Science.gov

Sample records for human brain ct

  1. The cerebral imaging using vessel-around method in the perfusion CT of the human brain

    NASA Astrophysics Data System (ADS)

    Ahn, Choong-Il; Choi, Seung-Wook; Park, Seung-Chul; Shin, Yeong-Gil; Kim, Jae-Hyoung; Chong, Gi-Bong

    2005-04-01

    Perfusion CT has been successfully used as a functional imaging technique for diagnosis of patients with hyperacute stroke. However, the commonly used methods based on curve-fitting are time consuming. Numerous researchers have investigated to what extent Perfusion CT can be used for the quantitative assessment of cerebral ischemia and to rapidly obtain comprehensive information regarding the extent of ischemic damage in acute stroke patients. The aim of this study is to propose an alternative approach to rapidly obtain the brain perfusion mapping and to show the proposed cerebral flow imaging of the vessel and tissue in human brain be reliable and useful. Our main design concern was algorithmic speed, robustness and automation in order to allow its potential use in the emergency situation of acute stroke. To obtain a more effective mapping, we analyzed the signal characteristics of Perfusion CT and defined the vessel-around model which includes the vessel and tissue. We proposed a nonparametric vessel-around approach which automatically discriminates the vessel and tissue around vessel from non-interested brain matter stratifying the level of maximum enhancement of pixel-based TAC. The stratification of pixel-based TAC was executed using the mean and standard deviation of the signal intensity of each pixel and mapped to the cerebral flow imaging. The defined vessel-around model was used to show the cerebral flow imaging and to specify the area of markedly reduced perfusion with loss of function of still viable neurons. Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. The vessel-around approach reduces the computation time significantly when compared with the perfusion imaging using the GVF. The proposed cerebral imaging shows reliable results which are validated by physicians and

  2. Classification of CT-brain slices based on local histograms

    NASA Astrophysics Data System (ADS)

    Avrunin, Oleg G.; Tymkovych, Maksym Y.; Pavlov, Sergii V.; Timchik, Sergii V.; Kisała, Piotr; Orakbaev, Yerbol

    2015-12-01

    Neurosurgical intervention is a very complicated process. Modern operating procedures based on data such as CT, MRI, etc. Automated analysis of these data is an important task for researchers. Some modern methods of brain-slice segmentation use additional data to process these images. Classification can be used to obtain this information. To classify the CT images of the brain, we suggest using local histogram and features extracted from them. The paper shows the process of feature extraction and classification CT-slices of the brain. The process of feature extraction is specialized for axial cross-section of the brain. The work can be applied to medical neurosurgical systems.

  3. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  4. Rodent brain imaging with SPECT/CT

    SciTech Connect

    Seo, Youngho; Gao, D.-W.; Hasegawa, Bruce H.; Dae, Michael W.; Franc, Benjamin L.

    2007-04-15

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT{sup TM}, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of {sup 99m}Tc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with {sup 99m}Tc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of {sup 99m}Tc-exametazime. Time activity curve of {sup 99m}Tc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  5. Rodent Brain Imaging with X-ray CT

    NASA Astrophysics Data System (ADS)

    Seo, Youngho; Hashimoto, Tomoki; Nuki, Yoshitsugu; Hasegawa, Bruce; Franc, Benjamin

    2007-03-01

    High resolution compact computed tomography (CT) systems have become increasingly important for examining morphology in small animal models of human biology and disease. However, functional measurements of blood flow and tissue perfusion are more challenging due to limited temporal resolution and need for x-ray absorptive contrast media. We therefore have developed methodologies which use x-ray CT for imaging hemorrhagic stroke in the brain of the intact rat. The head of the anesthetized rat was secured in an immobilization device, followed by in vivo imaging with a dedicated small animal CT scanner (X-O, Gamma Medica-Ideas, Northridge, CA). Imaging was performed without iodine contrast to visualize a very small volume (less than 0.1 ml) of arterial blood in a rat model of intracranial hemorrhage, and with iodine contrast (iopromide, 300 mgI/ml) to visualize carotid and cerebral arteries in order to study aneurysms and other vascular formations that may precede or indicate intracranial hemorrhage.

  6. Freezing effect on brain density in postmortem CT.

    PubMed

    Sugimoto, Miyu; Hyodoh, Hideki; Rokukawa, Masumi; Kanazawa, Ayumi; Murakami, Rina; Shimizu, Junya; Okazaki, Shunichiro; Mizuo, Keisuke; Watanabe, Satoshi

    2016-01-01

    Two 60-year-old males were found at their homes whose bodies had deteriorated due to putrefaction. To prevent worm invasion and minimize deterioration, dry ice was used prior to the autopsy investigation. Prior to autopsy, postmortem CT demonstrated a decreased density in brain parenchyma at the dry-iced side, and autopsy revealed deteriorated brain parenchyma with frozen effect (presented like sherbet). Moreover, the deteriorated cerebral parenchyma maintained their structure and they were evaluated by cutting. When lower CT density presents in postmortem CT, the freezing effect may need to be considered and the physician should evaluate the cadaver's postmortem condition to prevent misdiagnoses. PMID:26832379

  7. Osmotic blood-brain barrier disruption: CT and radionuclide imaging

    SciTech Connect

    Roman-Goldstein, S.; Clunie, D.A.; Stevens, J.; Hogan, R.; Monard, J.; Ramsey, F.; Neuwelt, E.A.

    1994-03-01

    The purpose of this study was to compare CT and radionuclide imaging of osmotic blood-brain barrier disruption, and to develop a quantitative method for imaging osmotic blood-brain barrier disruption and to see if iopamidol could be safety given intravenously in conjunction with blood-brain barrier disruption. Forty-five blood-brain barrier disruption procedures were imaged with CT and radionuclide scans. The scans were evaluated with visual and quantitative scales. Patients were observed for adverse effects after blood-brain barrier disruption. There was a 4% rate of seizures in this study. There was good agreement between visual CT and radionuclide grading systems. Quantitative disruption did not add useful information to visual interpretations. Nonionic iodine-based contrast medium has a lower incidence of seizures when injected intravenously in conjunction with osmotic blood-brain barrier disruption than ionic contrast material. Contrast-enhanced CT is the preferred method to image disruption because it has better spatial resolution than radionuclide techniques. 34 refs., 4 figs., 6 tabs.

  8. CT scan of the brain (image)

    MedlinePlus

    ... allowing high definition not only of the bony structures, but of the soft tissues. Clear images of organs such as the brain, muscles, joint structures, veins and arteries, as well as anomalies like ...

  9. Automatic CT Brain Image Segmentation Using Two Level Multiresolution Mixture Model of EM

    NASA Astrophysics Data System (ADS)

    Jiji, G. Wiselin; Dehmeshki, Jamshid

    2014-04-01

    Tissue classification in computed tomography (CT) brain images is an important issue in the analysis of several brain dementias. A combination of different approaches for the segmentation of brain images is presented in this paper. A multi resolution algorithm is proposed along with scaled versions using Gaussian filter and wavelet analysis that extends expectation maximization (EM) algorithm. It is found that it is less sensitive to noise and got more accurate image segmentation than traditional EM. Moreover the algorithm has been applied on 20 sets of CT of the human brain and compared with other works. The segmentation results show the advantages of the proposed work have achieved more promising results and the results have been tested with Doctors.

  10. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  11. Exploring miniature insect brains using micro-CT scanning techniques

    PubMed Central

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  12. Automated delineation of stroke lesions using brain CT images

    PubMed Central

    Gillebert, Céline R.; Humphreys, Glyn W.; Mantini, Dante

    2014-01-01

    Computed tomographic (CT) images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner. PMID:24818079

  13. Educating the Human Brain. Human Brain Development Series

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  14. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  15. A Knowledge Discovery Approach to Diagnosing Intracranial Hematomas on Brain CT: Recognition, Measurement and Classification

    NASA Astrophysics Data System (ADS)

    Liao, Chun-Chih; Xiao, Furen; Wong, Jau-Min; Chiang, I.-Jen

    Computed tomography (CT) of the brain is preferred study on neurological emergencies. Physicians use CT to diagnose various types of intracranial hematomas, including epidural, subdural and intracerebral hematomas according to their locations and shapes. We propose a novel method that can automatically diagnose intracranial hematomas by combining machine vision and knowledge discovery techniques. The skull on the CT slice is located and the depth of each intracranial pixel is labeled. After normalization of the pixel intensities by their depth, the hyperdense area of intracranial hematoma is segmented with multi-resolution thresholding and region-growing. We then apply C4.5 algorithm to construct a decision tree using the features of the segmented hematoma and the diagnoses made by physicians. The algorithm was evaluated on 48 pathological images treated in a single institute. The two discovered rules closely resemble those used by human experts, and are able to make correct diagnoses in all cases.

  16. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  17. Clinical applications of choline PET/CT in brain tumors.

    PubMed

    Giovannini, Elisabetta; Lazzeri, Patrizia; Milano, Amalia; Gaeta, Maria Chiara; Ciarmiello, Andrea

    2015-01-01

    Malignant gliomas and metastatic tumors are the most common forms of brain tumors. From a clinical perspective, neuroimaging plays a significant role, in diagnosis, treatment planning, and follow-up. To date MRI is considered the current clinical gold standard for imaging, however, despite providing superior structural detail it features poor specificity in identifying viable tumors in brain treated with surgery, radiation, or chemotherapy. In the last years functional neuroimaging has become largely widespread thanks to the use of molecular tracers employed in cellular metabolism which has significantly improved the management of patients with brain tumors, especially in the post-treatment phase. Despite the considerable progress of molecular imaging in oncology its use in the diagnosis of brain tumors is still limited by a few wellknown technical problems. Because 18F-FDG, the most common radiotracer used in oncology, is avidly accumulated by normal cortex, the low tumor/background signal ratio makes it difficult to distinguish the tumor from normal surrounding tissues. By contrast, radiotracers with higher specificity for the tumor are labeled with a short half-life isotopes which restricts their use to those centers equipped with a cyclotron and radiopharmacy facility. 11C-choline has been reported as a suitable tracer for neuroimaging application. The recent availability of choline labeled with a long half-life radioisotope as 18F increases the possibility of studying this tracer's potential role in the staging of brain tumors. The present review focuses on the possible clinical applications of PET/CT with choline tracers in malignant brain tumors and brain metastases, with a special focus on malignant gliomas. PMID:25225894

  18. Brain CT and MRI: differential diagnosis of imaging findings.

    PubMed

    Masdeu, Joseph C; Gadhia, Rajan; Faridar, Alireza

    2016-01-01

    Following a traditional approach, in Chapters 5 and 14-29 in the previous volume, diverse brain diseases are listed and their imaging findings described in detail. In this chapter the approach is from the imaging finding to the disease: for instance, what list of diseases can give rise to a contrast-enhancing mass in the cerebellopontine angle? Imaging findings that are reviewed in succession include the location of the lesion, its multiplicity and symmetry, its volume, ranging from atrophy to mass effect, its homogeneity, its density, measurable by computed tomography (CT), its appearance on T1, T2, and diffusion magnetic resonance imaging (MRI), and, finally, its characteristics after the infusion of intravenous contrast. A differential diagnosis for each finding is provided. While the approach adopted in this chapter is unconventional, we hope that it will be most helpful to anyone reading images. Furthermore, it could serve as the basis to create or complete image databases to guide in the interpretation of brain CT and MRI. PMID:27430457

  19. Epigenetics in the Human Brain

    PubMed Central

    Houston, Isaac; Peter, Cyril J; Mitchell, Amanda; Straubhaar, Juerg; Rogaev, Evgeny; Akbarian, Schahram

    2013-01-01

    Many cellular constituents in the human brain permanently exit from the cell cycle during pre- or early postnatal development, but little is known about epigenetic regulation of neuronal and glial epigenomes during maturation and aging, including changes in mood and psychosis spectrum disorders and other cognitive or emotional disease. Here, we summarize the current knowledge base as it pertains to genome organization in the human brain, including the regulation of DNA cytosine methylation and hydroxymethylation, and a subset of (altogether >100) residue-specific histone modifications associated with gene expression, and silencing and various other functional chromatin states. We propose that high-resolution mapping of epigenetic markings in postmortem brain tissue or neural cultures derived from induced pluripotent cells (iPS), in conjunction with transcriptome profiling and whole-genome sequencing, will increasingly be used to define the molecular pathology of specific cases diagnosed with depression, schizophrenia, autism, or other major psychiatric disease. We predict that these highly integrative explorations of genome organization and function will provide an important alternative to conventional approaches in human brain studies, which mainly are aimed at uncovering group effects by diagnosis but generally face limitations because of cohort size. PMID:22643929

  20. Silencing of CtBP1 suppresses the migration in human glioma cells.

    PubMed

    Zhao, Chengjin; Shen, Yifen; Tao, Xuelei; Xu, Jian; Lu, Junjie; Liu, Chao; Xu, Zhiwei; Tang, Qing; Tao, Tao; Zhang, Xiubing

    2016-06-01

    Carboxyl-terminal binding protein 1 (CtBP1), up-regulated in various types of human cancers, has been functionally associated with proliferation, anti-apoptosis, and EMT in vitro studies. However, the functional significance of CtBP1 in the pathophysiology of glioma remains unknown. In the present study, we showed the expression of CtBP1 was markedly higher in glioma tissues compared with normal brain tissues by Western blot analysis. Immunohistochemical analysis revealed that CtBP1 mainly localized in the nucleus of glioma cells. Statistical analysis suggested the upregulation of CtBP1 was considerably correlated with the WHO grade (P < 0.05) and those patients with high CtBP1 levels exhibited shorter survival time (P < 0.01). Silencing CtBP1 by short hairpin RNAi caused an inhibition of cell migration. Moreover, knockdown of CtBP1 increases E-cadherin expression and decreases vimentin expression. These data uncovered that CtBP1 protein is a valuable marker of glioma pathogenic process and that CtBP1 can serve as a novel prognostic marker for glioma therapy. PMID:27160109

  1. A Direct Brain-to-Brain Interface in Humans

    PubMed Central

    Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.

    2014-01-01

    We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285

  2. Early CT findings after interstitial radiation therapy for primary malignant brain tumors

    SciTech Connect

    Tolly, T.L.; Bruckman, J.E.; Czarnecki, D.J.; Frazin, L.J.; Lewis, H.J.; Richards, M.J.; Adamkiewicz, J.J. Jr.

    1988-11-01

    The CT findings after interstitial radiation therapy for brain tumors have not been extensively described. We evaluated retrospectively the CT scans of 13 patients who were treated with brachytherapy for malignant glioma. We found no typical CT appearance that differentiates recurrent tumor from radiation effect. After undergoing brachytherapy, eight of the 13 patients scanned demonstrated enhancement of brain tissue beyond the margins of the original enhancing tumor mass. In most cases, the pattern of enhancement diminished and extended more peripherally from the central necrotic area with time. We also report a new CT finding of focal calcification developing at the site of the radioactive implant.

  3. Segmenting the Brain Surface from CT Images with Artifacts Using Dictionary Learning for Non-rigid MR-CT Registration.

    PubMed

    Onofrey, John A; Staib, Lawrence H; Papademetris, Xenophon

    2015-01-01

    This paper presents a dictionary learning-based method to segment the brain surface in post-surgical CT images of epilepsy patients following surgical implantation of electrodes. Using the electrodes identified in the post-implantation CT, surgeons require accurate registration with pre-implantation functional and structural MR imaging to guide surgical resection of epileptic tissue. In this work, we use a surface-based registration method to align the MR and CT brain surfaces. The key challenge here is not the registration, but rather the extraction of the cortical surface from the CT image, which includes missing parts of the skull and artifacts introduced by the electrodes. To segment the brain from these images, we propose learning a model of appearance that captures both the normal tissue and the artifacts found along this brain surface boundary. Using clinical data, we demonstrate that our method both accurately extracts the brain surface and better localizes electrodes than intensity-based rigid and non-rigid registration methods. PMID:26221711

  4. Human Brain Reacts to Transcranial Extraocular Light.

    PubMed

    Sun, Lihua; Peräkylä, Jari; Kovalainen, Anselmi; Ogawa, Keith H; Karhunen, Pekka J; Hartikainen, Kaisa M

    2016-01-01

    Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear canals abolished normal emotional modulation of attention related brain responses. With no extraocular light delivered, emotional distractors reduced centro-parietal P300 amplitude compared to neutral distractors. This phenomenon disappeared with extraocular light delivery. Extraocular light delivered through the ear canals was shown to penetrate at the base of the scull of a cadaver. Thus, we have shown that extraocular light impacts human brain functioning calling for further research on the mechanisms of action of light on the human brain. PMID:26910350

  5. Human Brain Reacts to Transcranial Extraocular Light

    PubMed Central

    Sun, Lihua; Peräkylä, Jari; Kovalainen, Anselmi; Ogawa, Keith H.; Karhunen, Pekka J.; Hartikainen, Kaisa M.

    2016-01-01

    Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear canals abolished normal emotional modulation of attention related brain responses. With no extraocular light delivered, emotional distractors reduced centro-parietal P300 amplitude compared to neutral distractors. This phenomenon disappeared with extraocular light delivery. Extraocular light delivered through the ear canals was shown to penetrate at the base of the scull of a cadaver. Thus, we have shown that extraocular light impacts human brain functioning calling for further research on the mechanisms of action of light on the human brain. PMID:26910350

  6. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    PubMed Central

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  7. 18F-NaF PET/CT Imaging of Brain Metastases.

    PubMed

    Salgarello, Matteo; Lunardi, Gianluigi; Inno, Alessandro; Pasetto, Stefano; Severi, Fabrizia; Gorgoni, Giancarlo; Gori, Stefania

    2016-07-01

    F-NaF is a radiopharmaceutical widely used in PET imaging to detect bone metastases. Several cases of F-NaF uptake from brain metastases have been described, but a specific protocol for the evaluation of brain metastases with F-NaF has not been developed yet. Here we report images of F-NaF PET/CT, standard CT, and MRI of a brain metastasis in a patient with non-small lung cancer. Through a dynamic acquisition procedure, we have identified the first minutes after injection as the preferable time point of imaging acquisition for the study of brain metastases with F-NaF. PMID:27163462

  8. Childhood CT scans linked to leukemia and brain cancer later in life

    Cancer.gov

    Children and young adults scanned multiple times by computed tomography (CT), a commonly used diagnostic tool, have a small increased risk of leukemia and brain tumors in the decade following their first scan.

  9. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    SciTech Connect

    Neuwelt, E.A.; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-10-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. In eight of the 19 patients who had seizures after barrier disruption and enhanced CT scan, four subsequently had repeat procedures monitored by radionuclide scan alone. In only one of these patients was further seizure activity noted; a single focal motor seizure was observed. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented.

  10. Unusual Adrenal and Brain Metastases From Follicular Thyroid Carcinoma Revealed by 131I SPECT/CT.

    PubMed

    Zhao, Zhen; Shen, Guo-hua; Liu, Bin; Kuang, An-ren

    2016-01-01

    The adrenal metastasis from differentiated thyroid carcinoma is uncommon. Metastatic involvement of both adrenal and brain in the same patient from differentiated thyroid carcinoma is rare. Here, we described an unusual case with iodine-avid lung, bone, adrenal, liver, and brain metastases from follicular thyroid carcinoma confirmed by 131I SPECT/CT. The utilization of SPECT/CT in thyroid cancer patients can detect the presence of metastases and also exclude potential false-positive lesions. Our case demonstrates that SPECT/CT is helpful in localizing and confirming metastatic lesions from differentiated thyroid carcinoma in rare and unusual sites. PMID:26018699

  11. Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching

    PubMed Central

    Chen, Wenan; Smith, Rebecca; Ji, Soo-Yeon; Ward, Kevin R; Najarian, Kayvan

    2009-01-01

    Background Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI). Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and identify the ventricular systems. The segmentation of ventricles provides quantitative measures on the changes of ventricles in the brain that form vital diagnosis information. Methods First all CT slices are aligned by detecting the ideal midlines in all images. The initial estimation of the ideal midline of the brain is found based on skull symmetry and then the initial estimate is further refined using detected anatomical features. Then a two-step method is used for ventricle segmentation. First a low-level segmentation on each pixel is applied on the CT images. For this step, both Iterated Conditional Mode (ICM) and Maximum A Posteriori Spatial Probability (MASP) are evaluated and compared. The second step applies template matching algorithm to identify objects in the initial low-level segmentation as ventricles. Experiments for ventricle segmentation are conducted using a relatively large CT dataset containing mild and severe TBI cases. Results Experiments show that the acceptable rate of the ideal midline detection is over 95%. Two measurements are defined to evaluate ventricle recognition results. The first measure is a sensitivity-like measure and the second is a false positive-like measure. For the first measurement, the rate is 100% indicating that all ventricles are identified in all slices. The false positives-like measurement is 8.59%. We also point out the similarities and differences between ICM and MASP algorithms through both mathematically relationships and segmentation results on CT images. Conclusion The experiments show the reliability of the proposed algorithms. The novelty of the proposed

  12. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial ... or other growth (mass) Cerebral atrophy (loss of brain tissue) ... with the hearing nerve Stroke or transient ischemic attack (TIA)

  13. [Planimetric volumetry of human brains].

    PubMed

    Orthner, H; Seler, W

    1975-04-01

    1) Coronal sections measuring exactly 4 mm in thickness of 106 human brains (212 cerebral hemispheres) were cut with the Göttinger Hirnmakrotom. Planimetric volumetry of various macroscopically delineated structures was performed on photographs of the sections. 2) The volumes ovtained from 58 "normal cases" were used for determining preliminary standards as well as mean values and standard deviations for age and sex. The female-male ratio of the structures measured varies between 86 and 92%. Comparing right and left a predominance of the left pallidum for both sexes is apparent showing an error probability of less than 5%. In "normal" men a significant predominance of the rightsided frontal structures, located anterior to the anterior commissure, have been found (error probability of less than 1%). 3) Regarding the 48 "abnormal cases", striatum and pallidum show a uniform picture in Huntington's disease, namely an extreme shrinkage. The pallidum shrinks to a similar extent as the striatum, although its neurones are not substantially affected by this system atrophy. Other structures do not display similarly uniform changes in this disease. 4) In Parkinson's syndrome a tendency of the pallidum to enlarge -- though statistically not significant -- is seen. This raises the question whether a constitutional hyperplasia of this structure is sometimes involved in the pathogenesis. 5) In Pick's disease, it is not only the histologically impressive centers of shrinkage of the cerebral cortex that are atrophic, but, to a somewhat lesser degree, also the whole telencephalon. 6) In an 18-year-old girl with malignant obsessional neurosis (schizophrenia?) the volume of the striatum was highly above average values enlarged. 7) Bibliographical data of macroscopic-quantitative brain research reveal many problems which can be solved today due to improved methods. PMID:125721

  14. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    SciTech Connect

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-11-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF.

  15. NEMA and clinical evaluation of a novel brain PET-CT scanner

    PubMed Central

    Grogg, Kira S.; Toole, Terrence; Ouyang, Jinsong; Zhu, Xuping; Normandin, Marc; Johnson, Keith; Alpert, Nathaniel M.; Fakhri, Georges El

    2016-01-01

    The aim of this study was to determine the performance of a novel mobile human brain/small animal PET-CT system, developed by Photo Diagnostic Systems Inc. The scanner has a 35.7-cm diameter bore and a 22-cm axial extent. The detector ring has 7 modules each with 3×4 cerium-doped lutetium yttrium orthosilicate crystal blocks, each consisting of 22×22 outer layer and 21×21 inner layer crystals, each layer 1 cm thick. Light is collected by 12×12 SiPMs. The integrated CT can be used for attenuation correction and anatomical localization. The scanner was designed as a low-cost device that nevertheless produces high-quality PET images with the unique capability of battery-powered propulsion, enabling use in many settings. Methods Spatial resolution, sensitivity and noise-equivalent count rate (NECR) were measured based on the National Electrical Manufacturers Association NU2-2012 procedures. Reconstruction was done with tight energy and timing cuts: 400-650 keV and 7ns, and loose cuts: 350-700 keV and 10ns. Additional image quality measurements were made from phantoms, human, and animal studies. Performance was compared to a reference scanner (ECAT Exact HR+) with comparable imaging properties. Results The full-width half-max transverse resolution at 1 cm (10 cm) radius is 3.2 mm (5.2 mm radial, 3.1 mm tangential) and the axial resolution is 3.5 mm (4.0 mm). For tight (loose) cuts, a sensitivity of 7.5 (11.7) kcps/MBq at the center increases to 8.8 (13.9) kcps/MBq at a 10 cm radial offset. The maximum NECR of 19.5 (22.7) kcps was achieved for an activity concentration of 2.9 kBq/ml. Contrast recovery for 4:1 hot cylinder to warm background was 76% for the 25 mm diameter cylinder, but decreased with decreasing cylinder size. The quantitation agrees within 2% of the known activity distribution and concentration. Brain phantom and human scans have shown agreement in SUV values and image quality with the HR+. Conclusion We have characterized the performance of the NeuroPET/CT

  16. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    SciTech Connect

    Neuwelt, E.A; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-10-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented.

  17. Protein phosphorylation systems in postmortem human brain

    SciTech Connect

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P. )

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders.

  18. Transcriptional neoteny in the human brain

    PubMed Central

    Somel, Mehmet; Franz, Henriette; Yan, Zheng; Lorenc, Anna; Guo, Song; Giger, Thomas; Kelso, Janet; Nickel, Birgit; Dannemann, Michael; Bahn, Sabine; Webster, Maree J.; Weickert, Cynthia S.; Lachmann, Michael; Pääbo, Svante; Khaitovich, Philipp

    2009-01-01

    In development, timing is of the utmost importance, and the timing of developmental processes often changes as organisms evolve. In human evolution, developmental retardation, or neoteny, has been proposed as a possible mechanism that contributed to the rise of many human-specific features, including an increase in brain size and the emergence of human-specific cognitive traits. We analyzed mRNA expression in the prefrontal cortex of humans, chimpanzees, and rhesus macaques to determine whether human-specific neotenic changes are present at the gene expression level. We show that the brain transcriptome is dramatically remodeled during postnatal development and that developmental changes in the human brain are indeed delayed relative to other primates. This delay is not uniform across the human transcriptome but affects a specific subset of genes that play a potential role in neural development. PMID:19307592

  19. Mapping genetic influences on human brain structure.

    PubMed

    Thompson, Paul; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Recent advances in brain imaging and genetics have empowered the mapping of genetic and environmental influences on the human brain. These techniques shed light on the 'nature/nurture' debate, revealing how genes determine individual differences in intelligence quotient (IQ) or risk for disease. They visualize which aspects of brain structure and function are heritable, and to what degree, linking these features with behavioral or cognitive traits or disease phenotypes. In genetically transmitted disorders such as schizophrenia, patterns of brain structure can be associated with increased disease liability, and sites can be mapped where non-genetic triggers may initiate disease. We recently developed a large-scale computational brain atlas, including data components from the Finnish Twin registry, to store information on individual variations in brain structure and their heritability. Algorithms from random field theory, anatomical modeling, and population genetics were combined to detect a genetic continuum in which brain structure is heavily genetically determined in some areas but not others. These algorithmic advances motivate studies of disease in which the normative atlas acts as a quantitative reference for the heritability of structural differences and deficits in patient populations. The resulting genetic brain maps isolate biological markers for inherited traits and disease susceptibility, which may serve as targets for genetic linkage and association studies. Computational methods from brain imaging and genetics can be fruitfully merged, to shed light on the inheritance of personality differences and behavioral traits, and the genetic transmission of diseases that affect the human brain. PMID:12553492

  20. Targeting of deep-brain structures in nonhuman primates using MR and CT Images

    NASA Astrophysics Data System (ADS)

    Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2015-03-01

    In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.

  1. A combined MR and CT study for precise quantitative analysis of the avian brain

    PubMed Central

    Jirak, Daniel; Janacek, Jiri; Kear, Benjamin P.

    2015-01-01

    Brain size is widely used as a measure of behavioural complexity and sensory-locomotive capacity in avians but has largely relied upon laborious dissections, endoneurocranial tissue displacement, and physical measurement to derive comparative volumes. As an alternative, we present a new precise calculation method based upon coupled magnetic resonance (MR) imaging and computed tomography (CT). Our approach utilizes a novel interactive Fakir probe cross-referenced with an automated CT protocol to efficiently generate total volumes and surface areas of the brain tissue and endoneurocranial space, as well as the discrete cephalic compartments. We also complemented our procedures by using sodium polytungstate (SPT) as a contrast agent. This greatly enhanced CT applications but did not degrade MR quality and is therefore practical for virtual brain tissue reconstructions employing multiple imaging modalities. To demonstrate our technique, we visualized sex-based brain size differentiation in a sample set of Ring-necked pheasants (Phasianus colchicus). This revealed no significant variance in relative volume or surface areas of the primary brain regions. Rather, a trend towards isometric enlargement of the total brain and endoneurocranial space was evidenced in males versus females, thus advocating a non-differential sexually dimorphic pattern of brain size increase amongst these facultatively flying birds. PMID:26515262

  2. A combined MR and CT study for precise quantitative analysis of the avian brain

    NASA Astrophysics Data System (ADS)

    Jirak, Daniel; Janacek, Jiri; Kear, Benjamin P.

    2015-10-01

    Brain size is widely used as a measure of behavioural complexity and sensory-locomotive capacity in avians but has largely relied upon laborious dissections, endoneurocranial tissue displacement, and physical measurement to derive comparative volumes. As an alternative, we present a new precise calculation method based upon coupled magnetic resonance (MR) imaging and computed tomography (CT). Our approach utilizes a novel interactive Fakir probe cross-referenced with an automated CT protocol to efficiently generate total volumes and surface areas of the brain tissue and endoneurocranial space, as well as the discrete cephalic compartments. We also complemented our procedures by using sodium polytungstate (SPT) as a contrast agent. This greatly enhanced CT applications but did not degrade MR quality and is therefore practical for virtual brain tissue reconstructions employing multiple imaging modalities. To demonstrate our technique, we visualized sex-based brain size differentiation in a sample set of Ring-necked pheasants (Phasianus colchicus). This revealed no significant variance in relative volume or surface areas of the primary brain regions. Rather, a trend towards isometric enlargement of the total brain and endoneurocranial space was evidenced in males versus females, thus advocating a non-differential sexually dimorphic pattern of brain size increase amongst these facultatively flying birds.

  3. A combined MR and CT study for precise quantitative analysis of the avian brain.

    PubMed

    Jirak, Daniel; Janacek, Jiri; Kear, Benjamin P

    2015-01-01

    Brain size is widely used as a measure of behavioural complexity and sensory-locomotive capacity in avians but has largely relied upon laborious dissections, endoneurocranial tissue displacement, and physical measurement to derive comparative volumes. As an alternative, we present a new precise calculation method based upon coupled magnetic resonance (MR) imaging and computed tomography (CT). Our approach utilizes a novel interactive Fakir probe cross-referenced with an automated CT protocol to efficiently generate total volumes and surface areas of the brain tissue and endoneurocranial space, as well as the discrete cephalic compartments. We also complemented our procedures by using sodium polytungstate (SPT) as a contrast agent. This greatly enhanced CT applications but did not degrade MR quality and is therefore practical for virtual brain tissue reconstructions employing multiple imaging modalities. To demonstrate our technique, we visualized sex-based brain size differentiation in a sample set of Ring-necked pheasants (Phasianus colchicus). This revealed no significant variance in relative volume or surface areas of the primary brain regions. Rather, a trend towards isometric enlargement of the total brain and endoneurocranial space was evidenced in males versus females, thus advocating a non-differential sexually dimorphic pattern of brain size increase amongst these facultatively flying birds. PMID:26515262

  4. Brain Imaging Using Mobile CT: Current Status and Future Prospects.

    PubMed

    John, Seby; Stock, Sarah; Cerejo, Russell; Uchino, Ken; Winners, Stacey; Russman, Andrew; Masaryk, Thomas; Rasmussen, Peter; Hussain, Muhammad S

    2016-01-01

    Computed tomography (CT) is an invaluable tool in the diagnosis of many clinical conditions. Several advancements in biomedical engineering have achieved increase in speed, improvements in low-contrast detectability and image quality, and lower radiation. Portable or mobile CT constituted one such important advancement. It is especially useful in evaluating critically ill, intensive care unit patients by scanning them at bedside. A paradigm shift in utilization of mobile CT was its installation in ambulances for the management of acute stroke. Given the time sensitive nature of acute ischemic stroke, Mobile stroke units (MSU) were developed in Germany consisting of an ambulance equipped with a CT scanner, point of care laboratory system, along with teleradiological support. In a radical reconfiguration of stroke care, the MSU would bring the CT scanner to the stroke patient, without waiting for the patient at the emergency room. Two separate MSU projects in Saarland and Berlin demonstrated the safety and feasibility of this concept for prehospital stroke care, showing increased rate of intravenous thrombolysis and significant reduction in time to treatment compared to conventional care. MSU also improved the triage of patients to appropriate and specialized hospitals. Although multiple issues remain yet unanswered with the MSU concept including clinical outcome and cost-effectiveness, the MSU venture is visionary and enables delivery of life-saving and enhancing treatment for ischemic and hemorrhagic stroke. In this review, we discuss the development of mobile CT and its applications, with specific focus on its use in MSUs along with our institution's MSU experience. PMID:26593629

  5. The human parental brain: In vivo neuroimaging

    PubMed Central

    Swain, James E.

    2015-01-01

    Interacting parenting thoughts and behaviors, supported by key brain circuits, critically shape human infants’ current and future behavior. Indeed, the parent–infant relationship provides infants with their first social environment, forming templates for what they can expect from others, how to interact with them and ultimately how they go on to themselves to be parents. This review concentrates on magnetic resonance imaging experiments of the human parent brain, which link brain physiology with parental thoughts and behaviors. After reviewing brain imaging techniques, certain social cognitive and affective concepts are reviewed, including empathy and trust—likely critical to parenting. Following that is a thorough study-by-study review of the state-of-the-art with respect to human neuroimaging studies of the parental brain—from parent brain responses to salient infant stimuli, including emotionally charged baby cries and brief visual stimuli to the latest structural brain studies. Taken together, this research suggests that networks of highly conserved hypothalamic–midbrain–limbic–paralimbic–cortical circuits act in concert to support parental brain responses to infants, including circuits for limbic emotion response and regulation. Thus, a model is presented in which infant stimuli activate sensory analysis brain regions, affect corticolimbic limbic circuits that regulate emotional response, motivation and reward related to their infant, ultimately organizing parenting impulses, thoughts and emotions into coordinated behaviors as a map for future studies. Finally, future directions towards integrated understanding of the brain basis of human parenting are outlined with profound implications for understanding and contributing to long term parent and infant mental health. PMID:21036196

  6. CT and MRI Assessment and Characterization Using Segmentation and 3D Modeling Techniques: Applications to Muscle, Bone and Brain

    PubMed Central

    Helgason, Thordur; Ramon, Ceon; jr, Halldór Jónsson; Carraro, Ugo

    2014-01-01

    This paper reviews the novel use of CT and MRI data and image processing tools to segment and reconstruct tissue images in 3D to determine characteristics of muscle, bone and brain. This to study and simulate the structural changes occurring in healthy and pathological conditions as well as in response to clinical treatments. Here we report the application of this methodology to evaluate and quantify: 1. progression of atrophy in human muscle subsequent to permanent lower motor neuron (LMN) denervation, 2. muscle recovery as induced by functional electrical stimulation (FES), 3. bone quality in patients undergoing total hip replacement and 4. to model the electrical activity of the brain. Study 1: CT data and segmentation techniques were used to quantify changes in muscle density and composition by associating the Hounsfield unit values of muscle, adipose and fibrous connective tissue with different colors. This method was employed to monitor patients who have permanent muscle LMN denervation in the lower extremities under two different conditions: permanent LMN denervated not electrically stimulated and stimulated. Study 2: CT data and segmentation techniques were employed, however, in this work we assessed bone and muscle conditions in the pre-operative CT scans of patients scheduled to undergo total hip replacement. In this work, the overall anatomical structure, the bone mineral density (BMD) and compactness of quadriceps muscles and proximal femoral was computed to provide a more complete view for surgeons when deciding which implant technology to use. Further, a Finite element analysis provided a map of the strains around the proximal femur socket when solicited by typical stresses caused by an implant press fitting. Study 3 describes a method to model the electrical behavior of human brain using segmented MR images. The aim of the work is to use these models to predict the electrical activity of the human brain under normal and pathological conditions by

  7. Human brain mapping: Experimental and computational approaches

    SciTech Connect

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J.; Sanders, J.; Belliveau, J.

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  8. Symmetry and asymmetry in the human brain

    NASA Astrophysics Data System (ADS)

    Hugdahl, Kenneth

    2005-10-01

    Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective, focusing on the pioneering work of Broca, Wernicke, Sperry, and Geschwind. Structural and functional asymmetry is exemplified from work done in our laboratory on auditory laterality using an empirical procedure called dichotic listening. This also involves different ways of validating the dichotic listening procedure against both invasive and non-invasive techniques, including PET and fMRI blood flow recordings. A major argument is that the human brain shows a substantial interaction between structurally, or "bottom-up" asymmetry and cognitively, or "top-down" modulation, through a focus of attention to the right or left side in auditory space. These results open up a more dynamic and interactive view of functional brain asymmetry than the traditional static view that the brain is lateralized, or asymmetric, only for specific stimuli and stimulus properties.

  9. Multiple aldehyde reductases of human brain.

    PubMed

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-01-01

    Human brain contains four forms of aldehyde reducing enzymes. One major activity, designated AR3, has properties indicating its identity with the NADPH-dependent aldehyde reductase, EC 1.1.1.2. The other major form of human brain enzyme, AR1, which is also NADPH-dependent, reduces both aldehyde and ketone-containing substrates, including vitamin K3 (menadione) and daunorubicin, a cancer chemotherapeutic agent. This enzyme is very sensitive to inhibition by the flavonoids quercitrin and quercetine, and may be analogous to a daunorubicin reductase previously described in liver of other species. One minor form of human brain aldehyde reductase, AR2, demonstrates substrate specificity and inhibitor sensitivity which suggest its similarity to aldose reductases found in lens and other tissues of many species. This enzyme, which can also use NADH as cofactor to some extent, is the most active in reducing the aldehyde derivatives of the biogenic amines. The fourth human brain enzyme ("SSA reductase") differs from the other forms in its ability to use NADH as well as or better than NADPH as cofactor, and in its molecular weight, which is nearly twice that of the other forms. It is quite specific for succinic semialdehyde (SSA) as substrate, and was found to be significantly inhibited only by quercetine and quercitrin. AR3 can also reduce SSA, and both enzymes may contribute to the production of gamma-hydroxybutyric acid in vivo. These results indicate that the human brain aldehyde reductases can play relatively specific physiologic roles. PMID:7424738

  10. Cytogenetics of human brain tumors

    SciTech Connect

    Finkernagel, S.W.; Kletz, T.; Day-Salvatore, D.L.

    1994-09-01

    Chromosome studies of 55 brain tumors, including meningiomas, gliomas, astrocyomas and pituatary adenomas, were performed. Primary and first passage cultures were successfully obtained in 75% of these samples with an average of 18 G-banded metaphases analyzed per tumor. 44% of all the brain tumors showed numerical and or structural abnormalities. 46% of the primary and 38% of the first passage cultures showed similar numerical gains/losses and complex karyotypic changes. The most frequent numerical abnormalities (n {ge} 5) included loss of chromosomes 10, 22, and Y. The structural abnormalities most often seen involved 1p, 2, 5, 7, 17q and 19. This is an ongoing study which will attempt to correlate tumor type with specific karyotypic changes and to see if any of the observed chromosomal abnormalities provide prognostic indicators.

  11. Transcriptional Landscape of the Prenatal Human Brain

    PubMed Central

    Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L.; Aiona, Kaylynn; Arnold, James M.; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A.; Dee, Nick; Dolbeare, Tim A.; Facer, Benjamin A. C.; Feng, David; Fliss, Tim P.; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W.; Gu, Guangyu; Howard, Robert E.; Jochim, Jayson M.; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A.; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick F.; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana E.; Player, Allison Stevens; Pletikos, Mihovil; Reding, Melissa; Royall, Joshua J.; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V.; Shen, Elaine H.; Sjoquist, Nathan; Slaughterbeck, Clifford R.; Smith, Michael; Sodt, Andy J.; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B.; Geschwind, Daniel H.; Glass, Ian A.; Hawrylycz, Michael J.; Hevner, Robert F.; Huang, Hao; Jones, Allan R.; Knowles, James A.; Levitt, Pat; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G.; Lein, Ed S.

    2014-01-01

    Summary The anatomical and functional architecture of the human brain is largely determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and postmitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and human-expanded outer subventricular zones. Both germinal and postmitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in frontal lobe. Finally, many neurodevelopmental disorder and human evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development. PMID:24695229

  12. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study

    PubMed Central

    HONDA, Mitsuru; ICHIBAYASHI, Ryo; YOKOMURO, Hiroki; YOSHIHARA, Katsunori; MASUDA, Hiroyuki; HAGA, Daisuke; SEIKI, Yoshikatsu; KUDOH, Chiaki; KISHI, Taichi

    2016-01-01

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1–3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3–4, GCS5–6, and GCS7–8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients. PMID:27356957

  13. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study.

    PubMed

    Honda, Mitsuru; Ichibayashi, Ryo; Yokomuro, Hiroki; Yoshihara, Katsunori; Masuda, Hiroyuki; Haga, Daisuke; Seiki, Yoshikatsu; Kudoh, Chiaki; Kishi, Taichi

    2016-08-15

    Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1-3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3-4, GCS5-6, and GCS7-8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients. PMID:27356957

  14. Coincidental Observation of Global Hypometabolism in the Brain on PET/CT of an AIDS Patient With High-Grade Pulmonary Non-Hodgkin Lymphoma.

    PubMed

    Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-08-01

    AIDS-related dementia complex is the most severe form of cognitive dysfunction in a patient infected with human immunodeficiency virus. The use of FDG PET/CT to diagnose AIDS-related dementia complex has been studied previously and shows various specific metabolic patterns from striatal hypermetabolism in early asymptomatic stage to global hypometabolism in advanced stages. We present a case of a 49-year-old patient with long-standing human immunodeficiency virus infection, where global brain hypometabolism was noted coincidentally on FDG PET/CT done for initial staging of primary pulmonary non-Hodgkin lymphoma. PMID:27280906

  15. Seasonality in human cognitive brain responses.

    PubMed

    Meyer, Christelle; Muto, Vincenzo; Jaspar, Mathieu; Kussé, Caroline; Lambot, Erik; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Luxen, André; Middleton, Benita; Archer, Simon N; Collette, Fabienne; Dijk, Derk-Jan; Phillips, Christophe; Maquet, Pierre; Vandewalle, Gilles

    2016-03-15

    Daily variations in the environment have shaped life on Earth, with circadian cycles identified in most living organisms. Likewise, seasons correspond to annual environmental fluctuations to which organisms have adapted. However, little is known about seasonal variations in human brain physiology. We investigated annual rhythms of brain activity in a cross-sectional study of healthy young participants. They were maintained in an environment free of seasonal cues for 4.5 d, after which brain responses were assessed using functional magnetic resonance imaging (fMRI) while they performed two different cognitive tasks. Brain responses to both tasks varied significantly across seasons, but the phase of these annual rhythms was strikingly different, speaking for a complex impact of season on human brain function. For the sustained attention task, the maximum and minimum responses were located around summer and winter solstices, respectively, whereas for the working memory task, maximum and minimum responses were observed around autumn and spring equinoxes. These findings reveal previously unappreciated process-specific seasonality in human cognitive brain function that could contribute to intraindividual cognitive changes at specific times of year and changes in affective control in vulnerable populations. PMID:26858432

  16. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  17. Cholesterol metabolites exported from human brain.

    PubMed

    Iuliano, Luigi; Crick, Peter J; Zerbinati, Chiara; Tritapepe, Luigi; Abdel-Khalik, Jonas; Poirot, Marc; Wang, Yuqin; Griffiths, William J

    2015-07-01

    The human brain contains approximately 25% of the body's cholesterol. The brain is separated from the circulation by the blood brain barrier. While cholesterol will not passes this barrier, oxygenated forms of cholesterol can cross the barrier. Here by measuring the difference in the oxysterol content of blood plasma in the jugular vein and in a forearm vein by mass spectrometry (MS) we were able to determine the flux of more than 20 cholesterol metabolites between brain and the circulation. We confirm that 24S-hydroxycholesterol is exported from brain at a rate of about 2-3mg/24h. Gas chromatography (GC)-MS data shows that the cholesterol metabolites 5α-hydroxy-6-oxocholesterol (3β,5α-dihydroxycholestan-6-one), 7β-hydroxycholesterol and 7-oxocholesterol, generally considered to be formed through reactive oxygen species, are similarly exported from brain at rates of about 0.1, 2 and 2mg/24h, respectively. Although not to statistical significance both GC-MS and liquid chromatography (LC)-MS methods indicate that (25R)26-hydroxycholesterol is imported to brain, while LC-MS indicates that 7α-hydroxy-3-oxocholest-4-enoic acid is exported from brain. PMID:25668615

  18. Human Maternal Brain Plasticity: Adaptation to Parenting.

    PubMed

    Kim, Pilyoung

    2016-09-01

    New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human mothers' brains, and explore how such plasticity supports mothers' psychological adaptation to parenting and sensitive maternal behaviors. Last, I discuss pregnancy and the early postpartum period as a window of vulnerabilities and opportunities when the human maternal brain is influenced by stress and psychopathology, but also receptive to interventions. PMID:27589497

  19. Revisiting Glycogen Content in the Human Brain.

    PubMed

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  20. Human airway measurement from CT images

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Reeves, Anthony P.; Fotin, Sergei; Apanasovich, Tatiyana; Yankelevitz, David

    2008-03-01

    A wide range of pulmonary diseases, including common ones such as COPD, affect the airways. If the dimensions of airway can be measured with high confidence, the clinicians will be able to better diagnose diseases as well as monitor progression and response to treatment. In this paper, we introduce a method to assess the airway dimensions from CT scans, including the airway segments that are not oriented axially. First, the airway lumen is segmented and skeletonized, and subsequently each airway segment is identified. We then represent each airway segment using a segment-centric generalized cylinder model and assess airway lumen diameter (LD) and wall thickness (WT) for each segment by determining inner and outer wall boundaries. The method was evaluated on 14 healthy patients from a Weill Cornell database who had two scans within a 2 month interval. The corresponding airway segments were located in two scans and measured using the automated method. The total number of segments identified in both scans was 131. When 131 segments were considered altogether, the average absolute change over two scans was 0.31 mm for LD and 0.12 mm for WT, with 95% limits of agreement of [-0.85, 0.83] for LD and [-0.32, 0.26] for WT. The results were also analyzed on per-patient basis, and the average absolute change was 0.19 mm for LD and 0.05 mm for WT. 95% limits of agreement for per-patient changes were [-0.57, 0.47] for LD and [-0.16, 0.10] for WT.

  1. Human intelligence and brain networks

    PubMed Central

    Colom, Roberto; Karama, Sherif; Jung, Rex E.; Haier, Richard J.

    2010-01-01

    Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other. PMID:21319494

  2. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    PubMed

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-01

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. PMID:25568109

  3. Mapping the Stability of Human Brain Asymmetry across Five Sex-Chromosome Aneuploidies

    PubMed Central

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L.; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N.

    2015-01-01

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. PMID:25568109

  4. Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core.

    PubMed

    Lin, Longting; Bivard, Andrew; Krishnamurthy, Venkatesh; Levi, Christopher R; Parsons, Mark W

    2016-06-01

    Purpose To validate the use of perfusion computed tomography (CT) with whole-brain coverage to measure the ischemic penumbra and core and to compare its performance to that of limited-coverage perfusion CT. Materials and Methods Institutional ethics committee approval and informed consent were obtained. Patients (n = 296) who underwent 320-detector CT perfusion within 6 hours of the onset of ischemic stroke were studied. First, the ischemic volume at CT perfusion was compared with the penumbra and core reference values at magnetic resonance (MR) imaging to derive CT perfusion penumbra and core thresholds. Second, the thresholds were tested in a different group of patients to predict the final infarction at diffusion-weighted imaging 24 hours after CT perfusion. Third, the change in ischemic volume delineated by the optimal penumbra and core threshold was determined as the brain coverage was gradually reduced from 160 mm to 20 mm. The Wilcoxon signed-rank test, concordance correlation coefficient (CCC), and analysis of variance were used for the first, second, and third steps, respectively. Results CT perfusion at penumbra and core thresholds resulted in the least volumetric difference from MR imaging reference values with delay times greater than 3 seconds and delay-corrected cerebral blood flow of less than 30% (P = .34 and .33, respectively). When the thresholds were applied to the new group of patients, prediction of the final infarction was allowed with delay times greater than 3 seconds in patients with no recanalization of the occluded artery (CCC, 0.96 [95% confidence interval: 0.92, 0.98]) and with delay-corrected cerebral blood flow less than 30% in patients with complete recanalization (CCC, 0.91 [95% confidence interval: 0.83, 0.95]). However, the ischemic volume with a delay time greater than 3 seconds was underestimated when the brain coverage was reduced to 80 mm (P = .04) and the core volume measured as cerebral blood flow less than 30% was

  5. Visualization of neurons in the brain with phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Onodera, Hiroshi; Hoshino, Masato; Takashima, Kenta; Uesugi, Kentaro; Yagi, Naoto

    2012-07-01

    Three-dimensional structural analysis of brain is essential to understand neuronal function and brain pathology. The phase-contrast X-ray imaging technique uses an X-ray interferometer and is an extremely sensitive method to visualize structures with low X-ray absorbance. Since the phase shifts caused by light elements can be detected as interference patterns in spite of nearly zero absorption coefficients, the signal/noise ratio for the phase-contrast images of the brain is expected to be hundreds times higher than that obtained with the conventional X-ray absorption contrast method. With phase-contrast imaging technique, we could visualize brain microstructures and specific types of neurons, such as the pyramidal cells in the hippocampus. Phase-contrast CT is a promising technique for nondestructive visualization of brain and spinal cord.

  6. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    PubMed Central

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, Birgitta K.; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (≥5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction. Materials and Methods From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and permeability-surface area product (PS) were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF), and motion correction on the perfusion values was investigated. Results Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small. Conclusions This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are

  7. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast

    NASA Astrophysics Data System (ADS)

    Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.

    2014-11-01

    Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.

  8. CARBOXYHEMOGLOBIN AND BRAIN BLOOD FLOW IN HUMANS

    EPA Science Inventory

    It has been shown that with increased carboxyhemoglobin (COHb) and associated decrease in blood oxygen-carrying capacity, a compensatory increase in brain-blood flow (BBF) develops. he BBF response in humans has been shown to be quite variable. wo experiments were conducted in wh...

  9. 'What' and 'where' in the human brain.

    PubMed

    Ungerleider, L G; Haxby, J V

    1994-04-01

    Multiple visual areas in the cortex of nonhuman primates are organized into two hierarchically organized and functionally specialized processing pathways, a 'ventral stream' for object vision and a 'dorsal stream' for spatial vision. Recent findings from positron emission tomography activation studies have localized these pathways within the human brain, yielding insights into cortical hierarchies, specialization of function, and attentional mechanisms. PMID:8038571

  10. Zika virus impairs growth in human neurospheres and brain organoids.

    PubMed

    Garcez, Patricia P; Loiola, Erick Correia; Madeiro da Costa, Rodrigo; Higa, Luiza M; Trindade, Pablo; Delvecchio, Rodrigo; Nascimento, Juliana Minardi; Brindeiro, Rodrigo; Tanuri, Amilcar; Rehen, Stevens K

    2016-05-13

    Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased considerably in Brazil; however, causality between the viral epidemic and malformations in fetal brains needs further confirmation. We examined the effects of ZIKV infection in human neural stem cells growing as neurospheres and brain organoids. Using immunocytochemistry and electron microscopy, we showed that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and brain organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development. PMID:27064148

  11. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  12. Epilepsy: Extreme Events in the Human Brain

    NASA Astrophysics Data System (ADS)

    Lehnertz, Klaus

    The analysis of Xevents arising in dynamical systems with many degrees of freedom represents a challenge for many scientific fields. This is especially true for the open, dissipative, and adaptive system known as the human brain. Due to its complex structure, its immense functionality, and — as in the case of epilepsy — due to the coexistence of normal and abnormal functions, the brain can be regarded as one of the most complex and fascinating systems in nature. Data gathered so far show that the epileptic process exhibits a high spatial and temporal variability. Small, specific, regions of the brain are responsible for the generation of focal epileptic seizures, and the amount of time a patient spends actually having seizures is only a small fraction of his/her lifetime. In between these Xevents large parts of the brain exhibit normal functioning. Since the occurrence of seizures usually can not be explained by exogenous factors, and since the brain recovers its normal state after a seizure in the majority of cases, this might indicate that endogenous nonlinear (deterministic and/or stochastic) properties are involved in the control of these Xevents. In fact, converging evidence now indicates that (particularly) nonlinear approaches to the analysis of brain activity allow us to define precursors which, provided sufficient sensitivity and specificity can be obtained, might lead to the development of patient-specific seizure anticipation and seizure prevention strategies.

  13. Methylomic trajectories across human fetal brain development.

    PubMed

    Spiers, Helen; Hannon, Eilis; Schalkwyk, Leonard C; Smith, Rebecca; Wong, Chloe C Y; O'Donovan, Michael C; Bray, Nicholas J; Mill, Jonathan

    2015-03-01

    Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ∼ 400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity. PMID:25650246

  14. Magnetite biomineralization in the human brain.

    PubMed Central

    Kirschvink, J L; Kobayashi-Kirschvink, A; Woodford, B J

    1992-01-01

    Although the mineral magnetite (Fe3O4) is precipitated biochemically by bacteria, protists, and a variety of animals, it has not been documented previously in human tissue. Using an ultrasensitive superconducting magnetometer in a clean-lab environment, we have detected the presence of ferromagnetic material in a variety of tissues from the human brain. Magnetic particle extracts from solubilized brain tissues examined with high-resolution transmission electron microscopy, electron diffraction, and elemental analyses identify minerals in the magnetite-maghemite family, with many of the crystal morphologies and structures resembling strongly those precipitated by magnetotactic bacteria and fish. These magnetic and high-resolution transmission electron microscopy measurements imply the presence of a minimum of 5 million single-domain crystals per gram for most tissues in the brain and greater than 100 million crystals per gram for pia and dura. Magnetic property data indicate the crystals are in clumps of between 50 and 100 particles. Biogenic magnetite in the human brain may account for high-field saturation effects observed in the T1 and T2 values of magnetic resonance imaging and, perhaps, for a variety of biological effects of low-frequency magnetic fields. Images PMID:1502184

  15. The Human Brain Project and neuromorphic computing

    PubMed Central

    Calimera, Andrea; Macii, Enrico; Poncino, Massimo

    Summary Understanding how the brain manages billions of processing units connected via kilometers of fibers and trillions of synapses, while consuming a few tens of Watts could provide the key to a completely new category of hardware (neuromorphic computing systems). In order to achieve this, a paradigm shift for computing as a whole is needed, which will see it moving away from current “bit precise” computing models and towards new techniques that exploit the stochastic behavior of simple, reliable, very fast, low-power computing devices embedded in intensely recursive architectures. In this paper we summarize how these objectives will be pursued in the Human Brain Project. PMID:24139655

  16. Comparison of CT and MR in 400 patients with suspected disease of the brain and cervical spinal cord

    SciTech Connect

    Bradley, W.G. Jr.; Waluch, V.; Yadley, R.A.; Wycoff, R.R.

    1984-09-01

    Magnetic resonance imaging (MR) (0.35T) and computed tomography (CT) were compared in 400 consecutive patients with suspected disease of the brain and cervical spinal cord. Of 325 positive diagnoses, MR detected abnormality while CT was normal in 93; MR was more specific in 68; MR and CT gave equivalent information in 129; CT was more specific in 32; and CT was positive while MR was normal in 3. MR was superior to CT in detection of multiple sclerosis, subcortical arteriosclerotic encephalopathy, posterior fossa infarcts and tumors, small extra-axial fluid collections, and cervical syringomyelia. CT was preferable in evaluation of meningiomas and separation of tumor from edema. CT takes less time and may be preferable in patients with acute trauma as well as very young or elderly individuals. Thus the two studies should be considered complementary.

  17. Human freedom and the brain.

    PubMed

    Kornhuber, Hans Helmut

    2009-06-01

    Freedom of will does exist, it is self-leadership of man based on reason and ethos. Evidence comes from truth. Determinism cannot be proved since if you try, you mean to prove a truth; but there is no truth without freedom. By contrast for freedom there are many pieces of evidence e.g. science, arts, technology. Freedom utilizes creative abstract thinking with phantasy. Freedom is graded, limited, based on nature, but not developed without good will. We perceive reliably freedom by self-consciousness and in other persons as long as we are sober. Freedom needs intelligence, but is more, it is a creative and moral virtue. The basis for freedom is phylogenesis and culture, in the individual learning and experimenting. Factors in the becoming of freedom are not only genes and environment but also self-discipline. But the creativity of free will is dangerous. Man therefore needs morale. Drives and feelings become humanized, cultural interests are developed. There is a humane nobility from long good will. PMID:25384854

  18. Brain tumor CT attenuation coefficients: semiquantitative analysis of histograms.

    PubMed

    Ratzka, M; Haubitz, I

    1983-01-01

    This paper reports on work in progress on semiquantitative curve analyses of histograms of brain tumors. Separation of statistical groups of attenuation values obtained by computer calculation is done separately from scanning, using histogram printouts as the data input for a programmable calculator. This method is discussed together with its results in 50 cases of malignant gliomas. The detection of hidden tissue portions and the more accurate evaluation of partial enhancement effects have been the investigators' main concerns to the present time; however, this method may allow more specific diagnosis of malignancy and changes in tumor characteristics than visual assessment alone. This has not been proven by studies that have evaluated large numbers of cases, but seems to be worth pursuing as a new approach. PMID:6410783

  19. Localization of deep brain stimulation electrodes via metal artifacts in CT images.

    PubMed

    Motevakel, Amir; Medvedev, Alexander

    2014-01-01

    In Deep Brain Stimulation (DBS), the location of implanted electrodes in the brain has direct influence on the therapeutic effect of the treatment. This work deals with estimating the position of the implanted DBS electrodes from the images registered by X-ray Computed Tomography (CT) scanners. A technique named junction method that takes advantage of the streak artifacts created by the metal parts of the electrodes in CT images is proposed for this purpose. To start with, the brain image is extracted by defining a brain mask. Next, the edges are intensified by applying a Gaussian convolution operator followed by a measure of the second derivative of the image along all directions in the image plane. Criteria of adjacency and length are applied to the lines detected by the Hough transform to distinguish between tracks of streak artifacts and the brain structure. At some points, straight lines are distorted by noise. To handle this issue, all lines that fit same line equation are merged. The horizontal line connecting the two DBS electrodes (one in each cerebral hemisphere) is called electrode line. To specify the electrodes position, intersections of the electrode line with every other line are marked. Finally, to obtain the vertical position estimate, the above algorithm is applied to the image stack. PMID:25570143

  20. Segmentation of human brain using structural MRI.

    PubMed

    Helms, Gunther

    2016-04-01

    Segmentation of human brain using structural MRI is a key step of processing in imaging neuroscience. The methods have undergone a rapid development in the past two decades and are now widely available. This non-technical review aims at providing an overview and basic understanding of the most common software. Starting with the basis of structural MRI contrast in brain and imaging protocols, the concepts of voxel-based and surface-based segmentation are discussed. Special emphasis is given to the typical contrast features and morphological constraints of cortical and sub-cortical grey matter. In addition to the use for voxel-based morphometry, basic applications in quantitative MRI, cortical thickness estimations, and atrophy measurements as well as assignment of cortical regions and deep brain nuclei are briefly discussed. Finally, some fields for clinical applications are given. PMID:26739264

  1. Infrasounds and biorhythms of the human brain

    NASA Astrophysics Data System (ADS)

    Panuszka, Ryszard; Damijan, Zbigniew; Kasprzak, Cezary; McGlothlin, James

    2002-05-01

    Low Frequency Noise (LFN) and infrasound has begun a new public health hazard. Evaluations of annoyance of (LFN) on human occupational health were based on standards where reactions of human auditory system and vibrations of parts of human body were small. Significant sensitivity has been observed on the central nervous system from infrasonic waves especially below 10 Hz. Observed follow-up effects in the brain gives incentive to study the relationship between parameters of waves and reactions obtained of biorhythms (EEG) and heart action (EKG). New results show the impact of LFN on the electrical potentials of the brain are dependent on the pressure waves on the human body. Electrical activity of circulatory system was also affected. Signals recorded in industrial workplaces were duplicated by loudspeakers and used to record data from a typical LFN spectra with 5 and 7 Hz in a laboratory chamber. External noise, electromagnetic fields, temperature, dust, and other elements were controlled. Results show not only a follow-up effect in the brain but also a result similar to arrhythmia in the heart. Relaxations effects were observed of people impacted by waves generated from natural sources such as streams and waterfalls.

  2. Molecular genetic determinants of human brain size.

    PubMed

    Tang, Bor Luen

    2006-07-01

    Cognitive skills such as tool use, syntactical languages, and self-awareness differentiate humans from other primates. The underlying basis for this cognitive difference has been widely associated with a high encephalization quotient and an anatomically distinct, exceptionally large cerebral cortex. Investigations on congenital microcephaly had revealed several genes that affect mammalian brain size when mutated. At least four of these, microcephalin (MCPH1), abnormal spindle-like microcephaly-associated (ASPM), cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), and centromere-associated protein J (CENPJ) are known to have undergone significant positive selection in the great apes and human lineages during primate evolution. MCPH1 and ASPM both have very young single nucleotide polymorphism haplotypes associated with modern humans, and these genes are presumably still evolving in Homo sapiens. Microcephalin has a role in DNA damage response and regulation of cell cycle checkpoints. The other known microcephaly-associated genes encode microtubule-associated centrosomal proteins that might regulate neural progenitor cell division and cell number. Recent reports have also unveiled a previously unknown function of ephrins and Eph in the regulation of neural progenitor cell death with a consequential effect on brain size. Understanding the mechanism for developmental control of brain organogenesis by these genes, and others such as FOXP2, shall provide fresh perspectives on the evolution of human intelligence. PMID:16716254

  3. Human brain disease recreated in mice

    SciTech Connect

    Marx, J.

    1990-12-14

    In the early 1980s, neurologist Stanley Prusiner suggested that scrapie, an apparently infectious degenerative brain disease of sheep, could be transmitted by prions, infectious particles made just of protein - and containing no nucleic acids. But prion research has come a long way since then. In 1985, the cloning of the gene encoding the prion protein proved that it does in fact exist. And the gene turned out to be widely expressed in the brains of higher organisms, a result suggesting that the prion protein has a normal brain function that can somehow be subverted, leading to brain degeneration. Then studies done during the past 2 years suggested that specific mutations in the prion gene might cause two similar human brain diseases, Gerstmann-Straeussler-Scheinker syndrome (GSS) and Creutzfelt-Jakob disease. Now, Prusiner's group at the University of California, San Francisco, has used genetic engineering techniques to recreate GSS by transplanting the mutated prion gene into mice. Not only will the animal model help neurobiologists answer the many remaining questions about prions and how they work, but it may also shed some light on other neurodegenerative diseases as well.

  4. Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates.

    PubMed

    Radtke-Schuller, Susanne; Schuller, Gerd; Angenstein, Frank; Grosser, Oliver S; Goldschmidt, Jürgen; Budinger, Eike

    2016-09-01

    A new stereotaxic brain atlas of the Mongolian gerbil (Meriones unguiculatus), an important animal model in neurosciences, is presented. It combines high-quality histological material for identification of brain structures with reliable stereotaxic coordinates. The atlas consists of high-resolution images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) of 62 rostro-caudal levels at intervals of 350 μm. Brain structures were named according to the Paxinos nomenclature for rodents. The accuracy of the stereotaxic coordinate system was improved substantially by comparing and matching the series of histological sections to in vivo brain images of the gerbil obtained by magnetic resonance imaging (MRI). The skull outlines corresponding to the MR images were acquired using X-ray computerized tomography (CT) and were used to establish the relationship between coordinates of brain structures and skull. Landmarks such as lambda, bregma, ear canals and occipital crest can be used to line up skull and brain in standard atlas coordinates. An easily reproducible protocol allows sectioning of experimental brains in the standard frontal plane of the atlas. PMID:27507296

  5. Evolving networks in the human epileptic brain

    NASA Astrophysics Data System (ADS)

    Lehnertz, Klaus; Ansmann, Gerrit; Bialonski, Stephan; Dickten, Henning; Geier, Christian; Porz, Stephan

    2014-01-01

    Network theory provides novel concepts that promise an improved characterization of interacting dynamical systems. Within this framework, evolving networks can be considered as being composed of nodes, representing systems, and of time-varying edges, representing interactions between these systems. This approach is highly attractive to further our understanding of the physiological and pathophysiological dynamics in human brain networks. Indeed, there is growing evidence that the epileptic process can be regarded as a large-scale network phenomenon. We here review methodologies for inferring networks from empirical time series and for a characterization of these evolving networks. We summarize recent findings derived from studies that investigate human epileptic brain networks evolving on timescales ranging from few seconds to weeks. We point to possible pitfalls and open issues, and discuss future perspectives.

  6. Intraparenchymal hemorrhage segmentation from clinical head CT of patients with traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Wilkes, Sean; Diaz-Arrastia, Ramon; Butman, John A.; Pham, Dzung L.

    2015-03-01

    Quantification of hemorrhages in head computed tomography (CT) images from patients with traumatic brain injury (TBI) has potential applications in monitoring disease progression and better understanding of the patho-physiology of TBI. Although manual segmentations can provide accurate measures of hemorrhages, the processing time and inter-rater variability make it infeasible for large studies. In this paper, we propose a fully automatic novel pipeline for segmenting intraparenchymal hemorrhages (IPH) from clinical head CT images. Unlike previous methods of model based segmentation or active contour techniques, we rely on relevant and matching examples from already segmented images by trained raters. The CT images are first skull-stripped. Then example patches from an "atlas" CT and its manual segmentation are used to learn a two-class sparse dictionary for hemorrhage and normal tissue. Next, for a given "subject" CT, a subject patch is modeled as a sparse convex combination of a few atlas patches from the dictionary. The same convex combination is applied to the atlas segmentation patches to generate a membership for the hemorrhages at each voxel. Hemorrhages are segmented from 25 subjects with various degrees of TBI. Results are compared with segmentations obtained from an expert rater. A median Dice coefficient of 0.85 between automated and manual segmentations is achieved. A linear fit between automated and manual volumes show a slope of 1.0047, indicating a negligible bias in volume estimation.

  7. Predicting Arterial Injuries after Penetrating Brain Trauma Based on Scoring Signs from Emergency CT Studies

    PubMed Central

    Bodanapally, Uttam K; Krejza, Jaroslaw; Saksobhavivat, Nitima; Jaffray, Paul M; Sliker, Clint W; Miller, Lisa A; Shanmuganathan, Kathirkamanathan; Dreizin, David

    2014-01-01

    Summary The objective of this study was to determine the accuracy of individual radiologists in detection of vascular injury in patients after penetrating brain injury (PBI) based on head CT findings at admission. We retrospectively evaluated 54 PBI patients who underwent admission head CT and digital subtraction angiography (DSA), used here as a reference standard. Two readers reviewed the CT images to determine the presence or absence of the 29 CT variables of injury profile and quantified selected variables. Four experienced trauma radiologists and one neuroradiologist assigned their own specific scores for each CT variable, a high score indicative of a high probability of artery injury. A sixth set consisted of the average score obtained from the five sets, generated by five experts. Receiver operating characteristic (ROC) curves were constructed for each set to assess the diagnostic performance of an individual radiologist in predicting an underlying vascular injury. The area under ROC curve (AUC) was higher for CT scores obtained from the sixth set (average of five sets of scores) of variable rank score 0.75 (95% CI 0.62-0.88) and for the rest of the data sets, the value ranged from 0.70 (95% CI 0.56-0.84) to 0.74 (95% CI 0.6-0.88). In conclusion, radiologists may be able to recommend DSA with a fair accuracy rate in selected patients, deemed ‘high-risk' for developing intracranial vascular injuries after PBI based on admission CT studies. A better approach needs to be developed to reduce the false positive rate to avoid unnecessary emergency DSA. PMID:24750698

  8. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  9. Ascorbic acid in fetal human brain

    PubMed Central

    Adlard, B. P. F.; De Souza, S. W.; Moon, Susan

    1974-01-01

    Ascorbic acid concentrations in fetal human forebrain in the period 11 to 19 weeks' gestational age were 4 to 11 times higher than those of adults. Levels fell progressively with increasing gestational age but, in term babies dying within 4 weeks of birth, were still at least 3 times those of adults. It was confirmed that, in women delivering at term, ascorbic acid concentrations are approximately 4 times higher in cord blood plasma than in maternal blood plasma. The possible importance of ascorbic acid for normal human brain development is discussed. PMID:4830116

  10. MRI and MRS of human brain tumors.

    PubMed

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM). PMID:19381963

  11. Toward Developmental Connectomics of the Human Brain.

    PubMed

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  12. Toward Developmental Connectomics of the Human Brain

    PubMed Central

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  13. Brain structures in the sciences and humanities.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia). PMID:25079346

  14. The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: A retrospective study

    PubMed Central

    Servello, Domenico; Zekaj, Edvin; Saleh, Christian; Pacchetti, Claudio; Porta, Mauro

    2016-01-01

    Background: Deep brain stimulation (DBS) is an established therapy for movement disorders, such as Parkinson's disease (PD), dystonia, and tremor. The efficacy of DBS depends on the correct lead positioning. The commonly adopted postoperative radiological evaluation is performed with computed tomography (CT) scan and/or magnetic resonance imaging (MRI). Methods: We conducted a retrospective study on 202 patients who underwent DBS from January 2009 to October 2013. DBS indications were PD, progressive supranuclear palsy, tremor, dystonia, Tourette syndrome, obsessive compulsive disorder, depression, and Huntington's disease. Preoperatively, all patients underwent brain MRI and brain CT scan with the stereotactic frame positioned. The lead location was confirmed intraoperatively with CT. The CT images were subsequently transferred to the Stealth Station Medtronic and merged with the preoperative planning. On the first or second day after, implantation we performed a brain MRI to confirm the correct position of the lead. Results: In 14 patients, leads were in suboptimal position after intraoperative CT scan positioning. The cases with alteration in the Z-axis were corrected immediately under fluoroscopic guidance. In all the 14 patients, an immediate repositioning was done. Conclusions: Based on our data, intraoperative CT scan is fast, safe, and a useful tool in the evaluation of the position of the implanted lead. It also reduces the patient's discomfort derived from the transfer of the patient from the operating room to the radiological department. However, intraoperative CT should not be considered as a substitute for postoperative MRI. PMID:27583182

  15. Structural brain correlates of human sleep oscillations.

    PubMed

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

  16. Structural Brain Correlates of Human Sleep Oscillations

    PubMed Central

    Saletin, Jared M.; van der Helm, Els; Walker, Matthew P.

    2014-01-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Grey matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, grey matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, grey matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

  17. Visualization of monoamine oxidase in human brain

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  18. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.

    PubMed

    Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard

    2013-10-01

    The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging. PMID:23568089

  19. Automated segmentation of brain ventricles in unenhanced CT of patients with ischemic stroke

    NASA Astrophysics Data System (ADS)

    Qian, Xiaohua; Wang, Jiahui; Li, Qiang

    2013-02-01

    We are developing an automated method for detection and quantification of ischemic stroke in computed tomography (CT). Ischemic stroke often connects to brain ventricle, therefore, ventricular segmentation is an important and difficult task when stroke is present, and is the topic of this study. We first corrected inclination angle of brain by aligning midline of brain with the vertical centerline of a slice. We then estimated the intensity range of the ventricles by use of the k-means method. Two segmentation of the ventricle were obtained by use of thresholding technique. One segmentation contains ventricle and nearby stroke. The other mainly contains ventricle. Therefore, the stroke regions can be extracted and removed using image difference technique. An adaptive template-matching algorithm was employed to identify objects in the fore-mentioned segmentation. The largest connected component was identified and considered as the ventricle. We applied our method to 25 unenhanced CT scans with stroke. Our method achieved average Dice index, sensitivity, and specificity of 95.1%, 97.0%, and 99.8% for the entire ventricular regions. The experimental results demonstrated that the proposed method has great potential in detection and quantification of stroke and other neurologic diseases.

  20. Physical biology of human brain development.

    PubMed

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia. PMID:26217183

  1. Physical biology of human brain development

    PubMed Central

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales–from phenomena on the cellular level toward form and function on the organ level–to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia. PMID:26217183

  2. Molecular biology of the human brain

    SciTech Connect

    Jones, E.G.

    1988-01-01

    This book examines new methods of molecular biology that are providing valuable insights into the human brain, the genes that govern its assembly and function, and the many genetic defects that cause neurological diseases such as Alzheimer's, Cri du Chat syndrome, Huntington's disease, and bipolar depression disorder. In addition, the book reviews techniques in molecular neurobiological research, including the use of affinity reagents, chimeric receptors, and site-directed mutagenesis in localizing the ion channel and cholinergic binding site, and the application of somatic cell genetics in isolating specific chromosomes or chromosomal segments.

  3. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  4. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  5. Clinical manifestations that predict abnormal brain computed tomography (CT) in children with minor head injury

    PubMed Central

    Alharthy, Nesrin; Al Queflie, Sulaiman; Alyousef, Khalid; Yunus, Faisel

    2015-01-01

    Background: Computed tomography (CT) used in pediatric pediatrics brain injury (TBI) to ascertain neurological manifestations. Nevertheless, this practice is associated with adverse effects. Reports in the literature suggest incidents of morbidity and mortality in children due to exposure to radiation. Hence, it is found imperative to search for a reliable alternative. Objectives: The aim of this study is to find a reliable clinical alternative to detect an intracranial injury without resorting to the CT. Materials and Methods: Retrospective cross-sectional study was undertaken in patients (1-14 years) with blunt head injury and having a Glasgow Coma Scale (GCS) of 13-15 who had CT performed on them. Using statistical analysis, the correlation between clinical examination and positive CT manifestation is analyzed for different age-groups and various mechanisms of injury. Results: No statistically significant association between parameteres such as Loss of Consciousness, ‘fall’ as mechanism of injury, motor vehicle accidents (MVA), more than two discrete episodes of vomiting and the CT finding of intracranial injury could be noted. Analyzed data have led to believe that GCS of 13 at presentation is the only important clinical predictor of intracranial injury. Conclusion: Retrospective data, small sample size and limited number of factors for assessing clinical manifestation might present constraints on the predictive rule that was derived from this review. Such limitations notwithstanding, the decision to determine which patients should undergo neuroimaging is encouraged to be based on clinical judgments. Further analysis with higher sample sizes may be required to authenticate and validate findings. PMID:25949038

  6. CT-Based Attenuation Correction in Brain SPECT/CT Can Improve the Lesion Detectability of Voxel-Based Statistical Analyses

    PubMed Central

    Kato, Hiroki; Shimosegawa, Eku; Fujino, Koichi; Hatazawa, Jun

    2016-01-01

    Background Integrated SPECT/CT enables non-uniform attenuation correction (AC) using built-in CT instead of the conventional uniform AC. The effect of CT-based AC on voxel-based statistical analyses of brain SPECT findings has not yet been clarified. Here, we assessed differences in the detectability of regional cerebral blood flow (CBF) reduction using SPECT voxel-based statistical analyses based on the two types of AC methods. Subjects and Methods N-isopropyl-p-[123I]iodoamphetamine (IMP) CBF SPECT images were acquired for all the subjects and were reconstructed using 3D-OSEM with two different AC methods: Chang’s method (Chang’s AC) and the CT-based AC method. A normal database was constructed for the analysis using SPECT findings obtained for 25 healthy normal volunteers. Voxel-based Z-statistics were also calculated for SPECT findings obtained for 15 patients with chronic cerebral infarctions and 10 normal subjects. We assumed that an analysis with a higher specificity would likely produce a lower mean absolute Z-score for normal brain tissue, and a more sensitive voxel-based statistical analysis would likely produce a higher absolute Z-score for in old infarct lesions, where the CBF was severely decreased. Results The inter-subject variation in the voxel values in the normal database was lower using CT-based AC, compared with Chang’s AC, for most of the brain regions. The absolute Z-score indicating a SPECT count reduction in infarct lesions was also significantly higher in the images reconstructed using CT-based AC, compared with Chang’s AC (P = 0.003). The mean absolute value of the Z-score in the 10 intact brains was significantly lower in the images reconstructed using CT-based AC than in those reconstructed using Chang’s AC (P = 0.005). Conclusions Non-uniform CT-based AC by integrated SPECT/CT significantly improved sensitivity and the specificity of the voxel-based statistical analyses for regional SPECT count reductions, compared with

  7. Two phylogenetic specializations in the human brain.

    PubMed

    Allman, John; Hakeem, Atiya; Watson, Karli

    2002-08-01

    In this study, two anatomical specializations of the brain in apes and humans are considered. One of these is a whole cortical area located in the frontal polar cortex (Brodmann's area 10), and the other is a morphologically distinctive cell type, the spindle neuron of the anterior cingulate cortex. The authors suggest that the spindle cells may relay to other parts of the brain--especially to area 10, the outcome of processing within the anterior cingulate cortex. This relay conveys the motivation to act. It particularly concerns the recognition of having committed an error that leads to the initiation of adaptive responses to these adverse events so as to reduce error commission. This capacity is related to the development of self-control as an individual matures and gains social insight. Although the anterior cingulate deals with the individual's immediate response to changing conditions, area 10 is involved in the retrieval of memories from the individual's past experience and the capacity to plan adaptive responses. The authors suggest that these neurobehavioral specializations are crucial aspects of intelligence as defined as the capacity to make adaptive responses to changing conditions. The authors further hypothesize that these specializations facilitated the evolution of the unique capacity for the intergenerational transfer of the food and information characteristic of human extended families. PMID:12194502

  8. Comparision between Brain Atrophy and Subdural Volume to Predict Chronic Subdural Hematoma: Volumetric CT Imaging Analysis

    PubMed Central

    Ju, Min-Wook; Kwon, Hyon-Jo; Choi, Seung-Won; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun

    2015-01-01

    Objective Brain atrophy and subdural hygroma were well known factors that enlarge the subdural space, which induced formation of chronic subdural hematoma (CSDH). Thus, we identified the subdural volume that could be used to predict the rate of future CSDH after head trauma using a computed tomography (CT) volumetric analysis. Methods A single institution case-control study was conducted involving 1,186 patients who visited our hospital after head trauma from January 1, 2010 to December 31, 2014. Fifty-one patients with delayed CSDH were identified, and 50 patients with age and sex matched for control. Intracranial volume (ICV), the brain parenchyme, and the subdural space were segmented using CT image-based software. To adjust for variations in head size, volume ratios were assessed as a percentage of ICV [brain volume index (BVI), subdural volume index (SVI)]. The maximum depth of the subdural space on both sides was used to estimate the SVI. Results Before adjusting for cranium size, brain volume tended to be smaller, and subdural space volume was significantly larger in the CSDH group (p=0.138, p=0.021, respectively). The BVI and SVI were significantly different (p=0.003, p=0.001, respectively). SVI [area under the curve (AUC), 77.3%; p=0.008] was a more reliable technique for predicting CSDH than BVI (AUC, 68.1%; p=0.001). Bilateral subdural depth (sum of subdural depth on both sides) increased linearly with SVI (p<0.0001). Conclusion Subdural space volume was significantly larger in CSDH groups. SVI was a more reliable technique for predicting CSDH. Bilateral subdural depth was useful to measure SVI. PMID:27169071

  9. The Human Brain in Numbers: A Linearly Scaled-up Primate Brain

    PubMed Central

    Herculano-Houzel, Suzana

    2009-01-01

    The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10× more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a novel method to determine the cellular composition of the brain of humans and other primates as well as of rodents and insectivores show that, since different cellular scaling rules apply to the brains within these orders, brain size can no longer be considered a proxy for the number of neurons in the brain. These studies also showed that the human brain is not exceptional in its cellular composition, as it was found to contain as many neuronal and non-neuronal cells as would be expected of a primate brain of its size. Additionally, the so-called overdeveloped human cerebral cortex holds only 19% of all brain neurons, a fraction that is similar to that found in other mammals. In what regards absolute numbers of neurons, however, the human brain does have two advantages compared to other mammalian brains: compared to rodents, and probably to whales and elephants as well, it is built according to the very economical, space-saving scaling rules that apply to other primates; and, among economically built primate brains, it is the largest, hence containing the most neurons. These findings argue in favor of a view of cognitive abilities that is centered on absolute numbers of neurons, rather than on body size or encephalization, and call for a re-examination of several concepts related to the exceptionality of the human brain. PMID:19915731

  10. [Neuroethics: Ethical Endowments of Human Brain].

    PubMed

    López Moratalla, Natalia

    2015-01-01

    The neurobiological processes underlying moral judgement have been the focus of Neuroethics. Neurosciences demonstrate which cerebral areas are active and inactive whilst people decide how to act when facing a moral dilemma; in this way we know the correlation between determined cerebral areas and our human acts. We can explain how the ″ethical endowments″ of each person, common to all human beings, is ″embedded″ in the dynamic of cerebral flows. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion related areas of the brain contribute to moral judgement. The outcome of man's natural inclinations is on one hand linked to instinctive systems of animal survival and to basic emotions, and on the other, to the life of each individual human uninhibited by automatism of the biological laws, because he is governed by the laws of freedom. The capacity to formulate an ethical judgement is an innate asset of the human mind. PMID:26546796

  11. Role of prophylactic brain irradiation in limited stage small cell lung cancer: clinical, neuropsychologic, and CT sequelae

    SciTech Connect

    Laukkanen, E.; Klonoff, H.; Allan, B.; Graeb, D.; Murray, N.

    1988-06-01

    Ninety-four patients with limited stage small cell lung cancer treated between 1981 and 1985 with a regimen including prophylactic brain irradiation (PBI) after combination chemotherapy were assessed for compliance with PBI, brain relapse, and neurologic morbidity. Seventy-seven percent of patients had PBI and of these, 22% developed brain metastases after a median time of 11 months post treatment. The brain was the apparent unique initial site of relapse in 10% of PBI cases but more commonly brain relapse was preceded or accompanied by failure at other sites, especially the chest. Brain metastases were the greatest cause of morbidity in 50% of PBI failures. Twelve of 14 PBI patients alive 2 years after treatment had oncologic, neurologic, and neuropsychological evaluation, and brain CT. All long-term survivors were capable of self care and none fulfilled diagnostic criteria for dementia, with three borderline cases. One third had pretreatment neurologic dysfunction and two thirds post treatment neurologic symptoms, most commonly recent memory loss. Fifty percent had subtle motor findings. Intellectual functioning was at the 38th percentile with most patients having an unskilled occupational history. Neuropsychologic impairment ratings were borderline in three cases and definitely impaired in seven cases. CT scans showed brain atrophy in all cases with mild progression in those having a pre-treatment baseline. Periventricular and subcortical low density lesions identical to the CT appearance of subcortical arteriosclerotic encephalopathy were seen in 82% of posttreatment CT studies, and lacunar infarcts in 54%. Neuropsychologic impairment scores and the extent of CT periventricular low density lesions were strongly associated.

  12. FDG-PET/CT Brain Findings in a Patient With Macrophagic Myofasciitis.

    PubMed

    Van Der Gucht, Axel; Aoun-Sebaiti, Mehdi; Kauv, Paul; Guedj, Eric; Aouizerate, Jessie; Verger, Antoine; Gherardi, Romain K; Bachoud-Levi, Anne-Catherine; Authier, François-Jérôme; Itti, Emmanuel

    2016-03-01

    Brain Positron Emission Tomography/Computed Tomography with (18)F-fluorodeoxyglucose (FDG PET/CT) was performed in a 44-year-old woman with marked cognitive impairment, diffuse myalgias, sensory, memory and visual disorders, and chronic fatigue, presenting with histopathological features of macrophagic myofasciitis (MMF) at deltoid muscle biopsy. Cerebromedullary Magnetic Resonance Imaging (MRI), electromyography, ophthalmic examination, and cerebrospinal fluid analysis were normal. Visual analysis of FDG PET/CT images showed an atypical pattern of hypometabolism, involving symmetrically the occipital cortex, temporal lobes, and limbic system (including in particular amygdalo-hippocampal complexes), and the cerebellum. Posterior cingulate cortex and parietal areas were preserved. This pattern was confirmed by a voxel-based procedure using Statistical Parametric Mapping (SPM12) that compared a patient's images to normal reference samples from six healthy subjects with adjustment to age obtained using the same PET/CT camera. These results provide a glucose metabolism substrate for cognitive complaints in patients with long-lasting aluminium hydroxide-induced MMF. PMID:26941864

  13. Development of a realistic, dynamic digital brain phantom for CT perfusion validation

    NASA Astrophysics Data System (ADS)

    Divel, Sarah E.; Segars, W. Paul; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2016-03-01

    Physicians rely on CT Perfusion (CTP) images and quantitative image data, including cerebral blood flow, cerebral blood volume, and bolus arrival delay, to diagnose and treat stroke patients. However, the quantification of these metrics may vary depending on the computational method used. Therefore, we have developed a dynamic and realistic digital brain phantom upon which CTP scans can be simulated based on a set of ground truth scenarios. Building upon the previously developed 4D extended cardiac-torso (XCAT) phantom containing a highly detailed brain model, this work consisted of expanding the intricate vasculature by semi-automatically segmenting existing MRA data and fitting nonuniform rational B-spline surfaces to the new vessels. Using time attenuation curves input by the user as reference, the contrast enhancement in the vessels changes dynamically. At each time point, the iodine concentration in the arteries and veins is calculated from the curves and the material composition of the blood changes to reflect the expected values. CatSim, a CT system simulator, generates simulated data sets of this dynamic digital phantom which can be further analyzed to validate CTP studies and post-processing methods. The development of this dynamic and realistic digital phantom provides a valuable resource with which current uncertainties and controversies surrounding the quantitative computations generated from CTP data can be examined and resolved.

  14. CT and MR Unilateral Brain Features Secondary to Nonketotic Hyperglycemia Presenting as Hemichorea-Hemiballism

    PubMed Central

    Suárez-Vega, Víctor Manuel; Sánchez Almaraz, Carlos; Bernardo, Ana Isabel; Rodríguez-Díaz, Ricardo; Díez Barrio, Ana; Martín Gil, Leticia

    2016-01-01

    Hemichorea-hemiballism is an unusual hyperkinetic movement disorder characterized by continuous involuntary movements of an entire limb or both limbs on one side of the body. The acute onset of this disorder occurs with an insult in contralateral basal ganglia. Ischemic events represent the most common cause. Nonketotic hyperglycemia comes in second place. Nonketotic hyperglycemic hemichorea-hemiballism (NHH) is a rare cause of unilateral brain abnormalities on imaging studies confined to basal ganglia (mainly putaminal region as well as caudate nucleus). Subtle hyperdensity in striatal region can be found on CT studies whereas brain MR imaging typically shows T1 hyperintensity and T2 hypointensity in the basal ganglia contralateral to the movements. Diagnosis is based on both glucose levels and neuroimaging findings. Elevated blood glucose and hemoglobin A1c levels occur with poorly controlled diabetes. In this case report, our aim is to present neuroimaging CT and MR unilateral findings in an elderly woman secondary to nonketotic hyperglycemia presenting as hemichorea-hemiballism. PMID:27247821

  15. Left Brain to Right Brain: Notes from the Human Laboratory.

    ERIC Educational Resources Information Center

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  16. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging.

    PubMed

    Brody, David L; Mac Donald, Christine L; Shimony, Joshua S

    2015-01-01

    Brain imaging plays a key role in the assessment of traumatic brain injury. In this review, we present our perspectives on the use of computed tomography (CT), conventional magnetic resonance imaging (MRI), and newer advanced modalities such as diffusion tensor imaging. Specifically, we address assessment for immediately life-threatening intracranial lesions (noncontrast head CT), assessment of progression of intracranial lesions (noncontrast head CT), documenting intracranial abnormalities for medicolegal reasons (conventional MRI with blood-sensitive sequences), presurgical planning for post-traumatic epilepsy (high spatial resolution conventional MRI), early prognostic decision making (conventional MRI with diffusion-weighted imaging), prognostic assessment for rehabilitative planning (conventional MRI and possibly diffusion tensor imaging in the future), stratification of subjects and pharmacodynamic tracking of targeted therapies in clinical trials (specific MRI sequences or positron emission tomography (PET) ligands, e.g., diffusion tensor imaging for traumatic axonal injury). We would like to emphasize that all of these methods, especially the newer research approaches, require careful radiologic-pathologic validation for optimal interpretation. We have taken this approach in a mouse model of pericontusional traumatic axonal injury. We found that the extent of reduction in the diffusion tensor imaging parameter relative anisotropy directly correlated with the number of amyloid precursor protein (APP)-stained axonal varicosities (r(2)=0.81, p<0.0001, n=20 injured mice). Interestingly, however, the least severe contusional injuries did not result in APP-stained axonal varicosities, but did cause reduction in relative anisotropy. Clearly, both the imaging assessments and the pathologic assessments will require iterative refinement. PMID:25702222

  17. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  18. Dynamic analysis of the human brain with complex cerebral sulci.

    PubMed

    Tseng, Jung-Ge; Huang, Bo-Wun; Ou, Yi-Wen; Yen, Ke-Tien; Wu, Yi-Te

    2016-07-01

    The brain is one of the most vulnerable organs inside the human body. Head accidents often appear in daily life and are easy to cause different level of brain damage inside the skull. Once the brain suffered intense locomotive impact, external injuries, falls, or other accidents, it will result in different degrees of concussion. This study employs finite element analysis to compare the dynamic characteristics between the geometric models of an assumed simple brain tissue and a brain tissue with complex cerebral sulci. It is aimed to understand the free vibration of the internal brain tissue and then to protect the brain from injury caused by external influences. Reverse engineering method is used for a Classic 5-Part Brain (C18) model produced by 3B Scientific Corporation. 3D optical scanner is employed to scan the human brain structure model with complex cerebral sulci and imported into 3D graphics software to construct a solid brain model to simulate the real complex brain tissue. Obtaining the normal mode analysis by inputting the material properties of the true human brain into finite element analysis software, and then to compare the simplified and the complex of brain models. PMID:27459595

  19. Spread of epileptic activity in human brain

    NASA Astrophysics Data System (ADS)

    Milton, John

    1997-03-01

    For many patients with medically refractory epilepsy surgical resection of the site of seizure onset (epileptic focus) offers the best hope for cure. Determination of the nature of seizure propagation should lead to improved methods for locating the epileptic focus (and hence reduce patient morbidity) and possibly to new treatment modalities directed at blocking seizure spread. Theoretical studies of neural networks emphasize the role of traveling waves for the propagation of activity. However, the nature of seizure propagation in human brain remains poorly characterized. The spread of epileptic activity in patients undergoing presurgical evaluation for epilepsy surgery was measured by placing subdural grids of electrodes (interelectrode spacings of 3-10 mm) over the frontal and temporal lobes. The exact location of each electrode relative to the surface of the brain was determined using 3--D MRI imaging techniques. Thus it is possible to monitor the spread of epileptic activity in both space and time. The observations are discussed in light of models for seizure propagation.

  20. Proton spectroscopic imaging of human brain

    NASA Astrophysics Data System (ADS)

    Moonen, Chrit T. W.; Sobering, Geoffrey; Van Zijl, Peter C. M.; Gillen, Joe; Von Kienlin, Markus; Bizzi, Alberto

    Signals from water and fat can cause artifacts in proton spectroscopic imaging in the human brain. The major problem is variation of the B0 field over a range of several ppm within the sensitive volume of the standard whole-head coil. Here, the coherence-pathway formalism is used to describe and evaluate the origin of artifacts in a double spin-echo (PRESS) sequence. The attenuation of unwanted coherences using pulsed field gradients is described for homogeneous and inhomogeneous B0 fields. The effect of the following parameters on the quality of the spectroscopic images is analyzed: (a) directional order of plane selection, (b) positioning of phase-encode gradients in the sequence, (c) postprocessing spatial windowing, and (d) motion. It is shown that, for a typical echo time of 272 ms, it is not necessary to first select a region of interest within the brain borders when sufficient phase-encode steps are used. Examples of 2D proton spectroscopic images with a nominal voxel volume of 0.85 ml are given for a healthy volunteer and a patient with a low-grade glioma.

  1. Moment-to-moment brain signal variability: A next frontier in human brain mapping?

    PubMed Central

    Garrett, Douglas D.; Samanez-Larkin, Gregory R.; MacDonald, Stuart W.S.; Lindenberger, Ulman; McIntosh, Anthony R.; Grady, Cheryl L.

    2013-01-01

    Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human life-span development, cognitive performance, and various clinical conditions. As a result, brain signal variability is evolving as a bona fide signal of interest, and should no longer be dismissed as meaningless noise when mapping the human brain. PMID:23458776

  2. Leukemia and brain tumors among children after radiation exposure from CT scans: design and methodological opportunities of the Dutch Pediatric CT Study.

    PubMed

    Meulepas, Johanna M; Ronckers, Cécile M; Smets, Anne M J B; Nievelstein, Rutger A J; Jahnen, Andreas; Lee, Choonsik; Kieft, Mariëtte; Laméris, Johan S; van Herk, Marcel; Greuter, Marcel J W; Jeukens, Cécile R L P N; van Straten, Marcel; Visser, Otto; van Leeuwen, Flora E; Hauptmann, Michael

    2014-04-01

    Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation. PMID:24748424

  3. New deformable human brain atlas for computer-aided diagnosis

    NASA Astrophysics Data System (ADS)

    Lahtinen, Antti J.; Frey, Harry; Eskola, Hannu

    2002-05-01

    Modern software-based image analysis techniques enable accurate detection of the size and shape of various brain lesions. In order to estimate the real load caused by the lesions also their neuro-anatomical location should be taken into account. Therefore deformable brain atlases appear to be essential tools when new image diagnostics methods are developed and tested. We have developed deformable brain atlas software for research and diagnosis. The atlas is used to compare patient brain images with a segmented reference brain image so that it is possible to identify the patient neuroanatomical structures. The atlas software comes with image processing tools for transforming CT or MR image sets into atlas- compatible volume image format. The reference image is deformed to match the patient image, and the segmented neuroanatomical regions of the atlas image can then be blended with the patient image.

  4. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head

    PubMed Central

    Li, Kai; Papademetris, Xenophon; Tucker, Don M.

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  5. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    PubMed

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  6. High-fidelity artifact correction for cone-beam CT imaging of the brain

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  7. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain.

    PubMed

    Inoue, Katsuhisa; Zhuang, Lina; Maddox, Dennis M; Smith, Sylvia B; Ganapathy, Vadivel

    2002-10-18

    Citrate plays a pivotal role not only in the generation of metabolic energy but also in the synthesis of fatty acids, isoprenoids, and cholesterol in mammalian cells. Plasma levels of citrate are the highest ( approximately 135 microm) among the intermediates of the tricarboxylic acid cycle. Here we report on the cloning and functional characterization of a plasma membrane transporter (NaCT for Na+ -coupled citrate transporter) from rat brain that mediates uphill cellular uptake of citrate coupled to an electrochemical Na+ gradient. NaCT consists of 572 amino acids and exhibits structural similarity to the members of the Na+-dicarboxylate cotransporter/Na+ -sulfate cotransporter (NaDC/NaSi) gene family including the recently identified Drosophila Indy. In rat, the expression of NaCT is restricted to liver, testis, and brain. When expressed heterologously in mammalian cells, rat NaCT mediates the transport of citrate with high affinity (Michaelis-Menten constant, approximately 20 microm) and with a Na+:citrate stoichiometry of 4:1. The transporter does interact with other dicarboxylates and tricarboxylates but with considerably lower affinity. In mouse brain, the expression of NaCT mRNA is evident in the cerebral cortex, cerebellum, hippocampus, and olfactory bulb. NaCT represents the first transporter to be identified in mammalian cells that shows preference for citrate over dicarboxylates. This transporter is likely to play an important role in the cellular utilization of citrate in blood for the synthesis of fatty acids and cholesterol (liver) and for the generation of energy (liver and brain). NaCT thus constitutes a potential therapeutic target for the control of body weight, cholesterol levels, and energy homeostasis. PMID:12177002

  8. Re-evaluating the need for hospital admission and observation of pediatric traumatic brain injury after a normal head CT.

    PubMed

    Plackett, Timothy P; Asturias, Sabrina; Tadlock, Matthew; Wright, Franklin; Ton-That, Hieu; Demetriades, Demetrios; Esposito, Thomas; Inaba, Kenji

    2015-10-01

    There is no consensus on the optimal management of pediatric patients with suspected trauma brain injury and a normal head CT. This study characterizes the clinical outcomes of patients with a normal initial CT scan of the head. A retrospective chart review of pediatric blunt trauma patients who underwent head CT for closed head injury at two trauma centers was performed. Charts were reviewed for demographics, neurologic function, CT findings, and complications. 631 blunt pediatric trauma patients underwent a head CT. 63% had a negative CT, 7% had a non-displaced skull fracture, and 31% had an intracranial hemorrhage and/or displaced skull fracture. For patients without intracranial injury, the mean age was 8 years, mean ISS was 5, and 92% had a GCS of 13-15 on arrival. All patients with an initial GCS of 13-15 and no intracranial injury were eventually discharged to home with a normal neurologic exam and no patient required craniotomy. Not admitting those children with an initial GCS of 13-15, normal CT scan, and no other injuries would have saved 1.8 ± 1.5 hospital days per patient. Pediatric patients who have sustained head trauma, have a negative CT scan, and present with a GCS 13-15 can safely be discharged home without admission. PMID:25957025

  9. A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast

    PubMed Central

    Anderson, Ryan; Maga, A. Murat

    2015-01-01

    High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine. PMID:26571123

  10. Radionecrosis versus disease progression in brain metastasis. Value of (18)F-DOPA PET/CT/MRI.

    PubMed

    Hernández Pinzón, J; Mena, D; Aguilar, M; Biafore, F; Recondo, G; Bastianello, M

    2016-01-01

    The use of (18)F-DOPA PET/CT with magnetic resonance imaging fusion and the use of visual methods and quantitative analysis helps to differentiate between changes post-radiosurgery vs. suspicion of disease progression in a patient with brain metastases from melanoma, thus facilitating taking early surgical action. PMID:27117985

  11. Metabolic costs and evolutionary implications of human brain development.

    PubMed

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  12. Evaluating the feasibility of C-arm CT for brain perfusion imaging: an in vitro study

    NASA Astrophysics Data System (ADS)

    Ganguly, A.; Fieselmann, A.; Boese, J.; Rohkohl, C.; Hornegger, J.; Fahrig, R.

    2010-02-01

    C-arm cone-beam CT (CBCT) is increasingly being used to supplement 2D real-time data with 3D information. Temporal resolution is currently limited by the mechanical rotation speed of the C-arm which presents challenges for applications such as imaging of contrast flow in brain perfusion CT (PCT). We present a novel scheme where multiple scans are obtained at different start times with respect to the contrast injection. The data is interleaved temporally and interpolated during 3D reconstruction. For evaluation we developed a phantom to generate the range of temporal frequencies relevant for PCT. The highest requirements are for imaging the arterial input function (AIF) modeled as a gamma-variate function. Fourier transform analysis of the AIF showed that 90% of the spectral energy is contained at frequencies lower than 0.08Hz. We built an acrylic cylinder phantom of diameter 1.9 cm, with 25 sections of 1cm length each. Iodine concentration in each compartment was varied to produce a half-cycle sinusoid variation in HU in version 1, and 2.5 cycles in version 2 of the phantom. The phantom was moved linearly at speeds from 0.5cm/s to 4cm/s (temporal frequencies of 0.02Hz to 0.09Hz) and imaged using a C-arm system. Phantom CT numbers in a slice reconstructed at isocenter were measured and sinusoidal fits to the data were obtained. The fitted sinusoids had frequencies that were within 3+/-2% of the actual temporal frequencies of the sinusoid. This suggests that the imaging and reconstruction scheme is adequate for PCT imaging.

  13. Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans

    2015-03-01

    Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.

  14. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  15. Stroke prognosis by applying double thresholds on CT-perfusion-brain images

    NASA Astrophysics Data System (ADS)

    Chokchaitam, Somchart; Santipromwong, Nittaya; Muengtaweepongsa, Sombat

    2013-03-01

    The CT-perfusion image shows information of brain abnormalities such as its size and location. Generally, neurologist diagnoses stroke disease using CT-perfusion images such as Cerebral blood flow (CBF), cerebral blood volume (CBV). In our previous report, we applied threshold technique to divide amount of CBV and CBF into low and high level. Then, their levels are applied to identify normal tissue areas, dead tissue areas (infract core) and blood-cot tissue areas (infract penumbra). However, it's not totally correct, if the same threshold is applied to the whole area (it must depend on size of blood vessel in that area. In this report, we propose double thresholds to divided CBV and CBF into 3 levels: very low, medium and very high levels. Very low and very high levels are definitely implied to bad areas and good areas, respectively. The proposed double thresholds makes stroke prognosis more accurate. The simulation results confirm that our proposed results closed to results defined from neurologist comparing to the conventional results.

  16. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study

    PubMed Central

    Pearce, Mark S; Salotti, Jane A; Little, Mark P; McHugh, Kieran; Lee, Choonsik; Kim, Kwang Pyo; Howe, Nicola L; Ronckers, Cecile M; Rajaraman, Preetha; Craft, Alan W; Parker, Louise; de González, Amy Berrington

    2012-01-01

    Summary Background Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. Methods In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. Findings During follow-up, 74 of 178 604 patients were diagnosed with leukaemia and 135 of 176 587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005–0·120; p=0·0097) and brain tumours (0·023, 0·010–0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46–6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50–74 mGy (mean dose 60·42 mGy) was 2·82 (1·33–6·03). Interpretation Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain

  17. Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3-dimensional brain phantom

    PubMed Central

    Akamatsu, Mana; Yamashita, Yasuo; Akamatsu, Go; Tsutsui, Yuji; Ohya, Nobuyoshi; Nakamura, Yasuhiko; Sasaki, Masayuki

    2014-01-01

    Objective(s): The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray matter, white matter and bone regions. It was filled with 123I solution (20.1 kBq/mL) in the gray matter region and with K2HPO4 in the bone region. The SPECT/CT data were acquired by the hybrid SPECT/CT device. SPECT images were reconstructed by using filtered back projection with uniform attenuation correction (FBP-uAC), 3D ordered-subsets expectation-maximization with uniform AC (3D-OSEM-uAC) and 3D OSEM with CT-based non-uniform AC (3D-OSEM-CTAC). We evaluated the differences in the radioactivity distributions among these reconstruction methods using a 3D digital phantom, which was developed from CT images of the 3D brain phantom, as a reference. The normalized mean square error (NMSE) and regional radioactivity were calculated to evaluate the similarity of SPECT images to the 3D digital phantom. Results: The NMSE values were 0.0811 in FBP-uAC, 0.0914 in 3D-OSEM-uAC and 0.0766 in 3D-OSEM-CTAC. The regional radioactivity of FBP-uAC was 11.5% lower in the middle cerebral artery territory, and that of 3D-OSEM-uAC was 5.8% higher in the anterior cerebral artery territory, compared with the digital phantom. On the other hand, that of 3D-OSEM-CTAC was 1.8% lower in all brain areas. Conclusion: By using the hybrid SPECT/CT device, the brain SPECT reconstructed by 3D-OSEM with CT attenuation correction can provide an accurate assessment of the distribution of brain radioactivity.

  18. Human brain networks function in connectome-specific harmonic waves

    PubMed Central

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call ‘connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory–inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation–inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267

  19. Aneuploidy and Confined Chromosomal Mosaicism in the Developing Human Brain

    PubMed Central

    Liehr, Thomas; Kolotii, Alexei D.; Kutsev, Sergei I.; Pellestor, Franck; Beresheva, Alfia K.; Demidova, Irina A.; Kravets, Viktor S.; Monakhov, Viktor V.; Soloviev, Ilia V.

    2007-01-01

    Background Understanding the mechanisms underlying generation of neuronal variability and complexity remains the central challenge for neuroscience. Structural variation in the neuronal genome is likely to be one important mechanism for neuronal diversity and brain diseases. Large-scale genomic variations due to loss or gain of whole chromosomes (aneuploidy) have been described in cells of the normal and diseased human brain, which are generated from neural stem cells during intrauterine period of life. However, the incidence of aneuploidy in the developing human brain and its impact on the brain development and function are obscure. Methodology/Principal Findings To address genomic variation during development we surveyed aneuploidy/polyploidy in the human fetal tissues by advanced molecular-cytogenetic techniques at the single-cell level. Here we show that the human developing brain has mosaic nature, being composed of euploid and aneuploid neural cells. Studying over 600,000 neural cells, we have determined the average aneuploidy frequency as 1.25–1.45% per chromosome, with the overall percentage of aneuploidy tending to approach 30–35%. Furthermore, we found that mosaic aneuploidy can be exclusively confined to the brain. Conclusions/Significance Our data indicates aneuploidization to be an additional pathological mechanism for neuronal genome diversification. These findings highlight the involvement of aneuploidy in the human brain development and suggest an unexpected link between developmental chromosomal instability, intercellural/intertissular genome diversity and human brain diseases. PMID:17593959

  20. SU-E-I-31: Differences Observed in Radiation Doses Across 2 Similar CT Scanners From Adult Brain-Neck CT Angiography

    SciTech Connect

    Fujii, K; McMillan, K; Bostani, M; Cagnon, C; McNitt-Gray, M

    2015-06-15

    Purpose: The aim of this study is to evaluate the difference in radiation doses from adult Brain-Neck CT angiography (CTA) between two CT scanners. Methods: We collected CT dose index data (CTDIvol, DLP) from adult Brain-Neck CTA performed with two CT scanners (Sensation 64 (S64) and Definition AS (AS), Siemens Healthcare) performed at two of our facilities from Jan 1st to Dec 31th, 2014. X-ray dose management software (Radmetrics, Bayer Healthcare) was used to mine these data. All exams were performed with Tube Current Modulation (Care Dose 4D), tube voltage of 120 kVp, quality reference mAs of 300, beam collimation of 64*0.6 mm. The rotation time was set to 0.5 sec for S64 and 1.0 sec for AS. We also scanned an anthropomorphic skull and chest phantom under routine Brain-Neck CTA protocol with the two scanners and extracted the tube current values from the raw projection data. Results: The mean CTDIvol and DLP in Brain-Neck CTA was 72 mGy and 2554 mGy*cm for AS, which was substantially larger than the mean values of 46 mGy and 1699 mGy*cm for S64. The maximum tube current was 583 mA for most cases on the S64 while the maximum was 666 mA for AS even though the rotation time set for AS was 1.0 sec. Measurements obtained with the anthropomorphic phantom showed that the tube current reached 583 mA at the shoulder region for S64 while it reached to 666 mA for AS. Conclusion: The results of this study showed that substantially different CT doses can Result from Brain-Neck CTA protocols even when similar scanners and similar settings are used. Though both scanners have a similar maximum mA rating, differences in mA were observed through the shoulders, resulting in substantially different CTDIvol values.

  1. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    PubMed

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  2. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    PubMed Central

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  3. Sex beyond the genitalia: The human brain mosaic.

    PubMed

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-12-15

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains ("female brain" or "male brain"). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only "male" or only "female" features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the "maleness-femaleness" continuum are rare. Rather, most brains are comprised of unique "mosaics" of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  4. Genomic connectivity networks based on the BrainSpan atlas of the developing human brain

    NASA Astrophysics Data System (ADS)

    Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

    2014-03-01

    The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

  5. A correlative study of clinical-pathologic characteristics of human brain tumors and blood brain barrier (BBB) permeability evaluated with Ga-68 EDTA and positron emission tomography

    SciTech Connect

    Wapenski, J.A.; Hawkins, R.A.; Mazziotta, J.C.; Phelps, M.E.; Huang, S.C.

    1985-05-01

    The authors investigated the relationship between quantitative estimates of BBB permeability and the clinical and pathologic characteristics of human brain tumors. BBB permeability in 12 patients with either primary (4) or metastatic (8) brain tumors were studied with Ga-68 EDTA and PET with a two compartment model. The clinical and pathologic characteristics of the tumors were reviewed retrospectively. PET estimates of the transfer constant K/sub 1/ (ml/min/gm) paralleled the X-ray CT evidence of BBB disruption. Biopsies of four patients provided histologic support for the presumed pathophysiologic mechanism of BBB disruption, in the degree of alteration of brain vascularity and cellular architecture. For example, a patient with a hemorrhagic melanoma and a K/sub 1/ = 0.0049 ml/min/gm had gross hemorrhage, little recognizeable brain tissue and evidence of neovascularization on biopsy.

  6. dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis.

    PubMed

    Lim, Sangho; Kim, Won-Ju; Kim, Yeon-Ho; Lee, Sohee; Koo, Ja-Hyun; Lee, Jung-Ah; Yoon, Heeseok; Kim, Do-Hyun; Park, Hong-Jai; Kim, Hye-Mi; Lee, Hong-Gyun; Yun Kim, Ji; Lee, Jae-Ung; Hun Shin, Jae; Kyun Kim, Lark; Doh, Junsang; Kim, Hongtae; Lee, Sang-Kyou; Bothwell, Alfred L M; Suh, Minah; Choi, Je-Min

    2015-01-01

    Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood-brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood-brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS. PMID:26372309

  7. dNP2 is a blood–brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis

    PubMed Central

    Lim, Sangho; Kim, Won-Ju; Kim, Yeon-Ho; Lee, Sohee; Koo, Ja-Hyun; Lee, Jung-Ah; Yoon, Heeseok; Kim, Do-Hyun; Park, Hong-Jai; Kim, Hye-Mi; Lee, Hong-Gyun; Yun Kim, Ji; Lee, Jae-Ung; Hun Shin, Jae; Kyun Kim, Lark; Doh, Junsang; Kim, Hongtae; Lee, Sang-Kyou; Bothwell, Alfred L. M.; Suh, Minah; Choi, Je-Min

    2015-01-01

    Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood–brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood–brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS. PMID:26372309

  8. Parental brain and socioeconomic epigenetic effects in human development

    PubMed Central

    Swain, James E.; Perkins, Suzanne C.; Dayton, Carolyn J.; Finegood, Eric D.; Ho, S. Shaun

    2015-01-01

    Critically significant parental effects in behavioral genetics may be partly understood as a consequence of maternal brain structure and function of caregiving systems recently studied in humans as well as rodents. Key parental brain areas regulate emotions, motivation/reward, and decision making, as well as more complex social-cognitive circuits. Additional key environmental factors must include socioeconomic status and paternal brain physiology. These have implications for developmental and evolutionary biology as well as public policy. PMID:23095400

  9. Resonance of human brain under head acceleration.

    PubMed

    Laksari, Kaveh; Wu, Lyndia C; Kurt, Mehmet; Kuo, Calvin; Camarillo, David C

    2015-07-01

    Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull-brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull-brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain-skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities. PMID:26063824

  10. Day of Injury CT and Late MRI Findings: Cognitive Outcome in a Pediatric Sample with Complicated Mild Traumatic Brain Injury

    PubMed Central

    Jantz, Paul B; Farrer, Thomas J.; Abildskov, Tracy J.; Dennis, Maureen; Gerhardt, Cynthia A.; Rubin, Kenneth H.; Stancin, Terry; Taylor, H. Gerry; Vannatta, Kathryn; Yeates, Keith Owen

    2016-01-01

    Objectives Complicated mild traumatic brain injury (mTBI) or cmTBI is based on the presence of visibly identifiable brain pathology on the day-of-injury computed tomography (CT) scan. In a pediatric sample the relation of DOI CT to late MRI findings and neuropsychological outcome was examined. Methods MRI (> 12 months) was obtained in pediatric cmTBI patients and a sample of orthopedically injured (OI) children. Those children with positive imaging findings (MRI+) were quantitatively compared to those without (MRI-) or with the OI sample. Groups were also compared in neurocognitive outcome from WASI subtests and the WISC-IV Processing Speed Index (PSI), along with the Test of Everyday Attention for Children (TEA-Ch) and a parent-rated behavioral functioning measure (ABAS-II). Results Despite the MRI+ group having significantly more DOI CT findings than the MRI-group, no quantitative differences were found. WASI Vocabulary and Matrix Reasoning scores were significantly lower, but not PSI, TEA-Ch or ABAS-II scores. MRI+ and MRI-groups did not differ on these measures. Conclusions Heterogeneity in the occurrence of MRI-identified focal pathology was not associated with uniform changes in quantitative analyses of brain structure in cmTBI. Increased number of DOI CT abnormalities was associated with lowered neuropsychological performance. PMID:26186038

  11. Metabolic costs and evolutionary implications of human brain development

    PubMed Central

    Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

    2014-01-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  12. Alcohol-Related Brain Damage in Humans

    PubMed Central

    Erdozain, Amaia M.; Morentin, Benito; Bedford, Lynn; King, Emma; Tooth, David; Brewer, Charlotte; Wayne, Declan; Johnson, Laura; Gerdes, Henry K.; Wigmore, Peter; Callado, Luis F.; Carter, Wayne G.

    2014-01-01

    Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann’s area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics. PMID:24699688

  13. General Anesthesia and Human Brain Connectivity

    PubMed Central

    2012-01-01

    Abstract General anesthesia consists of amnesia, hypnosis, analgesia, and areflexia. Of these, the mechanism of hypnosis, or loss of consciousness, has been the most elusive, yet a fascinating problem. How anesthetic agents suppress human consciousness has been investigated with neuroimaging for two decades. Anesthetics substantially reduce the global cerebral metabolic rate and blood flow with a degree of regional heterogeneity characteristic to the anesthetic agent. The thalamus appears to be a common site of modulation by several anesthetics, but this may be secondary to cortical effects. Stimulus-dependent brain activation is preserved in primary sensory areas, suggesting that unconsciousness cannot be explained by cortical deafferentation or a diminution of cortical sensory reactivity. The effect of general anesthetics in functional and effective connectivity is varied depending on the agent, dose, and network studied. At an anesthetic depth characterized by the subjects' unresponsiveness, a partial, but not complete, reduction in connectivity is generally observed. Functional connectivity of the frontoparietal association cortex is often reduced, but a causal role of this change for the loss of consciousness remains uncertain. Functional connectivity of the nonspecific (intralaminar) thalamic nuclei is preferentially reduced by propofol. Higher-order thalamocortical connectivity is also reduced with certain anesthetics. The changes in functional connectivity during anesthesia induction and emergence do not mirror each other; the recovery from anesthesia may involve increases in functional connectivity above the normal wakeful baseline. Anesthetic loss of consciousness is not a block of corticofugal information transfer, but a disruption of higher-order cortical information integration. The prime candidates for functional networks of the forebrain that play a critical role in maintaining the state of consciousness are those based on the posterior parietal

  14. Correlation of EEG, CT, and MRI Brain with Neurological Outcome at 12 Months in Term Newborns with Hypoxic Ischemic Encephalopathy

    PubMed Central

    Jose, Annu; Matthai, John; Paul, Sarah

    2013-01-01

    Objective: To correlate electroencephalogram (EEG), computed tomography (CT), and magnetic resonance imaging (MRI) brain with neurological outcome at 12 months in term neonates with hypoxic ischemic encephalopathy. Design: Prospective observational study. Setting: Neonatal intensive care unit (NICU) in a tertiary care teaching hospital. Materials and Methods: The study was conducted between June 2010 and November 2011. Consecutive term neonates with perinatal asphyxia and hypoxic ischemic encephalopathy were the subjects. All babies were managed as per standard protocol. EEG was done as soon as the baby was stable and CT brain within 7 days. MRI was done at 3 months. Neurodevelpmental assessment was done at 12 months. Results: Of the 31 babies, four died and one was lost to follow-up. Neurodevelopmental at 12 months of age was normal in 15 babies. EEG was normal in six babies and all of them had a normal neurodevelopment. Thirteen of the 14 babies with burst suppression pattern were abnormal (P<0.001). CT brain was normal in 14 and all of them had normal neurodevelopment (P<0.001), while 11 of the 12 with cerebral edema had abnormal outcome (P<0.001). Of the 16 babies with normal MRI, 14 were normal, while all six babies with abnormal signals in the cortex and thalamus had abnormal outcome (P=0.002). Conclusions: A normal EEG and CT brain in a term newborn with hypoxic ischemic encephalopathy (HIE) is associated with good neurological outcome. Burst suppression pattern in EEG, bleeds, or hypodensities in the CT and involvement of basal ganglia/thalamus in the MRI are predictors of abnormal outcome. PMID:24251256

  15. Reconstituting a human brain in animals: a Jewish perspective on human sanctity.

    PubMed

    Loike, John D; Tendler, Moshe

    2008-12-01

    The potential use of stem cells in the treatment of a variety of human diseases has been a major driving force for embryonic stem cell research. Another productive area of research has been the use of human stem cells to reconstitute human organ systems in animals in an attempt to create new animal models for human diseases. However, the possibility of transplanting human embryonic brain cells or precursor brain cells into an animal fetus presents numerous ethical challenges. This paper examines, from a Jewish perspective on human dignity, several bioethical concerns related to the reconstitution of animal brains with human neurons. PMID:19143409

  16. Resonance of human brain under head acceleration

    PubMed Central

    Laksari, Kaveh; Wu, Lyndia C.; Kurt, Mehmet; Kuo, Calvin; Camarillo, David C.

    2015-01-01

    Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull–brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull–brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain–skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities. PMID:26063824

  17. [Brain evolution of the human from the paleoneurologic viewpoint].

    PubMed

    Brandt, M

    1993-12-01

    Paleoneurology interprets natural or artificial endocasts. It is, therefore, the only method which is able to provide direct information on the ancestry of the human brain. Australopithecus, Homo habilis and Homo erectus are of outstanding importance concerning human evolution. This short review deals with some well-preserved endocasts of these forms. Possibilities and limitations of paleoneurology are discussed with respect to the taxonomic attribution of fossil specimens. Functional aspects of the cortical sulcus pattern can be interpreted rather strictly and is, therefore, of considerably phylogenetic significance. It indicates that even some early hominids exhibit a human-like brain organization (e.g. KNM-ER 1470) while others (such a KNM-ER 1805) feature a rather pongid-like brain organization. However, controversy over the interpretation of endocasts from early hominids continues: It has not been possible to unequivocally demonstrate a human-like feature of the Australopithecus brain. PMID:8285598

  18. Sex beyond the genitalia: The human brain mosaic

    PubMed Central

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains (“female brain” or “male brain”). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only “male” or only “female” features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the “maleness-femaleness” continuum are rare. Rather, most brains are comprised of unique “mosaics” of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  19. Genetic Changes Shaping the Human Brain

    PubMed Central

    Bae, Byoung-il; Jayaraman, Divya; Walsh, Christopher A.

    2015-01-01

    Summary The development and function of our brain are governed by a genetic blueprint, which reflects dynamic changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-generation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with a neuroanatomical or neurobehavioral phenotype. Here, we review some of the genetic changes in both protein-coding and noncoding regions that affect brain development and evolution, as well as recent progress in brain transcriptomics. Understanding these genetic changes may provide novel insights into neurological and neuropsychiatric disorders, such as autism and schizophrenia. PMID:25710529

  20. Reflectance Diffuse Optical Tomography: Its Application to Human Brain Mapping

    NASA Astrophysics Data System (ADS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-09-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases.

  1. Optogenetic control of human neurons in organotypic brain cultures.

    PubMed

    Andersson, My; Avaliani, Natalia; Svensson, Andreas; Wickham, Jenny; Pinborg, Lars H; Jespersen, Bo; Christiansen, Søren H; Bengzon, Johan; Woldbye, David P D; Kokaia, Merab

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies. PMID:27098488

  2. Optogenetic control of human neurons in organotypic brain cultures

    PubMed Central

    Andersson, My; Avaliani, Natalia; Svensson, Andreas; Wickham, Jenny; Pinborg, Lars H.; Jespersen, Bo; Christiansen, Søren H.; Bengzon, Johan; Woldbye, David P.D.; Kokaia, Merab

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies. PMID:27098488

  3. Overview of the human brain as a distributed computing network

    SciTech Connect

    Gevins, A.S.

    1983-01-01

    The hierarchically organized human brain is viewed as a prime example of a massively parallel, adaptive information processing and process control system. A brief overview of the human brain is provided for computer architects, in hopes that the principles of massive parallelism, dense connectivity and self-organization of assemblies of processing elements will prove relevant to the design of fifth generation VLSI computing networks. 6 references.

  4. Understanding complexity in the human brain

    PubMed Central

    Bassett, Danielle S.; Gazzaniga, Michael S.

    2011-01-01

    Although the ultimate aim of neuroscientific enquiry is to gain an understanding of the brain and how its workings relate to the mind, the majority of current efforts are largely focused on small questions using increasingly detailed data. However, it might be possible to successfully address the larger question of mind–brain mechanisms if the cumulative findings from these neuroscientific studies are coupled with complementary approaches from physics and philosophy. The brain, we argue, can be understood as a complex system or network, in which mental states emerge from the interaction between multiple physical and functional levels. Achieving further conceptual progress will crucially depend on broad-scale discussions regarding the properties of cognition and the tools that are currently available or must be developed in order to study mind–brain mechanisms. PMID:21497128

  5. Increased morphological asymmetry, evolvability and plasticity in human brain evolution

    PubMed Central

    Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C.

    2013-01-01

    The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with special emphasis on the study of asymmetric variation. Our study reveals that chimpanzee–human differences in cerebral morphology are mainly symmetric; by contrast, there is continuity in asymmetric variation between species, with humans showing an increased range of variation. Moreover, asymmetric variation does not appear to be the result of allometric scaling at intraspecific levels, whereas symmetric changes exhibit very slight allometric effects within each species. Our results emphasize two key properties of brain evolution in the hominine clade: first, evolution of chimpanzee and human brains (and probably their last common ancestor and related species) is not strongly morphologically constrained, thus making their brains highly evolvable and responsive to selective pressures; second, chimpanzee and, especially, human brains show high levels of fluctuating asymmetry indicative of pronounced developmental plasticity. We infer that these two characteristics can have a role in human cognitive evolution. PMID:23615289

  6. Brain development is similar in Neanderthals and modern humans.

    PubMed

    Ponce de León, Marcia S; Bienvenu, Thibaut; Akazawa, Takeru; Zollikofer, Christoph P E

    2016-07-25

    While the braincase of adult Neanderthals had a similar volume to that of modern humans from the same period, differences in endocranial shape suggest that brain morphology differed between modern humans and Neanderthals. When and how these differences arose during evolution and development is a topic of ongoing research, with potential implications for species-specific differences in brain and cognitive development, and in life history [1,2]. Earlier research suggested that Neanderthals followed an ancestral mode of brain development, similar to that of our closest living relatives, the chimpanzees [2-4]. Modern humans, by contrast, were suggested to follow a uniquely derived mode of brain development just after birth, giving rise to the characteristically globular shape of the adult human brain case [2,4,5]. Here, we re-examine this hypothesis using an extended sample of Neanderthal infants. We document endocranial development during the decisive first two years of postnatal life. The new data indicate that Neanderthals followed largely similar modes of endocranial development to modern humans. These findings challenge the notion that human brain and cognitive development after birth is uniquely derived [2,4]. PMID:27458909

  7. Adverse effects of brain irradiation correlated with MR and CT imaging

    SciTech Connect

    Constine, L.S.; Konski, A.; Ekholm, S.; McDonald, S.; Rubin, P.

    1988-08-01

    Forty-one patients treated for primary malignancies of the brain at the University of Rochester Cancer Center since 1970 were assessed for adverse effects of irradiation clinically, and by computerized tomography (CT) and magnetic resonance (MR) imaging. At diagnosis, patients ranged in age from 1-65 years (median 19 years) and the most common tumor (in 30) was astrocytoma. Radiation doses ranged from 45 to 81.3 Gy (median 56.8 Gy). White matter changes visible on MR were graded on a scale of 1-4, with grades 1-2 known to occur in some normal patients. Areas of increased signal intensity not associated with the tumor or surgery were visible in all patients (gr 1 = 37%, gr 2 = 32%, gr 3 = 17%, gr 4 = 15%) whereas only 35% had regions of abnormality (hypodensity) on CT. Sulci enlargement and ventricular abnormalities (asymmetry or dilatation) were present in approximately 50% of patients by each technique. Higher grade MR lesions were associated with radiation to large volumes and high doses. For the 36 patients treated with 1.5-2.0 Gy daily fractions, the mean radiation dose by grade was as follows: gr 1 = 55.1 Gy, gr 2 = 58.8 Gy, gr 3 = 60.0 Gy, gr 4 = 63.5 Gy. All 5 patients treated on a hyperfractionated schedule had gr 1-2 changes despite receiving greater than 70 Gy. Fifty percent of patients treated to the whole brain (+/- boost) had gr 3-4 changes, compared with 14% treated with local fields (peak dose regions similar in both groups). Among the children (less than or equal to 13 years), 20% had gr 3-4 changes compared with 56% of adults (excluding hyperfractionated patients). This finding may be due entirely or in part to the lower radiation doses used for children (mean 54.4 Gy vs. 63.7 Gy in adults). Clinical abnormalities attributable to irradiation included an impairment in mental functioning in 7 adults, and learning disabilities in 5 children.

  8. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  9. Multimodal imaging of the human temporal bone: A comparison of CT and optical scanning techniques

    NASA Astrophysics Data System (ADS)

    Voie, Arne H.; Whiting, Bruce; Skinner, Margaret; Neely, J. Gail; Lee, Kenneth; Holden, Tim; Brunsden, Barry

    2003-10-01

    A collaborative effort between Washington University in St. Louis and Spencer Technologies in Seattle, WA has been undertaken to create a multimodal 3D reconstruction of the human cochlea and vestibular system. The goal of this project is to improve the accuracy of in vivo CT reconstructions of implanted cochleae, and to expand the knowledge of high-resolution anatomical detail provided by orthogonal-plane optical sectioning (OPFOS). At WUSL, computed tomography (CT) images of the cochlea are used to determine the position of cochlear implant electrodes relative to target auditory neurons. The cochlear implant position is determined using pre- and post-operative CT scans. The CT volumes are cross-registered to align the semicircular canals and internal auditory canal, which have a unique configuration in 3-D space. The head of a human body donor was scanned with a clinical CT device, after which the temporal bones were removed, fixed in formalin and trimmed prior to scanning with a laboratory Micro CT scanner. Following CT, the temporal bones were sent to the OPFOS Imaging Lab at Spencer Technologies for a further analysis. 3-D reconstructions of CT and OPFOS imaging modalities were compared, and results are presented. [Work supported by NIDCD Grants R44-03623-5 and R01-00581-13.

  10. Do glutathione levels decline in aging human brain?

    PubMed

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. PMID:26845616

  11. Evolution of the human brain: when bigger is better

    PubMed Central

    Hofman, Michel A.

    2014-01-01

    Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the brain and its underlying neuronal network. The object of this review is to present current perspectives on primate brain evolution, especially in humans, and to examine some hypothetical organizing principles that underlie the brain's complex organization. Some of the design principles and operational modes that underlie the information processing capacity of the cerebral cortex in primates will be explored. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains, then otherwise would have been possible. In view of the central importance placed on brain evolution in explaining the success of our own species, one may wonder whether there are physical limits that constrain its processing power and evolutionary potential. It will be argued that at a brain size of about 3500 cm3, corresponding to a brain volume two to three times that of modern man, the brain seems to reach its maximum processing capacity. The larger the brain grows beyond this critical size, the less efficient it will become, thus limiting any improvement in cognitive power. PMID:24723857

  12. Conscious brain-to-brain communication in humans using non-invasive technologies.

    PubMed

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  13. Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies

    PubMed Central

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  14. MicroCT and microMRI imaging of a prenatal mouse model of increased brain size

    NASA Astrophysics Data System (ADS)

    López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.

    2008-08-01

    There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.

  15. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  16. BrainKnowledge: a human brain function mapping knowledge-base system.

    PubMed

    Hsiao, Mei-Yu; Chen, Chien-Chung; Chen, Jyh-Horng

    2011-03-01

    Associating fMRI image datasets with the available literature is crucial for the analysis and interpretation of fMRI data. Here, we present a human brain function mapping knowledge-base system (BrainKnowledge) that associates fMRI data analysis and literature search functions. BrainKnowledge not only contains indexed literature, but also provides the ability to compare experimental data with those derived from the literature. BrainKnowledge provides three major functions: (1) to search for brain activation models by selecting a particular brain function; (2) to query functions by brain structure; (3) to compare the fMRI data with data extracted from the literature. All these functions are based on our literature extraction and mining module developed earlier (Hsiao, Chen, Chen. Journal of Biomedical Informatics 42, 912-922, 2009), which automatically downloads and extracts information from a vast amount of fMRI literature and generates co-occurrence models and brain association patterns to illustrate the relevance of brain structures and functions. BrainKnowledge currently provides three co-occurrence models: (1) a structure-to-function co-occurrence model; (2) a function-to-structure co-occurrence model; and (3) a brain structure co-occurrence model. Each model has been generated from over 15,000 extracted Medline abstracts. In this study, we illustrate the capabilities of BrainKnowledge and provide an application example with the studies of affect. BrainKnowledge, which combines fMRI experimental results with Medline abstracts, may be of great assistance to scientists not only by freeing up resources and valuable time, but also by providing a powerful tool that collects and organizes over ten thousand abstracts into readily usable and relevant sources of information for researchers. PMID:20857233

  17. Non-invasive ultrasonic surgery of the brain in non-human primates.

    PubMed

    Marquet, Fabrice; Boch, Anne-Laure; Pernot, Mathieu; Montaldo, Gabriel; Seilhean, Danielle; Fink, Mathias; Tanter, Mickael; Aubry, Jean-Francois

    2013-08-01

    High-intensity focused ultrasound causes selective tissue necrosis efficiently and safely, namely, in the prostate, liver, and uterine fibroid. Nevertheless, ablation of brain tissue using focused ultrasound remains limited due to strong aberrations induced by the skull. To achieve ultrasonic transcranial brain ablation, such aberrations have to be compensated. In this study, non-invasive therapy was performed on monkeys using adaptive correction of the therapeutic beam and 3D simulations of transcranial wave propagation based on 3D computed tomographic (CT) scan information. The aim of the study was two-fold: induce lesions in a non-human primate brain non-invasively and investigate the potential side effects. Stereotactic targeting was performed on five Macaca fascicularis individuals. Each hemisphere was treated separately with a 15-day interval and animals were sacrificed two days after the last treatment. The ultrasonic dose delivered at the focus was increased from one treatment location to the other to estimate the thermal dose for tissue alteration. Thermal doses in the brain were determined by numerical computations. Treatment efficiency and safety were evaluated histologically. The threshold for tissue damage in the brain was measured to be between 90 and 280 cumulative equivalent minutes at 43 °C. Intravenous injection of corticoids before the treatment limited the side effects. PMID:23927203

  18. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  19. Mitochondrial viability in mouse and human postmortem brain

    PubMed Central

    Barksdale, Keri A.; Perez-Costas, Emma; Gandy, Johanna C.; Melendez-Ferro, Miguel; Roberts, Rosalinda C.; Bijur, Gautam N.

    2010-01-01

    Neuronal function in the brain requires energy in the form of ATP, and mitochondria are canonically associated with ATP production in neurons. The electrochemical gradient, which underlies the mitochondrial transmembrane potential (ΔΨmem), is harnessed for ATP generation. Here we show that ΔΨmem and ATP-production can be engaged in mitochondria isolated from human brains up to 8.5 h postmortem. Also, a time course of postmortem intervals from 0 to 24 h using mitochondria isolated from mouse cortex reveals that ΔΨmem in mitochondria can be reconstituted beyond 10 h postmortem. It was found that complex I of the mitochondrial electron transport chain was affected adversely with increasing postmortem intervals. Mitochondria isolated from postmortem mouse brains maintain the ability to produce ATP, but rates of production decreased with longer postmortem intervals. Furthermore, we show that postmortem brain mitochondria retain their ΔΨmem and ATP-production capacities following cryopreservation. Our finding that ΔΨmem and ATP-generating capacity can be reinitiated in brain mitochondria hours after death indicates that human postmortem brains can be an abundant source of viable mitochondria to study metabolic processes in health and disease. It is also possible to archive these mitochondria for future studies.—Barksdale, K. A., Perez-Costas, E., Gandy, J. C., Melendez-Ferro, M., Roberts, R. C., Bijur, G. N. Mitochondrial viability in mouse and human postmortem brain. PMID:20466876

  20. Progress on the paternal brain: theory, animal models, human brain research, and mental health implications.

    PubMed

    Swain, J E; Dayton, C J; Kim, P; Tolman, R M; Volling, B L

    2014-01-01

    With a secure foundation in basic research across mammalian species in which fathers participate in the raising of young, novel brain-imaging approaches are outlining a set of consistent brain circuits that regulate paternal thoughts and behaviors in humans. The newest experimental paradigms include increasingly realistic baby-stimuli to provoke paternal cognitions and behaviors with coordinated hormone measures to outline brain networks that regulate motivation, reflexive caring, emotion regulation, and social brain networks with differences and similarities to those found in mothers. In this article, on the father brain, we review all brain-imaging studies on PubMed to date on the human father brain and introduce the topic with a selection of theoretical models and foundational neurohormonal research on animal models in support of the human work. We discuss potentially translatable models for the identification and treatment of paternal mood and father-child relational problems, which could improve infant mental health and developmental trajectories with potentially broad public health importance. PMID:25798491

  1. On Expression Patterns and Developmental Origin of Human Brain Regions

    PubMed Central

    Kirsch, Lior; Chechik, Gal

    2016-01-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions. PMID:27564987

  2. BrainNet Viewer: a network visualization tool for human brain connectomics.

    PubMed

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/). PMID:23861951

  3. TV, Brain Waves and Human Behavior

    ERIC Educational Resources Information Center

    Science News, 1978

    1978-01-01

    Describes the procedure to test the hypothesis that subjects' brain waves in response to a television flicker (distraction) would be smaller in amplitude during television programs of high, in contrast to low, interest. Results from 12 viewers support the hypothesis. (CP)

  4. Human and rat brain lipofuscin proteome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may have yet ...

  5. Development of Human Brain Structural Networks Through Infancy and Childhood

    PubMed Central

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  6. Genetic regulation of human brain development: lessons from Mendelian diseases

    PubMed Central

    Dixon-Salazar, Tracy J.; Gleeson, Joseph G.

    2016-01-01

    One of the fundamental goals in human genetics is to link gene function to phenotype, yet the function of the majority of the genes in the human body is still poorly understood. This is especially true for the developing human brain. The study of human phenotypes that result from inherited, mutated alleles is the most direct evidence for the requirement of a gene in human physiology. Thus, the study of Mendelian central nervous system(CNS) diseases can be an extremely powerful approach to elucidate such phenotypic/genotypic links and to increase our understanding of the key components required for development of the human brain. In this review, we highlight examples of how the study of inherited neurodevelopmental disorders contributes to our knowledge of both the “normal” and diseased human brain, as well as elaborate on the future of this type of research. Mendelian disease research has been, and will continue to be, key to understanding the molecular mechanisms that underlie human brain function, and will ultimately form a basis for the design of intelligent, mechanism-specific treatments for nervous system disorders. PMID:21062301

  7. Sibling rivalry among paralogs promotes evolution of the human brain.

    PubMed

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution. PMID:22579279

  8. Shortcomings of the Human Brain and Remedial Action by Religion

    ERIC Educational Resources Information Center

    Reich, K. Helmut

    2010-01-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial…

  9. Toward discovery science of human brain function.

    PubMed

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

    2010-03-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/. PMID

  10. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  11. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    ERIC Educational Resources Information Center

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  12. The bilingual brain: Flexibility and control in the human cortex

    NASA Astrophysics Data System (ADS)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  13. Expectation modulates neural representations of valence throughout the human brain.

    PubMed

    Ramayya, Ashwin G; Pedisich, Isaac; Kahana, Michael J

    2015-07-15

    The brain's sensitivity to unexpected gains or losses plays an important role in our ability to learn new behaviors (Rescorla and Wagner, 1972; Sutton and Barto, 1990). Recent work suggests that gains and losses are ubiquitously encoded throughout the human brain (Vickery et al., 2011), however, the extent to which reward expectation modulates these valence representations is not known. To address this question, we analyzed recordings from 4306 intracranially implanted electrodes in 39 neurosurgical patients as they performed a two-alternative probability learning task. Using high-frequency activity (HFA, 70-200 Hz) as an indicator of local firing rates, we found that expectation modulated reward-related neural activity in widespread brain regions, including regions that receive sparse inputs from midbrain dopaminergic neurons. The strength of unexpected gain signals predicted subjects' abilities to encode stimulus-reward associations. Thus, neural signals that are functionally related to learning are widely distributed throughout the human brain. PMID:25937489

  14. Decade of the Brain 1990--2000: Maximizing human potential

    SciTech Connect

    Not Available

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  15. Decoding Spontaneous Emotional States in the Human Brain.

    PubMed

    Kragel, Philip A; Knodt, Annchen R; Hariri, Ahmad R; LaBar, Kevin S

    2016-09-01

    Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems. PMID:27627738

  16. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    PubMed

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing. PMID:26966964

  17. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  18. Imaging the Respiratory Effects of Opioids in the Human Brain.

    PubMed

    Pattinson, Kyle T S; Wise, Richard G

    2016-01-01

    Opioid analgesia is limited by the potentially fatal side effect of respiratory depression. In humans the brain mechanisms of opioid-induced respiratory depression are poorly understood. Investigating pharmacological influences upon breathing helps us to understand better the brain's respiratory control networks. Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (FMRI) maps neuronal activity in the brain, and is therefore a potentially useful, noninvasive technique to investigate the functional neuroanatomy of respiratory control in humans. Contrast in FMRI is derived from the vascular response to brain activity (neurovascular coupling). Therefore, FMRI studies of the neuronal effects of opioids are rendered more complex by the nonneuronal effects of opioids including those on systemic physiology, cerebral blood flow, and direct effects on the cerebral vasculature such as altered vascular reactivity. Here we review our series of studies that dissect the vascular and neuronal breathing-related effects of opioids in the brain. These methodological considerations have enabled successful FMRI studies revealing the brain networks responsible for opioid effects upon respiratory awareness. Similar considerations would be necessary for FMRI studies in hypoxia or in disease states that affect the physiological state of the brain. PMID:27343094

  19. A navigational guidance system in the human brain.

    PubMed

    Spiers, Hugo J; Maguire, Eleanor A

    2007-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one's current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional magnetic resonance imaging as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analyzed in combination with metric measures of proximity and direction to goal destinations that were derived from each individual subject's coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behavior in general. PMID:17492693

  20. Several methods to determine heavy metals in the human brain

    NASA Astrophysics Data System (ADS)

    Andrási, Erzsébet; Igaz, Sarolta; Szoboszlai, Norbert; Farkas, Éva; Ajtony, Zsolt

    1999-05-01

    The determination of naturally occurring heavy metals in various parts of the human brain is discussed. The patients had no diseases in their central nervous systems (five individuals, mean age 70 years). Twenty brain parts were selected from both hemispheres. The analysis was carried out by graphite furnace atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis methods. Accuracy and precision of the applied techniques were tested by using standard reference materials. Two digestion methods were used to dissolve the brain samples for ICP-AES and GF-AAS. One was performed in a Parr-bomb and the second in a microwave oven. The present results show a non-homogeneous distribution of the essential elements (Cu, Fe, Mn, Zn) in normal human brain. Corresponding regions in both hemispheres showed an almost identical concentration of these elements. In the case of toxic elements (Pb, Cd) an average value in different brain regions can not be established because of the high variability of individual data. This study indicates that beside differences in Pb and Cd intake with foods or cigarette smoke inhalation, the main factors of the high inter-individual variability of these element concentrations in human brain parts may be a marked difference in individual elimination or accumulation capabilities.

  1. Distribution of vesicular glutamate transporters in the human brain

    PubMed Central

    Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah

    2015-01-01

    Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains. PMID:25798091

  2. A navigational guidance system in the human brain

    PubMed Central

    Spiers, Hugo J.; Maguire, Eleanor A.

    2008-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one’s current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional MRI (fMRI) as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analysed in combination with metric measures of proximity and direction to goal destinations which were derived from each individual subject’s coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behaviour in general. PMID:17492693

  3. Permeation and pathways of human calcitonin (hCT) across excised bovine nasal mucosa.

    PubMed

    Lang, S; Rothen-Rutishauser, B; Perriard, J C; Schmidt, M C; Merkle, H P

    1998-01-01

    In vitro permeation of human calcitonin (hCT), salmon calcitonin (sCT), and the somatostatin analog octreotide (SMS) through excised bovine nasal mucosa was studied applying donor/receiver experiments and confocal laser scanning microscopy. Permeabilities of gonadorelin, buserelin, Hoe013, and of thymopoietin fragments TP5 and TP4 were also included. Apparent permeability coefficients (Peff) ranged between 4 x 10(-5) (SMS) and 1.7 x 10(-5) cm s(-1) (TP4). Such Peff are typical for leaky-type airway epithelia. The order of permeabilities was: SMS > hCT, sCT > buserelin, Hoe013 > TP5 > TP4, LHRH. The relatively high permeability of hCT and sCT contrasted to their high molecular weight. At 37 degrees C, the permeability of hCT from mucosal to serosal (m-to-s) was found two-fold higher (p < 0.05) than from serosal to mucosal (s-to-m). Controls using 3H-mannitol showed equal permeabilities in both directions. At 4 degrees C, permeation of hCT was reduced but equal in both directions (m-to-s and s-to-m). As evaluated by confocal laser scanning microscopy, uptake studies with FITC-18-hCT revealed intracellular fluorescence in the epithelial cells, at 10 min/10 microM exposure in the form of fluorescent vesicles. By combination of these findings, an endocytotic pathway is suggested to contribute to the transport of hCT through nasal epithelium. PMID:9533651

  4. Comparison of Partial Volume Effects in Arterial and Venous Contrast Curves in CT Brain Perfusion Imaging

    PubMed Central

    Riordan, Alan J.; Bennink, Edwin; Dankbaar, Jan Willem; Viergever, Max A.; Velthuis, Birgitta K.; Smit, Ewoud J.; de Jong, Hugo W. A. M.

    2014-01-01

    Purpose In brain CT perfusion (CTP), the arterial contrast bolus is scaled to have the same area under the curve (AUC) as the venous outflow to correct for partial volume effects (PVE). This scaling is based on the assumption that large veins are unaffected by PVE. Measurement of the internal carotid artery (ICA), usually unaffected by PVE due to its large diameter, may avoid the need for partial volume correction. The aims of this work are to examine i) the assumptions behind PVE correction and ii) the potential of selecting the ICA obviating correction for PVE. Methods The AUC of the ICA and sagittal sinus were measured in CTP datasets from 52 patients. The AUCs were determined by i) using commercial CTP software based on a Gaussian curve-fitting to the time attenuation curve, and ii) by simple integration of the time attenuation curve over a time interval. In addition, frames acquired up to 3 minutes after first bolus passage were used to examine the ratio of arterial and venous enhancement. The impact of selecting the ICA without PVE correction was illustrated by reporting cerebral blood volume (CBV) measurements. Results In 49 of 52 patients, the AUC of the ICA was significantly larger than that of the sagittal sinus (p = 0.017). Measured after the first pass bolus, contrast enhancement remained 50% higher in the ICA just after the first pass bolus, and 30% higher 3 minutes later. CBV measurements were significantly lowered when the ICA was used without PVE correction. Conclusions Contradicting the assumptions underlying PVE correction, contrast in the ICA was significantly higher than in the sagittal sinus, even 3 minutes after the first pass of the contrast bolus. PVE correction might lead to overestimation of CBV if the CBV is calculated using the AUC of the time attenuation curves. PMID:24858308

  5. Decoding the visual and subjective contents of the human brain.

    PubMed

    Kamitani, Yukiyasu; Tong, Frank

    2005-05-01

    The potential for human neuroimaging to read out the detailed contents of a person's mental state has yet to be fully explored. We investigated whether the perception of edge orientation, a fundamental visual feature, can be decoded from human brain activity measured with functional magnetic resonance imaging (fMRI). Using statistical algorithms to classify brain states, we found that ensemble fMRI signals in early visual areas could reliably predict on individual trials which of eight stimulus orientations the subject was seeing. Moreover, when subjects had to attend to one of two overlapping orthogonal gratings, feature-based attention strongly biased ensemble activity toward the attended orientation. These results demonstrate that fMRI activity patterns in early visual areas, including primary visual cortex (V1), contain detailed orientation information that can reliably predict subjective perception. Our approach provides a framework for the readout of fine-tuned representations in the human brain and their subjective contents. PMID:15852014

  6. Individual differences in anthropomorphic attributions and human brain structure

    PubMed Central

    Kanai, Ryota; Bahrami, Bahador; Rees, Geraint

    2014-01-01

    Anthropomorphism is the attribution of human characteristics or behaviour to animals, non-living things or natural phenomena. It is pervasive among humans, yet nonetheless exhibits a high degree of inter-individual variability. We hypothesized that brain areas associated with anthropomorphic thinking might be similar to those engaged in the attribution of mental states to other humans, the so-called ‘theory of mind’ or mentalizing network. To test this hypothesis, we related brain structure measured using magnetic resonance imaging in a sample of 83 healthy young adults to a simple, self-report questionnaire that measured the extent to which our participants made anthropomorphic attributions about non-human animals and non-animal stimuli. We found that individual differences in anthropomorphism for non-human animals correlated with the grey matter volume of the left temporoparietal junction, a brain area involved in mentalizing. Our data support previous work indicating a link between areas of the brain involved in attributing mental states to other humans and those involved in anthropomorphism. PMID:23887807

  7. Tracking neuronal fiber pathways in the living human brain

    PubMed Central

    Conturo, Thomas E.; Lori, Nicolas F.; Cull, Thomas S.; Akbudak, Erbil; Snyder, Abraham Z.; Shimony, Joshua S.; McKinstry, Robert C.; Burton, Harold; Raichle, Marcus E.

    1999-01-01

    Functional imaging with positron emission tomography and functional MRI has revolutionized studies of the human brain. Understanding the organization of brain systems, especially those used for cognition, remains limited, however, because no methods currently exist for noninvasive tracking of neuronal connections between functional regions [Crick, F. & Jones, E. (1993) Nature (London) 361, 109–110]. Detailed connectivities have been studied in animals through invasive tracer techniques, but these invasive studies cannot be done in humans, and animal results cannot always be extrapolated to human systems. We have developed noninvasive neuronal fiber tracking for use in living humans, utilizing the unique ability of MRI to characterize water diffusion. We reconstructed fiber trajectories throughout the brain by tracking the direction of fastest diffusion (the fiber direction) from a grid of seed points, and then selected tracks that join anatomically or functionally (functional MRI) defined regions. We demonstrate diffusion tracking of fiber bundles in a variety of white matter classes with examples in the corpus callosum, geniculo-calcarine, and subcortical association pathways. Tracks covered long distances, navigated through divergences and tight curves, and manifested topological separations in the geniculo-calcarine tract consistent with tracer studies in animals and retinotopy studies in humans. Additionally, previously undescribed topologies were revealed in the other pathways. This approach enhances the power of modern imaging by enabling study of fiber connections among anatomically and functionally defined brain regions in individual human subjects. PMID:10468624

  8. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  9. Telomerase Activity is Downregulated Early During Human Brain Development.

    PubMed

    Ishaq, Abbas; Hanson, Peter S; Morris, Christopher M; Saretzki, Gabriele

    2016-01-01

    Changes in hTERT splice variant expression have been proposed to facilitate the decrease of telomerase activity during fetal development in various human tissues. Here, we analyzed the expression of telomerase RNA (hTR), wild type and α-spliced hTERT in developing human fetal brain (post conception weeks, pcw, 6-19) and in young and old cortices using qPCR and correlated it to telomerase activity measured by TRAP assay. Decrease of telomerase activity occurred early during brain development and correlated strongest to decreased hTR expression. The expression of α-spliced hTERT increased between pcw 10 and 19, while that of wild type hTERT remained unchanged. Lack of expression differences between young and old cortices suggests that most changes seem to occur early during human brain development. Using in vitro differentiation of neural precursor stem cells (NPSCs) derived at pcw 6 we found a decrease in telomerase activity but no major expression changes in telomerase associated genes. Thus, they do not seem to model the mechanisms for the decrease in telomerase activity in fetal brains. Our results suggest that decreased hTR levels, as well as transient increase in α-spliced hTERT, might both contribute to downregulation of telomerase activity during early human brain development between 6 and 17 pcw. PMID:27322326

  10. Telomerase Activity is Downregulated Early During Human Brain Development

    PubMed Central

    Ishaq, Abbas; Hanson, Peter S.; Morris, Christopher M.; Saretzki, Gabriele

    2016-01-01

    Changes in hTERT splice variant expression have been proposed to facilitate the decrease of telomerase activity during fetal development in various human tissues. Here, we analyzed the expression of telomerase RNA (hTR), wild type and α-spliced hTERT in developing human fetal brain (post conception weeks, pcw, 6–19) and in young and old cortices using qPCR and correlated it to telomerase activity measured by TRAP assay. Decrease of telomerase activity occurred early during brain development and correlated strongest to decreased hTR expression. The expression of α-spliced hTERT increased between pcw 10 and 19, while that of wild type hTERT remained unchanged. Lack of expression differences between young and old cortices suggests that most changes seem to occur early during human brain development. Using in vitro differentiation of neural precursor stem cells (NPSCs) derived at pcw 6 we found a decrease in telomerase activity but no major expression changes in telomerase associated genes. Thus, they do not seem to model the mechanisms for the decrease in telomerase activity in fetal brains. Our results suggest that decreased hTR levels, as well as transient increase in α-spliced hTERT, might both contribute to downregulation of telomerase activity during early human brain development between 6 and 17 pcw. PMID:27322326

  11. Elevated gene expression levels distinguish human from non-human primate brains

    PubMed Central

    Cáceres, Mario; Lachuer, Joel; Zapala, Matthew A.; Redmond, John C.; Kudo, Lili; Geschwind, Daniel H.; Lockhart, David J.; Preuss, Todd M.; Barlow, Carrolee

    2003-01-01

    Little is known about how the human brain differs from that of our closest relatives. To investigate the genetic basis of human specializations in brain organization and cognition, we compared gene expression profiles for the cerebral cortex of humans, chimpanzees, and rhesus macaques by using several independent techniques. We identified 169 genes that exhibited expression differences between human and chimpanzee cortex, and 91 were ascribed to the human lineage by using macaques as an outgroup. Surprisingly, most differences between the brains of humans and non-human primates involved up-regulation, with ≈90% of the genes being more highly expressed in humans. By contrast, in the comparison of human and chimpanzee heart and liver, the numbers of up- and down-regulated genes were nearly identical. Our results indicate that the human brain displays a distinctive pattern of gene expression relative to non-human primates, with higher expression levels for many genes belonging to a wide variety of functional classes. The increased expression of these genes could provide the basis for extensive modifications of cerebral physiology and function in humans and suggests that the human brain is characterized by elevated levels of neuronal activity. PMID:14557539

  12. Glucose transporter of the human brain and blood-brain barrier

    SciTech Connect

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-12-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable (3H)cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific (3H)cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with (3H)cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species.

  13. Measuring dopamine release in the human brain with PET

    SciTech Connect

    Volkow, N.D. |; Fowler, J.S.; Logan, J.; Wang, G.J.

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  14. CpG methylation accounts for a recurrent mutation (c.1222C>T) in the human PAH gene.

    PubMed

    Murphy, B C; Scriver, C R; Singh, S M

    2006-09-01

    The human PAH gene (GenBank: U49897.1 (cDNA), AF404777 (gDNA)) harbors alleles that either cause or are associated with hyperphenylalaninemia and phenylketonuria (http://www.pahdb.mcgill.ca). Mutation analysis has identified approximately 500 alleles of which approximately 30 produce polymorphic core haplotypes. The c.1222C>T allele (p.R408W) is the most prevalent and widely encountered PKU-causing allele. Because it occurs on multiple locus-specific polymorphic haplotypes, it is probably not identical by descent in different populations. This mutation involves a CpG dinucleotide in a so-called "hypermutable" codon suggesting that c.1222C>T could be a recurrent allele following spontaneous methylation-mediated deamination of 5 mC. This concept is widely assumed and accepted but the 5mC status of hypermutable codons has seldom been confirmed. We show that the PAH c.1222C nucleotide is indeed methylated (c.1222 mC) in somatic genomes (leukocyte and brain) of H. sapiens. Examination of a representative region in exon 12 (and also in exon 7) in the PAH gene shows that 5 mC is restricted to cytosines in CpG dinucleotides in the hypermutable codons. The methylation pattern seen in human PAH exon 12 was also observed in the corresponding codon in three nonhuman primates. The finding offers at least one explanation for the high relative frequency of the c.1222C>T (p.R408W) allele in the human population. PMID:16917891

  15. Contrast medium accumulation and washout in canine brain tumors and irradiated normal brain: a CT study of kinetics

    SciTech Connect

    Fike, J.R.; Cann, C.E.

    1984-04-01

    Kinetics of an iodinated contrast medium were evaluated quantitatively as a function of time up to one hour after intravenous infusion in the brains of dogs with experimentally induced radiation damage and dogs with spontaneous brain tumor. Radiation damage was characterized by an increase in iodine accumulation soon after the infusion, while tumor concentration of iodine either showed no change or decreased with time. These results suggest that contrast kinetic studies may be useful in differentiating radiation damage to normal brain tissue from a malignant brain tumor.

  16. Optical dosimetry in photodynamic therapy of human uterus and brain

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Svaasand, Lars O.; Hirschberg, Henry; Tadir, Yona; Tromberg, Bruce J.

    1999-06-01

    Optical 'dose' is one of the fundamental parameters required in the design of an efficacious regimen of photodynamic therapy (PDT). The issues involved in delivering a sufficient optical dose to the human uterus and brain during PDT will be discussed. Specifically, measurements of optical properties and fluence rates in excised human uteri are presented. Measured fluence rates are compared to the predictions of a simple diffusion model and the clinical utility of the treatment is discussed. The delivery of light to brain tissue via a surgically implanted balloon applicator will also be considered. The time required to deliver and adequate dose is calculated based on known optical properties and diffusion theory.

  17. Simplified detection system for neuroreceptor studies in the human brain

    SciTech Connect

    Bice, A.N.; Wagner, H.N. Jr.; Frost, J.J.; Natarajan, T.K.; Lee, M.C.; Wong, D.F.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Links, J.M.

    1986-02-01

    A simple, inexpensive dual-detector system has been developed for measurement of positronemitting receptor-binding drugs in the human brain. This high efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of (11C)carfentanil, a high affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist indicates the potential utility of this system for estimating different degrees of receptor occupation in the human brain.

  18. Mu opioid receptor binding sites in human brain

    SciTech Connect

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

  19. PET evaluation of the dopamine system of the human brain

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Gatley, S. |

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  20. Human brain spots emotion in non humanoid robots

    PubMed Central

    Foucher, Aurélie; Jouvent, Roland; Nadel, Jacqueline

    2011-01-01

    The computation by which our brain elaborates fast responses to emotional expressions is currently an active field of brain studies. Previous studies have focused on stimuli taken from everyday life. Here, we investigated event-related potentials in response to happy vs neutral stimuli of human and non-humanoid robots. At the behavioural level, emotion shortened reaction times similarly for robotic and human stimuli. Early P1 wave was enhanced in response to happy compared to neutral expressions for robotic as well as for human stimuli, suggesting that emotion from robots is encoded as early as human emotion expression. Congruent with their lower faceness properties compared to human stimuli, robots elicited a later and lower N170 component than human stimuli. These findings challenge the claim that robots need to present an anthropomorphic aspect to interact with humans. Taken together, such results suggest that the early brain processing of emotional expressions is not bounded to human-like arrangements embodying emotion. PMID:20194513

  1. Human brain spots emotion in non humanoid robots.

    PubMed

    Dubal, Stéphanie; Foucher, Aurélie; Jouvent, Roland; Nadel, Jacqueline

    2011-01-01

    The computation by which our brain elaborates fast responses to emotional expressions is currently an active field of brain studies. Previous studies have focused on stimuli taken from everyday life. Here, we investigated event-related potentials in response to happy vs neutral stimuli of human and non-humanoid robots. At the behavioural level, emotion shortened reaction times similarly for robotic and human stimuli. Early P1 wave was enhanced in response to happy compared to neutral expressions for robotic as well as for human stimuli, suggesting that emotion from robots is encoded as early as human emotion expression. Congruent with their lower faceness properties compared to human stimuli, robots elicited a later and lower N170 component than human stimuli. These findings challenge the claim that robots need to present an anthropomorphic aspect to interact with humans. Taken together, such results suggest that the early brain processing of emotional expressions is not bounded to human-like arrangements embodying emotion. PMID:20194513

  2. A new device for stereotactic CT-guided biopsy of the canine brain: design, construction, and needle placement accuracy.

    PubMed

    Giroux, Alain; Jones, Jeryl C; Bøhn, Jan Helge; Duncan, Robert B; Waldron, Don R; Inzana, Karen R

    2002-01-01

    An inexpensive device was created for computed tomographic (CT)-guided stereotactic biopsy of the canine brain. The accuracy of the device was tested using 16, formalin-perfused, canine head specimens. For each dog, a 6-inch biopsy needle was guided into pituitary gland and caudate nucleus targets. Needle tracks were measured using the CT computer and infused with tissue staining solution. Hit success and actual needle track lengths were determined from sliced brain specimens. The device enabled accurate orientation and placement of the canine head in the slice plane, such that progressive penetration of the biopsy needle could be monitored. The caudate nucleus was hit 12/16 times (75% accuracy) and the pituitary gland 15.5/16 times (98.6% accuracy). Hit proportions for the two targets did not differ (P < 0.05). A significant difference was found between CT and actual track length for both targets (P < 0.01). This was attributed to incomplete staining of the bevel portion of the needle track. PMID:12088316

  3. XCAT/DRASIM: a realistic CT/human-model simulation package

    NASA Astrophysics Data System (ADS)

    Fung, George S. K.; Stierstorfer, Karl; Segars, W. Paul; Taguchi, Katsuyuki; Flohr, Thomas G.; Tsui, Benjamin M. W.

    2011-03-01

    The aim of this research is to develop a complete CT/human-model simulation package by integrating the 4D eXtended CArdiac-Torso (XCAT) phantom, a computer generated NURBS surface based phantom that provides a realistic model of human anatomy and respiratory and cardiac motions, and the DRASIM (Siemens Healthcare) CT-data simulation program. Unlike other CT simulation tools which are based on simple mathematical primitives or voxelized phantoms, this new simulation package has the advantages of utilizing a realistic model of human anatomy and physiological motions without voxelization and with accurate modeling of the characteristics of clinical Siemens CT systems. First, we incorporated the 4D XCAT anatomy and motion models into DRASIM by implementing a new library which consists of functions to read-in the NURBS surfaces of anatomical objects and their overlapping order and material properties in the XCAT phantom. Second, we incorporated an efficient ray-tracing algorithm for line integral calculation in DRASIM by computing the intersection points of the rays cast from the x-ray source to the detector elements through the NURBS surfaces of the multiple XCAT anatomical objects along the ray paths. Third, we evaluated the integrated simulation package by performing a number of sample simulations of multiple x-ray projections from different views followed by image reconstruction. The initial simulation results were found to be promising by qualitative evaluation. In conclusion, we have developed a unique CT/human-model simulation package which has great potential as a tool in the design and optimization of CT scanners, and the development of scanning protocols and image reconstruction methods for improving CT image quality and reducing radiation dose.

  4. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  5. Human brain functional MRI and DTI visualization with virtual reality.

    PubMed

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed. PMID:23256049

  6. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    NASA Astrophysics Data System (ADS)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  7. The modular and integrative functional architecture of the human brain.

    PubMed

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions. PMID:26598686

  8. Fast and intuitive segmentation of gyri of the human brain

    NASA Astrophysics Data System (ADS)

    Weiler, Florian; Hahn, Horst K.

    2015-03-01

    The cortical surface of the human brain consists of a large number of folds forming valleys and ridges, the gyri and sulci. Often, it is desirable to perform a segmentation of a brain image into these underlying structures in order to assess parameters relative to these functional components. Typical examples for this include measurements of cortical thickness for individual functional areas, or the correlation of functional areas derived from fMRI data to corresponding anatomical areas seen in structural imaging. In this paper, we present a novel interactive technique, that allows for fast and intuitive segmentation of these functional areas from T1-weighted MR images of the brain. Our segmentation approach is based exclusively on morphological image processing operations, eliminating the requirement for explicit reconstruction of the brains surface.

  9. Microtesla MRI of the human brain combined with MEG

    NASA Astrophysics Data System (ADS)

    Zotev, Vadim S.; Matlashov, Andrei N.; Volegov, Petr L.; Savukov, Igor M.; Espy, Michelle A.; Mosher, John C.; Gomez, John J.; Kraus, Robert H.

    2008-09-01

    One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method—SQUID-based microtesla MRI—can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 μT measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment—low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging—are practical.

  10. Microtesla MRI of the human brain combined with MEG

    PubMed Central

    Zotev, Vadim S.; Matlashov, Andrei N.; Volegov, Petr L.; Savukov, Igor M.; Espy, Michelle A.; Mosher, John C.; Gomez, John J.; Kraus, Robert H.

    2008-01-01

    One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method-SQUID-based microtesla MRI-can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microtesla measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment-low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging-are practical. PMID:18619876

  11. Addiction circuitry in the human brain (*).

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

    2011-09-27

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

  12. ``the Human BRAIN & Fractal quantum mechanics''

    NASA Astrophysics Data System (ADS)

    Rosary-Oyong, Se, Glory

    In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  13. Addiction Circuitry in the Human Brain*

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo

    2012-01-01

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person’s risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders. PMID:21961707

  14. Visual dictionaries as intermediate features in the human brain

    PubMed Central

    Ramakrishnan, Kandan; Scholte, H. Steven; Groen, Iris I. A.; Smeulders, Arnold W. M.; Ghebreab, Sennay

    2015-01-01

    The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW) model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2, and V3. However, BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain. PMID:25642183

  15. A versatile new technique to clear mouse and human brain

    NASA Astrophysics Data System (ADS)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  16. Correlation between human observer performance and model observer performance in differential phase contrast CT

    SciTech Connect

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD

  17. Long-term use of psychedelic drugs is associated with differences in brain structure and personality in humans.

    PubMed

    Bouso, José Carlos; Palhano-Fontes, Fernanda; Rodríguez-Fornells, Antoni; Ribeiro, Sidarta; Sanches, Rafael; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Riba, Jordi

    2015-04-01

    Psychedelic agents have a long history of use by humans for their capacity to induce profound modifications in perception, emotion and cognitive processes. Despite increasing knowledge of the neural mechanisms involved in the acute effects of these drugs, the impact of sustained psychedelic use on the human brain remains largely unknown. Molecular pharmacology studies have shown that psychedelic 5-hydroxytryptamine (5HT)2A agonists stimulate neurotrophic and transcription factors associated with synaptic plasticity. These data suggest that psychedelics could potentially induce structural changes in brain tissue. Here we looked for differences in cortical thickness (CT) in regular users of psychedelics. We obtained magnetic resonance imaging (MRI) images of the brains of 22 regular users of ayahuasca (a preparation whose active principle is the psychedelic 5HT2A agonist N,N-dimethyltryptamine (DMT)) and 22 controls matched for age, sex, years of education, verbal IQ and fluid IQ. Ayahuasca users showed significant CT differences in midline structures of the brain, with thinning in the posterior cingulate cortex (PCC), a key node of the default mode network. CT values in the PCC were inversely correlated with the intensity and duration of prior use of ayahuasca and with scores on self-transcendence, a personality trait measuring religiousness, transpersonal feelings and spirituality. Although direct causation cannot be established, these data suggest that regular use of psychedelic drugs could potentially lead to structural changes in brain areas supporting attentional processes, self-referential thought, and internal mentation. These changes could underlie the previously reported personality changes in long-term users and highlight the involvement of the PCC in the effects of psychedelics. PMID:25637267

  18. Simple instrument for biochemical studies of the living human brain

    SciTech Connect

    Bice, A.N.; Wagner, H.N. Jr.; Lee, M.C.; Frost, J.J.

    1986-09-01

    A simple, relatively inexpensive radiation detection system was developed for measurement of positron-emitting receptor-binding drugs in the human brain. This high-efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of (/sup 11/C)-carfentanil, a high-affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist exemplifies the use of this system for estimating different degrees of receptor binding of drugs in the human brain. The instrument has also been used for measurement of the transport into the brain of other positron-emitting radiotracers, such as large neutral amino acids.

  19. Rock magnetism linked to human brain magnetite

    NASA Astrophysics Data System (ADS)

    Kirschvink, Joseph L.

    Magnetite has a long and distinguished career as one of the most important minerals in geophysics, as it is responsible for most of the remanent magnetization in marine sediments and the oceanic crust. It may come as a surprise to discover that it also ranks as the third or fourth most diverse mineral product formed biochemically by living organisms, and forms naturally in a variety of human tissues [Kirschvink et al., 1992].Magnetite was discovered in teeth of the Polyplacophora mollusks over 30 years ago, in magnetotactic bacteria nearly 20 years ago, in honey bees and homing pigeons nearly 15 years ago, but only recently in human tissue.

  20. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  1. Determination of Single-Kidney Glomerular Filtration Rate in Human Subjects by Using CT

    PubMed Central

    Kwon, Soon Hyo; Saad, Ahmed; Herrmann, Sandra M.; Textor, Stephen C.

    2015-01-01

    Purpose To test the hypothesis that computed tomography (CT)–derived measurements of single-kidney glomerular filtration rate (GFR) obtained in human subjects with 64-section CT agree with those obtained with iothalamate clearance, a rigorous reference standard. Materials and Methods The institutional review board approved this HIPAA-compliant study, and written informed consent was obtained. Ninety-six patients (age range, 51–73 years; 46 men, 50 women) with essential (n = 56) or renovascular (n = 40) hypertension were prospectively studied in controlled conditions (involving sodium intake and renin-angiotensin blockade). Single-kidney perfusion, volume, and GFR were measured by using multidetector CT time-attenuation curves and were compared with GFR measured by using iothalamate clearance, as assigned to the right and left kidney according to relative volumes. The reproducibility of CT GFR over a 3-month period (n = 21) was assessed in patients with renal artery stenosis who were undergoing stable medical treatment. Statistical analysis included the t test, Wilcoxon signed rank test, linear regression, and Bland-Altman analysis. Results CT GFR values were similar to those of iothalamate clearance (mean ± standard deviation, 38.2 mL/min ± 18 vs 41.6 mL/min ± 17; P = .062). Stenotic kidney CT GFR in patients with renal artery stenosis was lower than contralateral kidney GFR or essential hypertension single-kidney GFR (mean, 23.1 mL/min ± 13 vs 36.9 mL/min ± 17 [P = .0008] and 45.2 mL/min ± 16 [P = .019], respectively), as was iothalamate clearance (mean, 26.9 mL/min ± 14 vs 38.5 mL/min ± 15 [P = .0004] and 49.0 mL/min ± 14 [P = .001], respectively). CT GFR correlated well with iothalamate GFR (linear regression, CT GFR = 0.88*iothalamate GFR, r2 = 0.89, P < .0001), and Bland-Altman analysis was used to confirm the agreement. CT GFR was also moderately reproducible in medically treated patients with renal artery stenosis (concordance coefficient

  2. Expression of glutamate carboxypeptidase II in human brain.

    PubMed

    Sácha, P; Zámecník, J; Barinka, C; Hlouchová, K; Vícha, A; Mlcochová, P; Hilgert, I; Eckschlager, T; Konvalinka, J

    2007-02-23

    Glutamate carboxypeptidase II (GCPII) is a transmembrane glycoprotein expressed in various tissues. When expressed in the brain it cleaves the neurotransmitter N-acetylaspartylglutamate (NAAG), yielding free glutamate. In jejunum it hydrolyzes folylpoly-gamma-glutamate, thus facilitating folate absorption. The prostate form of GCPII, known as prostate specific membrane antigen (PSMA), is an established cancer marker. The NAAG-hydrolyzing activity of GCPII has been implicated in a number of pathological conditions in which glutamate is neurotoxic (e.g. amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, epilepsy, schizophrenia, and stroke). Inhibition of GCPII was shown to be neuroprotective in tissue culture and in animal models. GCPII is therefore an interesting putative therapeutic target. However, only very limited and controversial data on the expression and localization of GCPII in human brain are available. Therefore, we set out to analyze the activity and expression of GCPII in various compartments of the human brain using a radiolabeled substrate of the enzyme and the novel monoclonal antibody GCP-04, which recognizes an epitope on the extracellular portion of the enzyme and is more sensitive to GCPII than to the homologous GCPIII. We show that this antibody is more sensitive in immunoblots than the widely used antibody 7E11. By Western blot, we show that there are approximately 50-300 ng of GCPII/mg of total protein in human brain, depending on the specific area. Immunohistochemical analysis revealed that astrocytes specifically express GCPII in all parts of the brain. GCPII is enzymatically active and the level of activity follows the expression pattern. Using pure recombinant GCPII and homologous GCPIII, we conclude that GCPII is responsible for the majority of overall NAAG-hydrolyzing activity in the human brain. PMID:17150306

  3. Stem Cells Expand Insights into Human Brain Evolution.

    PubMed

    Dyer, Michael A

    2016-04-01

    Substantial expansion in the number of cerebral cortex neurons is thought to underlie cognitive differences between humans and other primates, although the mechanisms underlying this expansion are unclear. Otani et al. (2016) utilize PSC-derived brain organoids to study how species-specific differences in cortical progenitor proliferation may underlie cortical evolution. PMID:27058930

  4. Exploring human brain lateralization with molecular genetics and genomics.

    PubMed

    Francks, Clyde

    2015-11-01

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic-developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions. PMID:25950729

  5. MicroPET/CT assessment of FDG uptake in brain after long-term methylphenidate treatment in nonhuman primates.

    PubMed

    Zhang, X; Newport, G D; Callicott, R; Liu, S; Thompson, J; Berridge, M S; Apana, S M; Slikker, W; Wang, C; Paule, M G

    2016-01-01

    Methylphenidate (MPH) is a psychostimulant commonly used for the treatment of Attention-Deficit Hyperactivity Disorder (ADHD). Since the long-term effects of this drug on the central nervous system (CNS) are not well understood, we conducted microPET/CT scans on young adult male rhesus monkeys (n=4/group) to gather information on brain metabolism using the uptake of [(18)F]Fluoro-2-deoxy-2-d-glucose (FDG) as a marker. Approximately two-year old, male rhesus monkeys were treated orally with MPH twice per day, five days per week (M-F) over a 6-year period. Subjects received MPH at either 2.5 or 12.5mg/kg/dose or vehicle (Prang). To minimize the acute effects of MPH on FDG uptake, microPET/CT scans were scheduled on Mondays before their first daily dosing of the week (approximately 68h since their last treatment). FDG (370±8.88MBq) was injected intravenously and 30min later microPET/CT images were obtained over 60min. Radiolabeled tracer accumulation in regions of interest (ROIs) in the prefrontal cortex, temporal cortex, striatum and cerebellum were converted into Standard Uptake Values (SUVs). Compared to the control group, the uptake of FDG in the cerebellum was significantly decreased in both the low and high dose groups. These preliminary data demonstrate that microPET imaging is capable of distinguishing differences in retention of FDG in the brains of NHPs treated chronically with MPH and suggests that this approach may provide a minimally invasive biomarker for exploring the effects of chronic MPH treatment on aspects of brain function. PMID:27307090

  6. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  7. The modular and integrative functional architecture of the human brain

    PubMed Central

    Bertolero, Maxwell A.; Yeo, B. T. Thomas; D’Esposito, Mark

    2015-01-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules’ processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author–topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network’s modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules’ functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain’s modular yet integrated implementation of cognitive functions. PMID:26598686

  8. The human brain response to dental pain relief.

    PubMed

    Meier, M L; Widmayer, S; Abazi, J; Brügger, M; Lukic, N; Lüchinger, R; Ettlin, D A

    2015-05-01

    Local anesthesia has made dental treatment more comfortable since 1884, but little is known about associated brain mechanisms. Functional magnetic resonance imaging is a modern neuroimaging tool widely used for investigating human brain activity related to sensory perceptions, including pain. Most brain regions that respond to experimental noxious stimuli have recently been found to react not only to nociception alone, but also to visual, auditory, and other stimuli. Thus, presumed functional attributions have come under scrutiny regarding selective pain processing in the brain. Evidently, innovative approaches are warranted to identify cerebral regions that are nociceptive specific. In this study, we aimed at circumventing known methodological confounders by applying a novel paradigm in 14 volunteers: rather than varying the intensity and thus the salience of painful stimuli, we applied repetitive noxious dental stimuli at constant intensity to the left mandibular canine. During the functional magnetic resonance imaging paradigm, we suppressed the nociceptive barrage by a mental nerve block. Brain activity before and after injection of 4% articaine was compared intraindividually on a group level. Dental pain extinction was observed to correspond to activity reduction in a discrete region of the left posterior insular cortex. These results confirm previous reports demonstrating that direct electrical stimulation of this brain region-but not of others-evokes bodily pain sensations. Hence, our investigation adds further evidence to the notion that the posterior insula plays a unique role in nociceptive processing. PMID:25691071

  9. Topological Isomorphisms of Human Brain and Financial Market Networks

    PubMed Central

    Vértes, Petra E.; Nicol, Ruth M.; Chapman, Sandra C.; Watkins, Nicholas W.; Robertson, Duncan A.; Bullmore, Edward T.

    2011-01-01

    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets – the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular – more highly optimized for information processing – than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets. PMID:22007161

  10. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    SciTech Connect

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W.; Sloan, Andrew

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A

  11. Abnormal deposits of chromium in the pathological human brain.

    PubMed Central

    Duckett, S

    1986-01-01

    Three patients presented with encephalopathies: an undiagnosed degenerative disease of the brain, a degenerative cerebral disease in a patient with a myeloma but without a myelomatous deposit in the CNS and a malignant astrocytoma. Perivascular pallidal deposits (vascular siderosis) containing chromium, phosphorus and calcium plus sometimes traces of other elements were present in the three cases. Such deposits were present in the pallidal parenchyma and around vessels in the cerebellum in one case. Calcium and phosphorus are always present in any CNS calcification but the presence of chromium has not been reported. Chromium and its compounds (ingested, injected or inhaled) are toxic to humans and animals in trace doses. Approximately 900 cases of chromium intoxication have been reported and usually have had dermatological or pulmonary lesions (including cancer) but there is no report of involvement of the CNS. Sublethal doses of chromium nitrate injected intraperitoneally in rats and rabbits results in the presence of chromium in the brain. A thorough investigation was made to find the source of the chromium in these patients. Chromium was found to be present in trace amounts in the radiological contrast agents administered to these patients and in the KCl replacement solution and in mylanta, an antacid, given to one case. The evidence that chromium induced pathological changes in these three brains is circumstantial but shows that chromium can penetrate the human brain. This study indicates that vascular siderosis found in the brains of the majority of middle-aged and elderly humans is not simply an anecdotal pathological curiosity, but that it can serve as a route of entry for toxic products into the brain. Images PMID:3958742

  12. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides.

    PubMed

    Sarbu, Mirela; Robu, Adrian C; Ghiulai, Roxana M; Vukelić, Željka; Clemmer, David E; Zamfir, Alina D

    2016-05-17

    The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series. PMID:27088833

  13. Nuclear magnetic resonance imaging and spectroscopy of human brain function.

    PubMed Central

    Shulman, R G; Blamire, A M; Rothman, D L; McCarthy, G

    1993-01-01

    The techniques of in vivo magnetic resonance (MR) imaging and spectroscopy have been established over the past two decades. Recent applications of these methods to study human brain function have become a rapidly growing area of research. The development of methods using standard MR contrast agents within the cerebral vasculature has allowed measurements of regional cerebral blood volume (rCBV), which are activity dependent. Subsequent investigations linked the MR relaxation properties of brain tissue to blood oxygenation levels which are also modulated by consumption and blood flow (rCBF). These methods have allowed mapping of brain activity in human visual and motor cortex as well as in areas of the frontal lobe involved in language. The methods have high enough spatial and temporal sensitivity to be used in individual subjects. MR spectroscopy of proton and carbon-13 nuclei has been used to measure rates of glucose transport and metabolism in the human brain. The steady-state measurements of brain glucose concentrations can be used to monitor the glycolytic flux, whereas subsequent glucose metabolism--i.e., the flux into the cerebral glutamate pool--can be used to measure tricarboxylic acid cycle flux. Under visual stimulation the concentration of lactate in the visual cortex has been shown to increase by MR spectroscopy. This increase is compatible with an increase of anaerobic glycolysis under these conditions as earlier proposed from positron emission tomography studies. It is shown how MR spectroscopy can extend this understanding of brain metabolism. Images Fig. 1 Fig. 2 Fig. 3 PMID:8475050

  14. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  15. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    SciTech Connect

    Andreasen, Daniel; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon A. L.; Edmund, Jens M.

    2015-04-15

    Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of a patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and

  16. Brain Connectivity Associated with Muscle Synergies in Humans

    PubMed Central

    Rana, Manku; Yani, Moheb S.; Asavasopon, Skulpan; Fisher, Beth E.

    2015-01-01

    The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor hallucis longus (FHL, a toe flexor) and the anal sphincter, as a model that we show to be well suited in elucidating the neural connectivity underlying muscle synergy control. First, using electromyographic recordings, we demonstrate that voluntary FHL contraction is associated with synergistic anal sphincter contraction, but voluntary anal sphincter contraction occurs without FHL contraction. Second, using fMRI, we show that two important medial wall motor cortical regions emerge in relation to these tasks: one located more posteriorly that preferentially activates during voluntary FHL contraction and one located more anteriorly that activates during both voluntary FHL contraction as well as voluntary anal sphincter contraction. Third, using transcranial magnetic stimulation, we demonstrate that the anterior region is more likely to generate anal sphincter contraction than FHL contraction. Finally, using a repository resting-state fMRI dataset, we demonstrate that the anterior and posterior motor cortical regions have significantly different functional connectivity with distinct and distant brain regions. We conclude that specific motor cortical regions in humans provide access to different muscle synergies, which may allow distinct brain networks to coordinate muscle synergies during functional tasks. SIGNIFICANCE STATEMENT How the human nervous system coordinates activity in a large number of muscles is a fundamental question. The brain and spinal cord are believed to simplify the control of muscles by grouping them into functional units called muscle synergies. Motor cortex is

  17. Cell culture: Progenitor cells from human brain after death

    NASA Astrophysics Data System (ADS)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  18. Progress and challenges in probing the human brain.

    PubMed

    Poldrack, Russell A; Farah, Martha J

    2015-10-15

    Perhaps one of the greatest scientific challenges is to understand the human brain. Here we review current methods in human neuroscience, highlighting the ways that they have been used to study the neural bases of the human mind. We begin with a consideration of different levels of description relevant to human neuroscience, from molecules to large-scale networks, and then review the methods that probe these levels and the ability of these methods to test hypotheses about causal mechanisms. Functional MRI is considered in particular detail, as it has been responsible for much of the recent growth of human neuroscience research. We briefly review its inferential strengths and weaknesses and present examples of new analytic approaches that allow inferences beyond simple localization of psychological processes. Finally, we review the prospects for real-world applications and new scientific challenges for human neuroscience. PMID:26469048

  19. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    PubMed

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-01-01

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too. PMID:22947971

  20. CT imaging of the internal human ear: Test of a high resolution scanner

    NASA Astrophysics Data System (ADS)

    Bettuzzi, M.; Brancaccio, R.; Morigi, M. P.; Gallo, A.; Strolin, S.; Casali, F.; Lamanna, Ernesto; Ariù, Marilù

    2011-08-01

    During the course of 2009, in the framework of a project supported by the National Institute of Nuclear Physics, a number of tests were carried out at the Department of Physics of the University of Bologna in order to achieve a good quality CT scan of the internal human ear. The work was carried out in collaboration with the local “S. Orsola” Hospital in Bologna and a company (CEFLA) already involved in the production and commercialization of a CT scanner dedicated to dentistry. A laboratory scanner with a simple concept detector (CCD camera-lens-mirror-scintillator) was used to see to what extent it was possible to enhance the quality of a conventional CT scanner when examining the internal human ear. To test the system, some conventional measurements were made, such as the spatial resolution calculation with the MTF and dynamic range evaluation. Different scintillators were compared to select the most suitable for the purpose. With 0.5 mm thick structured cesium iodide and a field of view of 120×120 mm2, a spatial resolution of 6.5l p/mm at 5% MTF was obtained. The CT of a pair of human head phantoms was performed at an energy of 120 kVp. The first phantom was a rough representation of the human head shape, with soft tissue made of coarse slabs of Lucite. Some inserts, like small aluminum cylinders and cubes, with 1 mm diameter drilled holes, were used to simulate the channels that one finds inside the human inner ear. The second phantom is a plastic PVC fused head with a real human cranium inside. The bones in the cranium are well conserved and the inner ear features, such as the cochlea and semicircular channels, are clearly detectable. After a number of CT tests we obtained good results as far as structural representation and channel detection are concerned. Some images of the 3D rendering of the CT volume are shown below. The doctors of the local hospital who followed our experimentation expressed their satisfaction. The CT was compared to a virtual

  1. Development of a Human Head FE Model and Impact Simulation on the Focal Brain Injury

    NASA Astrophysics Data System (ADS)

    Watanabe, Dai; Yuge, Kohei; Nishimoto, Tetsuya; Murakami, Shigeyuki; Takao, Hiroyuki

    In this paper, a three-dimensional digital human-head model was developed and several dynamic analyses on the head trauma were conducted. This model was built up by the VOXEL approach using 433 slice CT images (512×512 pixels) and made of 1.22 million parallelepiped finite elements with 10 anatomical tissue properties such as scalp, CSF, skull, brain, dura mater and so on. The numerical analyses were conducted using a finite element code the authors have developed. The main features of the code are 1) it is based on the explicit time integration method and 2) it uses the one point integration method to evaluate the equivalent nodal forces with the hourglass control proposed by Flanagan and Belytschko(1) and 3) it utilizes the parallel computation system based on MPI. In order to verify the developed model, the head impact experiment for a cadaver by Nahum et al.(2) was simulated. The calculated results showed good agreement with the experimental ones. A front and rear impact analyses were also performed to discuss on the characteristic measure of the brain injury, in which the von-Mises stress was high in the frontal lobe in both of the analyses because of the large deformations of a frontal cranial base. This result suggests that the von-Mises stress can be a good measure of the brain injury since it is empirically well known that the frontal lobe tends to get injured regardless of the impact positions.

  2. An Embodied Brain Model of the Human Foetus.

    PubMed

    Yamada, Yasunori; Kanazawa, Hoshinori; Iwasaki, Sho; Tsukahara, Yuki; Iwata, Osuke; Yamada, Shigehito; Kuniyoshi, Yasuo

    2016-01-01

    Cortical learning via sensorimotor experiences evoked by bodily movements begins as early as the foetal period. However, the learning mechanisms by which sensorimotor experiences guide cortical learning remain unknown owing to technical and ethical difficulties. To bridge this gap, we present an embodied brain model of a human foetus as a coupled brain-body-environment system by integrating anatomical/physiological data. Using this model, we show how intrauterine sensorimotor experiences related to bodily movements induce specific statistical regularities in somatosensory feedback that facilitate cortical learning of body representations and subsequent visual-somatosensory integration. We also show how extrauterine sensorimotor experiences affect these processes. Our embodied brain model can provide a novel computational approach to the mechanistic understanding of cortical learning based on sensorimotor experiences mediated by complex interactions between the body, environment and nervous system. PMID:27302194

  3. An Embodied Brain Model of the Human Foetus

    PubMed Central

    Yamada, Yasunori; Kanazawa, Hoshinori; Iwasaki, Sho; Tsukahara, Yuki; Iwata, Osuke; Yamada, Shigehito; Kuniyoshi, Yasuo

    2016-01-01

    Cortical learning via sensorimotor experiences evoked by bodily movements begins as early as the foetal period. However, the learning mechanisms by which sensorimotor experiences guide cortical learning remain unknown owing to technical and ethical difficulties. To bridge this gap, we present an embodied brain model of a human foetus as a coupled brain-body-environment system by integrating anatomical/physiological data. Using this model, we show how intrauterine sensorimotor experiences related to bodily movements induce specific statistical regularities in somatosensory feedback that facilitate cortical learning of body representations and subsequent visual-somatosensory integration. We also show how extrauterine sensorimotor experiences affect these processes. Our embodied brain model can provide a novel computational approach to the mechanistic understanding of cortical learning based on sensorimotor experiences mediated by complex interactions between the body, environment and nervous system. PMID:27302194

  4. Assessment of Traumatic Brain Injury by Increased 64Cu Uptake on 64CuCl2 PET/CT

    PubMed Central

    Peng, Fangyu; Muzik, Otto; Gatson, Joshua; Kernie, Steven G.; Diaz-Arrastia, Ramon

    2015-01-01

    Copper is a nutritional trace element required for cell proliferation and wound repair. Methods To explore increased copper uptake as a biomarker for noninvasive assessment of traumatic brain injury (TBI), experimental TBI in C57BL/6 mice was induced by controlled cortical impact, and 64Cu uptake in the injured cortex was assessed with 64CuCl2 PET/CT. Results At 24 h after intravenous injection of the tracer, uptake was significantly higher in the injured cortex of TBI mice (1.15 ± 0.53 percentage injected dose per gram of tissue [%ID/g]) than in the uninjured cortex of mice without TBI (0.53 ± 0.07 %ID/g, P = 0.027) or the cortex of mice that received an intracortical injection of zymosan A (0.62 ± 0.22 %ID/g, P = 0.025). Furthermore, uptake in the traumatized cortex of untreated TBI mice (1.15 ± 0.53 %ID/g) did not significantly differ from that in minocycline-treated TBI mice (0.93 ± 0.30 %ID/g, P = 0.33). Conclusion Overall, the data suggest that increased 64Cu uptake in traumatized brain tissues holds potential as a new biomarker for noninvasive assessment of TBI with 64CuCl2 PET/CT. PMID:26112025

  5. The adult human brain harbors multipotent perivascular mesenchymal stem cells.

    PubMed

    Paul, Gesine; Özen, Ilknur; Christophersen, Nicolaj S; Reinbothe, Thomas; Bengzon, Johan; Visse, Edward; Jansson, Katarina; Dannaeus, Karin; Henriques-Oliveira, Catarina; Roybon, Laurent; Anisimov, Sergey V; Renström, Erik; Svensson, Mikael; Haegerstrand, Anders; Brundin, Patrik

    2012-01-01

    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain. PMID:22523602

  6. Sigma and opioid receptors in human brain tumors

    SciTech Connect

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. )

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  7. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings. PMID:27623144

  8. Cone-beam CT of traumatic brain injury using statistical reconstruction with a post-artifact-correction noise model

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Sisniega, A.; Xu, J.; Zbijewski, W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. The current front-line imaging modality for TBI detection is CT, which reliably detects intracranial hemorrhage (fresh blood contrast 30-50 HU, size down to 1 mm) in non-contrast-enhanced exams. Compared to CT, flat-panel detector (FPD) cone-beam CT (CBCT) systems offer lower cost, greater portability, and smaller footprint suitable for point-of-care deployment. We are developing FPD-CBCT to facilitate TBI detection at the point-of-care such as in emergent, ambulance, sports, and military applications. However, current FPD-CBCT systems generally face challenges in low-contrast, soft-tissue imaging. Model-based reconstruction can improve image quality in soft-tissue imaging compared to conventional filtered back-projection (FBP) by leveraging high-fidelity forward model and sophisticated regularization. In FPD-CBCT TBI imaging, measurement noise characteristics undergo substantial change following artifact correction, resulting in non-negligible noise amplification. In this work, we extend the penalized weighted least-squares (PWLS) image reconstruction to include the two dominant artifact corrections (scatter and beam hardening) in FPD-CBCT TBI imaging by correctly modeling the variance change following each correction. Experiments were performed on a CBCT test-bench using an anthropomorphic phantom emulating intra-parenchymal hemorrhage in acute TBI, and the proposed method demonstrated an improvement in blood-brain contrast-to-noise ratio (CNR = 14.2) compared to FBP (CNR = 9.6) and PWLS using conventional weights (CNR = 11.6) at fixed spatial resolution (1 mm edge-spread width at the target contrast). The results support the hypothesis that FPD-CBCT can fulfill the image quality requirements for reliable TBI detection, using high-fidelity artifact correction and statistical reconstruction with accurate post-artifact-correction noise models.

  9. Integrative regulation of human brain blood flow

    PubMed Central

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-01-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60–150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  10. Integrative regulation of human brain blood flow.

    PubMed

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-03-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60-150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  11. Red and NIR light dosimetry in the human deep brain

    NASA Astrophysics Data System (ADS)

    Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.

    2015-04-01

    Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated μeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.

  12. The maternal brain and its plasticity in humans.

    PubMed

    Kim, Pilyoung; Strathearn, Lane; Swain, James E

    2016-01-01

    This article is part of a Special Issue "Parental Care". Early mother-infant relationships play important roles in infants' optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers' brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  13. Pulsatile cerebrospinal fluid dynamics in the human brain.

    PubMed

    Linninger, Andreas A; Tsakiris, Cristian; Zhu, David C; Xenos, Michalis; Roycewicz, Peter; Danziger, Zachary; Penn, Richard

    2005-04-01

    Disturbances of the cerebrospinal fluid (CSF) flow in the brain can lead to hydrocephalus, a condition affecting thousands of people annually in the US. Considerable controversy exists about fluid and pressure dynamics, and about how the brain responds to changes in flow patterns and compression in hydrocephalus. This paper presents a new model based on the first principles of fluid mechanics. This model of fluid-structure interactions predicts flows and pressures throughout the brain's ventricular pathways consistent with both animal intracranial pressure (ICP) measurements and human CINE phase-contrast magnetic resonance imaging data. The computations provide approximations of the tissue deformations of the brain parenchyma. The model also quantifies the pulsatile CSF motion including flow reversal in the aqueduct as well as the changes in ICPs due to brain tissue compression. It does not require the existence of large transmural pressure differences as the force for ventricular expansion. Finally, the new model gives an explanation of communicating hydrocephalus and the phenomenon of asymmetric hydrocephalus. PMID:15825857

  14. Lifespan maturation and degeneration of human brain white matter.

    PubMed

    Yeatman, Jason D; Wandell, Brian A; Mezer, Aviv A

    2014-01-01

    Properties of human brain tissue change across the lifespan. Here we model these changes in the living human brain by combining quantitative magnetic resonance imaging (MRI) measurements of R1 (1/T1) with diffusion MRI and tractography (N=102, ages 7-85). The amount of R1 change during development differs between white-matter fascicles, but in each fascicle the rate of development and decline are mirror-symmetric; the rate of R1 development as the brain approaches maturity predicts the rate of R1 degeneration in aging. Quantitative measurements of macromolecule tissue volume (MTV) confirm that R1 is an accurate index of the growth of new brain tissue. In contrast to R1, diffusion development follows an asymmetric time-course with rapid childhood changes but a slow rate of decline in old age. Together, the time-courses of R1 and diffusion changes demonstrate that multiple biological processes drive changes in white-matter tissue properties over the lifespan. PMID:25230200

  15. Characterization of T2* Heterogeneity in Human Brain White Matter

    PubMed Central

    Li, Tie-Qiang; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Dodd, Stephen; Talagala, Lalith; Koretsky, Alan P.; Duyn, Jeff

    2012-01-01

    Recent in vivo MRI studies at 7.0 T have demonstrated extensive heterogeneity of T2* relaxation in white matter of the human brain. In order to study the origin of this heterogeneity, we performed T2* measurements at 1.5, 3.0, and 7.0 T in normal volunteers. Formalin-fixed brain tissue specimens were also studied using T2*-weighted MRI, histological staining, chemical analysis, and electron microscopy. We found that T2* relaxation rate (R2*=1/ T2*) in white matter in living human brain is linearly dependent on the main magnetic field strength and the T2* heterogeneity in white matter observed at 7.0 T can also be detected, albeit weaker, at 1.5 and 3.0 T. The T2* heterogeneity exists also in white matter of the formalin fixed brain tissue specimens, with prominent differences between the major fiber bundles such as the cingulum and the superior corona radiada. The white matter specimen with substantial difference in T2*have no significant difference in the total iron content as determined by chemical analysis. On the other hand, evidence from histological staining and electron microscopy demonstrate these tissue specimen have apparent difference in myelin content and microstructure. PMID:19859939

  16. Virtual model of the human brain for neurosurgical simulation.

    PubMed

    De Paolis, Lucio T; De Mauro, Alessandro; Raczkowsky, Joerg; Aloisio, Giovanni

    2009-01-01

    The aim of this work is to develop a realistic virtual model of the human brain that could be used in a neurosurgical simulation for both educational and preoperative planning purposes. The goal of such a system would be to enhance the practice of surgery students, avoiding the use of animals, cadavers and plastic phantoms. A surgeon, before carrying out the real procedure, will, with this system, be able to rehearse by using a surgical simulator based on detailed virtual reality models of the human brain, reconstructed with real patient's medical images. In order to obtain a realistic and useful simulation we focused our research on the physical modelling of the brain as a deformable body and on the interactions with surgical instruments. The developed prototype is based on the mass-spring-damper model and, in order to obtain deformations similar to the real ones, a three tiered structure has been built. In this way, we have obtained local and realistic deformations using an ad-hoc point distribution in the volume where the contact between the brain surface and a surgical instrument takes place. PMID:19745425

  17. Sex differences in the structural connectome of the human brain.

    PubMed

    Ingalhalikar, Madhura; Smith, Alex; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2014-01-14

    Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes. PMID:24297904

  18. The Evolution of Brains from Early Mammals to Humans

    PubMed Central

    Kaas, Jon H.

    2012-01-01

    The large size and complex organization of the human brain makes it unique among primate brains. In particular, the neocortex constitutes about 80% of the brain, and this cortex is subdivided into a large number of functionally specialized regions, the cortical areas. Such a brain mediates accomplishments and abilities unmatched by any other species. How did such a brain evolve? Answers come from comparative studies of the brains of present-day mammals and other vertebrates in conjunction with information about brain sizes and shapes from the fossil record, studies of brain development, and principles derived from studies of scaling and optimal design. Early mammals were small, with small brains, an emphasis on olfaction, and little neocortex. Neocortex was transformed from the single layer of output pyramidal neurons of the dorsal cortex of earlier ancestors to the six layers of all present-day mammals. This small cap of neocortex was divided into 20–25 cortical areas, including primary and some of the secondary sensory areas that characterize neocortex in nearly all mammals today. Early placental mammals had a corpus callosum connecting the neocortex of the two hemispheres, a primary motor area, M1, and perhaps one or more premotor areas. One line of evolution, Euarchontoglires, led to present-day primates, tree shrews, flying lemurs, rodents and rabbits. Early primates evolved from small-brained, nocturnal, insect-eating mammals with an expanded region of temporal visual cortex. These early nocturnal primates were adapted to the fine branch niche of the tropical rainforest by having an even more expanded visual system that mediated visually guided reaching and grasping of insects, small vertebrates, and fruits. Neocortex was greatly expanded, and included an array of cortical areas that characterize neocortex of all living primates. Specializations of the visual system included new visual areas that contributed to a dorsal stream of visuomotor processing in a

  19. Optic nerve sheath diameter on initial brain CT, raised intracranial pressure and mortality after severe TBI: an interesting link needing confirmation.

    PubMed

    Masquère, Pierre; Bonneville, Fabrice; Geeraerts, Thomas

    2013-01-01

    Optic nerve sheath diameter (ONSD) enlargement on initial computed tomography (CT) scan has been found to be associated with increased mortality after severe traumatic brain injury. This could offer the possibility to detect patients with raised intracranial pressure requiring urgent therapeutic interventions and/or invasive intracranial monitoring to guide the treatment. The method to measure ONSD using CT scan, however, needs further confirmation. Moreover, the link between ONSD enlargement on initial CT scan and raised intracranial pressure also needs to be confirmed by further studies. PMID:23751121

  20. A Novel Human Body Area Network for Brain Diseases Analysis.

    PubMed

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system. PMID:27526187

  1. Beyond Genotype: Serotonin Transporter Epigenetic Modification Predicts Human Brain Function

    PubMed Central

    Nikolova, Yuliya S.; Koenen, Karestan C.; Galea, Sandro; Wang, Chiou-Miin; Seney, Marianne L.; Sibille, Etienne; Williamson, Douglas E.; Hariri, Ahmad R.

    2014-01-01

    We examined epigenetic regulation in regards to behaviorally and clinically relevant human brain function. Specifically, we found that increased promoter methylation of the serotonin transporter gene predicted increased threat-related amygdala reactivity and decreased mRNA expression in postmortem amygdala tissue. These patterns were independent of functional genetic variation in the same region. Furthermore, the association with amygdala reactivity was replicated in a second cohort and was robust to both sampling methods and age. PMID:25086606

  2. Shape analysis of the human brain: a brief survey.

    PubMed

    Nitzken, Matthew J; Casanova, Manuel F; Gimelfarb, Georgy; Inanc, Tamer; Zurada, Jacek M; El-Baz, Ayman

    2014-07-01

    The survey outlines and compares popular computational techniques for quantitative description of shapes of major structural parts of the human brain, including medial axis and skeletal analysis, geodesic distances, Procrustes analysis, deformable models, spherical harmonics, and deformation morphometry, as well as other less widely used techniques. Their advantages, drawbacks, and emerging trends, as well as results of applications, in particular, for computer-aided diagnostics, are discussed. PMID:25014938

  3. Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction.

    PubMed

    Kawasaki, Masahiro; Yamada, Yohei; Ushiku, Yosuke; Miyauchi, Eri; Yamaguchi, Yoko

    2013-01-01

    Behavioral rhythms synchronize between humans for communication; however, the relationship of brain rhythm synchronization during speech rhythm synchronization between individuals remains unclear. Here, we conducted alternating speech tasks in which two subjects alternately pronounced letters of the alphabet during hyperscanning electroencephalography. Twenty pairs of subjects performed the task before and after each subject individually performed the task with a machine that pronounced letters at almost constant intervals. Speech rhythms were more likely to become synchronized in human-human tasks than human-machine tasks. Moreover, theta/alpha (6-12 Hz) amplitudes synchronized in the same temporal and lateral-parietal regions in each pair. Behavioral and inter-brain synchronizations were enhanced after human-machine tasks. These results indicate that inter-brain synchronizations are tightly linked to speech synchronizations between subjects. Furthermore, theta/alpha inter-brain synchronizations were also found in subjects while they observed human-machine tasks, which suggests that the inter-brain synchronization might reflect empathy for others' speech rhythms. PMID:23603749

  4. Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study

    PubMed Central

    Huang, W-Y; Muo, C-H; Lin, C-Y; Jen, Y-M; Yang, M-H; Lin, J-C; Sung, F-C; Kao, C-H

    2014-01-01

    Background: To evaluate the possible association between paediatric head computed tomography (CT) examination and increased subsequent risk of malignancy and benign brain tumour. Methods: In the exposed cohort, 24 418 participants under 18 years of age, who underwent head CT examination between 1998 and 2006, were identified from the Taiwan National Health Insurance Research Database (NHIRD). Patients were followed up until a diagnosis of malignant disease or benign brain tumour, withdrawal from the National Health Insurance (NHI) system, or at the end of 2008. Results: The overall risk was not significantly different in the two cohorts (incidence rate=36.72 per 100 000 person-years in the exposed cohort, 28.48 per 100 000 person-years in the unexposed cohort, hazard ratio (HR)=1.29, 95% confidence interval (CI)=0.90–1.85). The risk of benign brain tumour was significantly higher in the exposed cohort than in the unexposed cohort (HR=2.97, 95% CI=1.49–5.93). The frequency of CT examination showed strong correlation with the subsequent overall risk of malignancy and benign brain tumour. Conclusions: We found that paediatric head CT examination was associated with an increased incidence of benign brain tumour. A large-scale study with longer follow-up is necessary to confirm this result. PMID:24569470

  5. Imaging synaptic density in the living human brain.

    PubMed

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. PMID:27440727

  6. Contrast adaptive total p-norm variation minimization approach to CT reconstruction for artifact reduction in reduced-view brain perfusion CT

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Won; Kim, Jong-Hyo

    2011-03-01

    Perfusion CT (PCT) examinations are getting more frequently used for diagnosis of acute brain diseases such as hemorrhage and infarction, because the functional map images it produces such as regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), and mean transit time (MTT) may provide critical information in the emergency work-up of patient care. However, a typical PCT scans the same slices several tens of times after injection of contrast agent, which leads to much increased radiation dose and is inevitability of growing concern for radiation-induced cancer risk. Reducing the number of views in projection in combination of TV minimization reconstruction technique is being regarded as an option for radiation reduction. However, reconstruction artifacts due to insufficient number of X-ray projections become problematic especially when high contrast enhancement signals are present or patient's motion occurred. In this study, we present a novel reconstruction technique using contrast-adaptive TpV minimization that can reduce reconstruction artifacts effectively by using different p-norms in high contrast and low contrast objects. In the proposed method, high contrast components are first reconstructed using thresholded projection data and low p-norm total variation to reflect sparseness in both projection and reconstruction spaces. Next, projection data are modified to contain only low contrast objects by creating projection data of reconstructed high contrast components and subtracting them from original projection data. Then, the low contrast projection data are reconstructed by using relatively high p-norm TV minimization technique, and are combined with the reconstructed high contrast component images to produce final reconstructed images. The proposed algorithm was applied to numerical phantom and a clinical data set of brain PCT exam, and the resultant images were compared with those using filtered back projection (FBP) and conventional TV

  7. Shortcomings of the human brain and remedial action by religion

    NASA Astrophysics Data System (ADS)

    Reich, K. Helmut

    2010-03-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial action. To determine such an action, a broad-based dialogue is required, based on the most promising ontology and epistemology as well as on appropriate logics.

  8. Transolfactory neuroinvasion by viruses threatens the human brain.

    PubMed

    Mori, I

    2015-12-01

    Viral neuroinvasion via the olfactory system has been investigated in a variety of virus-animal models by scientists in many fields including virologists, pathologists, and neurologists. In humans, herpes simplex virus type 1 (HSV-1), human herpesvirus 6 (HHV-6), Borna disease virus, rabies virus, and influenza A virus have been shown to take the olfactory route for neuroinvasion based on forensic and post-mortem specimens. This article briefly summarizes the anatomy, physiology, and immunology of the olfactory system and presents a battery of neurovirulent viruses that may threaten the human brain by invading through this peripheral pathway, especially focusing on two of the most intensively studied viruses--HSV-1 and influenza A virus. Viruses may insidiously invade the olfactory neural network not only to precipitate encephalitis/encephalopathy but also to promote the development of neurodegenerative and demyelinating disorders. Substantial information obtained by analyzing human specimens is required to argue for or against this hypothesis. PMID:26666182

  9. Human sexual behavior related to pathology and activity of the brain.

    PubMed

    Komisaruk, Barry R; Rodriguez Del Cerro, Maria Cruz

    2015-01-01

    Reviewed in this chapter are: (1) correlations among human sexual behavior, brain pathology, and brain activity, including caveats regarding the interpretation of "cause and effect" among these factors, and the degree to which "hypersexuality" and reported changes in sexual orientation correlated with brain pathology are uniquely sexual or are attributable to a generalized disinhibition of brain function; (2) the effects, in some cases inhibitory, in others facilitatory, on sexual behavior and motivation, of stroke, epileptic seizures, traumatic brain injury, and brain surgery; and (3) insights into sexual motivation and behavior recently gained from functional brain imaging research and its interpretive limitations. We conclude from the reviewed research that the neural orchestra underlying the symphony of human sexuality comprises, rather than brain "centers," multiple integrated brain systems, and that there are more questions than answers in our understanding of the control of human sexual behavior by the brain - a level of understanding that is still in embryonic form. PMID:26003240

  10. Correction for human head motion in helical x-ray CT

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Sun, T.; Alcheikh, A. R.; Kuncic, Z.; Nuyts, J.; Fulton, R.

    2016-02-01

    Correction for rigid object motion in helical CT can be achieved by reconstructing from a modified source-detector orbit, determined by the object motion during the scan. This ensures that all projections are consistent, but it does not guarantee that the projections are complete in the sense of being sufficient for exact reconstruction. We have previously shown with phantom measurements that motion-corrected helical CT scans can suffer from data-insufficiency, in particular for severe motions and at high pitch. To study whether such data-insufficiency artefacts could also affect the motion-corrected CT images of patients undergoing head CT scans, we used an optical motion tracking system to record the head movements of 10 healthy volunteers while they executed each of the 4 different types of motion (‘no’, slight, moderate and severe) for 60 s. From these data we simulated 354 motion-affected CT scans of a voxelized human head phantom and reconstructed them with and without motion correction. For each simulation, motion-corrected (MC) images were compared with the motion-free reference, by visual inspection and with quantitative similarity metrics. Motion correction improved similarity metrics in all simulations. Of the 270 simulations performed with moderate or less motion, only 2 resulted in visible residual artefacts in the MC images. The maximum range of motion in these simulations would encompass that encountered in the vast majority of clinical scans. With severe motion, residual artefacts were observed in about 60% of the simulations. We also evaluated a new method of mapping local data sufficiency based on the degree to which Tuy’s condition is locally satisfied, and observed that areas with high Tuy values corresponded to the locations of residual artefacts in the MC images. We conclude that our method can provide accurate and artefact-free MC images with most types of head motion likely to be encountered in CT imaging, provided that the motion can

  11. MRI of the human brain at 130 microtesla

    PubMed Central

    Inglis, Ben; Buckenmaier, Kai; SanGiorgio, Paul; Pedersen, Anders F.; Nichols, Matthew A.; Clarke, John

    2013-01-01

    We present in vivo images of the human brain acquired with an ultralow field MRI (ULFMRI) system operating at a magnetic field B0 ∼ 130 μT. The system features prepolarization of the proton spins at Bp ∼ 80 mT and detection of the NMR signals with a superconducting, second-derivative gradiometer inductively coupled to a superconducting quantum interference device (SQUID). We report measurements of the longitudinal relaxation time T1 of brain tissue, blood, and scalp fat at B0 and Bp, and cerebrospinal fluid at B0. We use these T1 values to construct inversion recovery sequences that we combine with Carr–Purcell–Meiboom–Gill echo trains to obtain images in which one species can be nulled and another species emphasized. In particular, we show an image in which only blood is visible. Such techniques greatly enhance the already high intrinsic T1 contrast obtainable at ULF. We further present 2D images of T1 and the transverse relaxation time T2 of the brain and show that, as expected at ULF, they exhibit similar contrast. Applications of brain ULFMRI include integration with systems for magnetoencephalography. More generally, these techniques may be applicable, for example, to the imaging of tumors without the need for a contrast agent and to modalities recently demonstrated with T1ρ contrast imaging (T1 in the rotating frame) at fields of 1.5 T and above. PMID:24255111

  12. Human midsagittal brain shape variation: patterns, allometry and integration

    PubMed Central

    Bruner, Emiliano; Martin-Loeches, Manuel; Colom, Roberto

    2010-01-01

    Midsagittal cerebral morphology provides a homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships. In this study, midsagittal brain shape variation is investigated in a sample of 102 humans, in order to describe and quantify the major patterns of correlation between morphological features, the effect of size and sex on general anatomy, and the degree of integration between different cortical and subcortical areas. The only evident pattern of covariation was associated with fronto-parietal cortical bulging. The allometric component was weak for the cortical profile, but more robust for the posterior subcortical areas. Apparent sex differences were evidenced in size but not in brain shape. Cortical and subcortical elements displayed scarcely integrated changes, suggesting a modular separation between these two areas. However, a certain correlation was found between posterior subcortical and parietal cortical variations. These results should be directly integrated with information ranging from functional craniology to wiring organization, and with hypotheses linking brain shape and the mechanical properties of neurons during morphogenesis. PMID:20345859

  13. Human midsagittal brain shape variation: patterns, allometry and integration.

    PubMed

    Bruner, Emiliano; Martin-Loeches, Manuel; Colom, Roberto

    2010-05-01

    Midsagittal cerebral morphology provides a homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships. In this study, midsagittal brain shape variation is investigated in a sample of 102 humans, in order to describe and quantify the major patterns of correlation between morphological features, the effect of size and sex on general anatomy, and the degree of integration between different cortical and subcortical areas. The only evident pattern of covariation was associated with fronto-parietal cortical bulging. The allometric component was weak for the cortical profile, but more robust for the posterior subcortical areas. Apparent sex differences were evidenced in size but not in brain shape. Cortical and subcortical elements displayed scarcely integrated changes, suggesting a modular separation between these two areas. However, a certain correlation was found between posterior subcortical and parietal cortical variations. These results should be directly integrated with information ranging from functional craniology to wiring organization, and with hypotheses linking brain shape and the mechanical properties of neurons during morphogenesis. PMID:20345859

  14. Rich-club organization of the newborn human brain

    PubMed Central

    Ball, Gareth; Aljabar, Paul; Zebari, Sally; Tusor, Nora; Arichi, Tomoki; Merchant, Nazakat; Robinson, Emma C.; Ogundipe, Enitan; Rueckert, Daniel; Edwards, A. David; Counsell, Serena J.

    2014-01-01

    Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a “rich club”—a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical–subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants. PMID:24799693

  15. Measuring complexity and synchronization phenomena in the human epileptic brain

    NASA Astrophysics Data System (ADS)

    Lehnertz, Klaus

    2006-03-01

    The framework of the theory of nonlinear dynamics provides new concepts and powerful algorithms to study complicated dynamics such as the human electroencephalogram (EEG). Although different influencing factors render the use of nonlinear measures (such as measures for complexity, synchronization, or interdependencies) in a strict sense problematic, converging evidence from various investigations now indicates that nonlinear EEG analysis provides a means to reliably characterize different states of normal and pathological brain function and thus, promises to be important for clinical practice. This talk will focus on applications of nonlinear EEG analysis in epileptology. Epilepsy affects more than 50 million individuals worldwide - approximately 1 % of the world's population. The disease is characterized by a recurrent and sudden malfunction of the brain that is termed seizure. Epileptic seizures are the clinical manifestation of an excessive and hypersynchronous activity of neurons in the brain. It is assumed that seizure activity will be induced when a critical mass of neurons is progressively involved in closely time-linked high frequency discharging. Recent investigations of intracranially recorded EEG involving nonlinear time series analysis techniques indicate that this build up of a critical mass can indeed be tracked over time scales lasting minutes to hours. Future real-time analysis devices may enable both investigations of basic mechanisms leading to seizure initiation in humans and the development of adequate seizure warning and prevention strategies.

  16. Specialization in the human brain: the case of numbers.

    PubMed

    Cohen Kadosh, Roi; Bahrami, Bahador; Walsh, Vincent; Butterworth, Brian; Popescu, Tudor; Price, Cathy J

    2011-01-01

    How numerical representation is encoded in the adult human brain is important for a basic understanding of human brain organization, its typical and atypical development, its evolutionary precursors, cognitive architectures, education, and rehabilitation. Previous studies have shown that numerical processing activates the same intraparietal regions irrespective of the presentation format (e.g., symbolic digits or non-symbolic dot arrays). This has led to claims that there is a single format-independent, numerical representation. In the current study we used a functional magnetic resonance adaptation paradigm, and effective connectivity analysis to re-examine whether numerical processing in the intraparietal sulci is dependent or independent on the format of the stimuli. We obtained two novel results. First, the whole brain analysis revealed that format change (e.g., from dots to digits), in the absence of a change in magnitude, activated the same intraparietal regions as magnitude change, but to a greater degree. Second, using dynamic causal modeling as a tool to disentangle neuronal specialization across regions that are commonly activated, we found that the connectivity between the left and right intraparietal sulci is format-dependent. Together, this line of results supports the idea that numerical representation is subserved by multiple mechanisms within the same parietal regions. PMID:21808615

  17. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  18. Canonical genetic signatures of the adult human brain.

    PubMed

    Hawrylycz, Michael; Miller, Jeremy A; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L; Jegga, Anil G; Aronow, Bruce J; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F; Dierker, Donna L; Menche, Jörg; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R; Jones, Allan; Van Essen, David C; Koch, Christof; Lein, Ed

    2015-12-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  19. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  20. Brain parenchymal density measurements by CT in demented subjects and normal controls

    SciTech Connect

    Gado, M.; Danziger, W.L.; Chi, D.; Hughes, C.P.; Coben, L.A.

    1983-06-01

    Parachymal density measurements of 14 regions of gray and white matter from each cerebral hemisphere were made from CT scans of 25 subjects who had varying degrees of dementia as measured by a global Clinical Dementia Rating, and also from CT scans of 33 normal control subjects. There were few significant differences between the two groups in the mean density value for each of the regions examined, although several individual psychometric tests did correlate with density changes. Moreover, for six regions in the cerebral cortex, and for one region in the thalamus of each hemisphere, we found no significant correlation between the gray-white matter density difference and dementia. There was, however, a loss of the discriminability between the gray and white matter with an increase in the size of the ventricles. These findings may be attributed to the loss of white matter volume.

  1. Multidimensional MRI-CT atlas of the naked mole-rat brain (Heterocephalus glaber).

    PubMed

    Seki, Fumiko; Hikishima, Keigo; Nambu, Sanae; Okanoya, Kazuo; Okano, Hirotaka J; Sasaki, Erika; Miura, Kyoko; Okano, Hideyuki

    2013-01-01

    Naked mole-rats have a variety of distinctive features such as the organization of a hierarchical society (known as eusociality), extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI). Advanced MRI techniques such as diffusion tensor imaging (DTI), which generates high contrast images of fiber structures, can characterize unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D) images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualization of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats. PMID:24391551

  2. Felbamate increases [3H]glycine binding in rat brain and sections of human postmortem brain.

    PubMed

    McCabe, R T; Sofia, R D; Layer, R T; Leiner, K A; Faull, R L; Narang, N; Wamsley, J K

    1998-08-01

    The anticonvulsant compound felbamate (2-phenyl-1,3-propanediol dicarbamate; FBM) appears to inhibit the function of the N-methyl-D-aspartate (NMDA) receptor complex through an interaction with the strychnine-insensitive glycine recognition site. Since we have demonstrated previously that FBM inhibits the binding of [3H]5, 7-dichlorokynurenic acid (DCKA), a competitive antagonist at the glycine site, we assessed the ability of FBM to modulate the binding of an agonist, [3H]glycine, to rat forebrain membranes and human brain sections. In contrast to its ability to inhibit [3H]5,7-DCKA binding, FBM increased [3H]glycine binding (20 nM; EC50 = 485 microM; Emax = 211% of control; nH = 1.8). FBM, but not carbamazepine, phenytoin, valproic acid or phenobarbital, also increased [3H]glycine binding (50 nM; EC50 = 142 microM; Emax = 157% of control; nH = 1.6) in human cortex sections. Autoradiographic analysis of human brain slices demonstrated that FBM produced the largest increases in [3H]glycine binding in the cortex, hippocampus and the parahippocampal gyrus. Because various ions can influence the binding of glycine-site ligands, we assessed their effects on FBM-modulation of [3H]glycine binding. FBM-enhanced [3H]glycine binding was attenuated by Zn++ and not inhibited by Mg++ in human brain. These results suggest that FBM increases [3H]glycine binding in a manner sensitive to ions which modulate the NMDA receptor. These data support the hypothesis that FBM produces anticonvulsant and neuroprotective effects by inhibiting NMDA receptor function, likely through an allosteric modulation of the glycine site. PMID:9694960

  3. Information processing in the human brain: magnetoencephalographic approach.

    PubMed Central

    Lounasmaa, O V; Hämäläinen, M; Hari, R; Salmelin, R

    1996-01-01

    Rapid progress in effective methods to image brain functions has revolutionized neuroscience. It is now possible to study noninvasively in humans neural processes that were previously only accessible in experimental animals and in brain-injured patients. In this endeavor, positron emission tomography has been the leader, but the superconducting quantum interference device-based magnetoencephalography (MEG) is gaining a firm role, too. With the advent of instruments covering the whole scalp, MEG, typically with 5-mm spatial and 1-ms temporal resolution, allows neuroscientists to track cortical functions accurately in time and space. We present five representative examples of recent MEG studies in our laboratory that demonstrate the usefulness of whole-head magnetoencephalography in investigations of spatiotemporal dynamics of cortical signal processing. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8799107

  4. The Functional Connectivity Landscape of the Human Brain

    PubMed Central

    Fatima, Zainab; Jonides, John; McIntosh, Anthony R.

    2014-01-01

    Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment. PMID:25350370

  5. A Map for Social Navigation in the Human Brain.

    PubMed

    Tavares, Rita Morais; Mendelsohn, Avi; Grossman, Yael; Williams, Christian Hamilton; Shapiro, Matthew; Trope, Yaacov; Schiller, Daniela

    2015-07-01

    Deciphering the neural mechanisms of social behavior has propelled the growth of social neuroscience. The exact computations of the social brain, however, remain elusive. Here we investigated how the human brain tracks ongoing changes in social relationships using functional neuroimaging. Participants were lead characters in a role-playing game in which they were to find a new home and a job through interactions with virtual cartoon characters. We found that a two-dimensional geometric model of social relationships, a "social space" framed by power and affiliation, predicted hippocampal activity. Moreover, participants who reported better social skills showed stronger covariance between hippocampal activity and "movement" through "social space." The results suggest that the hippocampus is crucial for social cognition, and imply that beyond framing physical locations, the hippocampus computes a more general, inclusive, abstract, and multidimensional cognitive map consistent with its role in episodic memory. PMID:26139376

  6. Memory-related brain lateralisation in birds and humans.

    PubMed

    Moorman, Sanne; Nicol, Alister U

    2015-03-01

    Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation. PMID:25036892

  7. Two distinct forms of functional lateralization in the human brain

    PubMed Central

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability. PMID:23959883

  8. Human Brain Glycogen Metabolism During and After Hypoglycemia

    PubMed Central

    Öz, Gülin; Kumar, Anjali; Rao, Jyothi P.; Kodl, Christopher T.; Chow, Lisa; Eberly, Lynn E.; Seaquist, Elizabeth R.

    2009-01-01

    OBJECTIVE We tested the hypotheses that human brain glycogen is mobilized during hypoglycemia and its content increases above normal levels (“supercompensates”) after hypoglycemia. RESEARCH DESIGN AND METHODS We utilized in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with intravenous infusions of [13C]glucose in healthy volunteers to measure brain glycogen metabolism during and after euglycemic and hypoglycemic clamps. RESULTS After an overnight intravenous infusion of 99% enriched [1-13C]glucose to prelabel glycogen, the rate of label wash-out from [1-13C]glycogen was higher (0.12 ± 0.05 vs. 0.03 ± 0.06 μmol · g−1 · h−1, means ± SD, P < 0.02, n = 5) during a 2-h hyperinsulinemic-hypoglycemic clamp (glucose concentration 57.2 ± 9.7 mg/dl) than during a hyperinsulinemic-euglycemic clamp (95.3 ± 3.3 mg/dl), indicating mobilization of glucose units from glycogen during moderate hypoglycemia. Five additional healthy volunteers received intravenous 25–50% enriched [1-13C]glucose over 22–54 h after undergoing hyperinsulinemic-euglycemic (glucose concentration 92.4 ± 2.3 mg/dl) and hyperinsulinemic-hypoglycemic (52.9 ± 4.8 mg/dl) clamps separated by at least 1 month. Levels of newly synthesized glycogen measured from 4 to 80 h were higher after hypoglycemia than after euglycemia (P ≤ 0.01 for each subject), indicating increased brain glycogen synthesis after moderate hypoglycemia. CONCLUSIONS These data indicate that brain glycogen supports energy metabolism when glucose supply from the blood is inadequate and that its levels rebound to levels higher than normal after a single episode of moderate hypoglycemia in humans. PMID:19502412

  9. Research on the human brain in an epilepsy surgery setting.

    PubMed

    Engel, J

    1998-09-01

    Recent advances in our understanding of the fundamental mechanisms of epilepsy have derived, to a large extent, from improvements in designing parallel human and animal studies. This is the result not only of better animal models of human epileptic phenomena, but of an increasing ability to carry out detailed invasive studies on patients in the course of surgical treatment for medically refractory epilepsy. In addition to interictal and ictal video-EEG recordings with chronic depth and subdural electrodes, it is also possible to sample single-unit activity with chronically implanted microelectrodes, and measure constituents of extracellular fluid with chronically implanted microdialysis probes, using protocols that in the past were possible only in the experimental animal laboratory. Subsequent surgical resection provides tissue that can be used for electrophysiological, morphological, biochemical, and molecular biological investigations. Patients in epilepsy surgery facilities represent a precious resource for research that should be utilized to the fullest extent possible by basic scientists interested in mechanisms of epilepsy. It is particularly important that invasive research be pursued now, because improved diagnostic technology is greatly reducing the need for chronic intracranial electrode recordings, and surgical approaches that do not yield tissue could be used more commonly in the future. Therefore, the capacity to carry out invasive research in the context of epilepsy surgery may diminish greatly over time. To take full advantage of these opportunities, carefully designed iterative experimental protocols are necessary to characterize abnormalities in the human epileptic brain, to create appropriate experimental animal models to study these phenomena in greater detail, and to return to the human brain to validate the clinical relevance of observations made on animals. It is also important, however, to recognize certain unavoidable limitations of human

  10. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images

    PubMed Central

    Eilaghi, Armin; Yeung, Timothy; d’Esterre, Christopher; Bauman, Glenn; Yartsev, Slav; Easaw, Jay; Fainardi, Enrico; Lee, Ting-Yim; Frayne, Richard

    2016-01-01

    Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood–brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented. PMID:27398030

  11. SU-C-18A-05: Registration Accuracy of MR-Based Images to On-Board Megavoltage Cone-Beam CT for Brain Patient Setup

    SciTech Connect

    Pinnaduwage, D S; Chen, J; Descovich, M; Pouliot, J; Hwang, Ken-Ping

    2014-06-01

    Purpose: To quantify the difference in isocenter shifts when co-registering MR and MR-based pseudo CTs (pCT) with on-board megavoltage conebeam CT (CBCT) images. Methods: Fast Spoiled Gradient Echo MRs were used to generate pCTs (research version of Advantage Sim MD™, GE Healthcare) for ten patients who had prior brain radiotherapy. The planning CT (rCT) for each was co-registered with the MR, and the plan isocenter and two other reference points were transferred to the MR and pCT. CBCT images (with the machine isocenter) from a single treatment day were coregistered with the 3 test images (MR, pCT and rCT), by two observers and by an automated registration algorithm. The reference points were used to calculate patient shifts and rotations from the registrations. The shifts calculated from the test image registrations were compared to each other and to the shifts performed by the therapists who treated the patients on that day. Results: The average difference in absolute value between the isocenter shifts from the MR-, pCT- and rCT-CBCT registrations, and the therapist shifts, were 2.02, 3.01 and 0.89 mm (craniocaudal), 1.14, 1.34 and 0.46 mm (lateral), and 1.37, 3.43 and 1.43 mm (vertical), respectively. The MR- and pCT-CBCT registrations differed by 1.99, and 2.53 mm (craniocaudal), 1.36, and 1.37 mm (lateral), and 0.74 and 2.34 mm (vertical), respectively, from the average rCT-CBCT shifts. On average, differences of 2.39 (craniocaudal), 1.28 (lateral) and 2.84 mm (vertical) were seen between the MR and pCT shifts. Rotations relative to the CBCT coordinate system were on average <2° for the MR and rCT, and <6° for the pCT. Conclusion: In this study, FSPGR MR-CBCT registrations were more precise compared to the pCT-CBCT registrations. For improved accuracy, MR sequences that are optimal for bony anatomy visualization are necessary. GE healthcare has provided a research version of Advantage Sim MD to UCSF. No financial support was provided.

  12. SU-D-9A-04: Brain PET/CT Imaging On a Scanner with a Large Axial Field-Of-View

    SciTech Connect

    Park, M; Gerbaudo, V; Hamberg, L; Seaver, K; Kijewski, M

    2014-06-01

    Purpose: Large axial field-of-view (FOV) PET/CT scanners are valued for high sensitivity. Brain PET image quality may depend on the head position within the FOV. We investigated the precision of activity estimation for brain PET imaging when the brain was positioned at the end (END) and in the middle (CEN) of the FOV. The additional CT dose for the CEN position was recorded. Methods: An image quality (Jaszczak) phantom and a striatal phantom were filled with F-18 and positioned in END and CEN locations. For each phantom and each location, we acquired a ∼1-hr listmode PET, rebinned the data into 10 frames with equal number of coincidence events, and reconstructed each frame using an iterative algorithm. For the striatal phantom, END and CEN were compared by drawing on each image three regions of interest (ROI) in axially separated uniform areas. The standard deviation of the activity estimation within each ROI was averaged over the 10 images. The coefficient of variation (CV) for activity estimation was calculated at each position. Image quality was assessed by inspecting the resolution bar pattern in the Jaszczak phantom at two different head positions. Results: The CV was the lowest for ROIs near the center of the FOV. For slices near the end, not only was the CV highest, but also the resolution pattern was degraded. CTDIvol summarized in the dose report indicated that the CT dose was ∼ 10% higher for CEN as compared to END position. Conclusion: Positioning the brain in the middle of the FOV in a large FOV PET/CT scanner allows more precise measurement of tracer uptake and better image quality at the cost of increased CT dose. For the end location longer scan times may minimize image quality degradation without any additional CT dose.

  13. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity

    PubMed Central

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2016-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  14. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity.

    PubMed

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2015-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  15. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  16. Brain cDNA clone for human cholinesterase.

    PubMed Central

    McTiernan, C; Adkins, S; Chatonnet, A; Vaughan, T A; Bartels, C F; Kott, M; Rosenberry, T L; La Du, B N; Lockridge, O

    1987-01-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase (EC 3.1.1.8). Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum. The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase (EC 3.1.1.8) rather than acetylcholinesterase (EC 3.1.1.7). It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes, coded for cholinesterase. Images PMID:3477799

  17. A supervised patch-based approach for human brain labeling

    PubMed Central

    Rousseau, François; Habas, Piotr A.; Studholme, Colin

    2012-01-01

    We propose in this work a patch-based image labeling method relying on a label propagation framework. Based on image intensity similarities between the input image and an anatomy textbook, an original strategy which does not require any non-rigid registration is presented. Following recent developments in non-local image denoising, the similarity between images is represented by a weighted graph computed from an intensity-based distance between patches. Experiments on simulated and in-vivo MR images show that the proposed method is very successful in providing automated human brain labeling. PMID:21606021

  18. CT based computerized identification and analysis of human airways: A review

    PubMed Central

    Pu, Jiantao; Gu, Suicheng; Liu, Shusen; Zhu, Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-01-01

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work. PMID:22559631

  19. CT based computerized identification and analysis of human airways: A review

    SciTech Connect

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  20. Heritability of human brain functioning as assessed by electroencephalography

    SciTech Connect

    Beijsterveldt, C.E.M. van; Geus, E.J.C. de; Boomsma, D.I.

    1996-03-01

    To study the genetic and environmental contributions to individual differences in CNS functioning, the electroencephalogram (EEG) was measured in 213 twin pairs age 16 years. EEG was measured in 91 MZ and 122 DZ twins. To quantify sex differences in the genetic architecture, EEG was measured in female and male same-sex twins and in opposite-sex twins. EEG was recorded on 14 scalp positions during quiet resting with eyes closed. Spectral powers were calculated for four frequency bands: delta, theta, alpha, and beta. Twin correlations pointed toward high genetic influences for all these powers and scalp locations. Model fitting confirmed these findings; the largest part of the variance of the EEG is explained by additive genetic factors. The averaged heritabilities for the delta, theta, alpha, and beta frequencies was 76%, 89%, 89%, and 86%, respectively. Multivariate analyses suggested that the same genes for EEG alpha rhythm were expressed in different brain areas in the left and right hemisphere. This study shows that brain functioning, as indexed by rhythmic brain-electrical activity, is one of the most heritable characteristics in humans. 44 refs., 5 figs., 4 tabs.

  1. The structure of creative cognition in the human brain

    PubMed Central

    Jung, Rex E.; Mead, Brittany S.; Carrasco, Jessica; Flores, Ranee A.

    2013-01-01

    Creativity is a vast construct, seemingly intractable to scientific inquiry—perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR). Behaviorally, one can limit the “blind variation” component to idea generation tests as manifested by measures of divergent thinking. The “selective retention” component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (1H-MRS). We also review lesion studies, considered to be the “gold standard” of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981). We provide a perspective, involving aspects of the default mode network (DMN), which might provide a “first approximation” regarding how creative cognition might map on to the human brain. PMID:23847503

  2. The Representation of Biological Classes in the Human Brain

    PubMed Central

    Connolly, Andrew C.; Guntupalli, J. Swaroop; Gors, Jason; Hanke, Michael; Halchenko, Yaroslav O.; Wu, Yu-Chien; Abdi, Herv´e; Haxby, James V.

    2012-01-01

    Evidence of category specificity from neuroimaging in the human visual system is generally limited to a few relatively coarse categorical distinctions—e.g., faces versus bodies, or animals versus artifacts—leaving unknown the neural underpinnings of fine-grained category structure within these large domains. Here we use functional magnetic resonance imaging (fMRI) to explore brain activity for a set of categories within the animate domain, including six animal species—two each from three very different biological classes: primates, birds, and insects. Patterns of activity throughout ventral object vision cortex reflected the biological classes of the stimuli. Specifically, the abstract representational space—measured as dissimilarity matrices defined between species-specific multivariate patterns of brain activity—correlated strongly with behavioral judgments of biological similarity of the same stimuli. This biological class structure was uncorrelated with structure measured in retinotopic visual cortex, which correlated instead with a dissimilarity matrix defined by a model of V1 cortex for the same stimuli. Additionally, analysis of the shape of the similarity space in ventral regions provides evidence for a continuum in the abstract representational space—with primates at one end and insects at the other. Further investigation into the cortical topography of activity that contributes to this category structure reveals the partial engagement of brain systems active normally for inanimate objects in addition to animate regions. PMID:22357845

  3. Neural basis of rhythmic timing networks in the human brain.

    PubMed

    Thaut, Michael H

    2003-11-01

    The study of rhythmicity provides insights into the understanding of temporal coding of music and temporal information processing in the human brain. Auditory rhythms rapidly entrain motor responses into stable steady synchronization states below and above conscious perception thresholds. Studying the neural dynamics of entrainment by measuring brain wave responses (MEG) we found nonlinear scaling of M100 amplitudes generated in primary auditory cortex relative to changes in the period of the rhythmic interval during subliminal and supraliminal tempo modulations. In recent brain imaging studies we have described the neural networks involved in motor synchronization to auditory rhythm. Activated regions include primary sensorimotor and cingulate areas, bilateral opercular premotor areas, bilateral SII, ventral prefrontal cortex, and, subcortically, anterior insula, putamen, and thalamus. Within the cerebellum, vermal regions and anterior hemispheres ipsilateral to the movement became significantly activated. Tracking temporal modulations additionally activated predominantly right prefrontal, anterior cingulate, and intraparietal regions as well as posterior cerebellar hemispheres. Furthermore, strong evidence exists for the substantial benefits of rhythmic stimuli in rehabilitation training with motor disorders. PMID:14681157

  4. Unmasking Language Lateralization in Human Brain Intrinsic Activity.

    PubMed

    McAvoy, Mark; Mitra, Anish; Coalson, Rebecca S; d'Avossa, Giovanni; Keidel, James L; Petersen, Steven E; Raichle, Marcus E

    2016-04-01

    Lateralization of function is a fundamental feature of the human brain as exemplified by the left hemisphere dominance of language. Despite the prominence of lateralization in the lesion, split-brain and task-based fMRI literature, surprisingly little asymmetry has been revealed in the increasingly popular functional imaging studies of spontaneous fluctuations in the fMRI BOLD signal (so-called resting-state fMRI). Here, we show the global signal, an often discarded component of the BOLD signal in resting-state studies, reveals a leftward asymmetry that maps onto regions preferential for semantic processing in left frontal and temporal cortex and the right cerebellum and a rightward asymmetry that maps onto putative attention-related regions in right frontal, temporoparietal, and parietal cortex. Hemispheric asymmetries in the global signal resulted from amplitude modulation of the spontaneous fluctuations. To confirm these findings obtained from normal, healthy, right-handed subjects in the resting-state, we had them perform 2 semantic processing tasks: synonym and numerical magnitude judgment and sentence comprehension. In addition to establishing a new technique for studying lateralization through functional imaging of the resting-state, our findings shed new light on the physiology of the global brain signal. PMID:25636911

  5. Localization of a brain sulfotransferase, SULT4A1, in the human and rat brain: an immunohistochemical study.

    PubMed

    Liyou, Nancy E; Buller, Kathryn M; Tresillian, Michael J; Elvin, Christopher M; Scott, Heather L; Dodd, Peter R; Tannenberg, Anthony E G; McManus, Michael E

    2003-12-01

    Cytosolic sulfotransferases are believed to play a role in the neuromodulation of certain neurotransmitters and drugs. To date, four cytosolic sulfotransferases have been shown to be expressed in human brain. Recently, a novel human brain sulfotransferase has been identified and characterized, although its role and localization in the brain are unknown. Here we present the first immunohistochemical (IHC) localization of SULT4A1 in human brain using an affinity-purified polyclonal antibody raised against recombinant human SULT4A1. These results are supported and supplemented by the IHC localization of SULT4A1 in rat brain. In both human and rat brains, strong reactivity was found in several brain regions, including cerebral cortex, cerebellum, pituitary, and brainstem. Specific signal was entirely absent on sections for which preimmune serum from the corresponding animal, processed in the same way as the postimmune serum, was used in the primary screen. The findings from this study may assist in determining the physiological role of this SULT isoform. PMID:14623933

  6. Neuroethics of deep brain stimulation for mental disorders: brain stimulation reward in humans.

    PubMed

    Oshima, Hideki; Katayama, Yoichi

    2010-01-01

    The theoretical basis of some deep brain stimulation (DBS) trials undertaken in the early years was the phenomenon of "brain stimulation reward (BSR)," which was first identified in rats. The animals appeared to be rewarded by pleasure caused by the stimulation of certain brain regions (reward system), such as the septal area. "Self-stimulation" experiments, in which rats were allowed to stimulate their own brain by pressing a freely accessible lever, they quickly learned lever pressing and sometimes continued to stimulate until they exhausted themselves. BSR was also observed with DBS of the septal area in humans. DBS trials in later years were undertaken on other theoretical bases, but unexpected BSR was sometimes induced by stimulation of some areas, such as the locus coeruleus complex. When BSR was induced, the subjects experienced feelings that were described as "cheerful," "alert," "good," "well-being," "comfort," "relaxation," "joy," or "satisfaction." Since the DBS procedure is equivalent to a "self-stimulation" experiment, they could become "addicted to the stimulation itself" or "compulsive about the stimulation," and stimulate themselves "for the entire day," "at maximum amplitude" and, in some instances, "into convulsions." DBS of the reward system has recently been applied to alleviate anhedonia in patients with refractory major depression. Although this approach appears promising, there remains a difficult problem: who can adjust their feelings and reward-oriented behavior within the normal range? With a self-stimulation procedure, the BSR may become uncontrollable. To develop DBS to the level of a standard therapy for mental disorders, we need to discuss "Who has the right to control the mental condition?" and "Who makes decisions" on "How much control is appropriate?" in daily life. PMID:20885119

  7. Development of Open Brain Simulator for Human Biomechatronics

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko; Takagi, Toshihisa; Asama, Hajime

    Modeling and simulation based on mechanisms is important in order to design and control mechatronic systems. In particular, in-depth understanding and realistic modeling of biological systems is indispensable for biomechatronics. This paper presents open brain simulator, which estimates the neural state of human through external measurement for the purpose of improving motor and social skills. Macroscopic anatomical nervous systems model was built which can be connected to the musculoskeletal model. Microscopic anatomical and physiological neural models were interfaced to the macroscopic model. Neural activities of somatosensory area and Purkinje cell were calculated from motion capture data. The simulator provides technical infrastructure for human biomechatronics, which is promising for the novel diagnosis of neurological disorders and their treatments through medication and movement therapy, and for motor learning support system supporting acquisition of motor skill considering neural mechanism.

  8. The effect of short-term corticosteroid treatment on the CT appearance of experimental brain abscesses.

    PubMed

    Enzmann, D R; Britt, R H; Placone, R C; Obana, W; Lyons, B; Yeager, A S

    1982-10-01

    The effect of short-term corticosteroid treatment on contrast enhancement was investigated in an experimental brain abscess model. The degree of enhancement was reduced in the cerebritis stage, unaffected in the capsule stage, and intermediate in the transitional stage. The area and pattern of enhancement were also altered in the cerebritis stage. Although the magnitude of the entire cerebritis time-density curve (extended for 60 minutes) was decreased by the steroids, its configuration was unchanged. Prior to steroid administration, the 10- and 60-minute components of the curve discriminated between cerebritis and capsule stages, with the latter exhibiting a far lower 60-minute value. Implications for treatment of brain abscesses are discussed. PMID:7122901

  9. Dynamic reconfiguration of human brain networks during learning

    PubMed Central

    Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Carlson, Jean M.; Grafton, Scott T.

    2011-01-01

    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes—flexibility and selection—must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance. PMID:21502525

  10. Development of BOLD signal hemodynamic responses in the human brain

    PubMed Central

    Arichi, Tomoki; Fagiolo, Gianlorenzo; Varela, Marta; Melendez-Calderon, Alejandro; Allievi, Alessandro; Merchant, Nazakat; Tusor, Nora; Counsell, Serena J.; Burdet, Etienne; Beckmann, Christian F.; Edwards, A. David

    2012-01-01

    In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing populations. We aimed to characterize HRF in human infants before and after the normal time of birth using rapid sampling of the Blood Oxygen Level Dependent (BOLD) signal. A somatosensory stimulus and an event related experimental design were used to collect data from 10 healthy adults, 15 sedated infants at term corrected post menstrual age (PMA) (median 41 + 1 weeks), and 10 preterm infants (median PMA 34 + 4 weeks). A positive amplitude HRF waveform was identified across all subject groups, with a systematic maturational trend in terms of decreasing time-to-peak and increasing positive peak amplitude associated with increasing age. Application of the age-appropriate HRF models to fMRI data significantly improved the precision of the fMRI analysis. These findings support the notion of a structured development in the brain's response to stimuli across the last trimester of gestation and beyond. PMID:22776460

  11. The shape of the human language-ready brain.

    PubMed

    Boeckx, Cedric; Benítez-Burraco, Antonio

    2014-01-01

    Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals-Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny. PMID:24772099

  12. Knowledge-based localization of hippocampus in human brain MRI

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Siadat, Mohammad-Reza

    1999-05-01

    Hippocampus is an important structure of the human brain limbic system. The variations in the volume and architecture of this structure have been related to certain neurological diseases such as schizophrenia and epilepsy. This paper presents a two-stage method for localizing hippocampus in human brain MRI automatically. The first stage utilizes image processing techniques such as nonlinear filtering and histogram analysis to extract information from MRI. This stage generates binary images, locates lateral and third ventricles, and the inferior limit of Sylvian Fissure. The second stage uses a shell of expert system named VP-EXPERT to analyze the information extracted in the first stage. This stage utilizes absolute and relative spatial rules and spatial symmetry rules to locate the hippocampus. The system has been tested using MRI studies of six epilepsy patients. MRI data consisted of a total of 128 images. The system correctly identified all of the slices without hippocampus, and correctly localized hippocampus is about n 78% of the slices with hippocampus.

  13. Mapping human brain networks with cortico-cortical evoked potentials

    PubMed Central

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  14. The shape of the human language-ready brain

    PubMed Central

    Boeckx, Cedric; Benítez-Burraco, Antonio

    2014-01-01

    Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny. PMID:24772099

  15. Alpha-synuclein expression in the developing human brain.

    PubMed

    Raghavan, Ravi; Kruijff, Loes de; Sterrenburg, Monique D; Rogers, Beverly B; Hladik, Christa L; White, Charles L

    2004-01-01

    Alpha (alpha)-synuclein is a presynaptic protein, abnormal expression of which has been associated with neurodegenerative and neoplastic diseases. It is abundant in the developing vertebrate central nervous system (CNS), but less is known about its developmental expression in the human CNS. Immunohistochemical expression of alpha-synuclein was studied in 39 fetal, perinatal, pediatric, and adolescent brains. Perikaryal expression of alpha-synuclein is observed as early as 11-wk gestation in the cortical plate. Several discrete neuronal groups in the hippocampus, basal ganglia, and brain stem express perikaryal alpha-synuclein by 20-wk gestation, persisting through the first few years of life. In the cerebellum, alpha-synuclein is present by 21-wk gestation and persists into adult life as a coarse granular neuropil reaction product in the internal granular layer, and as a diffuse neuropil "blush" in the molecular layer. The germinal matrix, glia, endothelial cells, external granular layer, Pukinje cells, and dentate neurons are consistently negative for alpha-synuclein. We conclude that alpha-synuclein is expressed very early in human gestation, and that its distribution and temporal sequence of expression varies in discrete neuronal groups. Perikaryal alpha-synuclein starts disappearing from the neuronal cytosol in early childhood, and only the neuropil retains immunoreactivity into adulthood. The reappearance of alpha-synuclein in the adult neuronal cytosol in certain disease processes may represent reemergence of cues from an earlier developmental stage as part of a stress response. PMID:15547775

  16. Mapping human brain networks with cortico-cortical evoked potentials.

    PubMed

    Keller, Corey J; Honey, Christopher J; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D

    2014-10-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  17. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  18. Flow distributions and spatial correlations in human brain capillary networks

    NASA Astrophysics Data System (ADS)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  19. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    SciTech Connect

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun; Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun; Wilson, David L.

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit

  20. A Child's Brain. Part II. The Human Brain: How Every Single Cell is Organized for Action.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1982-01-01

    The second in a series of three articles concerning children's brain development focuses on the organization of the brain. Aspects of the brain's vertical, neocortex, and temporal organization are discussed and references for further reading are provided. (CJ)

  1. In Vivo Diagnostic Imaging Using Micro-CT: Sequential and Comparative Evaluation of Rodent Models for Hepatic/Brain Ischemia and Stroke

    PubMed Central

    Hayasaka, Naoto; Nagai, Nobuo; Kawao, Naoyuki; Niwa, Atsuko; Yoshioka, Yoshichika; Mori, Yuki; Shigeta, Hiroshi; Kashiwagi, Nobuo; Miyazawa, Masaaki; Satou, Takao; Higashino, Hideaki; Matsuo, Osamu; Murakami, Takamichi

    2012-01-01

    Background There is an increasing need for animal disease models for pathophysiological research and efficient drug screening. However, one of the technical barriers to the effective use of the models is the difficulty of non-invasive and sequential monitoring of the same animals. Micro-CT is a powerful tool for serial diagnostic imaging of animal models. However, soft tissue contrast resolution, particularly in the brain, is insufficient for detailed analysis, unlike the current applications of CT in the clinical arena. We address the soft tissue contrast resolution issue in this report. Methodology We performed contrast-enhanced CT (CECT) on mouse models of experimental cerebral infarction and hepatic ischemia. Pathological changes in each lesion were quantified for two weeks by measuring the lesion volume or the ratio of high attenuation area (%HAA), indicative of increased vascular permeability. We also compared brain images of stroke rats and ischemic mice acquired with micro-CT to those acquired with 11.7-T micro-MRI. Histopathological analysis was performed to confirm the diagnosis by CECT. Principal Findings In the models of cerebral infarction, vascular permeability was increased from three days through one week after surgical initiation, which was also confirmed by Evans blue dye leakage. Measurement of volume and %HAA of the liver lesions demonstrated differences in the recovery process between mice with distinct genetic backgrounds. Comparison of CT and MR images acquired from the same stroke rats or ischemic mice indicated that accuracy of volumetric measurement, as well as spatial and contrast resolutions of CT images, was comparable to that obtained with MRI. The imaging results were also consistent with the histological data. Conclusions This study demonstrates that the CECT scanning method is useful in rodents for both quantitative and qualitative evaluations of pathologic lesions in tissues/organs including the brain, and is also suitable for

  2. MicroPET/CT Imaging of an Orthotopic Model of Human Glioblastoma Multiforme and Evaluation of Pulsed Low-Dose Irradiation

    SciTech Connect

    Park, Sean S.; Chunta, John L.; Robertson, John M.; Martinez, Alvaro A.; Oliver Wong, Ching-Yee; Amin, Mitual; Wilson, George D.; Marples, Brian

    2011-07-01

    Purpose: Glioblastoma multiforme (GBM) is an aggressive tumor that typically causes death due to local progression. To assess a novel low-dose radiotherapy regimen for treating GBM, we developed an orthotopic murine model of human GBM and evaluated in vivo treatment efficacy using micro-positron-emission tomography/computed tomography (microPET/CT) tumor imaging. Methods: Orthotopic GBM xenografts were established in nude mice and treated with standard 2-Gy fractionation or 10 0.2-Gy pulses with 3-min interpulse intervals, for 7 consecutive days, for a total dose of 14 Gy. Tumor growth was quantified weekly using the Flex Triumph (GE Healthcare/Gamma Medica-Ideas, Waukesha, WI) combined PET-single-photon emission CT (SPECT)-CT imaging system and necropsy histopathology. Normal tissue damage was assessed by counting dead neural cells in tissue sections from irradiated fields. Results: Tumor engraftment efficiency for U87MG cells was 86%. Implanting 0.5 x 10{sup 6} cells produced a 50- to 70-mm{sup 3} tumor in 10 to 14 days. A significant correlation was seen between CT-derived tumor volume and histopathology-measured volume (p = 0.018). The low-dose 0.2-Gy pulsed regimen produced a significantly longer tumor growth delay than standard 2-Gy fractionation (p = 0.045). Less normal neuronal cell death was observed after the pulsed delivery method (p = 0.004). Conclusion: This study successfully demonstrated the feasibility of in vivo brain tumor imaging and longitudinal assessment of tumor growth and treatment response with microPET/CT. Pulsed radiation treatment was more efficacious than the standard fractionated treatment and was associated with less normal tissue damage.

  3. Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction

    PubMed Central

    Kawasaki, Masahiro; Yamada, Yohei; Ushiku, Yosuke; Miyauchi, Eri; Yamaguchi, Yoko

    2013-01-01

    Behavioral rhythms synchronize between humans for communication; however, the relationship of brain rhythm synchronization during speech rhythm synchronization between individuals remains unclear. Here, we conducted alternating speech tasks in which two subjects alternately pronounced letters of the alphabet during hyperscanning electroencephalography. Twenty pairs of subjects performed the task before and after each subject individually performed the task with a machine that pronounced letters at almost constant intervals. Speech rhythms were more likely to become synchronized in human–human tasks than human–machine tasks. Moreover, theta/alpha (6–12 Hz) amplitudes synchronized in the same temporal and lateral-parietal regions in each pair. Behavioral and inter-brain synchronizations were enhanced after human–machine tasks. These results indicate that inter-brain synchronizations are tightly linked to speech synchronizations between subjects. Furthermore, theta/alpha inter-brain synchronizations were also found in subjects while they observed human–machine tasks, which suggests that the inter-brain synchronization might reflect empathy for others' speech rhythms. PMID:23603749

  4. A non-linear regression method for CT brain perfusion analysis

    NASA Astrophysics Data System (ADS)

    Bennink, E.; Oosterbroek, J.; Viergever, M. A.; Velthuis, B. K.; de Jong, H. W. A. M.

    2015-03-01

    CT perfusion (CTP) imaging allows for rapid diagnosis of ischemic stroke. Generation of perfusion maps from CTP data usually involves deconvolution algorithms providing estimates for the impulse response function in the tissue. We propose the use of a fast non-linear regression (NLR) method that we postulate has similar performance to the current academic state-of-art method (bSVD), but that has some important advantages, including the estimation of vascular permeability, improved robustness to tracer-delay, and very few tuning parameters, that are all important in stroke assessment. The aim of this study is to evaluate the fast NLR method against bSVD and a commercial clinical state-of-art method. The three methods were tested against a published digital perfusion phantom earlier used to illustrate the superiority of bSVD. In addition, the NLR and clinical methods were also tested against bSVD on 20 clinical scans. Pearson correlation coefficients were calculated for each of the tested methods. All three methods showed high correlation coefficients (>0.9) with the ground truth in the phantom. With respect to the clinical scans, the NLR perfusion maps showed higher correlation with bSVD than the perfusion maps from the clinical method. Furthermore, the perfusion maps showed that the fast NLR estimates are robust to tracer-delay. In conclusion, the proposed fast NLR method provides a simple and flexible way of estimating perfusion parameters from CT perfusion scans, with high correlation coefficients. This suggests that it could be a better alternative to the current clinical and academic state-of-art methods.

  5. Presence of calcitonin-like immunoreactivity (iCT) in human prostate gland: evidence for iCT secretion by cultured prostate cells.

    PubMed

    Shah, G V; Noble, M J; Austenfeld, M; Weigel, J; Deftos, L J; Mebust, W K

    1992-01-01

    Immunoreactive calcitonin (iCT) has been detected in human prostate tissue extracts as well as seminal plasma. The present studies were undertaken to examine whether iSCT (immunoreactive salmon CT-like human peptide) co-exists with iHCT (thyroid CT-like substance) in human prostate tissue extracts, and whether these substances are secreted by primary prostate cells in culture. Since the local secretion of these substances seems to increase in some neoplasms, a second objective of the study was to examine whether basal secretion of iCTs from primary prostate cells is increased in carcinoma. The present results have shown that both iHCT and iSCT were present in prostate tissue extracts. The mean iHCT levels in extracts of benign hyperplastic prostates (BPH) were 0.59 ng/g prostate, and these were significantly lower than iHCT concentrations in prostatic carcinoma (PC) (2.53 ng/g). No significant differences in their iSCT contents were observed. However, the results from culture of over 90 individual prostate tissue specimens from BPH or PC indicate that primary prostate cells secreted detectable quantities of iSCT and the basal release of this material from PC prostate cultures was almost four-fold higher than that from BPH prostate cultures. These results suggest that a CT-like immunoreactive material is secreted by primary prostate cells in culture, and the basal secretion of this material is significantly higher in PC cells as compared to BPH cells. Endogenous secretion of prostatic CT, and the elevation of its expression in PC suggest that it may serve as a regulatory factor in the pathophysiology of the prostate gland. PMID:1409122

  6. Comparison of non-sedated brain MRI and CT for the detection of acute traumatic injury in children 6 years of age or less.

    PubMed

    Young, Joseph Yeen; Duhaime, Ann-Christine; Caruso, Paul Albert; Rincon, Sandra Patricia

    2016-08-01

    CT is considered the first-line study for acute intracranial injury in children because of its availability, detection of acute hemorrhage, and lack of sedation. An MRI study with rapidly acquired sequences can obviate the need for sedation and radiation. We compared the detection rate of rapid non-sedated brain MRI to CT for traumatic head injury in young children. We reviewed a series of children 6 years of age or less who presented to our ED during a 5-year period with head trauma and received a non-sedated brain MRI and CT within 24 h of injury. Most MRI studies were limited to triplane T2 and susceptibility sequences. Two neuroradiologists reviewed the MRIs and CTs and assessed the following findings: fracture, epidural hematoma (EDH)/subdural hematoma (SDH), subarachnoid hemorrhage (SAH), intraventricular hemorrhage (IVH), and parenchymal injury. Thirty of 33 patients had radiologically identified traumatic injuries. There was an overall agreement of 82 % between the two modalities. Skull fracture was the only injury subtype which had a statistically significant difference in detection between CT and MRI (p = 0.0001), with MRI missing 14 of 21 fractures detected on CT. While not statistically significant, MRI had a higher detection rate of EDH/SDH (p = 0.34), SAH (p = 0.07), and parenchymal injuries (p = 0.50). Non-sedated MRI has similar detection rates to CT for intracranial injury in young children presenting with acute head trauma and may be an alternative to CT in select patients. PMID:27166965

  7. Human development XII: a theory for the structure and function of the human brain.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Kandel, Isack; Merrick, Joav

    2008-01-01

    The human brain is probably the most complicated single structure in the biological universe. The cerebral cortex that is traditionally connected with consciousness is extremely complex. The brain contains approximately 1,000,000 km of nerve fibers, indicating its enormous complexity and which makes it difficult for scientists to reveal the function of the brain. In this paper, we propose a new model for brain functions, i.e., information-guided self-organization of neural patterns, where information is provided from the abstract wholeness of the biophysical system of an organism (often called the true self, or the "soul"). We present a number of arguments in favor of this model that provide self-conscious control over the thought process or cognition. Our arguments arise from analyzing experimental data from different research fields: histology, anatomy, electroencephalography (EEG), cerebral blood flow, neuropsychology, evolutionary studies, and mathematics. We criticize the popular network theories as the consequence of a simplistic, mechanical interpretation of reality (philosophical materialism) applied to the brain. We demonstrate how viewing brain functions as information-guided self-organization of neural patterns can explain the structure of conscious mentation; we seem to have a dual hierarchical representation in the cerebral cortex: one for sensation-perception and one for will-action. The model explains many of our unique mental abilities to think, memorize, associate, discriminate, and make abstractions. The presented model of the conscious brain also seems to be able to explain the function of the simpler brains, such as those of insects and hydra. PMID:18661051

  8. Reconsolidation of human memory: brain mechanisms and clinical relevance.

    PubMed

    Schwabe, Lars; Nader, Karim; Pruessner, Jens C

    2014-08-15

    The processes of memory formation and storage are complex and highly dynamic. Once memories are consolidated, they are not necessarily fixed but can be changed long after storage. In particular, seemingly stable memories may re-enter an unstable state when they are retrieved, from which they must be re-stabilized during a process known as reconsolidation. During reconsolidation, memories are susceptible to modifications again, thus providing an opportunity to update seemingly stable memories. While initial demonstrations of memory reconsolidation came mainly from animal studies, evidence for reconsolidation in humans is now accumulating as well. Here, we review recent advances in our understanding of human memory reconsolidation. After a summary of findings on the reconsolidation of human fear and episodic memory, we focus particularly on recent neuroimaging data that provide first insights into how reconsolidation processes are implemented in the human brain. Finally, we discuss the implications of memory modifications during reconsolidation for the treatment of mental disorders such as posttraumatic stress disorder and drug addiction. PMID:24755493

  9. Searching human brain for mechanisms of psychiatric disorders. Implications for studies on schizophrenia.

    PubMed

    Berretta, Sabina; Heckers, Stephan; Benes, Francine M

    2015-09-01

    In the past 25years, research on the human brain has been providing a clear path toward understanding the pathophysiology of psychiatric illnesses. The successes that have been accrued are matched by significant difficulties identifying and controlling a large number of potential confounding variables. By systematically and effectively accounting for unwanted variance in data from imaging and postmortem human brain studies, meaningful and reliable information regarding the pathophysiology of human brain disorders can be obtained. This perspective paper focuses on postmortem investigations to discuss some of the most challenging sources of variance, including diagnosis, comorbidity, substance abuse and pharmacological treatment, which confound investigations of the human brain. PMID:25458567

  10. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    PubMed

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching. PMID:24336036

  11. Evolution of human brain functions: the functional structure of human consciousness.

    PubMed

    Cloninger, C Robert

    2009-11-01

    The functional structure of self-aware consciousness in human beings is described based on the evolution of human brain functions. Prior work on heritable temperament and character traits is extended to account for the quantum-like and holographic properties (i.e. parts elicit wholes) of self-aware consciousness. Cladistic analysis is used to identify the succession of ancestors leading to human beings. The functional capacities that emerge along this lineage of ancestors are described. The ecological context in which each cladogenesis occurred is described to illustrate the shifting balance of evolution as a complex adaptive system. Comparative neuroanatomy is reviewed to identify the brain structures and networks that emerged coincident with the emergent brain functions. Individual differences in human temperament traits were well developed in the common ancestor shared by reptiles and humans. Neocortical development in mammals proceeded in five major transitions: from early reptiles to early mammals, early primates, simians, early Homo, and modern Homo sapiens. These transitions provide the foundation for human self-awareness related to sexuality, materiality, emotionality, intellectuality, and spirituality, respectively. The functional structure of human self-aware consciousness is concerned with the regulation of five planes of being: sexuality, materiality, emotionality, intellectuality, and spirituality. Each plane elaborates neocortical functions organized around one of the five special senses. The interactions among these five planes gives rise to a 5 x 5 matrix of subplanes, which are functions that coarsely describe the focus of neocortical regulation. Each of these 25 neocortical functions regulates each of five basic motives or drives that can be measured as temperaments or basic emotions related to fear, anger, disgust, surprise, and happiness/sadness. The resulting 5 x 5 x 5 matrix of human characteristics provides a general and testable model of the

  12. In-vivo Fluorescent X-ray CT Imaging of Mouse Brain

    SciTech Connect

    Takeda, T.; Wu, J.; Lwin, Thet-Thet; Huo, Q.; Minami, M.; Sunaguchi, N.; Murakami, T.; Mouri, S.; Nasukawa, S.; Yuasa, T.; Akatsuka, T.; Hyodo, K.; Hontani, H.

    2007-01-19

    Using a non-radioactive iodine-127 labeled cerebral perfusion agent (I-127 IMP), fluorescent X-ray computed tomography (FXCT) clearly revealed the cross-sectional distribution of I-127 IMP in normal mouse brain in-vivo. Cerebral perfusion of cortex and basal ganglion was depicted with 1 mm in-plane spatial resolution and 0.1 mm slice thickness. Degree of cerebral perfusion in basal ganglion was about 2-fold higher than that in cortical regions. This result suggests that in-vivo cerebral perfusion imaging is realized quantitatively by FXCT at high volumetric resolution.

  13. Effects of acute tryptophan depletion on central processing of CT-targeted and discriminatory touch in humans.

    PubMed

    Trotter, Paula Diane; McGlone, Francis; McKie, Shane; McFarquhar, Martyn; Elliott, Rebecca; Walker, Susannah Claire; Deakin, John Francis William

    2016-08-01

    C-tactile afferents (CTs) are slowly conducting nerve fibres, present only in hairy skin. They are optimally activated by slow, gentle stroking touch, such as those experienced during a caress. CT stimulation activates affective processing brain regions, alluding to their role in affective touch perception. We tested a theory that CT-activating touch engages the pro-social functions of serotonin, by determining whether reducing serotonin, through acute tryptophan depletion, diminishes subjective pleasantness and affective brain responses to gentle touch. A tryptophan depleting amino acid drink was administered to 16 healthy females, with a further 14 receiving a control drink. After 4 h, participants underwent an fMRI scan, during which time CT-innervated forearm skin and CT non-innervated finger skin was stroked with three brushes of differing texture, at CT-optimal force and velocity. Pleasantness ratings were obtained post scanning. The control group showed a greater response in ipsilateral orbitofrontal cortex to CT-activating forearm touch compared to touch to the finger where CTs are absent. This differential response was not present in the tryptophan depleted group. This interaction effect was significant. In addition, control participants showed a differential primary somatosensory cortex response to brush texture applied to the finger, a purely discriminatory touch response, which was not observed in the tryptophan depleted group. This interaction effect was also significant. Pleasantness ratings were similar across treatment groups. These results implicate serotonin in the differentiation between CT-activating and purely discriminatory touch responses. Such effects could contribute to some of the social abnormalities seen in psychiatric disorders associated with abnormal serotonin function. PMID:27307373

  14. Dynamic contrast-enhanced MRI and CT provide comparable measurement of blood-brain barrier permeability in a rodent stroke model.

    PubMed

    Merali, Zamir; Wong, Teser; Leung, Jackie; Gao, Meah MingYang; Mikulis, David; Kassner, Andrea

    2015-10-01

    In the current management of acute ischemic stroke (AIS), clinical criteria are used to estimate the risk of hemorrhagic transformation (HT), which is a devastating early complication. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computed tomography (DCE-CT) may serve as physiologically-based decision making tools to more reliably assess the risk of HT. Before these tools can be properly validated, the comparability of the blood-brain barrier (BBB) permeability measurements they generate should be assessed. Sixteen rats were subjected to a transient middle cerebral artery occlusion before successively undergoing DCE-CT and DCE-MRI at 24-hours. BBB permeability (K(trans)) values were generated from both modalities. A correlation of R=0.677 was found (p<0.01) and the resulting relationship was [DCE-CT=(0.610*DCE-MRI)+4.140]. A variance components analysis found the intra-rat coefficient of variation to be 0.384 and 0.258 for K(trans) values from DCE-MRI and DCE-CT respectively. Permeability measures from DCE-CT were 22% higher than those from DCE-MRI. The results of this study demonstrate for the first time comparability between DCE-CT and DCE-MRI in the assessment of AIS. These results may provide a foundation for future clinical trials making combined use of these modalities. PMID:26117703

  15. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  16. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  17. Ground truth and CT image model simulation for pathophysiological human airway system

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2010-02-01

    Recurrent problem in medical image segmentation and analysis, establishing a ground truth for assessment purposes is often difficult. Facing this problem, the scientific community orients its efforts towards the development of objective methods for evaluation, namely by building up or simulating the missing ground truth for analysis. This paper focuses on the case of human pulmonary airways and develops a method 1) to simulate the ground truth for different pathophysiological configurations of the bronchial tree as a mesh model, and 2) to generate synthetic 3D CT images of airways associated with the simulated ground truth. The airway model is here built up based on the information provided by a medial axis (describing bronchus shape, subdivision geometry and local radii), which is computed from real CT data to ensure realism and matching with a patient-specific morphology. The model parameters can be further on adjusted to simulate various pathophysiological conditions of the same patient (longitudinal studies). Based on the airway mesh model, a 3D image model is synthesized by simulating the CT acquisition process. The image realism is achieved by including textural features of the surrounding pulmonary tissue which are obtained by segmentation from the same original CT data providing the airway axis. By varying the scanning simulation parameters, several 3D image models can be generated for the same airway mesh ground truth. Simulation results for physiological and pathological configurations are presented and discussed, illustrating the interest of such a modeling process for designing computer-aided diagnosis systems or for assessing their sensitivity, mainly for follow-up studies in asthma and COPD.

  18. Penumbra Pattern Assessment in Acute Stroke Patients: Comparison of Quantitative and Non-Quantitative Methods in Whole Brain CT Perfusion

    PubMed Central

    Baumann, Alena B.; Meinel, Felix G.; Helck, Andreas D.; Opherk, Christian; Straube, Andreas; Reiser, Maximilian F.; Sommer, Wieland H.

    2014-01-01

    Background And Purpose While penumbra assessment has become an important part of the clinical decision making for acute stroke patients, there is a lack of studies measuring the reliability and reproducibility of defined assessment techniques in the clinical setting. Our aim was to determine reliability and reproducibility of different types of three-dimensional penumbra assessment methods in stroke patients who underwent whole brain CT perfusion imaging (WB-CTP). Materials And Methods We included 29 patients with a confirmed MCA infarction who underwent initial WB-CTP with a scan coverage of 100 mm in the z-axis. Two blinded and experienced readers assessed the flow-volume-mismatch twice and in two quantitative ways: Performing a volumetric mismatch analysis using OsiriX imaging software (MMVOL) and visual estimation of mismatch (MMEST). Complementarily, the semiquantitative Alberta Stroke Programme Early CT Score for CT perfusion was used to define mismatch (MMASPECTS). A favorable penumbral pattern was defined by a mismatch of ≥30% in combination with a cerebral blood flow deficit of ≤90 ml and an MMASPECTS score of ≥1, respectively. Inter- and intrareader agreement was determined by Kappa-values and ICCs. Results Overall, MMVOL showed considerably higher inter-/intrareader agreement (ICCs: 0.751/0.843) compared to MMEST (0.292/0.749). In the subgroup of large (≥50 mL) perfusion deficits, inter- and intrareader agreement of MMVOL was excellent (ICCs: 0.961/0.942), while MMEST interreader agreement was poor (0.415) and intrareader agreement was good (0.919). With respect to penumbra classification, MMVOL showed the highest agreement (interreader agreement: 25 agreements/4 non-agreements/κ: 0.595; intrareader agreement 27/2/0.833), followed by MMEST (22/7/0.471; 23/6/0.577), and MMASPECTS (18/11/0.133; 21/8/0.340). Conclusion The evaluated approach of volumetric mismatch assessment is superior to pure visual and ASPECTS penumbra pattern assessment in WB

  19. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    SciTech Connect

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B.; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-05-01

    The use of biophysical assays permitted the identification of a specific human ACC2 carboxyl transferase (CT) domain mutant that binds inhibitors and crystallizes in their presence. This mutant led to determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed differences in the inhibitor conformation from the yeast protein complex that are caused by differing residues in the binding pocket. Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined α-helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

  20. A Celebration of Neurons: An Educator's Guide to the Human Brain.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    This book provides an introduction to the current scientific understanding of the human brain and its processes. Chapter 1, "At the Edge of a Major Transformation," is an introduction to the field. Chapter 2, "How Our Brain Organizes Itself on the Cellular and Systems Levels," covers what body/brain cellular systems do, how cells process units of…

  1. Abstract representations of associated emotions in the human brain.

    PubMed

    Kim, Junsuk; Schultz, Johannes; Rohe, Tim; Wallraven, Christian; Lee, Seong-Whan; Bülthoff, Heinrich H

    2015-04-01

    Emotions can be aroused by various kinds of stimulus modalities. Recent neuroimaging studies indicate that several brain regions represent emotions at an abstract level, i.e., independently from the sensory cues from which they are perceived (e.g., face, body, or voice stimuli). If emotions are indeed represented at such an abstract level, then these abstract representations should also be activated by the memory of an emotional event. We tested this hypothesis by asking human participants to learn associations between emotional stimuli (videos of faces or bodies) and non-emotional stimuli (fractals). After successful learning, fMRI signals were recorded during the presentations of emotional stimuli and emotion-associated fractals. We tested whether emotions could be decoded from fMRI signals evoked by the fractal stimuli using a classifier trained on the responses to the emotional stimuli (and vice versa). This was implemented as a whole-brain searchlight, multivoxel activation pattern analysis, which revealed successful emotion decoding in four brain regions: posterior cingulate cortex (PCC), precuneus, MPFC, and angular gyrus. The same analysis run only on responses to emotional stimuli revealed clusters in PCC, precuneus, and MPFC. Multidimensional scaling analysis of the activation patterns revealed clear clustering of responses by emotion across stimulus types. Our results suggest that PCC, precuneus, and MPFC contain representations of emotions that can be evoked by stimuli that carry emotional information themselves or by stimuli that evoke memories of emotional stimuli, while angular gyrus is more likely to take part in emotional memory retrieval. PMID:25855179

  2. The disturbed blood-brain barrier in human glioblastoma.

    PubMed

    Wolburg, Hartwig; Noell, Susan; Fallier-Becker, Petra; Mack, Andreas F; Wolburg-Buchholz, Karen

    2012-01-01

    The aim of this article is to describe alterations of the blood-brain barrier (BBB) in gliomas. The main clinical problem of human gliomas is the edematous swelling and the dramatic increase of intracerebral pressure, also compromising healthy areas of the brain. According to our concept, one of the main reasons on the cellular level for these clinical problems is the loss or reduction of astroglial polarity. Astroglial polarity means the specific accumulation of potassium and water channels in the superficial and perivascular astroglial endfeet membranes. The most important water channel in the CNS is the astroglial water channel protein aquaporin-4 (AQP4) which is arranged in a morphologically spectacular way, the so-called orthogonal arrays of particles (OAPs) to be observed in freeze-fracture replicas. In brain tumors, but also under conditions of trauma or inflammation, these OAPs are redistributed to membrane domains apart from endfeet areas. Probably, this dislocation might be due to the degradation of the proteoglycan agrin by the matrix metalloproteinase 3 (MMP3). Agrin binds to the dystrophin-dystroglycan-complex (DDC), which in turn is connected to AQP4. As a consequence, agrin loss may lead to a redistribution of AQP4 and a compromised directionality of water transport out of the cell, finally to cytotoxic edema. This in turn is hypothesized to lead to a breakdown of the BBB characterized by disturbed tight junctions, and thus to the development of vasogenic edema. However, the mechanism how the loss of polarity is related to the disturbance of microvascular tight junctions is completely unknown so far. PMID:22387049

  3. Dopaminergic Neurotransmission in the Human Brain: New Lessons from Perturbation and Imaging

    PubMed Central

    Ko, Ji Hyun; Strafella, Antonio P.

    2012-01-01

    Dopamine plays an important role in several brain functions and is involved in the pathogenesis of several psychiatric and neurological disorders. Neuroimaging techniques such as positron emission tomography allow us to quantify dopaminergic activity in the living human brain. Combining these with brain stimulation techniques offers us the unique opportunity to tackle questions regarding region-specific neurochemical activity. Such studies may aid clinicians and scientists to disentangle neural circuitries within the human brain and thereby help them to understand the underlying mechanisms of a given function in relation to brain diseases. Furthermore, it may also aid the development of alternative treatment approaches for various neurological and psychiatric conditions. PMID:21536838

  4. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity.

    PubMed

    Lakhani, Bimal; Borich, Michael R; Jackson, Jacob N; Wadden, Katie P; Peters, Sue; Villamayor, Anica; MacKay, Alex L; Vavasour, Irene M; Rauscher, Alexander; Boyd, Lara A

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  5. Phenylethylamine N-methylation by human brain preparations

    SciTech Connect

    Mosnaim, A.D.; Callaghan, O.H.; Wolf, M.E.

    1986-03-05

    Alterations in the brain metabolism of biogenic amines has been postulated to play a role in the pathophysiology of several psychiatric disorders. There is some evidence suggesting schizogenic properties for some abnormal neuroamine methylated derivatives. The authors now report that postmortem human brain preparations, obtained from the putamen and thalamus, convert phenylethylamine (PEA) to its behaviorally active derivative N-methyl PEA, a reaction which is carried out by the 100,000 xg supernatant (in presence of 1 x 10 /sup -5/M pargyline) and enhanced by the addition of NADPH. PEA N-methylation occurred in schizophrenics as well as in sex and age matched controls. The formation of increased amounts of (/sup 3/H-) or (/sup 14/C-) N-methyl PEA when incubating either cold amine and /sup 3/H-SAM or 1-/sup 14/C PEA and cold SAM, respectively, indicates that SAM is a methyl group donor in this reaction. They will discuss the physiological and pharmacological implications of these results.

  6. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    PubMed Central

    Lakhani, Bimal; Borich, Michael R.; Jackson, Jacob N.; Wadden, Katie P.; Peters, Sue; Villamayor, Anica; MacKay, Alex L.; Vavasour, Irene M.; Rauscher, Alexander; Boyd, Lara A.

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  7. Mapping the calcitonin receptor in human brain stem.

    PubMed

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J; Faull, Richard L M; Tajti, János; Edvinsson, Lars; Hay, Debbie L; Walker, Christopher S

    2016-05-01

    The calcitonin receptor (CTR) is relevant to three hormonal systems: amylin, calcitonin, and calcitonin gene-related peptide (CGRP). Receptors for amylin and calcitonin are targets for treating obesity, diabetes, and bone disorders. CGRP receptors represent a target for pain and migraine. Amylin receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract, the hypoglossal nucleus, the cuneate nucleus, spinal trigeminal nucleus, the gracile nucleus, and the inferior olivary nucleus. CTR staining was also observed in the area postrema, the lateral reticular nucleus, and the pyramidal tract. The extensive expression of CTR in the medulla suggests that CTR may be involved in a wider range of functions than currently appreciated. PMID:26911465

  8. Giovanni Aldini: from animal electricity to human brain stimulation.

    PubMed

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834. PMID:15595271

  9. Changes of Brain Glucose Metabolism in the Pretreatment Patients with Non-Small Cell Lung Cancer: A Retrospective PET/CT Study

    PubMed Central

    Zhang, Weishan; Ning, Ning; Li, Xianjun; Niu, Gang; Bai, Lijun; Guo, Youmin; Yang, Jian

    2016-01-01

    Objective The tumor-to-brain communication has been emphasized by recent converging evidences. This study aimed to compare the difference of brain glucose metabolism between patients with non-small cell lung cancer (NSCLC) and control subjects. Methods NSCLC patients prior to oncotherapy and control subjects without malignancy confirmed by 6 months follow-up were collected and underwent the resting state 18F-fluoro-D-glucose (FDG) PET/CT. Normalized FDG metabolism was calculated by a signal intensity ratio of each brain region to whole brain. Brain glucose metabolism was compared between NSCLC patients and control group using two samples t-test and multivariate test by statistical parametric maps (SPM) software. Results Compared with the control subjects (n = 76), both brain glucose hyper- and hypometabolism regions with significant statistical differences (P<0.01) were found in the NSCLC patients (n = 83). The hypermetabolism regions (bilateral insula, putamen, pallidum, thalamus, hippocampus and amygdala, the right side of cerebellum, orbital part of right inferior frontal gyrus and vermis) were component parts of visceral to brain signal transduction pathways, and the hypometabolism regions (the left superior parietal lobule, bilateral inferior parietal lobule and left fusiform gyrus) lied in dorsal attention network and visuospatial function areas. Conclusions The changes of brain glucose metabolism exist in NSCLC patients prior to oncotherapy, which might be attributed to lung-cancer related visceral sympathetic activation and decrease of dorsal attention network function. PMID:27529342

  10. Parkinson's disease outcomes after intraoperative CT-guided "asleep" deep brain stimulation in the globus pallidus internus.

    PubMed

    Mirzadeh, Zaman; Chapple, Kristina; Lambert, Margaret; Evidente, Virgilio G; Mahant, Padma; Ospina, Maria C; Samanta, Johan; Moguel-Cobos, Guillermo; Salins, Naomi; Lieberman, Abraham; Tröster, Alexander I; Dhall, Rohit; Ponce, Francisco A

    2016-04-01

    OBJECT Recent studies show that deep brain stimulation can be performed safely and accurately without microelectrode recording ortest stimulation but with the patient under general anesthesia. The procedure couples techniques for direct anatomical targeting on MRI with intraoperative imaging to verify stereotactic accuracy. However, few authors have examined the clinical outcomes of Parkinson's disease (PD) patients after this procedure. The purpose of this study was to evaluate PD outcomes following "asleep" deep brain stimulation in the globus pallidus internus (GPi). METHODS The authors prospectively examined all consecutive patients with advanced PD who underwent bilateral GPi electrode placement while under general anesthesia. Intraoperative CT was used to assess lead placement accuracy. The primary outcome measure was the change in the off-medication Unified Parkinson's Disease Rating Scale motor score 6 months after surgery. Secondary outcomes included effects on the 39-Item Parkinson's Disease Questionnaire (PDQ-39) scores, on-medication motor scores, and levodopa equivalent daily dose. Lead locations, active contact sites, stimulation parameters, and adverse events were documented. RESULTS Thirty-five patients (24 males, 11 females) had a mean age of 61 years at lead implantation. The mean radial error off plan was 0.8 mm. Mean coordinates for the active contact were 21.4 mm lateral, 4.7 mm anterior, and 0.4 mm superior to the midcommissural point. The mean off-medication motor score improved from 48.4 at baseline to 28.9 (40.3% improvement) at 6 months (p < 0.001). The PDQ-39 scores improved (50.3 vs 42.0; p = 0.03), and the levodopa equivalent daily dose was reduced (1207 vs 1035 mg; p = 0.004). There were no significant adverse events. CONCLUSIONS Globus pallidus internus leads placed with the patient under general anesthesia by using direct anatomical targeting resulted in significantly improved outcomes as measured by the improvement in the off

  11. Unexpected immunoreactivities of intermediate filament antibodies in human brain and brain tumors.

    PubMed Central

    Franke, F. E.; Schachenmayr, W.; Osborn, M.; Altmannsberger, M.

    1991-01-01

    Immunoreactivities of 35 different monoclonal antibodies (MAbs) that detect intermediate filaments were studied systematically on serial cryostat sections of 14 well-defined human gliomas (five astrocytomas, three oligodendrogliomas, six glioblastomas) and on normal brain. Glial fibrillary acidic protein (GFAP), vimentin, desmin, neurofilaments, and broad-specificity keratin MAbs, as well as MAbs that recognize several or only single keratin polypeptides, were used. Unexpected reactivities were surprisingly frequent. As these may lead to diagnostic confusion and misinterpretation on this material, the authors investigated these phenomena more thoroughly. Four major sources of artifactual staining were found: 1) positive staining attributable to the rabbit gamma G immunoglobulins used in the alkaline phosphatase anti-alkaline phosphatase technique; 2) certain desmin and keratin MAbs cross-reacted with astrocytic glia and with other brain-specific epitopes; 3) technical difficulties; 4) some MAbs directed against neurofilaments and keratins showed unexpected reactivities only on individual anaplastic gliomas. The implications of these findings for intermediate filament typing of neuropathologic material are discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1713022

  12. Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution

    PubMed Central

    Herculano-Houzel, Suzana; Kaas, Jon H.

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they

  13. “Messing with the mind”: evolutionary challenges to human brain augmentation

    PubMed Central

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P.

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce “augmented” brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties. PMID:25324734

  14. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    NASA Astrophysics Data System (ADS)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  15. Human brain development in infants with PET and FDG

    SciTech Connect

    Phelps, M.E.; Chugani, H.T.

    1985-05-01

    The authors used studies of local cerebral metabolic rate for glucose (LCMRGlc) to examine development of cerebral organization in 5 days to 1 year old children. A group (n=8) of infants with diverse pediatric disorders allowed investigation of developmental changes in LCMRGlc, while also providing relevant clinical management information. Patients consisted of questionable and definite neonatal seizures, cerebral embolism from cardiac sources, and otherwise normal infants with facial nevi with consideration of Sturge-Weber. Gradual increase in cortical LCMRGlc coincides with suppression of intrinsic subcortical reflexes present in all newborns. Two retarded children (2 years old) showed LCMRGlc developmental patterns of a few days old, which corresponded to their functional and mental status. These studies illustrate great potential of PET to study normal and altered states of human brain development.

  16. The brain's functional network architecture reveals human motives.

    PubMed

    Hein, Grit; Morishima, Yosuke; Leiberg, Susanne; Sul, Sunhae; Fehr, Ernst

    2016-03-01

    Goal-directed human behaviors are driven by motives. Motives are, however, purely mental constructs that are not directly observable. Here, we show that the brain's functional network architecture captures information that predicts different motives behind the same altruistic act with high accuracy. In contrast, mere activity in these regions contains no information about motives. Empathy-based altruism is primarily characterized by a positive connectivity from the anterior cingulate cortex (ACC) to the anterior insula (AI), whereas reciprocity-based altruism additionally invokes strong positive connectivity from the AI to the ACC and even stronger positive connectivity from the AI to the ventral striatum. Moreover, predominantly selfish individuals show distinct functional architectures compared to altruists, and they only increase altruistic behavior in response to empathy inductions, but not reciprocity inductions. PMID:26941317

  17. A neural representation of categorization uncertainty in the human brain.

    PubMed

    Grinband, Jack; Hirsch, Joy; Ferrera, Vincent P

    2006-03-01

    The ability to classify visual objects into discrete categories ("friend" versus "foe"; "edible" versus "poisonous") is essential for survival and is a fundamental cognitive function. The cortical substrates that mediate this function, however, have not been identified in humans. To identify brain regions involved in stimulus categorization, we developed a task in which subjects classified stimuli according to a variable categorical boundary. Psychophysical functions were used to define a decision variable, categorization uncertainty, which was systematically manipulated. Using event-related functional MRI, we discovered that activity in a fronto-striatal-thalamic network, consisting of the medial frontal gyrus, anterior insula, ventral striatum, and dorsomedial thalamus, was modulated by categorization uncertainty. We found this network to be distinct from the frontoparietal attention network, consisting of the frontal and parietal eye fields, where activity was not correlated with categorization uncertainty. PMID:16504950

  18. Space, time, and causality in the human brain.

    PubMed

    Woods, Adam J; Hamilton, Roy H; Kranjec, Alexander; Minhaus, Preet; Bikson, Marom; Yu, Jonathan; Chatterjee, Anjan

    2014-05-15

    The ability to perceive causality is a central human ability constructed from elemental spatial and temporal information present in the environment. Although the nature of causality has captivated philosophers and scientists since antiquity, the neural correlates of causality remain poorly understood. In the present study, we used functional magnetic resonance imaging (fMRI) to generate hypotheses for candidate brain regions related to component processes important for perceptual causality in the human brain: elemental space perception, elemental time perception, and decision-making (Experiment 1; n=16). We then used transcranial direct current stimulation (tDCS) to test neural hypotheses generated from the fMRI experiment (Experiment 2; n=16). In both experiments, participants judged causality in billiard-ball style launching events; a blue ball approaches and contacts a red ball. Spatial and temporal contributions to causal perception were assessed by parametrically varying the spatial linearity and the temporal delays of the movement of the balls. Experiment 1 demonstrated unique patterns of activation correlated with spatial, temporal, and decision-making components of causality perception. Using tDCS, we then tested hypotheses for the specific roles of the parietal and frontal cortices found in the fMRI experiment. Parietal stimulation only decreased participants' perception of causality based on spatial violations, while frontal stimulation made participants less likely to perceive causality based on violations of space and time. Converging results from fMRI and tDCS indicate that parietal cortices contribute to causal perception because of their specific role in processing spatial relations, while the frontal cortices contribute more generally, consistent with their role in decision-making. PMID:24561228

  19. A mouse model of human repetitive mild traumatic brain injury

    PubMed Central

    Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

  20. A Collaborative Brain-Computer Interface for Improving Human Performance

    PubMed Central

    Wang, Yijun; Jung, Tzyy-Ping

    2011-01-01

    Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1) Event-related potentials (ERP) averaging, (2) Feature concatenating, and (3) Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right) was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100–250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC), which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior. PMID:21655253

  1. Different subcellular localization of muscarinic and serotonin (S2) receptors in human, dog, and rat brain.

    PubMed

    Luabeya, M K; Maloteaux, J M; De Roe, C; Trouet, A; Laduron, P M

    1986-02-01

    Cortex from rat, dog, and human brain was submitted to subcellular fractionation using an analytical approach consisting of a two-step procedure. First, fractions were obtained by differential centrifugation and were analyzed for their content of serotonin S2 and muscarinic receptors, serotonin uptake, and marker enzymes. Second, the cytoplasmic extracts were subfractionated by equilibration in sucrose density gradient. In human brain, serotonin and muscarinic receptors were found associated mostly with mitochondrial fractions which contain synaptosomes, whereas in rat brain they were concentrated mainly in the microsomal fractions. Density gradient centrifugation confirmed a more marked synaptosomal localization of receptors in human than in rat brain, the dog displaying an intermediate profile. In human brain, indeed, more receptor sites were found to be associated with the second peak characterized in electron microscopy by the largest number of nerve terminals. In addition, synaptosomes from human brain are denser than those from rat brain and some marker enzymes reveal different subcellular distribution in the three species. These data indicate that more receptors are of synaptosomal nature in human brain than in other species and this finding is compatible with a larger amount of synaptic contacts in human brain. PMID:2934515

  2. Comparison of Airflows in Weibel-based and CT-based Human Lung Geometries

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Long; Hoffman, Eric A.

    2004-11-01

    The need for patient specific lung geometry for study of pulmonary air flow and drug delivery has been emphasized recently due to the complexity of individual airway tree geometry. The objective of this paper is to assess the notion of patient specific geometry by comparing airflows in an idealized Weibel-based lung model and two realistic human lung geometries. The Weibel-based model is composed of cylinders of differing diameters for various branching and has been used extensively for modeling airflow in lungs. Here a 4-generation Weibel model is considered. The realistic lung geometries are segmented and reconstructured from computerized tomography (CT) images as part of an effort to build a normative atlas (NIH HL-04368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. The custom developed Taylor-Galerkin finite element code, which solves the incompressible Navier-Stokes equations, is applied to simulate airflows in these lung geometries. The velocity wave form recorded from a mechanical ventilator is adopted as the inlet pulsatile boundary condition. At the outlets, both the pressure and outflow boundary conditions are applied and compared. The counter-rotating vortices are observed in the Weibel model during both the inspiratory and expiratory cycles, being consistent with previous studies. The flow structures in the CT-based models are much more complicated and counter-rotating vortices are only evident in some regions.

  3. Comparative Analysis of the Macroscale Structural Connectivity in the Macaque and Human Brain

    PubMed Central

    Bezgin, Gleb; Uylings, Harry B. M.; Roebroeck, Alard; Stiers, Peter

    2014-01-01

    The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity patterns, but also lack thereof, primarily involving cingulate regions. We unravel a common structural backbone in both species involving a highly overlapping set of regions. This structural backbone, important for mediating information across the brain, seems to constitute a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary aspects at the macroscale connectivity level and offer a quantitative translational bridge between macaque and human research. PMID:24676052

  4. Increased frequency of brain pathology in inmates of a high-security forensic institution: a qualitative CT and MRI scan study.

    PubMed

    Witzel, Joachim G; Bogerts, Bernhard; Schiltz, Kolja

    2016-09-01

    This study aimed to assess whether brain pathology might be more abundant in forensic inpatients in a high-security setting than in non-criminal individuals. By using a previously used reliable approach, we explored the frequency and extent of brain pathology in a large group of institutionalized offenders who had not previously been considered to be suffering from structural brain damage and compare it to healthy, non-offending subjects. MRI and CT brain scans from 148 male inpatients of a high-security mental health institution (offense type: 51 sex, 80 violent, 9 arson, and 8 nonviolent) that were obtained due to headache, vertigo, or psychological complaints during imprisonment were assessed and compared to 52 non-criminal healthy controls. Brain scans were assessed qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1), or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex, and medial temporal structures bilaterally as well as third ventricle. Forensic inpatients displayed signs of brain damage to a significantly higher degree than healthy controls (p < 0.001). Even after adjustment for age, in the patients, being younger than the controls (p < 0.05), every offender type group displayed a higher proportion of subjects with brain regions categorized as definitely abnormal than the non-criminal controls. Within the forensic inpatients, offense type groups did not significantly differ in brain pathology. The astonishingly high prevalence of brain pathology in institutionalized inmates of a high-security mental health institution who previously had not been considered to be suffering from an organic brain syndrome raises questions on whether such neuroradiological assessment might be considered as a routine procedure in newly admitted patients. Furthermore, it highlights that organic changes, detectable under clinical routine

  5. Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM).

    PubMed

    Buytaert, Jan; Goyens, Jana; De Greef, Daniel; Aerts, Peter; Dirckx, Joris

    2014-08-01

    Two methods are especially suited for tomographic imaging with histological detail of macroscopic samples that consist of multiple tissue types (bone, muscle, nerve or fat): Light sheet (based) fluorescence microscopy (LSFM) and micro-computed tomography (micro-CT). Micro-CT requires staining with heavy chemical elements (and thus fixation and sometimes dehydration) in order to make soft tissue imageable when measured alongside denser structures. LSMF requires fixation, decalcification, dehydration, clearing and staining with a fluorescent dye. The specimen preparation of both imaging methods is prone to shrinkage, which is often not mentioned, let alone quantified. In this paper the presence and degree of shrinkage are quantitatively identified for the selected preparation methods/stains. LSFM delivers a volume shrinkage of 17% for bone, 56% for muscle and 62% for brain tissue. The three most popular micro-CT stains (phosphotungstic acid, iodine with potassium iodide, and iodine in absolute ethanol) deliver a volume shrinkage ranging from 10 to 56% for muscle and 27-66% for brain, while bone does not shrink in micro-CT preparation. PMID:24963987

  6. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    SciTech Connect

    Sisniega, A; Zbijewski, W; Stayman, J; Yorkston, J; Aygun, N; Koliatsos, V; Siewerdsen, J

    2014-06-15

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain

  7. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment

    PubMed Central

    Jean, Aurélie; Nyein, Michelle K.; Zheng, James Q.; Moore, David F.; Joannopoulos, John D.; Radovitzky, Raúl

    2014-01-01

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans. PMID:25267617

  8. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.

    PubMed

    Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl

    2014-10-28

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans. PMID:25267617

  9. Low contrast detectability in CT for human and model observers in multi-slice data sets

    NASA Astrophysics Data System (ADS)

    Ba, Alexandre; Racine, Damien; Ott, Julien G.; Verdun, Francis R.; Kobbe-Schmidt, Sabine; Eckstein, Miguel P.; Bochud, Francois O.

    2015-03-01

    Task-based medical image quality is often assessed by model observers for single slice images. The goal of the study was to determine if model observers can predict human detection performance of low contrast signals in CT for clinical multi-slice (ms) images. We collected 24 different data subsets from a low contrast phantom: 3 dose levels (40, 90, 150 mAs), 4 signals (6 and 8 mm diameter; 10 and 20 HU at 120kV) and 2 reconstruction algorithms (FBP and iterative (IR)). Images were assessed by human and model observers in 4-alternative forced choice (4AFC) experiments with ms data set in a signal-known-exactly (SKE) paradigm. Model observers with single (msCHOa) and multiple (msCHOb) templates were implemented in a train and test method analysis with Dense Difference of Gaussian (DDoG) and Gabor spatial channels. For human observers, we found that percent correct increased with the dose and was higher for iterative reconstructed images than FBP in all investigated conditions. All model observers implemented overestimated human performance in any condition except one case (6mm and 10HU) for msCHOa and msCHOb with Gabor channels. Internal noise could be implemented and a good agreement was found but necessitates independent fits according to the reconstruction method. Generally msCHOb shows higher detection performance than msCHOa with both types of channels. Gabor channels were less efficient than DDoG in this context. These results allow further developments in 3D analysis technique for low contrast CT.

  10. Noninvasive quantification of human brain antioxidant concentrations after an intravenous bolus of vitamin C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Until now, antioxidant based initiatives for preventing dementia have lacked a means to detect deficiency or measure pharmacologic effect in the human brain in situ. Objective: Our objective was to apply a novel method to measure key human brain antioxidant concentrations throughout the ...

  11. Interactions between cardiac, respiratory, and brain activity in humans

    NASA Astrophysics Data System (ADS)

    Musizza, Bojan; Stefanovska, Aneta

    2005-05-01

    The electrical activity of the heart (ECG), respiratory function and electric activity of the brain (EEG) were simultaneously recorded in conscious, healthy humans. Instantaneous frequencies of the heart beat, respiration and α-waves were then determined from 30-minutes recordings. The instantaneous cardiac frequency was defined as the inverse value of the time interval between two consecutive R-peaks. The instantaneous respiratory frequency was obtained from recordings of the excursions of thorax by application of the Hilbert transform. To obtain the instantaneous frequency of α-waves, the EEG signal recorded from the forehead was first analysed using the wavelet transform. Then the frequency band corresponding to α-waves was extracted and the Hilbert transform applied. Synchronization analysis was performed and the direction of coupling was ascertained, using pairs of instantaneous frequencies in each case. It is shown that the systems are weakly bidirectionally coupled. It was confirmed that, in conscious healthy humans, respiration drives cardiac activity. We also demonstrate from these analyses that α-activity drives both respiration and cardiac activity.

  12. The Future of Neuroepigenetics in the Human Brain

    PubMed Central

    Mitchell, Amanda; Roussos, Panos; Peter, Cyril; Tsankova, Nadejda; Akbarian, Schahram

    2016-01-01

    Complex mechanisms shape the genome of brain cells into transcriptional units, clusters of condensed chromatin, and many other features that distinguish between various cell types and developmental stages sharing the same genetic material. Only a few years ago, the field’s focus was almost entirely on a single mark, CpG methylation; the emerging complexity of neuronal and glial epigenomes now includes multiple types of DNA cytosine methylation, more than 100 residue-specific posttranslational histone modifications and histone variants, all of which superimposed by a dynamic and highly regulated three-dimensional organization of the chromosomal material inside the cell nucleus. Here, we provide an update on the most innovative approaches in neuroepigenetics and their potential contributions to approach cognitive functions and disorders unique to human. We propose that comprehensive, cell type-specific mappings of DNA and histone modifications, chromatin-associated RNAs, and chromosomal “loopings” and other determinants of three-dimensional genome organization will critically advance insight into the pathophysiology of the disease. For example, superimposing the epigenetic landscapes of neuronal and glial genomes onto genetic maps for complex disorders, ranging from Alzheimer’s disease to schizophrenia, could provide important clues about neurological function for some of the risk-associated noncoding sequences in the human genome. PMID:25410546

  13. Absence of human cytomegalovirus infection in childhood brain tumors.

    PubMed

    Sardi, Iacopo; Lucchesi, Maurizio; Becciani, Sabrina; Facchini, Ludovica; Guidi, Milena; Buccoliero, Anna Maria; Moriondo, Maria; Baroni, Gianna; Stival, Alessia; Farina, Silvia; Genitori, Lorenzo; de Martino, Maurizio

    2015-01-01

    Human cytomegalovirus (HCMV) is a common human pathogen which induces different clinical manifestations related to the age and the immune conditions of the host. HCMV infection seems to be involved in the pathogenesis of adult glioblastomas. The aim of our study was to detect the presence of HCMV in high grade gliomas and other pediatric brain tumors. This hypothesis might have important therapeutic implications, offering a new target for adjuvant therapies. Among 106 pediatric patients affected by CNS tumors we selected 27 patients with a positive HCMV serology. The serological analysis revealed 7 patients with positive HCMV IGG (≥14 U/mL), whom had also a high HCMV IgG avidity, suggesting a more than 6 months-dated infection. Furthermore, HCMV IGM were positive (≥22 U/mL) in 20 patients. Molecular and immunohistochemical analyses were performed in all the 27 samples. Despite a positive HCMV serology, confirmed by ELISA, no viral DNA was shown at the PCR analysis in the patients' neoplastic cells. At immunohistochemistry, no expression of HCMV antigens was observed in tumoral cells. Our results are in agreement with recent results in adults which did not evidence the presence of HCMV genome in glioblastoma lesions. We did not find any correlation between HCMV infection and pediatric CNS tumors. PMID:26396923

  14. Absence of human cytomegalovirus infection in childhood brain tumors

    PubMed Central

    Sardi, Iacopo; Lucchesi, Maurizio; Becciani, Sabrina; Facchini, Ludovica; Guidi, Milena; Buccoliero, Anna Maria; Moriondo, Maria; Baroni, Gianna; Stival, Alessia; Farina, Silvia; Genitori, Lorenzo; de Martino, Maurizio

    2015-01-01

    Human cytomegalovirus (HCMV) is a common human pathogen which induces different clinical manifestations related to the age and the immune conditions of the host. HCMV infection seems to be involved in the pathogenesis of adult glioblastomas. The aim of our study was to detect the presence of HCMV in high grade gliomas and other pediatric brain tumors. This hypothesis might have important therapeutic implications, offering a new target for adjuvant therapies. Among 106 pediatric patients affected by CNS tumors we selected 27 patients with a positive HCMV serology. The serological analysis revealed 7 patients with positive HCMV IGG (≥14 U/mL), whom had also a high HCMV IgG avidity, suggesting a more than 6 months-dated infection. Furthermore, HCMV IGM were positive (≥22 U/mL) in 20 patients. Molecular and immunohistochemical analyses were performed in all the 27 samples. Despite a positive HCMV serology, confirmed by ELISA, no viral DNA was shown at the PCR analysis in the patients’ neoplastic cells. At immunohistochemistry, no expression of HCMV antigens was observed in tumoral cells. Our results are in agreement with recent results in adults which did not evidence the presence of HCMV genome in glioblastoma lesions. We did not find any correlation between HCMV infection and pediatric CNS tumors. PMID:26396923

  15. ConnectomeDB--Sharing human brain connectivity data.

    PubMed

    Hodge, Michael R; Horton, William; Brown, Timothy; Herrick, Rick; Olsen, Timothy; Hileman, Michael E; McKay, Michael; Archie, Kevin A; Cler, Eileen; Harms, Michael P; Burgess, Gregory C; Glasser, Matthew F; Elam, Jennifer S; Curtiss, Sandra W; Barch, Deanna M; Oostenveld, Robert; Larson-Prior, Linda J; Ugurbil, Kamil; Van Essen, David C; Marcus, Daniel S

    2016-01-01

    ConnectomeDB is a database for housing and disseminating data about human brain structure, function, and connectivity, along with associated behavioral and demographic data. It is the main archive and dissemination platform for data collected under the WU-Minn consortium Human Connectome Project. Additional connectome-style study data is and will be made available in the database under current and future projects, including the Connectome Coordination Facility. The database currently includes multiple modalities of magnetic resonance imaging (MRI) and magnetoencephalograpy (MEG) data along with associated behavioral data. MRI modalities include structural, task, resting state and diffusion. MEG modalities include resting state and task. Imaging data includes unprocessed, minimally preprocessed and analysis data. Imaging data and much of the behavioral data are publicly available, subject to acceptance of data use terms, while access to some sensitive behavioral data is restricted to qualified investigators under a more stringent set of terms. ConnectomeDB is the public side of the WU-Minn HCP database platform. As such, it is geared towards public distribution, with a web-based user interface designed to guide users to the optimal set of data for their needs and a robust backend mechanism based on the commercial Aspera fasp service to enable high speed downloads. HCP data is also available via direct shipment of hard drives and Amazon S3. PMID:25934470

  16. Fractional Diffusion Based Modelling and Prediction of Human Brain Response to External Stimuli

    PubMed Central

    Kulish, Vladimir V.

    2015-01-01

    Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling and prediction of the human EEG signal, as an alert state of overall human brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as prediction of seizure onset in patient with epilepsy. PMID:26089955

  17. Decade of the Brain 1990-2000: Maximizing Human Potential.

    ERIC Educational Resources Information Center

    Federal Coordinating Council for Science, Engineering and Technology, Washington, DC.

    The brain is the seat of intelligence, the interpreter of senses, and the controller of movement. Research efforts on the brain have increased dramatically in the past 10 years; some of the more promising areas of brain and behavioral sciences research are reported here. The research was performed by 22 separate Federal member organizations and…

  18. Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness

    PubMed Central

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Pieszek, Raik; Sherwood, Chet C.; Hof, Patrick R.; Ely, John J.; Steinhauser, Dirk; Willmitzer, Lothar; Bangsbo, Jens; Hansson, Ola; Call, Josep; Giavalisco, Patrick; Khaitovich, Philipp

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. PMID:24866127

  19. Human-specific hypomethylation of CENPJ, a key brain size regulator.

    PubMed

    Shi, Lei; Lin, Qiang; Su, Bing

    2014-03-01

    Both the enlarged brain and concurrent highly developed cognitive skills are often seen as distinctive characteristics that set humans apart from other primates. Despite this obvious differentiation, the genetic mechanisms that underlie such human-specific traits are not clearly understood. In particular, whether epigenetic regulations may play a key role in human brain evolution remain elusive. In this study, we used bisulfite sequencing to compare the methylation patterns of four known genes that regulate brain size (ASPM, CDK5RAP2, CENPJ, and MCPH1) in the prefrontal cortex among several primate species spanning the major lineages of primates (i.e., humans, great apes, lesser apes, and Old World monkeys). The results showed a human-specific hypomethylation in the 5' UTR of CENPJ in the brain, where methylation levels among humans are only about one-third of those found among nonhuman primates. Similar methylation patterns were also detected in liver, kidney, and heart tissues, although the between-species differences were much less pronounced than those in the brain. Further in vitro methylation assays indicated that the methylation status of the CENPJ promoter could influence its expression. We also detected a large difference in CENPJ expression in the human and nonhuman primate brains of both adult individuals and throughout the major stages of fetal brain development. The hypomethylation and comparatively high expression of CENPJ in the central nervous system of humans suggest that a human-specific--and likely heritable--epigenetic modification likely occurred during human evolution, potentially leading to a much larger neural progenitor pool during human brain development, which may have eventually contributed to the dramatically enlarged brain and highly developed cognitive abilities associated with humans. PMID:24288161

  20. Fully automatic algorithm for segmenting full human diaphragm in non-contrast CT Images

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    The diaphragm is a sheet of muscle which separates the thorax from the abdomen and it acts as the most important muscle of the respiratory system. As such, an accurate segmentation of the diaphragm, not only provides key information for functional analysis of the respiratory system, but also can be used for locating other abdominal organs such as the liver. However, diaphragm segmentation is extremely challenging in non-contrast CT images due to the diaphragm's similar appearance to other abdominal organs. In this paper, we present a fully automatic algorithm for diaphragm segmentation in non-contrast CT images. The method is mainly based on a priori knowledge about the human diaphragm anatomy. The diaphragm domes are in contact with the lungs and the heart while its circumference runs along the lumbar vertebrae of the spine as well as the inferior border of the ribs and sternum. As such, the diaphragm can be delineated by segmentation of these organs followed by connecting relevant parts of their outline properly. More specifically, the bottom surface of the lungs and heart, the spine borders and the ribs are delineated, leading to a set of scattered points which represent the diaphragm's geometry. Next, a B-spline filter is used to find the smoothest surface which pass through these points. This algorithm was tested on a noncontrast CT image of a lung cancer patient. The results indicate that there is an average Hausdorff distance of 2.96 mm between the automatic and manually segmented diaphragms which implies a favourable accuracy.

  1. Endocannabinoids modulate human blood–brain barrier permeability in vitro

    PubMed Central

    Hind, William H; Tufarelli, Cristina; Neophytou, Maria; Anderson, Susan I; England, Timothy J; O'Sullivan, Saoirse E

    2015-01-01

    Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was modelled by oxygen-glucose deprivation (OGD) and permeability was measured by transepithelial electrical resistance. Endocannabinoids or endocannabinoid-like compounds were assessed for their ability to modulate baseline permeability or OGD-induced hyperpermeability. Target sites of action were investigated using receptor antagonists and subsequently identified with real-time PCR. Key Results Anandamide (10 μM) and oleoylethanolamide (OEA, 10 μM) decreased BBB permeability (i.e. increased resistance). This was mediated by cannabinoid CB2 receptors, transient receptor potential vanilloid 1 (TRPV1) channels, calcitonin gene-regulated peptide (CGRP) receptor (anandamide only) and PPARα (OEA only). Application of OEA, palmitoylethanolamide (both PPARα mediated) or virodhamine (all 10 μM) decreased the OGD-induced increase in permeability during reperfusion. 2-Arachidonoyl glycerol, noladin ether and oleamide did not affect BBB permeability in normal or OGD conditions. N-arachidonoyl-dopamine increased permeability through a cytotoxic mechanism. PPARα and γ, CB1 receptors, TRPV1 channels and CGRP receptors were expressed in both cell types, but mRNA for CB2 receptors was only present in astrocytes. Conclusion and Implication The endocannabinoids may play an important modulatory role in normal BBB physiology, and also afford protection to the BBB during ischaemic stroke, through a number of target sites. PMID:25651941

  2. Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase-2 and expression in human pancreas.

    PubMed Central

    Yalowitz, Joel A; Xiao, Suhong; Biju, Mangatt P; Antony, Aśok C; Cummings, Oscar W; Deeg, Mark A; Jayaram, Hiremagalur N

    2004-01-01

    NMNAT (nicotinamide 5'-mononucleotide adenylyltransferase; EC 2.7.7.1) catalyses the transfer of the adenylyl group from ATP to NMN to form NAD. We have cloned a novel human NMNAT cDNA, designated hNMNAT-2, from human brain. The cDNA contains a 924 bp open reading frame that encodes a 307 amino acid peptide that was expressed as a histidine-patch-containing thioredoxin fusion protein. Expressed hNMNAT-2 shared only 35% amino acid sequence homology with the human NMNAT enzyme (hNMNAT-1), but possessed enzymic activity comparable with hNMNAT-1. Using human genomic databases, hNMNAT-2 was localized to chromosome 1q25 within a 171 kb gene, whereas hNMNAT-1 is on chromosome 1p32-35. Northern blot analysis revealed highly restricted expression of hNMNAT-2 to brain, heart and muscle tissues, which contrasts with the wide tissue expression of hNMNAT-1; different regions of the brain exhibited differential expression of hNMNAT-2. Substitution mutations of either of two invariant residues, His-24 or Trp-92, abolished enzyme activity. Anti-peptide antibody to a unique epitope within hNMNAT-2 was produced, and immunohistochemical analysis of sections of normal adult human pancreas revealed that hNMNAT-2 protein was markedly expressed in the islets of Langerhans. However, the pancreatic exocrine cells exhibited weak expression of hNMNAT-2 protein. Sections of pancreas from insulinoma patients showed strong expression of hNMNAT-2 protein in the insulin-producing tumour cells, whereas acinar cells exhibited relatively low expression of hNMNAT-2 protein. These data suggest that the unique tissue-expression patterns of hNMNAT-2 reflect distinct functions for the isoforms in the regulation of NAD metabolism. PMID:14516279

  3. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species

    PubMed Central

    Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.

    2013-01-01

    Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307

  4. Neanderthal brain size at birth provides insights into the evolution of human life history

    PubMed Central

    Ponce de León, Marcia S.; Golovanova, Lubov; Doronichev, Vladimir; Romanova, Galina; Akazawa, Takeru; Kondo, Osamu; Ishida, Hajime; Zollikofer, Christoph P. E.

    2008-01-01

    From birth to adulthood, the human brain expands by a factor of 3.3, compared with 2.5 in chimpanzees [DeSilva J and Lesnik J (2006) Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. J Hum Evol 51: 207–212]. How the required extra amount of human brain growth is achieved and what its implications are for human life history and cognitive development are still a matter of debate. Likewise, because comparative fossil evidence is scarce, when and how the modern human pattern of brain growth arose during evolution is largely unknown. Virtual reconstructions of a Neanderthal neonate from Mezmaiskaya Cave (Russia) and of two Neanderthal infant skeletons from Dederiyeh Cave (Syria) now provide new comparative insights: Neanderthal brain size at birth was similar to that in recent Homo sapiens and most likely subject to similar obstetric constraints. Neanderthal brain growth rates during early infancy were higher, however. This pattern of growth resulted in larger adult brain sizes but not in earlier completion of brain growth. Because large brains growing at high rates require large, late-maturing, mothers [Leigh SR and Blomquist GE (2007) in Campbell CJ et al. Primates in perspective; pp 396–407], it is likely that Neanderthal life history was similarly slow, or even slower-paced, than in recent H. sapiens. PMID:18779579

  5. Development of a high angular resolution diffusion imaging human brain template.

    PubMed

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528

  6. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression.

    PubMed

    Goyal, Manu S; Hawrylycz, Michael; Miller, Jeremy A; Snyder, Abraham Z; Raichle, Marcus E

    2014-01-01

    Aerobic glycolysis (AG; i.e., nonoxidative metabolism of glucose despite the presence of abundant oxygen) accounts for 10%-12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with the persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938

  7. Comparative study of 18F-DOPA, 13N-Ammonia and F18-FDG PET/CT in primary brain tumors

    PubMed Central

    Jacob, Mattakarottu J; Pandit, Aniruddha G; Jora, Charu; Mudalsha, Ravina; Sharma, Amit; Pathak, Harish C

    2011-01-01

    Aim: To determine the diagnostic reliability of 18F-FDOPA, 13N-Ammonia and F18-FDG PET/CT in primary brain tumors. We evaluated the amino acid and glucose metabolism of brain tumors by using PET with 18F-FDOPA, 13N-Ammonia and F18-FDG PET/CT. Materials and Methods: Nine patients undergoing evaluation for brain tumors were studied. Tracer uptake was quantified by the use of standardized uptake values and the ratio of tumor uptake to normal identical area of contra lateral hemisphere (T/N). In addition, PET uptake with 18F-FDOPA was quantified by use of ratio of tumor uptake to striatum uptake (T/S). The results were correlated with the patient's clinical profile. Results: Both high-grade and low-grade tumors were well visualized with 18F-FDOPA. The sensitivity for identifying tumors was substantially higher with 18F-FDOPA PET than with F18-FDG and 13N-Ammonia PET as determined by simple visual inspection. The sensitivity for identifying recurrence in low grade gliomas is higher with 13N-Ammonia than with F18-FDG. Conclusion: 18F-FDOPA PET is more reliable than F18-FDG and 13N-Ammonia PET for evaluating brain tumors. PMID:23326065

  8. Micro-CT scouting for transmission electron microscopy of human tissue specimens.

    PubMed

    Morales, A G; Stempinski, E S; Xiao, X; Patel, A; Panna, A; Olivier, K N; McShane, P J; Robinson, C; George, A J; Donahue, D R; Chen, P; Wen, H

    2016-07-01

    Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. We describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 μm resolution was used to determine the location of patches of the mucous membrane in osmium-stained human nasal scraping samples. Once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. PMID:26854176

  9. Brain macrophages and microglia in human fetal hydrocephalus.

    PubMed

    Ulfig, Norbert; Bohl, Jürgen; Neudörfer, Frank; Rezaie, Payam

    2004-08-01

    Whereas several studies have addressed the activation of microglia (the resident mononuclear phagocytes of the brain) and macrophages within the nervous system in experimental animal models of congenital and induced hydrocephalus, little is known of their state of activation or regional distribution in human fetal hydrocephalus. This investigation aimed to address such questions. Ten human fetal cases [20-36 gestational weeks (GW) at postmortem] previously diagnosed with hydrocephalus on ultrasound examination in utero, and 10 non-hydrocephalic controls (22-38 GW at postmortem) were assessed immufcnohistochemically with antibodies directed against MHC class II and CD68 antigens, and lectin histochemistry with Lycopersicon esculentum (tomato lectin). Adjacent sections were also immunoreacted with an antiserum to laminin to detect cerebral blood vessels. Eight out of the 10 hydrocephalus cases showed numerous CD68 and tomato lectin-positive macrophages located at focal regions along the ependymal lining of the lateral ventricles (particularly within the occipital horn). However, only five of these cases demonstrated MHC class II positive macrophages associated with the ventricular lining. Microglial reactivity within periventricular regions could also be identified using the lectin in four cases, two of which were also immunoreactive with CD68 (but not with MHC class II). By comparison, in control cases five out of 10 fetal brains (aged between 20 and 24 GW) showed few or no ependymal or supraependymal macrophages. One case at 28 GW, and cases at 32 and 38 GW (two of which were diagnosed with intrauterine hypoxic-ischemia) did, however, show some MHC class II (CD68 negative) cells located at the ependymal surface. Nevertheless, these were not as numerous or intensely immunoreactive as in the hydrocephalus cases. Microglia interspersed throughout the intermediate zone and circumscribing the basal ganglia were within normal confines in all cases examined. Hydrocephalic

  10. Comparison of human and automatic segmentations of kidneys from CT images

    SciTech Connect

    Rao, Manjori; Stough, Joshua; Chi, Y.-Y.; Muller, Keith; Tracton, Gregg; Pizer, Stephen M.; Chaney, Edward L. . E-mail: chaney@med.unc.edu

    2005-03-01

    Purpose: A controlled observer study was conducted to compare a method for automatic image segmentation with conventional user-guided segmentation of right and left kidneys from planning computerized tomographic (CT) images. Methods and materials: Deformable shape models called m-reps were used to automatically segment right and left kidneys from 12 target CT images, and the results were compared with careful manual segmentations performed by two human experts. M-rep models were trained based on manual segmentations from a collection of images that did not include the targets. Segmentation using m-reps began with interactive initialization to position the kidney model over the target kidney in the image data. Fully automatic segmentation proceeded through two stages at successively smaller spatial scales. At the first stage, a global similarity transformation of the kidney model was computed to position the model closer to the target kidney. The similarity transformation was followed by large-scale deformations based on principal geodesic analysis (PGA). During the second stage, the medial atoms comprising the m-rep model were deformed one by one. This procedure was iterated until no changes were observed. The transformations and deformations at both stages were driven by optimizing an objective function with two terms. One term penalized the currently deformed m-rep by an amount proportional to its deviation from the mean m-rep derived from PGA of the training segmentations. The second term computed a model-to-image match term based on the goodness of match of the trained intensity template for the currently deformed m-rep with the corresponding intensity data in the target image. Human and m-rep segmentations were compared using quantitative metrics provided in a toolset called Valmet. Metrics reported in this article include (1) percent volume overlap; (2) mean surface distance between two segmentations; and (3) maximum surface separation (Hausdorff distance

  11. The brain-life theory: towards a consistent biological definition of humanness.

    PubMed Central

    Goldenring, J M

    1985-01-01

    This paper suggests that medically the term a 'human being' should be defined by the presence of an active human brain. The brain is the only unique and irreplaceable organ in the human body, as the orchestrator of all organ systems and the seat of personality. Thus, the presence or absence of brain life truly defines the presence or absence of human life in the medical sense. When viewed in this way, human life may be seen as a continuous spectrum between the onset of brain life in utero (eight weeks gestation), until the occurrence of brain death. At any point human tissue or organ systems may be present, but without the presence of a functional human brain, these do not constitute a 'human being', at least in a medical sense. The implications of this theory for various ethical concerns such as in vitro fertilisation and abortion are discussed. This theory is the most consistent possible for the definition of a human being with no contradictions inherent. However, having a good theory of definition of a 'human being' does not necessarily solve the ethical problems discussed herein. PMID:4078859

  12. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.

    PubMed

    Fan, Lingzhong; Li, Hai; Zhuo, Junjie; Zhang, Yu; Wang, Jiaojian; Chen, Liangfu; Yang, Zhengyi; Chu, Congying; Xie, Sangma; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2016-08-01

    The human brain atlases that allow correlating brain anatomy with psychological and cognitive functions are in transition from ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further mapped the delineated structures to mental processes by reference to the BrainMap database. It thus provides an objective and stable starting point from which to explore the complex relationships between structure, connectivity, and function, and eventually improves understanding of how the human brain works. The human Brainnetome Atlas will be made freely available for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional data will be readily available for researchers to use in their investigations into healthy and pathological states. PMID:27230218

  13. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture

    PubMed Central

    Fan, Lingzhong; Li, Hai; Zhuo, Junjie; Zhang, Yu; Wang, Jiaojian; Chen, Liangfu; Yang, Zhengyi; Chu, Congying; Xie, Sangma; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.; Yu, Chunshui; Jiang, Tianzi

    2016-01-01

    The human brain atlases that allow correlating brain anatomy with psychological and cognitive functions are in transition from ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further mapped the delineated structures to mental processes by reference to the BrainMap database. It thus provides an objective and stable starting point from which to explore the complex relationships between structure, connectivity, and function, and eventually improves understanding of how the human brain works. The human Brainnetome Atlas will be made freely available for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional data will be readily available for researchers to use in their investigations into healthy and pathological states. PMID:27230218

  14. Brain Organization into Resting State Networks Emerges at Criticality on a Model of the Human Connectome

    NASA Astrophysics Data System (ADS)

    Haimovici, Ariel; Tagliazucchi, Enzo; Balenzuela, Pablo; Chialvo, Dante R.

    2013-04-01

    The relation between large-scale brain structure and function is an outstanding open problem in neuroscience. We approach this problem by studying the dynamical regime under which realistic spatiotemporal patterns of brain activity emerge from the empirically derived network of human brain neuroanatomical connections. The results show that critical dynamics unfolding on the structural connectivity of the human brain allow the recovery of many key experimental findings obtained from functional magnetic resonance imaging, such as divergence of the correlation length, the anomalous scaling of correlation fluctuations, and the emergence of large-scale resting state networks.

  15. Identification and Analysis of Intermediate Size Noncoding RNAs in the Human Fetal Brain

    PubMed Central

    Chen, Xiaoyan; Fan, Zhen; Chen, Runsheng

    2011-01-01

    The involvement of noncoding RNAs (ncRNAs) in the development of the human brain remains largely unknown. Applying a cloning strategy for detection of intermediate size (50–500 nt) ncRNAs (is-ncRNAs) we have identified 82 novel transcripts in human fetal brain tissue. Most of the novel is-ncRNAs are not well conserved in vertebrates, and several transcripts were only found in primates. Northern blot and microarray analysis indicated considerable variation in expression across human fetal brain development stages and fetal tissues for both novel and known is-ncRNAs. Expression of several of the novel is-ncRNAs was conspicuously absent in one or two brain cancer cell lines, and transient overexpression of some transcripts in cancer cells significantly inhibited cell proliferation. Overall, our results suggest that is-ncRNAs play important roles in the development and tumorigenesis of human brain. PMID:21789175

  16. Real-time classification of activated brain areas for fMRI-based human-brain-interfaces

    NASA Astrophysics Data System (ADS)

    Moench, Tobias; Hollmann, Maurice; Grzeschik, Ramona; Mueller, Charles; Luetzkendorf, Ralf; Baecke, Sebastian; Luchtmann, Michael; Wagegg, Daniela; Bernarding, Johannes

    2008-03-01

    Functional MR imaging (fMRI) enables to detect different activated brain areas according to the performed tasks. However, data are usually evaluated after the experiment, which prohibits intra-experiment optimization or more sophisticated applications such as biofeedback experiments. Using a human-brain-interface (HBI), subjects are able to communicate with external programs, e.g. to navigate through virtual scenes, or to experience and modify their own brain activation. These applications require the real-time analysis and classification of activated brain areas. Our paper presents first results of different strategies for real-time pattern analysis and classification realized within a flexible experiment control system that enables the volunteers to move through a 3D virtual scene in real-time using finger tapping tasks, and alternatively only thought-based tasks.

  17. Playing 20 Questions with the Mind: Collaborative Problem Solving by Humans Using a Brain-to-Brain Interface

    PubMed Central

    Stocco, Andrea; Prat, Chantel S.; Losey, Darby M.; Cronin, Jeneva A.; Wu, Joseph; Abernethy, Justin A.; Rao, Rajesh P. N.

    2015-01-01

    We present, to our knowledge, the first demonstration that a non-invasive brain-to-brain interface (BBI) can be used to allow one human to guess what is on the mind of another human through an interactive question-and-answering paradigm similar to the “20 Questions” game. As in previous non-invasive BBI studies in humans, our interface uses electroencephalography (EEG) to detect specific patterns of brain activity from one participant (the “respondent”), and transcranial magnetic stimulation (TMS) to deliver functionally-relevant information to the brain of a second participant (the “inquirer”). Our results extend previous BBI research by (1) using stimulation of the visual cortex to convey visual stimuli that are privately experienced and consciously perceived by the inquirer; (2) exploiting real-time rather than off-line communication of information from one brain to another; and (3) employing an interactive task, in which the inquirer and respondent must exchange information bi-directionally to collaboratively solve the task. The results demonstrate that using the BBI, ten participants (five inquirer-respondent pairs) can successfully identify a “mystery item” using a true/false question-answering protocol similar to the “20 Questions” game, with high levels of accuracy that are significantly greater than a control condition in which participants were connected through a sham BBI. PMID:26398267

  18. Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain

    PubMed Central

    Montoya, Julio Cesar; Fajardo, Dianora; Peña, Angela; Sánchez, Adalberto; Domínguez, Martha C; Satizábal, José María

    2014-01-01

    Background: The information of gene expression obtained from databases, have made possible the extraction and analysis of data related with several molecular processes involving not only in brain homeostasis but its disruption in some neuropathologies; principally in Down syndrome and the Alzheimer disease. Objective: To correlate the levels of transcription of 19 genes located in the Down Syndrome Critical Region (DSCR) with their expression in several substructures of normal human brain. Methods: There were obtained expression profiles of 19 DSCR genes in 42 brain substructures, from gene expression values available at the database of the human brain of the Brain Atlas of the Allen Institute for Brain Sciences", (http://human.brain-map.org/). The co-expression patterns of DSCR genes in brain were calculated by using multivariate statistical methods. Results: Highest levels of gene expression were registered at caudate nucleus, nucleus accumbens and putamen among central areas of cerebral cortex. Increased expression levels of RCAN1 that encode by a protein involved in signal transduction process of the CNS were recorded for PCP4 that participates in the binding to calmodulin and TTC3; a protein that is associated with differentiation of neurons. That previously identified brain structures play a crucial role in the learning process, in different class of memory and in motor skills. Conclusion: The precise regulation of DSCR gene expression is crucial to maintain the brain homeostasis, especially in those areas with high levels of gene expression associated with a remarkable process of learning and cognition. PMID:25767303

  19. Can the common brain parasite, Toxoplasma gondii, influence human culture?

    PubMed Central

    Lafferty, Kevin D

    2006-01-01

    The latent prevalence of a long-lived and common brain parasite, Toxoplasma gondii, explains a statistically significant portion of the variance in aggregate neuroticism among populations, as well as in the ‘neurotic’ cultural dimensions of sex roles and uncertainty avoidance. Spurious or non-causal correlations between aggregate personality and aspects of climate and culture that influence T. gondii transmission could also drive these patterns. A link between culture and T. gondii hypothetically results from a behavioural manipulation that the parasite uses to increase its transmission to the next host in the life cycle: a cat. While latent toxoplasmosis is usually benign, the parasite's subtle effect on individual personality appears to alter the aggregate personality at the population level. Drivers of the geographical variation in the prevalence of this parasite include the effects of climate on the persistence of infectious stages in soil, the cultural practices of food preparation and cats as pets. Some variation in culture, therefore, may ultimately be related to how climate affects the distribution of T. gondii, though the results only explain a fraction of the variation in two of the four cultural dimensions, suggesting that if T. gondii does influence human culture, it is only one among many factors. PMID:17015323

  20. The Human Brain Encodes Event Frequencies While Forming Subjective Beliefs

    PubMed Central

    d’Acremont, Mathieu; Schultz, Wolfram; Bossaerts, Peter

    2015-01-01

    To make adaptive choices, humans need to estimate the probability of future events. Based on a Bayesian approach, it is assumed that probabilities are inferred by combining a priori, potentially subjective, knowledge with factual observations, but the precise neurobiological mechanism remains unknown. Here, we study whether neural encoding centers on subjective posterior probabilities, and data merely lead to updates of posteriors, or whether objective data are encoded separately alongside subjective knowledge. During fMRI, young adults acquired prior knowledge regarding uncertain events, repeatedly observed evidence in the form of stimuli, and estimated event probabilities. Participants combined prior knowledge with factual evidence using Bayesian principles. Expected reward inferred from prior knowledge was encoded in striatum. BOLD response in specific nodes of the default mode network (angular gyri, posterior cingulate, and medial prefrontal cortex) encoded the actual frequency of stimuli, unaffected by prior knowledge. In this network, activity increased with frequencies and thus reflected the accumulation of evidence. In contrast, Bayesian posterior probabilities, computed from prior knowledge and stimulus frequencies, were encoded in bilateral inferior frontal gyrus. Here activity increased for improbable events and thus signaled the violation of Bayesian predictions. Thus, subjective beliefs and stimulus frequencies were encoded in separate cortical regions. The advantage of such a separation is that objective evidence can be recombined with newly acquired knowledge when a reinterpretation of the evidence is called for. Overall this study reveals the coexistence in the brain of an experience-based system of inference and a knowledge-based system of inference. PMID:23804108

  1. Local Model of Arteriovenous Malformation of the Human Brain

    NASA Astrophysics Data System (ADS)

    Nadezhda Telegina, Ms; Aleksandr Chupakhin, Mr; Aleksandr Cherevko, Mr

    2013-02-01

    Vascular diseases of the human brain are one of the reasons of deaths and people's incapacitation not only in Russia, but also in the world. The danger of an arteriovenous malformation (AVM) is in premature rupture of pathological vessels of an AVM which may cause haemorrhage. Long-term prognosis without surgical treatment is unfavorable. The reduced impact method of AVM treatment is embolization of a malformation which often results in complete obliteration of an AVM. Pre-surgical mathematical modeling of an arteriovenous malformation can help surgeons with an optimal sequence of the operation. During investigations, the simple mathematical model of arteriovenous malformation is developed and calculated, and stationary and non-stationary processes of its embolization are considered. Various sequences of embolization of a malformation are also considered. Calculations were done with approximate steady flow on the basis of balanced equations derived from conservation laws. Depending on pressure difference, a fistula-type AVM should be embolized at first, and then small racemose AVMs are embolized. Obtained results are in good correspondence with neurosurgical AVM practice.

  2. Where pain meets action in the human brain.

    PubMed

    Perini, Irene; Bergstrand, Simon; Morrison, India

    2013-10-01

    Pain's complex influence on behavior implies that it involves an action component, although little is known about how the human brain adaptively translates painful sensations into actions. The consistent activation of premotor and motor-related regions during pain, including the midcingulate cortex (MCC), raises the question of whether these areas contribute to an action component. In this fMRI experiment, we controlled for voluntary action-related processing during pain by introducing a motor task during painful or nonpainful stimulation. The MCC (particularly the caudal cingulate motor zone [CCZ]), motor cortex, thalamus, and cerebellum responded during action regardless of pain. Crucially, however, these regions did not respond to pain unless an action was performed. Reaction times were fastest during painful stimulation and correlated with CCZ activation. These findings are consistent with the results of an activation likelihood estimate meta-analysis in which activation across experiments involving pain, action execution, or action preparation (with a total of 4929 subjects) converged in a similar network. These findings suggest that specific motor-related areas, including the CCZ, play a vital role in the control and execution of context-sensitive behavioral responses to pain. In contrast, bilateral insular cortex responded to pain stimulation regardless of action. PMID:24089498

  3. Human immunodeficiency virus type 1 infection of the brain.

    PubMed Central

    Atwood, W J; Berger, J R; Kaderman, R; Tornatore, C S; Major, E O

    1993-01-01

    Direct infection of the central nervous system by human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, was not appreciated in the early years of the AIDS epidemic. Neurological complications associated with AIDS were largely attributed to opportunistic infections that arose as a result of the immunocompromised state of the patient and to depression. In 1985, several groups succeeded in isolating HIV-1 directly from brain tissue. Also that year, the viral genome was completely sequenced, and HIV-1 was found to belong to a neurotropic subfamily of retrovirus known as the Lentivirinae. These findings clearly indicated that direct HIV-1 infection of the central nervous system played a role in the development of AIDS-related neurological disease. This review summarizes the clinical manifestations of HIV-1 infection of the central nervous system and the related neuropathology, the tropism of HIV-1 for specific cell types both within and outside of the nervous system, the possible mechanisms by which HIV-1 damages the nervous system, and the current strategies for diagnosis and treatment of HIV-1-associated neuropathology. Images PMID:8269391

  4. The wiring economy principle: connectivity determines anatomy in the human brain.

    PubMed

    Raj, Ashish; Chen, Yu-hsien

    2011-01-01

    Minimization of the wiring cost of white matter fibers in the human brain appears to be an organizational principle. We investigate this aspect in the human brain using whole brain connectivity networks extracted from high resolution diffusion MRI data of 14 normal volunteers. We specifically address the question of whether brain anatomy determines its connectivity or vice versa. Unlike previous studies we use weighted networks, where connections between cortical nodes are real-valued rather than binary off-on connections. In one set of analyses we found that the connectivity structure of the brain has near optimal wiring cost compared to random networks with the same number of edges, degree distribution and edge weight distribution. A specifically designed minimization routine could not find cheaper wiring without significantly degrading network performance. In another set of analyses we kept the observed brain network topology and connectivity but allowed nodes to freely move on a 3D manifold topologically identical to the brain. An efficient minimization routine was written to find the lowest wiring cost configuration. We found that beginning from any random configuration, the nodes invariably arrange themselves in a configuration with a striking resemblance to the brain. This confirms the widely held but poorly tested claim that wiring economy is a driving principle of the brain. Intriguingly, our results also suggest that the brain mainly optimizes for the most desirable network connectivity, and the observed brain anatomy is merely a result of this optimization. PMID:21915250

  5. Evidence for hubs in human functional brain networks

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

    2013-01-01

    Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601

  6. Anatomic Pathways of Peripancreatic Fluid Draining to Mediastinum in Recurrent Acute Pancreatitis: Visible Human Project and CT Study

    PubMed Central

    Xu, Haotong; Zhang, Xiaoming; Christe, Andreas; Ebner, Lukas; Zhang, Shaoxiang; Luo, Zhulin; Wu, Yi; Li, Yin; Tian, Fuzhou

    2013-01-01

    Background In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT) images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied. Methods We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images. Principal Findings All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images. Conclusion This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body. PMID:23614005

  7. A CT-ultrasound-coregistered augmented reality enhanced image-guided surgery system and its preliminary study on brain-shift estimation

    NASA Astrophysics Data System (ADS)

    Huang, C. H.; Hsieh, C. H.; Lee, J. D.; Huang, W. C.; Lee, S. T.; Wu, C. T.; Sun, Y. N.; Wu, Y. T.

    2012-08-01

    With the combined view on the physical space and the medical imaging data, augmented reality (AR) visualization can provide perceptive advantages during image-guided surgery (IGS). However, the imaging data are usually captured before surgery and might be different from the up-to-date one due to natural shift of soft tissues. This study presents an AR-enhanced IGS system which is capable to correct the movement of soft tissues from the pre-operative CT images by using intra-operative ultrasound images. First, with reconstructing 2-D free-hand ultrasound images to 3-D volume data, the system applies a Mutual-Information based registration algorithm to estimate the deformation between pre-operative and intra-operative ultrasound images. The estimated deformation transform describes the movement of soft tissues and is then applied to the pre-operative CT images which provide high-resolution anatomical information. As a result, the system thus displays the fusion of the corrected CT images or the real-time 2-D ultrasound images with the patient in the physical space through a head mounted display device, providing an immersive augmented-reality environment. For the performance validation of the proposed system, a brain phantom was utilized to simulate brain-shift scenario. Experimental results reveal that when the shift of an artificial tumor is from 5mm ~ 12mm, the correction rates can be improved from 32% ~ 45% to 87% ~ 95% by using the proposed system.

  8. Measurement of Pressure Responses in a Physical Model of a Human Head with High Shape Fidelity Based on Ct/mri Data

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yusuke; Tachiya, Hiroshi; Anata, Kenji; Hojo, Akihiro

    This study discusses a head injury mechanism in case of a human head subjected to impact, from results of impact experiments by using a physical model of a human head with high-shape fidelity. The physical model was constructed by using rapid prototyping technology from the three-dimensional CAD data, which obtained from CT/MRI images of a subject's head. As results of the experiments, positive pressure responses occurred at the impacted site, whereas negative pressure responses occurred at opposite the impacted site. Moreover, the absolute maximum value of pressure occurring at the frontal region of the intracranial space of the head model resulted in same or higher than that at the occipital site in each case that the impact force was imposed on frontal or occipital region. This result has not been showed in other study using simple shape physical models. And, the result corresponds with clinical evidences that brain contusion mainly occurs at the frontal part in each impact direction. Thus, physical model with accurate skull shape is needed to clarify the mechanism of brain contusion.

  9. Total Brain Death and the Integration of the Body Required of a Human Being.

    PubMed

    Lee, Patrick

    2016-06-01

    I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change-the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. PMID:27097647

  10. The role of human endogenous retroviruses in brain development and function.

    PubMed

    Mortelmans, Kristien; Wang-Johanning, Feng; Johanning, Gary L

    2016-01-01

    Endogenous retroviral sequences are spread throughout the genome of all humans, and make up about 8% of the genome. Despite their prevalence, the function of human endogenous retroviruses (HERVs) in humans is largely unknown. In this review we focus on the brain, and evaluate studies in animal models that address mechanisms of endogenous retrovirus activation in the brain and central nervous system (CNS). One such study in mice found that TRIM28, a protein critical for mouse early development, regulates transcription and silencing of endogenous retroviruses in neural progenitor cells. Another intriguing finding in human brain cells and mouse models was that endogenous retrovirus HERV-K appears to be protective against neurotoxins. We also report on studies that associate HERVs with human diseases of the brain and CNS. There is little doubt of an association between HERVs and a number of CNS diseases. However, a cause and effect relationship between HERVs and these diseases has not yet been established. PMID:26818265

  11. Cognitive neuroscience 2.0: building a cumulative science of human brain function

    PubMed Central

    Yarkoni, Tal; Poldrack, Russell A.; Van Essen, David C.; Wager, Tor D.

    2010-01-01

    Cognitive neuroscientists increasingly recognize that continued progress in understanding human brain function will require not only the acquisition of new data, but also the synthesis and integration of data across studies and laboratories. Here we review ongoing efforts to develop a more cumulative science of human brain function. We discuss the rationale for an increased focus on formal synthesis of the cognitive neuroscience literature, provide an overview of recently developed tools and platforms designed to facilitate the sharing and integration of neuroimaging data, and conclude with a discussion of several emerging developments that hold even greater promise in advancing the study of human brain function. PMID:20884276

  12. Interactive brain atlas with the Visible Human Project data: development methods and techniques.

    PubMed

    Toh, M Y; Falk, R B; Main, J S

    1996-09-01

    A prototype of an interactive digital brain atlas was developed by using the Visible Human Project data set of the National Library of Medicine. This data set provides corresponding axial magnetic resonance images, computed tomographic images, and cryosections of the brain. The prototype was developed to demonstrate the techniques and methods that will be used throughout the development process of the atlas. The atlas has a graphical user interface, supports user interaction with various representations of the brain (i.e., two-dimensional and three-dimensional [3D]), and displays multiple images simultaneously. Motion sequences of the 3D brain were incorporated in the atlas to provide an important link between two-dimensional brain slices and volume-rendered 3D anatomic structures. Volume visualization tools were used to interactively render, rotate, and reslice the volumetric brain data. The brain was segmented with manual tracing, thresholding, and morphologic algorithms and then rendered with volume-rendering tools. PMID:8888399

  13. Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves

    NASA Astrophysics Data System (ADS)

    Mori, Toshio; Kai, Shoichi

    2002-05-01

    We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a subthreshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g., perception and cognition, may exploit SR.

  14. Higher cortical modulation of pain perception in the human brain: Psychological determinant.

    PubMed

    Chen, Andrew Cn

    2009-10-01

    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed determination, (b) distraction, (c) placebo, (d) hypnosis, (e) meditation, (f) qi-gong, (g) belief, and (h) emotions, respectively, in the brain function for pain modulation. In each, the operational definition, cortical processing, neuroimaging, and pain modulation were systematically deliberated. However, not all studies had featured the brain modulation processing but rather demonstrated potential effects on human pain. In our own studies on the emotional modulation on human pain, we observed that emotions could be induced from music melodies or pictures perception for reduction of tonic human pain, mainly in potentiation of the posterior alpha EEG fields, likely resulted from underneath activities of precuneous in regulation of consciousness, including pain perception. To sum, higher brain functions become the leading edge research in all sciences. How to solve the information bit of thinking and feeling in the brain can be the greatest challenge of human intelligence. Application of higher cortical modulation of human pain and suffering can lead to the progress of social humanity and civilization. PMID:19784081

  15. Communication and the primate brain: Insights from neuroimaging studies in humans, chimpanzees and macaques

    PubMed Central

    Wilson, Benjamin; Petkov, Christopher I.

    2012-01-01

    Considerable knowledge is available on the neural substrates for speech and language from brain imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and non-linguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language. PMID:21615285

  16. Patterns of differences in brain morphology in humans as compared to extant apes

    PubMed Central

    Aldridge, Kristina

    2010-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. PMID:21056456

  17. Evolution, development, and plasticity of the human brain: from molecules to bones.

    PubMed

    Hrvoj-Mihic, Branka; Bienvenu, Thibault; Stefanacci, Lisa; Muotri, Alysson R; Semendeferi, Katerina

    2013-01-01

    Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research. PMID:24194709

  18. Evolution, development, and plasticity of the human brain: from molecules to bones

    PubMed Central

    Hrvoj-Mihic, Branka; Bienvenu, Thibault; Stefanacci, Lisa; Muotri, Alysson R.; Semendeferi, Katerina

    2013-01-01

    Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research. PMID:24194709

  19. Human Behavior, Learning, and the Developing Brain: Typical Development

    ERIC Educational Resources Information Center

    Coch, Donna, Ed.; Fischer, Kurt W., Ed.; Dawson, Geraldine, Ed.

    2010-01-01

    This volume brings together leading authorities from multiple disciplines to examine the relationship between brain development and behavior in typically developing children. Presented are innovative cross-sectional and longitudinal studies that shed light on brain-behavior connections in infancy and toddlerhood through adolescence. Chapters…

  20. Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation.

    PubMed

    Sale, Martin V; Mattingley, Jason B; Zalesky, Andrew; Cocchi, Luca

    2015-10-01

    The flexible integration of segregated neural processes is essential to healthy brain function. Advances in neuroimaging techniques have revealed that psychiatric and neurological disorders are characterized by anomalies in the dynamic integration of widespread neural populations. Re-establishing optimal neural activity is an important component of the treatment of such disorders. Non-invasive brain stimulation is emerging as a viable tool to selectively restore both local and widespread neural activity in patients affected by psychiatric and neurological disorders. Importantly, the different forms of non-invasive brain stimulation affect neural activity in distinct ways, which has important ramifications for their clinical efficacy. In this review, we discuss how non-invasive brain stimulation techniques influence widespread neural integration across brain regions. We suggest that the efficacy of such techniques in the treatment of psychiatric and neurological conditions is contingent on applying the appropriate stimulation paradigm to restore specific aspects of altered neural integration. PMID:26409343

  1. Regional growth and atlasing of the developing human brain

    PubMed Central

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel

    2016-01-01

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  2. Regional growth and atlasing of the developing human brain.

    PubMed

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  3. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    PubMed

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. PMID:27489306

  4. The Human Nervous System: A Framework for Teaching and the Teaching Brain

    ERIC Educational Resources Information Center

    Rodriguez, Vanessa

    2013-01-01

    The teaching brain is a new concept that mirrors the complex, dynamic, and context-dependent nature of the learning brain. In this article, I use the structure of the human nervous system and its sensing, processing, and responding components as a framework for a re-conceptualized teaching system. This teaching system is capable of responses on an…

  5. Notch-1 Signalling Is Activated in Brain Arteriovenous Malformations in Humans

    ERIC Educational Resources Information Center

    ZhuGe, Qichuan; Zhong, Ming; Zheng, WeiMing; Yang, Guo-Yuan; Mao, XiaoOu; Xie, Lin; Chen, Gourong; Chen, Yongmei; Lawton, Michael T.; Young, William L.; Greenberg, David A.; Jin, Kunlin

    2009-01-01

    A role for the Notch signalling pathway in the formation of arteriovenous malformations during development has been suggested. However, whether Notch signalling is involved in brain arteriovenous malformations in humans remains unclear. Here, we performed immunohistochemistry on surgically resected brain arteriovenous malformations and found that,…

  6. Natural Learning for a Connected World: Education, Technology, and the Human Brain

    ERIC Educational Resources Information Center

    Caine, Renate N.; Caine, Geoffrey

    2011-01-01

    Why do video games fascinate kids so much that they will spend hours pursuing a difficult skill? Why don't they apply this kind of intensity to their schoolwork? These questions are answered by the authors who pioneered brain/mind learning with the publication of "Making Connections: Teaching and the Human Brain". In their new book, "Natural…

  7. Use of Neuroimaging to Clarify How Human Brains Perform Mental Calculations

    ERIC Educational Resources Information Center

    Ortiz, Enrique

    2010-01-01

    The purpose of this study was to analyze participants' levels of hemoglobin as they performed arithmetic mental calculations using Optical Topography (OT, helmet type brain-scanning system, also known as Functional Near-Infrared Spectroscopy or fNIRS). A central issue in cognitive neuroscience involves the study of how the human brain encodes and…

  8. Abdominal Imaging with Contrast-enhanced Photon-counting CT: First Human Experience.

    PubMed

    Pourmorteza, Amir; Symons, Rolf; Sandfort, Veit; Mallek, Marissa; Fuld, Matthew K; Henderson, Gregory; Jones, Elizabeth C; Malayeri, Ashkan A; Folio, Les R; Bluemke, David A

    2016-04-01

    Purpose To evaluate the performance of a prototype photon-counting detector (PCD) computed tomography (CT) system for abdominal CT in humans and to compare the results with a conventional energy-integrating detector (EID). Materials and Methods The study was HIPAA-compliant and institutional review board-approved with informed consent. Fifteen asymptomatic volunteers (seven men; mean age, 58.2 years ± 9.8 [standard deviation]) were prospectively enrolled between September 2 and November 13, 2015. Radiation dose-matched delayed contrast agent-enhanced spiral and axial abdominal EID and PCD scans were acquired. Spiral images were scored for image quality (Wilcoxon signed-rank test) in five regions of interest by three radiologists blinded to the detector system, and the axial scans were used to assess Hounsfield unit accuracy in seven regions of interest (paired t test). Intraclass correlation coefficient (ICC) was used to assess reproducibility. PCD images were also used to calculate iodine concentration maps. Spatial resolution, noise-power spectrum, and Hounsfield unit accuracy of the systems were estimated by using a CT phantom. Results In both systems, scores were similar for image quality (median score, 4; P = .19), noise (median score, 3; P = .30), and artifact (median score, 1; P = .17), with good interrater agreement (image quality, noise, and artifact ICC: 0.84, 0.88, and 0.74, respectively). Hounsfield unit values, spatial resolution, and noise-power spectrum were also similar with the exception of mean Hounsfield unit value in the spinal canal, which was lower in the PCD than the EID images because of beam hardening (20 HU vs 36.5 HU; P < .001). Contrast-to-noise ratio of enhanced kidney tissue was improved with PCD iodine mapping compared with EID (5.2 ± 1.3 vs 4.0 ± 1.3; P < .001). Conclusion The performance of PCD showed no statistically significant difference compared with EID when the abdomen was evaluated in a conventional scan mode. PCD provides

  9. Human brain cancer studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-Hui; Sun, Yi; Pu, Yang; Boydston-White, Susie; Liu, Yulong; Alfano, Robert R.

    2012-11-01

    The resonance Raman (RR) spectra of six types of human brain tissues are examined using a confocal micro-Raman system with 532-nm excitation in vitro. Forty-three RR spectra from seven subjects are investigated. The spectral peaks from malignant meningioma, stage III (cancer), benign meningioma (benign), normal meningeal tissues (normal), glioblastoma multiforme grade IV (cancer), acoustic neuroma (benign), and pituitary adenoma (benign) are analyzed. Using a 532-nm excitation, the resonance-enhanced peak at 1548 cm-1 (amide II) is observed in all of the tissue specimens, but is not observed in the spectra collected using the nonresonance Raman system. An increase in the intensity ratio of 1587 to 1605 cm-1 is observed in the RR spectra collected from meningeal cancer tissue as compared with the spectra collected from the benign and normal meningeal tissue. The peak around 1732 cm-1 attributed to fatty acids (lipids) are diminished in the spectra collected from the meningeal cancer tumors as compared with the spectra from normal and benign tissues. The characteristic band of spectral peaks observed between 2800 and 3100 cm-1 are attributed to the vibrations of methyl (-CH3) and methylene (-CH2-) groups. The ratio of the intensities of the spectral peaks of 2935 to 2880 cm-1 from the meningeal cancer tissues is found to be lower in comparison with that of the spectral peaks from normal, and benign tissues, which may be used as a distinct marker for distinguishing cancerous tissues from normal meningeal tissues. The statistical methods of principal component analysis and the support vector machine are used to analyze the RR spectral data collected from meningeal tissues, yielding a diagnostic sensitivity of 90.9% and specificity of 100% when two principal components are used.

  10. Staphylococcus massiliensis sp. nov., isolated from a human brain abscess.

    PubMed

    Al Masalma, Mouhamad; Raoult, Didier; Roux, Véronique

    2010-05-01

    Gram-positive, catalase-positive, coagulase-negative, non-motile, non-fermentative and novobiocin-susceptible cocci were isolated from a human brain abscess sample (strain 5402776(T)). This novel strain was analysed by a polyphasic taxonomic approach. The respiratory quinones detected were MK-7 (93 %) and MK-6 (7 %) and the major fatty acids were C(15 : 0) iso (60.5 %), C(17 : 0) iso (8.96 %) C(15 : 0) anteiso (7.93 %) and C(19 : 0) iso (6.78 %). The peptidoglycan type was A3alpha l-Lys-Gly(2-3)-l-Ser-Gly. Based on cellular morphology and biochemical criteria, the new isolate was assigned to the genus Staphylococcus, although it did not correspond to any recognized species. The G+C content of the DNA was 36.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that the new isolate was most closely related to Staphylococcus piscifermentans, Staphylococcus condimenti, Staphylococcus carnosus subsp. carnosus, S. carnosus subsp. utilis and Staphylococcus simulans (97.7 %, 97.6 %, 97.6 %, 97.6 % and 96.5 % sequence similarity, respectively). Comparison of tuf, hsp60, rpoB, dnaJ and sodA gene sequences was also performed. In phylogenetic analysis inferred from tuf, dnaJ and rpoB gene sequence comparisons, strain 5402776(T) clustered with Staphylococcus pettenkoferi (93.7 %, 82.5 % and 89 % sequence similarity, respectively) and on phylogenetic analysis inferred from sodA gene sequence comparisons, it clustered with Staphylococcus chromogenes (82.8 %). On the basis of phenotypic and genotypic data, this isolate represents a novel species for which the name Staphylococcus massiliensis sp. nov. is proposed (type strain 5402776(T)=CCUG 55927(T)=CSUR P23(T)). PMID:19666814

  11. Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus.

    PubMed

    Thomason, Moriah E; Brown, Jesse A; Dassanayake, Maya T; Shastri, Rupal; Marusak, Hilary A; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S; Romero, Roberto

    2014-01-01

    The human brain undergoes dramatic maturational changes during late stages of fetal and early postnatal life. The importance of this period to the establishment of healthy neural connectivity is apparent in the high incidence of neural injury in preterm infants, in whom untimely exposure to ex-uterine factors interrupts neural connectivity. Though the relevance of this period to human neuroscience is apparent, little is known about functional neural networks in human fetal life. Here, we apply graph theoretical analysis to examine human fetal brain connectivity. Utilizing resting state functional magnetic resonance imaging (fMRI) data from 33 healthy human fetuses, 19 to 39 weeks gestational age (GA), our analyses reveal that the human fetal brain has modular organization and modules overlap functional systems observed postnatally. Age-related differences between younger (GA <31 weeks) and older (GA≥31 weeks) fetuses demonstrate that brain modularity decreases, and connectivity of the posterior cingulate to other brain networks becomes more negative, with advancing GA. By mimicking functional principles observed postnatally, these results support early emerging capacity for information processing in the human fetal brain. Current technical limitations, as well as the potential for fetal fMRI to one day produce major discoveries about fetal origins or antecedents of neural injury or disease are discussed. PMID:24788455

  12. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotović, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  13. Medical Imaging and the Human Brain: Being Warped is Not Always a Bad Thing

    SciTech Connect

    Patterson, James C. II

    2005-03-31

    The capacity to look inside the living human brain and image its function has been present since the early 1980s. There are some clinicians who use functional brain imaging for diagnostic or prognostic purposes, but much of the work done still relates to research evaluation of brain function. There is a striking dichotomy in the use of functional brain imaging between these two fields. Clinical evaluation of a brain PET or SPECT scan is subjective; that is, a Nuclear Medicine physician examines the brain image, and states whether the brain image looks normal or abnormal. On the other hand, modern research evaluation of functional brain images is almost always objective. Brain images are processed and analyzed with advanced software tools, and a mathematical result that relates to regional changes in brain activity is provided. The potential for this research methodology to provide a more accurate and reliable answer to clinical questions about brain function and pathology are immense, but there are still obstacles to overcome. Foremost in this regard is the use of a standardized normal control database for comparison of patient scan data. The tools and methods used in objective analysis of functional imaging data, as well as potential clinical applications will be the focus of my presentation.

  14. Bovine Brain Ribonuclease Is the Functional Homolog of Human Ribonuclease 1*

    PubMed Central

    Eller, Chelcie H.; Lomax, Jo E.; Raines, Ronald T.

    2014-01-01

    Mounting evidence suggests that human pancreatic ribonuclease (RNase 1) plays important roles in vivo, ranging from regulating blood clotting and inflammation to directly counteracting tumorigenic cells. Understanding these putative roles has been pursued with continual comparisons of human RNase 1 to bovine RNase A, an enzyme that appears to function primarily in the ruminant gut. Our results imply a different physiology for human RNase 1. We demonstrate distinct functional differences between human RNase 1 and bovine RNase A. Moreover, we characterize another RNase 1 homolog, bovine brain ribonuclease, and find pronounced similarities between that enzyme and human RNase 1. We report that human RNase 1 and bovine brain ribonuclease share high catalytic activity against double-stranded RNA substrates, a rare quality among ribonucleases. Both human RNase 1 and bovine brain RNase are readily endocytosed by mammalian cells, aided by tight interactions with cell surface glycans. Finally, we show that both human RNase 1 and bovine brain RNase are secreted from endothelial cells in a regulated manner, implying a potential role in vascular homeostasis. Our results suggest that brain ribonuclease, not RNase A, is the true bovine homolog of human RNase 1, and provide fundamental insight into the ancestral roles and functional adaptations of RNase 1 in mammals. PMID:25078100

  15. Information flow between interacting human brains: Identification, validation, and relationship to social expertise.

    PubMed

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-04-21

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions. PMID:25848050

  16. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde.

    PubMed

    Korzhevskii, D E; Sukhorukova, E G; Kirik, O V; Grigorev, I P

    2015-01-01

    Tissue fixation is critical for immunohistochemistry. Recently, we developed a zinc-ethanol-formalin fixative (ZEF), and the present study was aimed to assess the applicability of the ZEF for the human brain histology and immunohistochemistry and to evaluate the detectability of different antigens in the human brain fixed with ZEF. In total, 11 antigens were tested, including NeuN, neuron-specific enolase, GFAP, Iba-1, calbindin, calretinin, choline acetyltransferase, glutamic acid decarboxylase (GAD65), tyrosine hydroxylase, synaptophysin, and α-tubulin. The obtained data show that: i) the ZEF has potential for use in general histological practice, where detailed characterization of human brain morphology is needed; ii) the antigens tested are well-preserved in the human brain specimens fixed in the ZEF. PMID:26428887

  17. Convergent transcriptional specializations in the brains of humans and song-learning birds

    PubMed Central

    Pfenning, Andreas R.; Hara, Erina; Whitney, Osceola; Rivas, Miriam V.; Wang, Rui; Roulhac, Petra L.; Howard, Jason T.; Wirthlin, Morgan; Lovell, Peter V.; Ganapathy, Ganeshkumar; Mouncastle, Jacquelyn; Moseley, M. Arthur; Thompson, J. Will; Soderblom, Erik J.; Iriki, Atsushi; Kato, Masaki; Gilbert, M. Thomas P.; Zhang, Guojie; Bakken, Trygve; Bongaarts, Angie; Bernard, Amy; Lein, Ed; Mello, Claudio V.; Hartemink, Alexander J.; Jarvis, Erich D.

    2015-01-01

    Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes. PMID:25504733

  18. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  19. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size

    PubMed Central

    Kadir, Rotem; Harel, Tamar; Markus, Barak; Perez, Yonatan; Bakhrat, Anna; Cohen, Idan; Volodarsky, Michael; Feintsein-Linial, Miora; Chervinski, Elana; Zlotogora, Joel; Sivan, Sara; Birnbaum, Ramon Y.; Abdu, Uri; Shalev, Stavit; Birk, Ohad S.

    2016-01-01

    Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size. PMID:27008544

  20. Microwave irradiation of human brain tissue: production of microscopic slides within one day.

    PubMed Central

    Boon, M E; Marani, E; Adriolo, P J; Steffelaar, J W; Bots, G T; Kok, L P

    1988-01-01

    A three step method using microwave irradiation enabled microscopic slides of human brain tissue to be obtained within one working day: steps 1 and 2 hardened and solidified brain tissue; step 3 completed formalin fixation. The efficacy and precision of the method was compared with slides of conventionally processed brain tissue that had been fixed in formalin for six weeks. The microscopic quality of the sections was excellent with good presentation of brain tissue and equalled that of conventionally processed slides. Images Fig 1 Fig 2 Fig 3 PMID:3290268

  1. Physiologic response of human brain death and the use of vasopressin for successful organ transplantation.

    PubMed

    Nakagawa, Kazuma; Tang, Julin F

    2011-03-01

    The dynamic physiologic response of human brain death and the impact of vasopressin on successful organ transplantation is reported. A 60-year-old woman was admitted to the intensive care unit after severe traumatic brain injury resulting in brain death. Initial Cushing reflex was followed by a precipitous decrease in systemic blood pressure that was refractory to the alpha-agonist phenylephrine. After intravenous vasopressin was given, hemodynamic stability was restored and maintained until successful organ transplantation. Vasopressin, a catecholamine-sparing vasopressor and antidiuretic agent, may be an effective agent in the treatment of refractory hypotension after brain death prior to organ transplantation. PMID:21377081

  2. In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans

    PubMed Central

    Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Liu, Tianyu; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob

    2014-01-01

    Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the

  3. In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans

    SciTech Connect

    Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Liu, Bob; Liu, Tianyu; Xu, X. George

    2014-09-15

    Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the

  4. A Mind of Three Minds: Evolution of the Human Brain

    ERIC Educational Resources Information Center

    MacLean, Paul D.

    1978-01-01

    The author examines the evolutionary and neural roots of a triune intelligence comprised of a primal mind, an emotional mind, and a rational mind. A simple brain model and some definitions of unfamiliar behavioral terms are included. (Author/MA)

  5. Lactotransferrin immunocytochemistry in Alzheimer and normal human brain.

    PubMed Central

    Kawamata, T.; Tooyama, I.; Yamada, T.; Walker, D. G.; McGeer, P. L.

    1993-01-01

    Lactotransferrin (LF) expression was investigated immunocytochemically in postmortem brain tissues of normal controls and patients with Alzheimer's disease (AD). The antibody to LF stained some neurons weakly in young adult brains, but it stained many neurons as well as the glia of all types in elderly brains. LF expression was greatly up-regulated in both neurons and glia in affected AD tissue. It was very strongly associated with such extracellular pathological entities as diffuse and consolidated amyloid deposits and extracellular neurofibrillary tangles. In addition, it was identified in a minority of intracellular neurofibrillary tangles, neuropil threads, and degenerative neurites. LF is an iron scavenger and a complement inhibitor. Up-regulation may be a defense mechanism in AD-affected brain