μ,τ, ln)X is ≈ 10-40 cm2, for energies up to 50 MeV, where X refers to Pb, Bi or Tl, the product nuclei of the reactions, l refers to the scattered lepton, and n refers to neutrons. Neutron production will occur for all types of neutrinos and the neutrons can be detected easily and efficiently. The detector is uniquely sensitive to all neutrinos but #x003BD;e. We show that a SN at the centre of the galaxy produces about 1000 neutrons in a 1 kiloton detector. This large number will make it possible to measure the mass of νμ and ντ neutrinos between 10 and 100 eV with a precision of 10 eV. Further, we describe a possible detector in which one also detects the associated electromagnetic energy in coincidence with the neutrons. The coincidence makes this detector essentially background free. It is possible to expand such a detector to a size which will reach SN well beyond our galaxy. We calculate the ν-Pb cross section, discuss the design, neutrino mass resolution, neutron detection efficiency and signal to noise ratio aspects of these detectors.

  4. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  5. Neutron and X-ray Detectors

    SciTech Connect

    Carini, Gabriella; Denes, Peter; Gruener, Sol; Lessner, Elianne

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  6. Cosmic muon detector using proportional chambers

    NASA Astrophysics Data System (ADS)

    Varga, Dezső; Gál, Zoltán; Hamar, Gergő; Sára Molnár, Janka; Oláh, Éva; Pázmándi, Péter

    2015-11-01

    A set of classical multi-wire proportional chambers was designed and constructed with the main purpose of efficient cosmic muon detection. These detectors are relatively simple to construct, and at the same time are low cost, making them ideal for educational purposes. The detector layers have efficiencies above 99% for minimum ionizing cosmic muons, and their position resolution is about 1 cm, that is, particle trajectories are clearly observable. Visualization of straight tracks is possible using an LED array, with the discriminated and latched signal driving the display. Due to the exceptional operating stability of the chambers, the design can also be used for cosmic muon telescopes.

  7. Plastic neutron detectors.

    SciTech Connect

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in

  8. The ATLAS Detector Control System

    NASA Astrophysics Data System (ADS)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  9. Coated Fiber Neutron Detector Test

    SciTech Connect

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  10. Superconducting nano-strip particle detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Casaburi, A.; Zen, N.; Ohkubo, M.

    2015-12-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2-5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications.

  11. A multilayer surface detector for ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Hoffbauer, M. A.; Morris, C. L.; Callahan, N. B.; Adamek, E. R.; Bacon, J. D.; Blatnik, M.; Brandt, A. E.; Broussard, L. J.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Dees, E. B.; Ding, X.; Gao, J.; Gray, F. E.; Hickerson, K. P.; Holley, A. T.; Ito, T. M.; Liu, C.-Y.; Makela, M.; Ramsey, J. C.; Pattie, R. W.; Salvat, D. J.; Saunders, A.; Schmidt, D. W.; Schulze, R. K.; Seestrom, S. J.; Sharapov, E. I.; Sprow, A.; Tang, Z.; Wei, W.; Wexler, J.; Womack, T. L.; Young, A. R.; Zeck, B. A.

    2015-10-01

    A multilayer surface detector for ultracold neutrons (UCNs) is described. The top 10B layer is exposed to vacuum and directly captures UCNs. The ZnS:Ag layer beneath the 10B layer is a few microns thick, which is sufficient to detect the charged particles from the 10B(n,α)7Li neutron-capture reaction, while thin enough that ample light due to α and 7Li escapes for detection by photomultiplier tubes. A 100-nm thick 10B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials, and other parameters. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparison with other existing 3He and 10B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.

  12. A WIMP Dark Matter Detector Using MKIDs

    NASA Astrophysics Data System (ADS)

    Golwala, S.; Gao, J.; Moore, D.; Mazin, B.; Eckart, M.; Bumble, B.; Day, P.; Leduc, H. G.; Zmuidzinas, J.

    2008-04-01

    We are pursuing the development of a phonon- and ionization-mediated WIMP dark matter detector employing microwave kinetic inductance detectors (MKIDs) in the phonon-sensing channel. Prospective advantages over existing detectors include: improved reconstruction of the phonon signal and event position; simplified readout wiring and cold electronics; and simplified and more reliable fabrication. We have modeled a simple design using available MKID sensitivity data and anticipate energy resolution as good as existing phonon-mediated detectors and improved position reconstruction. We are doing preparatory experimental work by fabricating strip absorber architectures. Measurements of diffusion length, trapping efficiency, and MKID sensitivity with these devices will enable us to design a 1 cm2×2 mm prototype device to demonstrate phonon energy resolution and position reconstruction.

  13. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  14. Operational experience with the ATLAS Pixel Detector at the LHC

    NASA Astrophysics Data System (ADS)

    Lapoire, C.; Atlas Collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy is sufficiently low and hit efficiency exceed the design specification.

  15. Results on diamond timing detector for the TOTEM experiment

    NASA Astrophysics Data System (ADS)

    Bossini, E.

    2016-07-01

    We describe the results and status of our R&D on diamond timing detectors for the TOTEM experiment at CERN. Tests with commercial devices have been done and here reported; the unsatisfactory results push us to design a new detector. We present test beams results and the front-end electronics, critical point of the design. Efficiency studies and timing performance dependence from detector capacitance will be also reported.

  16. The vertex detector for the Lepton/Photon Collaboration

    SciTech Connect

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity {eta} distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  17. Gamma ray spectroscopy in astrophysics: Future role of scintillation detectors

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.

    1978-01-01

    The future role of conventional scintillation detector telescopes for line gamma-ray astronomy is discussed. Although the energy resolution of the germanium detectors now being used by several groups is clearly desirable, the larger effective areas and higher efficiencies available with scintillation detectors is advantageous for many observations. This is particularly true for those observations of astrophysical phenomena where significant line broadening is expected.

  18. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  19. Novel far-infrared detectors for space applications

    NASA Astrophysics Data System (ADS)

    Perera, A. G. Unil; Shen, W. Z.; Liu, Hui C.; Buchanan, Margaret; Schaff, William J.

    1999-04-01

    The recent development of p-GaAs homojunction interfacial workfunction internal photoemission (HIWIP) far-infrared (> 40 micrometers ) detectors for space application is reported. The emphasis is placed on the detector performance, which includes responsivity, quantum efficiency, bias effects, cutoff wavelength, uniformity, crosstalk, and noise. The results are promising and show that p-GaAs HIWIP detectors have high potential to become a strong competitor in far- infrared space applications.

  20. The vertex detector for the Lepton/Photon collaboration

    SciTech Connect

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  1. Fabrication and Characterization of Superconducting NbN Nanowire Single Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stern, Jeffrey A.; Farr, William H.

    2006-01-01

    We report on the fabrication and characterization of high-speed, single photon detectors using superconducting NbN nanowires at a wavelength of 1064 nm. A 15 by 15 micron detector with a detector efficiency of 40% has been measured. Due to kinetic inductance, the recovery time of such large area detectors is longer than that of smaller or single wire detectors. The recovery time of our detectors (50 ns) has been characterized by measuring the inter-arrival time statistics of our detector.

  2. The HERMES Recoil Detector

    SciTech Connect

    Kaiser, R.

    2006-07-11

    The HERMES Collaboration is installing a new Recoil Detector to upgrade the spectrometer for measurements of hard exclusive electron/positron scattering reactions, in particular deeply virtual Compton scattering. These measurements will provide access to generalised parton distributions and hence to the localisation of quarks inside hadrons and to their orbital angular momentum. The HERMES Recoil Detector consists of three active components: a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fibre tracker and a photon detector consisting of three layers of tungsten/scintillator. All three detectors are located inside a solenoidal magnetic field of 1 Tesla. The Recoil Detector was extensively tested with cosmic muons over the summer of 2005 and is being installed in the winter of 2005/6 for data taking until summer 2007.

  3. Detectors for Particle Radiation

    NASA Astrophysics Data System (ADS)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  4. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  5. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  6. Detectors (4/5)

    ScienceCinema

    None

    2011-10-06

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  7. Detectors (5/5)

    ScienceCinema

    None

    2011-10-06

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  8. Type II superlattice technology for LWIR detectors

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  9. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  10. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  11. Detectors of gravitational waves

    NASA Astrophysics Data System (ADS)

    Pizzella, G.

    Gravitational waves Motion of test bodies in a g.w. field Energy carried by gravitational waves Gravitational-wave sources Spinning star Double-star systems Fall into a Schwarzschild black hole Radiation from gravitational collapse Gravitational-wave detectors The nonresonant detectors The resonant detectors Electromechnical transducers Piezoelectric ceramic The capacitor The inductor Data analysis The Brownian noise The back-action The wide-band noise, data analysis and optimization The resonant transducer The Wiener-Kolmogoroff filter The cross-section and the effective temperature The antenna bandwidth The gravitational-wave experiments in the world The laser interferometers The resonant detectors

  12. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  13. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  14. Special Nuclear Material Detection with a Water Cherenkov based Detector

    SciTech Connect

    Sweany, M; Bernstein, A; Bowden, N; Dazeley, S; Svoboda, R

    2008-11-10

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, produce a number of neutrons and high energy gamma-rays. Assuming the neutron multiplicity is approximately Poissonian with an average of 2 to 3, the observation of time correlations between these particles from a cargo container would constitute a robust signature of the presence of SNM inside. However, in order to be sensitive to the multiplicity, one would require a high total efficiency. There are two approaches to maximize the total efficiency; maximizing the detector efficiency or maximizing the detector solid angle coverage. The advanced detector group at LLNL is investigating one way to maximize the detector size. We are designing and building a water Cerenkov based gamma and neutron detector for the purpose of developing an efficient and cost effective way to deploy a large solid angle car wash style detector. We report on our progress in constructing a larger detector and also present preliminary results from our prototype detector that indicates detection of neutrons.

  15. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  16. Throughput of Coded Optical CDMA Systems with AND Detectors

    NASA Astrophysics Data System (ADS)

    Memon, Kehkashan A.; Umrani, Fahim A.; Umrani, A. W.; Umrani, Naveed A.

    2012-09-01

    Conventional detection techniques used in optical code-division multiple access (OCDMA) systems are not optimal and result in poor bit error rate performance. This paper analyzes the coded performance of optical CDMA systems with AND detectors for enhanced throughput efficiencies and improved error rate performance. The results show that the use of AND detectors significantly improve the performance of an optical channel.

  17. Can scintillation detectors with low spectral resolution accurately determine radionuclides content of building materials?

    PubMed

    Kovler, K; Prilutskiy, Z; Antropov, S; Antropova, N; Bozhko, V; Alfassi, Z B; Lavi, N

    2013-07-01

    The current paper makes an attempt to check whether the scintillation NaI(Tl) detectors, in spite of their poor energy resolution, can determine accurately the content of NORM in building materials. The activity concentrations of natural radionuclides were measured using two types of detectors: (a) NaI(Tl) spectrometer equipped with the special software based on the matrix method of least squares, and (b) high-purity germanium spectrometer. Synthetic compositions with activity concentrations varying in a wide range, from 1/5 to 5 times median activity concentrations of the natural radionuclides available in the earth crust and the samples of popular building materials, such as concrete, pumice and gypsum, were tested, while the density of the tested samples changed in a wide range (from 860 up to 2,410 kg/m(3)). The results obtained in the NaI(Tl) system were similar to those obtained with the HPGe spectrometer, mostly within the uncertainty range. This comparison shows that scintillation spectrometers equipped with a special software aimed to compensate for the lower spectral resolution of NaI(Tl) detectors can be successfully used for the radiation control of mass construction products. PMID:23542118

  18. Explosives (and other threats) detection using pulsed neutron interrogation and optimized detectors

    NASA Astrophysics Data System (ADS)

    Strellis, Dan A.; Elsalim, Mashal; Gozani, Tsahi

    2011-06-01

    We have previously reported results from a human-portable system using neutron interrogation to detect contraband and explosives. We summarized our methodology for distinguishing threat materials such as narcotics, C4, and mustard gas in the myriad of backgrounds present in the maritime environment. We are expanding our mission for the Domestic Nuclear Detection Office (DNDO) to detect Special Nuclear Material (SNM) through the detection of multiple fission signatures without compromising the conventional threat detection performance. This paper covers our initial investigations into using neutrons from compact pulsed neutron generators via the d(D,n)3He or d(T,n)α reactions with energies of ~2.5 and 14 MeV, respectively, for explosives (and other threats) detection along with a variety of gamma-ray detectors. Fast neutrons and thermal neutrons (after successive collisions) can stimulate the emission of various threat detection signatures. For explosives detection, element-specific gamma-ray signatures via the (n,n'γ) inelastic scattering reaction and the (n,'γ) thermal capture reaction are detected. For SNM, delayed gamma-rays following fission can be measured with the same detector. Our initial trade-off investigations of several gamma-ray detectors types (NaI, CsI, LaBr3, HPGe) for measuring gamma-ray signatures in a pulsed neutron environment for potential application in a human-portable active interrogation system are covered in this paper.

  19. GRAVITY detector systems

    NASA Astrophysics Data System (ADS)

    Mehrgan, Leander H.; Finger, Gert; Accardo, Matteo; Lizon, Jean-Louis; Stegmeier, Joerg; Eisenhauer, Frank

    2014-07-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. It will combine the AO corrected beams of the four VLT telescopes. The GRAVITY instrument uses a total of five eAPD detectors, four of which are for wavefront sensing and one for the Fringe tracker. In addition two Hawaii2RG are used, one for the acquisition camera and one for the spectrometer. A compact bath cryostat is used for each WFS unit, one for each of the VLT Unit Telescopes. Both Hawaii2RG detectors have a cutoff wavelength of 2.5 microns. A new and unique element of GRAVITY is the use of infrared wavefront sensors. For this reason SELEX-Galileo has developed a new high speed avalanche photo diode detector for ESO. The SAPHIRA detector, which stands for Selex Avalanche Photodiodes for Highspeed Infra Red Applications, has been already evaluated by ESO. At a frame rate of 1 KHz, a read noise of less than one electron can be demonstrated. A more detailed presentation about the performance of the SPAHIRA detector will be given at this conference 1. Each SAPHIRA detector is installed in an LN2 bath cryostat. The detector stage, filter wheel and optics are mounted on the cold plate of the LN2 vessel and enclosed by a radiation shield. All seven detector systems are controlled and read out by the standard ESO NGC controller. The NGC is a controller platform which can be adapted and customized for all infrared and optical detectors. This paper will discuss specific controller modifications implemented to meet the special requirements of the GRAVITY detector systems and give an overview of the GRAVITY detector systems and their performance.

  20. The Quantasyn, an improved quantum detector

    NASA Technical Reports Server (NTRS)

    Gorstein, M.; Mc Williams, I. G.; Seward, H. H.

    1969-01-01

    Quantasyn provides absolute measurement of radiation flux in the range 1000 A to 4500 A and into the vacuum ultraviolet. This radiation detector cimbines the high quantum efficiency and inherent linearity of the silicon solar cell with the constant quantum response of the fluorescent organic compound liumogen.