Science.gov

Sample records for human bile salt

  1. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites

    PubMed Central

    2010-01-01

    Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense). Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax) have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old) showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites preserved in arid climates

  2. Crystal structure of the catalytic domain of human bile salt activated lipase.

    PubMed Central

    Terzyan, S.; Wang, C. S.; Downs, D.; Hunter, B.; Zhang, X. C.

    2000-01-01

    Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285). PMID:11045623

  3. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  4. Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates.

    PubMed

    Fuochi, Virginia; Petronio, Giulio Petronio; Lissandrello, Edmondo; Furneri, Pio Maria

    2015-09-01

    There are nearly 100 trillion bacteria in the intestine that together form the intestinal microbiota. They are 'good' bacteria because they help to maintain a physiological balance and are called probiotics. Probiotics must have some important characteristics: be safe for humans, be resistant to the low pH in the stomach, as well as bile salts and pancreatic juice. Indeed, their survival is the most important factor, so that they can arrive alive in the intestine and are able to form colonies, at least temporarily. The aim of our study was the evaluation of resistance of Lactobacillus isolates from fecal and oral swabs compared to that found in a commercial product. Seven strains were randomly chosen: L. jensenii, L. gasseri, L. salivarius, L. fermentum, L. rhamnosus, L. crispatus, and L. delbrueckii. We observed a large variability in the results: L. gasseri and L. fermentum were the most resistance to low pH, while only L. gasseri showed the best survival rate to bile salts. Interestingly, the commercial product did not show tolerance to both low pH and bile salts. PMID:26216909

  5. Bile salt-stimulated lipase: an animal model for human lactation

    SciTech Connect

    Hamosh, M.; Freed, L.M.; York, C.M.; Sturman, J.A.; Hamosh, P.

    1986-03-01

    To date, bile salt-stimulated lipase (BSSL), an important digestive enzyme for the newborn, has only been described in the milk of primates - human and gorilla. The authors report the presence of BSSL in milks of dog and cat. Serial collections from two dogs (day 1-49) and cats (day 5-57) were analyzed for BSSL activity using a /sup 3/H-triolein emulsion as substrate. Comparable analyses of pooled, term human milk were made for comparison. BSSL activity in individual dog milks (x = 32.0; range: 4.8-107.4 U/ml) was similar, while that in cat milk (x = 6.6; range: 2.2-16.9 U/ml) was lower than in human milk (x = 37.0; range: 10-80 U/ml; n = 35). Longitudinal patterns for BSSL differed depending upon the enzyme source. Dog, cat and human milk BSSL all showed a neutral to alkaline pH optimum (pH 7.0-8.4), stability at low pH, and 95-100% inhibition (at concentrations of 0.6 mM) by NaCl and eserine. BSSL activity from all sources had an obligate requirement for primary bile salts. These data are the first to show BSSL activity in milk from mammals other than human and gorilla. Presence of BSSL in nonprimate milk will permit the careful study of BSSL biology in the mammary gland as well as its role in neonatal fat digestion.

  6. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS

    PubMed Central

    Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

  7. Partial replacement of bile salts causes marked changes of cholesterol crystallization in supersaturated model bile systems.

    PubMed Central

    Nishioka, T; Tazuma, S; Yamashita, G; Kajiyama, G

    1999-01-01

    Cholesterol crystallization is a key step in gallstone formation and is influenced by numerous factors. Human bile contains various bile salts having different hydrophobicity and micelle-forming capacities, but the importance of lipid composition to bile metastability remains unclear. This study investigated the effect of bile salts on cholesterol crystallization in model bile (MB) systems. Supersaturated MB systems were prepared with an identical composition on a molar basis (taurocholate/phosphatidylcholine/cholesterol, 152 mM:38 mM: 24 mM), except for partial replacement of taurocholate (10, 20, and 30%) with various taurine-conjugated bile salts. Cholesterol crystallization was quantitatively estimated by spectrophotometrically measuring crystal-related turbidity and morphologically scanned by video-enhanced microscopy. After partial replacement of taurocholate with hydrophobic bile salts, cholesterol crystallization increased dose-dependently without changing the size of vesicles or crystal morphology and the rank order of crystallization was deoxycholate>chenodeoxycholate>cholate (control MB). All of the hydrophilic bile salts (ursodeoxycholate, ursocholate and beta-muricholate) inhibited cholesterol precipitation by forming a stable liquid-crystal phase, and there were no significant differences among the hydrophilic bile-salt species. Cholesterol crystallization was markedly altered by partial replacement of bile salts with a different hydrophobicity. Thus minimal changes in bile-salt composition may dramatically alter bile lipid metastability. PMID:10333488

  8. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    PubMed

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  9. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  10. Functional genomic analysis of bile salt resistance in Enterococcus faecium

    PubMed Central

    2013-01-01

    Background Enterococcus faecium is a Gram-positive commensal bacterium of the mammalian intestinal tract. In the last two decades it has also emerged as a multi-resistant nosocomial pathogen. In order to survive in and colonize the human intestinal tract E. faecium must resist the deleterious actions of bile. The molecular mechanisms exploited by this bacterium to tolerate bile are as yet unexplored. Results In this study we used a high-throughput quantitative screening approach of transposon mutant library, termed Microarray-based Transposon Mapping (M-TraM), to identify the genetic determinants required for resistance to bile salts in E. faecium E1162. The gene gltK, which is predicted to encode a glutamate/aspartate transport system permease protein, was identified by M-TraM to be involved in bile resistance. The role of GltK in bile salt resistance was confirmed by the subsequent observation that the deletion of gltK significantly sensitized E. faecium E1162 to bile salts. To further characterize the response of E. faecium E1162 to bile salts, we performed a transcriptome analysis to identify genes that are regulated by exposure to 0.02% bile salts. Exposure to bile salts resulted in major transcriptional rearrangements, predominantly in genes involved in carbohydrate, nucleotide and coenzyme transport and metabolism. Conclusion These findings add to a better understanding of the molecular mechanisms by which E. faecium responds and resists the antimicrobial action of bile salts. PMID:23641968

  11. Bile salt-stimulated lipase of human milk: characterization of the enzyme from preterm and term milk

    SciTech Connect

    Freed, L.M.; Hamosh, P.; Hamosh, M.

    1986-03-01

    The bile salt-stimulated lipase (BSSL) of human milk is an important digestive enzyme in the newborn whose pancreatic function is immature. Milk from mothers delivering premature infants (preterm milk) has similar levels of BSSL activity to that of mothers of term infants (term milk). This study has determined whether the BSSL in preterm milk has the same characteristics as that in term milk. Milk samples were collected during the first 12 wk of lactation from seven mothers of infants born at 26-30 wk (very preterm, VPT), 31-37 wk (preterm, PT) and 37-42 wk (term, T) gestation. BSSL activity was measured using /sup 3/H-triolein emulsion as substrate. Time course, bile salt and enzyme concentration, pH and pH stability were studied, as well as inhibition of BSSL by eserine. The characteristics of BSSL from preterm and term milk were identical as were comparisons between colostrum and mature milk BSSL. BSSL from all milk sources had a neutral-to-alkaline pH optimum (pH 7.3-8.9), was stable at low pH for 60 min, and was 95-100% inhibited by eserine (greater than or equal to 0.6 mM). BSSL activity, regardless of enzyme source, was bile-salt dependent and was stimulated only by primary bile salts (taurocholate, glycocholate). The data indicate that the BSSL in milks of mothers delivering as early as 26 wk gestation is identical to that in term milk.

  12. Molecular level investigation on the interaction of pluronic F127 and human intestinal bile salts using excited state prototropism of 1-naphthol.

    PubMed

    Swain, Jitendriya

    2016-07-01

    Pluronic F127 (PF127), a surfactant polymer is used as a drug delivery system and has been introduced recently in the food research to delay lipid digestion process. In this context study the interaction of this polymer with human intestinal bile salts assumes important. The studies involving interaction of PF127 with human intestinal bile salts sodium taurocholic acid (NaTC) and sodium cholate acid (NaC) by using differential scanning calorimetry (DSC) and 1-naphthol as a fluorescent molecular probe show that the bile salts induce decrease of sol-gel phase transition temperature of the PF127 to lower temperature, from ~21°C to ~18°C. Variation of neutral form fluorescence intensity of 1-naphthol with bile salts in water confirmed efficient micellar aggregation with critical micellar concentration (CMC) values of 12.6mM for NaTC and 12.7mM for NaC. Fluorescence parameters like fluorescence intensity and fluorescence lifetime of the two excited state prototropic forms {neutral form emission (λem=370nm), anion form emission (λem=470nm)} of 1-naphthol suggested that the NaTC (below critical micellar concentration 12mM) and NaC (above critical micellar concentration 12mM) induce appreciable dehydration of the hydrophilic corona as well as core region PF127 hydrogel. The micropolarity of the hydrogel microenvironment decreases with increase in concentration of both the bile salts. PMID:27093000

  13. Nasal Absorption of Insulin: Enhancement by Hydrophobic Bile Salts

    NASA Astrophysics Data System (ADS)

    Gordon, G. S.; Moses, A. C.; Silver, R. D.; Flier, J. S.; Carey, M. C.

    1985-11-01

    We demonstrate that therapeutically useful amounts of insulin are absorbed by the nasal mucosa of human beings when administered as a nasal spray with the common bile salts. By employing a series of bile salts with subtle differences in the number, position, and orientation of their nuclear hydroxyl functions and alterations in side chain conjugation, we show that adjuvant potency for nasal insulin absorption correlates positively with increasing hydrophobicity of the bile salts' steroid nucleus. As inferred from studies employing various concentrations of unconjugated deoxycholate and a constant dose of insulin, insulin absorption begins at the aqueous critical micellar concentration of the bile salt and becomes maximal when micelle formation is well established. These and other data are consistent with the complementary hypotheses that bile salts act as absorption adjuvants by (i) producing high juxtamembrane concentrations of insulin monomers via solubilization in mixed bile salt micelles and (ii) forming reverse micelles within nasal membranes, through which insulin monomers can diffuse through polar channels from the nares into the blood stream.

  14. Transgenic mouse milk expressing human bile salt-stimulated lipase improves the survival and growth status of premature mice.

    PubMed

    Wang, Yuanyuan; Sheng, Zheya; Wang, Yuhang; Li, Qinghe; Gao, Yu; Wang, Yuhui; Dai, Yunping; Liu, George; Zhao, Yaofeng; Li, Ning

    2015-03-01

    The lactating human mammary gland and the pancreas both produce bile salt-stimulated lipase (BSSL), a lipolytic enzyme acting on a wide range of substrates, including triglyceride, cholesterol esters, and fat-soluble vitamins esters. Breast milk BSSL has a particularly important role in the digestion of milk fat by newborn infants. We report the generation of transgenic mice that harbored a human BSSL gene controlled by a mammary gland-specific promoter. BSSL levels in transgenic mouse milk were raised to 376.8 μg/ml, corresponding to an activity of 9.15 U/ml. Premature wild-type neonates nursed by transgenic dams exhibited significantly higher survival rate than did the control neonates nursed by wild dams (95 vs. 83.3 % and, P < 0.05). They also showed 43.8 % greater body weight gain and 33.3 % lesser fecal crude fat levels than did the controls. This study provides significant evidence that increased levels of BSSL in milk may reduce mortality and improve the growth and fat absorption in premature mice during neonatal development. PMID:25385005

  15. Increased cell loss in the human jejunum induced by laxatives (ricinoleic acid, dioctyl sodium sulphosuccinate, magnesium sulphate, bile salts).

    PubMed Central

    Bretagne, J F; Vidon, N; L'Hirondel, C; Bernier, J J

    1981-01-01

    Two conjugated bile salts (10 mmol/l sodium glycocholate, 10 mmol/l sodium taurodeoxycholate) and three laxatives (30 mmol/l magnesium sulphate, 10 mmol/l ricinoleic acid, 2 mmol/l dioctyl sodium sulphosuccinate) were tested on seven subjects with no intestinal lesions in 14 experiments by intestinal perfusion of the jejunum. A 25 cm segment was studied. Each solution was perfused at the rate of 10 ml/min. Water and electrolyte fluxes, losses of deoxyribonucleic acid (DNA), and intestinal cell enzyme activity were measured in the fluids collected. All the laxatives and bile salts tested (except sodium glycocholate) induced water and electrolyte secretion, a rise in intraluminal DNA loss, and enzyme activity. It was possible to establish a significant correlation (p less than 0.001) between the amounts of water fluxes and DNA loss under the effect of dioctyl sodium sulphosuccinate and ricinoleic acid. PMID:6165655

  16. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    PubMed

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings. PMID:26781714

  17. Early Identification of Clinically Relevant Drug Interactions With the Human Bile Salt Export Pump (BSEP/ABCB11)

    PubMed Central

    Artursson, Per

    2013-01-01

    A comprehensive analysis was performed to investigate how inhibition of the human bile salt export pump (BSEP/ABCB11) relates to clinically observed drug-induced liver injury (DILI). Inhibition of taurocholate (TA) transport was investigated in BSEP membrane vesicles for a data set of 250 compounds, and 86 BSEP inhibitors were identified. Structure-activity modeling identified BSEP inhibition to correlate strongly with compound lipophilicity, whereas positive molecular charge was associated with a lack of inhibition. All approved drugs in the data set (n = 182) were categorized according to DILI warnings in drug labels issued by the Food and Drug Administration, and a strong correlation between BSEP inhibition and DILI was identified. As many as 38 of the 61 identified BSEP inhibitors were associated with severe DILI, including 9 drugs not previously linked to BSEP inhibition. Further, among the tested compounds, every second drug associated with severe DILI was a BSEP inhibitor. Finally, sandwich-cultured human hepatocytes (SCHH) were used to investigate the relationship between BSEP inhibition, TA transport, and clinically observed DILI in detail. BSEP inhibitors associated with severe DILI greatly reduced the TA canalicular efflux, whereas BSEP inhibitors with less severe or no DILI resulted in weak or no reduction of TA efflux in SCHH. This distinction illustrates the usefulness of SCHH in refined analysis of BSEP inhibition. In conclusion, BSEP inhibition in membrane vesicles was found to correlate to DILI severity, and altered disposition of TA in SCHH was shown to separate BSEP inhibitors associated with severe DILI from those with no or mild DILI. PMID:24014644

  18. Effects of bile and bile salts on growth and membrane lipid uptake by Giardia lamblia. Possible implications for pathogenesis of intestinal disease.

    PubMed Central

    Farthing, M J; Keusch, G T; Carey, M C

    1985-01-01

    We have shown previously that ox and pig bile accelerate in vitro growth of Giardia lamblia. We have now investigated the possible mechanisms by which mammalian biles promote parasite growth. Growth effects of (a) ox, pig, guinea pig, and human biles, (b) pure bile salts, and (c) egg and soybean lecithins were studied in the presence of a lecithin-containing growth medium. Individually, dilute native bile and pure sodium taurocholate (TC), glycocholate (GC), and taurodeoxycholate (TDC) promoted parasite growth; growth was most marked with biles of high phospholipid content, with biles enriched in more hydrophobic bile salts (ox approximately equal to human greater than pig greater than guinea pig) and with micellar concentrations of GC and submicellar concentrations of TC and TDC. By measuring uptake of radiolabeled biliary lipids from bile and bile salt-supplemented growth medium, we showed that the parasite consumed bile lipids, with the rank order lecithin greater than bile salts. Apparent net uptake of cholesterol was considered to be due to exchange, since net loss of cholesterol from the growth medium was not detected. Although bile and bile salt-stimulated parasite growth was associated with enhanced lecithin uptake, reduction in generation time was observed at low bile and bile salt concentrations when lecithin uptake was similar to bile free controls. Thus, bile salts may stimulate Giardia growth initially by a mechanism independent of enhanced membrane phospholipid uptake. However, since Giardia has no capacity to synthesize membrane lipid, biliary lecithin may be a major source of phospholipid for growth of this parasite. PMID:4056050

  19. Bile salt-membrane interactions and the physico-chemical mechanisms of bile salt toxicity.

    PubMed

    Heuman, D M

    1995-09-01

    We present evidence that ursodeoxycholate prevents toxicity of more hydrophobic bile salts by inhibiting micellar solubilization of membrane lipids. Using both centrifugal ultrafiltration and gel filtration methods we studied leakage of inulin from vesicles composed of egg phosphatidylcholine and cholesterol. We observed that the addition of tauroursodeoxycholate to taurodeoxycholate reduced leakage of inulin from large unilamelar vesicles compared to that seen with taurodeoxycholate alone. This protective effect was observed only at high membrane cholesterol:phospholipid ratios (> or = 0.5). By gel filtration we found that fractional leakage of inulin from vesicles was identical to fractional phospholipid solubilization, indicating that release of inulin from vesicles results from membrane dissolution rather than from increased permeability of otherwise intact membranes. Addition of tauroursodeoxycholate to taurodeoxycholate was found to suppress the dissolution of phospholipid from cholesterol-rich vesicles. Bile salts were found to absorb to vesicles with an affinity proportional to their relative hydrophobicity, as estimated by reverse phase HPLC. Adsorption affinity decreased progressively with increasing membrane cholesterol content. Different bile salts displaced each other from membranes in proportion to their respective binding, affinities. Tauroursodeoxycholate, which absorbed to membranes with low affinity, displaced taurodeoxycholate from vesicles only weakly. Based on these findings we postulate that bile salts may damage the liver through solubilization of canalicular membrane lipids. Ursodeoxycholate may protect the liver by inhibiting dissolution of the cholesterol-rich canalicular membrane by more hydrophobic endogenous bile salts. Biliary secretion of vesicles rich in phosphatidylcholine may buffer the intermicellar concentration of bile acids at levels below those required to disrupt the cholesterol-rich canalicular membrane; thus biliary vesicle

  20. Bacteria, bile salts, and intestinal monosaccharide malabsorption

    PubMed Central

    Gracey, Michael; Burke, Valerie; Oshin, Ademola; Barker, Judith; Glasgow, Eric F.

    1971-01-01

    Intestinal monosaccharide transport was studied in a series of rats with a self-filling jejunal blind loop using 3mM arbutin (p-hydroxyphenyl-B-glucoside) or 1mM D-fructose as substrate in vitro and 10 mM arbutin or 5mM D-fructose in vivo. These results were compared with changes in the bacterial flora and state of conjugation of intraluminal bile salts in those animals. Observations were also made of the microscopic and ultrastructural appearances of the small-intestinal epithelium. In the small intestine of blind-loop rats intestinal monosaccharide transport is impaired, and in vitro is most marked in the blind loop, less so in the efferent jejunum, and not significantly altered in the afferent jejunum. A similar pattern of disturbed monosaccharide absorption was demonstrated by perfusions in vivo. The degree of the transport defect correlates closely with the luxuriance of the anaerobic flora, which averaged 108 per millilitre in the blind loop, 107 in the efferent jejunum, and 106 in the afferent jejunum. A similar pattern of abnormality of bile salt conjugation occurred. In the blind loop the ratio of free to conjugated bile salts was grossly abnormal; this disturbance was somewhat less marked in the efferent jejunum and considerably less in the intraluminal contents of the afferent jejunum. An irregularly distributed lesion, consisting of swelling and vacuolation of microvilli and intracellular organelles, was demonstrated in the small-intestinal epithelium of blind-loop animals. Impaired absorption of monosaccharides is a further consequence of bacterial contamination of the upper gut. It is suggested that this defect is caused by the presence of high levels of deconjugated bile salts produced by an abnormal anaerobic bacterial flora in the small intestine. ImagesFig. 3Fig. 4 PMID:4329096

  1. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    PubMed

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed. PMID:27192825

  2. A New Insight into the Physiological Role of Bile Salt Hydrolase among Intestinal Bacteria from the Genus Bifidobacterium

    PubMed Central

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche. PMID:25470405

  3. Bile salts are effective taste stimuli in channel catfish.

    PubMed

    Rolen, S H; Caprio, J

    2008-09-01

    Bile salts are known olfactory stimuli for teleosts, but only a single report has indicated that the taste system of a fish was sensitive to this class of stimuli. Here, gustatory responses of the channel catfish, Ictalurus punctatus, to four bile salts that included taurine-, glycine- and non-conjugated compounds along with three stimulatory amino acids as a comparison were investigated using extracellular electrophysiological techniques. Integrated multiunit responses were obtained from the branch of the facial nerve innervating taste buds on the maxillary barbel. Bile salts were shown to be highly effective facial taste stimuli, with estimated electrophysiological thresholds for three of the four tested bile salts of approximately 10(-11) mol l(-1) to 10(-10) mol l(-1), slightly lower by 1-2 log units than those to amino acids in the same species. Although the sensitivity of the facial taste system of the channel catfish to bile salts is high, the relative magnitude of the response to suprathreshold concentrations of bile salts was significantly less than that to amino acids. Multiunit cross-adaptation experiments indicate that bile salts and amino acids bind to relatively independent receptor sites; however, nerve-twig data and single-fiber recordings suggest that both independent and shared neural pathways exist for the transmission of bile salt and amino acid information to the primary gustatory nucleus of the medulla. PMID:18723536

  4. Binding of bile salts to fibre-enriched wheat fibre.

    PubMed

    Florén, C H; Nilsson, A

    1987-01-01

    A commercial product of fibre-enriched wheat fibre (Fiberform R) was tested for its binding of bile salts in vitro. The wheat fibre preparation was standardized and through enzymatic digestion of protein and starch contained 78 per cent fibre (w/w). Fibre-enriched wheat fibre bound with high capacity both conjugated and unconjugated bile salts. Binding was saturable, reversible and showed no specificity towards tauro- or glycine-conjugated bile salts. Binding was rapid, dependent on pH, was enhanced by the presence of high salt concentrations and partially inhibited by 6 M urea. This indicated that binding was a combination of hydrophobic and hydrophilic interactions. PMID:2820035

  5. The adsorption-desorption behaviour and structure function relationships of bile salts.

    PubMed

    Parker, Roger; Rigby, Neil M; Ridout, Michael J; Gunning, A Patrick; Wilde, Peter J

    2014-09-14

    The digestion of dietary components in the human gastrointestinal (GI) tract is a complex, dynamic, inherently heterogeneous process. A key aspect of the digestion of lipid in the GI tract is the combined action of bile salts, lipase and colipase in hydrolysing and solubilising dispersed lipid. The bile salts are a mixture of steroid acid conjugates with surfactant properties. In order to examine whether the different bile salts have different interfacial properties their dynamic interfacial behaviour was characterised. Differences in the adsorption behaviour to solid hydrophobic surfaces of bile salt species were studied using dual polarisation interferometry and atomic force microscopy (AFM) under physiological conditions. Specifically, the cholates adsorbed more slowly and a significant proportion were irreversibly adsorbed following buffer rinsing; whereas the deoxycholates and chenodeoxycholates adsorbed more rapidly and desorbed to a greater extent following buffer rinsing. The conjugating groups (taurine, glycine) did not influence the behaviour. AFM showed that the interfacial structures that remained following buffer rinsing were also different between these two groups. In addition, the adsorption-desorption behaviour affected the adsorption of colipase to a solid surface. This supports the idea that cooperative adsorption occurs between certain bile salts and colipase to facilitate the adsorption and activity of pancreatic lipase in order to restore lipolytic activity in the presence of bile salts. This study provides insights into how differences in bile salt structure could affect lipase activity and solubilisation of lipolysis products and other lipid-soluble bioactive molecules. PMID:25008989

  6. Regulation of Bile Salt Transport in Rat Liver

    PubMed Central

    Simon, Francis R.; Sutherland, Eileen M.; Gonzalez, Manuel

    1982-01-01

    Expansion of the bile salt pool size in rats increases maximum excretory capacity for taurocholate. We examined whether increased bile salt transport is due to recruitment of centrolobular transport units or rather to adaptive changes in the hepatocyte. Daily sodium cholate (100 mg/100 g body wt) was administered orally to rats. This treatment was well tolerated for at least 4 d and produced an 8.2-fold expansion of the bile salt pool. This expanded pool consisted predominently (99%) of cholic and deoxycholic acids. Significantly increased bile salt transport was not observed until 16 h after bile acid loading, and maximum elevations of transport capacity to 2.3-fold of control required ∼2 d. In contrast, maximum sulfobromophthalein excretion rates increased 2.2-fold as early as 4 h and actually fell to 1.5-fold increase at 4 d. We studied the possibility that this adaptive increase in bile salt secretory transport was due to changes in canalicular surface membrane area, lipid composition, or increased number of putative carriers. Canalicular membrane protein recovery and the specific activities of leucine aminopeptidase, Mg++-ATPase and 5′-nucleotidase activities were unaltered by bile salt pool expansion. The content of free and esterified cholesterol and total phospholipids was unchanged in liver surface membrane fractions compared with control values. In contrast, sodium cholate administration selectively increased specific [14C]cholic acid binding sites twofold in liver surface membrane fractions. Increased numbers of [14C]cholic acid receptors (a) was associated with the time-dependent increase in bile salt transport, and (b) was selective for the taurine conjugate of cholate and (c) was reduced by chenodeoxycholate. Changes in bile acid binding sites 16 h following taurocholate and chenodeoxycholate and the lack of change with glycocholate was associated with comparable changes in bile salt transport. In conclusion, selective bile salts increase bile

  7. Bile salt-phospholipid aggregation at submicellar concentrations.

    PubMed

    Baskin, Rebekah; Frost, Laura D

    2008-04-01

    The aggregation behavior of the bile salts taurodeoxycholate (NaTDC) and sodium cholate (NaC), are followed at concentrations below critical micelle concentrations (CMCs) using the environment sensitive, fluorescent-labeled phospholipid, 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-C(6)-HPC). A buffer solution containing NBD-C(6)-HPC is titrated with increasing NaC or NaTDC and the fluorescence changes followed. Both bile salts induced fluorescence changes below their critical micelle concentration indicating the presence of a bile salt-phospholipid aggregate. A critical control experiment using 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino) hexanoic acid (NBD-X) shows that the bile salts are interacting with the longer, C16 hydrocarbon tail, not the NBD probe. The fluorescence curves were fitted to the Hill equation as a model for cooperative aggregation. The cooperativity model provides a minimum estimate for the number of bile salts to give maximal fluorescence. This number was calculated for NaC and NaTDC to have a minimum value of approximately 2. A small aggregation number supports the existence of primary micellar aggregates at submicellar concentrations for bile salt-phospholipid aqueous solutions. PMID:18035524

  8. Bile salts of the West Indian manatee, Trichechus manatus latirostris: novel bile alcohol sulfates and absence of bile acids.

    PubMed

    Kuroki, S; Schteingart, C D; Hagey, L R; Cohen, B I; Mosbach, E H; Rossi, S S; Hofmann, A F; Matoba, N; Une, M; Hoshita, T

    1988-04-01

    The bile salts present in gallbladder bile of the West Indian manatee, Trichechus manatus latirostris, an herbivorous marine mammal of the tropical and subtropical margins of the Atlantic Ocean, were found to consist of a mixture of bile alcohol sulfates. Bile acids, previously believed to be present in all mammals, were not detected. Using chromatography, mass spectrometry, and 1H- and 13C-nuclear magnetic resonance spectroscopy, the major bile alcohol was identified as 5 beta-cholestane-3 alpha,6 beta,7 alpha-25,26-pentol; that is, it had the nuclear structure of alpha-muricholic acid and the side chain structure of bufol. This compound has not been described previously and the trivial name "alpha-trichechol" is proposed. The second most abundant compound was 5 beta-cholestane-3 alpha,7 alpha,25,26-tetrol. Other bile alcohols were tentatively identified as 5 beta-cholestane-3 alpha,6 beta,7 beta,25,26-pentol (named beta-trichechol), 3 alpha,6 alpha,7 beta, 25-26-pentol (named omega-trichechol) and 5 beta-cholestane-3 alpha,6 beta,7 alpha,26-tetrol. The 1H and 13C NMR spectra of the four 6,7 epimers of 3,6,7 trihydroxy bile acids are described and discussed. All bile alcohols were present as ester sulfates, the sulfate group being tentatively assigned to the 26-hydroxy group. 12-Hydroxy compounds were not detected. The manatee is the first mammal found to lack bile acids, presumably because it lacks the enzymes required for oxidation of the 26-hydroxy group to a carboxylic acid. Trichechols, like other bile salts, are water-soluble end products of cholesterol metabolism; whether they also function as biological surfactants in promoting biliary cholesterol secretion or lipid digestion is unknown. PMID:3392467

  9. Bile salt receptor complex activates a pathogenic type III secretion system

    PubMed Central

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N; Salomon, Dor; Tomchick, Diana R; Grishin, Nick V; Orth, Kim

    2016-01-01

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered that Vibrio parahaemolyticus VtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment. DOI: http://dx.doi.org/10.7554/eLife.15718.001 PMID:27377244

  10. Importance of bicarbonate in bile salt independent fraction of bile flow.

    PubMed

    Hardison, W G; Wood, C A

    1978-08-01

    The bile salt independent fraction (BSIF) of canalicular bile flow from the isolated rat liver perfused with bicarbonate-free perfusate is 50% of that from the liver perfused with bicarbonate-containing perfusate. HCO3-excretion is nearly eliminated and Na+ and Cl- excretion is reduced 50%. Replacement of HCO3- into perfusate increased bile flow by 0.3 microliter/g.min without changing bile acid excretion rate. 5.5-Dimethyl-2,4-oxazolidinedione (DMO) produced a similar effect. DMO was passively distributed between bile and plasma. The data indicate that a bicarbonate transport mechanism is responsible for production of up to 50% of the BSIF. Another weak acid, N-5[5-(2-methoxyethoxy)-2-pyrimidinyl]sulfamoylbenzene (glymidine), was rapidly excreted into bile and increased bile flow by over 2.0 microliter/g.min. Glymidine is probably excreted by an independent organic anion transport mechanism, and any effect on the bicarbonate transport mechanism is obscured. Canaliculus-enriched hepatocyte membrane fractions contained no HCO3-stimulated ATPase activity. Either this enzyme is unimportant in hepatocyte bicarbonate transport or transport occurs across membranes other than the bile canalicular membrane. PMID:150796

  11. Flagging Drugs That Inhibit the Bile Salt Export Pump.

    PubMed

    Montanari, Floriane; Pinto, Marta; Khunweeraphong, Narakorn; Wlcek, Katrin; Sohail, M Imran; Noeske, Tobias; Boyer, Scott; Chiba, Peter; Stieger, Bruno; Kuchler, Karl; Ecker, Gerhard F

    2016-01-01

    The bile salt export pump (BSEP) is an ABC-transporter expressed at the canalicular membrane of hepatocytes. Its physiological role is to expel bile salts into the canaliculi from where they drain into the bile duct. Inhibition of this transporter may lead to intrahepatic cholestasis. Predictive computational models of BSEP inhibition may allow for fast identification of potentially harmful compounds in large databases. This article presents a predictive in silico model based on physicochemical descriptors that is able to flag compounds as potential BSEP inhibitors. This model was built using a training set of 670 compounds with available BSEP inhibition potencies. It successfully predicted BSEP inhibition for two independent test sets and was in a further step used for a virtual screening experiment. After in vitro testing of selected candidates, a marketed drug, bromocriptin, was identified for the first time as BSEP inhibitor. This demonstrates the usefulness of the model to identify new BSEP inhibitors and therefore potential cholestasis perpetrators. PMID:26642869

  12. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids: Structural Analysis by Flow Field-Flow Fractionation/Multiangle Laser Light Scattering.

    PubMed

    Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim; Hens, Bart; Augustijns, Patrick; Brandl, Martin

    2016-09-01

    Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification System class II/IV drugs) because of their drug-solubilizing ability. The characterization of these potential drug-solubilizing compartments is a prerequisite for further studies of the mechanistic interplays between drug molecules and colloidal structures within HIFs. The aim of the present study was to apply asymmetrical flow field-flow fractionation (AF4) in combination with multiangle laser light scattering in an attempt to reveal coexistence of colloidal particles in both artificial and aspirated HIFs and to determine their sizes. Asymmetrical flow field-flow fractionation/multiangle laser light scattering analysis of the colloidal phase of intestinal fluids allowed for a detailed insight into the whole spectrum of submicron- to micrometer-sized particles. With respect to the simulated intestinal fluids mimicking fasted and fed state (FaSSIF-V1 and FeSSIF-V1, respectively), FaSSIF contained one distinct size fraction of colloidal assemblies, whereas FeSSIF contained 2 fractions of colloidal species with significantly different sizes. These size fractions likely represent (1) mixed taurocholate-phospholipid-micelles, as indicated by a size range up to 70 nm (in diameter) and a strong UV absorption and (2) small phospholipid vesicles of 90-210 nm diameter. In contrast, within the colloidal phase of the fasted state aspirate of a human volunteer, 4 different size fractions were separated from each other in a consistent and reproducible manner. The 2 fractions containing large particles showed mean sizes of approximately 50 and 200 nm, respectively (intensity-weighted mean diameter, Dz), likely representing mixed cholate/phospholipid micelles and phospholipid vesicles

  13. In Sickness and in Health: The Relationships Between Bacteria and Bile in the Human Gut.

    PubMed

    Hay, A J; Zhu, J

    2016-01-01

    Colonization of a human host with a commensal microbiota has a complex interaction in which bacterial communities provide numerous health benefits to the host. An equilibrium between host and microbiota is kept in check with the help of biliary secretions by the host. Bile, composed primarily of bile salts, promotes digestion. It also provides a barrier between host and bacteria. After bile salts are synthesized in the liver, they are stored in the gallbladder to be released after food intake. The set of host-secreted bile salts is modified by the resident bacteria. Because bile salts are toxic to bacteria, an equilibrium of modified bile salts is reached that allows commensal bacteria to survive, yet rebuffs invading pathogens. In addition to direct toxic effects on cells, bile salts maintain homeostasis as signaling molecules, tuning the immune system. To cause disease, gram-negative pathogenic bacteria have shared strategies to survive this harsh environment. Through exclusion of bile, efflux of bile, and repair of bile-induced damage, these pathogens can successfully disrupt and outcompete the microbiota to activate virulence factors. PMID:27565580

  14. Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus.

    PubMed

    Lin, Jun; Negga, Rekek; Zeng, Ximin; Smith, Katie

    2014-01-01

    Bile salt hydrolase (BSH), a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP) for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals. PMID:25526498

  15. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    PubMed

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity. PMID:27139829

  16. Biliary excretion of pravastatin and taurocholate in rats with bile salt export pump (Bsep) impairment.

    PubMed

    Cheng, Yaofeng; Freeden, Chris; Zhang, Yueping; Abraham, Pamela; Shen, Hong; Wescott, Debra; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong

    2016-07-01

    The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059119

  17. Bile salts of vertebrates: structural variation and possible evolutionary significance[S

    PubMed Central

    Hofmann, Alan F.; Hagey, Lee R.; Krasowski, Matthew D.

    2010-01-01

    Biliary bile salt composition of 677 vertebrate species (103 fish, 130 reptiles, 271 birds, 173 mammals) was determined. Bile salts were of three types: C27 bile alcohols, C27 bile acids, or C24 bile acids, with default hydroxylation at C-3 and C-7. C27 bile alcohols dominated in early evolving fish and amphibians; C27 bile acids, in reptiles and early evolving birds. C24 bile acids were present in all vertebrate classes, often with C27 alcohols or with C27 acids, indicating two evolutionary pathways from C27 bile alcohols to C24 bile acids: a) a ‘direct’ pathway and b) an ‘indirect’ pathway with C27 bile acids as intermediates. Hydroxylation at C-12 occurred in all orders and at C-16 in snakes and birds. Minor hydroxylation sites were C-1, C-2, C-5, C-6, and C-15. Side chain hydroxylation in C27 bile salts occurred at C-22, C-24, C-25, and C-26, and in C24 bile acids, at C-23 (snakes, birds, and pinnipeds). Unexpected was the presence of C27 bile alcohols in four early evolving mammals. Bile salt composition showed significant variation between orders but not between families, genera, or species. Bile salt composition is a biochemical trait providing clues to evolutionary relationships, complementing anatomical and genetic analyses. PMID:19638645

  18. Analysis of the Bile Salt Export Pump (ABCB11) Interactome Employing Complementary Approaches

    PubMed Central

    Przybylla, Susanne; Stindt, Jan; Kleinschrodt, Diana; Schulte am Esch, Jan; Häussinger, Dieter; Keitel, Verena; Smits, Sander H.; Schmitt, Lutz

    2016-01-01

    The bile salt export pump (BSEP, ABCB11) plays an essential role in the formation of bile. In hepatocytes, BSEP is localized within the apical (canalicular) membrane and a deficiency of canalicular BSEP function is associated with severe forms of cholestasis. Regulation of correct trafficking to the canalicular membrane and of activity is essential to ensure BSEP functionality and thus normal bile flow. However, little is known about the identity of interaction partners regulating function and localization of BSEP. In our study, interaction partners of BSEP were identified in a complementary approach: Firstly, BSEP interaction partners were co-immunoprecipitated from human liver samples and identified by mass spectrometry (MS). Secondly, a membrane yeast two-hybrid (MYTH) assay was used to determine protein interaction partners using a human liver cDNA library. A selection of interaction partners identified both by MYTH and MS were verified by in vitro interaction studies using purified proteins. By these complementary approaches, a set of ten novel BSEP interaction partners was identified. With the exception of radixin, all other interaction partners were integral or membrane-associated proteins including proteins of the early secretory pathway and the bile acyl-CoA synthetase, the second to last, ER-associated enzyme of bile salt synthesis. PMID:27472061

  19. Analysis of the Bile Salt Export Pump (ABCB11) Interactome Employing Complementary Approaches.

    PubMed

    Przybylla, Susanne; Stindt, Jan; Kleinschrodt, Diana; Schulte Am Esch, Jan; Häussinger, Dieter; Keitel, Verena; Smits, Sander H; Schmitt, Lutz

    2016-01-01

    The bile salt export pump (BSEP, ABCB11) plays an essential role in the formation of bile. In hepatocytes, BSEP is localized within the apical (canalicular) membrane and a deficiency of canalicular BSEP function is associated with severe forms of cholestasis. Regulation of correct trafficking to the canalicular membrane and of activity is essential to ensure BSEP functionality and thus normal bile flow. However, little is known about the identity of interaction partners regulating function and localization of BSEP. In our study, interaction partners of BSEP were identified in a complementary approach: Firstly, BSEP interaction partners were co-immunoprecipitated from human liver samples and identified by mass spectrometry (MS). Secondly, a membrane yeast two-hybrid (MYTH) assay was used to determine protein interaction partners using a human liver cDNA library. A selection of interaction partners identified both by MYTH and MS were verified by in vitro interaction studies using purified proteins. By these complementary approaches, a set of ten novel BSEP interaction partners was identified. With the exception of radixin, all other interaction partners were integral or membrane-associated proteins including proteins of the early secretory pathway and the bile acyl-CoA synthetase, the second to last, ER-associated enzyme of bile salt synthesis. PMID:27472061

  20. Implication of sortase-dependent proteins of Streptococcus thermophilus in adhesion to human intestinal epithelial cell lines and bile salt tolerance.

    PubMed

    Kebouchi, Mounira; Galia, Wessam; Genay, Magali; Soligot, Claire; Lecomte, Xavier; Awussi, Ahoefa Ablavi; Perrin, Clarisse; Roux, Emeline; Dary-Mourot, Annie; Le Roux, Yves

    2016-04-01

    Streptococcus thermophilus (ST) is a lactic acid bacterium widely used in dairy industry and displays several properties which could be beneficial for host. The objective of this study was to investigate, in vitro, the implication of sortase A (SrtA) and sortase-dependent proteins (SDPs) in the adhesion of ST LMD-9 strain to intestinal epithelial cells (IECs) and resistance to bile salt mixture (BSM; taurocholoate, deoxycholate, and cholate). The effect of mutations in prtS (protease), mucBP (MUCin-Binding Protein), and srtA genes in ST LMD-9 in these mechanisms were examined. The HT29-MTX, HT29-CL.16E, and Caco-2 TC7 cell lines were used. HT29-MTX and HT29-CL.16E cells express different mucins found in the gastro intestinal tract; whereas, Caco-2 TC7 express cell surface proteins found in the small intestine. All mutants showed different adhesion profiles depending on cell lines. The mutation in genes srtA and mucBP leads to a significant decrease in LMD-9 adhesion capacity to Caco-2 TC7 cells. A mutation in mucBP gene has also shown a significant decrease in LMD-9 adhesion capacity to HT29-CL.16E cells. However, no difference was observed using HT29-MTX cells. Furthermore, ST LMD-9 and srtA mutant were resistant to BSM up to 3 mM. Contrariwise, no viable bacteria were detected for prtS and mucBP mutants at this concentration. Two conclusions could be drawn. First, SDPs could be involved in the LMD-9 adhesion depending on the cell lines indicating the importance of eukaryotic-cell surface components in adherence. Second, SDPs could contribute to resistance to bile salts probably by maintaining the cell membrane integrity. PMID:26820650

  1. Enzymatic synthesis of phosphatidylserine using bile salt mixed micelles.

    PubMed

    Pinsolle, Alexandre; Roy, Philippe; Buré, Corinne; Thienpont, Anne; Cansell, Maud

    2013-06-01

    Phosphatidylserine (PS) rich in polyunsaturated fatty acids of the n-3 series was obtained by enzymatic synthesis with phospholipase D (PLD) and a marine lipid extract as substrate. Synthesis was performed using mixed micelles composed of either sodium deoxycholate (SDC) or sodium cholate (SC). To limit the use of surfactant and to monitor the performance of PLD, the mixed micelles were characterized both in terms of bile salt/lipid molar ratio in the aggregates and of mean diameter. A fractional factorial experiment was selected to study the effect of pH, temperature, enzyme, L-serine concentrations, bile salt/lipid molar ratio and Ca(2+) content (in the case of SC only) on PS synthesis. The amount of L-serine was the main factor governing the equilibrium between transphosphatidylation and hydrolysis reaction. Increasing the bile salt/lipid molar ratio decreased PS synthesis yield. In contrast, pH (6.5-8) and temperature (35-45°C) did not affect PLD activity in the tested conditions. This statistical approach allowed determining a combination of parameters (pH, temperature, bile salt/lipid molar ratio, enzyme and alcohol acceptor concentrations) for PS synthesis. After 24 h, the transphosphatidylation reaction led to 57±2% and 56±3% of PS in the phospholipid mixtures with SDC and SC, respectively. In both cases, about 10% of phosphatidic acid was present as a side-product. On the whole, this work provided fundamental basis for a possible development of enzymatic PLD technology using food-grade emulsifiers to produce PS complying with industrial constraints for nutritional applications. PMID:23434712

  2. Human liver steroid sulphotransferase sulphates bile acids.

    PubMed Central

    Radominska, A; Comer, K A; Zimniak, P; Falany, J; Iscan, M; Falany, C N

    1990-01-01

    The sulphation of bile acids is an important pathway for the detoxification and elimination of bile acids during cholestatic liver disease. A dehydroepiandrosterone (DHEA) sulphotransferase has been purified from male and female human liver cytosol using DEAE-Sepharose CL-6B and adenosine 3',5'-diphosphate-agarose affinity chromatography [Falany, Vazquez & Kalb (1989) Biochem. J. 260, 641-646]. Results in the present paper show that the DHEA sulphotransferase, purified to homogeneity, is also reactive towards bile acids, including lithocholic acid and 6-hydroxylated bile acids, as well as 3-hydroxylated short-chain bile acids. The highest activity towards bile acids was observed with lithocholic acid (54.3 +/- 3.6 nmol/min per mg of protein); of the substrates tested, the lowest activity was detected with hyodeoxycholic acid (4.2 +/- 0.01 nmol/min per mg of protein). The apparent Km values for the enzyme are 1.5 +/- 0.31 microM for lithocholic acid and 4.2 +/- 0.73 microM for taurolithocholic acid. Lithocholic acid also competitively inhibits DHEA sulphation by the purified sulphotransferase (Ki 1.4 microM). No evidence was found for the formation of bile acid sulphates by sulphotransferases different from the DHEA sulphotransferase during purification work. The above results suggest that a single steroid sulphotransferase with broad specificity encompassing neutral steroids and bile acids exists in human liver. PMID:2268288

  3. Kinetics of formation of bile salt micelles from coarse-grained Langevin dynamics simulations.

    PubMed

    Vila Verde, Ana; Frenkel, Daan

    2016-06-21

    We examine the mechanism of formation of micelles of dihydroxy bile salts using a coarse-grained, implicit solvent model and Langevin dynamics simulations. We find that bile salt micelles primarily form via addition and removal of monomers, similarly to surfactants with typical head-tail molecular structures, and not via a two-stage mechanism - involving formation of oligomers and their subsequent aggregation to form larger micelles - originally proposed for bile salts. The free energy barrier to removal of single bile monomers from micelles is ≈2kBT, much less than what has been observed for head-tail surfactants. Such a low barrier may be biologically relevant: it allows for rapid release of bile monomers into the intestine, possibly enabling the coverage of fat droplets by bile salt monomers and subsequent release of micelles containing fats and bile salts - a mechanism that is not possible for ionic head-tail surfactants of similar critical micellar concentrations. PMID:27199094

  4. Exon-skipping and mRNA decay in human liver tissue: molecular consequences of pathogenic bile salt export pump mutations

    PubMed Central

    Dröge, Carola; Schaal, Heiner; Engelmann, Guido; Wenning, Daniel; Häussinger, Dieter; Kubitz, Ralf

    2016-01-01

    The bile salt export pump BSEP mediates bile formation. Over 150 BSEP mutations are associated with progressive familial intrahepatic cholestasis type 2 (PFIC-2), with few characterised specifically. We examined liver tissues from two PFIC-2 patients compound heterozygous for the splice-site mutation c.150 + 3A > C and either c.2783_2787dup5 resulting in a frameshift with a premature termination codon (child 1) or p.R832C (child 2). Splicing was analysed with a minigene system and mRNA sequencing from patients’ livers. Protein expression was shown by immunofluorescence. Using the minigene, c.150 + 3A > C causes complete skipping of exon 3. In liver tissue of child 1, c.2783_2787dup5 was found on DNA but not on mRNA level, implying nonsense-mediated mRNA decay (NMD) when c.2783_2787dup5 is present. Still, BSEP protein as well as mRNA with and without exon 3 were detectable and can be assigned to the c.150 + 3A > C allele. Correctly spliced transcripts despite c.150 + 3A > C were also confirmed in liver of child 2. In conclusion, we provide evidence (1) for effective NMD due to a BSEP frameshift mutation and (2) partial exon-skipping due to c.150 + 3A > C. The results illustrate that the extent of exon-skipping depends on the genomic and cellular context and that regulation of splicing may have therapeutic potential. PMID:27114171

  5. Exon-skipping and mRNA decay in human liver tissue: molecular consequences of pathogenic bile salt export pump mutations.

    PubMed

    Dröge, Carola; Schaal, Heiner; Engelmann, Guido; Wenning, Daniel; Häussinger, Dieter; Kubitz, Ralf

    2016-01-01

    The bile salt export pump BSEP mediates bile formation. Over 150 BSEP mutations are associated with progressive familial intrahepatic cholestasis type 2 (PFIC-2), with few characterised specifically. We examined liver tissues from two PFIC-2 patients compound heterozygous for the splice-site mutation c.150 + 3A > C and either c.2783_2787dup5 resulting in a frameshift with a premature termination codon (child 1) or p.R832C (child 2). Splicing was analysed with a minigene system and mRNA sequencing from patients' livers. Protein expression was shown by immunofluorescence. Using the minigene, c.150 + 3A > C causes complete skipping of exon 3. In liver tissue of child 1, c.2783_2787dup5 was found on DNA but not on mRNA level, implying nonsense-mediated mRNA decay (NMD) when c.2783_2787dup5 is present. Still, BSEP protein as well as mRNA with and without exon 3 were detectable and can be assigned to the c.150 + 3A > C allele. Correctly spliced transcripts despite c.150 + 3A > C were also confirmed in liver of child 2. In conclusion, we provide evidence (1) for effective NMD due to a BSEP frameshift mutation and (2) partial exon-skipping due to c.150 + 3A > C. The results illustrate that the extent of exon-skipping depends on the genomic and cellular context and that regulation of splicing may have therapeutic potential. PMID:27114171

  6. Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts.

    PubMed

    Torcello-Gómez, Amelia; Fernández Fraguas, Cristina; Ridout, Mike J; Woodward, Nicola C; Wilde, Peter J; Foster, Timothy J

    2015-03-01

    Some known mechanisms proposed for the reduction of blood cholesterol by dietary fibre are: binding with bile salts in the duodenum and prevention of lipid absorption, which can be partially related with the bile salt binding. In order to gain new insights into the mechanisms of the binding of dietary fibre to bile salts, the goal of this work is to study the main interactions between cellulose derivatives and two types of bile salts. Commercial cellulose ethers: methyl (MC), hydroxypropyl (HPC) and hydroxypropylmethyl cellulose (HPMC), have been chosen as dietary fibre due to their highly functional properties important in manufactured food products. Two types of bile salts: sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), have been chosen to understand the effect of the bile salt type. Interactions in the bulk have been investigated by means of differential scanning calorimetry (DSC) and linear mechanical spectroscopy. Results show that both bile salts have inhibitory effects on the thermal structuring of cellulose ethers and this depends on the number and type of substitution in the derivatised celluloses, and is not dependent upon molecular weight. Concerning the bile salt type, the more hydrophobic bile salt (NaTDC) has greater effect on these interactions, suggesting more efficient adsorption onto cellulose ethers. These findings may have implications in the digestion of cellulose-stabilised food matrices, providing a springboard to develop new healthy cellulose-based food products with improved functional properties. PMID:25679293

  7. Differential proteomic analysis of outer membrane enriched extracts of Bacteroides fragilis grown under bile salts stress.

    PubMed

    Boente, Renata F; Pauer, Heidi; Silva, Deborah N S; Filho, Joaquim Santos; Sandim, Vanessa; Antunes, Luis Caetano M; Ferreira, Rosana Barreto Rocha; Zingali, Russolina B; Domingues, Regina M C P; Lobo, Leandro A

    2016-06-01

    Bacteroides fragilis is the most commonly isolated anaerobic bacteria from infectious processes. Several virulence traits contribute to the pathogenic nature of this bacterium, including the ability to tolerate the high concentrations of bile found in the gastrointestinal tract (GIT). The activity of bile salts is similar to detergents and may lead to membrane permeabilization and cell death. Modulation of outer membrane proteins (OMPs) is considered a crucial event to bile salts resistance. The primary objective of the current work was to identify B. fragilis proteins associated with the stress induced by high concentration of bile salts. The outer membrane of B. fragilis strain 638R was isolated after growth either in the presence of 2% conjugated bile salts or without bile salts. The membrane fractions were separated on SDS-PAGE and analyzed by ESI-Q/TOF tandem mass spectrometry. A total of 37 proteins were identified; among them nine were found to be expressed exclusively in the absence of bile salts whereas eight proteins were expressed only in the presence of bile salts. These proteins are related to cellular functions such as transport through membrane, nutrient uptake, and protein-protein interactions. This study demonstrates the alteration of OMPs composition in B. fragilis during bile salts stress resistance and adaptation to environmental changes. Proteomics of OMPs was also shown to be a useful approach in the identification of new targets for functional analyses. PMID:26948242

  8. Clinical application of transcriptional activators of bile salt transporters☆

    PubMed Central

    Baghdasaryan, Anna; Chiba, Peter; Trauner, Michael

    2014-01-01

    Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na+-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis. PMID:24333169

  9. Trp-107 and trp-253 account for the increased steady state fluorescence that accompanies the conformational change in human pancreatic triglyceride lipase induced by tetrahydrolipstatin and bile salt.

    PubMed

    Bourbon-Freie, Angela; Dub, Rachel E; Xiao, Xunjun; Lowe, Mark E

    2009-05-22

    The conformation of a surface loop, the lid, controls activity of pancreatic triglyceride lipase (PTL) by moving from a position that sterically hinders substrate access to the active site into a new conformation that opens and configures the active site. Movement of the lid is accompanied by a large change in steady state tryptophan fluorescence. Although a change in the microenvironment of Trp-253, a lid residue, could account for the increased fluorescence, the mechanism and tryptophan residues have not been identified. To identify the tryptophan residues responsible for the increased fluorescence and to gain insight into the mechanism of lid opening and the structure of PTL in aqueous solution, we examined the effects of mutating individual tryptophan residues to tyrosine, alanine, or phenylalanine on lipase activity and steady state fluorescence. Substitution of tryptophans 86, 107, 253, and 403 reduced activity against tributyrin with the largest effects caused by substituting Trp-86 and Trp-107. Trp-107 and Trp-253 fluorescence accounts for the increased fluorescence emissions of PTL that is stimulated by tetrahydrolipstatin and sodium taurodeoxycholate. The largest contribution is from Trp-107. Contrary to the prediction from the crystal structure of PTL, Trp-107 is likely exposed to solvent. Both tetrahydrolipstatin and sodium taurodeoxycholate are required to produce the increased fluorescence in PTL. Alone, neither is sufficient. Colipase does not significantly influence the conformational changes leading to increased emission fluorescence. Thus, Trp-107 and Trp-253 contribute to the change in steady state fluorescence that is triggered by mixed micelles of inhibitor and bile salt. Furthermore, the results suggest that the conformation of PTL in solution differs significantly from the conformation in crystals. PMID:19346257

  10. Simple steatosis sensitizes cholestatic rats to liver injury and dysregulates bile salt synthesis and transport

    PubMed Central

    Lionarons, Daniël A.; Heger, Michal; van Golen, Rowan F.; Alles, Lindy K.; van der Mark, Vincent A.; Kloek, Jaap J.; de Waart, Dirk R.; Marsman, Hendrik A.; Rusch, Henny; Verheij, Joanne; Beuers, Ulrich; Paulusma, Coen C.; van Gulik, Thomas M.

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. It is uncertain if simple steatosis, the initial and prevailing form of NAFLD, sensitizes the liver to cholestasis. Here, we compared the effects of obstructive cholestasis in rats with a normal liver versus rats with simple steatosis induced by a methionine/choline-deficient diet. We found that plasma liver enzymes were higher and hepatic neutrophil influx, inflammation, and fibrosis were more pronounced in animals with combined steatosis and cholestasis compared to cholestasis alone. Circulating bile salt levels were markedly increased and hepatic bile salt composition shifted from hydrophilic tauro-β-muricholate to hydrophobic taurocholate. This shift was cytotoxic for HepG2 hepatoma cells. Gene expression analysis revealed induction of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), and modulation of the hepatic bile salt transport system. In conclusion, simple steatosis sensitizes the liver to cholestatic injury, inflammation, and fibrosis in part due to a cytotoxic shift in bile salt composition. Plasma bile salt levels were elevated, linked to dysregulation of bile salt synthesis and enhanced trafficking of bile salts from the liver to the systemic circulation. PMID:27535001

  11. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp.

    PubMed Central

    Dashkevicz, M P; Feighner, S D

    1989-01-01

    An agar plate assay was developed to detect bile salt hydrolase activity in lactobacilli. On Lactobacillus-selective MRS or Rogosa SL medium supplemented with taurodeoxycholic, taurocholic, or taurochenodeoxycholic acids, bile salt hydrolysis was manifested at two intensities: (i) the formation of precipitate halos around colonies or (ii) the formation of opaque granular white colonies. Sixty-six lactobacilli were tested for bile salt hydrolase activity by both the plate assay and a sensitive radiochemical assay. No false-positive or false-negative results were detected by the plate assay. Based on results of experiments with Eubacterium lentum and Bacteroides species, the plate assay was dependent on two factors: (i) the presence of bile salt hydrolytic activity and (ii) the ability of the organism to sufficiently acidify the medium to protonate free bile acids. The availability of a differential medium for determination of bile salt hydrolase activity will provide a rapid method for determining shifts in a specific functional activity of intestinal Lactobacillus species and provide a rapid screening capability for identifying bile salt hydrolase-deficient mutants. The latter application should allow bile salt hydrolase activity to be used as a marker enzyme in genetic experiments. Images PMID:2705765

  12. Effects of controlled interruption of the enterohepatic circulation of bile salts by biliary diversion and by ileal resection on bile salt secretion, synthesis, and pool size in the rhesus monkey

    PubMed Central

    Dowling, R. Hermon; Mack, Eberhard; Small, Donald M.

    1970-01-01

    The effects of controlled interruption of the enterohepatic circulation (EHC) of bile salts by biliary diversion on bile volume, bile salt secretion and synthesis rates, bile salt pool size, and the relationship to fecal fat excretion were studied in 16 rhesus monkeys. Bile from a chronic bile fistula was returned to the intestine through an electronic stream-splitter which, by diverting different percentages of bile to a collecting system, provided graded and controlled interruption of the EHC. The increase in hepatic bile salt synthesis in response to interruption of the EHC was limited and reached a maximum rate at 20% interruption of the EHC. Up to this level of biliary diversion, the increased hepatic synthesis compensated for bile salt loss so that bile salt secretion and pool size were maintained at normal levels. With diversion of 33% or more, there was no further increase in hepatic bile salt synthesis to compensate for external loss, and as a result there was diminished bile salt secretion, a reduction in bile salt pool size, and steatorrhea was observed. The effects of interruption of the EHC by the streamsplitter were compared with those produced by resection of the distal one-third or two-thirds of small bowel. While ileal resection appreciably reduced bile salt secretion, the EHC was by no means abolished. Bile salt reabsorption from the residual intestine was greater after one-third than after two-thirds small bowel resection. These observations suggest that jejunal reabsorption of bile salts occurs and may well contribute to the normal EHC. PMID:4983661

  13. Bile acid salt binding with colesevelam HCl is not affected by suspension in common beverages.

    PubMed

    Hanus, Martin; Zhorov, Eugene

    2006-12-01

    It has been previously reported that anions in common beverages may bind to bile acid sequestrants (BAS), reducing their capacity for binding bile acid salts. This study examined the ability of the novel BAS colesevelam hydrochloride (HCl), in vitro, to bind bile acid sodium salts following suspension in common beverages. Equilibrium binding was evaluated under conditions of constant time and varying concentrations of bile acid salts in simulated intestinal fluid (SIF). A stock solution of sodium salts of glycochenodeoxycholic acid (GCDC), taurodeoxycholic acid (TDC), and glycocholic acid (GC), was added to each prepared sample of colesevelam HCl. Bile acid salt binding was calculated by high-performance liquid chromatography (HPLC) analysis. Kinetics experiments were conducted using constant initial bile acid salt concentrations and varying binding times. The affinity, capacity, and kinetics of colesevelam HCl binding for GCDC, TDC, and GC were not significantly altered after suspension in water, carbonated water, Coca-Cola, Sprite, grape juice, orange juice, tomato juice, or Gatorade. The amount of bile acid sodium salt bound as a function of time was unchanged by pretreatment with any beverage tested. The in vitro binding characteristics of colesevelam HCl are unchanged by suspension in common beverages. PMID:16937334

  14. Cloning and analysis of bile salt hydrolase genes from Lactobacillus plantarum CGMCC No. 8198.

    PubMed

    Gu, Xiang-Chao; Luo, Xue-Gang; Wang, Chong-Xi; Ma, De-Yun; Wang, Yan; He, Ying-Ying; Li, Wen; Zhou, Hao; Zhang, Tong-Cun

    2014-05-01

    Genes coding for bile salt hydrolase of Lactobacillus plantarum CGMCC 8198, a novel probiotic strain isolated from silage, were identified, analyzed and cloned. L. plantarum strongly resisted the inhibitory effects of bile salts and also decreased serum cholesterol levels by 20% in mice with hypercholesterolemia. Using RT-PCR analysis, bsh2, bsh3 and bsh4 were upregulated by bile salts in a dose-dependent manner. All three bsh genes had high similarity with those of other Lactobacillus strains. All three recombinant BSHs had high activities for the hydrolysis of glycodeoxycholic acids and taurodeoxycholic acids. PMID:24375235

  15. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242.

    PubMed

    Martoni, Christopher J; Labbé, Alain; Ganopolsky, Jorge G; Prakash, Satya; Jones, Mitchell L

    2015-01-01

    The size and composition of the circulating bile acid (BA) pool are important factors in regulating the human gut microbiota. Disrupted regulation of BA metabolism is implicated in several chronic diseases. Bile salt hydrolase (BSH)-active Lactobacillus reuteri NCIMB 30242, previously shown to decrease LDL-cholesterol and increase circulating BA, was investigated for its dose response effect on BA profile in a pilot clinical study. Ten otherwise healthy hypercholesterolemic adults, recruited from a clinical trial site in London, ON, were randomized to consume delayed release or standard release capsules containing L. reuteri NCIMB 30242 in escalating dose over 4 weeks. In another aspect, 4 healthy normocholesterolemic subjects with LDL-C below 3.4 mmol/l received delayed release L. reuteri NCIMB 30242 at a constant dose over 4 weeks. The primary outcome measure was the change in plasma BA profile over the intervention period. Additional outcomes included circulating fibroblast growth factor (FGF)-19, plant sterols and LDL-cholesterol as well as fecal microbiota and bsh gene presence. After one week of intervention subjects receiving delayed release L. reuteri NCIMB 30242 increased total BA by 1.13 ± 0.67 μmol/l (P = 0.02), conjugated BA by 0.67 ± 0.39 μmol/l (P = 0.02) and unconjugated BA by 0.46 ± 0.43 μmol/l (P = 0.07), which represented a greater than 2-fold change relative to baseline. Increases in BA were largely maintained post-week 1 and were generally correlated with FGF-19 and inversely correlated with plant sterols. This is the first clinical support showing that a BSH-active probiotic can significantly and rapidly influence BA metabolism and may prove useful in chronic diseases beyond hypercholesterolemia. PMID:25612224

  16. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242

    PubMed Central

    Martoni, Christopher J; Labbé, Alain; Ganopolsky, Jorge G; Prakash, Satya; Jones, Mitchell L

    2015-01-01

    The size and composition of the circulating bile acid (BA) pool are important factors in regulating the human gut microbiota. Disrupted regulation of BA metabolism is implicated in several chronic diseases. Bile salt hydrolase (BSH)-active Lactobacillus reuteri NCIMB 30242, previously shown to decrease LDL-cholesterol and increase circulating BA, was investigated for its dose response effect on BA profile in a pilot clinical study. Ten otherwise healthy hypercholesterolemic adults, recruited from a clinical trial site in London, ON, were randomized to consume delayed release or standard release capsules containing L. reuteri NCIMB 30242 in escalating dose over 4 weeks. In another aspect, 4 healthy normocholesterolemic subjects with LDL-C below 3.4 mmol/l received delayed release L. reuteri NCIMB 30242 at a constant dose over 4 weeks. The primary outcome measure was the change in plasma BA profile over the intervention period. Additional outcomes included circulating fibroblast growth factor (FGF)-19, plant sterols and LDL-cholesterol as well as fecal microbiota and bsh gene presence. After one week of intervention subjects receiving delayed release L. reuteri NCIMB 30242 increased total BA by 1.13 ± 0.67 μmol/l (P = 0.02), conjugated BA by 0.67 ± 0.39 μmol/l (P = 0.02) and unconjugated BA by 0.46 ± 0.43 μmol/l (P = 0.07), which represented a greater than 2-fold change relative to baseline. Increases in BA were largely maintained post-week 1 and were generally correlated with FGF-19 and inversely correlated with plant sterols. This is the first clinical support showing that a BSH-active probiotic can significantly and rapidly influence BA metabolism and may prove useful in chronic diseases beyond hypercholesterolemia. PMID:25612224

  17. A study of the physicochemical interactions between biliary lipids and chlorpromazine hydrochloride. Bile-salt precipitation as a mechanism of phenothiazine-induced bile secretory failure.

    PubMed Central

    Carey, M C; Hirom, P C; Small, D M

    1976-01-01

    Since chlorpromazine hydrochloride [2-chloro-10-(3-dimethylaminopropyl)-phenothiazine hydrochloride] is commonly implicated in causing bile-secretory failure in man and is secreted into bile, we have studied the physicochemical interactions of the drug with the major components of bile in vitro. Chlorpromazine hydrochloride molecules are amphiphilic by virtue of possessing a polar tertiary amine group linked by a short paraffin chain to a tricyclic hydrophobic part. At pH values below the apparent pK (pK'a 7.4) the molecules are water-soluble cationic detergents. We show that bile salts in concentrations above their critical micellar concentrations are precipitated from solution by chlorpromazine hydrochloride as insoluble 1:1 salt complexes. In the case of mixed bile-salt/phosphatidylcholine micellar solutions, however, the degree of precipitation is inhibited by the phospholipid in proportion to its mole fraction. With increases in the concentration of chlorpromazine hydrochloride or bile salt, micellar solubilization of the precipitated complexes results. Sonicated dispersions of the negatively charged phospholipid phosphatidylserine were also precipitated, but dispersions of the zwitterionic phospholipid phosphatidylcholine were not. Chlorpromazine hydrochloride efficiently solubilized these membrane phospholipids as mixed micellar solutions when the drug:phospholipid molar ratio reached 4:1. Polarizing-microscopy and X-ray-diffraction studies revealed that the precipitated complexes were amorphous and potentiometric studies confirmed the presence of a salt bond. Some dissociation of the complex occurred in the case of the most polar bile salt (Ks 0.365). As canalicular bile-salt secretion determines much of bile-water flow, we propose that complexing and precipitation of bile salts by chlorpromazine hydrochloride and its metabolites may be physicochemically related to the reversible bile-secretory failure produced by this drug. Images PLATE 1 PLATE 2 PMID

  18. Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract.

    PubMed

    Martoni, Christopher; Bhathena, Jasmine; Urbanska, Aleksandra Malgorzata; Prakash, Satya

    2008-11-01

    This is the first study of its kind to screen probiotic lactic acid bacteria for the purpose of microencapsulating a highly bile salt hydrolase (BSH)-active strain. A Lactobacillus reuteri strain and a Bifidobacterium longum strain were isolated as the highest BSH producers among the candidates. Microcapsules were prepared with a diameter of 619 +/- 31 mum and a cell load of 5 x 10(9) cfu/ml. Post de Man, Rogosa, and Sharpe broth-acid challenge, L. reuteri microcapsules metabolized glyco- and tauro-conjugated bile salts at rates of 10.16 +/- 0.46 and 1.85 +/- 0.33 micromol/g microcapsule per hour, respectively, over the first 2 h. Microencapsulated B. longum had minimal BSH activity and were significantly (P < 0.05) more susceptible to acid challenge. Further testing of L. reuteri microcapsules in a simulated human gastrointestinal (GI) model showed an improved rate, with 49.4 +/- 6.21% of glyco-conjugates depleted after 60 min and complete deconjugation after 4 h. Microcapsules protected the encased cells in the simulated stomach maintaining L. reuteri viability above 10(9), 10(8), and 10(6) cfu/ml after 2 h at pH 3.0, 2.5, and 2.0, respectively. Results show excellent potential for this highly BSH-active microencapsulation system in vitro, highlighted by improved viability and substrate utilization in simulated GI transit. PMID:18719901

  19. Synthesis of [3,4-(13)c(2)]-enriched bile salts as NMR probes of protein-ligand interactions.

    PubMed

    Tochtrop, Gregory P; DeKoster, Gregory T; Cistola, David P; Covey, Douglas F

    2002-09-20

    Synthetic methodology that allows for incorporation of isotopic carbon at the C-3 and C-4 positions of bile salts is reported. Three [3,4-(13)C(2)]-enriched bile salts were synthesized from either deoxycholic or lithocholic acid. The steroid 3alpha-OH group was oxidized and the A-ring was converted into the Delta(4)-3-ketone. The C-24 carboxylic acid was next converted into the carbonate group and selectively reduced to the alcohol in the presence of the A-ring enone. Following protection of the 24-OH group, the Delta(4)-3-ketone was converted into the A-ring enol lactone. Condensation of the enol lactone with [1,2-(13)C(2)]-enriched acetyl chloride and subsequent Robinson annulation afforded a [3,4-(13)C(2)]-enriched Delta(4)-3-ketone that was subsequently converted back into a 3alpha-hydroxy-5beta-reduced bile steroid. C-7 hydroxylation, when necessary, was achieved via conversion of the Delta(4)-3-ketone into the corresponding Delta(4,6)-dien-3-one, epoxidation of the Delta(6)-double bond, and hydrogenolysis/hydrogenation of the 5,6-epoxy enone system. The [3,4-(13)C(2)]-enriched bile salts were subsequently complexed to human ileal bile acid binding protein (I-BABP), and (1)H-(13)C HSQC spectra were recorded to show the utility of the compounds for investigating the interactions of bile acids with I-BABP. PMID:12227809

  20. Kinetic and equilibrium studies of bile salt-liposome interactions.

    PubMed

    Yang, Lin; Feng, Feifei; Fawcett, J Paul; Tucker, Ian G

    2015-03-01

    Research has suggested that exposure to sub-micellar concentrations of bile salts (BS) increases the permeability of lipid bilayers in a time-dependent manner. In this study, incubation of soy phosphatidylcholine small unilamellar vesicles (liposomes) with sub-micellar concentrations of cholate (C), deoxycholate (DC), 12-monoketocholate (MKC) or taurocholate (TC) in pH 7.2 buffer increased membrane fluidity and negative zeta potential in the order of increasing BS liposome-pH 7.2 buffer distribution coefficients (MKC < C ≈ TC < DC). In liposomes labeled with the dithionite-sensitive fluorescent lipid N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanolamine (NBD-PE) in both leaflets and equilibrated with sub-micellar concentrations of BS, fluorescence decline during continuous exposure to dithionite was biphasic involving a rapid initial phase followed by a slower second phase. Membrane permeability to dithionite as measured by the rate of the second phase increased in the order control < MKC < TC ∼ C < DC. In liposomes labeled with NBD-PE in the inner leaflet only and incubated with the same concentrations of C, DC and MKC, membrane permeability to dithionite initially increased very rapidly in the order MKC < C < DC before impermeability to dithionite was restored after which fluorescence decline was consistent with NBD-PE flip-flop. For liposomes incubated with TC, membrane permeability to dithionite was only slightly increased and the decline in fluorescence was mainly the result of NBD-PE flip-flop. These results provide evidence that BS interact with lipid bilayers in a time-dependent manner that is different for conjugated and unconjugated BS. MKC appears to cause least disturbance to liposomal membranes but, when the actual MKC concentration in liposomes is taken into account, MKC is actually the most disruptive. PMID:24960448

  1. Study on interaction of bile salts with curcumin and curcumin embedded in dipalmitoyl-sn-glycero-3-phosphocholine liposome.

    PubMed

    Patra, Digambara; Ahmadieh, Diana; Aridi, Riwa

    2013-10-01

    Curcumin, often used as a food spice, is a natural polyphenol that has various medicinal benefits such as anti-cancer, anti-amyloid, anti-oxidant, and anti-inflammatory properties, among others. The interaction between bile salts having physiological significance and curcumin suggests the aggregation of bile salts dramatically alters the absorption and fluorescence parameters of curcumin. The fluorescence emission maximum as well as the intensity can easily detect critical micellar concentration of sodium cholate and sodium deoxycholate respectively to be 16 and 6mM at room temperature. The mechanism of interaction of curcumin with bile salts has been presented at low, intermediate and high bile salt concentrations and depends on temperature. In the presence of bile salts the DPPH scavenging activity was preserved, though less than in the presence of curcumin alone. The effect of submicellar concentration, 5-50μM, of bile salt with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes in solid gel and liquid crystalline phases has been investigated using curcumin as an embedded probe in the membrane. The curcumin based fluorescence probing method indicates even at very low concentration, ∼5μM, incorporation of monomeric bile salt molecules disorders the membrane properties. Expulsion of curcumin from the membrane in the presence of bile salt is ruled out, suggesting wetting of membrane. Alteration of membrane fluidity by bile salts is found to have an opposing effect in the liquid crystalline phase compared to in the solid gel phase, and is sensitive to the nature of bile salt. The permeability in the liquid crystalline phase decreases in the presence of bile salt. The phase transition temperature of the membrane is influenced by bile salt. PMID:23732808

  2. Molecular Mechanisms for Biliary Phospholipid and Drug Efflux Mediated by ABCB4 and Bile Salts

    PubMed Central

    Terada, Tomohiro

    2014-01-01

    On the canalicular membranes of hepatocytes, several ABC transporters are responsible for the secretion of bile lipids. Among them, ABCB4, also called MDR3, is essential for the secretion of phospholipids from hepatocytes into bile. The biliary phospholipids are associated with bile salts and cholesterol in mixed micelles, thereby reducing the detergent activity and cytotoxicity of bile salts and preventing cholesterol crystallization. Mutations in the ABCB4 gene result in progressive familial intrahepatic cholestasis type 3, intrahepatic cholestasis of pregnancy, low-phospholipid-associated cholelithiasis, primary biliary cirrhosis, and cholangiocarcinoma. In vivo and cell culture studies have demonstrated that the secretion of biliary phospholipids depends on both ABCB4 expression and bile salts. In the presence of bile salts, ABCB4 located in nonraft membranes mediates the efflux of phospholipids, preferentially phosphatidylcholine. Despite high homology with ABCB1, ABCB4 expression cannot confer multidrug resistance. This review summarizes our current understanding of ABCB4 functions and physiological relevance, and discusses the molecular mechanism for the ABCB4-mediated efflux of phospholipids. PMID:25133187

  3. A photophysical study on the role of bile salt hydrophobicity in solubilizing amphotericin B aggregates.

    PubMed

    Selvam, Susithra; Andrews, Maneesha Esther; Mishra, Ashok K

    2009-11-01

    Amphotericin B (AmB) is a highly effective antifungal agent and finds utility against a broad spectrum of fungal species. Bile salts are biocompatible biosurfactants, widely used as drug delivery media for many hydrophobic drugs. AmB in the colloidal suspension of sodium deoxycholate (NaDC) is a well-known commercial formulation of AmB. In the present work, the association of AmB with three bile salts, namely sodium cholate, sodium taurodeoxycholate and sodium taurocholate is studied using the photophysical properties of AmB. Selective excitation of monomeric AmB (lambda(ex) 414 nm, lambda(em) 560 nm) and dimeric AmB (lambda(ex) 335 nm, lambda(em) 472 nm) reveal that with increasing concentration of bile salts, the higher aggregates in water disaggregate to form both monomeric and dimeric forms of AmB. This is seen to be a general trend in all the bile salts studied. Results of steady state fluorescence anisotropy and fluorescence lifetimes studies suggest that the interaction between AmB (hydrophobic heptaene face) and bile salts (hydrophobic steroidal face) is essentially hydrophobic. PMID:19283765

  4. Investigations of novel unsaturated bile salts of male sea lamprey as potential chemical cues

    USGS Publications Warehouse

    Johnson, Nicholas S.; Yun, Sang-Seon; Li, Weiming

    2014-01-01

    Sulfated bile salts function as chemical cues that coordinate reproduction in sea lamprey, Petromyzon marinus. 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) is the most abundant known bile salt released by sexually mature male sea lampreys and attracts ovulated females. However, previous studies showed that the male-produced pheromone consists of unidentified components in addition to 3kPZS. Here, analysis of water conditioned with mature male sea lampreys indicated the presence of 4 oxidized, unsaturated compounds with molecular weights of 466 Da, 468 Da, and 2 of 470 Da. These compounds were not detectable in water conditioned with immature male sea lampreys. By using mass spectrometry, 4 A-ring unsaturated sulfated bile salts were tentatively identified from male washings as 2 4-ene, a 1-ene, and a 1,4-diene analogs. These were synthesized to determine if they attracted ovulated female sea lampreys to spawning nests in natural streams. One of the novel synthetic bile salts, 3 keto-1-ene PZS, attracted ovulated females to the point of application at a concentration of 10-12 M. This study reveals the structural diversity of bile salts in sea lamprey, some of which have been demonstrated to be pheromonal cues.

  5. Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance.

    PubMed

    Grill, J P; Cayuela, C; Antoine, J M; Schneider, F

    2000-10-01

    Growth experiments were conducted on Lactobacillus amylovorus DN-112 053 in batch culture, with or without pH regulation. Conjugated bile salt hydrolase (CBSH) activity was examined as a function of culture growth. The CBSH activity increased during growth but its course depended on bile salts type and culture conditions. A Lact. amylovorus mutant was isolated from the wild-type strain of Lact. amylovorus DN-112 053 after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. An agar plate assay was used to detect mutants without CBSH activity. In resting cell experiments, the strain showed reduced activity. Differences between growth parameters determined for wild-type and mutant strains were not detected. Comparative native gel electrophoresis followed by CBSH activity staining demonstrated the loss of proteins harbouring this activity in the mutant. Four protein bands corresponding to CBSH were observed in the wild-type strain but only one was detected in the mutant. The specific growth rate of the mutant strain was affected more by bile salts than the wild-type strain. Nevertheless, bile was more toxic for the wild-type strain. In viability studies in the presence of nutrients, it was demonstrated that glycodeoxycholic acid exerted a higher toxicity than taurodeoxycholic acid in a pH-dependent manner. No difference was apparent between the two strains. In the absence of nutrients, the wild-type strain died after 2 h whereas no effect was observed for the mutant. The de-energization experiments performed using the ionophores nigericin and valinomycin suggested that the chemical potential of protons (ZDeltapH) was involved in Lactobacillus bile salt resistance. PMID:11054157

  6. Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate.

    PubMed

    Buchweitz, Maria; Kroon, Paul A; Rich, Gillian T; Wilde, Peter J

    2016-11-15

    To understand the bioaccessibility of the flavonoid quercetin we studied its interaction with bile salt micelles. The environmental sensitivity of quercetin's UV-visible absorption spectrum gave information about quercetin partitioning. Two quercetin absorption peaks gave complementary information: Peak A (240-280nm) on the intermicellar phase and Peak B (340-440nm) on the micellar phase. Thus, by altering pH, we showed that only non-ionised quercetin partitions into micelles. We validated our interpretation by studying quercetin's interaction with SDS micelles. Pyrene fluorescence and the quercetin UV-visible spectra show that the adsorption site for pyrene and quercetin in bile salt micelles is more hydrophobic than that for SDS micelles. Also, both quercetin and pyrene reported a higher critical micelle concentration for bile salts than for SDS. Our method of using a flavonoid as an intrinsic probe, is generally applicable to other lipophilic bioactives, whenever they have observable environmental dependent properties. PMID:27283643

  7. Simple model for the growth behaviour of mixed lecithin-bile salt micelles.

    PubMed

    Madenci, Dilek; Salonen, Anniina; Schurtenberger, Peter; Pedersen, Jan Skov; Egelhaaf, Stefan U

    2011-02-28

    Mixed lecithin-bile salt micelles are known to have a cylindrical or worm-like structure. We investigated their shape, length, flexibility and cross-sectional structure using small-angle neutron scattering (SANS). A broad range of sample compositions was studied varying both the total amphiphile concentration and the molar ratio of bile salt (sodium taurochenodeoxycholate, NaTCDC) to lecithin (egg yolk phosphatidylcholine, EYL). The length of the micelles was quantitatively linked to the micellar composition by introducing a simple model. The model takes into account the partitioning of lecithin and bile salt between the bulk, cylindrical parts and the end caps of the micelles. The model also sheds light on the organization of the micelles, both in their cylindrical regions and end caps. PMID:21135948

  8. FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model.

    PubMed

    Kunne, Cindy; Acco, Alexandra; Duijst, Suzanne; de Waart, Dirk R; Paulusma, Coen C; Gaemers, Ingrid; Oude Elferink, Ronald P J

    2014-05-01

    It has been established that bile salts play a role in the regulation of hepatic lipid metabolism. Accordingly, overt signs of steatosis have been observed in mice with reduced bile salt synthesis. The aim of this study was to identify the mechanism of hepatic steatosis in mice with bile salt deficiency due to a liver specific disruption of cytochrome P450 reductase. In this study mice lacking hepatic cytochrome P450 reductase (Hrn) or wild type (WT) mice were fed a diet supplemented with or without either 0.1% cholic acid (CA) or 0.025% obeticholic acid, a specific FXR-agonist. Feeding a CA-supplemented diet resulted in a significant decrease of plasma ALT in Hrn mice. Histologically, hepatic steatosis ameliorated after CA feeding and this was confirmed by reduced hepatic triglyceride content (115.5±7.3mg/g liver and 47.9±4.6mg/g liver in control- and CA-fed Hrn mice, respectively). The target genes of FXR-signaling were restored to normal levels in Hrn mice when fed cholic acid. VLDL secretion in both control and CA-fed Hrn mice was reduced by 25% compared to that in WT mice. In order to gain insight in the mechanism behind these bile salt effects, the FXR agonist also was administered for 3weeks. This resulted in a similar decrease in liver triglycerides, indicating that the effect seen in bile salt fed Hrn animals is FXR dependent. In conclusion, steatosis in Hrn mice is ameliorated when mice are fed bile salts. This effect is FXR dependent. Triglyceride accumulation in Hrn liver may partly involve impaired VLDL secretion. PMID:24548803

  9. Biosynthesis and release of pheromonal bile salts in mature male sea lamprey

    PubMed Central

    2013-01-01

    Background In vertebrates, bile salts are primarily synthesized in the liver and secreted into the intestine where they aid in absorption of dietary fats. Small amounts of bile salts that are not reabsorbed into enterohepatic circulation are excreted with waste. In sexually mature male sea lamprey (Petromyzon marinus L.) a bile salt is released in large amounts across gill epithelia into water where it functions as a pheromone. We postulate that the release of this pheromone is associated with a dramatic increase in its biosynthesis and transport to the gills upon sexual maturation. Results We show an 8000-fold increase in transcription of cyp7a1, a three-fold increase in transcription of cyp27a1, and a six-fold increase in transcription of cyp8b1 in the liver of mature male sea lamprey over immature male adults. LC–MS/MS data on tissue-specific distribution and release rates of bile salts from mature males show a high concentration of petromyzonol sulfate (PZS) in the liver and gills of mature males. 3-keto petromyzonol sulfate (3kPZS, known as a male sex pheromone) is the primary compound released from gills, suggesting a conversion of PZS to 3kPZS in the gill epithelium. The PZS to 3kPZS conversion is supported by greater expression of hsd3b7 in gill epithelium. High expression of sult2b1 and sult2a1 in gill epithelia of mature males, and tissue-specific expression of bile salt transporters such as bsep, slc10a1, and slc10a2, suggest additional sulfation and transport of bile salts that are dependent upon maturation state. Conclusions This report presents a rare example where specific genes associated with biosynthesis and release of a sexual pheromone are dramatically upregulated upon sexual maturation in a vertebrate. We provide a well characterized example of a complex mechanism of bile salt biosynthesis and excretion that has likely evolved for an additional function of bile salts as a mating pheromone. PMID:24188124

  10. Bile acids conjugation in human bile is not random: new insights from (1)H-NMR spectroscopy at 800 MHz.

    PubMed

    Nagana Gowda, G A; Shanaiah, Narasimhamurthy; Cooper, Amanda; Maluccio, Mary; Raftery, Daniel

    2009-06-01

    Bile acids constitute a group of structurally closely related molecules and represent the most abundant constituents of human bile. Investigations of bile acids have garnered increased interest owing to their recently discovered additional biological functions including their role as signaling molecules that govern glucose, fat and energy metabolism. Recent NMR methodological developments have enabled single-step analysis of several highly abundant and common glycine- and taurine- conjugated bile acids, such as glycocholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, and taurochenodeoxycholic acid. Investigation of these conjugated bile acids in human bile employing high field (800 MHz) (1)H-NMR spectroscopy reveals that the ratios between two glycine-conjugated bile acids and their taurine counterparts correlate positively (R2 = 0.83-0.97; p = 0.001 x 10(-2)-0.006 x 10(-7)) as do the ratios between a glycine-conjugated bile acid and its taurine counterpart (R2 = 0.92-0.95; p = 0.004 x 10(-3)-0.002 x 10(-10)). Using such correlations, concentration of individual bile acids in each sample could be predicted in good agreement with the experimentally determined values. These insights into the pattern of bile acid conjugation in human bile between glycine and taurine promise useful clues to the mechanism of bile acids' biosynthesis, conjugation and enterohepatic circulation, and may improve our understanding of the role of individual conjugated bile acids in health and disease. PMID:19373503

  11. CAV1 Prevents Gallbladder Cholesterol Crystallization by Regulating Biosynthesis and Transport of Bile Salts.

    PubMed

    Xu, Guoqiang; Li, Yiqiao; Jiang, Xin; Chen, Hongtan

    2016-09-01

    Cholesterol gallstone disease (CGD) is a hepatobiliary disorder which results from a biochemical imbalance in the gallbladder bile. Here we show that loss of CAV1 sensitized mice to lithogenic diet-induced gallbladder cholesterol crystallization, which was associated with dysregulation of several hepatic transporters that efflux cholesterol, phospholipids, and bile salts. The combined effect of increased biliary cholesterol concentration and decreased biliary bile salt secretion in CAV1(-/-) mice led to an increased cholesterol saturation index and the formation of cholesterol crystals. At the signaling level, the ERK/AP-1 pathway seems to mediate the effects of CAV1 on biliary BA homeostasis and might be developed as a therapeutic target for CGD. We propose that CAV1 is an anti-lithogenic factor and that the CAV1(-/-) mice may offer a convenient CGD model to develop therapeutic interventions for this disease. J. Cell. Biochem. 117: 2118-2127, 2016. © 2016 Wiley Periodicals, Inc. PMID:26875794

  12. Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling.

    PubMed

    Keune, Willem-Jan; Hausmann, Jens; Bolier, Ruth; Tolenaars, Dagmar; Kremer, Andreas; Heidebrecht, Tatjana; Joosten, Robbie P; Sunkara, Manjula; Morris, Andrew J; Matas-Rico, Elisa; Moolenaar, Wouter H; Oude Elferink, Ronald P; Perrakis, Anastassis

    2016-01-01

    Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs. PMID:27075612

  13. Interaction between dietary bioactive peptides of short length and bile salts in submicellar or micellar state.

    PubMed

    Guerin, Justine; Kriznik, Alexandre; Ramalanjaona, Nick; Le Roux, Yves; Girardet, Jean-Michel

    2016-10-15

    Bile salts act as steroidal detergents in the gut, and could also interact with peptides and improve their bioavailability, although the mechanism is unclear. The occurrence of direct interaction between milk bioactive peptides, Ile-Asn-Tyr-Trp, Leu-Asp-Gln-Trp, and Leu-Gln-Lys-Trp, and different bile salts in the submicellar or micellar state was investigated by intrinsic fluorescence measurement and dynamic light scattering, above the critical micellar concentration, the latter being determined by isothermal titration calorimetry. The peptides form aggregates, spontaneously. In the presence of bile salts, some released peptide monomers were bound to the micellar surface. The lack of hydrogen bonding involving the C12OH group of the steroid skeleton, and the acidic function of some bile salts, might promote the interaction with the peptides, as could the lack of the C12OH group, rather than that of the C7OH group. At submicellar concentrations, sodium taurochenodeoxycholate and taurodeoxycholate readily interacted with the most hydrophobic peptide Ile-Asn-Tyr-Trp. PMID:27173542

  14. Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling

    PubMed Central

    Keune, Willem-Jan; Hausmann, Jens; Bolier, Ruth; Tolenaars, Dagmar; Kremer, Andreas; Heidebrecht, Tatjana; Joosten, Robbie P.; Sunkara, Manjula; Morris, Andrew J.; Matas-Rico, Elisa; Moolenaar, Wouter H.; Oude Elferink, Ronald P.; Perrakis, Anastassis

    2016-01-01

    Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs. PMID:27075612

  15. Effect of submicellar concentrations of conjugated and unconjugated bile salts on the lipid bilayer membrane.

    PubMed

    Mohapatra, Monalisa; Mishra, Ashok K

    2011-11-15

    The interaction of submicellar concentrations of various physiologically important unconjugated [sodium deoxycholate (NaDC), sodium cholate (NaC)] and conjugated [sodium glycodeoxycholate (NaGDC), sodium glycocholate (NaGC), sodium taurodeoxycholate (NaTDC), sodium taurocholate (NaTC)] bile salts with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles in solid gel (SG) and liquid crystalline (LC) phases was investigated using the excited-state prototropism of 1-naphthol. Steady-state and time-resolved fluorescence of the two excited-state prototropic forms of 1-naphthol indicate that submicellar bile salt concentration induces hydration of the lipid bilayer membrane into the core region. This hydration effect is a general phenomenon of the bile salts studied. The bilayer hydration efficiency of the bile salt follows the order NaDC > NaC > NaGDC > NaTDC > NaGC > NaTC for both DPPC and DMPC vesicles in their SG and LC phases. PMID:21973323

  16. Effects of novel bile salts on cholesterol metabolism in rats and guinea-pigs.

    PubMed

    Fears, R; Brown, R; Ferres, H; Grenier, F; Tyrrell, A W

    1990-11-01

    Novel bile salts (quaternary ammonium conjugates) inhibited cholic acid binding and transport in everted ileal sacs in vitro. The cationic piperazine conjugate of lithocholic acid (di-iodide salt, compound 8, BRL 39924A) appeared most active, inhibiting binding by 29% and transport by 59% in guinea-pig ileum (200 microM). BRL 39924A also inhibited taurocholate uptake into guinea-pig ileal sacs and cholate uptake into rat ileal sacs and was selected for further study in vivo. In hyperlipidaemic rats, BRL 39924A significantly raised cholesterol 7 alpha-hydroxylase activity and decreased hepatic accumulation of exogenous cholic acid. HDL cholesterol concentration in the serum increased and the level of VLDL plus LDL cholesterol decreased. In hyperlipidaemic guinea-pigs. BRL 39924A lowered serum total cholesterol and triglyceride levels. Although metabolic changes were less than those achieved with the bile acid sequestrant, cholestyramine, the doses of BRL 39924A used were much lower (100-500 mg/kg body wt). Selective inhibition of receptor mediated bile acid uptake may be associated with local side-effects but these novel bile salts are useful pharmacological tools to examine the effects of receptor blockade on lipoprotein metabolism. PMID:2242032

  17. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures.

    PubMed

    Liu, Jie; Lu, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C; Klaassen, Curtis D

    2014-10-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70-95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100μM. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na(+)-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OSTα/β were increased 10-100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective. PMID:25055961

  18. A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects E scherichia coli from bile salt stress

    PubMed Central

    Paul, Stephanie; Alegre, Kamela O; Holdsworth, Scarlett R; Rice, Matthew; Brown, James A; McVeigh, Paul; Kelly, Sharon M; Law, Christopher J

    2014-01-01

    Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as E scherichia coli. Although the tripartite AcrAB–TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.2 and 6.0) that reflect pH conditions that E . coli may encounter in human gut that MdtM, a single-component multidrug resistance transporter of the major facilitator superfamily, functions in bile salt resistance in E . coli by catalysing secondary active transport of bile salts out of the cell cytoplasm. Furthermore, assays performed on a chromosomal ΔacrB mutant transformed with multicopy plasmid encoding MdtM suggested a functional synergism between the single-component MdtM transporter and the tripartite AcrAB–TolC system that results in a multiplicative effect on resistance. Substrate binding experiments performed on purified MdtM demonstrated that the transporter binds to cholate and deoxycholate with micromolar affinity, and transport assays performed on inverted vesicles confirmed the capacity of MdtM to catalyse electrogenic bile salt/H+ antiport. PMID:24684269

  19. Formation of drug-bearing vesicles in mixed colloids of bile salts and phosphatidylcholine

    SciTech Connect

    Hjelm, R.P.; Mang, J.; Hofmann, A.F.; Schteingart, C.; Alkan-Onyuksel, H.; Ayd, S.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors used small-angle neutron scattering to study drug interactions with mixed colloids of bile salt and phosphatidylcholine. Because the mixed colloids form liposomes spontaneously, this system is a model for drug-bile interactions that are important in understanding the efficacy of oral drug formulations and in advanced applications for liposome drug delivery systems. The authors studied particle formation in incorporation of enzymatic products formed in the gut and the effects of cholesteric drugs and taxol on vesicle formation. The studies show that particle morphology is not affected by inclusion of most cholesteric drugs and taxol, and is not affected by incorporation of the products of enzymatic action. The findings suggest that particle form is important for the physiological function of bile and they are beginning to show which drugs affect liposome formation.

  20. Indirect electrochemical detection for total bile acids in human serum.

    PubMed

    Zhang, Xiaoqing; Zhu, Mingsong; Xu, Biao; Cui, Yue; Tian, Gang; Shi, Zhenghu; Ding, Min

    2016-11-15

    Bile acids level in serum is a useful index for screening and diagnosis of hepatobiliary diseases. As bile acids concentration is closely related to the degree of hepatobiliary diseases, detecting it is a vital factor to understand the stage of the diseases. The prevalent determination for bile acids is the enzymatic cycling method which has low sensitivity while reagent-consuming. It is desirable to develop a new method with lower cost and higher sensitivity. An indirect electrochemical detection (IED) for bile acids in human serum was established using the screen printed carbon electrode (SPCE). Since bile acids do not show electrochemical signals, they were converted to 3-ketosteroids by 3-α-hydroxysteroid dehydrogenase (3α-HSD) in the presence of nicotinamide adenine dinucleotide (NAD(+)), which was reduced to NADH. NADH could then be oxidized on the surface of SPCE, generating a signal that was used to calculate the total bile acids (TBA) concentration. A good linear calibration for TBA was obtained at the concentration range from 5.00μM to 400μM in human serum. Both the precisions and recoveries were sufficient to be used in a clinical setting. The TBA concentrations in 35 human serum samples by our IED method didn't show significant difference with the result by enzymatic cycling method, using the paired t-test. Moreover, our IED method is reagent-saving, sensitive and cost-effective. PMID:27236139

  1. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.

    PubMed

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-11-17

    Recently [Neubrand, M. W., et al. (2015) Biochemistry 54, 1542-1557], we determined a concentration-dependent monomer-dimer-tetramer equilibrium in aqueous bilirubin ditaurate (BDT) solutions and explored the nature of high-affinity binding of BDT monomers with monomers and micelles of the common taurine-conjugated bile salts (BS). We now investigate, employing complementary physicochemical methods, including fluorescence emission spectrophotometry and quasi-elastic light scattering spectroscopy, the influence of phosphatidylcholine (PC), the predominant phospholipid of bile and calcium, the major divalent biliary cation, on these self-interactions and heterointeractions. We have used short-chain, lyso and long-chain PC species as models and contrasted our results with those of parallel studies employing unconjugated bilirubin (UCB) as the fully charged dianion. Both bile pigments interacted with the zwitterionic headgroup of short-chain lecithins, forming water-soluble (BDT) and insoluble ion-pair complexes (UCB), respectively. Upon micelle formation, BDT monomers apparently remained at the headgroup mantle of short-chain PCs, but the ion pairs with UCB became internalized within the micelle's hydrophobic core. BDT interacted with the headgroups of unilamellar egg yolk (EY) PC vesicles; however, with the simultaneous addition of CaCl2, a reversible aggregation took place, but not vesicle fusion. With mixed EYPC/BS micelles, BDT became bound to the hydrophilic surface (as with simple BS micelles), and in turn, both BDT and BS bound calcium, but not other divalent cations. The calcium complexation of BDT and BS was enhanced strongly with increases in micellar EYPC, suggesting calcium-mediated cross-bridging of hydrophilic headgroups at the micelle's surface. Therefore, the physicochemical binding of BDT to BS in an artificial bile medium is influenced not only by BS species and concentration but also by long-chain PCs and calcium ions that exert a specific rather

  2. Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate

    PubMed Central

    2011-01-01

    Background In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100) or anionic (sodium lauryl ether sulfate) surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. Results The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. Conclusion It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate. PMID:22206681

  3. Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine

    PubMed Central

    Elnaggar, Yosra SR

    2015-01-01

    The human body has long provided pharmaceutical science with biomaterials of interesting applications. Bile salts (BSs) are biomaterials reminiscent of traditional surfactants with peculiar structure and self-assembled topologies. In the pharmaceutical field, BSs were employed on the basis of two different concepts. The first concept exploited BSs’ metabolic and homeostatic functions in disease modulation, whereas the second one utilized BSs’ potential to modify drug-delivery characteristics, which recently involved nanotechnology. This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain. Endogenous applications highlighted the role of BS in modulating hypercholesterolemia and cancer therapy in view of enterohepatic circulation. In addition, recent BS-integrated nanomedicines have been surveyed, chiefly size-tunable cholate nanoparticles, BS-lecithin mixed micelles, bilosomes, probilosomes, and surface-engineered bilosomes. A greater emphasis has been laid on nanosystems for vaccine and cancer therapy. The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted. Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined. PMID:26109855

  4. Comparative studies of bile salts. 5α-Chimaerol, a new bile alcohol from the white sucker Catostomus commersoni Lacépède

    PubMed Central

    Anderson, I. G.; Haslewood, G. A. D.

    1970-01-01

    1. G.l.c. examination of bile alcohols prepared from the sucker Catostomus commersoni Lacépède (family Catostomidae) showed that although 5α-cyprinol (5α-cholestane-3α,7α,12α,26,27-pentol) was a minor constituent, the principal bile alcohol was an undescribed substance, probably present in the bile as the C-26 sulphate ester, whose i.r., n.m.r. and mass spectra agreed with the structure 5α-cholestane-3α,7α,12α,24,26-pentol. 2. MD studies suggest that this 5α-chimaerol is the 24(+), 25S enantiomer and that 5β-chimaerol (chimaerol) from Chimaera monstrosa bile also has the 24(+), 25S configuration. These findings imply that bile alcohol biosynthesis in suckers and chimaeras includes stereospecific oxidation of cholesterol at C-26. 3. C. commersoni bile acids (present in minor amounts) probably consist largely of 3α,7α,12α-trihydroxy-5α-cholan-24-oic acid (allocholic acid). 4. 5α-Chimaerol sulphate and 5α-cyprinol sulphate are probably biochemically equivalent as bile salts, and can be considered as arising by parallel evolution. PMID:5435487

  5. The mitigating effects of phosphatidylcholines on bile salt- and lysophosphatidylcholine-induced membrane damage.

    PubMed

    el-Hariri, L M; Marriott, C; Martin, G P

    1992-08-01

    The effects, at pH 7.0, of a series of 0.2 mM phosphatidylcholines (PC), namely dicaproyl-PC (DCPC), didecanoyl-PC (DDPC), dilauroyl-PC (DLaPC), dimyristoyl-PC (DMPC), dipalmitoyl-PC (DPPC), dioleoyl-PC (DOPC) and dilinoleoyl-PC (DLPC) and a series of 0.2 mM fatty acid salts (namely sodium myristate, palmitate, stearate, oleate and linoleate) upon the erythrocyte haemolysis induced by 2 mM sodium taurodeoxycholate (STDC) were determined. The influence of egg PC and dihexadecyl phosphate (DHDP) concentration upon the haemolysis induced by 1.4 mM sodium deoxycholate (SDC), 2 mM STDC and 0.1 mM lysophosphatidylcholine (LPC) were also established. A bile salt:egg PC mole ratio of 0.5 virtually abolished the haemolysis induced by SDC and STDC, whereas the same ratio of LPC:egg PC only reduced haemolysis from 65 to 40% (maximum haemolysis). DHDP had no effect on the haemolytic action of SDC or STDC. The salts of the fatty acids were non-haemolytic, and when mixed with STDC did not affect the level of haemolysis induced by the bile salt. In contrast, DDPC and DLaPC enhanced the haemolysis of STDC and DCPC had no effect, whereas DMPC, DPPC, DSPC, DOPC, DLPC and egg PC all reduced haemolysis. Maximum reduction was determined for DMPC and egg PC. The mixed micelle preparation temperature (either room or 60 degrees C) and temperature of incubation (either 20 degrees C for 30 min or 37 degrees C for 5 min) had only minor effects on the net haemolysis induced by STDC. These findings may be of significance in understanding the aetiology of certain gastrointestinal diseases and in determining whether mixed bile salt micelles have a role as drug penetration enhancers. PMID:1359088

  6. Bile Salts Affect Expression of Escherichia coli O157:H7 Genes for Virulence and Iron Acquisition, and Promote Growth under Iron Limiting Conditions

    PubMed Central

    Hamner, Steve; McInnerney, Kate; Williamson, Kerry; Franklin, Michael J.; Ford, Timothy E.

    2013-01-01

    Bile salts exhibit potent antibacterial properties, acting as detergents to disrupt cell membranes and as DNA-damaging agents. Although bacteria inhabiting the intestinal tract are able to resist bile’s antimicrobial effects, relatively little is known about how bile influences virulence of enteric pathogens. Escherichia coli O157:H7 is an important pathogen of humans, capable of causing severe diarrhea and more serious sequelae. In this study, the transcriptome response of E. coli O157:H7 to bile was determined. Bile exposure induced significant changes in mRNA levels of genes related to virulence potential, including a reduction of mRNA for the 41 genes making up the locus of enterocyte effacement (LEE) pathogenicity island. Bile treatment had an unusual effect on mRNA levels for the entire flagella-chemotaxis regulon, resulting in two- to four-fold increases in mRNA levels for genes associated with the flagella hook-basal body structure, but a two-fold decrease for “late” flagella genes associated with the flagella filament, stator motor, and chemotaxis. Bile salts also caused increased mRNA levels for seventeen genes associated with iron scavenging and metabolism, and counteracted the inhibitory effect of the iron chelating agent 2,2’-dipyridyl on growth of E. coli O157:H7. These findings suggest that E. coli O157:H7 may use bile as an environmental signal to adapt to changing conditions associated with the small intestine, including adaptation to an iron-scarce environment. PMID:24058617

  7. The mechanism of increased biliary lipid secretion in mice with genetic inactivation of bile salt export pump.

    PubMed

    Gooijert, K E R; Havinga, R; Wolters, H; Wang, R; Ling, V; Tazuma, S; Verkade, H J

    2015-03-01

    Human bile salt export pump (BSEP) mutations underlie progressive familial intrahepatic cholestasis type 2 (PFIC2). In the PFIC2 animal model, Bsep(-/-) mice, biliary secretion of bile salts (BS) is decreased, but that of phospholipids (PL) and cholesterol (CH) is increased. Under physiological conditions, the biliary secretion of PL and CH is positively related ("coupled") to that of BS. We aimed to elucidate the mechanism of increased biliary lipid secretion in Bsep(-/-) mice. The secretion of the BS tauro-β-muricholic acid (TβMCA) is relatively preserved in Bsep(-/-) mice. We infused Bsep(-/-) and Bsep(+/+) (control) mice with TβMCA in stepwise increasing dosages (150-600 nmol/min) and determined biliary bile flow, BS, PL, and CH secretion. mRNA and protein expression of relevant canalicular transporters was analyzed in livers from noninfused Bsep(-/-) and control mice. TβMCA infusion increased BS secretion in both Bsep(-/-) and control mice. The secreted PL or CH amount per BS, i.e., the "coupling," was continuously two- to threefold higher in Bsep(-/-) mice (P < 0.05). Hepatic mRNA expression of canalicular lipid transporters Mdr2, Abcg5, and Abcg8 was 45-55% higher in Bsep(-/-) mice (Abcg5; P < 0.05), as was canalicular Mdr2 and Abcg5 protein expression. Potential other explanations for the increased coupling of the biliary secretion of PL and CH to that of BS in Bsep(-/-) mice could be excluded. We conclude that the mechanism of increased biliary lipid secretion in Bsep(-/-) mice is based on increased expression of the responsible canalicular transporter proteins. PMID:25552583

  8. Recombinant Bile Salt-Stimulated Lipase in Preterm Infant Feeding: A Randomized Phase 3 Study

    PubMed Central

    Casper, Charlotte; Hascoet, Jean-Michel; Ertl, Tibor; Gadzinowski, Janusz S.; Carnielli, Virgilio; Rigo, Jacques; Lapillonne, Alexandre; Couce, María L.; Vågerö, Mårten; Palmgren, Ingrid; Timdahl, Kristina; Hernell, Olle

    2016-01-01

    Introduction Feeding strategies are critical for healthy growth in preterm infants. Bile salt-stimulated lipase (BSSL), present in human milk, is important for fat digestion and absorption but is inactivated during pasteurization and absent in formula. This study evaluated if recombinant human BSSL (rhBSSL) improves growth in preterm infants when added to formula or pasteurized breast milk. Patients and Methods LAIF (Lipase Added to Infant Feeding) was a randomized, double-blind, placebo-controlled phase 3 study in infants born before 32 weeks of gestation. The primary efficacy variable was growth velocity (g/kg/day) during 4 weeks intervention. Follow-up visits were at 3 and 12 months. The study was performed at 54 centers in 10 European countries. Results In total 415 patients were randomized (rhBSSL n = 207, placebo n = 208), 410 patients were analyzed (rhBSSL n = 206, placebo n = 204) and 365 patients were followed until 12 months. Overall, there was no significantly improved growth velocity during rhBSSL treatment compared to placebo (16.77 vs. 16.56 g/kg/day, estimated difference 0.21 g/kg/day, 95% CI [-0.40; 0.83]), nor were secondary endpoints met. However, in a predefined subgroup, small for gestational age infants, there was a significant effect on growth in favor of rhBSSL during treatment. The incidence of adverse events was higher in the rhBSSL group during treatment. Conclusions Although this study did not meet its primary endpoint, except in a subgroup of infants small for gestational age, and there was an imbalance in short-term safety, these data provide insights in nutrition, growth and development in preterm infants. Trial Registration ClinicalTrials.gov NCT01413581 PMID:27244221

  9. Optimizing Human Bile Preparation for Two-Dimensional Gel Electrophoresis

    PubMed Central

    Cheng, Hao-Tsai; Sung, Chang-Mu; Pai, Betty Chien-Jung; Liu, Nai-Jen; Chen, Carl PC

    2016-01-01

    Aims. Bile is an important body fluid which assists in the digestion of fat and excretion of endogenous and exogenous compounds. In the present study, an improved sample preparation for human bile was established. Methods and Material. The method involved acetone precipitation followed by protein extraction using commercially available 2D Clean-Up kit. The effectiveness was evaluated by 2-dimensional electrophoresis (2DE) profiling quality, including number of protein spots and spot distribution. Results. The total protein of bile fluid in benign biliary disorders was 0.797 ± 0.465 μg/μL. The sample preparation method using acetone precipitation first followed by 2D Clean-Up kit protein extraction resulted in better quality of 2DE gel images in terms of resolution as compared with other sample preparation methods. Using this protocol, we obtained approximately 558 protein spots on the gel images and with better protein spots presentation of haptoglobin, serum albumin, serotransferrin, and transthyretin. Conclusions. Protein samples of bile prepared using acetone precipitation followed by 2D Clean-Up kit exhibited high protein resolution and significant protein profile. This optimized protein preparation protocol can effectively concentrate bile proteins, remove abundant proteins and debris, and yield clear presentation of nonabundant proteins and its isoforms on 2-dimensional electrophoresis gel images. PMID:26966686

  10. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    PubMed

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications. PMID:26566892

  11. Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis.

    PubMed

    Wu, R; Sun, Z; Wu, J; Meng, H; Zhang, H

    2010-08-01

    Lactobacillus casei Zhang, isolated from koumiss in Inner Mongolia of China, is known from previous findings to be tolerant to bile salts. Bile salts secreted by mammals act as a natural antibacterial barrier and may serve as a component of innate immunity, as they have limited antagonistic effect against resident microflora. In this work, we compared the growth and protein expression patterns of L. casei Zhang with and without bile salts. Twenty-six proteins were found to be differentially expressed using 2-dimensional gel electrophoresis. Peptide mass fingerprinting was used to identify these proteins. Further verification by using real-time, quantitative reverse transcription-PCR and bioinformatics analysis showed that the implicated pathways are involved with a complex physiological response under bile salts stress, particularly including cell protection (DnaK and GroEL), modifications in cell membranes (NagA, GalU, and PyrD), and key components of central metabolism (PFK, PGM, CysK, LuxS, PepC, and EF-Tu). These results provide insight on the protein expression pattern of L. casei under bile salts stress and offer a new perspective for the molecular mechanisms involved in stress tolerance and adaptation of bacteria. PMID:20655455

  12. Bile Salt Inhibition of Host Cell Damage by Clostridium Difficile Toxins

    PubMed Central

    Darkoh, Charles; Brown, Eric L.; Kaplan, Heidi B.; DuPont, Herbert L.

    2013-01-01

    Virulent Clostridium difficile strains produce toxin A and/or toxin B that are the etiological agents of diarrhea and pseudomembranous colitis. Treatment of C. difficile infections (CDI) has been hampered by resistance to multiple antibiotics, sporulation, emergence of strains with increased virulence, recurrence of the infection, and the lack of drugs that preserve or restore the colonic bacterial flora. As a result, there is new interest in non-antibiotic CDI treatments. The human conjugated bile salt taurocholate was previously shown in our laboratory to inhibit C. difficile toxin A and B activities in an in vitro assay. Here we demonstrate for the first time in an ex vivo assay that taurocholate can protect Caco-2 colonic epithelial cells from the damaging effects of the C. difficile toxins. Using caspase-3 and lactate dehydrogenase assays, we have demonstrated that taurocholate reduced the extent of toxin B-induced apoptosis and cell membrane damage. Confluent Caco-2 cells cultured with toxin B induced elevated caspase-3 activity. Remarkably, addition of 5 mM taurocholate reduced caspase-3 activity in cells treated with 2, 4, 6, and 12 µg/ml of toxin B by 99%, 78%, 64%, and 60%, respectively. Furthermore, spent culture medium from Caco-2 cells incubated with both toxin B and taurocholate exhibited significantly decreased lactate dehydrogenase activity compared to spent culture medium from cells incubated with toxin B only. Our results suggest that the mechanism of taurocholate-mediated inhibition functions at the level of toxin activity since taurocholate did not affect C. difficile growth and toxin production. These findings open up a new avenue for the development of non-antibiotic therapeutics for CDI treatment. PMID:24244530

  13. A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs).

    PubMed

    Kurogi, Katsuhisa; Krasowski, Matthew D; Injeti, Elisha; Liu, Ming-Yih; Williams, Frederick E; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2011-11-01

    The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species. PMID:21839837

  14. A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs)

    PubMed Central

    Kurogi, Katsuhisa; Krasowski, Matthew D.; Injeti, Elisha; Liu, Ming-Yih; Williams, Frederick E.; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-01-01

    The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species. PMID:21839837

  15. Study of thermodynamic parameters for solubilization of plant sterol and stanol in bile salt micelles.

    PubMed

    Matsuoka, Keisuke; Nakazawa, Tomomi; Nakamura, Ai; Honda, Chikako; Endo, Kazutoyo; Tsukada, Masamichi

    2008-08-01

    We investigated the difference between the molecular structures of plant sterols and stanols that affect the solubilization of cholesterol in bile salt micelles (in vitro study). First, the aqueous solubility of beta-sitosterol, beta-sitostanol, and campesterol was determined by considering the specific radioactivity by using a fairly small quantity of each radiolabeled compound. The order of their aqueous solubilities was as follows: cholesterol > campesterol > beta-sitostanol > beta-sitosterol. The maximum solubility of cholesterol and the above mentioned sterol/stanol in sodium taurodeoxycholate and sodium taurocholate solutions (single solubilizate system) was measured. Moreover, the preferential solubilization of cholesterol in bile salt solutions was systematically studied by using different types of plant sterols/stanols. The solubilization results showed that the cholesterol-lowering effect was similar for sterols and stanol. Thermodynamic analysis was applied to these experimental results. The Gibbs energy change (Delta G degrees ) for the solubilization of plant sterols/stanols showed a negative value larger than that for cholesterol. PMID:18544343

  16. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  17. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    SciTech Connect

    Marion, Tracy L.; Perry, Cassandra H.; St Claire, Robert L.; Brouwer, Kim L.R.

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  18. The unique ligand binding features of subfamily-II iLBPs with respect to bile salts and related drugs.

    PubMed

    Favretto, Filippo; Ceccon, Alberto; Zanzoni, Serena; D'Onofrio, Mariapina; Ragona, Laura; Molinari, Henriette; Assfalg, Michael

    2015-04-01

    Intracellular lipid binding proteins (iLBPs) are a family of evolutionarily related small cytoplasmic proteins implicated in the transcellular transport of lipophilic ligands. Subfamily-II iLBPs include the liver fatty acid binding protein (L-FABP), and the ileal and the liver and ileal bile acid binding proteins (L-BABP and I-BABP). Atomic-level investigations during the past 15-20 years have delivered relevant information on bile acid binding by this protein group, revealing unique features including binding cooperativity, promiscuity, and site selectivity. Using NMR spectroscopy and other biophysical techniques, our laboratories have contributed to an understanding of the molecular determinants of some of these properties and their generality among proteins from different animal species. We focused especially on formation of heterotypic complexes, considering the mixed compositions of physiological bile acid pools. Experiments performed with synthetic bile acid derivatives showed that iLBPs could act as targets for cell-specific contrast agents and, more generally, as effective carriers of amphiphilic drugs. This review collects the major findings related to bile salt interactions with iLBPs aiming to provide keys for a deeper understanding of protein-mediated intracellular bile salt trafficking. PMID:25468388

  19. Structure of conjugated bile salt-fatty acid-monoglyceride mixed colloids: Studies by small-angle neutron scattering

    SciTech Connect

    Hjelm, R.P.; Schteingart, C.D.; Hofmann, A.F.; Thiyagarajan, P.

    2000-01-20

    The structures of particles found in isotropic phases of mixed surfactant systems consisting of conjugated bile salts and fatty lipids were assessed using small-angle neutron scattering. The conjugated bile salts were either cholylglycine or chenodeoxycholylglycine. The fatty lipids were mixtures of oleate and oleic acid either alone or with monoolein. The scattering data suggested that both particle interactions and polydispersity must be modeled in these systems. Particle interactions were modeled using the reduced mean spherical approximation and the decoupling approximation. Maximum entropy was used to characterize the polydispersity. A self-consistent analysis of the scattering was arrived at by making an initial estimate of particle size and shape using derivative-log and Guinier analysis and refining the estimates by analyzing the particle interactions and polydispersity and iterating. There are sufficient similarities in the particle morphologies of these and other conjugated bile salt-fatty lipid systems to suggest a common mode of self-assembly. These solutions are models for bile in the bilary system and intestine content during triglyceride digestion; the common themes of self-assembly have implications for the physiology of lipid solubilization in bile as well as intestinal absorption of dietary lipids.

  20. Regulation of human class I alcohol dehydrogenases by bile acids

    PubMed Central

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F.; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism. PMID:23772048

  1. Bile duct obstruction

    MedlinePlus

    ... the liver. It contains cholesterol, bile salts, and waste products such as bilirubin . Bile salts help your ... can lead to life-threatening infection and a dangerous buildup of bilirubin. If the blockage lasts a ...

  2. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae

    PubMed Central

    Unterweger, Daniel; Diaz-Satizabal, Laura; Ogg, Stephen; Pukatzki, Stefan

    2015-01-01

    The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen’s arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection. PMID:26317760

  3. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers.

    PubMed

    Lin, Jun

    2014-01-01

    The growth-promoting effect of antibiotic growth promoters (AGPs) was correlated with the decreased activity of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals. PMID:24575079

  4. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers

    PubMed Central

    Lin, Jun

    2014-01-01

    The growth-promoting effect of antibiotic growth promoters (AGPs) was correlated with the decreased activity of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals. PMID:24575079

  5. Bile salt liposomes for enhanced lymphatic transport and oral bioavailability of paclitaxel.

    PubMed

    Zhang, Bin; Xue, Aiying; Zhang, Chen; Yu, Jinlong; Chen, Wen; Sun, Deqing

    2016-06-01

    Paclitaxel (PTX), a BCS class IV drug that is characterized by its poor solubility and is a substrate for P-glycoprotein, is one of the most widely used antineoplastic agents. However, oral administration of PTX for chemotherapy is highly challenging. The aim of this study was to develop bile-salt liposomes (BS-Lips) to enhance the absorption of PTX and thus improve its therapeutic outcome. The BS-Lips were prepared by the thin-film hydration method and characterized in terms of particle size and morphology. Drug release and in vitro stability in simulated gastrointestinal fluids and in media of different pH values were evaluated, as well as in vivo performance, including antitumor activity and pharmacokinetics in rats, with the plasma concentrations determined by a HPLC method. The PTX-loaded BS-Lips were successfully prepared with a diameter of approximately 150 nm and an entrapment efficiency of greater than 90 percent. Moreover, the BS-Lips were not affected by gastrointestinal enzymes or pH alternation, as evident from the unchanged particle size and the drug retained in BS-Lips after 6 h incubation. The insertion of bile salt into the lipid layer of liposomes increased the lymphatic transport of PTX by twofold. Importantly, BS-Lips increased the oral bioavailability of PTX by 2.5 and 4-fold, respectively, compared with conventional liposomes (Lips) and Taxol (free drug), thereby displaying a better inhibition of tumor growth that was similar to the group injected intravenously with Taxol. In conclusion, the BS-Lips represent promising vehicles for the oral delivery of PTX, thereby enabling an intravenous-to-oral switch for cancer chemotherapy. PMID:27455550

  6. Effect of ion-pair formation with bile salts on the in vitro cellular transport of berberine.

    PubMed

    Chae, Hye-Won; Kim, In-Wha; Jin, Hyo-Eon; Kim, Dae-Duk; Chung, Suk-Jae; Shim, Chang-Koo

    2008-01-01

    The objective of this study was to examine the effect of ion-pair complexation with endogenous bile salts on the transport of a quarternary ammonium organic cationic (OC) drug, berberine, across the Caco-2 and LLC-PK1 cell monolayers. The basolateral-to-apical (BL-AP) transport of berberine in Caco-2 cells was temperature dependent and 10-fold higher than that of the apical-to-basolateral (AP-BL) transport. Similar results were observed for the transport of berberine across the LLC-PK1 cells. Moreover, the BL-AP transport in the Caco-2 cells was significantly reduced by the cis-presence of P-glycoprotein (P-gp) inhibitors such as cyclosporine A, verapamil, and digoxin. These results suggest that an efflux transporter, probably P-gp, is involved in the Caco-2 cell transport. The Km and Vmax values for the carrier-mediated transport were estimated to be 83.4 mM and 7640 pmole/h/cm2, respectively. The apparent partition coefficient (APC) of berberine between n-octanol and a phosphate buffer (pH 7.4) was increased by the presence of an organic anion (OA), taurodeoxycholate (TDC, a bile salt), suggesting the formation of a lipophilic ion-pair complex between an OC (berberine) and an OA (TDC). Despite the ion-pair complexation, however, the BL-AP transport of berberine across the Caco-2 and LLC-PK1 cells was not altered by the cis-presence of bile salts or the rat bile juice. This is consistent with the reportedly unaltered secretory transport of a quarternary ammonium compound, tributylmethylammonium (TBuMA), across the Caco-2 cell monolayers in the cis-presence of bile salts or the rat bile juice, but not with our previous report in which the secretory transport of TBuMA across the LLC-PK1 cell was increased in the cis-presence of TDC. Therefore, the effect of ion-pair formation with the bile components or bile salts on the secretory transport of OCs appears to depend on the molecular properties of OCs (e.g., molecular weight, lipophilicity and affinity to relevant

  7. Molecular interactions of a model bile salt and porcine bile with (1,3:1,4)-β-glucans and arabinoxylans probed by (13)C NMR and SAXS.

    PubMed

    Gunness, Purnima; Flanagan, Bernadine M; Mata, Jitendra P; Gilbert, Elliot P; Gidley, Michael J

    2016-04-15

    Two main classes of interaction between soluble dietary fibres (SDFs), such as (1,3:1,4)-β-D-glucan (βG) and arabinoxylan (AX) and bile salt (BS) or diluted porcine bile, were identified by (13)C NMR and small angle X-ray scattering (SAXS). Small chemical shift differences of BS NMR resonances were consistent with effective local concentration or dilution of BS micelles mostly by βG, suggesting dynamic interactions; whilst the reduced line widths/intensities observed were mostly caused by wheat AX and the highest molecular size and concentrations of βG. SAXS showed evidence of changes in βG but not AX in the presence of BS micelles, at >13 nm length scale consistent with molecular level interactions. Thus intermolecular interactions between SDF and BS depend on both SDF source and its molecular weight and may occur alone or in combination. PMID:26617003

  8. Effect of the structure of bile salt aggregates on the binding of aromatic guests and the accessibility of anions.

    PubMed

    Li, Rui; Carpentier, Eric; Newell, Edward D; Olague, Lana M; Heafey, Eve; Yihwa, Chang; Bohne, Cornelia

    2009-12-15

    The binding of naphthalene (Np), 1-ethylnaphthalene (EtNp), acenaphthene (AcN), and 1-naphthyl-1-ethanol (NpOH) as guests to the aggregates of sodium cholate (NaCh), taurocholate (NaTC), deoxycholate (NaDC), and deoxytaurocholate (NaTDC) was studied with the objective of determining how the structure of the bile salts affects the binding dynamics of guests and quenchers with the bile salt aggregates. Time-resolved and steady-state fluorescence experiments were used to determine the binding efficiency of the guests with the aggregates and were also employed to investigate the quenching of the singlet excited state of the guests by iodide anions. Quenching studies of the triplet excited states using laser flash photolysis were employed to determine the accessibility to the aggregate of nitrite anions, used as quenchers, and the dissociation rate constants of the guests from the bile salt aggregates. The binding efficiency of the guests to NaDC and NaTDC is higher than for NaCh and NaTC, and the protection efficiency is also higher for NaDC and NaTDC, in line with the larger aggregates formed for the latter bile salts. The formation of aggregates is in part driven by the structure of the guest, where an increased protection efficiency and residence time can be achieved by the introduction of short alkyl substituents (AcN or EtNp vs Np). NpOH was shown to be located in a very different environment in all four bile salts when compared to AcN, EtNp, and Np, suggesting that hydrogen bonding plays an important role in the formation of the aggregate around NpOH. PMID:19606836

  9. Bile Acid-Induced Necrosis in Primary Human Hepatocytes and in Patients with Obstructive Cholestasis

    PubMed Central

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-01-01

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. PMID:25636263

  10. APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts.

    PubMed

    Hong, Jun; Chen, Zheng; Peng, Dunfa; Zaika, Alexander; Revetta, Frank; Washington, M Kay; Belkhiri, Abbes; El-Rifai, Wael

    2016-03-29

    Chronic Gastroesophageal Reflux Disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Accordingly, EAC cells are subjected to high levels of oxidative stress and subsequent DNA damage. In this study, we investigated the expression and role of Apurinic/apyrimidinic endonuclease 1 (APE1) protein in promoting cancer cell survival by counteracting the lethal effects of acidic bile salts (ABS)-induced DNA damage. Immunohistochemistry analysis of human tissue samples demonstrated overexpression of APE1 in more than half of EACs (70 of 130), as compared to normal esophagus and non-dysplastic BE samples (P < 0.01). To mimic in vivo conditions, we treated in vitro cell models with a cocktail of ABS. The knockdown of endogenous APE1 in EAC FLO-1 cells significantly increased oxidative DNA damage (P < 0.01) and DNA single- and double-strand breaks (P < 0.01), whereas overexpression of APE1 in EAC OE33 cells reversed these effects. Annexin V/PI staining indicated that the APE1 expression in OE33 cells protects against ABS-induced apoptosis. In contrast, knockdown of endogenous APE1 in FLO-1 cells increased apoptosis under the same conditions. Mechanistic investigations indicated that the pro-survival function of APE1 was associated with the regulation of stress response c-Jun N-terminal protein kinase (JNK) and p38 kinases. Pharmacological inhibition of APE1 base excision repair (BER) function decreased cell survival and enhanced activation of JNK and p38 kinases by ABS. Our findings suggest that constitutive overexpression of APE1 in EAC may be an adaptive pro-survival mechanism that protects against the genotoxic lethal effects of bile reflux episodes. PMID:26934647

  11. APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts

    PubMed Central

    Hong, Jun; Chen, Zheng; Peng, Dunfa; Zaika, Alexander; Revetta, Frank; Washington, M. Kay; Belkhiri, Abbes; El-Rifai, Wael

    2016-01-01

    Chronic Gastroesophageal Reflux Disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Accordingly, EAC cells are subjected to high levels of oxidative stress and subsequent DNA damage. In this study, we investigated the expression and role of Apurinic/apyrimidinic endonuclease 1 (APE1) protein in promoting cancer cell survival by counteracting the lethal effects of acidic bile salts (ABS)-induced DNA damage. Immunohistochemistry analysis of human tissue samples demonstrated overexpression of APE1 in more than half of EACs (70 of 130), as compared to normal esophagus and non-dysplastic BE samples (P < 0.01). To mimic in vivo conditions, we treated in vitro cell models with a cocktail of ABS. The knockdown of endogenous APE1 in EAC FLO-1 cells significantly increased oxidative DNA damage (P < 0.01) and DNA single- and double-strand breaks (P < 0.01), whereas overexpression of APE1 in EAC OE33 cells reversed these effects. Annexin V/PI staining indicated that the APE1 expression in OE33 cells protects against ABS-induced apoptosis. In contrast, knockdown of endogenous APE1 in FLO-1 cells increased apoptosis under the same conditions. Mechanistic investigations indicated that the pro-survival function of APE1 was associated with the regulation of stress response c-Jun N-terminal protein kinase (JNK) and p38 kinases. Pharmacological inhibition of APE1 base excision repair (BER) function decreased cell survival and enhanced activation of JNK and p38 kinases by ABS. Our findings suggest that constitutive overexpression of APE1 in EAC may be an adaptive pro-survival mechanism that protects against the genotoxic lethal effects of bile reflux episodes. PMID:26934647

  12. Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump.

    PubMed

    Chen, Yuan; Vasilenko, Alex; Song, Xiulong; Valanejad, Leila; Verma, Ruchi; You, Sangmin; Yan, Bingfang; Shiffka, Stephanie; Hargreaves, Leeza; Nadolny, Christina; Deng, Ruitang

    2015-04-01

    Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most prevalent disorder with elevated serum bile acid levels. We have previously shown that estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic cholestasis of pregnancy. Currently the mechanistic insights into such transrepression are not fully understood. In this study, the dynamics of coregulator recruitment to BSEP promoter after FXR activation and E2 treatment were established with quantitative chromatin immunoprecipitation assays. Coactivator peroxisome proliferator-activated receptor-γ coactivator-1 was predominantly recruited to the BSEP promoter upon FXR activation, and its recruitment was decreased by E2 treatment. Meanwhile, recruitment of nuclear receptor corepressor was markedly increased upon E2 treatment. Functional evaluation of ERα and ERβ chimeras revealed that domains AC of ERα are the determinants for ERα-specific transrepression on BSEP. Further studies with various truncated ERα proteins identified the domains in ERα responsible for ligand-dependent and ligand-independent transrepression. Truncated ERα-AD exhibited potent ligand-independent transrepressive activity, whereas ERα-CF was fully capable of transrepressing BSEP ligand dependently in vitro in Huh 7 cells and in vivo in mice. Both ERα-AD and ERα-CF proteins were associated with FXR in the coimmunoprecipitation assays. In conclusion, E2 repressed BSEP expression through diminishing peroxisome proliferator-activated receptor-γ coactivator-1 recruitment with a concurrent increase in nuclear receptor corepressor recruitment to the BSEP promoter. Domains AD and CF in ERα mediated ligand-independent and ligand-dependent transrepression on BSEP, respectively, through interacting with FXR. PMID:25675114

  13. Biliary proteins. Unique inhibitors of cholesterol crystal nucleation in human gallbladder bile.

    PubMed Central

    Holzbach, R T; Kibe, A; Thiel, E; Howell, J H; Marsh, M; Hermann, R E

    1984-01-01

    The onset time for cholesterol crystal nucleation of supersaturated normal human gallbladder biles is consistently prolonged when compared with biles from patients with cholesterol gallstone disease. Investigation of the factor(s) responsible for the suspended supersaturation (metastability) of normal human biles revealed that model bile solutions of cholesterol saturation index (CSI) and molar lipid composition identical to individual gallbladder bile specimens had much shorter crystal nucleation times, i.e., exhibited decreased metastability. Unsaturated normal biles, after supplementation with lecithin, cholesterol, and sodium taurocholate to a 'standard' supersaturated lipid composition, also demonstrated nucleation times three- to 15-fold longer than the comparable standard model bile. Total lipid extracts of normal biles, however, when similarly supplemented, did not differ in nucleation time from the control model solution. Gallbladder biles were fractionated by gel chromatography and the eluted fractions were pooled into two fractions. The fractions eluting in about the first 25% of the included volume when mixed with the supersaturated standard model bile induced a modest increase in nucleation time of approximately 1.5 times the control value. The fractions eluting in the second 25% of the included volume and which contained all of the bile lipids, were concentrated and supplemented with lipids to the standard composition. The nucleation times of these supplements were 3-10 times longer than the control nucleation times. Delipidated bile protein mixtures, purified by discontinuous sucrose gradient centrifugation, were recombined with purified lipids at the standard composition used previously. The nucleation times of these mixtures were significantly prolonged to the same extent as those associated with the second chromatographic fraction. These observations demonstrate that the delayed onset (inhibition) of cholesterol crystal nucleation observed in

  14. Effect of bile salts on the DNA and membrane integrity of enteric bacteria.

    PubMed

    Merritt, Megan E; Donaldson, Janet R

    2009-12-01

    Enteric bacteria are able to resist the high concentrations of bile encountered throughout the gastrointestinal tract. Here we review the current mechanisms identified in the enteric bacteria Salmonella, Escherichia coli, Bacillus cereus and Listeria monocytogenes to resist the dangerous effects of bile. We describe the role of membrane transport systems, and their connection with DNA repair pathways, in conferring bile resistance to these enterics. We discuss the findings from recent investigations that indicate bile tolerance is dependent upon being able to resist the detergent properties of bile at both the membrane and DNA level. PMID:19762477

  15. Bile acids as possible human carcinogens: new tricks from an old dog.

    PubMed

    Costarelli, Vassiliki

    2009-01-01

    Bile first attracted man's interest long ago. The actual tumour-promoting effects of a bile acid were reported in 1939 for deoxycholic acid. Ever since, much evidence has accumulated that supports an important role for bile acids as cancer promoters in humans through DNA damage and selection for apoptosis-resistant cells, both of which can lead to increased mutation rates. The evidence reviewed here indicates that, in humans, bile acids are likely to be implicated in the aetiology of a number of different important cancers in terms of morbidity and mortality, such as cancer of the colon, oesophagus, stomach, pancreas, gall bladder and cancer of the breast. PMID:19499433

  16. Upregulation of miRNA-143, -145, -192, and -194 in esophageal epithelial cells upon acidic bile salt stimulation.

    PubMed

    Bus, P; Siersema, P D; Verbeek, R E; van Baal, J W P M

    2014-08-01

    Barrett's esophagus (BE) is a metaplastic condition of the distal esophagus that occurs because of chronic gastroesophageal reflux. Previous studies have identified BE-specific microRNAs (miRNAs) in comparison with normal squamous epithelium (SQ). We hypothesized that BE-specific miRNAs could be induced in esophageal SQ cells by exposure to acid and/or bile salts. We aimed to determine whether BE-specific miRNAs are upregulated in an esophageal SQ cell line (Het-1A) in an environment with acid and/or bile salts and whether this is nuclear factor-κB (NF-κB) dependent. Acid and/or bile salt incubations were performed in Het-1A cells. Experiments were performed with or without inhibiting the NF-κB pathway. Quantitative reverse transcriptase polymerase chain reaction was performed to determine expression of miRNA-143, -145, -192, -194, cyclo-oxygenase-2 (COX2), mucin 2 (MUC2), and sex determining region Y-box 9. For validation, we determined levels of these miRNAs in biopsies from patients with reflux esophagitis and normal SQ. Significantly increased expression levels of miRNA-143 (2.7-fold), -145 (2.6-fold), -192 (2.0-fold), -194 (2.2-fold), COX2, MUC2, and sex determining region Y-box 9 were found upon acidic bile salt incubation, but not upon acid or bile salt alone. NF-κB pathway inhibition significantly decreased miRNA-143, -192, -194, COX2, and MUC2 expression. Additionally, miRNA-143, -145 and -194 expression was increased in reflux esophagitis biopsies compared with normal SQ, but no changes were found in miRNA-192 expression. Our findings suggest that upregulation of BE-specific miRNAs by acidic bile may be an early event in the transition of SQ to BE and that their expression is partly regulated by the NF-κB pathway. PMID:24006894

  17. Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts.

    PubMed Central

    Pope, L M; Reed, K E; Payne, S M

    1995-01-01

    Growth of Shigella spp. in the presence of the bile salt deoxycholate or chenodeoxycholate enhanced the bacterial invasion of HeLa cells. Growth in the presence of other structurally similar bile salts or detergents had little or no effect. Deoxycholate-enhanced invasion was not observed when bacteria were exposed to deoxycholate at low temperatures or when chloramphenicol was added to the growth medium, indicating that bacterial growth and protein synthesis are required. Increased invasion is associated with the presence of an intact Shigella virulence plasmid and is correlated with increased secretion of a set of proteins, including the Ipa proteins, to the outer membrane and into the growth medium. The increased invasion induced by the bile salts appears to be due to increased adherence. The enhanced adherence was specific to Shigella spp., since the enteroinvasive Escherichia coli strains tested did not exhibit the effect in response to growth in bile salts. PMID:7642302

  18. Organized media for fluorescence analysis of complex samples: Comparison of bile salt and conventional detergent micelles in coal liquids

    SciTech Connect

    Ritenour Hertz, P.M.; McGown, L.B. )

    1992-12-01

    Accurate quantitative determinations are often difficult to obtain from fluorescence analysis of complex samples due to sample matrix effects and intermolecular interactions between solutes. Organized media can be used to minimize these unwanted processes without physical separation or extraction of the analytes from the sample matrix by isolating the analyte molecules in a uniform microenvironment within the sample. The advantages of bile salt micellar media over conventional detergent micelles are demonstrated for analysis of coal liquids. The bile salt media is shown to increase the sensitivity and dynamic range of fluorescence measurements relative to simple ethanolic solutions, without promoting ground-state and excited-state interactions that occur in the detergent micellar media. 45 refs., 11 figs., 3 tabs.

  19. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge

    PubMed Central

    Arzani, Gelareh; Haeri, Azadeh; Daeihamed, Marjan; Bakhtiari-Kaboutaraki, Hamid; Dadashzadeh, Simin

    2015-01-01

    Carvedilol (CRV) is an antihypertensive drug with both alpha and beta receptor blocking activity used to preclude angina and cardiac arrhythmias. To overcome the low, variable oral bioavailability of CRV, niosomal formulations were prepared and characterized: plain niosomes (without bile salts), bile salt-enriched niosomes (bilosomes containing various percentages of sodium cholate or sodium taurocholate), and charged niosomes (negative, containing dicetyl phosphate and positive, containing hexadecyl trimethyl ammonium bromide). All formulations were characterized in terms of encapsulation efficiency, size, zeta potential, release profile, stability, and morphology. Various formulations were administered orally to ten groups of Wistar rats (n=6 per group). The plasma levels of CRV were measured by a validated high-performance liquid chromatography (HPLC) method and pharmacokinetic properties of different formulations were characterized. Contribution of lymphatic transport to the oral bioavailability of niosomes was also investigated using a chylomicron flow-blocking approach. Of the bile salt-enriched vesicles examined, bilosomes containing 20% sodium cholate (F2) and 30% sodium taurocholate (F5) appeared to give the greatest enhancement of intestinal absorption. The relative bioavailability of F2 and F5 formulations to the suspension was estimated to be 1.84 and 1.64, respectively. With regard to charged niosomes, the peak plasma concentrations (Cmax) of CRV for positively (F7) and negatively charged formulations (F10) were approximately 2.3- and 1.7-fold higher than after a suspension. Bioavailability studies also revealed a significant increase in extent of drug absorption from charged vesicles. Tissue histology revealed no signs of inflammation or damage. The study proved that the type and concentration of bile salts as well as carrier surface charge had great influences on oral bioavailability of niosomes. Blocking the lymphatic absorption pathway

  20. Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt

    PubMed Central

    Guan, Peipei; Lu, Yi; Qi, Jianping; Niu, Mengmeng; Lian, Ruyue; Hu, Fuqiang; Wu, Wei

    2011-01-01

    The main purpose of this study was to evaluate liposomes containing a bile salt, sodium deoxycholate (SDC), as oral drug delivery systems to enhance the oral bioavailability of the poorly water-soluble and poorly permeable drug, cyclosporine A (CyA). Liposomes composed of soybean phosphatidylcholine (SPC) and SDC were prepared by a thin-film dispersion method followed by homogenization. Several properties of the liposomes including particle size, polydispersity index, and entrapment efficiency were characterized. The in vitro release of CyA from these liposomes was less than 5% at 12 hours as measured by a dynamic dialysis method. The pharmacokinetic results in rats showed improved absorption of CyA in SPC/SDC liposomes, compared with CyA-loaded conventional SPC/cholesterol (Chol) liposomes and microemulsion-based Sandimmune Neoral®. The relative oral bioavailability of CyA-loaded SPC/SDC and SPC/Chol liposomes was 120.3% and 98.6%, respectively, with Sandimmun Neoral as the reference. The enhanced bioavailability of CyA was probably due to facilitated absorption by the liposomes containing SDC rather than improved release rate. PMID:21720508

  1. Fishmeal extract bile salt lactose agar--a differential medium for enteric bacteria.

    PubMed

    Subbannayya, K; Udayalaxmi, J; Anugraha, M

    2006-08-01

    Fishmeal extract bile salt lactose agar (FEBLA), a new differential medium for enteric bacteria was developed and evaluated for its ability to grow and differentiate lactose fermenters (LF) from non-lactose fermenters (NLF) in comparison with MacConkeys agar. Performance of FEBLA was at par with the latter. On FEBLA medium, the contrast between LF and NLF colonies was pronounced and Klebsiella pneumoniae produced more mucoid colonies than on MacConkeys agar (Hi Media). Unlike MacConkeys agar, a 24 h culture of K. pneumoniae cells on FEBLA were longer and thicker with abundant capsular material around the bacilli. Escherichia coli produced long and thick cells but only after 48h. No change in cell morphology was evident with regard to Salmonella typhi, S. paratyphi A, Shigella flexneri, Pseudomonas aeruginosa, Proteus mirabilis, Proteus vulgaris, Citrobacter koseri and Acinetobacter baumannii. Performance of the medium was controlled using E. coli and S. flexneri. FEBLA is simple, cost effective and may be a suitable alternative in the preliminary identification of enteric bacteria. PMID:16924840

  2. Liposomes containing lipids from Sulfolobus islandicus withstand intestinal bile salts: An approach for oral drug delivery?

    PubMed

    Jensen, Sara Munk; Christensen, Camilla Jahn; Petersen, Julie Maria; Treusch, Alexander H; Brandl, Martin

    2015-09-30

    In an attempt to design an oral drug delivery system, suited to protect labile drug compounds like peptides and proteins against the harsh environment in the stomach and upper intestine, we have prepared liposomes from phospholipids, cholesterol and archaeal lipids. As source for the archaeal lipids we used Sulfolobus islandicus, a hyperthermophilic archaeon, whose lipids have not been used in liposomes before. Culturing conditions and extraction protocols for its membrane lipids were established and the lipid composition of the crude lipid extract was characterized. The extracted membrane lipid fraction of S. islandicus consisted primarily of diether lipids with only a small fraction of tetraether lipids. Small unilamellar liposomes with 18% (mol/mol) of crude archaeal lipid extract were from S. islandicus were produced, for the first time and proven to be stabilized against aggressive bile salts as determined by loss of entrapped marker (calcein). At 4.4mM taurocholate (physiological taurocholate level) liposomes containing archaeal lipids retained entrapped marker better than liposomes made of egg phosphatidylcholine (PC) alone and to an extent similar to liposomes made of egg PC and cholesterol. Our findings showed that crude archaeal lipid extracts have, to a certain extent, stabilizing effects on liposomes similar to purified tetraether lipid fractions tested previously. PMID:26192627

  3. Displacement of Drugs From Cyclodextrin Complexes by Bile Salts: A Suggestion of an Intestinal Drug-Solubilizing Capacity From an In Vitro Model.

    PubMed

    Olesen, Niels Erik; Westh, Peter; Holm, René

    2016-09-01

    The dosing of drugs in an aqueous cyclodextrin formulation requires sufficient amount of cyclodextrins to fully solubilize the drug, as described by Stella's cyclodextrin utility number (UCD). However, this framework does not take biopharmaceutical elements into account, such as the displacement of drug from the cyclodextrin cavity by bile salts present in the small intestine. As bile salts in the intestine are present at concentrations above the critical micelle concentration, an understanding of the interaction between cyclodextrins and bile salts at such supramicellar concentrations (SMC) is required for a better biopharmaceutical understanding of the release mechanism from orally dosed cyclodextrin complexes. To address this, experiments were conducted by isothermal titration calorimetry to determine how various β-cyclodextrins and bile salt interacts at SMC. Combined analysis of the current results and earlier data demonstrated that direct interactions between bile salt micelles and cyclodextrin were negligible. From this knowledge, an extended form of the UCD was suggested to describe the concentration of cyclodextrins to achieve full drug solubilization in the intestine where bile salts are present. Dosing cyclodextrins above this limit will diminish the free drug concentration, potentially decreasing the amount of drug absorbed. PMID:26502027

  4. How does bile salt penetration affect the self-assembled architecture of pluronic P123 micelles?--light scattering and spectroscopic investigations.

    PubMed

    Roy, Arpita; Kundu, Niloy; Banik, Debasis; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2015-08-14

    The triblock copolymer of the type (PEO)20-(PPO)70-(PEO)20 (P123) forms a mixed supramolecular aggregate with different bile salts, sodium deoxycholate (NaDC) and sodium taurocholate (NaTC), having different hydrophobicity. These mixed micellar systems have been investigated through dynamic light scattering (DLS) and other various spectroscopic techniques. DLS measurements reveal that the bile salts penetrate into the core-corona region of the P123 micelle and further addition of bile salts causes formation of a new supramolecular aggregate. Further CONTIN analysis confirms existence of two types of complexes at higher molar ratios of bile salt-P123 (>1 : 3). Due to the bile salt penetration, the polarity of the core-corona region of bile salt-P123 mixed micelle increases which results in red shift in the absorption and emission spectra of coumarin 153 (C153) and coumarin 480 (C480). The rotational diffusion of the hydrophobic probe C153 and a hydrophilic probe C480 has been investigated in these bile salt-P123 mixed systems and for both the probes a decrease in the average reorientation time has been observed. The reason behind this decrease in the average reorientation time is the increase in both polarity and hydration of the core-corona region in these mixed micelles. Moreover, these bile salt-P123 mixed micelles are characterized by fluorescence correlation spectroscopy (FCS) techniques. As hydrophobic solute 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM) resides in the core region of the bile salt-P123 mixed micelles, the translational diffusion of DCM becomes faster in these mixed micelles compared to that in pure P123 micelle. However, for cationic probe rhodamine 6G perchlorate (R6G), a totally opposite trend in the translational diffusion coefficients has been observed. Both anisotropy and FCS measurements confirm that bile salts affect the core region of the P123 micelle more than the corona region. Besides, all these

  5. Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system.

    PubMed

    Smith, Katie; Zeng, Ximin; Lin, Jun

    2014-01-01

    The global trend of restricting the use of antibiotic growth promoters (AGP) in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS) system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration) and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate) were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth. PMID:24454844

  6. Discovery of Bile Salt Hydrolase Inhibitors Using an Efficient High-Throughput Screening System

    PubMed Central

    Smith, Katie; Zeng, Ximin; Lin, Jun

    2014-01-01

    The global trend of restricting the use of antibiotic growth promoters (AGP) in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS) system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration) and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate) were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth. PMID:24454844

  7. Ion pairing with bile salts modulates intestinal permeability and contributes to food-drug interaction of BCS class III compound trospium chloride.

    PubMed

    Heinen, Christian A; Reuss, Stefan; Amidon, Gordon L; Langguth, Peter

    2013-11-01

    In the current study the involvement of ion pair formation between bile salts and trospium chloride (TC), a positively charged Biopharmaceutical Classification System (BCS) class III substance, showing a decrease in bioavailability upon coadministration with food (negative food effect) was investigated. Isothermal titration calorimetry provided evidence of a reaction between TC and bile acids. An effect of ion pair formation on the apparent partition coefficient (APC) was examined using (3)H-trospium. The addition of bovine bile and bile extract porcine led to a significant increase of the APC. In vitro permeability studies of trospium were performed across Caco-2-monolayers and excised segments of rat jejunum in a modified Ussing chamber. The addition of bile acids led to an increase of trospium permeation across Caco-2-monolayers and rat excised segments by approximately a factor of 1.5. The addition of glycochenodeoxycholate (GCDC) was less effective than taurodeoxycholate (TDOC). In the presence of an olive oil emulsion, a complete extinction of the permeation increasing effects of bile salts was observed. Thus, although there are more bile acids in the intestine in the fed state compared to the fasted state, these are not able to form ion pairs with trospium in fed state, because they are involved in the emulsification of dietary fats. In conclusion, the formation of ion pairs between trospium and bile acids can partially explain its negative food effect. Our results are presumably transferable to other organic cations showing a negative food effect. PMID:23750707

  8. Interaction of Bile Salts with β-Cyclodextrins Reveals Nonclassical Hydrophobic Effect and Enthalpy-Entropy Compensation.

    PubMed

    Paul, Bijan K; Ghosh, Narayani; Mukherjee, Saptarshi

    2016-04-28

    Herein, we present an endeavor toward exploring the lacuna underlying the host:guest chemistry of inclusion complex formation between bile salt(s) and β-cyclodextrin(s) (βCDs). An extensive thermodynamic investigation based on isothermal titration calorimetry (ITC) demonstrates a dominant contribution from exothermic enthalpy change (ΔH < 0) accompanying the phenomenon of inclusion complex formation, along with a relatively smaller contribution to total free energy change from the entropic component. However, the negative heat capacity change (ΔCp < 0) displays the hallmark for a pivotal role of hydrophobic effect underlying the interaction. Contrary to the classical hydrophobic effect, such apparently paradoxical thermodynamic signature has been adequately described under the notion of "nonclassical hydrophobic effect". On the basis of our results, the displacement of disordered water from hydrophobic binding sites has been argued to mark the enthalpic signature and the key role of such interaction forces is further corroborated from enthalpy-entropy compensation behavior showing indication for almost complete compensation. To this end, we have quantified the interaction of two bile salt molecules (namely, sodium deoxycholate and sodium glycocholate) with a series of varying chemical substituents on the host counterpart, namely, βCD, (2-hydroxypropyl)-βCD, and methyl βCD. PMID:27054266

  9. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters.

    PubMed

    Wang, Zhong; Zeng, Ximin; Mo, Yiming; Smith, Katie; Guo, Yuming; Lin, Jun

    2012-12-01

    Antibiotic growth promoters (AGPs) have been used as feed additives to improve average body weight gain and feed efficiency in food animals for more than 5 decades. However, there is a worldwide trend to limit AGP use to protect food safety and public health, which raises an urgent need to discover effective alternatives to AGPs. The growth-promoting effect of AGPs has been shown to be highly correlated with the decreased activity of intestinal bile salt hydrolase (BSH), an enzyme that is produced by various gut microflora and involved in host lipid metabolism. Thus, BSH inhibitors are likely promising feed additives to AGPs to improve animal growth performance. In this study, the genome of Lactobacillus salivarius NRRL B-30514, a BSH-producing strain isolated from chicken, was sequenced by a 454 GS FLX sequencer. A BSH gene identified by genome analysis was cloned and expressed in an Escherichia coli expression system for enzymatic analyses. The BSH displayed efficient hydrolysis activity for both glycoconjugated and tauroconjugated bile salts, with slightly higher catalytic efficiencies (k(cat)/K(m)) on glycoconjugated bile salts. The optimal pH and temperature for the BSH activity were 5.5 and 41°C, respectively. Examination of a panel of dietary compounds using the purified BSH identified some potent BSH inhibitors, in which copper and zinc have been recently demonstrated to promote feed digestion and body weight gain in different food animals. In sum, this study identified and characterized a BSH with broad substrate specificity from a chicken L. salivarius strain and established a solid platform for us to discover novel BSH inhibitors, the promising feed additives to replace AGPs for enhancing the productivity and sustainability of food animals. PMID:23064348

  10. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review.

    PubMed

    Cheng, Yaofeng; Woolf, Thomas F; Gan, Jinping; He, Kan

    2016-08-01

    The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross

  11. Identification and Characterization of a Bile Salt Hydrolase from Lactobacillus salivarius for Development of Novel Alternatives to Antibiotic Growth Promoters

    PubMed Central

    Wang, Zhong; Zeng, Ximin; Mo, Yiming; Smith, Katie; Guo, Yuming

    2012-01-01

    Antibiotic growth promoters (AGPs) have been used as feed additives to improve average body weight gain and feed efficiency in food animals for more than 5 decades. However, there is a worldwide trend to limit AGP use to protect food safety and public health, which raises an urgent need to discover effective alternatives to AGPs. The growth-promoting effect of AGPs has been shown to be highly correlated with the decreased activity of intestinal bile salt hydrolase (BSH), an enzyme that is produced by various gut microflora and involved in host lipid metabolism. Thus, BSH inhibitors are likely promising feed additives to AGPs to improve animal growth performance. In this study, the genome of Lactobacillus salivarius NRRL B-30514, a BSH-producing strain isolated from chicken, was sequenced by a 454 GS FLX sequencer. A BSH gene identified by genome analysis was cloned and expressed in an Escherichia coli expression system for enzymatic analyses. The BSH displayed efficient hydrolysis activity for both glycoconjugated and tauroconjugated bile salts, with slightly higher catalytic efficiencies (kcat/Km) on glycoconjugated bile salts. The optimal pH and temperature for the BSH activity were 5.5 and 41°C, respectively. Examination of a panel of dietary compounds using the purified BSH identified some potent BSH inhibitors, in which copper and zinc have been recently demonstrated to promote feed digestion and body weight gain in different food animals. In sum, this study identified and characterized a BSH with broad substrate specificity from a chicken L. salivarius strain and established a solid platform for us to discover novel BSH inhibitors, the promising feed additives to replace AGPs for enhancing the productivity and sustainability of food animals. PMID:23064348

  12. Photoactive bile salts with critical micellar concentration in the micromolar range.

    PubMed

    Gomez-Mendoza, Miguel; Marin, M Luisa; Miranda, Miguel A

    2016-05-14

    The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups. Thus, cholic acid (CA), with three hydroxyls, starts forming aggregates at 15 mM, while deoxycholic, chenodeoxycholic or ursodeoxycholic acids, with two hydroxyls, start aggregating at 5-10 mM; for lithocholic acid, with only one hydroxyl group, aggregation is observed at lower concentration (2-3 mM). Here, the singular self-assembling properties of dansyl and naproxen derivatives of CA (3β-Dns-CA and 3β-NPX-CA, respectively) have been demonstrated on the basis of their photoactive properties. Thus, the emission spectra of 3β-Dns-CA registered at increasing concentrations (25-140 μM) showed a remarkable non-linear enhancement in the emission intensity accompanied by a hypsochromic shift of the maximum and up to a three-fold increase in the singlet lifetime. The inflection point at around 50-70 μM pointed to the formation of unprecedented assemblies at such low concentrations. In the case of 3β-NPX-CA, when the NPX relative triplet lifetime was plotted against concentration, a marked increase (up to two-fold) was observed at 40-70 μM, indicating the formation of new 3β-NPX-CA assemblies at ca. 50 μM. Additional evidence supporting the formation of new 3β-Dns-CA or 3β-NPX-CA assemblies at 40-70 μM was obtained from singlet excited state quenching experiments using iodide. Moreover, to address the potential formation of hybrid assemblies, 1 : 1 mixtures of 3β-Dns-CA and 3β-NPX-CA (2-60 μM, total concentration) were subjected to steady-state fluorescence experiments, and their behavior was compared to that of the pure photoactive derivatives. A lower increase in the emission was observed for 3β-NPX-CA in the mixture, while a huge increase was experienced by 3β-Dns-CA in the same concentration range (up to 60 μM total). A partial intermolecular energy transfer from NPX to Dns, consistent with their reported singlet energies, was revealed, pointing to the

  13. The role of transhepatic bile salt flux in the control of hepatic secretion of triacylglycerol-rich lipoproteins in vivo in rodents.

    PubMed

    Elzinga, Baukje M; Havinga, Rick; Baller, Julius F W; Wolters, Henk; Bloks, Vincent; Mensenkamp, Arjen R; Kuipers, Folkert; Verkade, Henkjan J

    2002-10-10

    Bile salts (BS) have been shown to suppress the secretion of very-low-density lipoprotein-triglyceride (VLDL-TG) in rat and human hepatocytes in vitro. In the present study, we investigated whether the transhepatic BS flux affects VLDL-TG concentration and hepatic VLDL-TG secretion in vivo. In rats, the transhepatic BS flux was quantitatively manipulated by 1-week chronic bile diversion (BD), followed by intraduodenal infusion with taurocholate (TC) or saline for 6 h. In mice, the transhepatic BS flux was manipulated by a 3-week dietary supplementation with TC (0.5 wt.%) or cholestyramine (2 wt.%). In rats, BD followed by saline or TC infusion did not affect plasma triacylglycerol (TG) concentration, hepatic TG production rate or VLDL lipid composition, compared to control rats. In mice supplemented for 3 weeks with TC or cholestyramine, the transhepatic BS flux was increased by 335% and decreased by 48%, respectively, compared to controls. Among the three experimental groups of mice, an inverse relationship between transhepatic BS flux and either plasma TG concentration (R(2)=0.89) or VLDL-TG production rate (R(2)=0.87) was observed, but differences were relatively small. Present data support the concept that BS can reduce VLDL-TG concentration and inhibit hepatic TG secretion in vivo; however, this occurs only at supraphysiological transhepatic BS fluxes in mice. PMID:12383936

  14. Distribution of free and conjugated cannabinoids in human bile samples.

    PubMed

    Fabritius, Marie; Staub, Christian; Mangin, Patrice; Giroud, Christian

    2012-11-30

    The metabolism of Δ(9)-tetrahydrocannabinol (THC) is relatively complex, and over 80 metabolites have been identified. However, much less is known about the formation and fate of cannabinoid conjugates. Bile excretion is known to be an important route for the elimination of phase II metabolites. A liquid chromatography-tandem mass spectrometry LC-MS/MS procedure for measuring cannabinoids in oral fluid was adapted, validated and applied to 10 bile samples. THC, 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THCCOOH), cannabinol (CBN), cannabidiol (CBD), Δ(9)-tetrahydrocannabinolic acid A (THC-A), 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol glucuronide (THCCOOH-gluc) and Δ(9)-tetrahydrocannabinol glucuronide (THC-gluc) were determined following solid-phase extraction and LC-MS/MS. High concentrations of THCCOOH-gluc were found in bile samples (range: 139-21,275 ng/mL). Relatively high levels of THCCOOH (7.7-1548 ng/mL) and THC-gluc (38-1366 ng/mL) were also measured. THC-A, the plant precursor of THC, was the only cannabinoid that was not detected. These results show that biliary excretion is an important route of elimination for cannabinoids conjugates and that their enterohepatic recirculation is a significant factor to consider when analyzing blood elimination profiles of cannabinoids. Furthermore, we suggest that the bile is the matrix of choice for the screening of phase II cannabinoid metabolites. PMID:22980143

  15. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity.

    PubMed

    Broeders, Evie P M; Nascimento, Emmani B M; Havekes, Bas; Brans, Boudewijn; Roumans, Kay H M; Tailleux, Anne; Schaart, Gert; Kouach, Mostafa; Charton, Julie; Deprez, Benoit; Bouvy, Nicole D; Mottaghy, Felix; Staels, Bart; van Marken Lichtenbelt, Wouter D; Schrauwen, Patrick

    2015-09-01

    The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. PMID:26235421

  16. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics

    PubMed Central

    Ridlon, Jason M.; Bajaj, Jasmohan S.

    2015-01-01

    The human body is now viewed as a complex ecosystem that on a cellular and gene level is mainly prokaryotic. The mammalian liver synthesizes and secretes hydrophilic primary bile acids, some of which enter the colon during the enterohepatic circulation, and are converted into numerous hydrophobic metabolites which are capable of entering the portal circulation, returned to the liver, and in humans, accumulating in the biliary pool. Bile acids are hormones that regulate their own synthesis, transport, in addition to glucose and lipid homeostasis, and energy balance. The gut microbial community through their capacity to produce bile acid metabolites distinct from the liver can be thought of as an “endocrine organ” with potential to alter host physiology, perhaps to their own favor. We propose the term “sterolbiome” to describe the genetic potential of the gut microbiome to produce endocrine molecules from endogenous and exogenous steroids in the mammalian gut. The affinity of secondary bile acid metabolites to host nuclear receptors is described, the potential of secondary bile acids to promote tumors, and the potential of bile acids to serve as therapeutic agents are discussed. PMID:26579434

  17. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics.

    PubMed

    Ridlon, Jason M; Bajaj, Jasmohan S

    2015-03-01

    The human body is now viewed as a complex ecosystem that on a cellular and gene level is mainly prokaryotic. The mammalian liver synthesizes and secretes hydrophilic primary bile acids, some of which enter the colon during the enterohepatic circulation, and are converted into numerous hydrophobic metabolites which are capable of entering the portal circulation, returned to the liver, and in humans, accumulating in the biliary pool. Bile acids are hormones that regulate their own synthesis, transport, in addition to glucose and lipid homeostasis, and energy balance. The gut microbial community through their capacity to produce bile acid metabolites distinct from the liver can be thought of as an "endocrine organ" with potential to alter host physiology, perhaps to their own favor. We propose the term "sterolbiome" to describe the genetic potential of the gut microbiome to produce endocrine molecules from endogenous and exogenous steroids in the mammalian gut. The affinity of secondary bile acid metabolites to host nuclear receptors is described, the potential of secondary bile acids to promote tumors, and the potential of bile acids to serve as therapeutic agents are discussed. PMID:26579434

  18. Molecular Switch Controlling the Binding of Anionic Bile Acid Conjugates to Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Rais, Rana; Acharya, Chayan; Tririya, Gasirat; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium-dependent bile acid transporter (hASBT) may serve as a prodrug target for oral drug absorption. Synthetic, biological, NMR and computational approaches identified the structure-activity relationships of mono- and dianionic bile acid conjugates for hASBT binding. Experimental data combined with a conformationally-sampled pharmacophore/QSAR modeling approach (CSP-SAR) predicted that dianionic substituents with intramolecular hydrogen bonding between hydroxyls on the cholane skeleton and the acid group on the conjugate's aromatic ring increased conjugate hydrophobicity and improved binding affinity. Notably, the model predicted the presence of a conformational molecular switch, where shifting the carboxylate substituent on an aromatic ring by a single position controlled binding affinity. Model validation was performed by effectively shifting the spatial location of the carboxylate by inserting a methylene adjacent to the aromatic ring, resulting in the predicted alteration in binding affinity. This work illustrates conformation as a determinant of ligand binding affinity to a biological transporter. PMID:20504026

  19. The Vibrio cholerae Mrp System: Cation/Proton Antiport Properties and Enhancement of Bile Salt Resistance in a Heterologous Host

    PubMed Central

    Dzioba-Winogrodzki, Judith; Winogrodzki, Olga; Krulwich, Terry A.; Boin, Markus A.; Häse, Claudia C.; Dibrov, Pavel

    2009-01-01

    The mrp operon from Vibrio cholerae encoding a putative multisubunit Na+/H+ antiporter was cloned and functionally expressed in the antiporter-deficient strain of Escherichia coli EP432. Cells of EP432 expressing Vc-Mrp exhibited resistance to Na+ and Li+ as well as to natural bile salts such as sodium cholate and taurocholate. When assayed in everted membrane vesicles of the E. coli EP432 host, Vc-Mrp had sufficiently high antiport activity to facilitate the first extensive analysis of Mrp system from a Gram-negative bacterium encoded by a group 2 mrp operon. Vc-Mrp was found to exchange protons for Li+, Na+, and K+ ions in pH-dependent manner with maximal activity at pH 9.0–9.5. Exchange was electrogenic (more than one H+ translocated per cation moved in opposite direction). The apparent Km at pH 9.0 was 1.08, 1.30, and 68.5 mM for Li+, Na+, and K+, respectively. Kinetic analyses suggested that Vc-Mrp operates in a binding exchange mode with all cations and protons competing for binding to the antiporter. The robust ion antiport activity of Vc-Mrp in sub-bacterial vesicles and its effect on bile resistance of the heterologous host make Vc-Mrp an attractive experimental model for the further studies of biochemistry and physiology of Mrp systems. PMID:18311075

  20. Liposome formation from bile salt-lipid micelles in the digestion and drug delivery model FaSSIF(mod) estimated by combined time-resolved neutron and dynamic light scattering.

    PubMed

    Nawroth, Thomas; Buch, Philipp; Buch, Karl; Langguth, Peter; Schweins, Ralf

    2011-12-01

    The flow of bile secretion into the human digestive system was simulated by the dilution of a bile salt-lipid micellar solution. The structural development upon the dilution of the fed state bile model FeSSIF(mod6.5) to the fasted state bile model FaSSIF(mod) was investigated by small-angle neutron scattering (SANS) and dynamic light scattering (DLS) in crossed beam experiments to observe small and large structures in a size range of 1 nm to 50 μm in parallel. Because of the physiologically low lipid and surfactant concentrations of 2.625 mM egg-phosphatidylcholine and 10.5 mM taurocholate the sensitivity of the neutron-structural investigations was improved by partial solvent deuteration with 71% D(2)O, with control experiments in H(2)O. Static experiments of initial and end state systems after 6 days of development revealed the presence of mixed bile salt-lipid micelles of 5.1 nm size in the initial state model FeSSIF(mod6.5), and large liposomes in FaSSIF(mod), which represent the late status after dilution of bile secretion in the intestine in the fasted state. The liposomes depicted a size of 34.39 nm with a membrane thickness of 4.75 nm, which indicates medium to large size unilamellar vesicles. Crossed beam experiments with time-resolved neutron and light scattering experiments after fast mixing with a stopped-flow device revealed a stepwise structural dynamics upon dilution by a factor of 3.5. The liposome formation was almost complete five minutes after bile dilution. The liposomes 30 min after dilution resembled the liposomes found after 6 days and depicted a size of 44.56 nm. In the time regime between 3 and 100 s a kinetic intermediate was observed. In a further experiment the liposome formation was abolished when the dilution was conducted with a surfactant solution containing sodium dodecyl sulfate. PMID:21988605

  1. Bile Formation and Secretion

    PubMed Central

    Boyer, James L.

    2014-01-01

    Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (~1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions. PMID:23897680

  2. Apoptosis and modulation of cell cycle control by bile acids in human leukemia T cells.

    PubMed

    Fimognari, Carmela; Lenzi, Monia; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2009-08-01

    Depending on the nature of chemical structures, different bile acids exhibit distinct biological effects. Their therapeutic efficacy has been widely demonstrated in various liver diseases, suggesting that they might protect hepatocytes against common mechanisms of liver damage. Although it has been shown to prevent apoptotic cell death in certain cell lines, bile acids significantly inhibited cell growth and induced apoptosis in cancer cells. To better understand the pharmacological potential of bile acids in cancer cells, we investigated and compared the effects of deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and their taurine-derivatives [taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA), respectively] on the induction of apoptosis and inhibition of cell proliferation of a human T leukemia cell line (Jurkat cells). All the bile acids tested induced a delay in cell cycle progression. Moreover, DCA markedly increased the fraction of apoptotic cells. The effects of TDCA, UDCA, and TUDCA were different from those observed for DCA. Their primary effect was the induction of necrosis. These distinctive features suggest that the hydrophobic properties of DCA play a role in its cytotoxic potential and indicate that it is possible to create new drugs useful for cancer therapy from bile acid derivatives as lead compounds. PMID:19723064

  3. Effect of Chronic Bile Duct Obstruction on Renal Handling of Salt and Water

    PubMed Central

    Better, Ori S.; Massry, Shaul G.

    1972-01-01

    Renal sodium reabsorption and the concentrating and diluting abilities of the kidney were evaluated in the same trained mongrel dogs before and after chronic common bile duct ligation (BDL). Glomerular filtration rate (GFR) and CPAH were not altered by BDL. The natriuretic response to a standardized infusion of 0.45% solution of NaCl was markedly blunted by BDL (P < 0.01); calculated distal sodium delivery was significantly less in experiments after BDL than in control studies. Furthermore, the fractional reabsorption of sodium at the diluting segment for any given rate of distal delivery was enhanced by BDL. Similarly, CH2O/100 ml GFR for a given sodium delivery was higher after BDL than control values. Maximal urinary concentration (Uosm-max) was lower after BDL, and the mean Uosm-max for the whole group of animals was 60% of the control value (P < 0.001). Mean maximal TH2O/100 ml GFR after BDL was not different from control values; however, TcH2O/100 ml GFR for a given Cosm/100 ml GFR was lower after BDL in three dogs only. The sodium content of the inner part of renal medulla after BDL was significantly lower than the values obtained in control animals. The excretion of an oral water load in the conscious state was impaired after BDL; although all animals excreted hypotonic urine, urinary osmolality was usually higher after BDL than in control studies. Maximal urinary concentration and the excretion of an oral water load were not affected by sham operation. These studies demonstrate that chronic, common bile duct ligation is associated with (a) enhanced sodium reabsorption both in the proximal and diluting segments of the nephron, (b) a defect in attaining maximal urinary concentration, (c) diminished sodium content in the renal papilla, and (d) impaired excretion of a water load. The results suggest that decreased distal delivery of sodium may underlie the abnormality in the concentrating mechanism and in the inability to normally excrete a water load. In

  4. Effect of 3-hydroxy-3-methylglutaric acid administration on bile lipid composition in humans.

    PubMed

    Di Padova, C; Di Padova, F; Buzzetti, M; Tritapepe, R

    1984-09-01

    The effects of the lipid-lowering agent 3-hydroxy-3-methylglutaric acid (HMGA) on serum lipids and on biliary lipid composition were evaluated in a double-blind, placebo-controlled study in normolipidemic volunteers. After 4 weeks of HMGA administration (1 g three times a day orally) serum total cholesterol showed a significant decrease with regard to both pretreatment values and corresponding values of controls. The bile lipid molar percentage composition and the cholesterol saturation index showed no modification after HMGA and did not differ from the values obtained in the placebo group. These findings indicate that HMGA exerts no adverse effects on bile lipid composition in humans, differing from other hypolipidemic drugs currently in clinical use, which increase the bile cholesterol saturation index. PMID:6083597

  5. Bile acid production in human subjects: rate of oxidation of (24,25-/sup 3/H)cholesterol compared to fecal bile acid excretion

    SciTech Connect

    Davidson, N.O.; Bradlow, H.L.; Ahrens, E.H. Jr.; Rosenfeld, R.S.; Schwartz, C.C.

    1986-02-01

    Bile acid production has been quantitated in seven subjects by methods that compare the results of two independent approaches, namely, quantitation of cholesterol side-chain oxidation and fecal bile acid excretion. Six hypertriglyceridemic (HT) subjects and one normolipidemic control were studied by both techniques. A further control subject was studied by the cholesterol side-chain oxidation method alone. Cholesterol side-chain oxidation was quantitated by measuring the appearance of /sup 3/H/sub 2/O after intravenous administration of (24,25-/sup 3/H)cholesterol, using multicompartmental analysis of plasma cholesterol and (/sup 3/H)water specific activity. Body water kinetics were independently defined by use of oral D/sub 2/O. Two HT subjects were restudied while they were taking cholestyramine, 16 g/day. In all ten studies, multicompartmental analysis closely simulated the observed appearance of /sup 3/H/sub 2/O. Values obtained for bile acid production suggest that cholesterol oxidation, or bile acid input, was significantly greater than fecal bile acid output in the HT subjects (P less than 0.05). Cholesterol side-chain oxidation rates in the two normal subjects were lower than those encountered in HT subjects, being similar to published values for normal subjects both for bile acid synthesis as determined by isotope dilution kinetics and fecal bile acid excretion. Studies conducted with two, synthetically different, preparations of (24,25-/sup 3/H)cholesterol indicated that, in one of the two preparations, approximately 20% of the tritium label was at positions proximal to C24. In the other preparation examined, all of the tritium was located at, or distal to, C24. Further studies revealed that 0.055-0.24% of the dose was present as labile tritium by virtue of its appearance as /sup 3/H/sub 2/O following in vitro incubation with human plasma. (Abstract Truncated)

  6. Laxative treatment with polyethylene glycol decreases microbial primary bile salt dehydroxylation and lipid metabolism in the intestine of rats.

    PubMed

    van der Wulp, Mariëtte Y M; Derrien, Muriel; Stellaard, Frans; Wolters, Henk; Kleerebezem, Michiel; Dekker, Jan; Rings, Edmond H H M; Groen, Albert K; Verkade, Henkjan J

    2013-10-01

    Polyethylene glycol (PEG) is a frequently used osmotic laxative that accelerates gastrointestinal transit. It has remained unclear, however, whether PEG affects intestinal functions. We aimed to determine the effect of PEG treatment on intestinal sterol metabolism. Rats were treated with PEG in drinking water (7%) for 2 wk or left untreated (controls). We studied the enterohepatic circulation of the major bile salt (BS) cholate with a plasma stable isotope dilution technique and determined BS profiles and concentrations in bile, intestinal lumen contents, and feces. We determined the fecal excretion of cholesterol plus its intestinally formed metabolites. Finally, we determined the cytolytic activity of fecal water (a surrogate marker of colorectal cancer risk) and the amount and composition of fecal microbiota. Compared with control rats, PEG treatment increased the pool size (+51%; P < 0.01) and decreased the fractional turnover of cholate (-32%; P < 0.01). PEG did not affect the cholate synthesis rate, corresponding with an unaffected fecal primary BS excretion. PEG reduced fecal excretion of secondary BS and of cholesterol metabolites (each P < 0.01). PEG decreased the cytolytic activity of fecal water [54 (46-62) vs. 87 (85-92)% erythrocyte potassium release in PEG-treated and control rats, respectively; P < 0.01]. PEG treatment increased the contribution of Verrucomicrobia (P < 0.01) and decreased that of Firmicutes (P < 0.01) in fecal flora. We concluded that PEG treatment changes the intestinal bacterial composition, decreases the bacterial dehydroxylation of primary BS and the metabolism of cholesterol, and increases the pool size of the primary BS cholate in rats. PMID:23868407

  7. Effect of different bile salts on the relative hypoglycemia of witepsol W35 suppositories containing insulin in diabetic Beagle dogs.

    PubMed

    Hosny, E A; Al-Shora, H I; Elmazar, M M

    2001-09-01

    Insulin suppositories were formulated using Witepsol W35 as a base to investigate the effect of various bile salts/acids on the plasma glucose concentration of diabetic beagle dogs. Comparison of the effect of these formulations was made with that produced by insulin subcutaneous injections. Of the bile salts/acids studied, incorporation of 100 mg of deoxycholic acid (DCA), sodium cholate (NaC), or sodium deoxycholate (NaDC) with insulin (10 U/Kg) showed that suppositories containing NaDC produced the highest area under the curve (AUC) and relative hypoglycemia (RH) of 290 +/- 83 mg%h and 28% +/- 8.1%, respectively. To study the optimum amount of NaDC in insulin suppositories to produce the highest RH, 50-200 mg/suppository were used, and we found that 150 mg NaDC produced 35% +/- 13% RH. We also studied the influence of different doses of insulin (5-20 U/kg) in the presence of NaDC (100 mg). It was found that increase of the insulin dose was accompanied by an increase in AUC and maximum reduction in plasma glucose level Cmax. A combination of NaDC (100 mg) and NaC (50 mg) produced an AUC of 252 +/- 13mg%h and an RH of 49% +/- 2.6%, which were higher than produced by either of its individual components (NaC 50 mg or NaDC 100 mg) when used alone or when compared with an equivalent amount of NaDC (150 mg). When the effect of sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC) was studied, it was found that an insulin suppository containing 100 mg of either NaTC or NaTDC produced an RH equivalent to that produced previouslY with a mixture of NaDC (100 mg) and NaC (50 mg). On the other hand, NaC (50 mg) did not improve the hypoglycemic effect of NaTC any further. In conclusion, a relative hYpoglycemia of about 50% can be reached using insulin suppositories containing Witepsol W35 as a base and NaDC plus NaC (100 mg plus 50 mg, respectively), NaTDC (100mg), or NaTC (100 mg) as rectal absorption enhancers of insulin. A desirable hypoglycemia, expressed as

  8. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    SciTech Connect

    Lake, April D.; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D.; Lu, Zhenqiang; Lehman-McKeeman, Lois D.; Cherrington, Nathan J.

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  9. Enhanced Permeation of an Antiemetic Drug from Buccoadhesive Tablets by Using Bile Salts as Permeation Enhancers: Formulation Characterization, In Vitro, and Ex Vivo Studies

    PubMed Central

    Jain, C. P.; Joshi, Garima; Kataria, Udichi; Patel, Komal

    2016-01-01

    Buccal bioadhesive bilayer tablets of prochlorperazine maleate were designed and formulated by using buccoadhesive polymers such as hydroxypropylmethyl cellulose, Carbopol 934P, and sodium alginate. Physicochemical characteristics like the uniformity of weight, hardness, thickness, surface pH, drug content, swelling index, microenvironment pH, in vitro drug release, and in vivo buccoadhesion time of the prepared tablets were found to be dependent on the type and composition of the buccoadhesive materials used. The effect of bile salts on the permeation was studied through porcine buccal mucosa and it was found that out of three bile salts incorporated (sodium glycholate, sodium taurocholate, and sodium deoxycholate), sodium glycholate enhanced the permeation rate of prochlorperazine maleate by an enhancement factor of 1.37.

  10. X-ray characterization of self-assembled long-chain phosphatidylcholine/bile salt/silica mesostructured films with nanoscale homogeneity.

    PubMed

    Dunphy, Darren R; Garcia, Fred L; Jiang, Zhang; Strzalka, Joseph; Wang, Jin; Brinker, C Jeffrey

    2011-02-14

    A bile salt (sodium taurodeoxycholate, NaTDC) was used to prevent phase separation between silica and lipid in self-assembled long-chain diacyl phosphatidylcholine/SiO(2) films. Phase diagrams for NaTDC/didecanoyl phosphatidylcholine/SiO(2) and NaTDC/egg phosphatidylcholine/SiO(2) films were investigated through grazing-incidence small-angle X-ray scattering at a synchrotron source. PMID:21135947

  11. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    PubMed

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted. PMID:25390191

  12. Kinetic analysis of bile acid sulfation by stably expressed human sulfotransferase 2A1 (SULT2A1).

    PubMed

    Huang, J; Bathena, S P; Tong, J; Roth, M; Hagenbuch, B; Alnouti, Y

    2010-03-01

    Human sulfotransferase 2A1 (SULT2A1) is a member of the hydroxysteroid sulfotransferase (SULT2) family that mediates sulfo-conjugation of a variety of endogenous molecules including dehydroepiandrosterone (DHEA) and bile acids. In this study, we have constructed a stable cell line expressing SULT2A1 by transfection into HEK293 cells. The expression system was used to characterize and compare the sulfation kinetics of DHEA and 15 human bile acids by SULT2A1. Formation of DHEA sulfate demonstrated Michaelis-Menten kinetics with apparent K(m) and V(max) values of 3.8 muM and 130.8 pmol min(-1) mg(-1) protein, respectively. Sulfation kinetics of bile acids also demonstrated Michaelis-Menten kinetics with a marked variation in apparent K(m) and V(max) values between individual bile acids. Sulfation affinity was inversely proportional to the number of hydroxyl groups of bile acids. The monohydroxy- and most toxic bile acid (lithocholic acid) had the highest affinity, whereas the trihydroxy- and least toxic bile acid (cholic acid) had the lowest affinity to sulfation by SULT2A1. Intrinsic clearance (CL(int)) of ursodeoxycholic acid (UDCA) was approximately 1.5- and 9.0-fold higher than that of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA), respectively, despite the fact that all three are dihydroxy bile acids. PMID:20102295

  13. Codon and Propeptide Optimizations to Improve the Food-grade Expression of Bile Salt Hydrolase in Lactococcus lactis.

    PubMed

    Dong, Zixing; Zhang, Juan; Li, Huazhong; Du, Guocheng; Chen, Jian; Lee, Byonghoon

    2015-01-01

    To achieve the food-grade expression of bile salt hydrolase (BSH, EC 3.5.1.24) from Lactobacillus plantarum BBE7, the nisin controlled gene expression system (NICE), food-grade selection maker and signal peptide of Lactococcus lactis were used in this study. The open reading frame of BSH was optimized based on the codon bias of L. lactis, resulting in 12-fold and 9.5% increases in the intracellular and extracellular BSH activities, respectively. Three synthetic propeptides, LEISSTCDA (acidic), LGISSTCNA (neutral) and LKISSTCHA (basic) were also fused with signal peptide SPusp45 of vector pNZ8112 and introduced into the food-grade expression vector pNZ8149, respectively. Among these propeptides, acidic propeptide was effective in increasing the secretion efficiency and yield of BSH in recombinant bacteria, while neutral propeptide had no significant effect on the secretion of BSH. In contrast, basic propeptide strongly reduced the extracellular expression of BSH. By using codon optimization and the acidic propeptide together, the extracellular BSH activity was increased by 11.3%, reaching its maximum of 3.56 U/mg. To the best of our knowledge, this is the first report on the intracellular and extracellular expression of BSH using food-grade expression system, which would lay a solid foundation for large-scale production of BSH and other heterologous proteins in L. lactis. PMID:26059800

  14. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media.

    PubMed

    Hu, Shunwen; Niu, Mengmeng; Hu, Fuqiang; Lu, Yi; Qi, Jianping; Yin, Zongning; Wu, Wei

    2013-01-30

    The objective of this study was to investigate the integrtity and stability of oral liposomes containing glycocholate (SGC-Lip) in simulated gastrointestinal (GI) media and ex vivo GI media from rats in comparison with conventional liposomes (CH-Lip) composed of soybean phosphatidylcholine and cholesterol. Membrane integrity of liposomes was evaluated by monitoring calcein release, particle size and distribution in different simulated GI media. The stability of liposomes encapsulating insulin was investigated in simulated GI fluids containing pepsin or pancreatin and ex vivo GI enzyme fluids. Simulated GI media with low pH or physiological bile salts resulted in significant increase in calcein release, but dynamic laser scattering data showed that the size and distribution were generally stable. SGC-Lip retained the major amount of the initially encapsulated insulin as compared with CH-Lip in simulated GI fluids (SGF, FaSSGF, SIF and FeSSIF-V2). SGC-Lip retained respectively 17.1% and 20.5% of the initially encapsulated insulin in ex vivo GI fluid, which were also significantly more than CH-Lip. These results suggested that SGC-Lip could protect insulin from degradation to some degree during their transit through the gastrointestinal tract and contributed to enhanced oral absorption. PMID:23089580

  15.  Bile salt export pump deficiency disease: two novel, late onset, ABCB11 mutations identified by next generation sequencing.

    PubMed

    Vitale, Giovanni; Pirillo, Martina; Mantovani, Vilma; Marasco, Elena; Aquilano, Adelia; Gamal, Nesrine; Francalanci, Paola; Conti, Fabio; Andreone, Pietro

    2016-01-01

     Progressive familial intrahepatic cholestasis (PFIC) is a heterogeneous group of autosomal recessive cholestatic diseases of childhood and represents the main indication for liver transplantation at this age; PFIC2 involves ABCB11 gene, that encodes the ATPdependent canalicular bile salt export pump (BSEP). Benign intrahepatic cholestasis (BRIC) identifies a group of diseases involving the same genes and characterized by intermittent attacks of cholestasis with no progression to liver cirrhosis. Diagnosis with standard sequencing techniques is expensive and available only at a few tertiary centers. We report the application of next generation sequencing (NGS) in the diagnosis of the familial intrahepatic cholestasis with a parallel sequencing of three causative genes. We identified the molecular defects in ABCB11 gene in two different probands who developed a severe cholestatic disease of unknown origin. In the first patient a compound heterozygosity for the novel frameshift mutation p.Ser1100GlnfsX38 and the missense variant p.Glu135Lys was detected. In the second patient, triggered by contraceptive therapy, we identified homozygosity for a novel missense variant p.Ala523Gly. In conclusion, these mutations seem to have a late onset and a less aggressive clinical impact, acting as an intermediate form between BRIC and PFIC. PMID:27493120

  16. Downregulation of p63 upon exposure to bile salts and acid in normal and cancer esophageal cells in culture.

    PubMed

    Roman, Sabine; Pétré, Aurélia; Thépot, Amélie; Hautefeuille, Agnès; Scoazec, Jean-Yves; Mion, François; Hainaut, Pierre

    2007-07-01

    p63 is a member of the p53 protein family that regulates differentiation and morphogenesis in epithelial tissues and is required for the formation of squamous epithelia. Barrett's mucosa is a glandular metaplasia of the squamous epithelium that develops in the lower esophagus in the context of chronic, gastroesophageal reflux and is considered as a precursor for adenocarcinoma. Normal or squamous cancer esophageal cells were exposed to deoxycholic acid (DCA, 50, 100, or 200 microM) and chenodeoxycholic and taurochenodeoxycholic acid at pH 5. p63 and cyclooxygenase-2 (COX-2) expressions were studied by Western blot and RT-PCR. DCA exposure at pH 5 led to a spectacular decrease in the levels of all isoforms of the p63 proteins. This decrease was observed within minutes of exposure, with a synergistic effect between DCA and acid. Within the same time frame, levels of p63 mRNA were relatively unaffected, whereas levels of COX-2, a marker of stress responses often induced in Barrett's mucosa, were increased. Similar results were obtained with chenodeoxycholic acid but not its taurine conjugate at pH 5. Proteasome inhibition by lactacystin or MG-132 partially blocked the decrease in p63, suggesting a posttranslational degradation mechanism. These results show that combined exposure to bile salt and acid downregulates a critical regulator of squamous differentiation, providing a mechanism to explain the replacement of squamous epithelium by a glandular metaplasia upon exposure of the lower esophagus to gastric reflux. PMID:17615180

  17. Effective mucoadhesive water-soluble polymers for the solidification transformation of phospholipid-bile salts-mixed micelles.

    PubMed

    Lv, Qingyuan; Li, Xianyi; Li, Ruisheng; Shen, Baode; Xu, He; Shen, Chengying; Dai, Ling; Han, Jin; Yuan, Hailong

    2014-11-01

    Cucurbitacin B (Cu B), formulated in the phospholipid-bile salts-mixed micelles (PL-BS-MMs), was transformed into dry powders by solidification process. Solidification methods for this transformation included freeze-drying, spray-drying or vacuum-drying, and different grades of process parameters called conservative, moderate and aggressive have been used in each solidification method, respectively. Saccharides (mannose, trehalose and glucose), polyethylene glycol (PEG) and mucoadhesive water-soluble polymers (carrageenan, hydroxpropylmethylcellulose (HPMC) and gelatin) were selected as the stabilizer, respectively. The influence of different stabilizers on the redispersibility of solid Cu B-PL/SDC-MMs was systemically investigated, such as the redispersibility index (RDI). The results showed that there were significant differences in RDI from samples stabilized by different stabilizers. The solid Cu B-PL/SDC-MMs stabilized by mucoadhesive water-soluble polymers (carrageenan, HPMC and gelatin) have better redispersibility under different solidification approaches, compared with those samples stabilized by other stabilizers. The results indicated that the mucoadhesive water-soluble polymers could effectively counter various stresses from the solidification process and prevent the nanocrystal surface from agglomeration. The combined action between steric hindrance and increased viscosity appeared to effectively avoid irreversible particle aggregation. PMID:25985572

  18. Hepatocyte nuclear factor-4alpha and bile acids regulate human concentrative nucleoside transporter-1 gene expression.

    PubMed

    Klein, Kerstin; Kullak-Ublick, Gerd A; Wagner, Martin; Trauner, Michael; Eloranta, Jyrki J

    2009-04-01

    The concentrative nucleoside transporter-1 (CNT1) is a member of the solute carrier 28 (SLC28) gene family and is expressed in the liver, intestine, and kidneys. CNT1 mediates the uptake of naturally occurring pyrimidine nucleosides, but also nucleoside analogs used in anticancer and antiviral therapy. Thus expression levels of CNT1 may affect the pharmacokinetics of these drugs and the outcome of drug therapy. Because little is known about the transcriptional regulation of human CNT1 gene expression, we have characterized the CNT1 promoter with respect to DNA response elements and their binding factors. The transcriptional start site of the CNT1 gene was determined by 5'-RACE. In silico analysis revealed the existence of three putative binding sites for the nuclear receptor hepatocyte nuclear factor-4alpha (HNF-4alpha) within the CNT1 promoter. A luciferase reporter gene construct containing the CNT1 promoter region was transactivated by HNF-4alpha in human cell lines derived from the liver, intestine, and kidneys. Consistent with this, we showed in electromobility shift assays that HNF-4alpha specifically binds to two conserved direct repeat-1 motifs within the proximal CNT1 promoter. In cotransfection experiments, the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha further increased, whereas the bile acid-inducible corepressor small heterodimer partner reduced, HNF-4alpha-dependent CNT1 promoter activity. Consistent with the latter phenomenon, CNT1 mRNA expression levels were suppressed in primary human hepatocytes upon bile acid treatment. Supporting the physiological relevance and species conservation of this effect, ileal Cnt1 mRNA expression was decreased upon bile acid feeding and increased upon bile duct ligation in mice. PMID:19228884

  19. Na+/Taurocholate Cotransporting Polypeptide and Apical Sodium-Dependent Bile Acid Transporter Are Involved in the Disposition of Perfluoroalkyl Sulfonates in Humans and Rats

    PubMed Central

    Zhao, Wen; Zitzow, Jeremiah D.; Ehresman, David J.; Chang, Shu-Ching; Butenhoff, John L.; Forster, Jameson; Hagenbuch, Bruno

    2015-01-01

    Among the perfluoroalkyl sulfonates (PFASs), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) have half-lives of several years in humans, mainly due to slow renal clearance and potential hepatic accumulation. Both compounds undergo enterohepatic circulation. To determine whether transporters involved in the enterohepatic circulation of bile acids are also involved in the disposition of PFASs, uptake of perfluorobutane sulfonate (PFBS), PFHxS, and PFOS was measured using freshly isolated human and rat hepatocytes in the absence or presence of sodium. The results demonstrated sodium-dependent uptake for all 3 PFASs. Given that the Na+/taurocholate cotransporting polypeptide (NTCP) and the apical sodium-dependent bile salt transporter (ASBT) are essential for the enterohepatic circulation of bile acids, transport of PFASs was investigated in stable CHO Flp-In cells for human NTCP or HEK293 cells transiently expressing rat NTCP, human ASBT, and rat ASBT. The results demonstrated that both human and rat NTCP can transport PFBS, PFHxS, and PFOS. Kinetics with human NTCP revealed Km values of 39.6, 112, and 130 µM for PFBS, PFHxS, and PFOS, respectively. For rat NTCP Km values were 76.2 and 294 µM for PFBS and PFHxS, respectively. Only PFOS was transported by human ASBT whereas rat ASBT did not transport any of the tested PFASs. Human OSTα/β was also able to transport all 3 PFASs. In conclusion, these results suggest that the long half-live and the hepatic accumulation of PFOS in humans are at least, in part, due to transport by NTCP and ASBT. PMID:26001962

  20. Hydrophilic bile salt ursodeoxycholic acid protects myocardium against reperfusion injury in a PI3K/Akt dependent pathway.

    PubMed

    Rajesh, Katare Gopalrao; Suzuki, Ryoko; Maeda, Hironori; Yamamoto, Murio; Yutong, Xing; Sasaguri, Shiro

    2005-11-01

    The opening of mitochondrial permeability transition pore (PTP) during reperfusion injury of heart has been well demonstrated and thus controlling PTP would attenuate the myocardial damage and cell death. Ursodeoxycholic acid (UDCA) is a hydrophilic bile salt and has been shown to prevent apoptosis in hepatocytes by inhibiting the opening of PTP. Here we demonstrate the role of UDCA in preventing the reperfusion injury of heart through its ability to inhibit PTP. Wistar rats underwent 30 min left coronary artery occlusion (LCA) followed by 180 min reperfusion after treatment with 40 mg/kg per iv infusion of UDCA over 30 min before LCA occlusion. Other groups of rats were treated with PTP agonist atractyloside(5 mg/kg) or PI3 kinase inhibitor wortmannin (16 ug/kg) before UDCA treatment. UDCA treatment prior to LCA occlusion, activated phosphorylation of Akt and Bad. Phosphorylating Bad prevented its translocation in to mitochondria, there by preventing the down regulation of Bcl-2 expression and PTP opening. This was confirmed by reduced cytochrome C release from intramitochondrial space in to the cytosol and hence reduced cell death either by apoptosis (4.8 vs 11.8%, P<0.001, UDCA treated against control group) or necrosis (reduced MI area in UDCA treated group (22.1%) compared to control group(46.4%), P<0.001). In contrast, inhibition of Akt activation with PI3K inhibitor wortmannin or opening the PTP with atractyloside abolished, UDCA mediated cytoprotective effects. Studies on primary culture cardiomyocytes also confirmed our in vivo results of UDCA on cell survival. These results altogether demonstrate that UDCA protect the heart against reperfusion injury by inhibiting the PTP in a PI3K/Akt dependent pathway. PMID:16171810

  1. Mucoadhesive buccal films containing phospholipid-bile salts-mixed micelles as an effective carrier for Cucurbitacin B delivery.

    PubMed

    Lv, Qingyuan; Shen, Chengying; Li, Xianyi; Shen, Baode; Yu, Chao; Xu, Pinghua; Xu, He; Han, Jin; Yuan, Hailong

    2015-05-01

    Cucurbitacin B (Cu B), a potent anti-cancer agent, suffers with the problems of water-insoluble, gastrointestinal side effects and non-specific toxicity via oral administration and drawbacks in patient's compliance and acceptance through injections. An integration of nanoscale carriers with mucoadhesive buccal films drug delivery system would resolve these issues effectively with greater therapeutic benefits and clinical significance. Thus, the drug loaded mucoadhesive buccal film was developed and characterized in this study and the carboxymethyl chitosan (CCS) was chosen as a bioadhesive polymer, glycerol was chosen as a plasticizer and phospholipid-bile salts-mixed micelles (PL-BS-MMs) was selected as the nanoscale carriers. The CCS-films containing Cu B loaded PL-SDC-MMs was evaluated for the mechanical properties, mucoadhesion properties, in vitro water-uptake, in vitro release and morphological properties, respectively. The optimal CCS-films containing Cu B loaded PL-SDC-MMs was easily reconstituted in a transparent and clear solution with spherical micelles in the submicron range. The in vivo study revealed a greater and more extended release of Cu B from nanoscale CCS-films compared to that from a conventional CCS films (C-CCS-films) and oral marketed tablet (Hulusupian). The absorption of Cu B from CCS-films containing Cu B loaded PL-SDC-MMs resulted in 2.69-fold increased in bioavailability as compared to conventional tablet formulation and 10.46 times with reference to the C-CCS-films formulation. Thus, this kind of mucoadhesive buccal film might be an alternative safe route for delivery of Cu B with better patient compliance and higher bioavailability for the treatments. PMID:24467528

  2. Bile salt-stimulated carboxyl ester lipase influences lipoprotein assembly and secretion in intestine: a process mediated via ceramide hydrolysis.

    PubMed

    Kirby, R Jason; Zheng, Shuqin; Tso, Patrick; Howles, Philip N; Hui, David Y

    2002-02-01

    Bile salt-stimulated carboxyl ester lipase (CEL), also called cholesterol esterase, is one of the major proteins secreted by the pancreas. The physiological role of CEL was originally thought to be its mediation of dietary cholesterol absorption. However, recent studies showed no difference between wild type and CEL knockout mice in the total amount of cholesterol absorbed in a single meal. The current study tests the hypothesis that CEL in the intestinal lumen may influence the type of lipoproteins produced. A lipid emulsion containing 4 mm phospholipid, 13.33 mm [(3)H]triolein, and 2.6 mm [(14)C]cholesterol in 19 mm taurocholate was infused into the duodenum of lymph fistula CEL(+/+) and CEL(-/-) mice at a rate of 0.3 ml/h. Results showed no difference between CEL(+/+) and CEL(-/-) mice in the rate of cholesterol and triglyceride transport from the intestinal lumen to the lymph. However, CEL(-/-) mice produced predominantly smaller lipoproteins, whereas the CEL(+/+) mice produced primarily large chylomicrons and very low density lipoprotein. The proximal intestine of CEL(-/-) mice was also found to possess significantly less ceramide hydrolytic activity than that present in CEL(+/+) mice. By using Caco2 cells grown on Transwell membranes as a model, sphingomyelinase treatment inhibited the secretion of larger chylomicron-like lipoproteins without affecting total cholesterol secretion. In contrast, the addition of CEL to the apical medium increased the amount of large lipoproteins produced and alleviated the inhibition induced by sphingomyelinase. Taken together, this study identified a novel and physiologically significant role for CEL, namely the promotion of large chylomicron production in the intestine. The mechanism appears to be mediated through CEL hydrolysis of ceramide generated during the lipid absorption process. PMID:11733511

  3. Modification of the bile salts-Irgasan-brilliant green agar for enumeration of Aeromonas species from food.

    PubMed

    Neyts, K; Notebaert, E; Uyttendaele, M; Debevere, J

    2000-06-15

    The present study evaluated the productivity of BIBG medium for the isolation of Aeromonas spp. from food and describes a modification of the BIBG medium (mBIBG) (increased pH (8.7), replacement of xylose by soluble starch as a carbon source, decreased concentration of bile salts) to increase its selectivity and electivity. Using the mBIBG medium, growth of the majority of the Enterobacteriaceae (9/10) was suppressed except for Citrobacter freundii. The mBIBG medium supported growth of Pseudomonas species but a clear distinction between Aeromonas and Pseudomonas colonies could be made. Interpretation of the mBIBG medium should be performed after 24 h of incubation. It was noted that three of the 27 Aeromonas strains tested did not develop on the mBIBG medium. The ability or inability to grow on a selective medium is strain-dependent. Enumeration of Aeromonas species (A. hydrophila LMG 3771, A. caviae LMG 3775, A. veronii biovar veronii LMG 9075, A. veronii biovar sobria LMG 13071) from artificially contaminated foods (shrimp, minced meat (beef/pork), precut leek, and shredded carrots) confirmed that the mBIBG medium is suitable for quantitative recovery of aeromonads (ca. 10(2)-10(7) cfu/g) in the presence of a high background flora (10(5)-10(6) cfu/g). Screening of naturally contaminated foods (vegetables, seafood, meat) for the presence of Aeromonas resulted in three out of 14 food samples showing presumptive Aeromonas colonies on mBIBG. PMID:10868682

  4. Interaction of Bile Salts with Model Membranes Mimicking the Gastrointestinal Epithelium: A Study by Isothermal Titration Calorimetry.

    PubMed

    Coreta-Gomes, Filipe M; Martins, Patrícia A T; Velazquez-Campoy, Adrián; Vaz, Winchil L C; Geraldes, Carlos F G; Moreno, Maria João

    2015-08-25

    Bile salts (BS) are biosurfactants synthesized in the liver and secreted into the intestinal lumen where they solubilize cholesterol and other hydrophobic compounds facilitating their gastrointestinal absorption. Partition of BS toward biomembranes is an important step in both processes. Depending on the loading of the secreted BS micelles with endogeneous cholesterol and on the amount of cholesterol from diet, this may lead to the excretion or absorption of cholesterol, from cholesterol-saturated membranes in the liver or to gastrointestinal membranes, respectively. The partition of BS toward the gastrointestinal membranes may also affect the barrier properties of those membranes affecting the permeability for hydrophobic and amphiphilic compounds. Two important parameters in the interaction of the distinct BS with biomembranes are their partition coefficient and the rate of diffusion through the membrane. Altogether, they allow the calculation of BS local concentrations in the membrane as well as their asymmetry in both membrane leaflets. The local concentration and, most importantly, its asymmetric distribution in the bilayer are a measure of induced membrane perturbation, which is expected to significantly affect its properties as a cholesterol donor and hydrophobic barrier. In this work we have characterized the partition of several BS, nonconjugated and conjugated with glycine, to large unilamellar vesicles (LUVs) in the liquid-disordered phase and with liquid-ordered/liquid-disordered phase coexistence, using isothermal titration calorimetry (ITC). The partition into the liquid-disordered bilayer was characterized by large partition coefficients and favored by enthalpy, while association with the more ordered membrane was weak and driven only by the hydrophobic effect. The trihydroxy BS partitions less efficiently toward the membranes but shows faster translocation rates, in agreement with a membrane protective effect of those BS. The rate of translocation

  5. Image-guided intervention in the human bile duct using scanning fiber endoscope system

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.; Jo, Javier A.; Melville, C. David; Johnston, Richard S.; Naumann, Christopher R.; Saunders, Michael D.

    2012-01-01

    Bile duct cancers are increasing in frequency while being difficult to diagnose. Currently available endoscopic imaging devices used in the biliary tree are low resolution with poor image quality, leading to inadequate evaluation of indeterminate biliary strictures. However, a new ultrathin and flexible cholangioscope system has been successfully demonstrated in a human subject. This mini-cholangioscope system uses a scanning fiber endoscope (SFE) as a forward-imaging guidewire, dimensions of 1.2-mm diameter and 3-m length. Full color video (500-line resolution at 30Hz) is the standard SFE imaging mode using spiral scanning of red, green, and blue laser light at low power. Image-guided operation of the biopsy forceps was demonstrated in healthy human bile ducts with and without saline flushing. The laser-based video imaging can be switched to various modes to enhance tissue markers of disease, such as widefield fluorescence and enhanced spectral imaging. In parallel work, biochemical discrimination of tissue health in pig bile duct has been accomplished using fiberoptic delivery of pulsed UV illumination and time-resolved autofluorescence spectroscopic measurements. Implementation of time-resolved fluorescence spectroscopy for biochemical assessment of the bile duct wall is being done through a secondary endoscopic channel. Preliminary results indicate that adequate SNR levels (> 30 dB) can be achieved through a 50 micron fiber, which could serve as an optical biopsy probe. The SFE is an ideal mini-cholangioscope for integration of both tissue and molecular specific image contrast in the future. This will provide the physician with unprecedented abilities to target biopsy locations and perform endoscopically-guided therapies.

  6. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  7. Function of the liver and bile ducts in humans exposed to lead.

    PubMed

    Kasperczyk, A; Dziwisz, M; Ostałowska, A; Swietochowska, E; Birkner, E

    2013-08-01

    Lead is very common in the environment, and it is therefore important to characterize its possible adverse health effects. The aim of this study was to evaluate the impact of lead exposure on selected functions of the liver and bile ducts in people who are chronically exposed to the metal because of their occupations. To provide this information, the activity of specific enzymes and the bilirubin concentration were determined in blood serum, and morphological parameters of the liver and bile ducts were evaluated using the ultrasonic imaging method. Healthy male employees of a lead-zinc processing facility (n = 145) who were occupationally exposed to lead were divided into two subgroups as a function of the lead concentrations in blood (PbB): low lead exposure (PbB = 20-35 μg/dl; n = 57) and high lead exposure (PbB = 35-60 μg/dl; n = 88). Human exposure to lead compounds was found to cause liver enlargement and to activate inflammatory reactions with the characteristics of moderate cholestasis within the bile ducts, while no characteristics of necrotic damage of hepatic cells were noted. It seems that lipid peroxidation can be one of the toxic mechanisms of lead which induce moderate cholestasis. The effects depend on the extent of the lead exposure and were greater in subjects with higher exposure levels, particularly subjects with PbB values greater than 35 μg/dl. PMID:23529799

  8. Clearance of bile and trypsin in rat lungs following aspiration of human gastric fluid

    PubMed Central

    Leung, Jason H.; Chang, Jui-Chih; Foltz, Emily; Bell, Sadé M.; Pi, Cinthia; Azad, Sassan; Everett, Mary Lou; Holzknecht, Zoie E.; Sanders, Nathan L.; Parker, William; Davis, R. Duane; Keshavjee, Shaf; Lin, Shu S.

    2016-01-01

    ABSTRACT Purpose: In the clinical setting, there is no reliable tool for diagnosing gastric aspiration. A potential way of diagnosing gastric fluid aspiration entails bronchoalveolar lavage (BAL) with subsequent examination of the BAL fluid for gastric fluid components that are exogenous to the lungs. The objective of this study was to determine the longevity of the gastric fluid components bile and trypsin in the lung, in order to provide an estimate of the time frame in which assessment of these components in the BAL might effectively be used as a measure of aspiration. Materials and Methods: Human gastric fluid (0.5 mg/kg) was infused in the right lung of intubated male Fischer 344 rats (n = 30). Animals were sacrificed at specified times following the experimentally induced aspiration, and bronchoalveolar lavage fluid (BALF) was collected. Bile concentrations were analyzed by an enzyme-linked chromatogenic method, and the concentration of trypsin was quantified using an ELISA. Data were analyzed using non-linear regression and a one-phase decay equation. Results: In this experimental model, the half-life of bile was 9.3 hours (r 2 = 0.81), and the half-life of trypsin was 9.0 hours (r 2 = 0.68). Conclusions: The half-lives of bile and trypsin in the rodent aspiration model suggest that the ability to detect aspiration may be limited to a few days post-aspiration. If studies using rats are any indication, it may be most effective to collect BAL samples within the first 24 hours of suspected aspiration events in order to detect aspiration. PMID:26873328

  9. Bile acids influence the growth, oestrogen receptor and oestrogen-regulated proteins of MCF-7 human breast cancer cells.

    PubMed Central

    Baker, P. R.; Wilton, J. C.; Jones, C. E.; Stenzel, D. J.; Watson, N.; Smith, G. J.

    1992-01-01

    The effects of the major human serum bile acid, glycochenodeoxycholic acid (GCDC), as well as unconjugated chenodeoxycholic acid (CDC), on the MCF-7 human breast cancer cell line have been studied in vitro under oestrogen and bile acid deprived culture conditions. GCDC increased the growth of the breast cancer cells over the range 10-300 microM. At concentrations in excess of the bile acid binding capacity of the medium cell growth was prevented. In contrast 10 microM CDC tended to reduce cell growth. Oestrogen (ER) and progesterone (PgR) receptors, pS2 and total cathepsin D were quantified by monoclonal antibody based immunoassays. Ten to 100 microM GCDC and 10 microM CDC down-regulated ER protein and this was accompanied by induction of the oestrogen-regulated proteins PgR, pS2 and possibly cathepsin D, including increased secretion of the latter two proteins into the culture medium. All these changes were quantitatively similar to those observed with 10 nM oestradiol. The bile acid effects on ER and PgR were not due to interference with the assay procedures. Cells incubated with 50 microM GCDC or 10 microM CDC had higher pmolar concentrations of the bile acids than controls. This study suggests that naturally occurring bile acids influence the growth and steroid receptor function of human breast cancer cells. PMID:1562465

  10. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes.

    PubMed

    Han, Shuxin; Li, Tiangang; Ellis, Ewa; Strom, Stephen; Chiang, John Y L

    2010-06-01

    Vitamin D receptor (VDR) is activated by natural ligands, 1alpha, 25-dihydroxy-vitamin D(3) [1alpha,25(OH)(2)-D(3)] and lithocholic acid (LCA). Our previous study shows that VDR is expressed in human hepatocytes, and VDR ligands inhibit bile acid synthesis and transcription of the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1). Primary human hepatocytes were used to study LCA and 1alpha,25(OH)(2)-D(3) activation of VDR signaling. Confocal immunofluorescent microscopy imaging and immunoblot analysis showed that LCA and 1alpha, 25(OH)(2)-D(3) induced intracellular translocation of VDR from the cytosol to the nucleus and also plasma membrane where VDR colocalized with caveolin-1. VDR ligands induced tyrosine phosphorylation of c-Src and VDR and their interaction. Inhibition of c-Src abrogated VDR ligand-dependent inhibition of CYP7A1 mRNA expression. Kinase assays showed that VDR ligands specifically activated the c-Raf/MEK1/2/extracellular signal-regulated kinase (ERK) 1/2 pathway, which stimulates serine phosphorylation of VDR and hepatocyte nuclear factor-4alpha, and their interaction. Mammalian two-hybrid assays showed a VDR ligand-dependent interaction of nuclear receptor corepressor-1 and silencing mediator of retinoid and thyroid with VDR/retinoid X receptor-alpha (RXRalpha). Chromatin immunoprecipitation assays revealed that an ERK1/2 inhibitor reversed VDR ligand-induced recruitment of VDR, RXRalpha, and corepressors to human CYP7A1 promoter. In conclusion, VDR ligands activate membrane VDR signaling to activate the MEK1/2/ERK1/2 pathway, which stimulates nuclear VDR/RXRalpha recruitment of corepressors to inhibit CYP7A1 gene transcription in human hepatocytes. This membrane VDR-signaling pathway may be activated by bile acids to inhibit bile acid synthesis as a rapid response to protect hepatocytes from cholestatic liver injury. PMID:20371703

  11. Feed-forward regulation of bile acid detoxification by CYP3A4: studies in humanized transgenic mice.

    PubMed

    Stedman, Catherine; Robertson, Graham; Coulter, Sally; Liddle, Christopher

    2004-03-19

    Bile acids are potentially toxic end products of cholesterol metabolism and their concentrations must be tightly regulated. Homeostasis is maintained by both feed-forward regulation and feedback regulation. We used humanized transgenic mice incorporating 13 kb of the 5' regulatory flanking sequence of CYP3A4 linked to a lacZ reporter gene to explore the in vivo relationship between bile acids and physiological adaptive CYP3A gene regulation in acute cholestasis after bile duct ligation (BDL). Male transgenic mice were subjected to BDL or sham surgery prior to sacrifice on days 3, 6, and 10, and others were injected with intraperitoneal lithocholic acid (LCA) or vehicle alone. BDL resulted in marked hepatic activation of the CYP3A4/lacZ transgene in pericentral hepatocytes, with an 80-fold increase in transgene activation by day 10. Individual bile acids were quantified by liquid chromatography/mass spectrometry. Serum 6beta-hydroxylated bile acids were increased following BDL, confirming the physiological relevance of endogenous Cyp3a induction to bile acid detoxification. Although concentrations of conjugated primary bile acids increased after BDL, there was no increase in LCA, a putative PXR ligand, indicating that this cannot be the only endogenous bile acid mediating this protective response. Moreover, in LCA-treated animals, 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside staining showed hepatic activation of the CYP3A4 transgene only on the liver capsular surface, and minimal parenchymal induction, despite significant liver injury. This study demonstrates that CYP3A up-regulation is a significant in vivo adaptive response to cholestasis. However, this up-regulation is not dependent on increases in circulating LCA and the role of other bile acids as regulatory molecules requires further exploration. PMID:14681232

  12. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo.

    PubMed

    Yang, Gang; Zhao, Yaping; Zhang, Yongtai; Dang, Beilei; Liu, Ying; Feng, Nianping

    2015-01-01

    The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, -62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC(0-t) of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes. PMID:26543366

  13. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo

    PubMed Central

    Yang, Gang; Zhao, Yaping; Zhang, Yongtai; Dang, Beilei; Liu, Ying; Feng, Nianping

    2015-01-01

    The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, −62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC0−t of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes. PMID:26543366

  14. Identification of the bile salt binding site on ipad from Shigella flexneri and the influence of ligand binding on IpaD structure

    SciTech Connect

    Barta, Michael L.; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E.; Patil, Mrinalini; Geisbrecht, Brian V.; Picking, Wendy L.; Picking, William D.

    2012-10-25

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nano-machine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices {alpha}3 and {alpha}7, with concomitant movement in the orientation of helix {alpha}7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC-bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  15. HPLC method for measuring meropenem and biapenem concentrations in human peritoneal fluid and bile: application to comparative pharmacokinetic investigations.

    PubMed

    Kameda, Keiko; Ikawa, Kazuro; Ikeda, Kayo; Morikawa, Norifumi; Nakashima, Akira; Ohge, Hiroki; Sueda, Taijiro

    2010-01-01

    A high-performance liquid chromatography (HPLC) method using ultrafiltration to pretreat peritoneal fluid and bile samples is developed to measure meropenem and biapenem concentrations in human peritoneal fluid and bile. Meropenem or biapenem in peritoneal fluid or bile samples is stabilized by mixing with 1 mol/L 3-morpholinopropanesulfonic acid buffer (pH 7.0) (1:1). The mixture is transferred to a Nanosep 10K centrifugal filter device; after centrifugation, the filtrate is subjected to reversed-phase HPLC, and the eluate is monitored at 300 nm. No interference from endogenous substances is observed. The lower limits of quantification are 0.05 microg/mL for peritoneal fluid and 0.1 microg/mL for bile. The new method has been applied to comparative site-specific-pharmacokinetic investigations in surgery patients. PMID:20515537

  16. Self-assembly of aqueous bilirubin ditaurate, a natural conjugated bile pigment, to contraposing enantiomeric dimers and M(-) and P(+) tetramers and their selective hydrophilic disaggregation by monomers and micelles of bile salts.

    PubMed

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-02-24

    The solution behavior of bilirubin ditaurate (BDT), the first naturally occurring conjugated bile pigment to be physically and chemically characterized, was assessed in aqueous solution and in monomeric and micellar solutions of common taurine-conjugated bile salts (BS). Analytical ultracentrifugation revealed that BDT self-associates in monomer-dimer equilibria between 1 and 500 μM, forming limiting tetramers at low millimolar concentrations. Self-association was enthalpically driven with ΔG values of ≈5 kcal/mol, suggesting strong hydrophobic interactions. Added NaCl and decreases in temperature shifted the oligomerization to lower BDT concentrations. On the basis of circular dichroism spectra and the limiting size of the self-aggregates, we infer that the tetramers are composed of 2P(+) and 2M(-) enantiomeric BDT pairs in "ridge-tile" conformations interacting in a "double-bookend" structure. With added monomeric BS, blue shifts in the UV-vis spectra and tight isosbestic points revealed that BDT/BS heterodimers form, followed by BDT "decorating" BS micelles mostly via hydrophilic interactions. Conformational enantiomerism, fluorescence intensities, and anisotropy, as well as resistance of the hybrid particles to disaggregation in 6 M urea, suggested that two or three hydrogen-bonding sites bound BDT monomers to the hydroxyl groups of BS, possibly via pyrrole-π-orbital-OH interactions. BDT stabilized these interactions by enveloping the BS in its "ridge-tile" pincers with variable strain that maximized van der Waals interactions. Possibly because the BDT molecule becomes highly strained with BS subtending a 7β-hydroxyl group, BDT became totally resistant to oxidation in air. This work predicts that, because of BS dissolution of the BDT self-aggregates, BS/bilirubin hybrid particles, which are stabilized hydrophilically, are likely to be the dominant mode of transport for all conjugated bilirubins in bile. PMID:25671490

  17. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo

    PubMed Central

    Lin, Pei-Pei; Hsieh, You-Miin; Zhang, Zi-yi; Wu, Hui-Ching; Huang, Chun-Chih

    2014-01-01

    This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease. PMID:25538960

  18. Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo.

    PubMed

    Tsai, Cheng-Chih; Lin, Pei-Pei; Hsieh, You-Miin; Zhang, Zi-yi; Wu, Hui-Ching; Huang, Chun-Chih

    2014-01-01

    This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease. PMID:25538960

  19. Computational Models for Drug Inhibition of the Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E.

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid re-absorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, as well as a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested and their Ki values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or non-potent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  20. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter.

    PubMed

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid reabsorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, and a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested, and their K(i) values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or nonpotent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  1. High performance liquid chromatography-tandem mass spectrometry for the determination of bile acid concentrations in human plasma.

    PubMed

    Xiang, Xiaoqiang; Han, Yi; Neuvonen, Mikko; Laitila, Jouko; Neuvonen, Pertti J; Niemi, Mikko

    2010-01-01

    We report a sensitive and robust method to determine cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), and their taurine- and glycine-conjugate concentrations in human plasma using liquid chromatography-tandem mass spectrometry. Activated charcoal was utilized to prepare bile acid-free plasma, which served as the biological matrix for the preparation of standard and quality control samples. Plasma sample preparation involved solid-phase extraction. A total of 16 bile acids and 5 internal standards were separated on a reverse column by gradient elution and detected by tandem mass spectrometry in negative ion mode. The calibration curve was linear for all the bile acids over a range of 0.005-5micromol/L. The extraction recoveries for all the analytes fell in the range of 88-101%. Intra-day and inter-day coefficients of variation were all below 10%. A stability test showed that all the bile acids were stable in plasma for at least 6h at room temperature, at least three freeze-thaw cycles, in the -70 degrees C or -20 degrees C freezer for 2 months, and also in the reconstitution solution at 8 degrees C for 48h. Comparison of the matrix effect of bile acid-free plasma with that of real plasma indicated that the charcoal purification procedure did not affect the properties of charcoal-purified plasma as calibration matrix. This method has been used to determine the bile acid concentrations in more than 300 plasma samples from healthy individuals. In conclusion, this method is suitable for the simultaneous quantification of individual bile acids in human plasma. PMID:19945922

  2. Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: an in vitro study

    PubMed Central

    Palmela, Inês; Correia, Leonor; Silva, Rui F. M.; Sasaki, Hiroyuki; Kim, Kwang S.; Brites, Dora; Brito, Maria A.

    2015-01-01

    Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic, anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the blood-brain barrier, formed by confluent monolayers of a cell line of human brain microvascular endothelial cells, UCB has shown to induce caspase-3 activation and cell death, as well as interleukin-6 release and a loss of blood-brain barrier integrity. Here, we tested the preventive and restorative effects of these bile acids regarding the disruption of blood-brain barrier properties by UCB in in vitro conditions mimicking severe neonatal hyperbilirubinemia and using the same experimental blood-brain barrier model. Both bile acids reduced the apoptotic cell death induced by UCB, but only glycoursodeoxycholic acid significantly counteracted caspase-3 activation. Bile acids also prevented the upregulation of interleukin-6 mRNA, whereas only ursodeoxycholic acid abrogated cytokine release. Regarding barrier integrity, only ursodeoxycholic acid abrogated UCB-induced barrier permeability. Better protective effects were obtained by bile acid pre-treatment, but a strong efficacy was still observed by their addition after UCB treatment. Finally, both bile acids showed ability to cross confluent monolayers of human brain microvascular endothelial cells in a time-dependent manner. Collectively, data disclose a therapeutic time-window for preventive and restorative effects of ursodeoxycholic acid and glycoursodeoxycholic acid against UCB-induced blood-brain barrier disruption and damage to human brain microvascular endothelial cells. PMID:25821432

  3. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile.

    PubMed

    Cohen, D E; Thurston, G M; Chamberlin, R A; Benedek, G B; Carey, M C

    1998-10-20

    We employed quasielastic and static light scattering to measure apparent values of the mean hydrodynamic radii (Rh)app, molecular weights (Mapp), and radii of gyration (Rg)app in solutions containing mixed micelles composed of bile salts (cholate and taurochenodeoxycholate, both cholanoyl derivatives) and the glycoacyl chain detergent, octyl glucoside, with egg yolk phosphatidylcholine (EYPC) as functions of total lipid concentration (0.1-10 g/dL), EYPC/detergent molar ratio (0-1.2), and ionic strength (0.15-0.4 M NaCl) at 20 degreesC and 1 atm. As the mixed micellar phase boundaries were approached by dilution, (Rh)app, Mapp, and (Rg)app values increased markedly by up to 20-fold. For each micellar system, the scaling ratios (Rh)app/Mapp1/2 and (Rg)app/(Rh)app remained essentially constant at 0.018 nm/(g/mol)1/2 and 1.5 (dimensionless), respectively, despite large variations in total lipid concentration, detergent molecular species, and ionic strength. Refined data analysis is inconsistent with a flat "mixed-disc" model for bile salt-EYPC micelles [Mazer, N. A., Benedek, G. B., and Carey, M. C. (1980) Biochemistry 19, 601] and octyl glucoside-EYPC micelles principally because the numerical value of (Rh)app/Mapp1/2 corresponds to a hypothetical disk thickness of approximately 1 nm, which is 4-fold smaller than the bimolecular width of EYPC molecules, and for a disk, (Rg)app/(Rh)app ratios should be close to 1 at low total lipid concentrations. Assuming disc-shaped micelles, we show that intermicellar excluded volume interactions would have only a minor effect on Mapp and cannot account for the unrealistic disk thickness. Instead, locally cylindrical, semiflexible wormlike micelles of diameter d = 4 nm and persistence length xip = 17 nm in solution are compatible with the observed (Rh)app/Mapp1/2 and (Rg)app/(Rh)app values when intermicellar excluded-volume interactions are considered. With EYPC/taurochenodeoxycholate = 0.6 and EYPC/cholate = 1.0 in 0.15 M Na

  4. Expression of β-catenin and c-myc during human common bile duct development: a possible role in the morphogenesis of the common bile duct

    PubMed Central

    Guo, W.L.; Zhang, Q.; Wang, J.

    2014-01-01

    β-catenin and c-myc play important roles in the development of tissues and organs. However, little is known about their expression patterns during the development of the human common bile duct. Immunohistochemistry was used to detect β-catenin and c-myc expression in common bile duct samples from postmortem tissues of 14 premature infants and 6 spontaneously aborted fetuses. The expression of β-catenin and c-myc was also analyzed by Western blot. The samples were divided into four groups based on the stage of human fetal development: 12, 13-27, 28-37, and >37 weeks. The Image-Pro Plus v. 6.0 image analysis software was used to calculate the mean qualifying score (MQS). At fetal stages 12, 13-27, 28-37, and >37 weeks, MQS of β-catenin were 612.52±262.13, 818.38±311.73, 706.33±157.19, and 350.69±110.19, respectively. There was a significant difference in MQS among the four groups (ANOVA, P=0.0155) and between the scores at >37 and 13-27 weeks (Student-Newman-Keuls, P<0.05). At fetal stages 12, 13-27, 28-37, and >37 weeks, the MQS of c-myc were 1376.64±330.04, 1224.18±171.66, 1270.24±320.75, and 741.04±219.19, respectively. There was a significant difference in MQS among the four groups (ANOVA, P=0.0087) and between the scores at >37 and 12 weeks, >37 and 13-27 weeks, and >37 and 28-37 weeks (all P<0.05, Student-Newman-Keuls). Western blots showed that β-catenin and c-myc expression were significantly higher in fetal than in postnatal control duct tissue (P<0.05). c-myc and β-catenin are involved in the normal development of the human common bile duct. PMID:25003633

  5. Evidence for size and charge permselectivity of rat ascending colon. Effects of ricinoleate and bile salts on oxalic acid and neutral sugar transport.

    PubMed Central

    Kathpalia, S C; Favus, M J; Coe, F L

    1984-01-01

    We have measured unidirectional transmural fluxes of oxalate and neutral sugars across rat ascending colon in vitro, under short-circuit conditions, to characterize permeability barriers selective for size and charge. Ionic oxalate appears to be transported preferentially to sodium oxalate. Mucosal addition of taurocholate (1 mM), deoxycholate (1 mM), or ricinoleate (1 mM) increased bidirectional oxalate fluxes, and the ricinoleate effects were independent of medium calcium. Bidirectional fluxes of uncharged sugar molecules fell sharply at molecular weights above 76 (molecular radius above 3 A), and oxalate transport was retarded relative to that of uncharged molecules of similar size, suggesting that there is both size and charge permselectivity. Ricinoleate increased fluxes of all neutral molecules tested but changed neither the exclusion limits nor the cation selectivity of the epithelium. Bile salts and ricinoleate increase oxalate transport, probably by making more channels available, but do not alter size and charge selectivity. PMID:6432849

  6. Centuries of Human-Driven Change in Salt Marsh Ecosystems

    NASA Astrophysics Data System (ADS)

    Gedan, K. Bromberg; Silliman, B. R.; Bertness, M. D.

    2009-01-01

    Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems—exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

  7. Centuries of human-driven change in salt marsh ecosystems.

    PubMed

    Gedan, K Bromberg; Silliman, B R; Bertness, M D

    2009-01-01

    Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems--exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management. PMID:21141032

  8. Apoptosis mechanism of human cholangiocarcinoma cells induced by bile extract from crocodile.

    PubMed

    Kang, Jin-He; Zhang, Wen-Qing; Song, Wei; Shen, Dong-Yan; Li, Shan-Shan; Tian, Ling; Shi, Yan; Liang, Ge; Xiong, You-Xiong; Chen, Qing-Xi

    2012-02-01

    Animal bile is popularly used as a traditional medicine in China, and bile acids are their major bioactive constituents. In the present study, effects of bile extract from crocodile gallbladder on QBC939 cell growth, cell cycle, and apoptosis were investigated by MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, scanning electron microscopy, PI single- and FITC/PI double-staining flow cytometry, and western blotting. Our data have revealed that bile extract inhibited cells growth significantly, and the cell cycle was arrested in G1 phase. Bile extract induced QBC939 cell apoptosis, which was associated with collapse of the mitochondrial membrane potential and increase of ROS. In bile extract-treated cells, it was observed that the expression of bcl-2 decreased and cytochrome c released to cytosol, but the expression of bax remained unchanged. The data indicated that mitochondrial pathway might play an important role in bile extract-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of bile extract on cholangiocarcinoma cells. PMID:22194052

  9. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    PubMed Central

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA

  10. Polarized light microscopic examination of human bile in the diagnosis of microlithiasis of the gallbladder.

    PubMed

    Gogna, A; Kar, P; Acharya, N R; Anand, V J; Kapoor, R

    1989-01-01

    Of the 20 cases with biliary colics who had normal OCG and ultrasound, 11 (55%) showed microlithiasis in the form of cholesterol monohydrate crystals and/or calcium bilirubinate granules on polarized light microscopy of the duodenal bile. Microlithiasis was noted in gallbladder bile of all (100%) the cases with proven gallstones but in none of the duodenal bile samples from healthy subjects. This study suggests that polarized microscopy may be a useful method to detect microlithiasis in patients with repeated biliary colics who have normal OCG and ultrasound examination. PMID:2815325

  11. Kinetics for the synthetic bile acid 75-selenohomocholic acid-taurine in humans: comparison with (/sup 14/C)taurocholate

    SciTech Connect

    Jazrawi, R.P.; Ferraris, R.; Bridges, C.; Northfield, T.C.

    1988-07-01

    The apparent fractional turnover rate of the gamma-labeled bile acid analogue 75-selenohomocholic acid-taurine (75-SeHCAT) was assessed from decline in radioactivity over the gallbladder area on 4 successive days using a gamma-camera, and was compared in the same subjects with the fractional turnover rate of the corresponding natural bile acid, cholic acid-taurine, labeled with 14C ((14C)CAT) using the classical Lindstedt technique. Very similar results were obtained in 5 healthy individuals (coefficient of variation 4.8%, medians 0.35 and 0.34, respectively). By contrast, the fractional deconjugation rate assessed from zonal scanning of glycine- and taurine-conjugated bile acids on thin-layer chromatography was much less for 75-SeHCAT than for (14C)CAT (0.02 and 0.13, respectively; p less than 0.05). The fractional rate for deconjugation plus dehydroxylation was also determined by zonal scanning, and gave lower values for 75-SeHCAT than for (14C)CAT (0.02 and 0.12, respectively; p less than 0.05). There was a striking similarity between the fractional rate for deconjugation alone and that for deconjugation plus dehydroxylation for both bile acids in individual samples (r = 0.999, p less than 0.001), suggesting that these two processes might occur simultaneously and probably involve the same bacteria. We conclude that our scintiscanning technique provides an accurate, noninvasive method of measuring fractional turnover rate of a bile acid in humans, and that the finding that 75SeHCAT remains conjugated with taurine during enterohepatic recycling means that absorption should be specific for the ileal active transport site, thus rendering it an ideal substance for assessing ileal function.

  12. Phospholipase C and diacylglycerol lipase in human gallbladder and hepatic bile.

    PubMed

    Pattinson, N R; Willis, K E

    1990-12-01

    A phospholipase C in bile, free of bacterial infection, has recently been identified from cholesterol gallstone patients. Because of the importance of phosphatidylcholine in solubilizing cholesterol in bile, this study further investigates the metabolism of phosphatidylcholine in delipidated gallbladder and common bile duct biles. Phospholipase C activity, as measured by the release of phosphoryl[3H]choline from the substrate 1,2-dipalmitoyl-sn-glycero-3-phospho [N-methyl-3H]choline, was identified in both hepatic and gallbladder biles. Similar levels of activity (nmol.h-1.mg-1 of delipidated protein) were found in common bile duct (11.25 +/- 14.23) and gallbladder bile (19.07 +/- 22.24), although per milliliter of bile, the mean gallbaldder levels were 6.4 times greater than those found in common duct bile. With the tow substrates, 1-palmitoyl-2[9,10-3H] palmitoyl-sn-glycero-3-phosphocholine and 1,2(1-14C) dipalmitoyl-sn-glycero-3-phosphocholine, the majority of organically extracted label, after thin-layer chromatography, was recovered as radiolabeled diglyceride, confirming the presence of phospholipase C. Diglyceride levels were found to be closely correlated with [3H]choline (slope, 0.9820; r = 0.9844). In addition to diglyceride, both radiolabeled free fatty acid and monoglyceride were identified in common bile duct and gallbladder biles, although their levels were an order of magnitude less than measurable phospholipase C activity. To determine whether the free fatty acid release was due to either a diacylglycerol-lipase or a phospholipase A2, the effect of adding unlabeled diglyceride on free fatty acid formation from the substrate [14C]DPPC was examined. As the concentration of unlabeled diglyceride was increased, the amount of free fatty acid and monoglyceride released were both reduced in parallel. Direct measurement of diacylglycerol-lipase activity by incubating the diglyceride, sn-2[3H]dipalmitoyl, resulted in release of both products in a ratio

  13. Structure of human NAPE-PLD: regulation of fatty-acid ethanolamide biosynthesis by bile acids

    PubMed Central

    Magotti, Paola; Bauer, Inga; Igarashi, Miki; Babagoli, Masih; Marotta, Roberto; Piomelli, Daniele; Garau, Gianpiero

    2015-01-01

    SUMMARY The fatty-acid ethanolamides (FAEs) are lipid mediators present in all organisms and involved in highly conserved biological functions such as innate immunity, energy balance and stress control. They are produced from membrane N-acylphosphatidylethanolamines (NAPEs) and include agonists for G protein-coupled receptors (e.g. cannabinoid receptors) and nuclear receptors (e.g. PPAR-α). Here we report the crystal structure of human NAPE-hydrolyzing phospholipase D (NAPE-PLD) at 2.65 Å resolution, a membrane enzyme that catalyzes FAE formation in mammals. NAPE-PLD forms homodimers partly separated by an internal ~9 Å-wide channel and uniquely adapted to associate with phospholipids. A hydrophobic cavity provides an entryway for NAPE into the active site, where a binuclear Zn2+ center orchestrates its hydrolysis. Bile acids bind with high affinity to selective pockets in this cavity, enhancing dimer assembly and enabling catalysis. These elements offer multiple targets for the design of small-molecule NAPE-PLD modulators with potential applications in inflammation and metabolic disorders. PMID:25684574

  14. Human Insulin Resistance Is Associated With Increased Plasma Levels of 12α-Hydroxylated Bile Acids

    PubMed Central

    Haeusler, Rebecca A.; Astiarraga, Brenno; Camastra, Stefania; Accili, Domenico; Ferrannini, Ele

    2013-01-01

    Bile acids (BAs) exert pleiotropic metabolic effects, and physicochemical properties of different BAs affect their function. In rodents, insulin regulates BA composition, in part by regulating the BA 12α-hydroxylase CYP8B1. However, it is unclear whether a similar effect occurs in humans. To address this question, we examined the relationship between clamp-measured insulin sensitivity and plasma BA composition in a cohort of 200 healthy subjects and 35 type 2 diabetic (T2D) patients. In healthy subjects, insulin resistance (IR) was associated with increased 12α-hydroxylated BAs (cholic acid, deoxycholic acid, and their conjugated forms). Furthermore, ratios of 12α-hydroxylated/non–12α-hydroxylated BAs were associated with key features of IR, including higher insulin, proinsulin, glucose, glucagon, and triglyceride (TG) levels and lower HDL cholesterol. In T2D patients, BAs were nearly twofold elevated, and more hydrophobic, compared with healthy subjects, although we did not observe disproportionate increases in 12α-hydroxylated BAs. In multivariate analysis of the whole dataset, controlling for sex, age, BMI, and glucose tolerance status, higher 12α-hydroxy/non–12α-hydroxy BA ratios were associated with lower insulin sensitivity and higher plasma TGs. These findings suggest a role for 12α-hydroxylated BAs in metabolic abnormalities in the natural history of T2D and raise the possibility of developing insulin-sensitizing therapeutics based on manipulations of BA composition. PMID:23884887

  15. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease.

    PubMed

    Lake, April D; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D; Lu, Zhenqiang; Lehman-McKeeman, Lois D; Cherrington, Nathan J

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the 'classical' (neutral) and 'alternative' (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. PMID:23391614

  16. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse.

    PubMed

    Wang, David Q-H; Tazuma, Susumu; Cohen, David E; Carey, Martin C

    2003-09-01

    We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts were measured by reverse-phase HPLC, and hydrophobicity indices were estimated by Heuman's method. Cholesterol absorption efficiency was determined by a plasma dual-isotope ratio method. In mice fed chow, natural proportions of tauro-beta-muricholate (42 +/- 6%) and taurocholate (50 +/- 7%) with a hydrophobicity index of -0.35 +/- 0.04 produced cholesterol absorption of 37 +/- 5%. Because bacterial and especially hepatic biotransformations of specific bile acids occurred, hydrophobicity indices of the resultant bile salt pools differed from fed bile acids. We observed a significant positive correlation between hydrophobicity indices of the bile salt pool and percent cholesterol absorption. The principal mechanism whereby hydrophilic bile acids inhibit cholesterol absorption appears to be diminution of intraluminal micellar cholesterol solubilization. Gene expression of intestinal sterol efflux transporters Abcg5 and Abcg8 was upregulated by feeding cholic acid but not by hydrophilic beta-muricholic acid nor by hydrophobic deoxycholic acid. We conclude that the hydrophobicity of the bile salt pool predicts the effects of individual fed bile acids on intestinal cholesterol absorption. Natural alpha- and beta-muricholic acids are the most powerful inhibitors of cholesterol absorption in mice and might act as potent cholesterol-lowering agents for prevention of cholesterol deposition diseases in humans. PMID:12748061

  17. Comparative analysis of conjugated bile acids in human serum using high-performance liquid chromatography and capillary electrophoresis.

    PubMed

    Lee, B L; New, A L; Ong, C N

    1997-12-19

    This paper describes the analysis of conjugated bile acids in human serum using reversed-phase high-performance liquid chromatography (HPLC) and micellar electrokinetic capillary electrophoresis (CE). Samples of healthy subjects and patients with different hepatic diseases were pretreated with a simple preparation procedure using a solid-phase extraction technique. The optimal analytical conditions of both chromatographic methods were investigated for the convenience and reliability for routine analysis. Both HPLC and CE methods were found to be reliable and compatible. The recoveries of nine bile acid conjugates using both methods were generally >85% and reproducibility >90%. The day-to-day variation of retention time was <5% for HPLC, while the variation of migration time for CE was <3%. Although the detection limit of the HPLC method (1 nmol/ml) was five times more sensitive than that of the CE method, the CE method was considered to be more time and cost effective. PMID:9518169

  18. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins.

    PubMed

    Marin, Jose J G; Hernandez, Alicia; Revuelta, Isabel E; Gonzalez-Sanchez, Ester; Gonzalez-Buitrago, Jose M; Perez, Maria J

    2013-08-01

    Acute accumulation of bile acids in hepatocytes may cause cell death. However, during long-term exposure due to prolonged cholestasis, hepatocytes may develop a certain degree of chemoresistance to these compounds. Because mitochondrial adaptation to persistent oxidative stress may be involved in this process, here we have investigated the effects of complete mitochondrial genome depletion on the response to bile acid-induced hepatocellular injury. A subline (Rho) of human hepatoma SK-Hep-1 cells totally depleted of mitochondrial DNA (mtDNA) was obtained, and bile acid-induced concentration-dependent activation of apoptosis/necrosis and survival signaling pathways was studied. In the absence of changes in intracellular ATP content, Rho cells were highly resistant to bile acid-induced apoptosis and partially resistant to bile acid-induced necrosis. In Rho cells, both basal and bile acid-induced generation of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, was decreased. Bile acid-induced proapoptotic signals were also decreased, as evidenced by a reduction in the expression ratios Bax-α/Bcl-2, Bcl-xS/Bcl-2, and Bcl-xS/Bcl-xL. This was mainly due to a downregulation of Bax-α and Bcl-xS. Moreover, in these cells the Akt/mTOR pathway was constitutively activated in a ROS-independent manner and remained similarly activated in the presence of bile acid treatment. In contrast, ERK1/2 activation was constitutively reduced and was not activated by incubation with bile acids. In conclusion, these results suggest that impaired mitochondrial function associated with mtDNA alterations, which may occur in liver cells during prolonged cholestasis, may activate mechanisms of cell survival accounting for an enhanced resistance of hepatocytes to bile acid-induced apoptosis. PMID:23597504

  19. Isolation and Profiling of MicroRNA-containing Exosomes from Human Bile.

    PubMed

    Li, Ling; Piontek, Klaus B; Kumbhari, Vivek; Ishida, Masaharu; Selaru, Florin M

    2016-01-01

    Exosome research in the last three years has greatly extended the scope towards identification and characterization of biomarkers and their therapeutic uses. Exosomes have recently been shown to contain microRNAs (miRs). MiRs themselves have arisen as valuable biomarkers for diagnostic purposes. As specimen collection in clinics and hospitals is quite variable, miRNA isolation from whole bile varies substantially. To achieve robust, accurate and reproducible miRNA profiles from collected bile samples in a simple manner required the development of a high-quality protocol to isolate and characterize exosomes from bile. The method requires several centrifugations and a filtration step with a final ultracentrifugation step to pellet the isolated exosomes. Electron microscopy, Western blots, flow cytometry and multi-parameter nanoparticle optical analysis, where available, are crucial characterization steps to validate the quality of the exosomes. For the isolation of miRNA from these exosomes, spiking the lysate with a non-specific, synthetic miRNA from a species like Caenorhabditis elegans, i.e., Cel-miR-39, is important for normalization of RNA extraction efficiency. The isolation of exosome from bile fluid following this method allows the successful miRNA profiling from bile samples stored for several years at -80 °C. PMID:27341293

  20. Investigation of solubilising effects of bile salts on an active pharmaceutical ingredient with unusual pH dependent solubility by NMR spectroscopy.

    PubMed

    Vogtherr, M; Marx, A; Mieden, A-C; Saal, C

    2015-05-01

    The interaction between an ampholytic and amphiphilic Active Pharmaceutical Ingredient (API) showing unusual pH dependent solubility and Fasted State Simulated Intestinal Fluid (FaSSIF) was studied by NMR spectroscopy. Solubility in FaSSIF was drastically increased, about 30 fold, compared to simulated gastrointestinal fluid without bile salts. Our studies aimed at understanding the mechanisms that lead to this drastic enhancement. All species present in solution at various concentrations of API were characterised by Diffusion Ordered Spectroscopy (DOSY) NMR measurements. These indicated the presence of mixed taurocholate-lecithin and pure taurocholate micelles in pure FaSSIF, and formation of mixed taurocholate-API micelles after addition of API. The formation of taurocholate-API micelles was also supported by Nuclear Overhauser Effect/Enhancement (NOE) contacts between taurocholate and the API. Formation of mixed taurocholate-API micelles took place at the expense of pure taurocholate micelles, whereas mixed taurocholate-lecithin micelles remained uninfluenced by the presence of API. Our results showed that the increase in solubility was due to similar amphiphilic properties of the API and taurocholate which enabled formation of mixed taurocholate-API micelles. From results of determination of solubility as well as NMR experiments a phase diagram comprising several micellar species was derived. PMID:25720817

  1. Role of polymorphic bile salt export pump (BSEP, ABCB11) transporters in anti-tuberculosis drug-induced liver injury in a Chinese cohort

    PubMed Central

    Chen, Ru; Wang, Jing; Tang, Shaowen; Zhang, Yuan; Lv, Xiaozhen; Wu, Shanshan; Yang, Zhirong; Xia, Yinyin; Chen, Dafang; Zhan, Siyan

    2016-01-01

    Evidence indicates that the polymorphisms in bile salt export pump (BSEP, encoded by ABCB11) may play an important role in the development of anti-tuberculosis drug-induced liver injury (ATDILI) and we aim to investigate the association between genetic variants of ABCB11 and the risk of ATDILI in a Chinese cohort. A total of 89 tuberculosis patients with ATDILI and 356 matched ATDILI -free patients constituted cases and controls. Genetic polymorphisms of ABCB11 were determined by TaqMan single-nucleotide polymorphism (SNP) genotyping assay. Odds ratio (OR) with 95% confidence intervals (CIs) was estimated by conditional logistic regression model. There were no significant differences in genotype frequencies of ABCB11 between cases and controls. In the subgroup analysis, polymorphisms of rs2287616 were found to be associated with cholestatic/mixed pattern of liver injury under dominant and addictive model (OR = 3.84, 95% CI:1.16–12.75, P = 0.028 and OR = 2.51, 95% CI:1.12–5.62, P = 0.025, respectively), however the significance disappeared after Bonferroni correction. This study suggested that genetic variants of ABCB11 gene might contribute to anti-tuberculosis drug-induced cholestatic liver injury in Chinese patients. Studies in larger, varied populations are required to confirm these findings. PMID:27293027

  2. Role of polymorphic bile salt export pump (BSEP, ABCB11) transporters in anti-tuberculosis drug-induced liver injury in a Chinese cohort.

    PubMed

    Chen, Ru; Wang, Jing; Tang, Shaowen; Zhang, Yuan; Lv, Xiaozhen; Wu, Shanshan; Yang, Zhirong; Xia, Yinyin; Chen, Dafang; Zhan, Siyan

    2016-01-01

    Evidence indicates that the polymorphisms in bile salt export pump (BSEP, encoded by ABCB11) may play an important role in the development of anti-tuberculosis drug-induced liver injury (ATDILI) and we aim to investigate the association between genetic variants of ABCB11 and the risk of ATDILI in a Chinese cohort. A total of 89 tuberculosis patients with ATDILI and 356 matched ATDILI -free patients constituted cases and controls. Genetic polymorphisms of ABCB11 were determined by TaqMan single-nucleotide polymorphism (SNP) genotyping assay. Odds ratio (OR) with 95% confidence intervals (CIs) was estimated by conditional logistic regression model. There were no significant differences in genotype frequencies of ABCB11 between cases and controls. In the subgroup analysis, polymorphisms of rs2287616 were found to be associated with cholestatic/mixed pattern of liver injury under dominant and addictive model (OR = 3.84, 95% CI:1.16-12.75, P = 0.028 and OR = 2.51, 95% CI:1.12-5.62, P = 0.025, respectively), however the significance disappeared after Bonferroni correction. This study suggested that genetic variants of ABCB11 gene might contribute to anti-tuberculosis drug-induced cholestatic liver injury in Chinese patients. Studies in larger, varied populations are required to confirm these findings. PMID:27293027

  3. Direct measurement of first-pass ileal clearance of a bile acid in humans

    SciTech Connect

    Galatola, G.; Jazrawi, R.P.; Bridges, C.; Joseph, A.E.; Northfield, T.C. )

    1991-04-01

    The purpose of this study was to develop and validate a method of directly measuring ileal bile acid absorption efficiency during a single enterohepatic cycle (first-pass ileal clearance). This has become feasible for the first time because of the availability of the synthetic gamma-labeled bile acid 75Selena-homocholic acid-taurine (75SeHCAT). Together with the corresponding natural bile acid cholic acid-taurine (labeled with 14C), SeHCAT was infused distal to an occluding balloon situated beyond the ampulla of Vater in six healthy subjects. Completion of a single enterohepatic cycle was assessed by obtaining a plateau for 75SeHCAT activity proximal to the occluding balloon, which prevented further cycles. Unabsorbed 75SeHCAT was collected after total gut washout, which was administered distal to the occluding balloon. 75SeHCAT activity in the rectal effluent measured by gamma counter was compared with that of absorbed 75SeHCAT level measured by gamma camera and was used to calculate first-pass ileal clearance. This was very efficient (mean value, 96%) and showed very little variation in the six subjects studied (range, 95%-97%). A parallel time-activity course in hepatic bile for 14C and 75Se during a single enterohepatic cycle, together with a ratio of unity for 14C/75Se in samples obtained at different time intervals, suggests that 75SeHCAT is handled by the ileum like the natural bile acid cholic acid-taurine. Extrapolation of 75SeHCAT first-pass ileal clearance to that of the natural bile acid therefore seems justifiable. In a subsidiary experiment, ileal absorption efficiency per day for 75SeHCAT was also measured by scanning the gallbladder area on 5 successive days after the measurement of first-pass ileal clearance. In contrast with absorption efficiency per cycle, absorption efficiency per day varied widely (49%-86%).

  4. Integrated Transcriptomic and Proteomic Analysis of the Bile Stress Response in a Centenarian-originated Probiotic Bifidobacterium longum BBMN68*

    PubMed Central

    An, Haoran; Douillard, François P.; Wang, Guohong; Zhai, Zhengyuan; Yang, Jin; Song, Shuhui; Cui, Jianyun; Ren, Fazheng; Luo, Yunbo; Zhang, Bing; Hao, Yanling

    2014-01-01

    Bifidobacteria are natural inhabitants of the human gastrointestinal tract and well known for their health-promoting effects. Tolerance to bile stress is crucial for bifidobacteria to survive in the colon and to exert their beneficial actions. In this work, RNA-Seq transcriptomic analysis complemented with proteomic analysis was used to investigate the cellular response to bile in Bifidobacterium longum BBMN68. The transcript levels of 236 genes were significantly changed (≥ threefold, p < 0.001) and 44 proteins were differentially abundant (≥1.6-fold, p < 0.01) in B. longum BBMN68 when exposed to 0.75 g l−1 ox-bile. The hemolysin-like protein and bile efflux systems were significantly over produced, which might prevent bile adsorption and exclude bile, respectively. The cell membrane composition was modified probably by an increase of cyclopropane fatty acid and a decrease of transmembrane proteins, resulting in a cell membrane more impermeable to bile salts. Our hypothesis was later confirmed by surface hydrophobicity assay. The transcription of genes related to xylose utilization and bifid shunt were up-regulated, which increased the production of ATP and reducing equivalents to cope with bile-induced damages in a xylan-rich colon environment. Bile salts signal the B. longum BBMN68 to gut entrance and enhance the expression of esterase and sortase associated with adhesion and colonization in intestinal tract, which was supported by a fivefold increased adhesion ability to HT-29 cells by BBMN68 upon bile exposure. Notably, bacterial one-hybrid and EMSA assay revealed that the two-component system senX3-regX3 controlled the expression of pstS in bifidobacteria and the role of this target gene in bile resistance was further verified by heterologous expression in Lactococcus lactis. Taken altogether, this study established a model for global response mechanisms in B. longum to bile. PMID:24965555

  5. Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance

    PubMed Central

    Begley, Máire; Gahan, Cormac G. M.; Hill, Colin

    2002-01-01

    Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses. PMID:12450822

  6. Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance.

    PubMed

    Begley, Máire; Gahan, Cormac G M; Hill, Colin

    2002-12-01

    Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses. PMID:12450822

  7. Efficient and Controlled Generation of 2D and 3D Bile Duct Tissue from Human Pluripotent Stem Cell-Derived Spheroids.

    PubMed

    Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young

    2016-08-01

    While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future. PMID:27138846

  8. Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion.

    PubMed

    Dickenson, Nicholas E; Zhang, Lingling; Epler, Chelsea R; Adam, Philip R; Picking, Wendy L; Picking, William D

    2011-01-18

    Shigella flexneri uses its type III secretion apparatus (TTSA) to inject host-altering proteins into targeted eukaryotic cells. The TTSA is composed of a basal body and an exposed needle with invasion plasmid antigen D (IpaD) forming a tip complex that controls secretion. The bile salt deoxycholate (DOC) stimulates recruitment of the translocator protein IpaB into the maturing TTSA needle tip complex. This process appears to be triggered by a direct interaction between DOC and IpaD. Fluorescence spectroscopy and NMR spectroscopy are used here to confirm the DOC-IpaD interaction and to reveal that IpaD conformational changes upon DOC binding trigger the appearance of IpaB at the needle tip. Förster resonance energy transfer between specific sites on IpaD was used here to identify changes in distances between IpaD domains as a result of DOC binding. To further explore the effects of DOC binding on IpaD structure, NMR chemical shift mapping was employed. The environments of residues within the proposed DOC binding site and additional residues within the "distal" globular domain were perturbed upon DOC binding, further indicating that conformational changes occur within IpaD upon DOC binding. These events are proposed to be responsible for the recruitment of IpaB at the TTSA needle tip. Mutation analyses combined with additional spectroscopic analyses confirm that conformational changes in IpaD induced by DOC binding contribute to the recruitment of IpaB to the S. flexneri TTSA needle tip. These findings lay the foundation for determining how environmental factors promote TTSA needle tip maturation prior to host cell contact. PMID:21126091

  9. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors.

    PubMed

    Welch, Matthew A; Köck, Kathleen; Urban, Thomas J; Brouwer, Kim L R; Swaan, Peter W

    2015-05-01

    Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability. PMID:25735837

  10. Toward Predicting Drug-Induced Liver Injury: Parallel Computational Approaches to Identify Multidrug Resistance Protein 4 and Bile Salt Export Pump Inhibitors

    PubMed Central

    Welch, Matthew A.; Köck, Kathleen; Urban, Thomas J.; Brouwer, Kim L. R.

    2015-01-01

    Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability. PMID:25735837

  11. Thermal stabilization of bicelles by a bile-salt-derived detergent: a combined ³¹P and ²H nuclear magnetic resonance study.

    PubMed

    Morales, Hannah Hazel; Saleem, Qasim; Macdonald, Peter M

    2014-12-23

    The properties of bicelles composed of mixtures of long-chain lipids dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG), stabilized by zwitterionic bile salt analogue 3-[(3-cholamidopropyl)dimethyl-d6-ammonio]-2-hydroxy-1-propanesulfonate (CHAPSO-d6), deuterated at both amino methyls, were investigated by a combination of (31)P and (2)H NMR, focusing on the behavior of CHAPSO as a function of temperature. For compositions of molar ratio q = [DMPC + DMPG]/[CHAPSO] = 3, R = [DMPG]/[DMPC + DMPG] = 0, 0.01 and 0.10 and lipid concentration CL = 25 wt % lipid at temperatures of between 30 and 60 °C, magnetic alignment was readily achieved as assessed via both (31)P NMR of the phospholipids and (2)H NMR of CHAPSO-d6. Increasing temperature yielded higher values for the chemical shift anisotropy of the former and the quadrupole splitting of the latter, consistent with the progressive migration of CHAPSO from edge regions into planar regions of the bicellar assemblies. However, relative to dihexadecyl phosphatidylcholine (DHPC), CHAPSO exhibited lower miscibility with DMPC, although the presence of DMPG enhanced this miscibility. At 65 °C, thermal instability became evident in the appearance of a separate isotropic component in both (31)P and (2)H NMR spectra. This isotropic phase was CHAPSO-enriched but less so as a function of increasing DMPG. These findings indicate that the enhanced thermal stability of CHAPSO- versus DHPC-containing bicelles arises from a combination of the larger surface area that edge CHAPSO is able to mask, mole for mole, and its relative preference for edge regions, plus, possibly, specific interactions with DMPG. PMID:25426518

  12. Apoptosis induced by aqueous extracts of crocodile bile in human heptacarcinoma SMMC-7721.

    PubMed

    Song, Wei; Li, Shan-Shan; Qiu, Ping-ping; Shen, Dong-Yan; Tian, Ling; Zhang, Qiu-Yan; Liao, Long-Xing; Chen, Qing-Xi

    2013-05-01

    In the present study, effects of aqueous extracts from Crocodylus siamensis bile (AE-CB) on SMMC-7721 cell growth, cell cycle, and apoptosis were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, inverted microscopy, fluorescence microscopy, propidium iodide (PI) single- and fluorescein isothiocyanate (FITC)/PI double-staining flow cytometry, and western blotting. Our data have revealed that AE-CB significantly inhibited the growth of SMMC-7721 cell and arrested cell cycle at G0/G1 phase. SMMC-7721 cells showed typical apoptotic morphological changes after treated with AE-CB for 48 h. Cell death assay indicated that SMMC-7721 cells underwent apoptosis in a dose-dependent manner induced by AE-CB. In addition, AE-CB treatment could downregulate the protein level of Bcl-2 and upregulate the Bax, leading to the increase in the ratio of Bax to Bcl-2 in SMMC-7721 cells. Meanwhile, it was observed that the expression of Survivin and c-Myc decreased, but the expression of P53 increased. All these events were associated with increase of reactive oxygen species. The data indicated that mitochondrial pathway might play an important role in bile extract-induced apoptosis in SMMC-7721 cells. These results provide significant insight into the anticarcinogenic action of bile extract on SMMC-7721 cells. PMID:23460500

  13. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans[S

    PubMed Central

    Bonde, Ylva; Breuer, Olof; Lütjohann, Dieter; Sjöberg, Stefan; Angelin, Bo; Rudling, Mats

    2014-01-01

    Reduced plasma LDL-cholesterol is a hallmark of hyperthyroidism and is caused by transcriptional stimulation of LDL receptors in the liver. Here, we investigated whether thyroid hormone (TH) actions involve other mechanisms that may also account for the reduction in LDL-cholesterol, including effects on proprotein convertase subtilisin/kexin type 9 (PCSK9) and bile acid synthesis. Twenty hyperthyroid patients were studied before and after clinical normalization, and the responses to hyperthyroidism were compared with those in 14 healthy individuals after 14 days of treatment with the liver-selective TH analog eprotirome. Both hyperthyroidism and eprotirome treatment reduced circulating PCSK9, lipoprotein cholesterol, apoB and AI, and lipoprotein(a), while cholesterol synthesis was stable. Hyperthyroidism, but not eprotirome treatment, markedly increased bile acid synthesis and reduced fibroblast growth factor (FGF) 19 and dietary cholesterol absorption. Eprotirome treatment, but not hyperthyroidism, reduced plasma triglycerides. Neither hyperthyroidism nor eprotirome treatment altered insulin, glucose, or FGF21 levels. TH reduces circulating PSCK9, thereby likely contributing to lower plasma LDL-cholesterol in hyperthyroidism. TH also stimulates bile acid synthesis, although this response is not critical for its LDL-lowering effect. PMID:25172631

  14. The effect of non-starch polysaccharide supplementation on circulating bile acids, hormone and metabolite levels following a fat meal in human subjects.

    PubMed

    Morgan, L M; Tredger, J A; Shavila, Y; Travis, J S; Wright, J

    1993-09-01

    The effects of guar gum, sugar-beet fibre (SBF) and wheat bran supplementation of a high-fat test meal were compared with an NSP-free control meal and a meal containing an equivalent amount of the ion-exchange resin cholestyramine in healthy non-obese human volunteers. Their effects on gastric emptying, postprandial circulating bile acids, triacylglycerols and gastrointestinal hormone levels were studied. The in vitro binding of NSP and cholestyramine to [1-14C]glycocholic acid was measured and compared with their in vivo effect. Guar gum and cholestyramine supplementation significantly lowered circulating postprandial bile acid, triacylglycerol and gastric inhibitory polypeptide concentrations, but sugar-beet fibre and wheat bran were without effect. Liquid gastric emptying, as assessed by circulating paracetamol levels, was slightly accelerated in the guar gum-supplemented meal. Glycocholic acid bound strongly to the insoluble fraction of cholestyramine and the soluble fraction of guar gum. The insoluble fractions of SBF and wheat bran bound only small quantities of glycocholate; no bile acid binding was detected in the soluble fractions of these NSP. The study demonstrates that measurement of postprandial bile acids enables an indirect measurement to be made of bile acid binding to NSP in vivo. The results support the hypothesis that the hypocholesterolaemic action of guar gum is largely mediated via interruption of the enterohepatic bile acid circulation, but indicate that the hypocholesterolaemic action of SBF is mediated by another mechanism. PMID:8260476

  15. Bile resistance mechanisms in Lactobacillus and Bifidobacterium

    PubMed Central

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  16. Bile resistance mechanisms in Lactobacillus and Bifidobacterium.

    PubMed

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  17. Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury?

    PubMed

    Slizgi, Jason R; Lu, Yang; Brouwer, Kenneth R; St Claire, Robert L; Freeman, Kimberly M; Pan, Maxwell; Brock, William J; Brouwer, Kim L R

    2016-01-01

    Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD. PMID:26507107

  18. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    SciTech Connect

    Boone, Christopher D.; Tu, Chingkuang; McKenna, Robert

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  19. Improved method for the determination of the major neutral steroids and unconjugated bile acids in human faeces using capillary gas chromatography.

    PubMed

    Bailey, E; Brooks, A G; Purchase, R; Meakings, M; Davies, M; Walters, D G

    1987-10-01

    An improved method has been developed for the determination of the major neutral steroids (cholesterol and 5 beta-cholestan-3 beta-ol) and unconjugated bile acids (deoxycholic acid and lithocholic acid) in human faeces, using capillary gas chromatography with flame ionization detection. The freeze-dried faecal sample was subjected to a two-stage Soxhlet extraction followed by an aqueous alkali-organic solvent partition step to separate neutral steroids from bile acids. The neutral steroids were analysed as their trimethylsilyl ether derivatives on an OV-1 capillary column. The bile acids were further purified on a Sep-Pak C18 cartridge and then fractionated on a Sep-Pak SIL cartridge. Unconjugated bile acids were analysed as their methyl ester-trimethylsilyl ether derivatives also on an OV-1 capillary column. Quantitation of neutral steroids and unconjugated bile acids was achieved by reference to appropriate internal standards, added to the faecal extract immediately after the Soxhlet extraction stage. The method is being used in a study of the effect of diet on the metabolic activity of human gut flora. PMID:3429569

  20. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    PubMed

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-01

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids. PMID:21797258

  1. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    PubMed Central

    Boone, Christopher D.; Tu, Chingkuang; McKenna, Robert

    2014-01-01

    The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO2 into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis. PMID:24914985

  2. Heterogeneity of bile pigment conjugates as revealed by chromatography of their anthranilate azopigments

    PubMed Central

    Heirwegh, K. P. M.; Van Hees, G. P.; Leroy, P.; Van Roy, F. P.; Jansen, F. H.

    1970-01-01

    1. Azopigments derived from conjugated bile pigments by coupling with the diazonium salt of ethyl anthranilate are analysed conveniently by quantitative t.l.c. or by column chromatography on CM-cellulose. 2. By chromatographic studies combined with a series of chemical tests six groups of azopigments were demonstrable in preparations from bile and from icteric urine of man. Azobilirubin and its β-d-monoglucuronide have hitherto been considered to be the only major derivatives that can be obtained from human bile pigments. In the present work, other azopigments accounted for 30–40% of the total azopigment material, and the amounts of these showed considerable variation among biological fluids. 3. The divergence of the present results from earlier work is probably related to the use of milder diazotization conditions and of chromatographic techniques with a high resolving power. 4. The thin-layer chromatographic systems developed allow rapid and quantitative analysis of azopigments derived from bile pigments. PMID:5500353

  3. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review.

    PubMed

    Wang, David Q-H; Carey, Martin C

    2014-08-01

    Forty-four different animal biles obtained from both invertebrates and vertebrates (including human bile) have been used for centuries for a host of maladies in traditional Chinese medicine (TCM) beginning with dog, ox and common carp biles approximately in the Zhou dynasty (c. 1046-256 BCE). Overall, different animal biles were prescribed principally for the treatment of liver, biliary, skin (including burns), gynecological and heart diseases, as well as diseases of the eyes, ears, nose, mouth and throat. We present an informed opinion of the clinical efficacy of the medicinal uses of the different animal biles based on their presently known principal chemical components which are mostly steroidal detergent-like molecules and the membrane lipids such as unesterified cholesterol and mixed phosphatidylcholines and sometimes sphingomyelin, as well as containing lipopigments derived from heme principally bilirubin glucuronides. All of the available information on the ethnopharmacological uses of biles in TCM were collated from the rich collection of ancient Chinese books on materia medica held in libraries in China and United States and the composition of various animal biles was based on rigorous separatory and advanced chemical identification techniques published since the mid-20(th) century collected via library (Harvard's Countway Library) and electronic searches (PubMed and Google Scholar). Our analysis of ethnomedical data and information on biliary chemistry shows that specific bile salts, as well as the common bile pigment bilirubin and its glucuronides plus the minor components of bile such as vitamins A, D, E, K, as well as melatonin (N-acetyl-5-methoxytryptamine) are salutary in improving liver function, dissolving gallstones, inhibiting bacterial and viral multiplication, promoting cardiac chronotropsim, as well as exhibiting anti-inflammatory, anti-pyretic, anti-oxidant, sedative, anti-convulsive, anti-allergic, anti-congestive, anti-diabetic and anti

  4. Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review

    PubMed Central

    Wang, David Q-H; Carey, Martin C

    2014-01-01

    Forty-four different animal biles obtained from both invertebrates and vertebrates (including human bile) have been used for centuries for a host of maladies in traditional Chinese medicine (TCM) beginning with dog, ox and common carp biles approximately in the Zhou dynasty (c. 1046-256 BCE). Overall, different animal biles were prescribed principally for the treatment of liver, biliary, skin (including burns), gynecological and heart diseases, as well as diseases of the eyes, ears, nose, mouth and throat. We present an informed opinion of the clinical efficacy of the medicinal uses of the different animal biles based on their presently known principal chemical components which are mostly steroidal detergent-like molecules and the membrane lipids such as unesterified cholesterol and mixed phosphatidylcholines and sometimes sphingomyelin, as well as containing lipopigments derived from heme principally bilirubin glucuronides. All of the available information on the ethnopharmacological uses of biles in TCM were collated from the rich collection of ancient Chinese books on materia medica held in libraries in China and United States and the composition of various animal biles was based on rigorous separatory and advanced chemical identification techniques published since the mid-20th century collected via library (Harvard’s Countway Library) and electronic searches (PubMed and Google Scholar). Our analysis of ethnomedical data and information on biliary chemistry shows that specific bile salts, as well as the common bile pigment bilirubin and its glucuronides plus the minor components of bile such as vitamins A, D, E, K, as well as melatonin (N-acetyl-5-methoxytryptamine) are salutary in improving liver function, dissolving gallstones, inhibiting bacterial and viral multiplication, promoting cardiac chronotropsim, as well as exhibiting anti-inflammatory, anti-pyretic, anti-oxidant, sedative, anti-convulsive, anti-allergic, anti-congestive, anti-diabetic and anti

  5. Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter.

    PubMed

    Banerjee, Antara; Hussainzada, Naissan; Khandelwal, Akash; Swaan, Peter W

    2008-03-01

    The hASBT (human apical Na(+)-dependent bile acid transporter) constitutes a key target of anti-hypercholesterolaemic therapies and pro-drug approaches; physiologically, hASBT actively reclaims bile acids along the terminal ileum via Na(+) co-transport. Previously, TM (transmembrane segment) 7 was identified as part of the putative substrate permeation pathway using SCAM (substitute cysteine accessibility mutagenesis). In the present study, SCAM was extended through EL3 (extracellular loop 3; residues Arg(254)-Val(286)) that leads into TM7 from the exofacial matrix. Activity of most EL3 mutants was significantly hampered upon cysteine substitution, whereas ten (out of 31) were functionally inactive (<10% activity). Since only E282C lacked plasma membrane expression, EL3 amino acids predominantly fulfill critical functional roles during transport. Oppositely charged membrane-impermeant MTS (methanethiosulfonate) reagents {MTSET [(2-trimethylammonium) ethyl MTS] and MTSES [(2-sulfonatoethyl) MTS]} produced mostly similar inhibition profiles wherein only middle and descending loop segments (residues Thr(267)-Val(286)) displayed significant MTS sensitivity. The presence of bile acid substrate significantly reduced the rates of MTS modification for all MTS-sensitive mutants, suggesting a functional association between EL3 residues and bile acids. Activity assessments at equilibrative [Na(+)] revealed numerous Na(+)-sensitive residues, possibly performing auxiliary functions during transport such as transduction of protein conformational changes during translocation. Integration of these data suggests ligand interaction points along EL3 via electrostatic interactions with Arg(256), Glu(261) and probably Glu(282) and a potential cation-pi interaction with Phe(278). We conclude that EL3 amino acids are essential for hASBT activity, probably as primary substrate interaction points using long-range electrostatic attractive forces. PMID:18028035

  6. The ulcerogenic effect of bile and bile acid in rats during immobilization stress

    NASA Technical Reports Server (NTRS)

    Weisener, J.

    1980-01-01

    The effect of different concentrations of oxen bile and individual bile acids or their sodium salts on the gastric mucosa of rats was investigated in combination with immobilization stress. A statistically significant higher frequency of ulcers was only determined in the application of 10% oxen bile. Dosages on 10% sodium glycocholic acid demonstrated strong toxic damage with atonic dilation of the stomach and extensive mucosal bleeding.

  7. New method for the determination of bile acids in human plasma by liquid-phase microextraction using liquid chromatography-ion-trap-time-of-flight mass spectrometry.

    PubMed

    de Paiva, Maria José Nunes; Menezes, Helvécio Costa; da Silva, Júlio César Cardoso; Resende, Rodrigo Ribeiro; Cardeal, Zenilda de Lourdes

    2015-04-01

    Bile acids (BAs) are derived from cholesterol and produced in the liver. The most abundant bile acids in humans are usually conjugated with glycine and taurine and are divided into primary BAs such as cholic acid (CA) and chenodeoxycholic acid (CDCA) and secondary BAs like deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA). The differences amongst individual bile acids (BAs) are significant in order to distinguish different pathological processes and exposure to chemical compounds. Hollow fiber based liquid-phase microextraction (HF-LPME) is a technique that combines sample cleansing, extraction and the concentration of analytes, where a hydrophobic porous capillary membrane is impregnated with an organic extraction solvent and the lumen is filled with microliters of a phase acceptor both organic by nature. The aim of this study was to develop a new method to extract bile acids from plasma through HF-LPME of two phases (octanol as the acceptor phase) using LCMS-IT-TOF. The optimized two-phased LPME procedure for the extraction of bile acids showed limits of detection 1.0 μg L(-1) and limits of quantification of 5.0 μg L(-1). The intra-assay precision ranged from 2.1 to 11.9%. The method developed was linear over the range of 5.0-200.0 μg L(-1) for all analytes. The hollow-fiber liquid-phase microextraction method was applied to human plasma from workers exposed to organic and halogenated solvents and also to unexposed volunteers. The method is simple, low cost and it does not require large amounts of organic solvents, therefore it is quite suitable for the analysis of bile acids exposed to hepatotoxic compounds. PMID:25721909

  8. HPLC-fluorescence determination of individual free and conjugated bile acids in human serum.

    PubMed

    Gatti, R; Roda, A; Cerre, C; Bonazzi, D; Cavrini, V

    1997-01-01

    A method for the quantitative analysis of unconjugated and conjugated bile acids (BA) in serum of patients with primary biliary cirrhosis (PBC) before and after therapy with antibiotic or ursodeoxycholic acid (UDCA) is described. After separation of the free, glycine and taurine conjugated (F, G and T conjugated) fractions by solid-phase extraction, the isolated T conjugates were hydrolysed enzymatically using cholyglycine hydrolase. The BA fractions were derivatized using 2-bromoacetyl-6-methoxynaphthalene (Br-AMN) and detected fluorimetrically (lambda exc = 300 nm, lambda em = 460 nm). The derivatization reaction was performed under mild conditions (10 min at 40 degrees C) in an aqueous medium in the presence of tetrakis (decyl) ammonium bromide (TDeABr). The HPLC separation was achieved using an ODS column and with a mobile phase gradient mixture of A-B, where A is water and B is acetonitrile:methanol (60:40 v/v) for elution at a flow-rate of 1.2 mL/min. The reproducibility, recovery and separation of individual BA under gradient elution conditions were satisfactory, allowing a sensitive detection of each BA in serum samples with a detection limit of about 1-2 pmol. PMID:9051208

  9. Characterization of the role of ABCG2 as a bile acid transporter in liver and placenta.

    PubMed

    Blazquez, Alba G; Briz, Oscar; Romero, Marta R; Rosales, Ruben; Monte, Maria J; Vaquero, Javier; Macias, Rocio I R; Cassio, Doris; Marin, Jose J G

    2012-02-01

    ABCG2 is involved in epithelial transport/barrier functions. Here, we have investigated its ability to transport bile acids in liver and placenta. Cholylglycylamido fluorescein (CGamF) was exported by WIF-B9/R cells, which do not express the bile salt export pump (BSEP). Sensitivity to typical inhibitors suggested that CGamF export was mainly mediated by ABCG2. In Chinese hamster ovary (CHO cells), coexpression of rat Oatp1a1 and human ABCG2 enhanced the uptake and efflux, respectively, of CGamF, cholic acid (CA), glycoCA (GCA), tauroCA, and taurolithocholic acid-3-sulfate. The ability of ABCG2 to export these bile acids was confirmed by microinjecting them together with inulin in Xenopus laevis oocytes expressing this pump. ABCG2-mediated bile acid transport was inhibited by estradiol 17β-d-glucuronide and fumitremorgin C. Placental barrier for bile acids accounted for <2-fold increase in fetal cholanemia despite >14-fold increased maternal cholanemia induced by obstructive cholestasis in pregnant rats. In rat placenta, the expression of Abcg2, which was much higher than that of Bsep, was not affected by short-term cholestasis. In pregnant rats, fumitremorgin C did not affect uptake/secretion of GCA by the liver but inhibited its fetal-maternal transfer. Compared with wild-type mice, obstructive cholestasis in pregnant Abcg2(-/-) knockout mice induced similar bile acid accumulation in maternal serum but higher accumulation in placenta, fetal serum, and liver. In conclusion, ABCG2 is able to transport bile acids. The importance of this function depends on the relative expression in the same epithelium of other bile acid exporters. Thus, ABCG2 may play a key role in bile acid transport in placenta, as BSEP does in liver. PMID:22096226

  10. Bile acids as metabolic regulators

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2015-01-01

    Summary Small molecule ligands that target to TGR5 and FXR have shown promise in treating various metabolic and inflammation-related human diseases. New insights into the mechanisms underlying the bariatric surgery and bile acid sequestrant treatment suggest that targeting the enterohepatic circulation to modulate gut-liver bile acid signaling, incretin production and microbiota represents a new strategy to treat obesity and type-2 diabetes. PMID:25584736

  11. Fecal levels of short-chain fatty acids and bile acids as determinants of colonic mucosal cell proliferation in humans.

    PubMed

    Dolara, Piero; Caderni, Giovanna; Salvadori, Maddalena; Morozzi, Guido; Fabiani, Roberto; Cresci, Alberto; Orpianesi, Carla; Trallori, Giacomo; Russo, Antonio; Palli, Domenico

    2002-01-01

    We studied the correlation between fecal levels of short-chain fatty acids (SCFA), bile acids (BA), and colonic mucosal proliferation in humans on a free diet. Subjects [n = 43: 27 men and 16 women; 61 +/- 7 and 59 +/- 6 (SE) yr old, respectively] were outpatients who previously underwent resection of at least two sporadic colon polyps. Mucosal proliferation was determined by [3H]thymidine incorporation in vitro in three colorectal biopsies obtained without cathartics and was expressed as labeling index (LI). BA were analyzed in feces by mass spectrometry and SCFA by gas chromatography. We found that increasing levels of BA in feces did not correlate with higher LI. On the contrary, higher levels of SCFA were significantly associated with lower LI in the colonic mucosa (P for trend = 0.02). In conclusion, in humans on a free diet, intestinal proliferation seems to be regulated by the levels of SCFA in feces and not by BA. Because a lower intestinal proliferation is associated with a decreased colon cancer risk, treatments or diets that increase colonic levels of SCFA might be beneficial for colonic mucosa. PMID:12416258

  12. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism.

    PubMed

    Patti, Mary-Elizabeth; Houten, Sander M; Bianco, Antonio C; Bernier, Raquel; Larsen, P Reed; Holst, Jens J; Badman, Michael K; Maratos-Flier, Eleftheria; Mun, Edward C; Pihlajamaki, Jussi; Auwerx, Johan; Goldfine, Allison B

    2009-09-01

    The multifactorial mechanisms promoting weight loss and improved metabolism following Roux-en-Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G-protein coupled receptor TGR5 and the type 2 thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We performed cross-sectional analysis of fasting serum bile acid composition and both fasting and post-meal metabolic variables, in three subject groups: (i) post-GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 +/- 4.84 micromol/l) than in both overweight (3.59 +/- 1.95, P = 0.005, Ov) and severely obese (3.86 +/- 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P < 0.05). Total bile acids were inversely correlated with 2-h post-meal glucose (r = -0.59, P < 0.003) and fasting triglycerides (r = -0.40, P = 0.05), and positively correlated with adiponectin (r = -0.48, P < 0.02) and peak glucagon-like peptide-1 (GLP-1) (r = 0.58, P < 0.003). Total bile acids strongly correlated inversely with thyrotropic hormone (TSH) (r = -0.57, P = 0.004). Together, our data suggest that altered bile acid levels and composition may contribute to improved glucose and lipid metabolism in patients who have had GB. PMID:19360006

  13. Cholesterol Solubility in Bile. EVIDENCE THAT SUPERSATURATED BILE IS FREQUENT IN HEALTHY MAN

    PubMed Central

    Holzbach, R. Thomas; Marsh, Mitsuko; Olszewski, Monica; Holan, Keith

    1973-01-01

    The development and validation of a direct method for measuring maximum cholesterol solubility in bile is described. Application of this method to five large mammalian species, including man, produced a micellar zone significantly smaller than that previously reported. Further studies on in vitro model solutions patterned after bile confirmed this new micellar zone. Thus, direct evidence demonstrates that the micellar zone boundary derived in vitro from model solutions is applicable to human gallbladder bile. Using the present criteria, normal human bile, in contrast to bile from other mammalian species, is commonly supersaturated with cholesterol. A male-female difference in bile composition is not demonstrable despite the well-established female preponderance of cholelithiasis. Bile from patients with cholesterol cholelithiasis has a micellar zone similar to normals but differs compositionally in that there is a greater excess of cholesterol above saturation. We conclude that cholesterol supersaturation may be a necessary but not solely sufficient cause for gallstone formation. PMID:4703231

  14. Comparison of bile acid synthesis determined by isotope dilution versus fecal acidic sterol output in human subjects

    SciTech Connect

    Duane, W.C.; Holloway, D.E.; Hutton, S.W.; Corcoran, P.J.; Haas, N.A.

    1982-05-01

    Fecal acidic sterol output has been found to be much lower than bile acid synthesis determined by isotope dilution. Because of this confusing discrepancy, we compared these 2 measurements done simultaneously on 13 occasions in 5 normal volunteers. In contrast to previous findings, bile acid synthesis by the Lindstedt isotope dilution method averaged 16.3% lower than synthesis simultaneously determined by fecal acidic sterol output (95% confidence limit for the difference - 22.2 to -10.4%). When one-sample determinations of bile acid pools were substituted for Lindstedt pools, bile acid synthesis by isotope dilution averaged 5.6% higher than synthesis by fecal acidic sterol output (95% confidence limits -4.9 to 16.1%). These data indicate that the 2 methods yield values in reasonably close agreement with one another. If anything, fecal acidic sterol outputs are slightly higher than synthesis by isotope dilution.

  15. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability.

    PubMed

    He, Wei; Yang, Ke; Fan, Lifang; Lv, Yaqi; Jin, Zhu; Zhu, Shumin; Qin, Chao; Wang, Yiao; Yin, Lifang

    2015-11-10

    Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers. Herein, we report a new nanoemulsion system with a denatured globular protein with a diameter of 30 nm, soybean protein isolates (SPI), and bile salt as emulsifiers, aiming to enhance the absorption of insoluble drugs and explore other pathways for absorption. A BCS class II drug, fenofibrate (FB), was used as the model drug. The SPI and bile salt-coated Ns with a diameter of approximately 150 nm were prepared via a high-pressure homogenizing procedure. Interestingly, the present Ns could be converted to solid dosage form using fluid-bed coating technology, maintaining a nanoscale size. Most importantly, in a model of in situ rat intestinal perfusion, Ns could penetrate across the intestinal epithelial barrier into the systemic circulation and then obtain biodistribution into other tissues. In addition, Ns significantly improved FB oral absorption, exhibited as a greater than 2- and 2.5-fold increase in Cmax and AUC0-t, respectively, compared to the suspension formulation. Overall, the present Ns are promising nanocarriers for the oral delivery of insoluble drugs, and the penetration of intact Ns across the GIT barrier into systemic circulation may be a new strategy for improved drug absorption with the use of nanocarriers. PMID:26325310

  16. Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression

    SciTech Connect

    Han, Peng; Kang, Jin-He; Li, Hua-Liang; Hu, Su-Xian; Lian, Hui-Hui; Qiu, Ping-Ping; Zhang, Jian; Li, Wen-Gang; Chen, Qing-Xi

    2009-07-24

    Tamoxifen (TAM) is a nonsteroidal antiestrogen that has been used in the treatment of breast cancer for over 30 years. Recently, it was shown that TAM also has efficacy on gastrointestinal neoplasms such as hepatocarcinoma and pancreatic carcinoma, and that the chemopreventive activities of TAM might be due to its abilities to inhibit cell growth and induce apoptosis. In the present study, we investigated the effects of tamoxifen on growth and apoptosis in the human bile duct carcinoma (BDC) cell line QBC939 using MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, classic DNA fragmentation agarose gel electrophoresis assay, PI single- and FITC/PI double-staining flow cytometry, and Western blotting. Our data revealed that TAM could significantly inhibit growth and induce apoptosis in QBC939 cells. Increased expression of p53 was observed in TAM-treated cells, indicating that p53 might play an important role in TAM-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of TAM on BDC.

  17. Differentiated quantification of human bile acids in serum by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Burkard, Ines; von Eckardstein, Arnold; Rentsch, Katharina M

    2005-11-01

    Determination of quantitative changes in the pattern of serum bile acids is important for the monitoring of diseases affecting bile acid metabolism. A sensitive and specific high-performance liquid chromatography (HPLC)-MS/MS method was developed for the differentiated quantification of unconjugated as well as glycine- and taurine-conjugated cholic, chenodeoxycholic (CDCA), deoxycholic (DCA), ursodeoxycholic (UDCA) and lithocholic acid (LCA) in serum samples. After solid-phase extraction and reversed-phase HPLC separation, detection of the conjugated bile acids was performed using electrospray ionization (ESI)-MS/MS and selected reaction monitoring mode, whereas unconjugated bile acids were determined by ESI-MS and selected ion monitoring mode. The within-day and between-day coefficients of variation were below 7% for all bile acids and the recovery rates of the extraction procedure were between 84.9 and 105%. The developed method was applied to a group of 21 healthy volunteers and preliminary reference intervals in serum were established. In patients with drug-induced cholestasis, an elevation of primary bile acids has been shown. PMID:16182619

  18. Hepatic transport of bile acid and effect of conjugation.

    PubMed

    Kitani, K

    1995-06-01

    Biliary transport of bile salts was investigated by measuring: 1) biliary transport maxima values (Tm) for different conjugated bile salts; and 2) biliary excretion of unconjugated bile salts relative to their conjugates under the continuous i.v. infusion of various unconjugated bile salts. The order of Tm values found in the rat of both sexes was tauro (and glyco) ursodeoxycholate (TUDC, GUDC), tauro alpha- and beta-muricholate (T alpha-MC, T beta-MC) > taurocholate(TC) > taurochenodeoxycholate (TCDC), while in female hamsters it was TC > TCDC > TUDC. The differences in the Tm order between rats and hamsters cast doubt on the currently proposed view that the apparent Tm values of bile salts are primarily determined by their physical-chemical properties (detergent property in particular). The biliary excretion of unconjugated bile salts was most efficient with ursocholate (UC) and alpha-MC followed by beta-MC, with UDC (and probably 7 ketolithocholate) being the least efficient for excretion. Thus, while for some bile salts such as cholate and UC, the amidation is not a prerequisite to their efficient excretion, for other bile salts such as UDC, the amidation is an excellent mechanism for facilitating the biliary excretion. In an attempt to explain the above order for the efficacy of the biliary excretion of unconjugated bile salts on the basis of their physical-chemical properties, we must remember that unlike rats, the biliary excretion of dehydrocholate and cholate in dogs is more limited than their respective taurine conjugates.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8541581

  19. Vibrio cholerae leuO Transcription Is Positively Regulated by ToxR and Contributes to Bile Resistance

    PubMed Central

    Ante, Vanessa M.; Bina, X. Renee; Howard, Mondraya F.; Sayeed, Sameera; Taylor, Dawn L.

    2015-01-01

    ABSTRACT Vibrio cholerae is an aquatic organism and facultative human pathogen that colonizes the small intestine. In the small intestine, V. cholerae is exposed to a variety of antimicrobial compounds, including bile. V. cholerae resistance to bile is multifactorial and includes alterations in the membrane permeability barrier that are mediated by ToxR, a membrane-associated transcription factor. ToxR has also been shown to be required for activation of the LysR family transcription factor leuO in response to cyclic dipeptides. LeuO has been implicated in the regulation of multiple V. cholerae phenotypes, including biofilm production and virulence. In this study, we investigated the effects of bile on leuO expression. We show that leuO transcription increased in response to bile and bile salts but not in response to other detergents. The bile-dependent increase in leuO expression was dependent on ToxR, which was found to bind directly to the leuO promoter. The periplasmic domain of ToxR was required for basal leuO expression and for the bile-dependent induction of both leuO and ompU transcription. V. cholerae mutants that did not express leuO exhibited increased bile susceptibility, suggesting that LeuO contributes to bile resistance. Our collective results demonstrate that ToxR activates leuO expression in response to bile and that LeuO is a component of the ToxR-dependent responses that contribute to bile resistance. IMPORTANCE The success of Vibrio cholerae as a human pathogen is dependent upon its ability to rapidly adapt to changes in its growth environment. Growth in the human gastrointestinal tract requires the expression of genes that provide resistance to host antimicrobial compounds, including bile. In this work, we show for the first time that the LysR family regulator LeuO mediates responses in V. cholerae that contribute to bile resistance. PMID:26303831

  20. Structural and Functional Characterization of BaiA, An Enzyme Involved in Secondary Bile Acid Synthesis in Human Gut Microbe

    PubMed Central

    Bhowmik, Shiva; Jones, David H.; Chiu, Hsien-Po; Park, In-Hee; Chiu, Hsiu-Ju; Axelrod, Herbert L.; Farr, Carol L.; Tien, Henry J.; Agarwalla, Sanjay; Lesley, Scott A.

    2014-01-01

    Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo- and co-factor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of co-factor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the co-factor binding site seems crucial in determining co-factor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2′-phosphate group of NADP(H). Consistent with crystal structures, steady-state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat/KM) of NADP+ at least an order of magnitude lower than NAD+. Substitution of Glu42 with Ala improved specificity towards NADP+ by 10- fold compared to wild type. The co-factor bound structure uncovered a novel nicotinamide-hydroxyl ion (NAD+-OH−) adduct contraposing previously reported adducts. The OH− of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2′-hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations we propose an involvement of NAD+-OH− adduct in proton relay instead of hydride transfer as noted for previous adducts. PMID:23836456

  1. Mueller-matrix invariants of optical anisotropy of the bile polycrystalline films in the diagnosis of human liver pathologies

    NASA Astrophysics Data System (ADS)

    Ushenko, V. O.; Prysyazhnyuk, V. P.; Dubolazov, O. V.; Savich, O. V.; Novakovska, O. Y.; Olar, O. V.

    2015-09-01

    The model of Mueller-matrix description of mechanisms of optical anisotropy typical for polycrystalline films of bile - optical activity, birefringence, as well as linear and circular dichroism - is suggested. Within the statistical analysis of such distributions the objective criteria of differentiation of films of bile from the dead you people different times were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the method of Muellermatrix reconstruction of optical anisotropy parameters were found and its efficiency in another task - diagnostics of diseases of internal organs of rats was demonstrated.

  2. Determination of bile acids in human serum by on-line restricted access material-ultra high-performance liquid chromatography-mass spectrometry.

    PubMed

    Bentayeb, K; Batlle, R; Sánchez, C; Nerín, C; Domeño, C

    2008-06-15

    This paper describes a new, fully automated on-line method combining restricted access material (RAM) extraction and ultra high-performance liquid chromatography (UHPLC) with mass spectrometric (MS) detection for determining congeners of bile acids (BAs) in human serum. In this method, low-pressure RAM and high-pressure UHPLC-MS are hyphenated by using a 2.5-mL loop-type interface. The compatibility problem between the large volume (1.2mL) of strong solvent (methanol) used for RAM elution and the need for a weak solvent in UHPLC injection has been addressed by using an auxiliary pre-column cross-flow of 0.1% aqueous formic acid. In this way, the complete 2.5mL loop volume can be injected into the UHPLC system, thereby maximizing sensitivity while maintaining good chromatographic performance. The optimised method allows the simultaneous analysis of 13 bile acids in a single run, including glycine- and taurine-conjugated bile acids, cholic acid (CA), deoxycholic acid (DCA), chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), and litocholic acid. The complete analysis of a 100-microL single serum sample is performed in 30 min, providing detection limits in the pg range (corresponding with clinically relevant concentration levels) for all of the analytes except lithocholic acid, intra-day precision values (%R.S.D.) below 4% (except ursodeoxycholic acid) and inter-day precision lower than 15% (except ursodeoxycholic, glycoursodeoxycholic acid (GUDCA) and lithocholic acid). PMID:18514045

  3. Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures.

    PubMed

    Kurz, Michael; Brachvogel, Volker; Matter, Hans; Stengelin, Siegfried; Thüring, Harald; Kramer, Werner

    2003-02-01

    Bile acids are generated in vivo from cholesterol in the liver, and they undergo an enterohepatic circulation involving the small intestine, liver, and kidney. To understand the molecular mechanism of this transportation, it is essential to gain insight into the three-dimensional (3D) structures of proteins involved in the bile acid recycling in free and complexed form and to compare them with homologous members of this protein family. Here we report the solution structure of the human ileal lipid-binding protein (ILBP) in free form and in complex with cholyltaurine. Both structures are compared with a previously published structure of the porcine ILBP-cholylglycine complex and with related lipid-binding proteins. Protein structures were determined in solution by using two-dimensional (2D)- and 3D-homo and heteronuclear NMR techniques, leading to an almost complete resonance assignment and a significant number of distance constraints for distance geometry and restrained molecular dynamics simulations. The identification of several intermolecular distance constraints unambiguously determines the cholyltaurine-binding site. The bile acid is deeply buried within ILBP with its flexible side-chain situated close to the fatty acid portal as entry region into the inner ILBP core. This binding mode differs significantly from the orientation of cholylglycine in porcine ILBP. A detailed analysis using the GRID/CPCA strategy reveals differences in favorable interactions between protein-binding sites and potential ligands. This characterization will allow for the rational design of potential inhibitors for this relevant system. PMID:12486725

  4. Effect of organo and inorganic lithium salt on human blood plasma glutathione- A comparative study.

    PubMed

    Ullah, Hashmat; Khan, Muhammad Farid; Jan, Syed Umer; Hashmat, Farwa

    2016-03-01

    Investigation of toxicological effect of various metals is the field of interest for toxicological scientists since four to five decades and especially the toxicological effect of those drugs containing metals and there use is common because there is no other choice except to use these metal containing drugs. Inorganic as well as organic salts of lithium are commonly used in prophylaxis and treatments of many psychiatric disorders. The aim of the present study was to see the difference between the effect of organic and inorganic salt of lithium commonly used in psychiatric disorders on the GSH of human blood plasma. It is the scientific fact that ionic dissociation of organic and inorganic salts of any metal is always quite different hence to prove this fact, the effect of lithium citrate (organic salt of lithium) and lithium carbonate (inorganic salt of lithium) was investigated on human blood plasma GSH to find the difference between the effect of two. Ellman's method was used for the quantification of glutathione contents in plasma. It was found that lithium citrate decrease plasma GSH contents less than lithium carbonate indicating that organic salts of lithium are safe than inorganic salts of lithium when are used in psychiatric disorders. Further to analyze the effect of organic and inorganic salt of lithium on blood plasma GSH with the increase in incubation time was also evaluated and was found that both concentration and time dependent effect of organic salt of lithium shows that this salt has decreased plasma GSH contents of human blood less than inorganic salt of lithium either by promoting oxidation of GSH into GSSG or by lithium glutathione complex formation. These results suggest the physicians that the use of organic lithium salts is much safer than inorganic salts of lithium in terms of depletion of blood plasma GSH contents. PMID:27087067

  5. Properties Related to Bile as Viewed in Makhzan ol-Adviya

    PubMed Central

    Mosaffa-Jahromi, Maryam

    2016-01-01

    Background: The human body has simple and compound organs that obtain their nourishment through four humors. One of them is bile (yellow bile). According to Iranian traditional medicine (ITM), there are various kinds of natural medicines with their specific mechanisms of action affecting on bile in the human body. Hakim Aghili Shirazi (18th century), one of the great scholars in ITM field, introduced all types of natural medicines influencing bile in his valuable book written in Persian, “Makhzan-ul-Adwiah”, about single herbal medicines (mofradat). The aim of this review article was to introduce all types of natural medicines influencing bile in the human body. Methods: The classification of natural medicines influencing bile was studied in this article as viewed by Hakim Aghili Shirazi in Makhzan-ul-Adwiah. Results: Reviewing Makhzan-ul-Adwiah, this natural influencing bile is defined in ten categories. These are Haabes-e Safra (obstructive of bile), Daafe-e Safra (expellant of bile), Raafe-e Safra (resolver of bile), Ghaate-e Safra (stopper of bile), Ghaame-e Safra (suppressant of bile), Kaasere-e Safra (fractionating of bile), Mohregh-e Safra (burner of bile), Moder-e Safra (bile diuretic), Mosaken-e Safra (bile reliever), and Mos’hel-e Safra (bile laxative). Conclusion: Each group has a specific function and mechanism on bile. Recognition of the precise mechanisms of these natural medicines is necessary to prescribe a suitable remedy for bilious diseases by traditional medicine specialists.

  6. Pharmacological activity of Kaempferia parviflora extract against human bile duct cancer cell lines.

    PubMed

    Leardkamolkarn, Vijittra; Tiamyuyen, Sunida; Sripanidkulchai, Bung-orn

    2009-01-01

    A crude ethanol extract of Kaemperia parviflora Wall. Ex Baker and a purified compound, 5,7,4-trimethoxyflavone (KP.8.10), were evaluated for pharmacological effects on human cholangiocarcinoma cell lines (HuCCA-1 and RMCCA-1). The cells were incubated with various concentrations of extract for various time periods and metabolic activity (MTT assay) was assessed for cell viability. The results showed a dose-dependent effect of both crude ethanol extract and the pure compound. CC50s for the crude extract on HuCCA-1 and RMCCA-1 cells were 46.1 microg/ml and 62.0 microg/ml, respectively. Values for the pure compound could not be determined because of solubility problems. Interestingly, K. parviflora ethanol extract and KP.8.10 at low concentrations (10-20 microg/ml and 2.5-5 microg/ml, respectively) markedly reduced rhHGF-induced invasion by HuCCA-1 and RMCCA-1 cells across matrix-coated transwell plates. Higher concentrations of K. parviflora ethanol extract (60 and 80 microg/ml) and KP.8.10 (20 microg /ml) dramatically changed the cellular morphology and caused death in both cell types. KP.8.10 further exhibited progressive action via caspase-3 mitochondrial enzyme activation, enhancing cellular toxicity in a time-dose dependent fashion. Therefore, 5,7,4-trimethoxyflavone appeared to be a bioactive component of K. parviflora extract capable of exerting anti-cancer action. The results suggested a benefit of this edible plant in prevention and treatment of cholangiocarcinoma. PMID:19827897

  7. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    PubMed Central

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  8. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    PubMed

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  9. Novel, major 2α- and 2β-hydroxy bile alcohols and bile acids in the bile of Arapaima gigas, a large South American river fish.

    PubMed

    Sato née Okihara, Rika; Saito, Tetsuya; Ogata, Hiroaki; Nakane, Naoya; Namegawa, Kazunari; Sekiguchi, Shoutaro; Omura, Kaoru; Kurabuchi, Satoshi; Mitamura, Kuniko; Ikegawa, Shigeo; Raines, Jan; Hagey, Lee R; Hofmann, Alan F; Iida, Takashi

    2016-03-01

    Bile alcohols and bile acids from gallbladder bile of the Arapaima gigas, a large South American freshwater fish, were isolated by reversed-phase high-performance liquid chromatography. The structures of the major isolated compounds were determined by electrospray-tandem mass spectrometry and nuclear magnetic resonance using (1)H- and (13)C-NMR spectra. The novel bile salts identified were six variants of 2-hydroxy bile acids and bile alcohols in the 5α- and 5β-series, with 29% of all compounds having hydroxylation at C-2. Three C27 bile alcohols were present (as ester sulfates): (24ξ,25ξ)-5α-cholestan-2α,3α,7α,12α,24,26-hexol; (25ξ)-5β-cholestan-2β,3α,7α,12α,26,27-hexol, and (25ξ)-5α-cholestan-2α,3α,7α,12α,26,27-hexol. A single C27 bile acid was identified: (25ξ)-2α,3α,7α,12α-tetrahydroxy-5α-cholestan-26-oic acid, present as its taurine conjugate. Two novel C24 bile acids were identified: the 2α-hydroxy derivative of allochenodeoxycholic acid and the 2β-hydroxy derivative of cholic acid, both occurring as taurine conjugates. These studies extend previous work in establishing the natural occurrence of novel 2α- and 2β-hydroxy-C24 and C27 bile acids as well as C27 bile alcohols in both the normal (5β) as well as the (5α) "allo" A/B-ring juncture. The bile salt profile of A. gigas appears to be unique among vertebrates. PMID:26768415

  10. Regulation of hepatic bile acid transporters Ntcp and Bsep expression.

    PubMed

    Cheng, Xingguo; Buckley, David; Klaassen, Curtis D

    2007-12-01

    Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid (CDCA) increased Bsep mRNA expression. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers. PMID:17897632

  11. The cytotoxicity of hydrophobic bile acids is ameliorated by more hydrophilic bile acids in intestinal cell lines IEC-6 and Caco-2.

    PubMed

    Araki, Yoshio; Andoh, Akira; Bamba, Hiromichi; Yoshikawa, Kouhei; Doi, Hisakazu; Komai, Yasunobu; Higuchi, Akihiko; Fujiyama, Yoshihide

    2003-01-01

    Bile acids, especially those with hydrophobic properties, are known to possess cytotoxicity. However, the mechanisms responsible for the cytotoxicity of bile acids are still under investigation. On the other hand, the hydrophilic bile acid, ursodeoxycholic acid has been reported to exhibit therapeutic effects against cytotoxic hydrophobic bile acids. The aim of the present study was to investigate the cytotoxicity of individual bile acids and combinations of bile acids using the intestinal cell lines IEC-6 and Caco-2 cells. The cytotoxicities of individual bile acids and the effects of various bile acid combinations were evaluated using the MTS [3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. The bile acids induced cytotoxic effects depending on their hydrophobicity except for hyodeoxycholic acid. In the study for the effects of combined bile acids, not only ursodeoxycholic acid but other hydrophilic bile salts such as cholic acid and hyocholic acid exhibited cytoprotection against deoxycholic acid-induced cytotoxicity. Moreover, even some hydrophobic bile acids, such as chenodeoxycholic acid also exhibited cytoprotection. It is possible that the cytotoxicity of hydrophobic bile acids is ameliorated by more hydrophilic bile acids under certain conditions. The understanding of the precise mechanism of this phenomenon remains to be determined. PMID:14534721

  12. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.

    PubMed

    Fiorucci, Stefano; Distrutti, Eleonora

    2015-11-01

    The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes. PMID:26481828

  13. Identification and differentiation of bear bile used in medicinal products in Taiwan.

    PubMed

    Lin, D L; Chang, H C; Chang, C P; Chen, C Y

    1997-09-01

    One hundred eighty-three suspect bear bile used in medicinal products, collected in Taiwan as gall bladders or dried powder forms, were analyzed using FTIR, HPTLC, and HPLC techniques to identify whether they are indeed bear bile. Those confirmed were further examined to determine whether the observed analytical parameters can be reliably used for source inference, i.e., differentiating products among North American black bear, farmed Asiatic black bear, polar bear, etc. Our data suggested that North American and polar bears contain a higher concentration of TC (relative to TUDC and TCDC), whereas the relative concentration of TC in Asiatic bears (wild or farmed) is much lower. Thus, the relative concentration of TC can potentially be used for differentiating Asiatic bear bile from North American and polar bear products, but it cannot be used for the differentiation of wild and farmed bear bile as suggested in an earlier report by Espinoza et al. The origin of the 183 samples analyzed were found to be as follows: 118 (64%), bile salts, or gall bladders were of domestic pig; 56 (31%), bile products of Asiatic bear; 4 (2.2%), Asiatic bear mixed with pig bile salts; 3 (1.6%) goat gall bladders; 1 (0.55%) water buffalo bile salts; and 1 (0.55%), pig bile salts mixed with water buffalo bile salts. PMID:9304828

  14. Survival of O157:H7 and non-o157 serogroups of Escherichia coli in bovine rumen fluid and bile salts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli are gram negative, facultative anaerobic bacteria that colonize within the intestines of animals and humans. Enterohemorragic strains of E. coli (EHEC) pose a serious health risk to humans yet reside asymptomatically within ruminants. In particular, bovine serve as the major reser...

  15. Preliminary analyses of scenarios for potential human interference for repositories in three salt formations

    SciTech Connect

    Not Available

    1985-10-01

    Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin.

  16. Physiology of bile secretion

    PubMed Central

    Esteller, Alejandro

    2008-01-01

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bile-duct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology. PMID:18837079

  17. Mechanistic Modeling Reveals the Critical Knowledge Gaps in Bile Acid-Mediated DILI.

    PubMed

    Woodhead, J L; Yang, K; Brouwer, K L R; Siler, S Q; Stahl, S H; Ambroso, J L; Baker, D; Watkins, P B; Howell, B A

    2014-01-01

    Bile salt export pump (BSEP) inhibition has been proposed to be an important mechanism for drug-induced liver injury (DILI). Modeling can prioritize knowledge gaps concerning bile acid (BA) homeostasis and thus help guide experimentation. A submodel of BA homeostasis in rats and humans was constructed within DILIsym, a mechanistic model of DILI. In vivo experiments in rats with glibenclamide were conducted, and data from these experiments were used to validate the model. The behavior of DILIsym was analyzed in the presence of a simulated theoretical BSEP inhibitor. BSEP inhibition in humans is predicted to increase liver concentrations of conjugated chenodeoxycholic acid (CDCA) and sulfate-conjugated lithocholic acid (LCA) while the concentration of other liver BAs remains constant or decreases. On the basis of a sensitivity analysis, the most important unknowns are the level of BSEP expression, the amount of intestinal synthesis of LCA, and the magnitude of farnesoid-X nuclear receptor (FXR)-mediated regulation. PMID:25006780

  18. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  19. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    PubMed Central

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  20. Regulation of hepatic bile acid transporters Ntcp and Bsep expression

    PubMed Central

    Cheng, Xingguo; Buckley, David; Klaassen, Curtis D.

    2009-01-01

    Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers, which is consistent with the trend of human NTCP mRNA expression between men and women. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid increased Bsep mRNA expression. In silico analysis indicates that female-predominant mouse and human Ntcp/NTCP expression may be due to GH. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers. PMID:17897632

  1. Bile acids are nutrient signaling hormones.

    PubMed

    Zhou, Huiping; Hylemon, Phillip B

    2014-08-01

    Bile salts play crucial roles in allowing the gastrointestinal system to digest, transport and metabolize nutrients. They function as nutrient signaling hormones by activating specific nuclear receptors (FXR, PXR, Vitamin D) and G-protein coupled receptors [TGR5, sphingosine-1 phosphate receptor 2 (S1PR2), muscarinic receptors]. Bile acids and insulin appear to collaborate in regulating the metabolism of nutrients in the liver. They both activate the AKT and ERK1/2 signaling pathways. Bile acid induction of the FXR-α target gene, small heterodimer partner (SHP), is highly dependent on the activation PKCζ, a branch of the insulin signaling pathway. SHP is an important regulator of glucose and lipid metabolism in the liver. One might hypothesize that chronic low grade inflammation which is associated with insulin resistance, may inhibit bile acid signaling and disrupt lipid metabolism. The disruption of these signaling pathways may increase the risk of fatty liver and non-alcoholic fatty liver disease (NAFLD). Finally, conjugated bile acids appear to promote cholangiocarcinoma growth via the activation of S1PR2. PMID:24819989

  2. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder.

    PubMed Central

    Deyashiki, Y; Ogasawara, A; Nakayama, T; Nakanishi, M; Miyabe, Y; Sato, K; Hara, A

    1994-01-01

    Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5'-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively. Images Figure 1 PMID:8172617

  3. Alteration of Bile Canalicular Enzymes in Cholestasis. A POSSIBLE CAUSE OF BILE SECRETORY FAILURE

    PubMed Central

    Simon, Francis R.; Arias, Irwin M.

    1973-01-01

    Bile secretory failure (cholestasis) may result from several possible mechanisms involved in bile secretion. We have examined the possibility that abnormalities in enzyme content, composition, and turnover of liver plasma membrane constituents are altered in cholestasis. Severe and mild cholestasis were produced by 5 days of bile duct ligation and ethinyl estradiol administration, respectively. Bile duct ligation but not ethinyl estradiol treatments was associated with elevations of the serum bilirubin level and 5′-nucleotidase activity. However, basal bile flow and bilirubin transport maximum (Tm) were significantly reduced after ethinyl estradiol treatment. Liver plasma membrane fractions rich in canalicular membranes were prepared from groups of rats in each of three categories; normal, after bile duct ligation, or ethinyl estradiol administration, and their respective controls. Electron microscopy and enzyme marker studies demonstrated plasma membrane fractions free of significant contamination. Plasma membrane fractions prepared from mild as well as severe cholestasis had increased alkaline phosphatase activity, and reduced 5′-nucleotidase and Mg2+-ATPase activities. Co2+-CMPase activity was unchanged. Kinetic analysis of 5′-nucleotidase and Mg2+-ATPase activities in plasma membrane fractions demonstrated reduced Vmaz (but unaltered Km). Reducted Vmaz was unrelated to addition in vitro of di-or trihydroxy bile salts or ethinyl estradiol and, therefore, suggests that reduced activities in cholestasis are due to decreased enzyme content. Cholestasis was not associated with changes in the synthesis or degradation rate of pulse-labeled plasma membrane proteins or alterations in the major protein bands separated on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Plasma membrane cholesterol, phospholipid, and neutral sugar content was unaltered, but sialic acid content was significantly increased in both forms of cholestasis. Alterations in

  4. The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans.

    PubMed

    Berkenstam, Anders; Kristensen, Jens; Mellström, Karin; Carlsson, Bo; Malm, Johan; Rehnmark, Stefan; Garg, Neeraj; Andersson, Carl Magnus; Rudling, Mats; Sjöberg, Folke; Angelin, Bo; Baxter, John D

    2008-01-15

    Atherosclerotic cardiovascular disease is a major problem despite the availability of drugs that influence major risk factors. New treatments are needed, and there is growing interest in therapies that may have multiple actions. Thyroid hormone modulates several cardiovascular risk factors and delays atherosclerosis progression in humans. However, use of thyroid hormone is limited by side effects, especially in the heart. To overcome this limitation, pharmacologically selective thyromimetics that mimic metabolic effects of thyroid hormone and bypass side effects are under development. In animal models, such thyromimetics have been shown to stimulate cholesterol elimination through LDL and HDL pathways and decrease body weight without eliciting side effects. We report here studies on a selective thyromimetic [KB2115; (3-[[3,5-dibromo-4-[4-hydroxy-3-(1-methylethyl)-phenoxy]-phenyl]-amino]-3-oxopropanoic acid)] in humans. In moderately overweight and hypercholesterolemic subjects KB2115 was found to be safe and well tolerated and elicited up to a 40% lowering of total and LDL cholesterol after 14 days of treatment. Bile acid synthesis was stimulated without evidence of increased cholesterol production, indicating that KB2115 induced net cholesterol excretion. KB2115 did not provoke detectable effects on the heart, suggesting that the pharmacological selectivity observed in animal models translates to humans. Thus, selective thyromimetics deserve further study as agents to treat dyslipidemia and other risk factors for atherosclerosis. PMID:18160532

  5. Bile culture (image)

    MedlinePlus

    ... tract. A specimen of bile is placed in culture media and observed for growth of microorganisms. If there ... no infection. If there is growth in the culture media, the growth is then isolated and identified to ...

  6. Bile duct obstruction

    MedlinePlus

    ... bile builds up in the liver, and jaundice (yellow color of the skin) develops due to the increasing ... upper right side Dark urine Fever Itching Jaundice (yellow skin color) Nausea and vomiting Pale-colored stools

  7. Characterization of Two Novel Cell Lines with Distinct Heterogeneity Derived from a Single Human Bile Duct Carcinoma

    PubMed Central

    Zhang, Keqiang; Yu, Yong; Li, Bin; Li, Jiang; Yan, Zi; Hu, Zhenli; Yen, Yun; Wu, Mengchao; Jiang, Xiaoqing; Qian, Qijun

    2013-01-01

    Background Intratumoral heterogeneity reflects subclonal diversity and accounts for a variety of clinically defined phenotypes including the development of drug resistance and recurrence. However, intratumoral heterogeneity of bile duct carcinoma (BDC) is rarely studied. Methods Two highly heterogeneous cell lines named EH-CA1a and EH-CA1b were established from a primary tumor tissue of a pathologically proven BDC. Distinct heterogeneity and underlying mechanisms of two cell lines in karyotype, colony formation, tumorgenicity, and sensitivity to chemoradiotherapy were intensively studied. Results Both cell lines showed typical morphology of cancer cells. EH-CA1a cells grew as free-floating aggregates, while EH-CA1b cells grew adherently as a monolayer. EH-CA1a cells had higher cloning efficiencies and were able to keep proliferating under hypoxic condition. Coincidentally, hypoxia-induced factor-1α (HIF1α) and vascular endothelial growth factor (VEGF) mRNA were significantly higher in EH-CA1a cells than in EH-CA1b cells. Both cell lines were tumorigenic in nude mouse, however, EH-CA1a cells showed more aggressive characteristics. Most importantly, the EH-CA1a cells showed much more resistance against radiation and chemotherapy with gemcitabine. Metastasis-related genes including matrix metalloproteinase 2 (MMP-2), MMP-9, epithelial-mesenchymal transition (EMT) markers such as Vimentin, Snail, and Twist, are more highly expressed in EH-CA1a cells than in EH-CA1b cells. Moreover, the percentage of cells expressing cancer stem cell-like marker, CD133, in EH-CA1a cells is much higher than that in EH-CA1b cells. Moreover, knockdown of CD133 in both EH-CA1a and EH-CA1b cells significantly reduced their invasive potential and increased their sensitivities to radiation and gemcitabine, suggesting the differential expression of CD133 protein may partially account for the difference in malignancy between these two cancer cells. Conclusion Establishment of these two cell

  8. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  9. Salt handling in the distal nephron: lessons learned from inherited human disorders.

    PubMed

    Jeck, Nikola; Schlingmann, Karl P; Reinalter, Stephan C; Kömhoff, Martin; Peters, Melanie; Waldegger, Siegfried; Seyberth, Hannsjörg W

    2005-04-01

    The molecular basis of inherited salt-losing tubular disorders with secondary hypokalemia has become much clearer in the past two decades. Two distinct segments along the nephron turned out to be affected, the thick ascending limb of Henle's loop and the distal convoluted tubule, accounting for two major clinical phenotypes, hyperprostaglandin E syndrome and Bartter-Gitelman syndrome. To date, inactivating mutations have been detected in six different genes encoding for proteins involved in renal transepithelial salt transport. Careful examination of genetically defined patients ("human knockouts") allowed us to determine the individual role of a specific protein and its contribution to the overall process of renal salt reabsorption. The recent generation of several genetically engineered mouse models that are deficient in orthologous genes further enabled us to compare the human phenotype with the animal models, revealing some unexpected interspecies differences. As the first line treatment in hyperprostaglandin E syndrome includes cyclooxygenase inhibitors, we propose some hypotheses about the mysterious role of PGE(2) in the etiology of renal salt-losing disorders. PMID:15793031

  10. Synthesis of bile acid derivatives and in vitro cytotoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carcinoma (HCT-116) human cell lines.

    PubMed

    Brossard, Dominique; El Kihel, Laïla; Clément, Monique; Sebbahi, Walae; Khalid, Mohamed; Roussakis, Christos; Rault, Sylvain

    2010-07-01

    The novelty of this work derives from the use of nitrogenous heterocycles as building block in the synthesis of conjugate bile acid derivatives. New piperazinyl bile acid derivatives were synthesized and tested in vitro against various human cancer cells (GBM, KMS-11, HCT-116). The best pro-apoptotic activity was obtained with N-[4N-cinnamylpiperazin-1-yl)-3alpha,7beta-dihydroxy-5beta-cholan-24-amide (7b) and N-[4N-cinnamyllpiperazin-1-yl)- 3alpha,7alpha-dihydroxy-5beta-cholan-24-amide (7c) on these human cancer cell lines (IC(50): 8.5-31.4microM). This activity was associated with nuclear and DNA fragmentation, demonstrating that 7b induces cell death by an apoptotic process as 7c. This study shows the possibility of hydrid heterocycle-steroids as new anticancer agents with improved bioactivity and easy to synthesize. PMID:20381215

  11. [Chemico-physical property and bile acid binding capacity of several antacids].

    PubMed

    Salvioli, G; Tambara, E; Gaetti, E; Lugli, R

    1989-01-01

    Liquid alginate (Gaviscon) binds small amount of bile acids. At pH 7 its viscosity (at low shear rate) is higher than that of other antiacids. High viscosity reduces the diffusion rate of bile salts and glucose and this property can play a role in the treatment of gastro-esophageal and duodeno-gastric refluxes. PMID:2548124

  12. The effect of bile, bile acids and detergents on calcium absorption in the chick

    PubMed Central

    Webling, D. D'A.; Holdsworth, E. S.

    1965-01-01

    1. Bile from rachitic or normal chicks causes an immediate increase in the intestinal absorption of soluble calcium in rachitic and vitamin D3-treated chicks as tested in vivo by intestinal-loop and oral-dosing methods. 2. This effect is apparently solely due to the taurine-conjugated bile acids present in the bile and is independent of the action of vitamin D. 3. Chick bile and bile acids can increase the solubility and the absorption of calcium presented as sparingly soluble calcium hydrogen phosphate. 4. In addition, bile is necessary to some extent at least for the intestinal absorption of vitamin D3 in the chick and this would indirectly enhance the absorption of calcium. 5. Thus bile is capable of a threefold action in the absorption of calcium in the chick. It is suggested that the direct action on sparingly soluble forms of calcium is of considerable physiological importance since most of the calcium in the normal bird's diet would be in this form. 6. Bile acids enhance the absorption of calcium in all regions of the small intestine of the chick. 7. Of a range of bile acids and detergents tested for enhancement of calcium absorption, various taurine-conjugated bile acids and sodium lauryl sulphate, an anionic detergent, are effective. A non-ionic detergent (Tween 80) and a cationic detergent (Zephiran) are without effect. 8. The ability of a substance to increase directly the intestinal absorption of soluble calcium appears to depend to some extent on an anionic detergent action, i.e. the ability to form a salt or complex soluble to some extent in both aqueous and lipid phases. 9. In chicks the immediate deposition of calcium (45Ca) in the bones closely reflects any increase in plasma calcium radioactivity regardless of the cause of the increase and regardless of the vitamin D3 status. Although sodium lauryl sulphate can increase markedly the calcium absorption from the gut and the immediate deposition in the bones it has no significant effect on rickets

  13. Post-acquisition filtering of salt cluster artefacts for LC-MS based human metabolomic studies.

    PubMed

    McMillan, A; Renaud, J B; Gloor, G B; Reid, G; Sumarah, M W

    2016-01-01

    Liquid chromatography-high resolution mass spectrometry (LC-MS) has emerged as one of the most widely used platforms for untargeted metabolomics due to its unparalleled sensitivity and metabolite coverage. Despite its prevalence of use, the proportion of true metabolites identified in a given experiment compared to background contaminants and ionization-generated artefacts remains poorly understood. Salt clusters are well documented artefacts of electrospray ionization MS, recognized by their characteristically high mass defects (for this work simply generalized as the decimal numbers after the nominal mass). Exploiting this property, we developed a method to identify and remove salt clusters from LC-MS-based human metabolomics data using mass defect filtering. By comparing the complete set of endogenous metabolites in the human metabolome database to actual plasma, urine and stool samples, we demonstrate that up to 28.5 % of detected features are likely salt clusters. These clusters occur irrespective of ionization mode, column type, sweep gas and sample type, but can be easily removed post-acquisition using a set of R functions presented here. Our mass defect filter removes unwanted noise from LC-MS metabolomics datasets, while retaining true metabolites, and requires only a list of m/z and retention time values. Reducing the number of features prior to statistical analyses will result in more accurate multivariate modeling and differential feature selection, as well as decreased reporting of unknowns that often constitute the largest proportion of human metabolomics data. PMID:27606010

  14. Advances in understanding of bile acid diarrhea

    PubMed Central

    Camilleri, Michael

    2014-01-01

    Bile acids (BA) are actively reabsorbed in the terminal ileum by the apical Na+-dependent bile salt transporter. This review addresses the epidemiology, pathophysiology, diagnosis and treatment of BA diarrhea (BAD). BAD is typically caused by ileal resection or disease; 25–33% of patients with chronic functional diarrhea or irritable bowel syndrome-diarrhea (IBS-D) have BAD, possibly from deficiency in the ileal hormone, FGF-19, which normally provides feedback inhibition of BA synthesis. Diagnosis of BAD is typically based on reduced BA retention of radiolabeled BA (75SeHCAT), increased BA synthesis (serum C4) or increased fecal BA loss. In clinical practice, diagnosis is often based on response to BA sequestrants (e.g., cholestyramine or colesevelam). Diagnostic tests for BA malabsorption (BAM) need to be used more extensively in clinical practice. In the future, farnesoid X receptor agonists that stimulate ileal production of FGF-19 may be alternative treatments of BAD. PMID:24410472

  15. Advances in understanding of bile acid diarrhea.

    PubMed

    Camilleri, Michael

    2014-01-01

    Bile acids (BA) are actively reabsorbed in the terminal ileum by the apical Na(+)-dependent bile salt transporter. This review addresses the epidemiology, pathophysiology, diagnosis and treatment of BA diarrhea (BAD). BAD is typically caused by ileal resection or disease; 25-33% of patients with chronic functional diarrhea or irritable bowel syndrome-diarrhea (IBS-D) have BAD, possibly from deficiency in the ileal hormone, FGF-19, which normally provides feedback inhibition of BA synthesis. Diagnosis of BAD is typically based on reduced BA retention of radiolabeled BA ((75)SeHCAT), increased BA synthesis (serum C4) or increased fecal BA loss. In clinical practice, diagnosis is often based on response to BA sequestrants (e.g., cholestyramine or colesevelam). Diagnostic tests for BA malabsorption (BAM) need to be used more extensively in clinical practice. In the future, farnesoid X receptor agonists that stimulate ileal production of FGF-19 may be alternative treatments of BAD. PMID:24410472

  16. Bile acid sequestrants for cholesterol

    MedlinePlus

    Bile acid sequestrants are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can ... block them. These medicines work by blocking bile acid in your stomach from being absorbed in your ...

  17. What Is Bile Duct Cancer?

    MedlinePlus

    ... of bile duct cancer. The rest of this document refers only to cholangiocarcinomas. Benign bile duct tumors ... tumors, which aren’t discussed further in this document. Other cancers in the liver The most common ...

  18. Expression of colonization factor CS5 of enterotoxigenic Escherichia coli (ETEC) is enhanced in vivo and by the bile component Na glycocholate hydrate.

    PubMed

    Nicklasson, Matilda; Sjöling, Åsa; von Mentzer, Astrid; Qadri, Firdausi; Svennerholm, Ann-Mari

    2012-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of acute watery diarrhoea in developing countries. Colonization factors (CFs) on the bacterial surface mediate adhesion to the small intestinal epithelium. Two of the most common CFs worldwide are coli surface antigens 5 and 6 (CS5, CS6). In this study we investigated the expression of CS5 and CS6 in vivo, and the effects of bile and sodium bicarbonate, present in the human gut, on the expression of CS5. Five CS5+CS6 ETEC isolates from adult Bangladeshi patients with acute diarrhoea were studied. The level of transcription from the CS5 operon was approximately 100-fold higher than from the CS6 operon in ETEC bacteria recovered directly from diarrhoeal stool without sub-culturing (in vivo). The glyco-conjugated primary bile salt sodium glycocholate hydrate (NaGCH) induced phenotypic expression of CS5 in a dose-dependent manner and caused a 100-fold up-regulation of CS5 mRNA levels; this is the first description of NaGCH as an enteropathogenic virulence inducer. The relative transcription levels from the CS5 and CS6 operons in the presence of bile or NaGCH in vitro were similar to those in vivo. Another bile salt, sodium deoxycholate (NaDC), previously reported to induce enteropathogenic virulence, also induced expression of CS5, whereas sodium bicarbonate did not. PMID:22563407

  19. The Effect of Oxygen on Bile Resistance in Listeria monocytogenes

    PubMed Central

    Wright, Morgan L; Pendarvis, Ken; Nanduri, Bindu; Edelmann, Mariola J; Jenkins, Haley N; Reddy, Joseph S; Wilson, Jessica G; Ding, Xuan; Broadway, Paul R; Ammari, Mais G; Paul, Oindrila; Roberts, Brandy; Donaldson, Janet R

    2016-01-01

    Listeria monocytogenes is a Gram-positive facultative anaerobe that is the causative agent of the disease listeriosis. The infectious ability of this bacterium is dependent upon resistance to stressors encountered within the gastrointestinal tract, including bile. Previous studies have indicated bile salt hydrolase activity increases under anaerobic conditions, suggesting anaerobic conditions influence stress responses. Therefore, the goal of this study was to determine if reduced oxygen availability increased bile resistance of L. monocytogenes. Four strains representing three serovars were evaluated for changes in viability and proteome expression following exposure to bile in aerobic or anaerobic conditions. Viability for F2365 (serovar 4b), EGD-e (serovar 1/2a), and 10403S (serovar 1/2a) increased following exposure to 10% porcine bile under anaerobic conditions (P < 0.05). However, HCC23 (serovar 4a) exhibited no difference (P > 0.05) in bile resistance between aerobic and anaerobic conditions, indicating that oxygen availability does not influence resistance in this strain. The proteomic analysis indicated F2365 and EGD-e had an increased expression of proteins associated with cell envelope and membrane bioenergetics under anaerobic conditions, including thioredoxin-disulfide reductase and cell division proteins. Interestingly, HCC23 had an increase in several dehydrogenases following exposure to bile under aerobic conditions, suggesting that the NADH:NAD+ is altered and may impact bile resistance. Variations were observed in the expression of the cell shape proteins between strains, which corresponded to morphological differences observed by scanning electron microscopy. These data indicate that oxygen availability influences bile resistance. Further research is needed to decipher how these changes in metabolism impact pathogenicity in vivo and also the impact that this has on susceptibility of a host to listeriosis. PMID:27274623

  20. Indirect Human Impacts Reverse Centuries of Carbon Sequestration and Salt Marsh Accretion

    PubMed Central

    Coverdale, Tyler C.; Brisson, Caitlin P.; Young, Eric W.; Yin, Stephanie F.; Donnelly, Jeffrey P.; Bertness, Mark D.

    2014-01-01

    Direct and indirect human impacts on coastal ecosystems have increased over the last several centuries, leading to unprecedented degradation of coastal habitats and loss of ecological services. Here we document a two-century temporal disparity between salt marsh accretion and subsequent loss to indirect human impacts. Field surveys, manipulative experiments and GIS analyses reveal that crab burrowing weakens the marsh peat base and facilitates further burrowing, leading to bank calving, disruption of marsh accretion, and a loss of over two centuries of sequestered carbon from the marsh edge in only three decades. Analogous temporal disparities exist in other systems and are a largely unrecognized obstacle in attaining sustainable ecosystem services in an increasingly human impacted world. In light of the growing threat of indirect impacts worldwide and despite uncertainties in the fate of lost carbon, we suggest that estimates of carbon emissions based only on direct human impacts may significantly underestimate total anthropogenic carbon emissions. PMID:24675669

  1. Liquid chromatography/nuclear magnetic resonance spectroscopy and liquid chromatography/mass spectrometry identification of novel metabolites of the multidrug resistance modulator LY335979 in rat bile and human liver microsomal incubations.

    PubMed

    Ehlhardt, W J; Woodland, J M; Baughman, T M; Vandenbranden, M; Wrighton, S A; Kroin, J S; Norman, B H; Maple, S R

    1998-01-01

    Compound LY335979 is a P-glycoprotein inhibitor currently entering phase I clinical trials for potential reversal of multidrug resistance to cancer chemotherapy. In early exploratory studies, LY335979 was found to be rapidly transformed in incubations with liver microsomes from rats, dogs, monkeys, and humans. Although the parent compound was completely metabolized, no prominent metabolite peaks were observed. One peak did appear early in the time course, but it did not increase over time. In another preliminary experiment, rats were treated iv with [3H]LY335979 (prepared for pharmacology studies), and urine and bile fractions were collected. Analysis of the urine by reverse-phase HPLC with UV and radioactivity detection revealed that almost all of the material eluted with the solvent front. More than half the radioactivity in bile was accounted for by two peaks eluting earlier than the parent compound (the rest eluted at the solvent front). With both bile and the incubations with microsomes, initial attempts to isolate metabolites were not successful. There was also evidence in both systems of products derived from cleavage of LY335979 (by both further metabolism and degradation). LC/NMR was thus used to analyze materials directly in their respective matrices. An N-oxide metabolite (LY389551) formed by oxidation of the quinoline nitrogen was identified in the microsomal incubations; in bile, three glucuronide metabolites were identified, all of which were conjugates of products formed by oxidation of the quinoline ring of LY335979. There have been few reports in the literature of LC/NMR analysis of bile, which is a more complex matrix than either urine or microsomal suspensions. However, the HPLC techniques developed in this work for the HPLC/UV and LC/MS analyses of LY335979 metabolites in the microsomal matrix and in bile proved readily adaptable for LC/NMR. Using a 500-MHz instrument, basic 1H NMR spectra could be obtained in 2-3 hr with approximately 100 ng of

  2. Metabolic profiling of bile acids in human and mouse blood by LC-MS/MS in combination with phospholipid-depletion solid-phase extraction.

    PubMed

    Han, Jun; Liu, Yang; Wang, Renxue; Yang, Juncong; Ling, Victor; Borchers, Christoph H

    2015-01-20

    To obtain a more comprehensive profile of bile acids (BAs) in blood, we developed an ultrahigh performance liquid chromatography/multiple-reaction monitoring-mass spectrometry (UPLC-MRM-MS) method for the separation and detection of 50 known BAs. This method utilizes phospholipid-depletion solid-phase extraction as a new high-efficiency sample preparation procedure for BA assay. UPLC/scheduled MRM-MS with negative ion electrospray ionization enabled targeted quantitation of 43 and 44 BAs, respectively, in serum samples from seven individuals with and without fasting, as well as in plasma samples from six cholestatic gene knockout mice and six age- and gender-matched wild-type (FVB/NJ) animals. Many minor BAs were identified and quantitated in the blood for the first time. Method validation indicated good quantitation precision with intraday and interday relative standard deviations of ≤9.3% and ≤10.8%, respectively. Using a pooled human serum sample and a pooled mouse plasma sample as the two representative test samples, the quantitation accuracy was measured to be 80% to 120% for most of the BAs, using two standard-substance spiking approaches. To profile other potential BAs not included in the 50 known targets from the knockout versus wild-type mouse plasma, class-specific precursor/fragment ion transitions were used to perform UPLC-MRM-MS for untargeted detection of the structural isomers of glycine- and taurine-conjugated BAs and unconjugated tetra-hydroxy BAs. As a result, as many as 36 such compounds were detected. In summary, this UPLC-MRM-MS method has enabled the quantitation of the largest number of BAs in the blood thus far, and the results presented have revealed an unexpectedly complex BA profile in mouse plasma. PMID:25496250

  3. Rapid Determination of Bile Acids in Bile from Various Mammals by Reversed-Phase Ultra-Fast Liquid Chromatography.

    PubMed

    Si, Gu Leng Ri; Yao, Peng; Shi, Luwen

    2015-08-01

    A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. PMID:25520305

  4. Variants in Striatin Gene are Associated with Salt Sensitive Blood Pressure in Mice and Humans

    PubMed Central

    Sun, Bei; Williams, Jonathan; Lasky-Su, Jessica; Baudrand, Rene; Yao, Tham; Moize, Burhanuddin; Hafiz, Wan M; Romero, Jose R.; Adler, Gail K.; Ferri, Claudio; Hopkins, Paul N.; Pojoga, Luminita H.; Williams, Gordon H.

    2015-01-01

    Striatin is a novel protein that interacts with steroid receptors and modifies rapid, non-genomic activity in vitro. We tested the hypothesis that striatin would in turn affect mineralocorticoid receptor function and consequently sodium, water, and blood pressure homeostasis in an animal model. We evaluated salt sensitivity of blood pressure in novel striatin heterozygote knockout mice. When compared with wild type, striatin heterozygote exhibited a significant increase in blood pressure when sodium intake was increased from restricted (0.03%) to liberal (1.6%) sodium). Further, renal expression of mineralocorticoid receptor and its genomic downstream targets serum/glucocoticoid-regulated kinase 1 and epithelial sodium channel were increased in striatin heterozygote versus wild type mice on liberal sodium intake while the pAkt/Akt ratio, readout of mineralocoriticoid receptor's rapid, non-genomic pathway, was reduced. To determine the potential clinical relevance of these findings, we tested the association between single nucleotide polymorphic variants of striatin gene and salt sensitivity of blood presure in 366 Caucasian hypertensive subjects. HapMap derived tagging single nucleotide polymorphisms identified an association between rs2540923 with salt sensitivity of blood pressure (OR, 6.25; 95% CI 1.7-20; P=0.01). These data provide the first in vivo evidence in humans and rodents that associates striatin with markers of mineralocoriticoid receptor activity. The data also support the hypothesis that the rapid, non-genomic mineralocoriticoid receptor pathway (mediated via striatin) has a role in modulating the interaction between salt intake and blood pressure. PMID:25368024

  5. Characterization of Salt-Induced Oligomerization of Human β2-Microglobulin at Low pH.

    PubMed

    Narang, Dominic; Singh, Anubhuti; Swasthi, Hema M; Mukhopadhyay, Samrat

    2016-08-18

    Misfolding and amyloid aggregation of human β2-microglobulin (β2m) have been linked to dialysis-related amyloidosis. Previous studies have shown that in the presence of different salt concentrations and at pH 2.5, β2m assembles into aggregates with distinct morphologies. However, the structural and mechanistic details of the aggregation of β2m, giving rise to different morphologies, are poorly understood. In this work, we have extensively characterized the salt-induced oligomers of the acid-unfolded state of β2m using an array of biophysical tools including steady-state and time-resolved fluorescence, circular dichroism, dynamic light scattering, and atomic force microscopy imaging. Fluorescence studies using the oligomer-sensitive molecular rotor, 4-(dicyanovinyl)-julolidine, in conjunction with the light scattering and cross-linking assay indicated that at low salt (NaCl) concentrations β2m exists as a disordered monomer, capable of transforming into ordered amyloid. In the presence of higher concentrations of salt, β2m aggregates into a larger oligomeric species that does not appear to transform into amyloid fibrils. Site-specific fluorescence experiments using single Trp variants of β2m revealed that the middle region of the protein is incorporated into these oligomers, whereas the C-terminal segment is highly exposed to bulk water. Additionally, stopped-flow kinetic experiments indicated that the formation of hydrophobic core and oligomerization occur concomitantly. Our results revealed the distinct pathways by which β2m assembles into oligomers and fibrils. PMID:27467899

  6. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  7. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    PubMed Central

    Verhaag, Esther M.; Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico

    2016-01-01

    Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. Aim To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. Methods HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1–50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. Results Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  8. Association of diverse bacterial communities in human bile samples with biliary tract disorders: a survey using culture and polymerase chain reaction-denaturing gradient gel electrophoresis methods.

    PubMed

    Tajeddin, E; Sherafat, S J; Majidi, M R S; Alebouyeh, M; Alizadeh, A H M; Zali, M R

    2016-08-01

    Bacterial infection is considered a predisposing factor for disorders of the biliary tract. This study aimed to determine the diversity of bacterial communities in bile samples and their involvement in the occurrence of biliary tract diseases. A total of 102 bile samples were collected during endoscopic retrograde cholangiopancreatography (ERCP). Characterization of bacteria was done using culture and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methods. Antimicrobial susceptibility of the isolates was determined based on the Clinical and Laboratory Standards Institute (CLSI) guidelines and identity of the nucleotide sequences of differentiated bands from the DGGE gels was determined based on GenBank data. In total, 41.2 % (42/102) of the patients showed bacterial infection in their bile samples. This infection was detected in 21 % (4/19), 45.4 % (5/11), 53.5 % (15/28), and 54.5 % (24/44) of patients with common bile duct stone, microlithiasis, malignancy, and gallbladder stone, respectively. Escherichia coli showed a significant association with gallstones. Polymicrobial infection was detected in 48 % of the patients. While results of the culture method established coexistence of biofilm-forming bacteria (Pseudomonas aeruginosa, E. coli, Klebsiella pneumoniae, Enterococcus spp., and Acinetobacter spp.) in different combinations, the presence of Capnocytophaga spp., Lactococcus spp., Bacillus spp., Staphylococcus haemolyticus, Enterobacter or Citrobacter spp., Morganella spp., Salmonella spp., and Helicobacter pylori was also characterized in these samples by the PCR-DGGE method. Multidrug resistance phenotypes (87.5 %) and resistance to third- and fourth-generation cephalosporins and quinolones were common in these strains, which could evolve through their selection by bile components. Ability for biofilm formation seems to be a need for polymicrobial infection in this organ. PMID:27193890

  9. Bile acids: emerging role in management of liver diseases.

    PubMed

    Asgharpour, Amon; Kumar, Divya; Sanyal, Arun

    2015-10-01

    Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in the amount of atherosclerosis plaque formation and decreased portal vascular resistance and portal hypotension in animal models. Furthermore, rodent models have demonstrated antifibrotic activity using bile acid receptor agonists. Early human data using a FXR agonist, obeticholic acid, have shown promising results with improvement of histological activity and even a reduction of fibrosis. Human studies are ongoing and will provide further information on bile acid receptor agonist therapies. Thus, bile acids and their derivatives have the potential for management of liver diseases and potentially other disease states including diabetes and the metabolic syndrome. PMID:26320013

  10. Bile acids: emerging role in management of liver diseases

    PubMed Central

    Asgharpour, Amon; Kumar, Divya

    2016-01-01

    Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in the amount of atherosclerosis plaque formation and decreased portal vascular resistance and portal hypotension in animal models. Furthermore, rodent models have demonstrated antifibrotic activity using bile acid receptor agonists. Early human data using a FXR agonist, obeticholic acid, have shown promising results with improvement of histological activity and even a reduction of fibrosis. Human studies are ongoing and will provide further information on bile acid receptor agonist therapies. Thus, bile acids and their derivatives have the potential for management of liver diseases and potentially other disease states including diabetes and the metabolic syndrome. PMID:26320013

  11. Complicated bile duct stones.

    PubMed

    Roy, Ashwin; Martin, Derrick

    2013-01-01

    Common bile duct stones (CBDSs) are solid deposits that can either form within the gallbladder or migrate to the common bile duct (CBD), or form de novo in the biliary tree. In the USA around 15% of the population have gallstones and of these, 3% present with symptoms annually. Because of this, there have been major advancements in the management of gallstones and related conditions. Management is based on the patient's risk profile; young and healthy patients are likely to be recommended for surgery and elderly patients with comorbidities are usually recommended for endoscopic procedures. Imaging of gallstones has advanced in the last 30 years with endoscopic retrograde cholangiopancreatography evolving from a diagnostic to a therapeutic procedure in removing CBDSs. We present a complicated case of a patient with a CBDS and periampullary diverticulum and discuss the techniques used to diagnose and remove the stone from the biliary system. PMID:23946532

  12. Complicated bile duct stones

    PubMed Central

    Roy, Ashwin; Martin, Derrick

    2013-01-01

    Common bile duct stones (CBDSs) are solid deposits that can either form within the gallbladder or migrate to the common bile duct (CBD), or form de novo in the biliary tree. In the USA around 15% of the population have gallstones and of these, 3% present with symptoms annually. Because of this, there have been major advancements in the management of gallstones and related conditions. Management is based on the patient's risk profile; young and healthy patients are likely to be recommended for surgery and elderly patients with comorbidities are usually recommended for endoscopic procedures. Imaging of gallstones has advanced in the last 30 years with endoscopic retrograde cholangiopancreatography evolving from a diagnostic to a therapeutic procedure in removing CBDSs. We present a complicated case of a patient with a CBDS and periampullary diverticulum and discuss the techniques used to diagnose and remove the stone from the biliary system. PMID:23946532

  13. Structural Determinants for Transport Across the Intestinal Bile Acid Transporter Using C-24 Bile Acid Conjugates

    PubMed Central

    Rais, Rana; Acharya, Chayan; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium dependent bile acid transporter (hASBT) re-absorbs gram quantities of bile acid daily and is a potential prodrug target to increase oral drug absorption. In the absence of a high resolution hASBT crystal structure, 3D-QSAR modeling may prove beneficial in designing prodrug targets to hASBT. The objective was to derive a conformationally sampled pharmacophore 3D–QSAR (CSP-SAR) model for the uptake of bile acid conjugates by hASBT. A series of bile acid conjugates of glutamyl chenodeoxycholate were evaluated in terms of Km and normalized Vmax(normVmax) using hASBT-MDCK cells. All mono-anionic conjugates were potent substrates. Dianions, cations and zwitterions, which bound with a high affinity, were not substrates. CSP-SAR models were derived using structural and physicochemical descriptors, and evaluated via cross-validation. The best CSP-SAR model for Km included two structural and two physiochemical descriptors, where substrate hydrophobicity enhanced affinity. A best CSP-SAR model for Km/normVmax employed one structural and three physicochemical descriptors, also indicating hydrophobicity enhanced efficiency. Overall, the bile acid C-24 region accommodated a range of substituted anilines, provided a single negative charge was present near C-24. In comparing uptake findings to prior inhibition results, increased hydrophobicity enhanced activity, with dianions and zwitterions hindering activity. PMID:20939504

  14. Elevation of Fasting Ghrelin in Healthy Human Subjects Consuming a High-Salt Diet: A Novel Mechanism of Obesity?

    PubMed Central

    Zhang, Yong; Li, Fenxia; Liu, Fu-Qiang; Chu, Chao; Wang, Yang; Wang, Dan; Guo, Tong-Shuai; Wang, Jun-Kui; Guan, Gong-Chang; Ren, Ke-Yu; Mu, Jian-Jun

    2016-01-01

    Overweight/obesity is a chronic disease that carries an increased risk of hypertension, diabetes mellitus, and premature death. Several epidemiological studies have demonstrated a clear relationship between salt intake and obesity, but the pathophysiologic mechanisms remain unknown. We hypothesized that ghrelin, which regulates appetite, food intake, and fat deposition, becomes elevated when one consumes a high-salt diet, contributing to the progression of obesity. We, therefore, investigated fasting ghrelin concentrations during a high-salt diet. Thirty-eight non-obese and normotensive subjects (aged 25 to 50 years) were selected from a rural community in Northern China. They were sequentially maintained on a normal diet for three days at baseline, a low-salt diet for seven days (3 g/day, NaCl), then a high-salt diet for seven days (18 g/day). The concentration of plasma ghrelin was measured using an immunoenzyme method (ELISA). High-salt intake significantly increased fasting ghrelin levels, which were higher during the high-salt diet (320.7 ± 30.6 pg/mL) than during the low-salt diet (172.9 ± 8.9 pg/mL). The comparison of ghrelin levels between the different salt diets was statistically-significantly different (p < 0.01). A positive correlation between 24-h urinary sodium excretion and fasting ghrelin levels was demonstrated. Our data indicate that a high-salt diet elevates fasting ghrelin in healthy human subjects, which may be a novel underlying mechanism of obesity. PMID:27240398

  15. Potential of salt-accumulating and salt-secreting halophytic plants for recycling sodium chloride in human urine in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. A.; Ushakova, S. A.; Kudenko, Yu. A.; Gribovskaya, I. V.; Shklavtsova, E. S.; Balnokin, Yu. V.; Popova, L. G.; Myasoedov, N. A.; Gros, J.-B.; Lasseur, Ch.

    2011-07-01

    This study addresses the possibility of growing different halophytic plants on mineralized human urine as a way to recycle NaCl from human wastes in a bioregenerative life support system (BLSS). Two halophytic plant species were studied: the salt-accumulating Salicornia europaea and the salt-secreting Limonium gmelinii. During the first two weeks, plants were grown on Knop's solution, then an average daily amount of urine produced by one human, which had been preliminarily mineralized, was gradually added to the experimental solutions. Nutrient solutions simulating urine mineral composition were gradually added to control solutions. NaCl concentrations in the stock solutions added to the experimental and control solutions were 9 g/L in the first treatment and 20 g/L in the second treatment. The mineralized human urine showed some inhibitory effects on S. europaea and L. gmelinii. The biomass yield of experimental plants was lower than that of control ones. If calculated for the same time period (120 d) and area (1 m 2), the amount of sodium chloride taken up by S. europaea plants would be 11.7 times larger than the amount taken up by L. gmelinii plants (486 g/m 2 vs. 41 g/m 2). Thus, S. europaea is the better choice of halophyte for recycling sodium chloride from human wastes in BLSS.

  16. HPLC-fluorescence determination of bile acids in pharmaceuticals and bile after derivatization with 2-bromoacetyl-6-methoxynaphthalene.

    PubMed

    Cavrini, V; Gatti, R; Roda, A; Cerrè, C; Roveri, P

    1993-08-01

    2-Bromoacetyl-6-methoxynaphthalene was used as a pre-chromatographic fluorescent labelling reagent for the high-performance liquid chromatographic (HPLC) analysis of bile acids. The derivatization reaction was performed in an aqueous medium in the presence of tetrahexylammonium bromide by ultrasonication at 40 degrees C to give fluorescent esters which were separated by reversed-phase HPLC and detected fluorimetrically (lambda ex = 300 nm, lambda em = 460 nm). Applications to the determination of ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) in their pharmaceutical formulations are described. The method was also applied to the determination of free and conjugated bile acids in human bile samples. PMID:8257742

  17. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  18. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  19. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  20. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  1. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  2. Steam Cooking Significantly Improves in Vitro Bile Acid Binding of Beets, Eggplant, Asparagus, Carrots, Green Beans and Cauliflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative healthful potential of cooked beets, okra, eggplant, asparagus, carrots, green beans, cauliflower and turnips was evaluated by determining their in vitro bile acid binding using a mixture of bile acids secreted in human bile at a duodenal physiological pH of 6.3. Six treatments and two...

  3. Monitoring of glucose, salt and pure water in human whole blood: An in vitro study.

    PubMed

    Imran, Muhammad; Ullah, Hafeez; Akhtar, Munir; Sial, Muhammad Aslam; Ahmed, Ejaz; Durr-E-Sabeeh; Ahmad, Mukhtar; Hussain, Fayyaz

    2016-07-01

    Designing and implementation of non-invasive methods for glucose monitoring in blood is main focus of biomedical scientists to provide a relief from skin puncturing of diabete patient. The objective of this research work is to investigate the shape deformations and the aggregation of red blood cells (RBCs) in the human blood after addition of three different analytes i) (0mM-400mM: Range) of glucose (C(6)H(12)O(6)), ii) (0mM-400mM: range) of pure salt (NaCl) and iii) (0mM- 350mM: range) of pure water (H(2)O). We have observed that the changes in the shape of individual cells from biconcave discs to spherical shapes and eventually the lysis of the cells at optimum concentration of glucose, salts and pure water. This demonstration also provides a base line to facilitate diabetes during partial diagnosis and monitoring of the glucose levels qualitatively both in research laboratories and clinical environment. PMID:27393437

  4. Bile duct malignancies.

    PubMed

    Tucek, S; Tomasek, J; Halámkova, J; Kiss, I; Andrasina, T; Hemmelová, B; Adámková-Krákorová, D; Vyzula, R

    2010-01-01

    Bile duct malignancies include intrahepatic cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma (ECC), gall bladder carcinoma (GC) and carcinoma of Vater's ampulla (ampulloma). Bile duct neoplasms are rare tumours with overall poor prognosis. The overall incidence affects up to 12.5 per 100,000 persons in the Czech Republic. The mortality rate has risen recently to 9.5 per 100,000 persons. The incidence and mortality have been remarkably stable over the past 3 decades. The survival rate of patients with these tumours is poor, usually not exceeding 12 months. The diagnostic process is complex, uneasy and usually late. Most cases are diagnosed when unresectable, and palliative treatment is the main approach of medical care for these tumours. The treatment remains very challenging. New approaches have not brought much improvement in this field. Standards of palliative care are lacking and quality of life assessments are surprisingly not common. From the scarce data it seems, however, that multimodal individually tailored treatment can prolong patients'survival and improve the health-related quality of life. The care in specialized centres offers methods of surgery, interventional radiology, clinical oncology and high quality supportive care. These methods are discussed in the article in greater detail. Improvements in this field can be sought in new diagnostic methods and new procedures in surgery and interventional radiology. Understanding the tumour biology on the molecular level could shift the strategy to a more successful one, resulting in more cured patients. Further improvements in palliative care can be sought by defining new targets and new drug development. The lack of patients with bile duct neoplasms has been the limiting factor for any improvements. A new design of larger randomized international multicentric clinical trials with prompt data sharing could help to overcome this major problem. Defining standards of palliative care is a necessity

  5. Bile acid promotes liver regeneration via farnesoid X receptor signaling pathways in rats.

    PubMed

    Ding, Long; Yang, Yu; Qu, Yikun; Yang, Ting; Wang, Kaifeng; Liu, Weixin; Xia, Weibin

    2015-06-01

    Bile acids, which are synthesized from cholesterol in the hepatocytes of the liver, are amphipathic molecules with a steroid backbone. Studies have shown that bile acid exhibits important effects on liver regeneration. However, the mechanism underlying these effects remains unclear. The aim of the present study was to investigate the effect of bile acid and the farnesoid X receptor (FXR) on hepatic regeneration and lipid metabolism. Rats were fed with 0.2% bile acid or glucose for 7 days and then subjected to a 50 or 70% hepatectomy. Hepatic regeneration rate, serum and liver levels of bile acid, and expression of FXR and Caveolin‑1, were detected at 24, 48 or 72 h following hepatectomy. The expression of proliferating cell nuclear antigen (PCNA) in the liver was measured using immunohistochemistry at the end of the study. Hepatocytes isolated from rats were treated with bile acid, glucose, FXR agonist and FXR antagonist, separately or in combination. Lipid metabolism, the expression of members of the FXR signaling pathway and energy metabolism‑related factors were measured using ELISA kits or western blotting. Bile acid significantly increased the hepatic regeneration rate and the expression of FXR, Caveolin‑1 and PCNA. Levels of total cholesterol and high density lipoprotein were increased in bile acid‑ or FXR agonist‑treated hepatocytes in vitro. Levels of triglyceride, low density lipoprotein and free fatty acid were decreased. In addition, bile acid and FXR agonists increased the expression of bile salt export pump and small heterodimer partner, and downregulated the expression of apical sodium‑dependent bile acid transporter, Na+/taurocholate cotransporting polypeptide and cholesterol 7α‑hydroxylase. These results suggested that physiological concentrations of bile acid may promote liver regeneration via FXR signaling pathways, and may be associated with energy metabolism. PMID:25634785

  6. Glucose and Insulin Induction of Bile Acid Synthesis

    PubMed Central

    Li, Tiangang; Francl, Jessica M.; Boehme, Shannon; Ochoa, Adrian; Zhang, Youcai; Klaassen, Curtis D.; Erickson, Sandra K.; Chiang, John Y. L.

    2012-01-01

    Bile acids facilitate postprandial absorption of nutrients. Bile acids also activate the farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5 and play a major role in regulating lipid, glucose, and energy metabolism. Transgenic expression of cholesterol 7α-hydroxylase (CYP7A1) prevented high fat diet-induced diabetes and obesity in mice. In this study, we investigated the nutrient effects on bile acid synthesis. Refeeding of a chow diet to fasted mice increased CYP7A1 expression, bile acid pool size, and serum bile acids in wild type and humanized CYP7A1-transgenic mice. Chromatin immunoprecipitation assays showed that glucose increased histone acetylation and decreased histone methylation on the CYP7A1 gene promoter. Refeeding also induced CYP7A1 in fxr-deficient mice, indicating that FXR signaling did not play a role in postprandial regulation of bile acid synthesis. In streptozocin-induced type I diabetic mice and genetically obese type II diabetic ob/ob mice, hyperglycemia increased histone acetylation status on the CYP7A1 gene promoter, leading to elevated basal Cyp7a1 expression and an enlarged bile acid pool with altered bile acid composition. However, refeeding did not further increase CYP7A1 expression in diabetic mice. In summary, this study demonstrates that glucose and insulin are major postprandial factors that induce CYP7A1 gene expression and bile acid synthesis. Glucose induces CYP7A1 gene expression mainly by epigenetic mechanisms. In diabetic mice, CYP7A1 chromatin is hyperacetylated, and fasting to refeeding response is impaired and may exacerbate metabolic disorders in diabetes. PMID:22144677

  7. Microbial Biotransformations of Bile Acids as Detected by Electrospray Mass Spectrometry123

    PubMed Central

    Hagey, Lee R.; Krasowski, Matthew D.

    2013-01-01

    Many current experiments investigating the effects of diet, dietary supplements, and pre- and probiotics on the intestinal environments do not take into consideration the potential for using bile salts as markers of environmental change. Intestinal bacteria in vertebrates can metabolize bile acids into a number of different structures, with deamidation, hydroxyl group oxidation, and hydroxyl group elimination. Fecal bile acids are readily available to sample and contain a considerable structural complexity that directly relates to intestinal morphology, bile acid residence time in the intestine, and the species of microbial forms in the intestinal tract. Here we offer a classification scheme that can serve as an initial guide to interpret the different bile acid patterns expressed in vertebrate feces. PMID:23319120

  8. Intrahepatic Transposition of Bile Ducts

    PubMed Central

    Delić, Jasmin; Savković, Admedina; Isaković, Eldar; Marković, Sergije; Bajtarevic, Alma; Denjalić, Amir

    2012-01-01

    Objective. To describe the intrahepatic bile duct transposition (anatomical variation occurring in intrahepatic ducts) and to determine the frequency of this variation. Material and Methods. The researches were performed randomly on 100 livers of adults, both sexes. Main research methods were anatomical macrodissection. As a criterion for determination of variations in some parts of bile tree, we used the classification of Segmentatio hepatis according to Couinaud (1957) according to Terminologia Anatomica, Thieme Stuugart: Federative Committee on Anatomical Terminology, 1988. Results. Intrahepatic transposition of bile ducts was found in two cases (2%), out of total examined cases (100): right-left transposition (right segmental bile duct, originating from the segment VIII, joins the left liver duct-ductus hepaticus sinister) and left-right intrahepatic transposition (left segmental bile duct originating from the segment IV ends in right liver duct-ductus hepaticus dexter). Conclusion. Safety and success in liver transplantation to great extent depends on knowledge of anatomy and some common embryological anomalies in bile tree. Variations in bile tree were found in 24–43% of cases, out of which 1–22% are the variations of intrahepatic bile ducts. Therefore, good knowledge on ductal anatomy enables good planning, safe performance of therapeutic and operative procedures, and decreases the risk of intraoperative and postoperative complications. PMID:22550601

  9. Maternal bile acid transporter deficiency promotes neonatal demise

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-ze; Frank, Matthew W.; Calabrese, Christopher; Krausz, Kristopher W.; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O.; Gonzalez, Frank J.; Schuetz, John D.

    2015-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition. PMID:26416771

  10. NMR-based modeling and binding studies of a ternary complex between chicken liver bile acid binding protein and bile acids.

    PubMed

    Tomaselli, Simona; Ragona, Laura; Zetta, Lucia; Assfalg, Michael; Ferranti, Pasquale; Longhi, Renato; Bonvin, Alexandre M J J; Molinari, Henriette

    2007-10-01

    Chicken liver bile acid binding protein (cL-BABP) is involved in bile acid transport in the liver cytosol. A detailed study of the mechanism of binding and selectivity of bile acids binding proteins towards the physiological pool of bile salts is a key issue for the complete understanding of the role of these proteins and their involvement in cholesterol homeostasis. In the present study, we modeled the ternary complex of cL-BABP with two molecules of bile salts using the data driven docking program HADDOCK on the basis of NMR and mass spectrometry data. Docking resulted in good 3D models, satisfying the majority of experimental restraints. The docking procedure represents a necessary step to help in the structure determination and in functional analysis of such systems, in view of the high complexity of the 3D structure determination of a ternary complex with two identical ligands. HADDOCK models show that residues involved in binding are mainly located in the C-terminal end of the protein, with two loops, CD and EF, playing a major role in ligand binding. A spine, comprising polarresidues pointing toward the protein interior and involved in motion communication, has a prominent role in ligand interaction. The modeling approach has been complemented with NMR interaction and competition studies of cL-BABP with chenodeoxycholic and cholic acids. A higher affinity for chenodeoxycholic acid was observed and a Kd upper limit estimate was obtained. The binding is highly cooperative and no site selectivity was detected for the different bile salts, thus indicating that site selectivity and cooperativity are not correlated. Differences in physiological pathways and bile salt pools in different species is discussed in light of the binding results thus enlarging the body of knowledge of BABPs biological functions. PMID:17607743

  11. Topical penetration of commercial salicylate esters and salts using human isolated skin and clinical microdialysis studies

    PubMed Central

    Cross, Sheree E; Anderson, Chris; Roberts, Michael S

    1998-01-01

    Aims The penetration of active ingredients from topically applied anti-inflammatory pharmaceutical products into tissues below the skin is the basis of their therapeutic efficacy. There is still controversy as to whether these agents are capable of direct penetration by diffusion through the tissues or whether redistribution in the systemic circulation is responsible for their tissue deposition below the application site. Methods The extent of direct penetration of salicylate from commercial ester and salt formulations into the dermal and subcutaneous tissue of human volunteers was determined using the technique of cutaneous microdialysis. We also examined differences in the extent of hydrolysis of the methylester of salicylate applied topically in human volunteers and in vitro skin diffusion cells using full-thickness skin and epidermal membranes. Results The present study showed that whilst significant levels of salicylate could be detected in the dermis and subcutaneous tissue of volunteers treated with the methylsalicylate formulation, negligible levels of salicylate were seen following application of the triethanolamine salicylate formulation. The tissue levels of salicylate from the methylsalicylate formulation were approx. 30-fold higher than the plasma concentrations. Conclusion The absorption and tissue concentration profiles for the commercial methylsalicylate formulation are indicative of direct tissue penetration and not solely redistribution by the systemic blood supply. PMID:9690946

  12. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice.

    PubMed

    Fickert, Peter; Fuchsbichler, Andrea; Marschall, Hanns-Ulrich; Wagner, Martin; Zollner, Gernot; Krause, Robert; Zatloukal, Kurt; Jaeschke, Hartmut; Denk, Helmut; Trauner, Michael

    2006-02-01

    We determined the mechanisms of hepatobiliary injury in the lithocholic acid (LCA)-fed mouse, an increasingly used model of cholestatic liver injury. Swiss albino mice received control diet or 1% (w/w) LCA diet (for 1, 2, and 4 days), followed by assessment of liver morphology and ultrastructure, tight junctions, markers of fibrosis and key proteins of hepatobiliary function, and bile flow and composition. As expected LCA feeding led to bile infarcts, which were followed by a destructive cholangitis with activation and proliferation of periductal myofibroblasts. At the ultrastructural level, small bile ducts were frequently obstructed by crystals. Biliary-excreted fluorescence-labeled ursodeoxycholic acid accumulated in bile infarcts, whereas most infarcts did not stain with India ink injected into the common bile duct; both findings are indicative of partial biliary obstruction. Expression of the main basolateral bile acid uptake proteins (sodium-taurocholate cotransporter and organic anion-transporting polypeptide 1) was reduced, the canalicular transporters bile salt export pump and multidrug-related protein 2 were preserved, and the basolateral transporter multidrug-related protein 3 and the detoxifying enzyme sulfotransferase 2a1 were induced. Thus, we demonstrate that LCA feeding in mice leads to segmental bile duct obstruction, destructive cholangitis, periductal fibrosis, and an adaptive transporter and metabolic enzyme response. PMID:16436656

  13. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    SciTech Connect

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C.

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  14. Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations

    NASA Astrophysics Data System (ADS)

    Kuchumov, Alex G.; Gilev, Valeriy; Popov, Vitaliy; Samartsev, Vladimir; Gavrilov, Vasiliy

    2014-02-01

    The paper presents an experimental study of pathological human bile taken from the gallbladder and bile ducts. The flow dependences were obtained for different types of bile from patients with the same pathology, but of different age and sex. The parameters of the Casson's and Carreau's equations were found for bile samples. Results on the hysteretic bile behavior at loading-unloading tests are also presented, which proved that the pathologic bile is a non-Newtonian thixotropic liquid. The viscosity of the gallbladder bile was shown to be higher compared to the duct bile. It was found that at higher shear stress the pathological bile behaves like Newtonian fluid, which is explained by reorientation of structural components. Moreover, some pathological bile flow in the biliary system CFD simulations were performed. The velocity and pressure distributions as well as flow rates in the biliary segments during the gallbladder refilling and emptying phases are obtained. The results of CFD simulations can be used for surgeons to assess the patient's condition and choose an adequate treatment.

  15. The effects of tiadenol, clofibrate and clofibride on bile composition in the rat.

    PubMed

    Rozé, C; Cuchet, P; Souchard, M; Vaille, C; Debray, C

    1977-05-01

    Biliary secretion was studied in normolipidemic rats after a 7 day treatment with the hypolipidemic drugs, tiadenol (bis-(hydroxyethylthio)-1,10-decane), clofibrate and clofibride (chloro-4-phenoxy-2-methyl-2-propionate of dimethylcarbamoyl-3-propyl). All three drugs decreased blood cholesterol and total lipids, increased liver weight and liver catalase content, and decreased biliary excretion of cholesterol. The biliary concentrations of bile salts, phospholipids and cholesterol decreased to a variable extent, in such a way that the ratio of bile salts + phospholipids to cholesterol was increased by the drugs. The bile salt independent fraction was increased. The effects were qualitatively similar for all three drugs tested, but quanitative differences appeared for some of the parameters. PMID:862664

  16. Quantitative microanalysis of bile acids in biological samples. Collaborative study.

    PubMed

    Nakayama, F

    1988-10-28

    The analysis of bile acids in biological samples has always presented a problem because of their complex nature and low concentration. Recently, newer analytical procedures for bile acids have become available, including enzymatic analysis, radioimmunoassay, thin-layer chromatography (TLC), gas chromatography, high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) with selected ion monitoring (SIM). However, they differ greatly with respect to specificity, sensitivity, accuracy and simplicity. On the other hand, the choice of analytical procedure differs according to the specific aims and the nature of biological samples to be analysed. These newer procedures have been compared in a double-blind fashion by distributing bile, plasma and urine samples to seven participating laboratories. GC-MS-SIM was found to be the most sensitive and reliable, but it requires other procedures for preliminary clean-up and fractionation steps. Enzymatic analysis is simple and gives small analytical errors but tends to over-estimate plasma bile acids. Radioimmunoassay gives variable results but is useful as a screening procedure for large numbers of plasma samples. TLC gives reliable results for biliary bile acids in experienced hands, except for differentiation between conjugated dihydroxycholanoic acids. HPLC, whether using derivatization or with fixed 3 alpha-hydroxy steroid dehydrogenase detection, is suitable for the analysis of major bile acids in normal human serum but not for the identification of unknown minor peaks. PMID:3243854

  17. Cotinine effects on bile flow and biliary NNK elimination.

    PubMed

    Meiser, H; Atawodi, S E; Richter, E

    2000-06-20

    Nicotine and its major metabolite cotinine inhibit alpha-hydroxylation of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) suggesting that an alternative pathway of NNK metabolism and elimination, biliary excretion of the O-glucuronide of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL-Gluc) may be enhanced. To verify the possible role of cotinine on biliary elimination of NNK and its metabolites, bile duct cannulated rats were administered a single i.p. dose of 50 mg/kg [56sup;-3 H]-NNK with or without i.p. co-administration of 5 mg/kg cotinine or nicotine. Cotinine significantly reduced cumulative bile flow and biliary elimination of NNK-derived radioactivity within six hours to 42 and 27 percent, respectively. The pattern of NNK metabolites in bile was unchanged. Nicotine had a similar inhibitory effect on bile flow. This result constitutes the first experimental evidence that cotinine inhibits bile flow. In rats, biliary elimination of NNK is reduced accordingly which may lead to an increased carcinogen burden in the body. In humans, inhibition of bile flow by tobacco alkaloids may contribute to the appetite suppressing effect of tobacco products. PMID:10882639

  18. Th17/Treg Imbalance Induced by Dietary Salt Variation Indicates Inflammation of Target Organs in Humans.

    PubMed

    Luo, Tao; Ji, Wen-Jie; Yuan, Fei; Guo, Zhao-Zeng; Li, Yun-Xiao; Dong, Yan; Ma, Yong-Qiang; Zhou, Xin; Li, Yu-Ming

    2016-01-01

    The functions of T helper 17 (Th17) and regulatory T (Treg) cells are tightly orchestrated through independent differentiation pathways that are involved in the secretion of pro- and anti-inflammatory cytokines induced by high-salt dietary. However, the role of imbalanced Th17/Treg ratio implicated in inflammation and target organ damage remains elusive. Here, by flow cytometry analysis, we demonstrated that switching to a high-salt diet resulted in decreased Th17 cells and reciprocally increased Treg cells, leading to a decreased Th17/Treg ratio. Meanwhile, Th17-related pathway was down-regulated after one day of high salt loading, with the increase in high salt loading as shown by microarray and RT-PCR. Subsequently, blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) observed hypoxia in the renal medulla (increased R2(*) signal) during high-salt loading, which was regressed to its baseline level in a step-down fashion during low-salt feeding. The flow-mediated vasodilatation (FMD) of the branchial artery was significantly higher on the first day of high salt loading. Collectively, these observations indicate that a short-term increase in dietary salt intake could induce reciprocal switches in Th17/Treg ratio and related cytokines, which might be the underlying cellular mechanism of high-salt dietary induced end organ inflammation and potential atherosclerotic risk. PMID:27353721

  19. Th17/Treg Imbalance Induced by Dietary Salt Variation Indicates Inflammation of Target Organs in Humans

    PubMed Central

    Luo, Tao; Ji, Wen-jie; Yuan, Fei; Guo, Zhao-zeng; Li, Yun-xiao; Dong, Yan; Ma, Yong-qiang; Zhou, Xin; Li, Yu-ming

    2016-01-01

    The functions of T helper 17 (Th17) and regulatory T (Treg) cells are tightly orchestrated through independent differentiation pathways that are involved in the secretion of pro- and anti-inflammatory cytokines induced by high-salt dietary. However, the role of imbalanced Th17/Treg ratio implicated in inflammation and target organ damage remains elusive. Here, by flow cytometry analysis, we demonstrated that switching to a high-salt diet resulted in decreased Th17 cells and reciprocally increased Treg cells, leading to a decreased Th17/Treg ratio. Meanwhile, Th17-related pathway was down-regulated after one day of high salt loading, with the increase in high salt loading as shown by microarray and RT-PCR. Subsequently, blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) observed hypoxia in the renal medulla (increased R2* signal) during high-salt loading, which was regressed to its baseline level in a step-down fashion during low-salt feeding. The flow-mediated vasodilatation (FMD) of the branchial artery was significantly higher on the first day of high salt loading. Collectively, these observations indicate that a short-term increase in dietary salt intake could induce reciprocal switches in Th17/Treg ratio and related cytokines, which might be the underlying cellular mechanism of high-salt dietary induced end organ inflammation and potential atherosclerotic risk. PMID:27353721

  20. A biosynthetic pathway for a prominent class of microbiota-derived bile acids

    PubMed Central

    Devlin, A. Sloan; Fischbach, Michael A.

    2015-01-01

    The gut bile acid pool is millimolar in concentration, varies widely in composition among individuals, and is linked to metabolic disease and cancer. Although these molecules derive almost exclusively from the microbiota, remarkably little is known about which bacterial species and genes are responsible for their biosynthesis. Here, we report a biosynthetic pathway for the second most abundant class in the gut, iso (3β-hydroxy) bile acids, whose levels exceed 300 µM in some humans and are absent in others. We show, for the first time, that iso bile acids are produced by Ruminococcus gnavus, a far more abundant commensal than previously known producers; and that the iso bile acid pathway detoxifies deoxycholic acid, favoring the growth of the keystone genus Bacteroides. By revealing the biosynthetic genes for an abundant class of bile acids, our work sets the stage for predicting and rationally altering the composition of the bile acid pool. PMID:26192599

  1. 21 CFR 184.1560 - Ox bile extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ox bile extract. 184.1560 Section 184.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing...

  2. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  3. Bile loss in the acute intestinal radiation syndrome in rats

    SciTech Connect

    Geraci, J.P.; Dunston, S.G.; Jackson, K.L.; Mariano, M.S.; Holeski, C.; Eaton, D.L.

    1987-01-01

    The effects of bile duct ligation (BDL), choledochostomy, bile acid sequestering within the intestinal lumen by cholestyramine, and fluid and electrolyte replacement on survival time and development of diarrhea after whole-body exposure to doses of ionizing radiation that result in death from acute intestinal injury were studied. BDL significantly prolonged survival and delayed the onset of diarrhea after exposure to /sup 137/Cs gamma rays, fission neutrons, or cyclotron-produced neutrons in the range of doses that produce intestinal death or death from a combination of intestinal and hematopoietic injuries. Cannulation of the bile duct with exteriorized bile flow (choledochostomy) to protect the irradiated intestine from the mucolytic action of bile salts did not duplicate the effect of BDL in increasing survival time. Choledochostomy without fluid replacement eliminated the occurrence of diarrhea in 15.4 Gy irradiated rats. Diarrhea did occur in irradiated animals with choledochostomy if they received duodenal injections of fluid and electrolytes to replace the fluid lost as a result of bile drainage. Duodenal injection of fluid and electrolytes had no significant effect on survival time in irradiated rats. Injection of fluid and electrolytes into the peritoneal cavity of irradiated rats resulted in an increase in survival time that was comparable to that observed after BDL. Addition of antibiotics to the peritoneally injected fluid and electrolytes further increased survival time (up to 9 days). This survival time approached that seen in animals receiving the same radiation dose but which had the intestine exteriorized and shielded to minimize radiation injury to the intestine. Postmortem histological examinations of the irradiated small intestine showed mucosal regeneration in these long-term survivors receiving fluid and antibiotic therapy.

  4. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression

    PubMed Central

    González-Rubio, Sandra; Linares, Clara I.; Aguilar-Melero, Patricia; Rodríguez-Perálvarez, Manuel; Montero-Álvarez, José L.

    2016-01-01

    The harmful effects of bile acid accumulation occurring during cholestatic liver diseases have been associated with oxidative stress increase and endothelial nitric oxide synthase (NOS-3) expression decrease in liver cells. We have previously reported that glycochenodeoxycholic acid (GCDCA) down-regulates gene expression by increasing SP1 binding to the NOS-3 promoter in an oxidative stress dependent manner. In the present study, we aimed to investigate the role of transcription factor (TF) AP-1 on the NOS-3 deregulation during GCDCA-induced cholestasis. The cytotoxic response to GCDCA was characterized by 1) the increased expression and activation of TFs cJun and c-Fos; 2) a higher binding capability of these at position -666 of the NOS-3 promoter; 3) a decrease of the transcriptional activity of the promoter and the expression and activity of NOS-3; and 4) the expression increase of cyclin D1. Specific inhibition of AP-1 by the retinoid SR 11302 counteracted the cytotoxic effects induced by GCDCA while promoting NOS-3 expression recovery and cyclin D1 reduction. NOS activity inhibition by L-NAME inhibited the protective effect of SR 11302. Inducible NOS isoform was no detected in this experimental model of cholestasis. Our data provide direct evidence for the involvement of AP-1 in the NOS-3 expression regulation during cholestasis and define a critical role for NOS-3 in regulating the expression of cyclin D1 during the cell damage induced by bile acids. AP-1 appears as a potential therapeutic target in cholestatic liver diseases given its role as a transcriptional repressor of NOS-3. PMID:27490694

  5. SALT LOADING INCREASES URINARY EXCRETION OF LINOLEIC ACID DIOLS AND TRIOLS IN HEALTHY HUMAN SUBJECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urinary linoleate (LA) metabolite excretion was investigated in subjects exposed to a salt loading/salt depletion regimen. Twelve healthy subjects were recruited from the New Orleans population (pre-Katrina) and admitted to Tulane-LSU Charity Hospital GCRC after a 5-day outpatient lead in phase on a...

  6. The xenobiotic-sensing nuclear receptors pregnane X receptor, constitutive androstane receptor, and orphan nuclear receptor hepatocyte nuclear factor 4alpha in the regulation of human steroid-/bile acid-sulfotransferase.

    PubMed

    Echchgadda, Ibtissam; Song, Chung S; Oh, Taesung; Ahmed, Mohamed; De La Cruz, Isidro John; Chatterjee, Bandana

    2007-09-01

    The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are the primary transcription factors coordinating induced expression of the enzymes and proteins directing oxidative, conjugative, and transport phases of endobiotic and xenobiotic metabolism, whereas hepatocyte nuclear factor 4alpha (HNF4alpha), a regulator of hepatic lipid homeostasis, can modify the PXR/CAR response. Steroid- and bile acid-sulfotransferase (SULT2A1) promotes phase II metabolism through its sulfonating action on certain endobiotics, including steroids and bile acids, and on diverse xenobiotics, including therapeutic drugs. This study describes characterization of a PXR- and CAR-inducible composite element in the human SULT2A1 promoter and its synergistic interaction with HNF4alpha. Inverted and direct repeats of AG(G/T)TCA (IR2 and DR4), both binding to PXR and CAR, define the composite element. Differential recognition of the composite element by PXR and CAR is evident because single-site mutation at either IR2 or DR4 in the natural gene abolished the PXR response, whereas mutations at both repeats were necessary to abrogate completely the CAR response. The composite element conferred xenobiotic response to a heterologous promoter, and the cognate ligands induced PXR and CAR recruitment to the chromatin-associated response region. An HNF4alpha element adjacent to the -30 position enhanced basal promoter activity. Although functioning as a synergizer, the HNF4alpha element was not essential for the PXR/CAR response. An emerging role of SULT2A1 in lipid and caloric homeostasis suggests that illumination on the regulatory interactions driving human SULT2A1 expression may reveal new avenues to control certain metabolic disorders. PMID:17595319

  7. Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...

  8. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

  9. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice

    PubMed Central

    Silvennoinen, Reija; Quesada, Helena; Kareinen, Ilona; Julve, Josep; Kaipiainen, Leena; Gylling, Helena; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-01-01

    Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress. PMID:25969465

  10. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice.

    PubMed

    Silvennoinen, Reija; Quesada, Helena; Kareinen, Ilona; Julve, Josep; Kaipiainen, Leena; Gylling, Helena; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-05-11

    Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress. PMID:25969465

  11. Fifty years with bile acids and steroids in health and disease.

    PubMed

    Sjövall, Jan

    2004-08-01

    Cholesterol and its metabolites, e.g., steroid hormones and bile acids, constitute a class of compounds of great biological importance. Their chemistry, biochemistry, and regulation in the body have been intensely studied for more than two centuries. The author has studied aspects of the biochemistry and clinical chemistry of steroids and bile acids for more than 50 years, and this paper, which is an extended version of the Schroepfer Medal Award lecture, reviews and discusses part of this work. Development and application of analytical methods based on chromatography and mass spectrometry (MS) have been a central part of many projects, aiming at detailed characterization and quantification of metabolic profiles of steroids and bile acids under different conditions. In present terminology, much of the work may be termed steroidomics and cholanoidomics. Topics discussed are bile acids in human bile and feces, bile acid production, bacterial dehydroxylation of bile acids and steroids during the enterohepatic circulation, profiles of steroid sulfates in plasma of humans and other primates, development of neutral and ion-exchanging lipophilic derivatives of Sephadex for sample preparation and group separation of steroid and bile acid conjugates, profiles of steroids and bile acids in human urine under different conditions, hydroxylation of bile acids in liver disease, effects of alcohol-induced redox changes on steroid synthesis and metabolism, alcohol-induced changes of bile acid biosynthesis, compartmentation of bile acid synthesis studied with 3H-labeled ethanol, formation and metabolism of sulfated metabolites of progesterone in human pregnancy, abnormal patterns of these in patients with intrahepatic cholestasis of pregnancy corrected by ursodeoxycholic acid, inherited and acquired defects of bile acid biosynthesis and their treatment, conjugation of bile acids and steroids with N-acetylglucosamine, sulfate-glucuronide double conjugates of hydroxycholesterols

  12. Bile Acids Improve the Antimicrobial Effect of Rifaximin▿ †

    PubMed Central

    Darkoh, Charles; Lichtenberger, Lenard M.; Ajami, Nadim; Dial, Elizabeth J.; Jiang, Zhi-Dong; DuPont, Herbert L.

    2010-01-01

    Diarrhea is one of the most common infirmities affecting international travelers, occurring in 20 to 50% of persons from industrialized countries visiting developing regions. Enterotoxigenic Escherichia coli (ETEC) is the most common causative agent and is isolated from approximately half of the cases of traveler's diarrhea. Rifaximin, a largely water-insoluble, nonabsorbable (<0.4%) antibiotic that inhibits bacterial RNA synthesis, is approved for use for the treatment of traveler's diarrhea caused by diarrheagenic E. coli. However, the drug has minimal effect on the bacterial flora or the infecting E. coli strain in the aqueous environment of the colon. The purpose of the present study was to evaluate the antimicrobial effect and bioavailability of rifaximin in aqueous solution in the presence and absence of physiologic concentrations of bile acids. The methods used included growth measurement of ETEC (strain H10407), rifaximin solubility measurements, total bacterial protein determination, and assessment of the functional activity of rifaximin by monitoring inhibition of bacterial β-galactosidase expression. Solubility studies showed rifaximin to be 70- to 120-fold more soluble in bile acids (approximately 30% in 4 mM bile acids) than in aqueous solution. Addition of both purified bile acids and human bile to rifaximin at subinhibitory and inhibitory concentrations significantly improved the drug's anti-ETEC effect by 71% and 73%, respectively, after 4 h. This observation was confirmed by showing a decrease in the overall amount of total bacterial protein expressed during incubation of rifaximin plus bile acids. Rifaximin-treated samples containing bile acids inhibited the expression of ETEC β-galactosidase at a higher magnitude than samples that did not contain bile acids. The study provides data showing that bile acids solubilize rifaximin on a dose-response basis, increasing the drug's bioavailability and antimicrobial effect. These observations suggest

  13. Contributions of unfrozen fraction and of salt concentration to the survival of slowly frozen human erythrocytes: influence of warming rate

    SciTech Connect

    Mazur, P.; Rigopoulos, N.

    1983-01-01

    The general belief is that slow freezing injury is either the result of exposure to high salt concentrations or the result of excessive cell shrinkage. Ordinarily, salt concentration and the amount of liquid in the unfrozen channels are reciprocally related; but they can be separated within limits by varying the total concentration of solutes in the suspending medium while holding the mass ratio of additive to salt constant, and by then slowly freezing samples to various subzero temperatures. The authors have recently reported that when human red cells are frozen under these conditions and thawed rapidly, survival is more dependent on the unfrozen water fraction than it is on the salt concentration in that fraction. The present work compares these results with those obtained with slow thawing. While the general conclusion remains unaltered, slowly thawed cells were able to survive the freezing of a higher fraction of extracellular water than were rapidly thawed cells. Calculations were made of the changes in cell volume during the equilibration with glycerol and the subsequent freezing involved in these experiments.

  14. Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23.

    PubMed

    Alcántara, Cristina; Zúñiga, Manuel

    2012-05-01

    Lactobacillus casei is a lactic acid bacterium commonly found in the gastrointestinal tract of animals, and some strains are used as probiotics. The ability of probiotic strains to survive the passage through the gastrointestinal tract is considered a key factor for their probiotic action. Therefore, tolerance to bile salts is a desirable feature for probiotic strains. In this study we have characterized the response of L. casei BL23 to bile by a transcriptomic and proteomic approach. The analysis revealed that exposure to bile induced changes in the abundance of 52 proteins and the transcript levels of 67 genes. The observed changes affected genes and proteins involved in the stress response, fatty acid and cell wall biosynthesis, metabolism of carbohydrates, transport of peptides, coenzyme levels, membrane H(+)-ATPase, and a number of uncharacterized genes and proteins. These data provide new insights into the mechanisms that enable L. casei BL23 to cope with bile stress. PMID:22322960

  15. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    PubMed Central

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  16. Resolving bile reflux by lanreotide in patients with Roux-en-Y gastrojejunostomy.

    PubMed

    Moubax, K; Mana, F; Urbain, D

    2014-12-01

    Reflux into the esophagus after partial or total gastrectomy is a well known problem. Even a Roux-en-Y reconstruction is not always a definitive solution. Bile reflux might occur and cause disabling symptoms, unresponsive to the classic anti-acid or anti-reflux therapy. Endoscopy and a Tc-99m-BrIDA hepatobiliary (HIDA) scan can be used to make the diagnosis. Clinical studies have shown that lanreotide (somatuline), which strongly inhibits many gastro-intestinal hormones, reduces the bile salts outputs. We present a case of a patient with bile reflux after Roux-en-Y. After administration of lanreotide he had a good clinical improvement and mucosal healing on endoscopy. Lanreotide can be a good treatment option for bile reflux when classic treatment fails, but clinical trials with more patients will have to confirm this. PMID:25682623

  17. Laparoscopic common bile duct exploration.

    PubMed

    Vecchio, Rosario; MacFadyen, Bruce V

    2002-04-01

    In recent years, laparoscopic common bile duct exploration has become the procedure of choice in the management of choledocholithiasis in several laparoscopic centers. The increasing interest for this laparoscopic approach is due to the development of instrumentation and technique, allowing the procedure to be performed safely, and it is also the result of the revised role of endoscopic retrograde cholangiopancreatography, which has been questioned because of its cost, risk of complications and effectiveness. Many surgeons, however, are still not familiar with this technique. In this article we discuss the technique and results of laparoscopic common bile duct exploration. Both the laparoscopic transcystic approach and choledochotomy are discussed, together with the results given in the literature. When one considers the costs, morbidity, mortality and the time required before the patient can return to work, it would appear that laparoscopic cholecystectomy with common bile duct exploration is more favorable than open surgery or laparoscopic cholecystectomy with preoperative or postoperative endoscopic sphincterotomy. However, the technique requires advanced laparoscopic skills, including suturing, knot tying, the use of a choledochoscope, guidewire, dilators and balloon stone extractor. Although laparoscopic common bile duct exploration appears to be the most cost-effective method to treat common bile duct stones, it should be emphasized that this procedure is very challenging, and it should be performed by well-trained laparoscopic surgeons with experience in biliary surgery. PMID:11981684

  18. What Are the Key Statistics about Bile Duct Cancer?

    MedlinePlus

    ... for bile duct cancer? What are the key statistics about bile duct cancer? Bile duct cancer is ... it is when it is found. For survival statistics, see the section “ Survival statistics for bile duct ...

  19. What's New in Bile Duct Cancer Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for bile duct cancer What’s new in bile duct cancer research and treatment? Bile ... is tumor blood vessels. Bile duct tumors need new blood vessels to grow beyond a certain size. ...

  20. Endogenous cholecystokinin regulates growth of human cholangiocarcinoma.

    PubMed Central

    Evers, B M; Gomez, G; Townsend, C M; Rajaraman, S; Thompson, J C

    1989-01-01

    Exogenous administration of cholecystokinin (CCK) or caerulein inhibits growth of SLU-132, a human cholangiocarcinoma that we have shown to possess receptors for CCK. Chronic administration of cholestyramine, a resin that binds bile salts, increases release of CCK and growth of the pancreas in guinea pigs. Feeding the bile salt, taurocholate, inhibits meal-stimulated release of CCK. The purpose of this study was to determine whether endogenous CCK affects growth of the human cholangiocarcinoma, SLU-132. We implanted SLU-132 subcutaneously into athymic nude mice. The bile salt pool was depleted by feeding 4% cholestyramine for 40 days, either alone or enriched with 0.5% taurocholate for 32 days. When the mice were killed, tumors and pancreas were removed. Cholestyramine significantly inhibited the growth of SLU-132 and stimulated growth of the normal pancreas. Feeding of taurocholate acted to stimulate tumor growth. These results demonstrate that endogenous levels of CCK regulate growth of this human cholangiocarcinoma. Our findings suggest that manipulation of levels of endogenous gut hormones may, in the future, play a role in management of patients with certain gastrointestinal cancers. Images Fig. 1. PMID:2476084

  1. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut.

    PubMed

    Ridlon, Jason M; Kang, Dae-Joong; Hylemon, Phillip B; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid, and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of farnesoid X receptor (FXR) in the intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic, and disease progression in cirrhosis, metabolic syndrome, and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal, and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa, and increasing production of deoxycholic acid. Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis, and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide

  2. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    PubMed Central

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  3. [Dietary modification of bile lipids].

    PubMed

    Wechsler, J G; Wenzel, H; Swobodnik, W; Splitt, S; Janowitz, P; Ditschuneit, H

    1988-02-01

    The average incidence of gallstones in european countries is about 25%. Excessive secretion of cholesterol into the bile can predispose to saturation and gallstone-formation. Obesity, overnutrition, diets rich in refined carbohydrates, diets high in cholesterol intake and poor in dietary fibre, lipid lowering drugs, age and female sex hormones are recognized causing increased cholesterol secretion into the bile. These metabolic consequences may predispose to a higher incidence of cholesterol gallstone than in normal persons. Taking all the results of the literature together patients with gallstones should be encouraged to take a low cholesterol, low calorie, low refined carbohydrate and high polyunsaturated fat diet rich in bran und vegetable fibre. Obese patients should reduce their body weight. These dietary recommendations should be given for patients with gallstones during bile acid therapy and after successful dissolution in order to prevent gallstone recurrence. PMID:3280933

  4. General Information about Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... Bile Duct Cancer Treatment (PDQ®)–Patient Version General Information About Bile Duct Cancer Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  5. 21 CFR 184.1560 - Ox bile extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... surfactant as defined in § 170.3 (o)(29) of this chapter. (d) The ingredient is used in food in accordance... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ox bile extract. 184.1560 Section 184.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  6. Absorption of 308-nm excimer laser radiation by balanced salt solution, sodium hyaluronate, and human cadaver eyes

    SciTech Connect

    Keates, R.H.; Bloom, R.T.; Schneider, R.T.; Ren, Q.; Sohl, J.; Viscardi, J.J. )

    1990-11-01

    Absorption of the excimer laser radiations of 193-nm argon fluorine and 308-nm xenon chloride in balanced salt solution, sodium hyaluronate, and human cadaver eyes was measured. The absorption of these materials as considerably different for the two wavelengths; we found that 308-nm light experienced much less absorption than the 193-nm light. The extinction coefficient (k) for 308 nm was k = 0.19/cm for balanced salt solution and k = 0.22/cm for sodium hyaluronate. In contrast to this, the extinction coefficient for 193 nm was k = 140/cm for balanced salt solution and k = 540/cm for sodium hyaluronate. Two 1-day-old human phakic cadaver eyes showed complete absorption with both wavelengths. Using aphakic eyes, incomplete absorption was noted at the posterior pole with 308 nm and complete absorption was noted with 193 nm. The extinction in the anterior part of aphakic eyes (the first 6 mm) was 4.2/cm for 308 nm, meaning that the intensity of the light is reduced by a factor of 10 after traveling the first 5.5 mm. However, we observed that the material in the eye fluoresces, meaning the 308 nm is transformed into other (longer) wavelengths that travel through the total eye with minimal absorption. Conclusions drawn from this experiment are that the use of the 308-nm wavelength may have undesirable side effects, while the use of the 193-nm wavelength should be consistent with ophthalmic use on both the cornea and the lens.

  7. Growth of Escherichia coli in human urine: role of salt tolerance and accumulation of glycine betaine.

    PubMed

    Kunin, C M; Hua, T H; Van Arsdale White, L; Villarejo, M

    1992-12-01

    Glycine betaine is a powerful osmoprotectant molecule present in the inner medulla of the kidney and excreted into urine. It may be responsible for the ability of Escherichia coli to grow in hypertonic urine. Also, strains of E. coli that cause urinary tract infections may be more salt-tolerant than strains from other sites. To explore these questions, 301 isolates from blood, urine, or stool and 12 representative enteric strains were examined. Tolerance varied from 0.1 to 0.7 M NaCl (median, 0.5) in minimal medium. There were no significant differences in salt tolerance by site of isolation. A salt-sensitive enteric strain that responded poorly to glycine betaine and mutant strains lacking the ability to synthesize or transport glycine betaine did not grow well in hypertonic urine. Accumulation of glycine betaine appears to be a mechanism by which E. coli can adapt to external osmotic forces and grow in hypertonic urine. PMID:1431248

  8. The association of bile acid excretion and atherosclerotic coronary artery disease

    PubMed Central

    Charach, Gideon; Grosskopf, Itamar; Rabinovich, Alexander; Shochat, Michael; Weintraub, Moshe; Rabinovich, Pavel

    2011-01-01

    Background: Excess cholesterol is usually eliminated from the body by conversion to bile acids excreted in feces as bile salts. The excretion of large amounts of bile protects against atherosclerosis, while diminished excretion may lead to coronary artery disease (CAD). Objective: To investigate a relationship between CAD and bile acid excretion. Methods: Bile acid excretion was compared between 36 patients with proven CAD and 37 CAD-free individuals (controls). The groups were comparable for demographics and selected risk factors. All subjects received a 4-day standard diet that included ∼500 mg of cholesterol. Fecal bile acids from 24-hour stool collections were measured by gas liquid chromatography. Results: CAD patients excreted lower amounts of total bile acids (358 ± 156 mg) than controls (617 ± 293 mg; p < 0.01) and less deoxycholic acid (188.29 ± 98.12 mg versus 325.96 ± 198.57 mg; p < 0.0001) and less lithocholic acid (115.43 ± 71.89 mg versus 197.27 ± 126.87 mg; p < 0.01). Advanced age, male gender, left ventricular ejection fraction and total bile acid levels were significant independent factors that predicted CAD (p < 0.05). Mortality, CAD and cerebrovascular accident development rates were significantly lower for the controls at the 13-year follow up. Conclusion: CAD patients have significantly decreased bile acid excretion levels than non-CAD patients. An impaired ability to excrete cholesterol may be an additional risk factor for CAD development. PMID:21694811

  9. Bilirubin conjugates of human bile. The excretion of bilirubin as the acyl glycosides of aldobiouronic acid, pseudoaldobiouronic acid and hexuronosylhexuronic acid, with a branched-chain hexuronic acid as one of the components of hexuronosylhexuronide

    PubMed Central

    Kuenzle, Clive C.

    1970-01-01

    Structure elucidations have been performed on the bilirubin conjugates isolated from human hepatic bile as the phenylazo derivatives. The major bilirubin conjugates are excreted, not as was formerly thought in the form of glucuronides, but as the acyl glycosides of aldobiouronic acid, pseudoaldobiouronic acid and hexuronosylhexuronic acid. The isolated aldobiouronides are proposed to have the structures of an acyl 6-O-hexopyranosyluronic acid-hexopyranoside, an acyl 4-O-hexofuranosyluronic acid-d-glucopyranoside, and an acyl 4-O-β-d-glucofuranosyluronic acid-d-glucopyranoside respectively, with the acyl radicals being those of the phenylazo derivative of bilirubin. The pseudoaldobiouronide is suggested to be the acyl 4-O-α-d-glucofuranosyl-β-d -glucopyranosiduronic acid, with the acyl radical being that of the phenylazo derivative of vinylneoxanthobilirubinic acid. The hexuronosylhexuronide presumably is the acyl 4-O-(3-C-hydroxymethylribofuranosyluronic acid)-β-d-glucopyranosiduronic acid, with the acyl radical being that of the phenylazo derivative of bilirubin. The 3-C-hydroxymethylriburonic acid, isolated as one of the components of the hexuronosylhexuronide, is the first natural branched-chain hexuronic acid to be detected, and the first branched-chain sugar ever detected in humans. PMID:5500303

  10. Steam cooking significantly improves in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage.

    PubMed

    Kahlon, Talwinder Singh; Chiu, Mei-Chen M; Chapman, Mary H

    2008-06-01

    Bile acid binding capacity has been related to the cholesterol-lowering potential of foods and food fractions. Lowered recirculation of bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile acid binding potential has been related to lowering the risk of heart disease and that of cancer. Previously, we have reported bile acid binding by several uncooked vegetables. However, most vegetables are consumed after cooking. How cooking would influence in vitro bile acid binding of various vegetables was investigated using a mixture of bile acids secreted in human bile under physiological conditions. Eight replicate incubations were conducted for each treatment simulating gastric and intestinal digestion, which included a substrate only, a bile acid mixture only, and 6 with substrate and bile acid mixture. Cholestyramine (a cholesterol-lowering, bile acid binding drug) was the positive control treatment and cellulose was the negative control. Relative to cholestyramine, in vitro bile acid binding on dry matter basis was for the collard greens, kale, and mustard greens, 13%; broccoli, 10%; Brussels sprouts and spinach, 8%; green bell pepper, 7%; and cabbage, 5%. These results point to the significantly different (P < or = .05) health-promoting potential of collard greens = kale = mustard greens > broccoli > Brussels sprouts = spinach = green bell pepper > cabbage as indicated by their bile acid binding on dry matter basis. Steam cooking significantly improved the in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage compared with previously observed bile acid binding values for these vegetables raw (uncooked). Inclusion of steam-cooked collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage in our daily diet as health-promoting vegetables should be emphasized. These green

  11. Bile Diversion in Roux-en-Y Gastric Bypass Modulates Sodium-Dependent Glucose Intestinal Uptake.

    PubMed

    Baud, Gregory; Daoudi, Mehdi; Hubert, Thomas; Raverdy, Violeta; Pigeyre, Marie; Hervieux, Erik; Devienne, Magalie; Ghunaim, Mohamed; Bonner, Caroline; Quenon, Audrey; Pigny, Pascal; Klein, André; Kerr-Conte, Julie; Gmyr, Valery; Caiazzo, Robert; Pattou, François

    2016-03-01

    Gastro-intestinal exclusion by Roux-en-Y gastric bypass (RYGB) improves glucose metabolism, independent of weight loss. Although changes in intestinal bile trafficking have been shown to play a role, the underlying mechanisms are unclear. We performed RYGB in minipigs and showed that the intestinal uptake of ingested glucose is blunted in the bile-deprived alimentary limb (AL). Glucose uptake in the AL was restored by the addition of bile, and this effect was abolished when active glucose intestinal transport was blocked with phlorizin. Sodium-glucose cotransporter 1 remained expressed in the AL, while intraluminal sodium content was markedly decreased. Adding sodium to the AL had the same effect as bile on glucose uptake. It also increased postprandial blood glucose response in conscious minipigs following RYGB. The decrease in intestinal uptake of glucose after RYGB was confirmed in humans. Our results demonstrate that bile diversion affects postprandial glucose metabolism by modulating sodium-glucose intestinal cotransport. PMID:26924216

  12. Nuclear factor-E2-related factor 2 is a major determinant of bile acid homeostasis in the liver and intestine

    PubMed Central

    Weerachayaphorn, Jittima; Mennone, Albert; Soroka, Carol J.; Harry, Kathy; Hagey, Lee R.; Kensler, Thomas W.

    2012-01-01

    The transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a key regulator for induction of hepatic detoxification and antioxidant mechanisms, as well as for certain hepatobiliary transporters. To examine the role of Nrf2 in bile acid homeostasis and cholestasis, we assessed the determinants of bile secretion and bile acid synthesis and transport before and after bile duct ligation (BDL) in Nrf2−/− mice. Our findings indicate reduced rates of biliary bile acid and GSH excretion, higher levels of intrahepatic bile acids, and decreased expression of regulators of bile acid synthesis, Cyp7a1 and Cyp8b1, in Nrf2−/− compared with wild-type control mice. The mRNA expression of the bile acid transporters bile salt export pump (Bsep) and organic solute transporter (Ostα) were increased in the face of impaired expression of the multidrug resistance-associated proteins Mrp3 and Mrp4. Deletion of Nrf2 also decreased ileal apical sodium-dependent bile acid transporter (Asbt) expression, leading to reduced bile acid reabsorption and increased loss of bile acid in feces. Finally, when cholestasis is induced by BDL, liver injury was not different from that in wild-type BDL mice. These Nrf2−/− mice also had increased pregnane X receptor (Pxr) and Cyp3a11 mRNA expression in association with enhanced hepatic bile acid hydroxylation. In conclusion, this study finds that Nrf2 plays a major role in the regulation of bile acid homeostasis in the liver and intestine. Deletion of Nrf2 results in a cholestatic phenotype but does not augment liver injury following BDL. PMID:22345550

  13. N-terminus three residues deletion mutant of human beta-defensin 3 with remarkably enhanced salt-resistance.

    PubMed

    Li, Tao; Guo, Feng; Wang, Qin; Fang, Huali; Li, Zhan; Wang, Dehui; Wang, Hui

    2015-01-01

    In this study, we designed and synthesized three N-terminal deletion analogs of human beta-defensin 3 (hBD-3), namely, hBD-3Δ4, hBD-3Δ7, and hBD-3Δ10, to determine the effect of N-terminal residues on the antibacterial activity and salt resistance of these peptides. The antibacterial activities and salt resistance of hBD-3 and its analogs were tested against a broad range of standard and clinically isolated strains. The deletion of nine N-terminal residues significantly reduced the antibacterial activity of hBD-3 against most of tested strains, particularly Klebsiella pneumonia. Compared with hBD-3 and other analogs, the analog with a deletion of three residues, hBD-3Δ4, exhibited significantly higher antimicrobial activity against almost all the tested strains, especially Escherichia coli and Enterococcus faecium, at high NaCl concentrations. Given its broad spectrum of antimicrobial activity and high salt resistance, hBD-3Δ4 could serve as a promising template for new therapeutic antimicrobial agents. PMID:25706284

  14. N-acetylglucosaminides. A new type of bile acid conjugate in man.

    PubMed

    Marschall, H U; Egestad, B; Matern, H; Matern, S; Sjövall, J

    1989-08-01

    Bile acids were extracted from human urine and were separated into groups of nonamidated and glycine- and taurine-conjugated compounds. Each group was subfractionated in a reversed-phase high performance liquid chromatography system, and the fractions were analyzed by negative ion fast atom bombardment mass spectrometry and also by gas chromatography-mass spectrometry after enzymatic removal of glycine and taurine moieties. The major glycosides of the non-amidated bile acids were more polar than reference bile acid glucosides and gave quasimolecular ions at m/z 592, 594, and 610 consistent with N-acetylglucosaminides of unsaturated dihydroxy and saturated di- and trihydroxy bile acids. Gas chromatography-mass spectrometry analyses of methyl ester trimethylsilyl ether derivatives showed fragments typical for N-acetylglucosaminides (m/z 173 and 186) in addition to those also given by glucosides (m/z 204 and 217). The N-acetylglucosaminides were inert toward alpha- and beta-glucosidase but were cleaved completely with N-acetylglucosaminidase. The released sugar moiety was identified as N-acetylglucosamine. One of the liberated bile acids was identified as ursodeoxycholic acid. The other acids were not identical to any known primary or secondary bile acid in humans. Fast atom bombardment mass spectrometry analyses of the glycine-and taurine-conjugated bile acid glycosides only showed ions consistent with the presence of glucosides (m/z 626 and 676). These compounds were sensitive only toward beta-glucosidase which liberated a trihydroxy bile acid as the major compound. Based on the recover of 13C- and 14C-labeled chenodeoxycholic acid glucoside added as internal standard, the daily excretion of nonamidated bile acid glycosides was estimated to be about 137 micrograms or 0.29 mumol, N-acetylglucosaminides constituting about 90%. The daily excretion of the glucosides of amidated bile acids was about 150 micrograms or 0.25 mumol, glycine conjugates constituting about 90

  15. Influence of pH on bile sensitivity amongst various strains of Listeria monocytogenes under aerobic and anaerobic conditions

    PubMed Central

    White, Sally J.; McClung, Daniel M.; Wilson, Jessica G.; Roberts, Brandy N.

    2015-01-01

    Listeria monocytogenes is a dangerous bacterium that causes the food-borne disease listeriosis and accounts for nearly 20 % of food-borne deaths. This organism can survive the body's natural defences within the digestive tract, including acidic conditions and bile. Although the bile response has been analysed, limited information is available concerning the ability of L. monocytogenes to resist bile under anaerobic conditions, especially at acidic pH, which mimics conditions within the duodenum. Additionally, it is not known how the bile response varies between serotypes. In this study, the survival of strains representing six serotypes was analysed under aerobic and anaerobic conditions following exposure to bile. Exposure to bile salts at acidic pH increased toxicity of bile, resulting in a significant reduction in survival for all strains tested. However, following this initial reduction, no significant reduction was observed for an additional 2 h except for strain 10403S (P = 0.002). Anaerobic cultivation increased bile resistance, but a significant increase was only observed in virulent strains when exposed to bile at pH 5.5. Exposure to pH 3.0 prior to bile decreased viability amongst avirulent strains in bile in acidic conditions; oxygen availability did not influence viability. Together, the data suggested that being able to sense and respond to oxygen availability may influence the expression of stress response mechanisms, and this response may correspond to disease outcome. Further research is needed on additional strains to determine how L. monocytogenes senses and responds to oxygen and how this varies between invasive and non-invasive strains. PMID:26307079

  16. Influence of pH on bile sensitivity amongst various strains of Listeria monocytogenes under aerobic and anaerobic conditions.

    PubMed

    White, Sally J; McClung, Daniel M; Wilson, Jessica G; Roberts, Brandy N; Donaldson, Janet R

    2015-11-01

    Listeria monocytogenes is a dangerous bacterium that causes the food-borne disease listeriosis and accounts for nearly 20% of food-borne deaths. This organism can survive the body's natural defences within the digestive tract, including acidic conditions and bile. Although the bile response has been analysed, limited information is available concerning the ability of L. monocytogenes to resist bile under anaerobic conditions, especially at acidic pH, which mimics conditions within the duodenum. Additionally, it is not known how the bile response varies between serotypes. In this study, the survival of strains representing six serotypes was analysed under aerobic and anaerobic conditions following exposure to bile. Exposure to bile salts at acidic pH increased toxicity of bile, resulting in a significant reduction in survival for all strains tested. However, following this initial reduction, no significant reduction was observed for an additional 2 h except for strain 10403S (P = 0.002). Anaerobic cultivation increased bile resistance, but a significant increase was only observed in virulent strains when exposed to bile at pH 5.5. Exposure to pH 3.0 prior to bile decreased viability amongst avirulent strains in bile in acidic conditions; oxygen availability did not influence viability. Together, the data suggested that being able to sense and respond to oxygen availability may influence the expression of stress response mechanisms, and this response may correspond to disease outcome. Further research is needed on additional strains to determine how L. monocytogenes senses and responds to oxygen and how this varies between invasive and non-invasive strains. PMID:26307079

  17. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  18. Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics.

    PubMed

    Hamon, Erwann; Horvatovich, Peter; Bisch, Magali; Bringel, Françoise; Marchioni, Eric; Aoudé-Werner, Dalal; Ennahar, Saïd

    2012-01-01

    The identification of cell determinants involved in probiotic features is a challenge in current probiotic research. In this work, markers of bile tolerance in Lactobacillus casei were investigated using comparative proteomics. Six L. casei strains were classified on the basis of their ability to grow in the presence of bile salts in vitro. Constitutive differences between whole cell proteomes of the most tolerant strain (L. casei Rosell-215), the most sensitive one (L. casei ATCC 334), and a moderately tolerant strain (L. casei DN-114 001) were investigated. The ascertained subproteome was further studied for the six strains in both standard and bile stressing conditions. Focus was on proteins whose expression levels were correlated with observed levels of bile tolerance in vitro, particularly those previously reported to be involved in the bile tolerance process of lactobacilli. Analysis revealed that 12 proteins involved in membrane modification (NagA, NagB, and RmlC), cell protection and detoxification (ClpL and OpuA), as well as central metabolism (Eno, GndA, Pgm, Pta, Pyk, Rp1l, and ThRS) were likely to be key determinants of bile tolerance in L. casei and may serve as potential biomarkers for phenotyping or screening purposes. The approach used enabled the correlation of expression levels of particular proteins with a specific probiotic trait. PMID:22040141

  19. History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method.

    PubMed

    Hayashi, Shogo; Naito, Munekazu; Kawata, Shinichi; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Itoh, Masahiro

    2016-01-01

    Traditionally, surgical training meant on-the-job training with live patients in an operating room. However, due to advancing surgical techniques, such as minimally invasive surgery, and increasing safety demands during procedures, human cadavers have been used for surgical training. When considering the use of human cadavers for surgical training, one of the most important factors is their preservation. In this review, we summarize four preservation methods: fresh-frozen cadaver, formalin, Thiel's, and saturated salt solution methods. Fresh-frozen cadaver is currently the model that is closest to reality, but it also presents myriad problems, including the requirement of freezers for storage, limited work time because of rapid putrefaction, and risk of infection. Formalin is still used ubiquitously due to its low cost and wide availability, but it is not ideal because formaldehyde has an adverse health effect and formalin-embalmed cadavers do not exhibit many of the qualities of living organs. Thiel's method results in soft and flexible cadavers with almost natural colors, and Thiel-embalmed cadavers have been appraised widely in various medical disciplines. However, Thiel's method is relatively expensive and technically complicated. In addition, Thiel-embalmed cadavers have a limited dissection time. The saturated salt solution method is simple, carries a low risk of infection, and is relatively low cost. Although more research is needed, this method seems to be sufficiently useful for surgical training and has noteworthy features that expand the capability of clinical training. The saturated salt solution method will contribute to a wider use of cadavers for surgical training. PMID:26670696

  20. Staphylococcus aureus MnhF Mediates Cholate Efflux and Facilitates Survival under Human Colonic Conditions

    PubMed Central

    Sannasiddappa, Thippeswamy H.; Hood, Graham A.; Hanson, Kevan J.; Costabile, Adele; Gibson, Glenn R.

    2015-01-01

    Resistance to the innate defenses of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common colonizer of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent antimicrobial activity. The mechanisms by which S. aureus is able to resist such defenses in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates the efflux of radiolabeled cholic acid both in S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated the survival of S. aureus in an anaerobic three-stage continuous-culture model of the human colon (gut model), which represents different anatomical areas of the large intestine. PMID:25824834

  1. Effect of bile diversion on satiety and fat absorption from liquid and solid dietary sources

    SciTech Connect

    Doty, J.E.; Gu, Y.G.; Meyer, J.H.

    1988-12-01

    In previous studies, liquid fat has been used to determine the effect of bile diversion on fat absorption. Since protein digests, in addition to bile salts, are capable of solubilizing lipids, we hypothesized that fat incorporated in the protein-rich matrix of solid food would be less sensitive to bile diversion than fat ingested as an oil or liquid. Using (3H)glycerol triether as a nonabsorbable fat recovery marker, we determined how much (14C)triolein was absorbed from solid (chicken liver) and liquid (margarine) dietary sources. After a standard liquid/solid meal with either the chicken liver or margarine labeled, midintestinal chyme was collected for 6 hr, extracted, and counted for 14C and 3H activity. Zero, eighty, or one hundred percent of endogenous bile was diverted. Fat absorption from both chicken liver and margarine was nearly complete by midintestine with 0% diversion and was little affected by diversion of 80% of bile. Complete biliary diversion significantly decreased fat absorption from margarine (87.9 +/- 4.4 to 37.2 +/- 9.2%, P less than 0.05) but reduced (14C)triolein absorption from chicken liver less consistently and insignificantly (78.8 +/- 6.9 to 43.9 +/- 10.6%). These data indicate that fat absorption is not solely dependent on bile and support the hypothesis that fat ingested in a cellular matrix is less dependent on bile than liquid fat. Using these same animals but with the midintestinal cannulas plugged to expose the distal intestine to unabsorbed luminal nutrients, we also demonstrated that bile diversion of an initial meal reduced food consumption at a meal offered 3 hr later.

  2. Distinct Plasma Bile Acid Profiles of Biliary Atresia and Neonatal Hepatitis Syndrome.

    PubMed

    Zhou, Kejun; Wang, Jun; Xie, Guoxiang; Zhou, Ying; Yan, Weihui; Pan, Weihua; Che, Yanran; Zhang, Ting; Wong, Linda; Kwee, Sandi; Xiao, Yongtao; Wen, Jie; Cai, Wei; Jia, Wei

    2015-11-01

    Biliary atresia (BA) is a severe chronic cholestasis disorder of infants that leads to death if not treated on time. Neonatal hepatitis syndrome (NHS) is another leading cause of neonatal cholestasis confounding the diagnosis of BA. Recent studies indicate that altered bile acid metabolism is closely associated with liver injury and cholestasis. In this study, we systematically measured the bile acid metabolome in plasma of BA, NHS, and healthy controls. Liver bile acids were also measured using biopsy samples from 48 BA and 16 NHS infants undergoing operative cholangiography as well as 5 normal adjacent nontumor liver tissues taken from hepatoblastoma patients as controls. Both BA and NHS samples had significantly elevated bile acid levels in plasma compared to normal controls. BA patients showed a distinct bile acid profile characterized by the higher taurochenodeoxycholic acid (TCDCA) level and lower chenodeoxycholic acid (CDCA) level than those in NHS patients. The ratio of TCDCA to CDCA in plasma was significantly higher in BA compared to healthy infants (p < 0.001) or NHS (p < 0.001). The area under receiver operating characteristic curve for TCDCA/CDCA to differentiate BA from NHS was 0.923 (95% CI: 0.862-0.984). These findings were supported by significantly altered expression levels of bile acid transporters and nuclear receptors in liver including farnesoid X receptor (FXR), small heterodimer partner (SHP), bile salt export pump (BSEP), and multidrug resistant protein 3 (MDR3) in BA compared to NHS. Taken together, the plasma bile acid profiles are distinct in BA, NHS, and normal infants, as characterized by the ratio of TCDCA/CDCA differentially distributed among the three groups of infants. PMID:26449593

  3. Structural basis of the alternating-access mechanism in a bile acid transporter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  4. Multitask Imidazolium Salt Additives for Innovative Poly(l-lactide) Biomaterials: Morphology Control, Candida spp. Biofilm Inhibition, Human Mesenchymal Stem Cell Biocompatibility, and Skin Tolerance.

    PubMed

    Schrekker, Clarissa M L; Sokolovicz, Yuri C A; Raucci, Maria G; Selukar, Balaji S; Klitzke, Joice S; Lopes, William; Leal, Claudio A M; de Souza, Igor O P; Galland, Griselda B; Dos Santos, João Henrique Z; Mauler, Raquel S; Kol, Moshe; Dagorne, Samuel; Ambrosio, Luigi; Teixeira, Mário L; Morais, Jonder; Landers, Richard; Fuentefria, Alexandre M; Schrekker, Henri S

    2016-08-24

    Candida species have great ability to colonize and form biofilms on medical devices, causing infections in human hosts. In this study, poly(l-lactide) films with different imidazolium salt (1-n-hexadecyl-3-methylimidazolium chloride (C16MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS)) contents were prepared, using the solvent casting process. Poly(l-lactide)-imidazolium salt films were obtained with different surface morphologies (spherical and directional), and the presence of the imidazolium salt in the surface was confirmed. These films with different concentrations of the imidazolium salts C16MImCl and C16MImMeS presented antibiofilm activity against isolates of Candida tropicalis, Candida parapsilosis, and Candida albicans. The minor antibiofilm concentration assay enabled one to determine that an increasing imidazolium salt content promoted, in general, an increase in the inhibition percentage of biofilm formation. Scanning electron microscopy micrographs confirmed the effective prevention of biofilm formation on the imidazolium salt containing biomaterials. Lower concentrations of the imidazolium salts showed no cytotoxicity, and the poly(l-lactide)-imidazolium salt films presented good cell adhesion and proliferation percentages with human mesenchymal stem cells. Furthermore, no acute microscopic lesions were identified in the histopathological evaluation after contact between the films and pig ear skin. In combination with the good morphological, physicochemical, and mechanical properties, these poly(l-lactide)-based materials with imidazolium salt additives can be considered as promising biomaterials for use in the manufacturing of medical devices. PMID:27486827

  5. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  6. Limy bile syndrome complicated by obstructive jaundice.

    PubMed

    Sasaki, Takamitsu; Kato, Daisuke; Matsuoka, Nobuhide; Yamashita, Yuichi

    2010-01-01

    Limy bile syndrome is a rare condition in which the gallbladder is filled with a paste-like radiopaque material. The presence of limy bile in the common bile duct is rare. A 72-year-old woman was admitted to our hospital with epigastric pain and jaundice. Plain abdominal radiography on admission showed a radiopaque material in the gallbladder. Computed tomography also showed that the gallbladder and the common bile duct were filled with a radiopaque material. The patient had never received any cholecystographic contrast agents. As a result, a diagnosis of obstructive jaundice due to choledocholithiasis, which includes limy bile, was made. We herein report the process by which limy bile syndrome, complicated by obstructive jaundice, was successfully treated through combined treatment via endoscopic sphincterotomy and laparoscopic cholecystectomy. PMID:20480840

  7. HUMAN IMPACTS ON NEW ENGLAND SALT MARSHES: PAST, PRESENT, AND FUTURE

    EPA Science Inventory

    Results from this research will explain differences between coastal marshes with different histories of human disturbance and distinguish between natural features of coastal marshes and features that are artifacts of human land use.

  8. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut.

    PubMed

    Joyce, Susan A; MacSharry, John; Casey, Patrick G; Kinsella, Michael; Murphy, Eileen F; Shanahan, Fergus; Hill, Colin; Gahan, Cormac G M

    2014-05-20

    Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the key microbial functions influencing host energy metabolism and adiposity remain to be determined. Despite an increased understanding of the genetic content of the gastrointestinal microbiome, functional analyses of common microbial gene sets are required. We established a controlled expression system for the parallel functional analysis of microbial alleles in the murine gut. Using this approach we show that bacterial bile salt hydrolase (BSH) mediates a microbe-host dialogue that functionally regulates host lipid metabolism and plays a profound role in cholesterol metabolism and weight gain in the host. Expression of cloned BSH enzymes in the gastrointestinal tract of gnotobiotic or conventionally raised mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (Pparγ, Angptl4), cholesterol metabolism (Abcg5/8), gastrointestinal homeostasis (RegIIIγ), and circadian rhythm (Dbp, Per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in a significant reduction in host weight gain, plasma cholesterol, and liver triglycerides, demonstrating the overall impact of elevated BSH activity on host physiology. In addition, BSH activity in vivo varied according to BSH allele group, indicating that subtle differences in activity can have significant effects on the host. In summary, we demonstrate that bacterial BSH activity significantly impacts the systemic metabolic processes and adiposity in the host and represents a key mechanistic target for the control of obesity and hypercholesterolemia. PMID:24799697

  9. Comparative estimation of use potentialities of salt-accumulating and salt-eliminating halophytes for inclusion of NaCl contained in human mineralized urine in BLSS's mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Ushakova, Sofya; Kudenko, Yurii; Griboskaya, Illiada; Shklavtsova, Ekaterina; Balnokin, Yurii; Popova, Larissa; Myasoedov, Nikolay; Gros, Jean-Bernard; Lasseur, Christophe

    Comparative potentialities of different halophytes' cultivation on a human mineralized urine containing NaCl with the aim of this salt inclusion into the intrasystem BLSS mass exchange were investigated. Two halophyte species were studied namely, salt-accumulating (Salicornia europaea) and salt-eliminating (Limonium gmelinii). During the first two vegetation weeks the plants had been grown on the Knop solution; then a daily norm of the human mineralized urine was gradually added in the experiment solutions. During vegetation the model solutions simulating the urine mineral composition were gradually added in the control solutions. The NaCl concentration in the experiment and control solutions of the first treatment was 9 g/l and that of the second treatment was 20 g/l. The mineralized human urine exposed some inhibitory action on Salicornia europaea and Limonium gmelinii plants. The experiment plants' productivity was lower in comparison with the control. As far as Limonium gmelinii appears to be a perennial plant the growth rate and productivity of this halophyte species was signifi- cantly lower in comparison with Salicornia europaea. Na content in Salicornia europaea plants was higher in comparison with sodium amount emitted by Limonium gmelinii. Consequently Salicornia europaea appears to be a more perspective halophyte for its further use in BLSS aiming at involvement of sodium chloride contained in human liquid wastes in intrasystem mass exchange.

  10. The role of bile carcinoembryonic antigen in diagnosing bile duct cancer.

    PubMed Central

    Joo, Kwang Ro; Kim, Do Ha; Park, Jong Ho; Bang, Sung-Jo; Shin, Jung Woo; Park, Neung Hwa; Park, Jae Hoo

    2003-01-01

    It is known that the fluids bathing tumors might contain a higher level of the carcinoembryonic antigen (CEA) than those found in the blood. Therefore, we evaluated the role of bile CEA in diagnosing bile duct cancer. One hundred and thirty two patients were prospectively studied. The patients were divided into 3 groups: the bile duct cancer (n=32), pancreatic cancer (n=16), and benign biliary diseases (n=84) groups. Bile samples were obtained on the next day of the biliary drainage procedures. The mean bile CEA level in those with bile duct cancer (120.6 +/- 156.9 ng/mL) was significantly higher than those with pancreatic cancer and benign biliary diseases (32.0 +/- 28.5 ng/mL, 29.3 +/- 56.3 ng/mL). Using the level of 20 ng/mL, the sensitivity and specificity of bile CEA in the diagnosis of bile duct cancer from benign biliary diseases were 65.6% and 66.7%, respectively. Both the bile CEA and total bilirubin level were found to be an independent factor linked to bile duct cancer. This study result suggests that bile CEA level is a useful supplementary test for diagnosing bile duct cancer. PMID:14676443

  11. Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide Vibrio cholerae spatial cues within the small intestine

    PubMed Central

    Koestler, Benjamin J; Waters, Christopher M

    2014-01-01

    The second messenger cyclic di-GMP (c-di-GMP) regulates numerous phenotypes in response to environmental stimuli to enable bacteria to transition between different lifestyles. Here we discuss our recent findings that the human pathogen Vibrio cholerae recognizes 2 host-specific signals, bile and bicarbonate, to regulate intracellular c-di-GMP. We have demonstrated that bile acids increase intracellular c-di-GMP to promote biofilm formation. We have also shown that this bile-mediated increase of intracellular c-di-GMP is negated by bicarbonate, and that this interaction is dependent on pH, suggesting that V. cholerae uses these 2 environmental cues to sense and adapt to its relative location in the small intestine. Increased intracellular c-di-GMP by bile is attributed to increased c-di-GMP synthesis by 3 diguanylate cyclases (DGCs) and decreased expression of one phosphodiesterase (PDE) in the presence of bile. The molecular mechanisms by which bile controls the activity of the 3 DGCs and the regulators of bile-mediated transcriptional repression of the PDE are not yet known. Moreover, the impact of varying concentrations of bile and bicarbonate at different locations within the small intestine and the response of V. cholerae to these cues remains unclear. The native microbiome and pharmaceuticals, such as omeprazole, can impact bile and pH within the small intestine, suggesting these are potential unappreciated factors that may alter V. cholerae pathogenesis. PMID:25621620

  12. Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide Vibrio cholerae spatial cues within the small intestine.

    PubMed

    Koestler, Benjamin J; Waters, Christopher M

    2014-01-01

    The second messenger cyclic di-GMP (c-di-GMP) regulates numerous phenotypes in response to environmental stimuli to enable bacteria to transition between different lifestyles. Here we discuss our recent findings that the human pathogen Vibrio cholerae recognizes 2 host-specific signals, bile and bicarbonate, to regulate intracellular c-di-GMP. We have demonstrated that bile acids increase intracellular c-di-GMP to promote biofilm formation. We have also shown that this bile-mediated increase of intracellular c-di-GMP is negated by bicarbonate, and that this interaction is dependent on pH, suggesting that V. cholerae uses these 2 environmental cues to sense and adapt to its relative location in the small intestine. Increased intracellular c-di-GMP by bile is attributed to increased c-di-GMP synthesis by 3 diguanylate cyclases (DGCs) and decreased expression of one phosphodiesterase (PDE) in the presence of bile. The molecular mechanisms by which bile controls the activity of the 3 DGCs and the regulators of bile-mediated transcriptional repression of the PDE are not yet known. Moreover, the impact of varying concentrations of bile and bicarbonate at different locations within the small intestine and the response of V. cholerae to these cues remains unclear. The native microbiome and pharmaceuticals, such as omeprazole, can impact bile and pH within the small intestine, suggesting these are potential unappreciated factors that may alter V. cholerae pathogenesis. PMID:25621620

  13. Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730.

    PubMed

    Whitehead, Kristi; Versalovic, James; Roos, Stefan; Britton, Robert A

    2008-03-01

    Probiotic bacteria encounter various stresses after ingestion by the host, including exposure to the low pH in the stomach and bile in the small intestine. The probiotic microorganism Lactobacillus reuteri ATCC 55730 has previously been shown to survive in the human small intestine. To address how L. reuteri can resist bile stress, we performed microarray experiments to determine gene expression changes that occur when the organism is exposed to physiological concentrations of bile. A wide variety of genes that displayed differential expression in the presence of bile indicated that the cells were dealing with several types of stress, including cell envelope stress, protein denaturation, and DNA damage. Mutations in three genes were found to decrease the strain's ability to survive bile exposure: lr1864, a Clp chaperone; lr0085, a gene of unknown function; and lr1516, a putative esterase. Mutations in two genes that form an operon, lr1584 (a multidrug resistance transporter in the major facilitator superfamily) and lr1582 (unknown function), were found to impair the strain's ability to restart growth in the presence of bile. This study provides insight into the possible mechanisms that L. reuteri ATCC 55730 may use to survive and grow in the presence of bile in the small intestine. PMID:18245259

  14. Evaluation of Streptococcus pneumoniae in bile samples: A case series review.

    PubMed

    Itoh, Naoya; Kawamura, Ichiro; Tsukahara, Mika; Mori, Keita; Kurai, Hanako

    2016-06-01

    Although Streptococcus pneumoniae is an important pathogen of humans, pneumococcal cholangitis is rare because of the rapid autolysis of S. pneumoniae. The aim of this case series was to review patients with bile cultures positive for S. pneumoniae. This study was a single center retrospective case series review of patients with S. pneumoniae in their bile at a tertiary-care cancer center between September 2002 and August 2015. Subjects consisted of all patients in whom S. pneumoniae was isolated in their bile during the study period. Bile specimens for culture were obtained from biliary drainage procedures such as endoscopic retrograde biliary drainage, endoscopic nasobiliary drainage, and percutaneous transhepatic biliary drainage. There were 20 patients with bile cultures positive for S. pneumoniae during the study period. All patients presented with extrahepatic obstructive jaundice due to hepatopancreatobiliary tumors. Nineteen of 20 patients underwent the placement of plastic intrabiliary tubes. The mean time between the first-time drainage and the positive culture was 26 days (range 0-313 days). Although 12 of 20 patients met our definition of cholangitis, 5 were clinically treated with antibiotics based on a physician's assessment of whether there was a true infection. The present study is the largest case series of patients with S. pneumoniae in their bile. Based on our findings, the isolation of S. pneumoniae from bile may be attributed to the placement of biliary drainage devices. PMID:27025902

  15. Micellar aggregates and hydrogels from phosphonobile salts.

    PubMed

    Babu, Ponnusamy; Chopra, D; Row, T N Guru; Maitra, Uday

    2005-10-21

    The aggregation properties of novel bile acid analogs-phosphonobile salts (PBS)-have been studied. The critical micellar concentration of 23 and 24-phosphonobile salts were measured using fluorescence and 31P NMR methods. All the ten synthesized phosphonobile salts formed gels at different pH ranges in water. The pH range at which individual PBSs could gelate water was narrow and influenced by the number and conformation of hydroxyl groups. A reversible thermochromic system has been developed (with 23-phosphonodeoxycholate at pH 3.3), which changes color upon gelation. The investigation of the first hydrogels derived from trihydroxy bile acid analogs 1 and 6 was made using fluorescence, 31P NMR, X-ray crystallography, circular dichroism and SEM. The present studies reveal that the gel network consists of a chiral, fibrous structure possessing hydrophobic interiors. PMID:16211104

  16. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-01

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials. PMID:21661073

  17. Synthesis, characterization and biological activity of hydroxyl-bisphosphonic analogs of bile acids.

    PubMed

    Bortolini, Olga; Fantin, Giancarlo; Fogagnolo, Marco; Rossetti, Stefano; Maiuolo, Loredana; Di Pompo, Gemma; Avnet, Sofia; Granchi, Donatella

    2012-06-01

    Bisphosphonates (BPs) are now the most widely used drugs for diseases associated with increased bone resorption, such as osteoporosis, and tumor bone diseases. A significant drawback of the BPs is their poor oral absorption that is enhanced by the presence of bile acid substituents in the bisphosphonate framework, with no toxic effects. A straightforward synthesis of bile acid-containing hydroxy-bisphosphonates and a full characterization of these pharmaceutically important molecules, including an evaluation of affinity and the mechanism of binding to hydroxyapatite, is presented. The biological activity of bile acid-containing bisphosphonate salts was determined using the neutral-red assay on the L929 cell line and primary cultures of osteoclasts. The bioactivity of the new compounds was found superior than bisphosphonates of established activity. PMID:22483634

  18. Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities

    NASA Astrophysics Data System (ADS)

    Álvarez-Rogel, J.; Jiménez-Cárceles, F. J.; Roca, M. J.; Ortiz, R.

    2007-07-01

    This paper reports changes in vegetation distribution and species cover in relation to soil factors and hydrology in a semiarid Mediterranean salt marsh adjacent to the Mar Menor saline lagoon. Species cover, soil salinity, and the groundwater level were monitored between 1991 and 1993 and between 2002 and 2004, and total organic carbon, total nitrogen, total phosphorus, nitrates, ammonium and exchangeable phosphorus were measured in the soils in both study periods. In addition, three soil profiles were described in August 1992 and August 2004. The results indicate an elevation of the water table throughout the 13-year period, which was attributable to water flowing from areas with intensive agriculture. Flooding increased and soil salinity dropped in the most saline sites and increased in the least saline ones. The morphology of the soil profiles reflected the increase in flooding periods, due to the appearance of a greyer matrix in the deeper horizons and a more diffuse pattern of Fe mottles. Following these environmental changes, Sarcocornia fruticosa, Phragmites australis and Juncus maritimus strongly expanded at the wettest sites, which led to the disappearance of the original zonation pattern. The cover of Limonium delicatulum, in turn, decreased with the increase in moisture but increased following the increase in salinity. Changes in soil nutrients were only very evident in the sandy soils of the beach, probably due to the influence of organic debris deposited on the shoreline by the storms and due to the strong increase in the colonisation of this habitat by perennial species. According to the results obtained, control measures are needed in order to preserve habitat diversity in this and other salt marshes of this area. Monitoring of the vegetation distribution could be a useful tool to identify environmental impacts, in order to implement remedial actions.

  19. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted. PMID:19836400

  20. Genetics Home Reference: congenital bile acid synthesis defect type 1

    MedlinePlus

    ... bile acid synthesis defect type 1 congenital bile acid synthesis defect type 1 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 1 is a disorder characterized ...

  1. Genetics Home Reference: congenital bile acid synthesis defect type 2

    MedlinePlus

    ... bile acid synthesis defect type 2 congenital bile acid synthesis defect type 2 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 2 is a disorder characterized ...

  2. Increased acyclovir oral bioavailability via a bile acid conjugate.

    PubMed

    Tolle-Sander, Sanna; Lentz, Kimberley A; Maeda, Dean Y; Coop, Andrew; Polli, James E

    2004-01-12

    The objective of this work was to design an acyclovir prodrug that would utilize the human apical sodium-dependent bile acid transporter (hASBT) and enhance acyclovir oral bioavailability. Using each chenodeoxycholate, deoxycholate, cholate, and ursodeoxycholate, four bile acid prodrugs of acyclovir were synthesized, where acyclovir was conjugated to a bile acid via a valine linker. The affinity of the prodrug for hASBT was determined through inhibition of taurocholate uptake by COS-7 cells transfected with hASBT (hASBT-COS). The prodrug with the highest inhibitory affinity was further evaluated in vitro and in vivo. The prodrug acyclovir valylchenodeoxycholate yielded the highest affinity for hASBT (Ki = 35 microM), showing that chenodeoxycholate is the free bile acid with the greatest affinity for hASBT. Acyclovir valylchenodeoxycholate's affinity was similar to that of cholic acid (Ki = 25 microM). Further characterization showed that acyclovir was catalytically liberated from acyclovir valylchenode-oxycholate by esterase. Relative to cellular uptake studies of acyclovir alone, the cellular uptake from the prodrug resulted in a 16-fold greater acyclovir accumulation within hASBT-COS cells, indicating enhanced permeation properties of the prodrug. Enhanced permeability was due to hASBT-mediated uptake and increased passive permeability. The extent of acyclovir uptake in the presence of sodium was 1.4-fold greater than the extent of passive prodrug uptake in the absence of sodium (p = 0.02), indicating translocation of the prodrug by hASBT. The prodrug also exhibited an almost 12-fold enhanced passive permeability, relative to acyclovir's passive permeability. Oral administration of acyclovir valylchenodeoxycholate to rats resulted in a 2-fold increase in the bioavailability of acyclovir, compared to the bioavailability after administration of acyclovir alone. Results indicate that a bile acid prodrug strategy may be useful in improving the oral bioavailability of

  3. Species Differences in Hepatobiliary Disposition of Taurocholic Acid in Human and Rat Sandwich-Cultured Hepatocytes: Implications for Drug-Induced Liver Injury

    PubMed Central

    Yang, Kyunghee; Pfeifer, Nathan D.; Köck, Kathleen

    2015-01-01

    The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance–associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug’s inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid

  4. Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury.

    PubMed

    Yang, Kyunghee; Pfeifer, Nathan D; Köck, Kathleen; Brouwer, Kim L R

    2015-05-01

    The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance-associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug's inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid exposure

  5. Characteristic transport of lactoferrin from the intestinal lumen into the bile via the blood in piglets.

    PubMed

    Harada, E; Itoh, Y; Sitizyo, K; Takeuchi, T; Araki, Y; Kitagawa, H

    1999-11-01

    Lactoferrin is a major iron-binding protein in milk from several species, such as humans, monkeys, mice and sows. Using neonatal and weaner piglets, the characteristic transfer of lactoferrin from intestinal lumen into bile via the circulation was investigated. Bovine lactoferrin (1 or 3 g/kg body weight) was infused into the stomach through a polyethylene tube or into the duodenum through a duodenal catheter over 5 min. Peripheral blood and bile samples were collected after the infusion. Lactoferrin absorbed into plasma and bile were assayed quantitatively by double-antibody enzyme-linked immunosorbent assay, and homogeneity of bovine lactoferrin in plasma and bile was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting methods. Morphological investigation was carried out according to the peroxidase anti-peroxidase method. Following oral administration in neonatal pigs, bovine lactoferrin appeared in the blood circulation and reached a peak level after 2 h. It was confirmed immunohistochemically that lactoferrin was transported by endocytosis via the epithelial cells. Lactoferrin absorbed into the blood was also detected in the bile and reached a peak value 12 h after oral administration. Transportation of lactoferrin from the intestinal lumen into the bile via the bloodstream was also observed in weaner piglets. Lactoferrin transported into plasma and bile was confirmed to be the same substance as administrated lactoferrin by electrophoresis and immunoblotting methods. Lactoferrin transported into bile was re-absorbed into the blood in neonatal pigs. These results demonstrate that lactoferrin contained in milk is transported into the circulation from the intestinal lumen and excreted into the bile, suggesting the possibility of entero-hepatic circulation of lactoferrin in neonatal pigs. PMID:10665381

  6. Individual bile acids have differential effects on bile acid signaling in mice

    SciTech Connect

    Song, Peizhen Rockwell, Cheryl E. Cui, Julia Yue Klaassen, Curtis D.

    2015-02-15

    pharmacological concentrations of BAs. - Highlights: • All four major bile acids in humans activate the FXR in liver and intestine. • These bile acids decreased the mRNA of the bile acid synthetic enzymes Cyp7a1 and Cyp8b1. • These BAs did not alter the mRNA or protein of the conjugated BA transporters (Ntcp and Bsep). • Cholic acid and deoxycholic acid are more potent activators of FXR than chenodeoxycholic acid and lithocholic acid.

  7. Physiological and molecular biochemical mechanisms of bile formation

    PubMed Central

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  8. Biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel for knee meniscus applications, including comparison with human donor samples.

    PubMed

    Hayes, Jennifer C; Curley, Colin; Tierney, Paul; Kennedy, James E

    2016-03-01

    The primary objective of this research was the biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous polyvinyl alcohol (PVA) was treated with a sodium sulphate (Na2SO4) solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Development of a meniscal shaped mould and sample housing unit allowed the production of meniscal shaped hydrogels for direct comparison to human meniscal tissue. Results obtained show that compressive responses were slightly higher in PVA/Na2SO4 menisci, displaying maximum compressive loads of 2472N, 2482N and 2476N for samples having undergone 1, 3 and 5 freeze-thaw cycles respectively. When compared to the human meniscal tissue tested under the same conditions, an average maximum load of 2467.5N was observed. This suggests that the PVA/Na2SO4 menisci are mechanically comparable to the human meniscus. Biocompatibility analysis of PVA/Na2SO4 hydrogels revealed no acute cytotoxicity. The work described herein has innovative potential in load bearing applications, specifically as an alternative to meniscectomy as replacement of critically damaged meniscal tissue in the knee joint where repair is not viable. PMID:26700574

  9. Towards the elucidation of molecular determinants of cooperativity in the liver bile acid binding protein.

    PubMed

    Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael

    2009-11-15

    Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex. PMID:19603488

  10. Protection of live bacteria from bile acid toxicity using bile acid adsorbing resins.

    PubMed

    Edwards, Alexander D; Slater, Nigel K H

    2009-06-12

    We previously demonstrated that a dry, room temperature stable formulation of a live bacterial vaccine was highly susceptible to bile, and suggested that this will lead to significant loss of viability of any live bacterial formulation released into the intestine using an enteric coating or capsule. We found that bile and acid tolerance is very rapidly recovered after rehydration with buffer or water, raising the possibility that rehydration in the absence of bile prior to release into the intestine might solve the problem of bile toxicity to dried cells. We describe here a novel formulation that combines extensively studied bile acid adsorbent resins with the dried bacteria, to temporarily adsorb bile acids and allow rehydration and recovery of bile resistance of bacteria in the intestine before release. Tablets containing the bile acid adsorbent cholestyramine release 250-fold more live bacteria when dissolved in a bile solution, compared to control tablets without cholestyramine or with a control resin that does not bind bile acids. We propose that a simple enteric coated oral dosage form containing bile acid adsorbent resins will allow improved live bacterial delivery to the intestine via the oral route, a major step towards room temperature stable, easily administered and distributed vaccine pills and other bacterial therapeutics. PMID:19490986

  11. Circadian dysregulation disrupts bile acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...

  12. Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in ER stress

    PubMed Central

    Bochkis, Irina M.; Rubins, Nir E.; White, Peter; Furth, Emma E.; Friedman, Joshua R.; Kaestner, Klaus H.

    2014-01-01

    Summary Production of bile by the liver is crucial for the absorption of lipophilic nutrients. Dysregulation of bile acid homeostasis can lead to cholestatic liver disease and ER stress. We show using global location analysis (“ChIP-on-Chip”) and cell-type specific gene ablation that the winged helix transcription factor Foxa2 is required for normal bile acid homeostasis. As suggested by the location analysis, deletion of Foxa2 in hepatocytes in Foxa2loxP/loxPAlfp.Cre mice leads to decreased transcription of genes encoding bile acid transporters on both the basolateral and canalicular membranes, resulting in intrahepatic cholestasis. Foxa2-deficient mice are strikingly sensitive to a diet containing cholic acid, which results in toxic accumulation of hepatic bile salts, ER stress, and liver injury. In addition, we demonstrate that expression of FOXA2 is dramatically decreased in liver samples from patients with different cholestatic syndromes, suggesting that reduced FOXA2 levels could exacerbate the injury. PMID:18660816

  13. Acute bile nephropathy secondary to anabolic steroids.

    PubMed

    Alkhunaizi, Ahmed M; ElTigani, Mohamed A; Rabah, Rola S; Nasr, Samih H

    2016-02-01

    Renal dysfunction in cholestatic liver disease is multifactorial. Acute kidney injury may develop secondary to renal vasoconstriction in the setting of peripheral vasodilation and relative hypovolemia, tubular obstruction by bile casts, and direct tubular toxicity from bile. Anabolic steroids are frequently used by athletes to boost endurance and increase muscle mass. These agents are a recently recognized cause of hepatotoxicity and jaundice and may lead to acute kidney injury. To increase awareness about this growing problem and to characterize the pathology of acute kidney injury in this setting, we report on a young male who developed acute kidney injury in the setting of severe cholestatic jaundice related to ingestion of anabolic steroids used for bodybuilding. Kidney biopsy showed bile casts within distal tubular lumina, filamentous bile inclusions within tubular cells, and signs of acute tubular injury. This report supports the recently re-emerged concept of bile nephropathy cholemic nephrosis. PMID:26587777

  14. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  15. Bile acid dissolution therapy of gallbladder stones.

    PubMed

    Fromm, H; Malavolti, M

    1992-11-01

    Oral cholelitholytic bile acid therapy has become established treatment for selected patients with cholesterol gallstones. The treatment finds its clinical application both alone and in combination with ESWL. UDCA alone or, less commonly, a combination of this bile acid with CDCA is used. Optimal results can be expected only in carefully selected patients. Bile acid dissolution therapy is most successful in patients with radiolucent gallstones which are < or = 0.5 cm in diameter or are shown by OCG to be floating. Dissolution is seldom seen when the stones are > 1 cm in size. Cholelitholytic treatment in combination with ESWL yields optimal results in single radiolucent gallstones which are not greater than 2 cm. ESWL thus makes it possible to use medical treatment effectively in single 1-2 cm gallstones when bile acids alone would not be successful. Bile acid treatment is extremely safe, especially if UDCA is given without the addition of CDCA. PMID:1486209

  16. Evaluation of two enzymatic methods of determining unsulphated serum bile acids.

    PubMed

    Hedenborg, G; Norman, A; Samuelson, K

    1984-12-01

    Two enzymatic methods of determining unsulphated 3 alpha-hydroxylated and 7 alpha-hydroxylated bile acids, respectively, were evaluated. Both methods are based on a coupled enzyme reaction involving a coloured redox indicator and absorbance measurement as the final step. Recovery and specificity were tested on human serum pools containing different bile acids added in various amounts, and by comparison of the results with those obtained by gas-liquid chromatography after group separation of bile acids from patient sera. Results from the two enzymatic methods were also compared with those determined with radioimmunoassay on a large number of patient sera. The results indicate that the enzymatic methods are useful for serum bile acid screening but more sensitive methods are necessary for investigations within the normal range. PMID:6597529

  17. Effects of ion substitution on bile acid-dependent and -independent bile formation by rat liver.

    PubMed Central

    Van Dyke, R W; Stephens, J E; Scharschmidt, B F

    1982-01-01

    To characterize the transport mechanisms responsible for formation of canalicular bile, we have examined the effects of ion substitution on bile acid-dependent and bile acid-independent bile formation by the isolated perfused rat liver. Complete replacement of perfusate sodium with choline and lithium abolished taurocholate-induced choleresis and reduced biliary taurocholate output by greater than 70%. Partial replacement of perfusate sodium (25 of 128 mM) by choline reduced bile acid-independent bile formation by 30% and replacement of the remaining sodium (103 mM) by choline reduced bile acid-independent bile formation by an additional 64%. In contrast, replacement of the remaining sodium (103 mM) by lithium reduced bile acid-independent bile formation by only an additional 20%, while complete replacement of sodium (128 mM) by lithium reduced bile formation by only 17%, and lithium replaced sodium as the predominant biliary cation. Replacement of perfusate bicarbonate by Tricine, a zwitterionic amino acid buffer, decreased bile acid-independent bile formation by greater than or equal to 50% and decreased biliary bicarbonate output by approximately 60%, regardless of the accompanying cation. In separate experiments, replacement of sodium by lithium essentially abolished Na,K-ATPase activity measured either as ouabain-suppressible ATP hydrolysis in rat liver or kidney homogenates, or as ouabain-suppressible 86Rb uptake by cultured rat hepatocytes. These studies indicate that bile acid(taurocholate)-dependent bile formation by rat liver exhibits a specific requirement for sodium, a finding probably attributable to the role(s) of sodium in hepatic sodium-coupled taurocholate uptake and/or in maintenance of Na,K-ATPase activity. The surprising finding that bile acid-independent bile formation was substantially unaltered by complete replacement of sodium with the permeant cation lithium does not appear to be explained by Na,K-ATPase-mediated lithium transport. Although

  18. Food, fibre, bile acids and the pelvic floor: An integrated low risk low cost approach to managing irritable bowel syndrome

    PubMed Central

    Philpott, Hamish; Nandurkar, Sanjay; Lubel, John; Gibson, Peter R

    2015-01-01

    Patients presenting with abdominal pain and diarrhea are often labelled as suffering from irritable bowel syndrome, and medications may be used often without success. Advances in the understanding of the causes of the symptoms (including pelvic floor weakness and incontinence, bile salt malabsorption and food intolerance) mean that effective, safe and well tolerated treatments are now available. PMID:26525925

  19. Functional Environmental Screening of a Metagenomic Library Identifies stlA; A Unique Salt Tolerance Locus from the Human Gut Microbiome

    PubMed Central

    Culligan, Eamonn P.; Sleator, Roy D.; Marchesi, Julian R.; Hill, Colin

    2013-01-01

    Functional environmental screening of metagenomic libraries is a powerful means to identify and assign function to novel genes and their encoded proteins without any prior sequence knowledge. In the current study we describe the identification and subsequent analysis of a salt-tolerant clone from a human gut metagenomic library. Following transposon mutagenesis we identified an unknown gene (stlA, for “salt tolerance locus A”) with no current known homologues in the databases. Subsequent cloning and expression in Escherichia coli MKH13 revealed that stlA confers a salt tolerance phenotype in its surrogate host. Furthermore, a detailed in silico analysis was also conducted to gain additional information on the properties of the encoded StlA protein. The stlA gene is rare when searched against human metagenome datasets such as MetaHit and the Human Microbiome Project and represents a novel and unique salt tolerance determinant which appears to be found exclusively in the human gut environment. PMID:24349412

  20. Apolipoprotein A-V is present in bile and its secretion increases with lipid absorption in Sprague-Dawley rats.

    PubMed

    Zhang, Linda S; Sato, Hirokazu; Yang, Qing; Ryan, Robert O; Wang, David Q-H; Howles, Philip N; Tso, Patrick

    2015-12-01

    Apolipoprotein (apo) A-V is a protein synthesized only in the liver that dramatically modulates plasma triglyceride levels. Recent studies suggest a novel role for hepatic apoA-V in regulating the absorption of dietary triglycerides, but its mode of action on the gut remains unknown. The aim of this study was to test for apoA-V in bile and to determine whether its secretion is regulated by dietary lipids. After an overnight recovery, adult male Sprague-Dawley bile fistula rats indeed secreted apoA-V into bile at a constant rate under fasting conditions. An intraduodenal bolus of intralipid (n = 12) increased the biliary secretion of apoA-V but not of other apolipoproteins, such as A-I, A-IV, B, and E. The lipid-induced increase of biliary apoA-V was abolished under conditions of poor lymphatic lipid transport, suggesting that the stimulation is regulated by the magnitude of lipids associated with chylomicrons transported into lymph. We also studied the secretion of apoA-V into bile immediately following bile duct cannulation. Biliary apoA-V increased over time (∼6-fold increase at hour 16, n = 8) but the secretions of other apolipoproteins remained constant. Replenishing luminal phosphatidylcholine and taurocholate (n = 9) only enhanced apoA-V secretion in bile, suggesting that the increase was not due to depletion of phospholipids or bile salts. This is the first study to demonstrate that apoA-V is secreted into bile, introducing a potential route of delivery of hepatic apoA-V to the gut lumen. Our study also reveals the uniqueness of apoA-V secretion into bile that is regulated by mechanisms different from other apolipoproteins. PMID:26505974

  1. A hybrid cationic peptide composed of human β-defensin-1 and humanized θ-defensin sequences exhibits salt-resistant antimicrobial activity.

    PubMed

    Olli, Sudar; Nagaraj, Ramakrishnan; Motukupally, Swapna R

    2015-01-01

    We have designed a hybrid peptide by combining sequences of human β-defensin-1 (HBD-1) and θ-defensin, in an attempt to generate a molecule that combines the diversity in structure and biological activity of two different peptides to yield a promising therapeutic candidate. HBD-1 was chosen as it is a natural defensin of humans that is constitutively expressed, but its antibacterial activity is considerably impaired by elevated ionic strength. θ-Defensins are expressed in human bone marrow as a pseudogene and are homologous to rhesus monkey circular minidefensins. Retrocyclins are synthetic human θ-defensins. The cyclic nature of the θ-defensin peptides makes them salt resistant, nonhemolytic, and virtually noncytotoxic in vitro. However, a nonhuman circular molecule developed for clinical use would be less viable than a linear molecule. In this study, we have fused the C-terminal region of HBD-1 to the nonapeptide sequence of a synthetic retrocyclin. Cyclization was achieved by joining the terminal ends of the hybrid peptide by a disulfide bridge. The hybrid peptide with or without the disulfide bridge exhibited enhanced antimicrobial activity against both Gram-negative and Gram-positive bacteria as well as against fungi, including clinical bacterial isolates from eye infections. The peptide retained activity in the presence of NaCl and serum and was nonhemolytic in vitro. Thus, the hybrid peptide generated holds potential as a new class of antibiotics. PMID:25348533

  2. A Hybrid Cationic Peptide Composed of Human β-Defensin-1 and Humanized θ-Defensin Sequences Exhibits Salt-Resistant Antimicrobial Activity

    PubMed Central

    Nagaraj, Ramakrishnan; Motukupally, Swapna R.

    2014-01-01

    We have designed a hybrid peptide by combining sequences of human β-defensin-1 (HBD-1) and θ-defensin, in an attempt to generate a molecule that combines the diversity in structure and biological activity of two different peptides to yield a promising therapeutic candidate. HBD-1 was chosen as it is a natural defensin of humans that is constitutively expressed, but its antibacterial activity is considerably impaired by elevated ionic strength. θ-Defensins are expressed in human bone marrow as a pseudogene and are homologous to rhesus monkey circular minidefensins. Retrocyclins are synthetic human θ-defensins. The cyclic nature of the θ-defensin peptides makes them salt resistant, nonhemolytic, and virtually noncytotoxic in vitro. However, a nonhuman circular molecule developed for clinical use would be less viable than a linear molecule. In this study, we have fused the C-terminal region of HBD-1 to the nonapeptide sequence of a synthetic retrocyclin. Cyclization was achieved by joining the terminal ends of the hybrid peptide by a disulfide bridge. The hybrid peptide with or without the disulfide bridge exhibited enhanced antimicrobial activity against both Gram-negative and Gram-positive bacteria as well as against fungi, including clinical bacterial isolates from eye infections. The peptide retained activity in the presence of NaCl and serum and was nonhemolytic in vitro. Thus, the hybrid peptide generated holds potential as a new class of antibiotics. PMID:25348533

  3. Protection of dried probiotic bacteria from bile using bile adsorbent resins.

    PubMed

    Mahbubani, Krishnaa T; Slater, Nigel K H; Edwards, Alexander D

    2014-01-25

    Enteric coated oral tablets or capsules can deliver dried live cells directly into the intestine. Previously, we found that a live attenuated bacterial vaccine acquired sensitivity to intestinal bile when dried, raising the possibility that although gastric acid can be bypassed, significant loss of viability might occur on release from an enteric coated oral formulations. Here we demonstrate that some food-grade lyophilised preparations of Lactobacillus casei and Lactobacillus salivarius also show temporary bile sensitivity that can be rapidly reversed by rehydration. To protect dried bacterial cells from temporary bile sensitivity, we propose using bile acid adsorbing resins, such as cholestyramine, which are bile acid binding agents, historically used to lower cholesterol levels. Vcaps™ HPMC capsules alone provided up to 830-fold protection from bile. The inclusion of 50% w/w cholestyramine in Vcaps™ HPMC capsules resulted in release of up to 1700-fold more live Lactobacillus casei into simulated intestinal fluid containing 1% bile, when compared to dried cells added directly to bile. We conclude that delivery of dried live probiotic organisms to the intestine may be improved by providing protection from bile by addition of bile adsorbing resins and the use of HPMC capsules. PMID:24080386

  4. Chylomicrons enhance endotoxin excretion in bile.

    PubMed Central

    Read, T E; Harris, H W; Grunfeld, C; Feingold, K R; Calhoun, M C; Kane, J P; Rapp, J H

    1993-01-01

    Chylomicrons prevent endotoxin toxicity and increase endotoxin uptake by hepatocytes. As a consequence, less endotoxin is available to activate macrophages, thereby reducing tumor necrosis factor secretion. To determine whether the chylomicron-mediated increase in hepatocellular uptake of endotoxin results in increased endotoxin excretion into bile, we examined bile after endotoxin administration. A sublethal dose (7 micrograms/kg) of 125I-endotoxin was incubated with either rat mesenteric lymph containing nascent chylomicrons (500 mg of chylomicron triglyceride per kg of body weight) or an equal volume of normal saline (controls) for 3 h and then infused into male Sprague-Dawley rats. Bile samples were collected via a common bile duct catheter for 24 h. Infusion of endotoxin incubated with chylomicrons increased biliary excretion of endotoxin by 67% at 3 h (P < or = 0.006) and by 20% at 24 h (P < or = 0.01) compared with infusion of endotoxin incubated in saline. Endotoxin activity, as measured by the Limulus assay, was not detected in the bile of test animals. However, endotoxin activity was detected after hot phenol-water extraction of bile, demonstrating that endotoxin is inactive in the presence of bile but retains bioactivity after hepatic processing. Since the majority of an intravenous endotoxin load has been shown to be cleared by the liver, acceleration of hepatocyte clearance and biliary excretion of endotoxin may represent a component of the mechanism by which chylomicrons protect against endotoxin-induced lethality. PMID:8335381

  5. Structure of plant bile pigments

    SciTech Connect

    Schoenleber, R.W.

    1983-12-01

    Selective peptide cleavage has provided a general procedure for the study of the structure, including stereochemistry, of plant bile pigments. The information derived from the synthesis and spectral analysis of a series of 2,3-dihydrodioxobilins allows the determination of the trans relative stereochemistry for ring A of the ..beta../sub 1/-phycocyanobilin from C-phycocyanin as well as for ring A of phytochrome. A complete structure proof of the five phycoerythrobilins attached to the ..cap alpha.. and ..beta.. subunits of B-phycoerythrin is described. One of these tetrapyrroles is doubly-peptide linked to a single peptide chain through two thioethers at the C-3' and C-18' positions. The four remaining phycoerythrobilins are singly-linked to the protein through thioethers at the C-3' position and all possess the probable stereochemistry C-2(R), C-3(R), C-3'(R), and C-16(R).

  6. An essential role of the CAAT/enhancer binding protein-alpha in the vitamin D-induced expression of the human steroid/bile acid-sulfotransferase (SULT2A1).

    PubMed

    Song, Chung S; Echchgadda, Ibtissam; Seo, Young-Kyo; Oh, Taesung; Kim, Soyoung; Kim, Sung-A; Cho, Sunghwan; Shi, Liheng; Chatterjee, Bandana

    2006-04-01

    The vitamin D receptor (VDR) regulates steroid and drug metabolism by inducing the genes encoding phase I and phase II enzymes. SULT2A1 is a liver- and intestine-expressed sulfo-conjugating enzyme that converts the alcohol-OH of neutral steroids, bile acids, and drugs to water-soluble sulfated metabolites. 1alpha,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] induces SULT2A1 gene transcription after the recruitment of VDR to the vitamin D-responsive chromatin region of SULT2A1. A composite element in human SULT2A1 directs the 1,25-(OH)2D3-mediated induction of natural and heterologous promoters. This element combines a VDR/retinoid X receptor-alpha-binding site [vitamin D response element (VDRE)], which is an imperfect inverted repeat 2 of AGCTCA, and a CAAT/enhancer binding protein (C/EBP)-binding site located 9 bp downstream to VDRE. The binding sites were identified by EMSA, antibody supershift, and deoxyribonuclease I footprinting. C/EBP-alpha at the composite element plays an essential role in the VDR regulation of SULT2A1, because 1) induction was lost for promoters with inactivating mutations at the VDRE or C/EBP element; 2) SULT2A1 induction by 1,25-(OH)2D3 in C/EBP-alpha-deficient cells required the expression of cotransfected C/EBP-alpha; and 3) C/EBP-beta did not substitute for C/EBP-alpha in this regulation. VDR and C/EBP-alpha were recruited concurrently to the composite element along with the coactivators p300, steroid receptor coactivator 1 (SRC-1), and SRC-2, but not SRC-3. VDR and C/EBP-alpha associated endogenously as a DNA-dependent, coimmunoprecipitable complex, which was detected at a markedly higher level in 1,25-(OH)2D3-treated cells. These results provide the first example of the essential role of the interaction in cis between C/EBP-alpha and VDR in directing 1,25-(OH)2D3-induced expression of a VDR target gene. PMID:16357103

  7. Potassium supplementation inhibits IL-17A production induced by salt loading in human T lymphocytes via p38/MAPK-SGK1 pathway.

    PubMed

    Wen, Wen; Wan, Zhaofei; Ren, Keyu; Zhou, Dong; Gao, Qiyue; Wu, Yan; Wang, Lijun; Yuan, Zuyi; Zhou, Juan

    2016-06-01

    High salt intake contributes to the development of autoimmune/inflammatory diseases, while potassium supplementation antagonizes the effects. Interleukin (IL)-17A are tightly related with autoimmune/inflammatory diseases. Thus, we explored the effects and underlying molecular mechanism of high salt and potassium supplementation on IL-17A production in T lymphocytes. Forty-nine healthy participants received a low-salt, high-salt, followed by a high-salt diet plus potassium supplement for 7 days, respectively. Human T lymphocyte Jurkat cells were treated with different concentrations of NaCl and KCl. In the participants, IL-17A levels in plasma and in peripheral blood mononuclear cells (PBMC) were significantly increased after a high-salt diet, which was dramatically reversed when potassium was supplemented. In Jurkat cells, the addition of 40 mM NaCl markedly enhanced IL-17A production and the expression of phosphorylated p38/mitogen-activated protein kinase (MAPK) and its downstream target, serum/glucocorticoid-regulated kinase (SGK)1, whereas combined treatment with additional 2 mM KCl significantly decreased them. Respective inhibition of p38/MAPK and SGK1 suppressed IL-17A expression induced by NaCl, and KCl inhibited IL-17A production induced by specific activator of p38/MAPK. We conclude potassium supplementation has a blocking effect on IL-17A production in T lymphocytes induced by salt loading. This protective effect is mediated through the direct suppression of p38/MAPK-SGK1 pathway. PMID:27020669

  8. History of Hepatic Bile Formation: Old Problems, New Approaches

    ERIC Educational Resources Information Center

    Javitt, Norman B.

    2014-01-01

    Studies of hepatic bile formation reported in 1958 established that it was an osmotically generated water flow. Intravenous infusion of sodium taurocholate established a high correlation between hepatic bile flow and bile acid excretion. Secretin, a hormone that stimulates bicarbonate secretion, was also found to increase hepatic bile flow. The…

  9. A history of salt.

    PubMed

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy. PMID:7847480

  10. Nuclear receptors, bile acids and cholesterol homeostasis series - bile acids and pregnancy.

    PubMed

    Abu-Hayyeh, Shadi; Papacleovoulou, Georgia; Williamson, Catherine

    2013-04-10

    Bile acids have been traditionally thought of as having an important role in fat emulsification. It is now emerging that they act as important signalling molecules that not only autoregulate their own synthesis but also influence lipid and glucose metabolism. Although, the mechanisms that underlie the regulation of bile acid homeostasis have been well characterised in normal physiology, the impact of pregnancy on bile acid regulation is still poorly understood. This review summarises the main regulatory mechanisms underlying bile acid homeostasis and discusses how pregnancy, a unique physiological state, can modify them. The fetoplacental adaptations that protect against fetal bile acid toxicity are reviewed. We highlight the importance of bile acid regulation during gestation by discussing the liver disease of pregnancy, intrahepatic cholestasis of pregnancy (ICP) and how genetic, endocrine and environmental factors contribute to the disease aetiology at a cellular and molecular level. PMID:23159988

  11. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other. PMID:25010412

  12. Serum gamma glutamyl transferase as a specific indicator of bile duct lesions in the rat liver.

    PubMed Central

    Leonard, T. B.; Neptun, D. A.; Popp, J. A.

    1984-01-01

    Serum gamma-glutamyl transferase (GGT), a marker of hepatic injury used extensively in humans, has been used rarely in rats because its specificity has not been previously defined. Studies were designed for investigation of the specificity of serum GGT activity with the use of cell type specific hepatotoxicants in Fischer 344 rats. Single necrogenic doses of CCl4, allyl alcohol (AA), and alpha-naphthylisothiocyanate (ANIT) were used to produce cell specific injury in centrilobular hepatocytes, periportal hepatocytes, and bile duct cells, respectively. Administration of CCl4 markedly increased serum activities of alanine aminotransferase (ALT), alkaline phosphatase (AP), and serum bile acid concentrations within 24 hours but had no effect on serum GGT activity. ANIT treatment increased serum GGT and AP activities and bile acid concentration 24 hours following administration. Allyl alcohol administration increased serum ALT activity but had no effect on GGT activity. Administration of ANIT in the diet at 0.01%, 0.022%, 0.047%, and 0.1% for 2, 4, and 6 weeks produced dose- and time-dependent increases in serum GGT activity which strongly correlated with quantitative increases in hepatic bile duct volume, which was determined morphometrically. These observations support the use of serum GGT activity in the rat as diagnostic of bile duct cell necrosis when increases are detected shortly after the insult and as an indicator of possible bile duct hyperplasia. Images Figure 1 Figure 3 PMID:6147091

  13. Serum gamma glutamyl transferase as a specific indicator of bile duct lesions in the rat liver.

    PubMed

    Leonard, T B; Neptun, D A; Popp, J A

    1984-08-01

    Serum gamma-glutamyl transferase (GGT), a marker of hepatic injury used extensively in humans, has been used rarely in rats because its specificity has not been previously defined. Studies were designed for investigation of the specificity of serum GGT activity with the use of cell type specific hepatotoxicants in Fischer 344 rats. Single necrogenic doses of CCl4, allyl alcohol (AA), and alpha-naphthylisothiocyanate (ANIT) were used to produce cell specific injury in centrilobular hepatocytes, periportal hepatocytes, and bile duct cells, respectively. Administration of CCl4 markedly increased serum activities of alanine aminotransferase (ALT), alkaline phosphatase (AP), and serum bile acid concentrations within 24 hours but had no effect on serum GGT activity. ANIT treatment increased serum GGT and AP activities and bile acid concentration 24 hours following administration. Allyl alcohol administration increased serum ALT activity but had no effect on GGT activity. Administration of ANIT in the diet at 0.01%, 0.022%, 0.047%, and 0.1% for 2, 4, and 6 weeks produced dose- and time-dependent increases in serum GGT activity which strongly correlated with quantitative increases in hepatic bile duct volume, which was determined morphometrically. These observations support the use of serum GGT activity in the rat as diagnostic of bile duct cell necrosis when increases are detected shortly after the insult and as an indicator of possible bile duct hyperplasia. PMID:6147091

  14. Transport of quercetin di-sodium salt in the human intestinal epithelial Caco-2 cell monolayer 139.

    PubMed

    Milane, H A; Al Ahmad, A; Naitchabane, M; Vandamme, T F; Jung, L; Ubeaud, G

    2007-01-01

    Quercetin di-sodium salt (QDS), a water-soluble derivative of quercetin (Q), is a potent free radical scavenger. The aim of this study was to examine the in vitro intestinal transport of QDS compared to that of Q using the Caco-2 human intestinal epithelial cell line. The apical (A) to basolateral (B) transport of QDS was found to be higher than the B to A transport of this compound. This polarized transport involved the presence of a carrier protein system. The involvement of the sodium/glucose transporter-1 (SGLT-1) was shown by using phloridzin, a selective inhibitor of this conveyor system. However, the transport of Q was not affected by this inhibitor. Moreover, the influx of QDS was pH-sensitive and decreased at pH 5.5 compared with that observed at pH 7.4 and 6.5. The permeability of QDS was 10-fold higher than that of Q. This could be explained by the involvement of SLGT-1 and the absence of an active efflux pump in the absorption of QDS in comparison with Q. This finding was supported by comparing the solubility of Q with that of QDS. This study indicates that both the higher solubility of QDS and its dependence on the SGLT-1 transport system resulted in more efficient permeability compared to Q. PMID:18062406

  15. Isolation and purification of recombinant human plasminogen Kringle 5 by liquid chromatography and ammonium sulfate salting-out.

    PubMed

    Bian, Liujiao; Ji, Xu; Hu, Wei

    2014-07-01

    In this work, a novel method was established to isolate and purify Human plasminogen Kringle 5 (HPK5) as a histidine-tagged fusion protein expressed in Escherichia coli BL21 (DE3). This method consisted of sample extraction using a Ni-chelated Sepharose Fast-Flow affinity column, ammonium sulfate salting-out and Sephadex G-75 size-exclusion column in turn. The purity analysis by SDS-PAGE, high-performance size-exclusion and reversed-phase chromatographies showed that the obtained recombinant fusion HPK5 was homogeneous and its purity was higher than 96%; the activity analysis by chorioallantoic membrane model of chicken embryos revealed that the purified recombinant HPK5 exhibited an obvious anti-angiogenic activity under the effective range of 5.0-25.0 µg/mL. Through this procedure, about 19 mg purified recombinant fusion HPK5 can be obtained from 1 L of original fermentation solution. Approximate 32% of the total recombinant fusion HPK5 can be captured and the total yield was approximately 11%. PMID:24311387

  16. LKB1 tumor suppressor and salt-inducible kinases negatively regulate human T-cell leukemia virus type 1 transcription

    PubMed Central

    2013-01-01

    Background Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Treatment options are limited and prophylactic agents are not available. We have previously demonstrated an essential role for CREB-regulating transcriptional coactivators (CRTCs) in HTLV-1 transcription. Results In this study we report on the negative regulatory role of LKB1 tumor suppressor and salt-inducible kinases (SIKs) in the activation of HTLV-1 long terminal repeats (LTR) by the oncoprotein Tax. Activation of LKB1 and SIKs effectively blunted Tax activity in a phosphorylation-dependent manner, whereas compromising these kinases, but not AMP-dependent protein kinases, augmented Tax function. Activated LKB1 and SIKs associated with Tax and suppressed Tax-induced LTR activation by counteracting CRTCs and CREB. Enforced expression of LKB1 or SIK1 in cells transfected with HTLV-1 molecular clone pX1MT repressed proviral transcription. On the contrary, depletion of LKB1 in pX1MT-transfected cells and in HTLV-1-transformed T cells boosted the expression of Tax. Treatment of HTLV-1 transformed cells with metformin led to LKB1/SIK1 activation, reduction in Tax expression, and inhibition of cell proliferation. Conclusions Our findings revealed a new function of LKB1 and SIKs as negative regulators of HTLV-1 transcription. Pharmaceutical activation of LKB1 and SIKs might be considered as a new strategy in anti-HTLV-1 and anti-ATL therapy. PMID:23577667

  17. High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure.

    PubMed

    Matthews, Evan L; Brian, Michael S; Ramick, Meghan G; Lennon-Edwards, Shannon; Edwards, David G; Farquhar, William B

    2015-06-15

    Recent studies demonstrate that high dietary sodium (HS) impairs endothelial function in those with salt-resistant (SR) blood pressure (BP). The effect of HS on endothelial function in those with salt-sensitive (SS) BP is not currently known. We hypothesized that HS would impair brachial artery flow-mediated dilation (FMD) to a greater extent in SS compared with SR adults. Ten SR (age 42 ± 5 yr, 5 men, 5 women) and 10 SS (age 39 ± 5 yr, 5 men, 5 women) healthy, normotensive participants were enrolled in a controlled feeding study consisting of a run-in diet followed by a 7-day low dietary sodium (LS) (20 mmol/day) and a 7-day HS (300 mmol/day) diet in random order. Brachial artery FMD and 24-h BP were assessed on the last day of each diet. SS BP was individually assessed and defined as a change in 24-h mean arterial pressure (MAP) of >5 mmHg between the LS and HS diets (ΔMAP: SR -0.6 ± 1.2, SS 7.7 ± 0.4 mmHg). Brachial artery FMD was lower in both SS and SR individuals during the HS diet (P < 0.001), and did not differ between groups (P > 0.05) (FMD: SR LS 10.6 ± 1.3%, SR HS 7.2 ± 1.5%, SS LS 12.5 ± 1.7%, SS HS 7.8 ± 1.4%). These data indicate that an HS diet impairs brachial artery FMD to a similar extent in adults with SS BP and SR BP. PMID:26078434

  18. How Is Bile Duct Cancer Diagnosed?

    MedlinePlus

    ... line through which a different kind of contrast dye (IV contrast) is injected. This helps better outline ... common bile duct. A small amount of contrast dye is injected through the tube to help outline ...

  19. Nuclear receptors in bile acid metabolism

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2013-01-01

    Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546

  20. Treatment Options for Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. ... which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to ...

  1. Treatment Option Overview (Extrahepatic Bile Duct Cancer)

    MedlinePlus

    ... checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. ... which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to ...

  2. Stages of Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. ... which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to ...

  3. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... form of radiation for bile duct cancer. External beam radiation therapy (EBRT) This type of radiation therapy ... determine the correct angles for aiming the radiation beams and the proper dose of radiation. The treatment ...

  4. Intraoperative cholangiography and bile duct injury.

    PubMed

    Sarli, L; Costi, R; Roncoroni, L

    2006-01-01

    We are not in agreement with the opinion that the credit for excellent results after laparoscopic cholecystectomy is to be attributed to the routine performing of intraoperative cholangiography. We performed 2538 laparoscopic cholecystectomies without routine intraoperative cholangiography and we obtained very low rate and severity of common bile duct injuries: there was a total of four common bile duct injuries (0.16%), in no case was the injury a major transaction, and injuries were detected intraoperatively and easily repaired with a T-tube. Cholangiography could prevent bile duct transaction, but that it is not necessary for intraoperative cholangiography to be routinely performed for this purpose. It is sufficient for intraoperative cholangiography to be performed whenever the surgeon is in doubt as to the biliary anatomy or common bile duct clearance, and that when dissection of the cholecystic peduncle proves difficult he does not hesitate to convert to open access. PMID:16333543

  5. Bile acid signaling and biliary functions

    PubMed Central

    Jones, Hannah; Alpini, Gianfranco; Francis, Heather

    2015-01-01

    This review focuses on various components of bile acid signaling in relation to cholangiocytes. Their roles as targets for potential therapies for cholangiopathies are also explored. While many factors are involved in these complex signaling pathways, this review emphasizes the roles of transmembrane G protein coupled receptor (TGR5), farnesoid X receptor (FXR), ursodeoxycholic acid (UDCA) and the bicarbonate umbrella. Following a general background on cholangiocytes and bile acids, we will expand the review and include sections that are most recently known (within 5–7 years) regarding the field of bile acid signaling and cholangiocyte function. These findings all demonstrate that bile acids influence biliary functions which can, in turn, regulate the cholangiocyte response during pathological events. PMID:26579437

  6. The solute carrier family 10 (SLC10): beyond bile acid transport

    PubMed Central

    da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.

    2012-01-01

    The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869

  7. Proapoptotic effects of new pentabromobenzylisothiouronium salts in a human prostate adenocarcinoma cell line.

    PubMed

    Koronkiewicz, Mirosława; Kazimierczuk, Zygmunt; Szarpak, Kinga; Chilmonczyk, Zdzisław

    2012-01-01

    Prostate cancer is the second most common cancer in elderly men worldwide and its incidence rate is rising continuously. Agents capable of inducing apoptosis in prostate cancer cells seem a promising approach to treat this malignancy. In this study we describe the synthesis of a number of novel N- and N,N'-substituted S-2,3,4,5,6-pentabromobenzylisothiouronium bromides and their activity against the human prostate adenocarcinoma PC3 cell line. All the compounds produced changes in mitochondrial transmembrane potential and cell cycle progression, showed a cytostatic effect and induced apoptosis in the tested cancer line in a concentration- and time-dependent manner. The most effective compounds ZKK-3, ZKK-9 and ZKK-13 produced, at 20 microM concentration, apoptosis in 42, 46, and 66% of the cells, respectively, after 48 h incubation. Two selected S-2,3,4,5,6-pentabromobenzylisothiouronium bromides (ZKK-3, ZKK-9) showed also a synergic proapoptotic effect with the new casein kinase II inhibitor 2-(4-methylpiperazin-1-yl)-4,5,6,7-tetrabromo-1H-benzimidazole (TBIPIP) in the PC3 cell line. PMID:23285698

  8. Limy Bile Syndrome Complicated with Primary Hyperparathyroidism

    PubMed Central

    Koca, Yavuz Savas; Koca, Tugba; Barut, Ibrahim

    2015-01-01

    Limy bile is a relatively rare condition, in which a radiopaque material is visible in the gallbladder on plain radiography or computerized tomography. Cases of complicated hyperparathyroidism are extremely rare. We report a patient with right upper quadrant and epigastric pain and extremity weakness in whom abdominal tomography showed limy bile in the gallbladder and laboratory values showed high levels of serum calcium and parathormone. PMID:25821626

  9. Iodized Salt Sales in the United States

    PubMed Central

    Maalouf, Joyce; Barron, Jessica; Gunn, Janelle P.; Yuan, Keming; Perrine, Cria G.; Cogswell, Mary E.

    2015-01-01

    Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt. PMID:25763528

  10. Natural Bile Acids and Synthetic Analogues Modulate Large Conductance Ca2+-activated K+ (BKCa) Channel Activity in Smooth Muscle Cells

    PubMed Central

    Dopico, Alejandro M.; Walsh, John V.; Singer, Joshua J.

    2002-01-01

    Bile acids have been reported to produce relaxation of smooth muscle both in vitro and in vivo. The cellular mechanisms underlying bile acid–induced relaxation are largely unknown. Here we demonstrate, using patch-clamp techniques, that natural bile acids and synthetic analogues reversibly increase BKCa channel activity in rabbit mesenteric artery smooth muscle cells. In excised inside-out patches bile acid–induced increases in channel activity are characterized by a parallel leftward shift in the activity-voltage relationship. This increase in BKCa channel activity is not due to Ca2+-dependent mechanism(s) or changes in freely diffusible messengers, but to a direct action of the bile acid on the channel protein itself or some closely associated component in the cell membrane. For naturally occurring bile acids, the magnitude of bile acid–induced increase in BKCa channel activity is inversely related to the number of hydroxyl groups in the bile acid molecule. By using synthetic analogues, we demonstrate that such increase in activity is not affected by several chemical modifications in the lateral chain of the molecule, but is markedly favored by polar groups in the side of the steroid rings opposite to the side where the methyl groups are located, which stresses the importance of the planar polarity of the molecule. Bile acid–induced increases in BKCa channel activity are also observed in smooth muscle cells freshly dissociated from rabbit main pulmonary artery and gallbladder, raising the possibility that a direct activation of BKCa channels by these planar steroids is a widespread phenomenon in many smooth muscle cell types. Bile acid concentrations that increase BKCa channel activity in mesenteric artery smooth muscle cells are found in the systemic circulation under a variety of human pathophysiological conditions, and their ability to enhance BKCa channel activity may explain their relaxing effect on smooth muscle. PMID:11865021

  11. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules.

    PubMed

    Copple, Bryan L; Li, Tiangang

    2016-02-01

    For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that

  12. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides. PMID:26919457

  13. Bile acid accelerates erbB2-induced pro-tumorigenic activities in biliary tract cancer.

    PubMed

    Kitamura, Takuya; Srivastava, Jaya; DiGiovanni, John; Kiguchi, Kaoru

    2015-06-01

    Although very few studies have addressed the molecular and cellular mechanisms underlying the development of biliary tract cancer (BTC), several lines of evidence suggest a role for the erbB receptor family. Overexpression and activation of erbB2 has been reported in a significant percentage of human BTC. Further, we previously reported that overexpression of erbB2 basal epithelial cells of the biliary tract (BK5.erbB2 mouse) led to the development of BTC. However, the mechanisms by which erbB2 overexpression led to the spontaneous development of tumors specifically in the biliary tract are not completely understood. The goals of the current study were to (1) determine whether a cooperative relationship between bile acid exposure and erbB2 activation exists during biliary tract carcinogenesis and (2) to characterize the mechanism(s) underlying bile acid-mediated biliary tract carcinogenesis in cells with activated erbB2. In this study, we demonstrated that the secondary conjugated bile acid, taurochenodeoxycholic acid (TCDC), increased proliferation of primary cultured gallbladder epithelial cells from BK5.erbB2 mice and human BTC cells. TCDC treatment activated EGFR/erbB2 and downstream signaling molecules in both primary cultured cells and human BTC cells. TCDC also increased the expression of epidermal growth factor receptor (EGFR) ligands and TACE activity in human BTC cells. Inhibition of src activation led to attenuation of bile-induced upregulation of TACE activity as well as signaling through the EGFR/erbB2, suggesting that during the development of BTC erbB2 overexpression/activation accelerates the bile acid-induced signaling cascade: bile acid → src → TACE → EGFR/erbB2 → downstream signaling. We also provide direct evidence that bile acids possess tumor promoting capacity in epithelial cells overexpressing erbB2 using the two-stage skin carcinogenesis model. Collectively these findings suggest cooperative roles for bile acid and

  14. Bile Acids Regulate Cardiovascular Function

    PubMed Central

    Khurana, Sandeep; Raufman, Jean-Pierre; Pallone, Thomas L.

    2011-01-01

    Research over the last decade has uncovered roles for bile acids (BAs) that extend beyond their traditional functions in regulating lipid digestion and cholesterol metabolism. BAs are now recognized as signaling molecules that interact with both plasma membrane and nuclear receptors. Emerging evidence indicates that by interacting with these receptors BAs regulate their own synthesis, glucose and energy homeostasis, and other important physiological events. Herein, we provide a comprehensive review of the actions of BAs on cardiovascular function. In the heart and the systemic circulation, BAs interact with plasma membrane G-protein coupled receptors, e.g. TGR5 and muscarinic receptors, and nuclear receptors, e.g. the farnesoid (FXR) and pregnane (PXR) xenobiotic receptors. BA receptors are expressed in cardiovascular tissue, however, the mechanisms underlying BA-mediated regulation of cardiovascular function remain poorly understood. BAs reduce heart rate by regulating channel conductance and calcium dynamics in sino-atrial and ventricular cardiomyocytes, and regulate vascular tone via both endothelium-dependent and -independent mechanisms. End-stage-liver disease, obstructive jaundice and intrahepatic cholestasis of pregnancy are prominent conditions in which elevated serum BAs alter vascular dynamics. This review focuses on BAs as newly-recognized signaling molecules that modulate cardiovascular function. PMID:21707953

  15. Intraductal papillary neoplasm of the bile duct accompanying biliary mixed adenoneuroendocrine carcinoma.

    PubMed

    Onishi, Ichiro; Kitagawa, Hirohisa; Harada, Kenichi; Maruzen, Syogo; Sakai, Seisyo; Makino, Isamu; Hayashi, Hironori; Nakagawara, Hisatoshi; Tajima, Hidehiro; Takamura, Hiroyuki; Tani, Takashi; Kayahara, Masato; Ikeda, Hiroko; Ohta, Tetsuo; Nakanuma, Yasuni

    2013-05-28

    We present the first case of an intraductal papillary neoplasm of the bile duct (IPNB) accompanying a mixed adenoneuroendocrine carcinoma (MANEC). A 74-year-old woman presented with fever of unknown cause. Laboratory data revealed jaundice and liver injury. Contrast-enhanced computed tomography revealed a 20 mm polypoid tumor in the dilated distal bile duct, which exhibited early enhancement and papillary growth. Upper gastrointestinal endoscopy revealed mucus production from the papilla of Vater, characterized by its protruding and dilated orifice. Endoscopic ultrasonography visualized the polypoid tumor in the distal bile duct, but no invasive region was suggested by diagnostic imaging. Therefore, the initial diagnosis was IPNB. After endoscopic nasobiliary drainage, a pylorus-preserving pancreaticoduodenectomy was performed. Pathological examination of the resected bile duct revealed papillary proliferation of biliary-type cells with nuclear atypia, indicating pancreaticobiliary-type IPNB. In addition, solid portions comprised of tumor cells with characteristic salt-and-pepper nuclei were evident. Immunohistochemistry revealed expression of the neuroendocrine marker synaptophysin in this solid component, diagnosing it as a neuroendocrine tumor (NET). Furthermore, the MIB-1 proliferation index of NET was higher than that of IPNB, and microinvasion of the NET component was found, indicating neuroendocrine carcinoma (NET G3). This unique case of MANEC, comprising IPNB and NET, provides insight into the pathogenesis of biliary NET. PMID:23716999

  16. Intraductal papillary neoplasm of the bile duct accompanying biliary mixed adenoneuroendocrine carcinoma

    PubMed Central

    Onishi, Ichiro; Kitagawa, Hirohisa; Harada, Kenichi; Maruzen, Syogo; Sakai, Seisyo; Makino, Isamu; Hayashi, Hironori; Nakagawara, Hisatoshi; Tajima, Hidehiro; Takamura, Hiroyuki; Tani, Takashi; Kayahara, Masato; Ikeda, Hiroko; Ohta, Tetsuo; Nakanuma, Yasuni

    2013-01-01

    We present the first case of an intraductal papillary neoplasm of the bile duct (IPNB) accompanying a mixed adenoneuroendocrine carcinoma (MANEC). A 74-year-old woman presented with fever of unknown cause. Laboratory data revealed jaundice and liver injury. Contrast-enhanced computed tomography revealed a 20 mm polypoid tumor in the dilated distal bile duct, which exhibited early enhancement and papillary growth. Upper gastrointestinal endoscopy revealed mucus production from the papilla of Vater, characterized by its protruding and dilated orifice. Endoscopic ultrasonography visualized the polypoid tumor in the distal bile duct, but no invasive region was suggested by diagnostic imaging. Therefore, the initial diagnosis was IPNB. After endoscopic nasobiliary drainage, a pylorus-preserving pancreaticoduodenectomy was performed. Pathological examination of the resected bile duct revealed papillary proliferation of biliary-type cells with nuclear atypia, indicating pancreaticobiliary-type IPNB. In addition, solid portions comprised of tumor cells with characteristic salt-and-pepper nuclei were evident. Immunohistochemistry revealed expression of the neuroendocrine marker synaptophysin in this solid component, diagnosing it as a neuroendocrine tumor (NET). Furthermore, the MIB-1 proliferation index of NET was higher than that of IPNB, and microinvasion of the NET component was found, indicating neuroendocrine carcinoma (NET G3). This unique case of MANEC, comprising IPNB and NET, provides insight into the pathogenesis of biliary NET. PMID:23716999

  17. Cationic amphiphilic microfibrillated cellulose (MFC) for potential use for bile acid sorption.

    PubMed

    Zhu, Xuhai; Wen, Yangbing; Cheng, Dong; Li, Changmo; An, Xingye; Ni, Yonghao

    2015-11-01

    In this work, Micro-fibrillated Cellulose (MFC) was cationically modified by quaternary ammonium groups with different chemical structures aiming to improve the sorption capacity to bile acid. The in-vitro bile acid sorption was performed by investigating various factors, such as quaternary ammonium group content and length of its alkyl substituent of the modified cationic MFC (CMFC), ionic strength, initial concentration and hydrophobicity of bile acid. The results showed that the sorption behavior of the modified CMFC was strongly influenced by the quaternary ammonium group content and the lengths of its alkyl substituent, the sorption capacity for the modified CMFC with a C18 alkyl substituent, was approximately 50% of that of Cholestyramine. The experimental isotherm results were well fitted into the Temkin model. The effect of salts in the solution was smaller for the bile acid sorption onto the hydrophobic CMFC than the CMFC. It was also found that the binding capacity of CMFC was higher for more hydrophobic deoxycholate in comparison with cholate. PMID:26256387

  18. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1.

    PubMed

    Chatterjee, Bandana; Echchgadda, Ibtissam; Song, Chung Seog

    2005-01-01

    SULT2A1 is a sulfo-conjugating phase II enzyme expressed at very high levels in the liver and intestine, the two major first-pass metabolic tissues, and in the steroidogenic adrenal tissue. SULT2A1 acts preferentially on the hydroxysteroids dehydroepiandrosterone, testosterone/dihydrotestosterone, and pregnenolone and on cholesterol-derived amphipathic sterol bile acids. Several therapeutic drugs and other xenobiotics, which include xenoestrogens, are also sulfonated by this cytosolic steroid/bile acid sulfotransferase. Nonsteroid nuclear receptors with key roles in the metabolism and detoxification of endobiotics and xenobiotics, such as bile acid-activated farnesoid X receptor, xenobiotic-activated pregnane X receptor and constitutive androstane receptor, and lipid-activated peroxisome proliferator-activated receptor-alpha, mediate transcription induction of SULT2A1 in the enterohepatic system. The ligand-activated vitamin D receptor (VDR) is another nuclear receptor that stimulates SULT2A1 transcription, and the regulatory elements in human, mouse, and rat promoters directing this induction have been characterized. Given that bile acid sulfonation is catalyzed exclusively by SULT2A1 and that the 3alpha-sulfate of the highly toxic lithocholic acid is a major excretory metabolite in humans, we speculate that a role for the VDR pathway in SULT2A1 expression may have emerged to shield first-pass tissues from the cytotoxic effects of a bile acid overload arising from disrupted sterol homeostasis triggered by endogenous and exogenous factors. PMID:16399349

  19. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    PubMed Central

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  20. Study of Relationship Between the Blood Supply of the Extrahepatic Bile Duct and Duct Supply Branches from Gastroduodenal Artery on Imaging and Anatomy

    PubMed Central

    Dai, Jie; Wu, Xiao-Feng; Yang, Chun; Li, Hong-Jun; Chen, Ya-Liang; Liu, Guo-Zhen; Song, Yi-Zhi; Wu, Huan-Huan; Ding, Jin-Li; Li, Ning

    2015-01-01

    Background: Liver transplantation has become the treatment of choice for patients with end-stage acute or chronic hepatic disease. Bile duct complications are common events after liver transplantation. The aim of this study was to evaluate the blood supply of the human bile duct and identify the underlying mechanisms of bile duct complications after liver transplantation. Methods: The duct supply branches from gastroduodenal artery and blood supply of extrahepatic bile duct system were re-evaluated through selective hepatic angiography from 600 patients. In addition, 33 cadavers were injected with latex casting material into the common hepatic artery, then the extrahepatic bile duct and the branches from the common hepatic artery were carefully dissected to visualize the gastroduodenal artery and its branching to the extrahepatic bile duct. Results: The bile duct artery arose from the branch of the gastroduodenal artery in 8.1% (49/600). Of these 49 individuals, the bile duct artery was supplied by the gastroduodenal artery (61.22%, 30/49), the proper hepatic artery (14.29%, 7/49), or both the gastroduodenal artery and the proper hepatic artery (24.49%, 12/49). In our study of 33 cadavers, the percentage that the bile duct artery arose from the gastroduodenal artery was 27.27%. The blood supply to the bile extrahepatic bile ducts was divided into different segments and formed longitudinal and arterial network anastomosed on the walls of the duct. Conclusions: There is a close relationship between the duct supply branches from gastroduodenal artery and the blood supplying patterns of the extrahepatic bile duct system. In liver transplant surgery, the initial part of the gastroduodenal artery is preferred to be preserved in the donor liver. It is of great significance to improve the success rate of operation and reduce complications. PMID:25635427

  1. Characterization of bile acids and fatty acids from ox bile in oil paintings by gas chromatography-mass spectrometry.

    PubMed

    Casas-Catalán, M J; Doménech-Carbó, M T; Mateo-Castro, R; Gimeno-Adelantado, J V; Bosch-Reig, F

    2004-02-01

    Characterization of ox bile, traditionally used in painting, is of interest in the fields of archaeometry and conservation and restoration of works of art. Bile acids, fatty acids (F), and cholesterol found in ox bile have been identified using a derivatization method that combines the formation of ethyl esters from the carboxylic groups and the trimethylsilyl ethers from hydroxyl groups. This method of analysis is consistent with these others proposed by the authors to analyze drying oils, proteins, and diterpenic resins usually used as binders and varnishes by the painters. Bile acids from binary samples such as animal glue/ox bile, casein/ox bile and Arabic gum/ox bile have been successfully analyzed using the proposed method. Finally, a method of analysis of mixtures of drying oil and ox bile has been also proposed attempting to quantitatively characterize samples in which ox bile was added to the drying oil for increasing the surfactant properties. PMID:14763811

  2. The Effect of Hydroxyl Moieties and Their Oxosubstitution on Bile Acid Association Studied in Floating Monolayers

    PubMed Central

    Szekeres, Márta; Viskolcz, Béla; Poša, Mihalj; Csanádi, János; Škorić, Dušan; Illés, Erzsébet; Tóth, Ildikó Y.; Tombácz, Etelka

    2014-01-01

    Bile salt aggregates are promising candidates for drug delivery vehicles due to their unique fat-solubilizing ability. However, the toxicity of bile salts increases with improving fat-solubilizing capability and so an optimal combination of efficient solubilization and low toxicity is necessary. To improve hydrophilicity (and decrease toxicity), we substituted hydroxyl groups of several natural bile acid (BA) molecules for oxogroups and studied their intrinsic molecular association behavior. Here we present the comparative Langmuir trough study of the two-dimensional (2D) association behavior of eight natural BAs and four oxoderivatives (traditionally called keto-derivatives) floated on an aqueous subphase. The series of BAs and derivatives showed systematic changes in the shape of the compression isotherms. Two types of association could be distinguished: the first transition was assigned to the formation of dimers through H-bonding and the second to the hydrophobic aggregation of BA dimers. Hydrophobic association of BA molecules in the films is linked to the ability of forming H-bonded dimers. Both H-bond formation and hydrophobic association weakened with increasing number of hydroxyl groups, decreasing distance between hydroxyl groups, and increasing oxosubstitution. The results also show that the Langmuir trough method is extremely useful in selecting appropriate BA molecules to design drug delivery systems. PMID:25685831

  3. Slc10a2-null mice uncover colon cancer-promoting actions of endogenous fecal bile acids.

    PubMed

    Raufman, Jean-Pierre; Dawson, Paul A; Rao, Anuradha; Drachenberg, Cinthia B; Heath, Jonathon; Shang, Aaron C; Hu, Shien; Zhan, Min; Polli, James E; Cheng, Kunrong

    2015-10-01

    Although epidemiological evidence in humans and bile acid feeding studies in rodents implicate bile acids as tumor promoters, the role of endogenous bile acids in colon carcinogenesis remains unclear. In this study, we exploited mice deficient in the ileal apical sodium-dependent bile acid transporter (ASBT, encoded by SLC10A2) in whom fecal bile acid excretion is augmented more than 10-fold. Wild-type and Asbt-deficient (Slc10a2 (-/-) ) male mice were treated with azoxymethane (AOM) alone to examine the development of aberrant crypt foci, the earliest histological marker of colon neoplasia and a combination of AOM and dextran sulfate sodium to induce colon tumor formation. Asbt-deficient mice exhibited a 54% increase in aberrant crypt foci, and 70 and 59% increases in colon tumor number and size, respectively. Compared to littermate controls, Asbt-deficient mice had a striking, 2-fold increase in the number of colon adenocarcinomas. Consistent with previous studies demonstrating a role for muscarinic and epidermal growth factor receptor signaling in bile acid-induced colon neoplasia, increasing bile acid malabsorption was associated with M3 muscarinic and epidermal growth factor receptor expression, and activation of extracellular signal-related kinase, a key post-receptor signaling molecule. PMID:26210740

  4. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    PubMed

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp. PMID:26924312

  5. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    PubMed Central

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  6. [Salt and cancer].

    PubMed

    Strnad, Marija

    2010-05-01

    ' salt excretion through perspiration. Workers exposed to heat stress consumed as much as 13-38 g salt daily. As salt strongly enhances and promotes chemical gastric carcinogenesis and H. pylori infection in both humans and animals, there is an association between work, salt intake, and development of stomach cancer. Reducing salt intake, especially during pregnancy, also reduces the risk of developing breast cancer and many other diseases, as well as obesity. The risk of most cancers is reduced by losing weight. The geographical data and analyses currently available suggest that road salt (road salting in winter) may be associated with elevated mortality from cancer of the breast, lung, esophagus, throat, larynx, large intestine, rectum and bladder. There is no available literature on the health impacts of road salt. The cause and effect relationships cannot be established without further studies. PMID:20649083

  7. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

    SciTech Connect

    Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko; Masutomi, Naoya; Tsutsui, Naohisa; Adam, Klaus-Peter; Alexander, Danny C.; Lawton, Kay A.; Milburn, Michael V.; Ryals, John A.; Wulff, Jacob E.; Guo, Lining

    2013-04-01

    Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the

  8. [Isolated neurofibroma of the common bile duct].

    PubMed

    Carbia, S; Pagola, J; Flaster, N; Guida, A; Jufe, L; González, B; Caniparoli, A

    1995-01-01

    The neurogenic tumors in the biliary tract are rare and usually are amputation neuroma that occur after cholecystectomy. We describe a case of isolated neurofibroma of the common bile duct in a young man not cholecystectomized. The patient suffered recurrent episodes of abdominal pain, vomiting and weight loss without clinical signs of Von Recklinghausen's disease or jaundice. The hepatogram was normal. The echography indicated a solid formation with obstruction of the proximal common bile duct. In the ERCP the stenosis was found. Surgical excision of the tumor and anastomosis of bilateral hepatic ducts and jejunum were carried out. At microscopic examination intraparietal neurofibroma of the common bile duct was found. As isolated entity, we know of only one reported case. PMID:8731581

  9. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery

    PubMed Central

    Flynn, Charles Robb; Albaugh, Vance L.; Cai, Steven; Cheung-Flynn, Joyce; Williams, Phillip E.; Brucker, Robert M.; Bordenstein, Seth R.; Guo, Yan; Wasserman, David H.; Abumrad, Naji N.

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) is highly effective in reversing obesity and associated diabetes. Recent observations in humans suggest a contributing role of increased circulating bile acids in mediating such effects. Here we use a diet-induced obesity (DIO) mouse model and compare metabolic remission when bile flow is diverted through a gallbladder anastomosis to jejunum, ileum or duodenum (sham control). We find that only bile diversion to the ileum results in physiologic changes similar to RYGB, including sustained improvements in weight, glucose tolerance and hepatic steatosis despite differential effects on hepatic gene expression. Circulating free fatty acids and triglycerides decrease while bile acids increase, particularly conjugated tauro-β-muricholic acid, an FXR antagonist. Activity of the hepatic FXR/FGF15 signalling axis is reduced and associated with altered gut microbiota. Thus bile diversion, independent of surgical rearrangement of the gastrointestinal tract, imparts significant weight loss accompanied by improved glucose and lipid homeostasis that are hallmarks of RYGB. PMID:26197299

  10. Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection.

    PubMed

    Sistrunk, Jeticia R; Nickerson, Kourtney P; Chanin, Rachael B; Rasko, David A; Faherty, Christina S

    2016-10-01

    Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens. PMID:27464994

  11. Basal efflux of bile acids contributes to drug-induced bile acid-dependent hepatocyte toxicity in rat sandwich-cultured hepatocytes.

    PubMed

    Susukida, Takeshi; Sekine, Shuichi; Ogimura, Eiichiro; Aoki, Shigeki; Oizumi, Kumiko; Horie, Toshiharu; Ito, Kousei

    2015-10-01

    The bile salt export pump (BSEP or Bsep) functions as an apical transporter to eliminate bile acids (BAs) from hepatocytes into the bile. BSEP or Bsep inhibitors engender BA retention, suggested as an underlying mechanism of cholestatic drug-induced liver injury. We previously reported a method to evaluate BSEP-mediated BA-dependent hepatocyte toxicity by using sandwich-cultured hepatocytes (SCHs). However, basal efflux transporters, including multidrug resistance-associated proteins (MRP or Mrp) 3 and 4, also participate in BA efflux. This study examined the contribution of basal efflux transporters to BA-dependent hepatocyte toxicity in rat SCHs. The apical efflux of [(3)H]taurocholic acid (TC) was potently inhibited by 10 μM cyclosporine A (CsA), with later inhibition of basal [(3)H]TC efflux, while MK571 simultaneously inhibited both apical and basal [(3)H]TC efflux. CsA-induced BA-dependent hepatocyte toxicity was 30% at most at 10 μM CsA and ∼60% at 50 μM, while MK571 exacerbated hepatocyte toxicity at concentrations of ≥50 μM. Quinidine inhibited only basal [(3)H]TC efflux and showed BA-dependent hepatocyte toxicity in rat SCHs. Hence, inhibition of basal efflux transporters as well as Bsep may precipitate BA-dependent hepatocyte toxicity in rat SCHs. PMID:26055650

  12. What Should You Ask Your Doctor about Bile Duct Cancer?

    MedlinePlus

    ... treatment for bile duct cancer? What should you ask your doctor about bile duct cancer? It is ... your own. For instance, you might want to ask about clinical trials for which you may qualify. ...

  13. Do We Know What Causes Bile Duct Cancer?

    MedlinePlus

    ... duct cancer be prevented? Do we know what causes bile duct cancer? We don’t know the exact cause of ... to top » Guide Topics What Is Bile Duct Cancer? Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and ...

  14. Artificial Lignification of Maize Cell Walls Does Not Affect Bile Acid Adsorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acid adsorption by lignified dietary fiber in the human intestine is proposed as a mechanism for lowering blood cholesterol level and reducing colon cancer risk. In this study, we investigated how the concentration and composition of lignin in fiber influences the in vitro adsorption of primary...

  15. Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity.

    PubMed

    Styles, Nathan A; Shonsey, Erin M; Falany, Josie L; Guidry, Amber L; Barnes, Stephen; Falany, Charles N

    2016-07-01

    Bile acid CoA:amino acid N-acyltransferase (BAAT) is the terminal enzyme in the synthesis of bile salts from cholesterol and catalyzes the conjugation of taurine or glycine to bile acid CoA thioesters to form bile acid N-acylamidates. BAAT has a dual localization to the cytosol and peroxisomes, possibly due to an inefficient carboxy-terminal peroxisomal targeting signal (PTS), -serine-glutamine-leucine (-SQL). Mutational analysis was used to define the role of the carboxy terminus in peroxisomal localization and kinetic activity. Amidation activity of BAAT and BAAT lacking the final two amino acids (AAs) (BAAT-S) were similar, whereas the activity of BAAT with a canonical PTS sequence (BAAT-SKL) was increased >2.5-fold. Kinetic analysis of BAAT and BAAT-SKL showed that BAAT-SKL had a lower Km for taurine and glycine as well as a greater Vmax There was no difference in the affinity for cholyl-CoA. In contrast to BAAT, BAAT-SKL forms bile acid N-acylamidates with β-alanine. BAAT-S immunoprecipitated when incubated with peroxisomal biogenesis factor 5 (Pex5) and rabbit anti-Pex5 antibodies; however, deleting the final 12 AAs prevented coimmunoprecipitation with Pex5, indicating the Pex5 interaction involves more than the -SQL sequence. These results indicate that even small changes in the carboxy terminus of BAAT can have significant effects on activity and substrate specificity. PMID:27230263

  16. Modern management of common bile duct stones.

    PubMed

    Buxbaum, James

    2013-04-01

    It is imperative for gastroenterologists to understand the different formations of bile duct stones and the various medical treatments available. To minimize the complications of endoscopic retrograde cholangiopancreatography (ERCP), it is critical to appropriately assess the risk of bile duct stones before intervention. Biliary endoscopists should be comfortable with the basic techniques of stone removal, including sphincterotomy, mechanical lithotripsy, and stent placement. It is important to be aware of advanced options, including laser and electrohydraulic stone fragmentation, and papillary dilatation for problematic cases. The timing and need for ERCP in those who require a cholecystectomy is also a consideration. PMID:23540960

  17. Proteomics and Transcriptomics Characterization of Bile Stress Response in Probiotic Lactobacillus rhamnosus GG*

    PubMed Central

    Koskenniemi, Kerttu; Laakso, Kati; Koponen, Johanna; Kankainen, Matti; Greco, Dario; Auvinen, Petri; Savijoki, Kirsi; Nyman, Tuula A.; Surakka, Anu; Salusjärvi, Tuomas; de Vos, Willem M.; Tynkkynen, Soile; Kalkkinen, Nisse; Varmanen, Pekka

    2011-01-01

    Lactobacillus rhamnosus GG (GG) is a widely used and intensively studied probiotic bacterium. Although the health benefits of strain GG are well documented, the systematic exploration of mechanisms by which this strain exerts probiotic effects in the host has only recently been initiated. The ability to survive the harsh conditions of the gastrointestinal tract, including gastric juice containing bile salts, is one of the vital characteristics that enables a probiotic bacterium to transiently colonize the host. Here we used gene expression profiling at the transcriptome and proteome levels to investigate the cellular response of strain GG toward bile under defined bioreactor conditions. The analyses revealed that in response to growth of strain GG in the presence of 0.2% ox gall the transcript levels of 316 genes changed significantly (p < 0.01, t test), and 42 proteins, including both intracellular and surface-exposed proteins (i.e. surfome), were differentially abundant (p < 0.01, t test in total proteome analysis; p < 0.05, t test in surfome analysis). Protein abundance changes correlated with transcriptome level changes for 14 of these proteins. The identified proteins suggest diverse and specific changes in general stress responses as well as in cell envelope-related functions, including in pathways affecting fatty acid composition, cell surface charge, and thickness of the exopolysaccharide layer. These changes are likely to strengthen the cell envelope against bile-induced stress and signal the GG cells of gut entrance. Notably, the surfome analyses demonstrated significant reduction in the abundance of a protein catalyzing the synthesis of exopolysaccharides, whereas a protein dedicated for active removal of bile compounds from the cells was up-regulated. These findings suggest a role for these proteins in facilitating the well founded interaction of strain GG with the host mucus in the presence of sublethal doses of bile. The significance of these findings

  18. Polymeric alkylpyridinium salts permit intracellular delivery of human Tau in rat hippocampal neurons: requirement of Tau phosphorylation for functional deficits.

    PubMed

    Koss, Dave J; Robinson, Lianne; Mietelska-Porowska, Anna; Gasiorowska, Anna; Sepčić, Kristina; Turk, Tom; Jaspars, Marcel; Niewiadomska, Grazyna; Scott, Roderick H; Platt, Bettina; Riedel, Gernot

    2015-12-01

    Patients suffering from tauopathies including frontotemporal dementia (FTD) and Alzheimer's disease (AD) present with intra-neuronal aggregation of microtubule-associated protein Tau. During the disease process, Tau undergoes excessive phosphorylation, dissociates from microtubules and aggregates into insoluble neurofibrillary tangles (NFTs), accumulating in the soma. While many aspects of the disease pathology have been replicated in transgenic mouse models, a region-specific non-transgenic expression model is missing. Complementing existing models, we here report a novel region-specific approach to modelling Tau pathology. Local co-administration of the pore-former polymeric 1,3-alkylpyridinium salts (Poly-APS) extracted from marine sponges, and synthetic full-length 4R recombinant human Tau (hTau) was performed in vitro and in vivo. At low doses, Poly-APS was non-toxic and cultured cells exposed to Poly-APS (0.5 µg/ml) and hTau (1 µg/ml; ~22 µM) had normal input resistance, resting-state membrane potentials and Ca(2+) transients induced either by glutamate or KCl, as did cells exposed to a low concentration of the phosphatase inhibitor Okadaic acid (OA; 1 nM, 24 h). Combined hTau loading and phosphatase inhibition resulted in a collapse of the membrane potential, suppressed excitation and diminished glutamate and KCl-stimulated Ca(2+) transients. Stereotaxic infusions of Poly-APS (0.005 µg/ml) and hTau (1 µg/ml) bilaterally into the dorsal hippocampus at multiple sites resulted in hTau loading of neurons in rats. A separate cohort received an additional 7-day minipump infusion of OA (1.2 nM) intrahippocampally. When tested 2 weeks after surgery, rats t