Science.gov

Sample records for human brain development

  1. Educating the Human Brain. Human Brain Development Series

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  2. Methylomic trajectories across human fetal brain development.

    PubMed

    Spiers, Helen; Hannon, Eilis; Schalkwyk, Leonard C; Smith, Rebecca; Wong, Chloe C Y; O'Donovan, Michael C; Bray, Nicholas J; Mill, Jonathan

    2015-03-01

    Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ∼ 400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity. PMID:25650246

  3. Physical biology of human brain development.

    PubMed

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia. PMID:26217183

  4. Physical biology of human brain development

    PubMed Central

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales–from phenomena on the cellular level toward form and function on the organ level–to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia. PMID:26217183

  5. Aneuploidy and Confined Chromosomal Mosaicism in the Developing Human Brain

    PubMed Central

    Liehr, Thomas; Kolotii, Alexei D.; Kutsev, Sergei I.; Pellestor, Franck; Beresheva, Alfia K.; Demidova, Irina A.; Kravets, Viktor S.; Monakhov, Viktor V.; Soloviev, Ilia V.

    2007-01-01

    Background Understanding the mechanisms underlying generation of neuronal variability and complexity remains the central challenge for neuroscience. Structural variation in the neuronal genome is likely to be one important mechanism for neuronal diversity and brain diseases. Large-scale genomic variations due to loss or gain of whole chromosomes (aneuploidy) have been described in cells of the normal and diseased human brain, which are generated from neural stem cells during intrauterine period of life. However, the incidence of aneuploidy in the developing human brain and its impact on the brain development and function are obscure. Methodology/Principal Findings To address genomic variation during development we surveyed aneuploidy/polyploidy in the human fetal tissues by advanced molecular-cytogenetic techniques at the single-cell level. Here we show that the human developing brain has mosaic nature, being composed of euploid and aneuploid neural cells. Studying over 600,000 neural cells, we have determined the average aneuploidy frequency as 1.25–1.45% per chromosome, with the overall percentage of aneuploidy tending to approach 30–35%. Furthermore, we found that mosaic aneuploidy can be exclusively confined to the brain. Conclusions/Significance Our data indicates aneuploidization to be an additional pathological mechanism for neuronal genome diversification. These findings highlight the involvement of aneuploidy in the human brain development and suggest an unexpected link between developmental chromosomal instability, intercellural/intertissular genome diversity and human brain diseases. PMID:17593959

  6. Metabolic costs and evolutionary implications of human brain development.

    PubMed

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  7. Brain development is similar in Neanderthals and modern humans.

    PubMed

    Ponce de León, Marcia S; Bienvenu, Thibaut; Akazawa, Takeru; Zollikofer, Christoph P E

    2016-07-25

    While the braincase of adult Neanderthals had a similar volume to that of modern humans from the same period, differences in endocranial shape suggest that brain morphology differed between modern humans and Neanderthals. When and how these differences arose during evolution and development is a topic of ongoing research, with potential implications for species-specific differences in brain and cognitive development, and in life history [1,2]. Earlier research suggested that Neanderthals followed an ancestral mode of brain development, similar to that of our closest living relatives, the chimpanzees [2-4]. Modern humans, by contrast, were suggested to follow a uniquely derived mode of brain development just after birth, giving rise to the characteristically globular shape of the adult human brain case [2,4,5]. Here, we re-examine this hypothesis using an extended sample of Neanderthal infants. We document endocranial development during the decisive first two years of postnatal life. The new data indicate that Neanderthals followed largely similar modes of endocranial development to modern humans. These findings challenge the notion that human brain and cognitive development after birth is uniquely derived [2,4]. PMID:27458909

  8. Metabolic costs and evolutionary implications of human brain development

    PubMed Central

    Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

    2014-01-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  9. Human Behavior, Learning, and the Developing Brain: Typical Development

    ERIC Educational Resources Information Center

    Coch, Donna, Ed.; Fischer, Kurt W., Ed.; Dawson, Geraldine, Ed.

    2010-01-01

    This volume brings together leading authorities from multiple disciplines to examine the relationship between brain development and behavior in typically developing children. Presented are innovative cross-sectional and longitudinal studies that shed light on brain-behavior connections in infancy and toddlerhood through adolescence. Chapters…

  10. Development of Human Brain Structural Networks Through Infancy and Childhood

    PubMed Central

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  11. Telomerase Activity is Downregulated Early During Human Brain Development.

    PubMed

    Ishaq, Abbas; Hanson, Peter S; Morris, Christopher M; Saretzki, Gabriele

    2016-01-01

    Changes in hTERT splice variant expression have been proposed to facilitate the decrease of telomerase activity during fetal development in various human tissues. Here, we analyzed the expression of telomerase RNA (hTR), wild type and α-spliced hTERT in developing human fetal brain (post conception weeks, pcw, 6-19) and in young and old cortices using qPCR and correlated it to telomerase activity measured by TRAP assay. Decrease of telomerase activity occurred early during brain development and correlated strongest to decreased hTR expression. The expression of α-spliced hTERT increased between pcw 10 and 19, while that of wild type hTERT remained unchanged. Lack of expression differences between young and old cortices suggests that most changes seem to occur early during human brain development. Using in vitro differentiation of neural precursor stem cells (NPSCs) derived at pcw 6 we found a decrease in telomerase activity but no major expression changes in telomerase associated genes. Thus, they do not seem to model the mechanisms for the decrease in telomerase activity in fetal brains. Our results suggest that decreased hTR levels, as well as transient increase in α-spliced hTERT, might both contribute to downregulation of telomerase activity during early human brain development between 6 and 17 pcw. PMID:27322326

  12. Telomerase Activity is Downregulated Early During Human Brain Development

    PubMed Central

    Ishaq, Abbas; Hanson, Peter S.; Morris, Christopher M.; Saretzki, Gabriele

    2016-01-01

    Changes in hTERT splice variant expression have been proposed to facilitate the decrease of telomerase activity during fetal development in various human tissues. Here, we analyzed the expression of telomerase RNA (hTR), wild type and α-spliced hTERT in developing human fetal brain (post conception weeks, pcw, 6–19) and in young and old cortices using qPCR and correlated it to telomerase activity measured by TRAP assay. Decrease of telomerase activity occurred early during brain development and correlated strongest to decreased hTR expression. The expression of α-spliced hTERT increased between pcw 10 and 19, while that of wild type hTERT remained unchanged. Lack of expression differences between young and old cortices suggests that most changes seem to occur early during human brain development. Using in vitro differentiation of neural precursor stem cells (NPSCs) derived at pcw 6 we found a decrease in telomerase activity but no major expression changes in telomerase associated genes. Thus, they do not seem to model the mechanisms for the decrease in telomerase activity in fetal brains. Our results suggest that decreased hTR levels, as well as transient increase in α-spliced hTERT, might both contribute to downregulation of telomerase activity during early human brain development between 6 and 17 pcw. PMID:27322326

  13. Genomic connectivity networks based on the BrainSpan atlas of the developing human brain

    NASA Astrophysics Data System (ADS)

    Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

    2014-03-01

    The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

  14. Genetic regulation of human brain development: lessons from Mendelian diseases

    PubMed Central

    Dixon-Salazar, Tracy J.; Gleeson, Joseph G.

    2016-01-01

    One of the fundamental goals in human genetics is to link gene function to phenotype, yet the function of the majority of the genes in the human body is still poorly understood. This is especially true for the developing human brain. The study of human phenotypes that result from inherited, mutated alleles is the most direct evidence for the requirement of a gene in human physiology. Thus, the study of Mendelian central nervous system(CNS) diseases can be an extremely powerful approach to elucidate such phenotypic/genotypic links and to increase our understanding of the key components required for development of the human brain. In this review, we highlight examples of how the study of inherited neurodevelopmental disorders contributes to our knowledge of both the “normal” and diseased human brain, as well as elaborate on the future of this type of research. Mendelian disease research has been, and will continue to be, key to understanding the molecular mechanisms that underlie human brain function, and will ultimately form a basis for the design of intelligent, mechanism-specific treatments for nervous system disorders. PMID:21062301

  15. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  16. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  17. Development of BOLD signal hemodynamic responses in the human brain

    PubMed Central

    Arichi, Tomoki; Fagiolo, Gianlorenzo; Varela, Marta; Melendez-Calderon, Alejandro; Allievi, Alessandro; Merchant, Nazakat; Tusor, Nora; Counsell, Serena J.; Burdet, Etienne; Beckmann, Christian F.; Edwards, A. David

    2012-01-01

    In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing populations. We aimed to characterize HRF in human infants before and after the normal time of birth using rapid sampling of the Blood Oxygen Level Dependent (BOLD) signal. A somatosensory stimulus and an event related experimental design were used to collect data from 10 healthy adults, 15 sedated infants at term corrected post menstrual age (PMA) (median 41 + 1 weeks), and 10 preterm infants (median PMA 34 + 4 weeks). A positive amplitude HRF waveform was identified across all subject groups, with a systematic maturational trend in terms of decreasing time-to-peak and increasing positive peak amplitude associated with increasing age. Application of the age-appropriate HRF models to fMRI data significantly improved the precision of the fMRI analysis. These findings support the notion of a structured development in the brain's response to stimuli across the last trimester of gestation and beyond. PMID:22776460

  18. Parental brain and socioeconomic epigenetic effects in human development

    PubMed Central

    Swain, James E.; Perkins, Suzanne C.; Dayton, Carolyn J.; Finegood, Eric D.; Ho, S. Shaun

    2015-01-01

    Critically significant parental effects in behavioral genetics may be partly understood as a consequence of maternal brain structure and function of caregiving systems recently studied in humans as well as rodents. Key parental brain areas regulate emotions, motivation/reward, and decision making, as well as more complex social-cognitive circuits. Additional key environmental factors must include socioeconomic status and paternal brain physiology. These have implications for developmental and evolutionary biology as well as public policy. PMID:23095400

  19. Alpha-synuclein expression in the developing human brain.

    PubMed

    Raghavan, Ravi; Kruijff, Loes de; Sterrenburg, Monique D; Rogers, Beverly B; Hladik, Christa L; White, Charles L

    2004-01-01

    Alpha (alpha)-synuclein is a presynaptic protein, abnormal expression of which has been associated with neurodegenerative and neoplastic diseases. It is abundant in the developing vertebrate central nervous system (CNS), but less is known about its developmental expression in the human CNS. Immunohistochemical expression of alpha-synuclein was studied in 39 fetal, perinatal, pediatric, and adolescent brains. Perikaryal expression of alpha-synuclein is observed as early as 11-wk gestation in the cortical plate. Several discrete neuronal groups in the hippocampus, basal ganglia, and brain stem express perikaryal alpha-synuclein by 20-wk gestation, persisting through the first few years of life. In the cerebellum, alpha-synuclein is present by 21-wk gestation and persists into adult life as a coarse granular neuropil reaction product in the internal granular layer, and as a diffuse neuropil "blush" in the molecular layer. The germinal matrix, glia, endothelial cells, external granular layer, Pukinje cells, and dentate neurons are consistently negative for alpha-synuclein. We conclude that alpha-synuclein is expressed very early in human gestation, and that its distribution and temporal sequence of expression varies in discrete neuronal groups. Perikaryal alpha-synuclein starts disappearing from the neuronal cytosol in early childhood, and only the neuropil retains immunoreactivity into adulthood. The reappearance of alpha-synuclein in the adult neuronal cytosol in certain disease processes may represent reemergence of cues from an earlier developmental stage as part of a stress response. PMID:15547775

  20. Human brain development in infants with PET and FDG

    SciTech Connect

    Phelps, M.E.; Chugani, H.T.

    1985-05-01

    The authors used studies of local cerebral metabolic rate for glucose (LCMRGlc) to examine development of cerebral organization in 5 days to 1 year old children. A group (n=8) of infants with diverse pediatric disorders allowed investigation of developmental changes in LCMRGlc, while also providing relevant clinical management information. Patients consisted of questionable and definite neonatal seizures, cerebral embolism from cardiac sources, and otherwise normal infants with facial nevi with consideration of Sturge-Weber. Gradual increase in cortical LCMRGlc coincides with suppression of intrinsic subcortical reflexes present in all newborns. Two retarded children (2 years old) showed LCMRGlc developmental patterns of a few days old, which corresponded to their functional and mental status. These studies illustrate great potential of PET to study normal and altered states of human brain development.

  1. Regional growth and atlasing of the developing human brain

    PubMed Central

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel

    2016-01-01

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  2. Regional growth and atlasing of the developing human brain.

    PubMed

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  3. Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development.

    PubMed

    Brenna, J Thomas; Carlson, Susan E

    2014-12-01

    Humans evolved a uniquely large brain among terrestrial mammals. Brain and nervous tissue is rich in the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). Docosahexaenoic acid is required for lower and high order functions in humans because of understood and emerging molecular mechanisms. Among brain components that depend on dietary components, DHA is limiting because its synthesis from terrestrial plant food precursors is low but its utilization when consumed in diet is very efficient. Negligible DHA is found in terrestrial plants, but in contrast, DHA is plentiful at the shoreline where it is made by single-celled organisms and plants, and in the seas supports development of very large marine mammal brains. Modern human brains accumulate DHA up to age 18, most aggressively from about half-way through gestation to about two years of age. Studies in modern humans and non-human primates show that modern infants consuming infant formulas that include only DHA precursors have lower DHA levels than for those with a source of preformed DHA. Functional measures show that infants consuming preformed DHA have improved visual and cognitive function. Dietary preformed DHA in the breast milk of modern mothers supports many-fold greater breast milk DHA than is found in the breast milk of vegans, a phenomenon linked to consumption of shore-based foods. Most current evidence suggests that the DHA-rich human brain required an ample and sustained source of dietary DHA to reach its full potential. PMID:24780861

  4. Neural Correlates of Socioeconomic Status in the Developing Human Brain

    ERIC Educational Resources Information Center

    Noble, Kimberly G.; Houston, Suzanne M.; Kan, Eric; Sowell, Elizabeth R.

    2012-01-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that…

  5. Development of Open Brain Simulator for Human Biomechatronics

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko; Takagi, Toshihisa; Asama, Hajime

    Modeling and simulation based on mechanisms is important in order to design and control mechatronic systems. In particular, in-depth understanding and realistic modeling of biological systems is indispensable for biomechatronics. This paper presents open brain simulator, which estimates the neural state of human through external measurement for the purpose of improving motor and social skills. Macroscopic anatomical nervous systems model was built which can be connected to the musculoskeletal model. Microscopic anatomical and physiological neural models were interfaced to the macroscopic model. Neural activities of somatosensory area and Purkinje cell were calculated from motion capture data. The simulator provides technical infrastructure for human biomechatronics, which is promising for the novel diagnosis of neurological disorders and their treatments through medication and movement therapy, and for motor learning support system supporting acquisition of motor skill considering neural mechanism.

  6. Treating the Developing versus Developed Brain: Translating Preclinical Mouse and Human Studies

    PubMed Central

    Casey, BJ; Glatt, Charles E.; Lee, Francis S.

    2015-01-01

    Summary Behaviors and underlying brain circuits show characteristic changes across the life-span that produce sensitive windows of vulnerability and resilience to psychopathology. Understanding the developmental course of these changes may inform which treatments are best at what ages. Focusing on behavioral domains and neurobiological substrates conserved from mouse to human supports reciprocal hypothesis generation and testing that leverages the strengths of each system in understanding their development. Introducing human genetic variants into mice can further define effects of individual variation on normative development, how they contribute to risk and resilience for mental illness, and inform personalized treatment opportunities. This article emphasizes the period of adolescence, when there is a peak in the emergence of mental illness, in particular, anxiety disorders. We present cross-species studies relating fear learning to anxiety across development, and discuss how clinical treatments can be optimized for individuals and targeted to the biological states of the developing brain. PMID:26087163

  7. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species

    PubMed Central

    Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.

    2013-01-01

    Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307

  8. Development of a high angular resolution diffusion imaging human brain template.

    PubMed

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528

  9. Neural correlates of socioeconomic status in the developing human brain.

    PubMed

    Noble, Kimberly G; Houston, Suzanne M; Kan, Eric; Sowell, Elizabeth R

    2012-07-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that language, memory, social-emotional processing, and cognitive control exhibit relatively large differences across SES. Here we investigated whether volumetric differences could be observed across SES in several neural regions that support these skills. In a sample of 60 socioeconomically diverse children, highly significant SES differences in regional brain volume were observed in the hippocampus and the amygdala. In addition, SES × age interactions were observed in the left superior temporal gyrus and left inferior frontal gyrus, suggesting increasing SES differences with age in these regions. These results were not explained by differences in gender, race or IQ. Likely mechanisms include differences in the home linguistic environment and exposure to stress, which may serve as targets for intervention at a time of high neural plasticity. PMID:22709401

  10. Interactive brain atlas with the Visible Human Project data: development methods and techniques.

    PubMed

    Toh, M Y; Falk, R B; Main, J S

    1996-09-01

    A prototype of an interactive digital brain atlas was developed by using the Visible Human Project data set of the National Library of Medicine. This data set provides corresponding axial magnetic resonance images, computed tomographic images, and cryosections of the brain. The prototype was developed to demonstrate the techniques and methods that will be used throughout the development process of the atlas. The atlas has a graphical user interface, supports user interaction with various representations of the brain (i.e., two-dimensional and three-dimensional [3D]), and displays multiple images simultaneously. Motion sequences of the 3D brain were incorporated in the atlas to provide an important link between two-dimensional brain slices and volume-rendered 3D anatomic structures. Volume visualization tools were used to interactively render, rotate, and reslice the volumetric brain data. The brain was segmented with manual tracing, thresholding, and morphologic algorithms and then rendered with volume-rendering tools. PMID:8888399

  11. Brain Development

    MedlinePlus

    ... new neural connections every second. This growing brain development is influenced by many factors, including a child’s relationships, experiences and environment. Learn more about the crucial role you play ...

  12. The role of human endogenous retroviruses in brain development and function.

    PubMed

    Mortelmans, Kristien; Wang-Johanning, Feng; Johanning, Gary L

    2016-01-01

    Endogenous retroviral sequences are spread throughout the genome of all humans, and make up about 8% of the genome. Despite their prevalence, the function of human endogenous retroviruses (HERVs) in humans is largely unknown. In this review we focus on the brain, and evaluate studies in animal models that address mechanisms of endogenous retrovirus activation in the brain and central nervous system (CNS). One such study in mice found that TRIM28, a protein critical for mouse early development, regulates transcription and silencing of endogenous retroviruses in neural progenitor cells. Another intriguing finding in human brain cells and mouse models was that endogenous retrovirus HERV-K appears to be protective against neurotoxins. We also report on studies that associate HERVs with human diseases of the brain and CNS. There is little doubt of an association between HERVs and a number of CNS diseases. However, a cause and effect relationship between HERVs and these diseases has not yet been established. PMID:26818265

  13. Evolution, development, and plasticity of the human brain: from molecules to bones.

    PubMed

    Hrvoj-Mihic, Branka; Bienvenu, Thibault; Stefanacci, Lisa; Muotri, Alysson R; Semendeferi, Katerina

    2013-01-01

    Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research. PMID:24194709

  14. Evolution, development, and plasticity of the human brain: from molecules to bones

    PubMed Central

    Hrvoj-Mihic, Branka; Bienvenu, Thibault; Stefanacci, Lisa; Muotri, Alysson R.; Semendeferi, Katerina

    2013-01-01

    Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research. PMID:24194709

  15. Oligodendrocyte development and the onset of myelination in the human fetal brain.

    PubMed

    Jakovcevski, Igor; Filipovic, Radmila; Mo, Zhicheng; Rakic, Sonja; Zecevic, Nada

    2009-01-01

    Oligodendrocytes are cells that myelinate axons, providing saltatory conduction of action potentials and proper function of the central nervous system. Myelination begins prenatally in the human, and the sequence of oligodendrocyte development and the onset of myelination are not thoroughly investigated. This knowledge is important to better understand human diseases, such as periventricular leukomalacia, one of the leading causes of motor deficit in premature babies, and demyelinating disorders such as multiple sclerosis (MS). In this review we discuss the spatial and temporal progression of oligodendrocyte lineage characterized by the expression of specific markers and transcription factors in the human fetal brain from the early embryonic period (5 gestational weeks, gw) until midgestation (24 gw). Our in vitro evidence indicated that a subpopulation of human oligodendrocytes may have dorsal origin, from cortical radial glia cells, in addition to their ventral telencephalic origin. Furthermore, we demonstrated that the regulation of myelination in the human fetal brain includes positive and negative regulators. Chemokines, such as CXCL1, abundant in proliferative zones during brain development and in regions of remyelination in adult, are discussed in the view of their potential roles in stimulating oligodendrocyte development. Other signals are inhibitory and may include, but are not limited to, polysialic acid modification of the neural cell adhesion molecule on axons. Overall, important differences in temporal and spatial distribution and regulatory signals for oligodendrocyte differentiation exist between human and rodent brains. Those differences may underlie the unique susceptibility of humans to demyelinating diseases, such as MS. PMID:19521542

  16. Development of Spatial and Verbal Working Memory Capacity in the Human Brain

    ERIC Educational Resources Information Center

    Thomason, Moriah E.; Race, Elizabeth; Burrows, Brittany; Whitfield-Gabrieli, Susan; Glover, Gary H.; Gabrieli, John D. E.

    2009-01-01

    A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between children (ages 7-12 years) and adults (ages 20-29 years) performing tests of verbal and spatial WM with varying amounts (loads)…

  17. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  18. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  19. A shift in sensory processing that enables the developing human brain to discriminate touch from pain.

    PubMed

    Fabrizi, Lorenzo; Slater, Rebeccah; Worley, Alan; Meek, Judith; Boyd, Stewart; Olhede, Sofia; Fitzgerald, Maria

    2011-09-27

    When and how infants begin to discriminate noxious from innocuous stimuli is a fundamental question in neuroscience [1]. However, little is known about the development of the necessary cortical somatosensory functional prerequisites in the intact human brain. Recent studies of developing brain networks have emphasized the importance of transient spontaneous and evoked neuronal bursting activity in the formation of functional circuits [2, 3]. These neuronal bursts are present during development and precede the onset of sensory functions [4, 5]. Their disappearance and the emergence of more adult-like activity are therefore thought to signal the maturation of functional brain circuitry [2, 4]. Here we show the changing patterns of neuronal activity that underlie the onset of nociception and touch discrimination in the preterm infant. We have conducted noninvasive electroencephalogram (EEG) recording of the brain neuronal activity in response to time-locked touches and clinically essential noxious lances of the heel in infants aged 28-45 weeks gestation. We show a transition in brain response following tactile and noxious stimulation from nonspecific, evenly dispersed neuronal bursts to modality-specific, localized, evoked potentials. The results suggest that specific neural circuits necessary for discrimination between touch and nociception emerge from 35-37 weeks gestation in the human brain. PMID:21906948

  20. Human development XII: a theory for the structure and function of the human brain.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Kandel, Isack; Merrick, Joav

    2008-01-01

    The human brain is probably the most complicated single structure in the biological universe. The cerebral cortex that is traditionally connected with consciousness is extremely complex. The brain contains approximately 1,000,000 km of nerve fibers, indicating its enormous complexity and which makes it difficult for scientists to reveal the function of the brain. In this paper, we propose a new model for brain functions, i.e., information-guided self-organization of neural patterns, where information is provided from the abstract wholeness of the biophysical system of an organism (often called the true self, or the "soul"). We present a number of arguments in favor of this model that provide self-conscious control over the thought process or cognition. Our arguments arise from analyzing experimental data from different research fields: histology, anatomy, electroencephalography (EEG), cerebral blood flow, neuropsychology, evolutionary studies, and mathematics. We criticize the popular network theories as the consequence of a simplistic, mechanical interpretation of reality (philosophical materialism) applied to the brain. We demonstrate how viewing brain functions as information-guided self-organization of neural patterns can explain the structure of conscious mentation; we seem to have a dual hierarchical representation in the cerebral cortex: one for sensation-perception and one for will-action. The model explains many of our unique mental abilities to think, memorize, associate, discriminate, and make abstractions. The presented model of the conscious brain also seems to be able to explain the function of the simpler brains, such as those of insects and hydra. PMID:18661051

  1. Development of cortical microstructure in the preterm human brain.

    PubMed

    Ball, Gareth; Srinivasan, Latha; Aljabar, Paul; Counsell, Serena J; Durighel, Giuliana; Hajnal, Joseph V; Rutherford, Mary A; Edwards, A David

    2013-06-01

    Cortical maturation was studied in 65 infants between 27 and 46 wk postconception using structural and diffusion magnetic resonance imaging. Alterations in neural structure and complexity were inferred from changes in mean diffusivity and fractional anisotropy, analyzed by sampling regions of interest and also by a unique whole-cortex mapping approach. Mean diffusivity was higher in gyri than sulci and in frontal compared with occipital lobes, decreasing consistently throughout the study period. Fractional anisotropy declined until 38 wk, with initial values and rates of change higher in gyri, frontal and temporal poles, and parietal cortex; and lower in sulcal, perirolandic, and medial occipital cortex. Neuroanatomical studies and experimental diffusion-anatomic correlations strongly suggested the interpretation that cellular and synaptic complexity and density increased steadily throughout the period, whereas elongation and branching of dendrites orthogonal to cortical columns was later and faster in higher-order association cortex, proceeding rapidly before becoming undetectable after 38 wk. The rate of microstructural maturation correlated locally with cortical growth, and predicted higher neurodevelopmental test scores at 2 y of age. Cortical microstructural development was reduced in a dose-dependent fashion by longer premature exposure to the extrauterine environment, and preterm infants at term-corrected age possessed less mature cortex than term-born infants. The results are compatible with predictions of the tension theory of cortical growth and show that rapidly developing cortical microstructure is vulnerable to the effects of premature birth, suggesting a mechanism for the adverse effects of preterm delivery on cognitive function. PMID:23696665

  2. Changing Balance of Spinal Cord Excitability and Nociceptive Brain Activity in Early Human Development.

    PubMed

    Hartley, Caroline; Moultrie, Fiona; Gursul, Deniz; Hoskin, Amy; Adams, Eleri; Rogers, Richard; Slater, Rebeccah

    2016-08-01

    In adults, nociceptive reflexes and behavioral responses are modulated by a network of brain regions via descending projections to the spinal dorsal horn [1]. Coordinated responses to noxious inputs manifest from a balance of descending facilitation and inhibition. In contrast, young infants display exaggerated and uncoordinated limb reflexes [2]. Our understanding of nociceptive processing in the infant brain has been advanced by the use of electrophysiological and hemodynamic imaging [3-6]. From approximately 35 weeks' gestation, nociceptive-specific patterns of brain activity emerge [7], whereas prior to this, non-specific bursts of activity occur in response to noxious, tactile, visual, and auditory stimulation [7-10]. During the preterm period, refinement of spinal cord excitability is also observed: reflex duration shortens, response threshold increases, and improved discrimination between tactile and noxious events occurs [2, 11, 12]. However, the development of descending modulation in human infants remains relatively unexplored. In 40 infants aged 28-42 weeks' gestation, we examined the relationship between nociceptive brain activity and spinal reflex withdrawal activity in response to a clinically essential noxious procedure. Nociceptive-specific brain activity increases in magnitude with gestational age, whereas reflex withdrawal activity decreases in magnitude, duration, and latency across the same developmental period. By recording brain and spinal cord activity in the same infants, we demonstrate that the maturation of nociceptive brain activity is concomitant with the refinement of noxious-evoked limb reflexes. We postulate that, consistent with studies in animals, infant reflexes are influenced by the development of top-down inhibitory modulation from maturing subcortical and cortical brain networks. PMID:27374336

  3. Quantitative and Qualitative Analysis of Transient Fetal Compartments during Prenatal Human Brain Development

    PubMed Central

    Vasung, Lana; Lepage, Claude; Radoš, Milan; Pletikos, Mihovil; Goldman, Jennifer S.; Richiardi, Jonas; Raguž, Marina; Fischi-Gómez, Elda; Karama, Sherif; Huppi, Petra S.; Evans, Alan C.; Kostovic, Ivica

    2016-01-01

    The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13–40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the

  4. Quantitative and Qualitative Analysis of Transient Fetal Compartments during Prenatal Human Brain Development.

    PubMed

    Vasung, Lana; Lepage, Claude; Radoš, Milan; Pletikos, Mihovil; Goldman, Jennifer S; Richiardi, Jonas; Raguž, Marina; Fischi-Gómez, Elda; Karama, Sherif; Huppi, Petra S; Evans, Alan C; Kostovic, Ivica

    2016-01-01

    The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13-40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the

  5. Toward a 3D model of human brain development for studying gene/environment interactions

    PubMed Central

    2013-01-01

    This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders

  6. Multi-Contrast Human Neonatal Brain Atlas: Application to Normal Neonate Development Analysis

    PubMed Central

    Oishi, Kenichi; Mori, Susumu; Donohue, Pamela K.; Ernst, Thomas; Anderson, Lynn; Buchthal, Steven; Faria, Andreia; Jiang, Hangyi; Li, Xin; Miller, Michael I.; van Zijl, Peter C.M.; Chang, Linda

    2011-01-01

    MRI is a sensitive method for detecting subtle anatomic abnormalities in the neonatal brain. To optimize the usefulness for neonatal and pediatric care, systematic research, based on quantitative image analysis and functional correlation, is required. Normalization-based image analysis is one of the most effective methods for image quantification and statistical comparison. However, the application of this methodology to neonatal brain MRI scans is rare. Some of the difficulties are the rapid changes in T1 and T2 contrasts and the lack of contrast between brain structures, which prohibits accurate cross-subject image registration. Diffusion tensor imaging (DTI), which provides rich and quantitative anatomical contrast in neonate brains, is an ideal technology for normalization–based neonatal brain analysis. In this paper, we report the development of neonatal brain atlases with detailed anatomic information derived from DTI and co-registered anatomical MRI. Combined with a diffeomorphic transformation, we were able to normalize neonatal brain images to the atlas space and three-dimensionally parcellate images into 122 regions. The accuracy of the normalization was comparable to the reliability of human raters. This method was then applied to babies of 37 to 53 post-conceptional weeks to characterize developmental changes of the white matter, which indicated a posterior-to-anterior and a central-to-peripheral direction of maturation. We expect that future applications of this atlas will include investigations of the effect of prenatal events and the effects of preterm birth or low birth weights, as well as clinical applications, such as determining imaging biomarkers for various neurological disorders. PMID:21276861

  7. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains

    PubMed Central

    Miyazaki, Yuta; Song, Jae W.; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in

  8. Linking brain stroke risk factors to human movement features for the development of preventive tools

    PubMed Central

    O'Reilly, Christian; Plamondon, Réjean; Lebrun, Louise-Hélène

    2014-01-01

    This paper uses human movement analyses to assess the susceptibility of brain stroke, one of the most important causes of disability in elders. To that end, a computerized battery of nine neuromuscular tests has been designed and evaluated with a sample of 120 subjects with or without stoke risk factors. The kinematics of the movements produced was analyzed using a computational neuromuscular model and predictive characteristics were extracted. Logistic regression and linear discriminant analysis with leave-one-out cross-validation was used to infer the probability of presence of brain stroke risk factors. The clinical potential value of movement information for stroke prevention was assessed by computing area under the receiver operating characteristic curve (AUC) for the diagnostic of risk factors based on motion analysis. AUC mostly varying between 0.6 and 0.9 were obtained, depending on the neuromuscular test and the risk factor investigated (obesity, diabetes, hypertension, hypercholesterolemia, cigarette smoking, and cardiac disease). Our results support the feasibility of the proposed methodology and its potential application for the development of brain stroke prevention tools. Although further research is needed to improve this methodology and its outcome, results are promising and the proposed approach should be of great interest for many experimenters open to novel approaches in preventive medicine and in gerontology. It should also be valuable for engineers, psychologists, and researchers using human movements for the development of diagnostic and neuromuscular assessment tools. PMID:25071559

  9. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression.

    PubMed

    Goyal, Manu S; Hawrylycz, Michael; Miller, Jeremy A; Snyder, Abraham Z; Raichle, Marcus E

    2014-01-01

    Aerobic glycolysis (AG; i.e., nonoxidative metabolism of glucose despite the presence of abundant oxygen) accounts for 10%-12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with the persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938

  10. Toward an integrative science of the developing human mind and brain: Focus on the developing cortex.

    PubMed

    Jernigan, Terry L; Brown, Timothy T; Bartsch, Hauke; Dale, Anders M

    2016-04-01

    Based on the Huttenlocher lecture, this article describes the need for a more integrative scientific paradigm for addressing important questions raised by key observations made over 2 decades ago. Among these are the early descriptions by Huttenlocher of variability in synaptic density in cortex of postmortem brains of children of different ages and the almost simultaneous reports of cortical volume reductions on MR imaging in children and adolescents. In spite of much progress in developmental neurobiology, developmental cognitive neuroscience, and behavioral and imaging genetics, we still do not know how these early observations relate to each other. It is argued that large scale, collaborative research programs are needed to establish the associations between behavioral differences among children and imaging biomarkers, and to link the latter to cellular changes in the developing brain. Examples of progress and challenges remaining are illustrated with data from the Pediatric Imaging, Neurocognition, and Genetics Project (PING). PMID:26347228

  11. Dynamic regulation of RNA editing in human brain development and disease.

    PubMed

    Hwang, Taeyoung; Park, Chul-Kee; Leung, Anthony K L; Gao, Yuan; Hyde, Thomas M; Kleinman, Joel E; Rajpurohit, Anandita; Tao, Ran; Shin, Joo Heon; Weinberger, Daniel R

    2016-08-01

    RNA editing is increasingly recognized as a molecular mechanism regulating RNA activity and recoding proteins. Here we surveyed the global landscape of RNA editing in human brain tissues and identified three unique patterns of A-to-I RNA editing rates during cortical development: stable high, stable low and increasing. RNA secondary structure and the temporal expression of adenosine deaminase acting on RNA (ADAR) contribute to cis- and trans-regulatory mechanisms of these RNA editing patterns, respectively. Interestingly, the increasing pattern was associated with neuronal maturation, correlated with mRNA abundance and potentially influenced miRNA binding energy. Gene ontology analyses implicated the increasing pattern in vesicle or organelle membrane-related genes and glutamate signaling pathways. We also found that the increasing pattern was selectively perturbed in spinal cord injury and glioblastoma. Our findings reveal global and dynamic aspects of RNA editing in brain, providing new insight into epitranscriptional regulation of sequence diversity. PMID:27348216

  12. Development of a Human Head FE Model and Impact Simulation on the Focal Brain Injury

    NASA Astrophysics Data System (ADS)

    Watanabe, Dai; Yuge, Kohei; Nishimoto, Tetsuya; Murakami, Shigeyuki; Takao, Hiroyuki

    In this paper, a three-dimensional digital human-head model was developed and several dynamic analyses on the head trauma were conducted. This model was built up by the VOXEL approach using 433 slice CT images (512×512 pixels) and made of 1.22 million parallelepiped finite elements with 10 anatomical tissue properties such as scalp, CSF, skull, brain, dura mater and so on. The numerical analyses were conducted using a finite element code the authors have developed. The main features of the code are 1) it is based on the explicit time integration method and 2) it uses the one point integration method to evaluate the equivalent nodal forces with the hourglass control proposed by Flanagan and Belytschko(1) and 3) it utilizes the parallel computation system based on MPI. In order to verify the developed model, the head impact experiment for a cadaver by Nahum et al.(2) was simulated. The calculated results showed good agreement with the experimental ones. A front and rear impact analyses were also performed to discuss on the characteristic measure of the brain injury, in which the von-Mises stress was high in the frontal lobe in both of the analyses because of the large deformations of a frontal cranial base. This result suggests that the von-Mises stress can be a good measure of the brain injury since it is empirically well known that the frontal lobe tends to get injured regardless of the impact positions.

  13. The role of human-specific gene duplications during brain development and evolution.

    PubMed

    Sassa, Takayuki

    2013-09-01

    One of the most fascinating questions in evolutionary biology is how traits unique to humans, such as their high cognitive abilities, erect bipedalism, and hairless skin, are encoded in the genome. Recent advances in genomics have begun to reveal differences between the genomes of the great apes. It has become evident that one of the many mutation types, segmental duplication, has drastically increased in the primate genomes, and most remarkably in the human genome. Genes contained in these segmental duplications have a tremendous potential to cause genetic innovation, probably accounting for the acquisition of human-specific traits. In this review, I begin with an overview of the genes, which have increased their copy number specifically in the human lineage, following its separation from the common ancestor with our closest living relative, the chimpanzee. Then, I introduce the recent experimental approaches, focusing on SRGAP2, which has been partially duplicated, to elucidate the role of SRGAP2 protein and its human-specific paralogs in human brain development and evolution. PMID:23782070

  14. Functional genomics of human brain development and implications for autism spectrum disorders

    PubMed Central

    Ziats, M N; Grosvenor, L P; Rennert, O M

    2015-01-01

    Transcription of the inherited DNA sequence into copies of messenger RNA is the most fundamental process by which the genome functions to guide development. Encoded sequence information, inherited epigenetic marks and environmental influences all converge at the level of mRNA gene expression to allow for cell-type-specific, tissue-specific, spatial and temporal patterns of expression. Thus, the transcriptome represents a complex interplay between inherited genomic structure, dynamic experiential demands and external signals. This property makes transcriptome studies uniquely positioned to provide insight into complex genetic–epigenetic–environmental processes such as human brain development, and disorders with non-Mendelian genetic etiologies such as autism spectrum disorders. In this review, we describe recent studies exploring the unique functional genomics profile of the human brain during neurodevelopment. We then highlight two emerging areas of research with great potential to increase our understanding of functional neurogenomics—non-coding RNA expression and gene interaction networks. Finally, we review previous functional genomics studies of autism spectrum disorder in this context, and discuss how investigations at the level of functional genomics are beginning to identify convergent molecular mechanisms underlying this genetically heterogeneous disorder. PMID:26506051

  15. Structural development of human brain white matter from mid-fetal to perinatal stage

    NASA Astrophysics Data System (ADS)

    Ouyang, Austin; Yu, Qiaowen; Mishra, Virendra; Chalak, Lina; Jeon, Tina; Sivarajan, Muraleedharan; Jackson, Greg; Rollins, Nancy; Liu, Shuwei; Huang, Hao

    2015-03-01

    The structures of developing human brain white matter (WM) tracts can be effectively quantified by DTI-derived metrics, including fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD). However, dynamics of WM microstructure during very early developmental period from mid-fetal to perinatal stage is unknown. It is difficult to accurately measure microstructural properties of these WM tracts due to severe contamination from cerebrospinal fluid (CSF). In this study, high resolution DTI of fetal brains at mid-fetal stage (20 weeks of gestation or 20wg), 19 brains in the middle of 3rd trimester (35wg) and 17 brains around term (40wg) were acquired. We established first population-averaged DTI templates at these three time points and extracted WM skeleton. 16 major WM tracts in limbic, projection, commissural and association tract groups were traced with DTI tractography in native space. The WM skeleton in the template space was inversely transformed back to the native space for measuring core WM microstructures of each individual tract. Continuous microstructural enhancement and volumetric increase of WM tracts were found from 20wg to 40wg. The microstructural enhancement from FA measurement is decelerated in late 3rd trimester compared to mid-fetal to middle 3rd trimester, while volumetric increase of prefrontal WM tracts is accelerated. The microstructural enhancement from 35wg to 40wg is heterogeneous among different tract groups with microstructures of association tracts undergoing most dramatic change. Besides decreases of RD indicating active myelination, the decrease of AD for most WM tracts during late 3rd trimester suggests axonal packing process.

  16. In silico analysis of histone H3 gene expression during human brain development.

    PubMed

    Ren, Megan; van Nocker, Steve

    2016-01-01

    Precise regulation of chromatin structure is essential for proper development of higher eukaryotes, and methylation of histone H3 at lysine-27 (H3K27) by the Polycomb Repressive Complex 2 (PRC2) component EZH2 has emerged as an important and conserved mechanism to ensure silencing of developmentally regulated genes. Recurrent mutations within the histone H3 genes H3F3A and HIST1H3B that convert K27 to methionine (H3K27M) and disrupt the global H3K27 methylation landscape and PRC2-dependent silencing, have recently been identified in pediatric high-grade gliomas including Diffuse Intrinsic Pontine Glioma (DIPG) and Glioblastoma multiforme (GBM; Type IV glioma). These findings have generated renewed interest in the dynamics of histone genes and their expression, which have been difficult to study due to redundancy and high sequence homology within the H3 gene family. In this in silico study, we re-evaluated genomic organization of the human H3 gene family and expression of these genes in the human brain, utilizing public RNA-based sequence datasets for the human genome and brain development. We identified transcriptional activity from at least 17 protein-encoding H3 genes in the developing brain, comprising at least 14 canonical (H3.1)-like and 3 'replication-independent' (H3.3)-like forms, and encoding six distinct H3 isoforms. Transcripts for H3.3 genes including H3F3A show gradual decrease in abundance associated with developmental progression, whereas H3.1 transcripts including HIST1H3B tend to be strongly downregulated at an early prenatal stage and remain essentially silent thereafter. Twelve genes, including members of both H3.1 and H3.3 classes, contain a K27-AAG codon that is mutable to that for M (ATG), whereas the remaining contain the alternative, AAA codon for K at this position. H3F3A is the only H3.3-like gene containing the K27-AAG codon, whereas HIST1H3B is among ten H3.1-like genes containing this codon. This data indicates that, in the early

  17. Asymmetric Development of Dorsal and Ventral Attention Networks in the Human Brain

    PubMed Central

    Farrant, Kristafor; Uddin, Lucina Q.

    2015-01-01

    Two neural systems for goal-directed and stimulus-driven attention have been described in the adult human brain; the dorsal attention network (DAN) centered in the frontal eye fields (FEF) and intraparietal sulcus (IPS), and the ventral attention network (VAN) anchored in the temporoparietal junction (TPJ) and ventral frontal cortex (VFC). Little is known regarding the processes governing typical development of these attention networks in the brain. Here we use resting state functional MRI data collected from thirty 7–12 year-old children and thirty 18–31 year-old adults to examine two key regions of interest from the dorsal and ventral attention networks. We found that for the DAN nodes (IPS and FEF), children showed greater functional connectivity with regions within the network compared with adults, whereas adults showed greater functional connectivity between the FEF and extra-network regions including the posterior cingulate cortex. For the VAN nodes (TPJ and VFC), adults showed greater functional connectivity with regions within the network compared with children. Children showed greater functional connectivity between VFC and nodes of the salience network. This asymmetric pattern of development of attention networks may be a neural signature of the shift from over-representation of bottom-up attention mechanisms to greater top-down attentional capacities with development. PMID:25797238

  18. Brain development in childhood.

    PubMed

    Taki, Yasuyuki; Kawashima, Ryuta

    2012-01-01

    Although human brain development continues throughout childhood and adolescence, it is a non-linear process both structurally and functionally. Here we review studies of brain development in healthy children from the viewpoint of structure and the perfusion of gray and white matter. Gray matter volume increases and then decreases with age, with the developmental time of the peak volume differing among brain regions in the first and second decades of life. On the other hand, white matter volume increase is mostly linear during those periods. As regards fractional anisotropy, most regions show an exponential trajectory with aging. In addition, cerebral blood flow and gray matter volume are proportional at similar developmental ages. Moreover, we show that several lifestyle choices, such as sleeping habits and breakfast staple, affect gray matter volume in healthy children. There are a number of uninvestigated important issues that require future study. PMID:23166579

  19. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    PubMed Central

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  20. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    PubMed

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  1. Transplantation of human umbilical cord blood-derived adherent progenitors into the developing rodent brain.

    PubMed

    Coenen, Martin; Kögler, Gesine; Wernet, Peter; Brüstle, Oliver

    2005-08-01

    The results of several recent studies suggest that human umbilical cord blood (HUCB)-derived cells have the potential to undergo neural differentiation both in vitro and in vivo. Transplantation into the embryonic ventricular zone provides a unique opportunity to study the migration and differentiation of nonneural somatic progenitor cells in response to instructive cues within the developing neuroepithelium. We isolated an adherently growing population of HUCB-derived cells expressing CD13, CD29, CD49e, CD71, CD73, CD166, Flk-1, and vimentin but lacking CD34 and CD45. On transplantation into the ventricles of embryonic day 16.5 rat embryos, these cells formed subventricular clusters that extended into a variety of host brain regions, including striatum, cortex, hippocampus, thalamus, hypothalamus, tectum, pons, and cerebellum. Donor cells identified with an antibody to human nuclei or human-specific DNA in situ hybridization maintained expression of their original marker antigens and showed no expression of the neural markers MAP2 and NeuN (neurons), GFAP (astrocytes), and CNP (oligodendrocytes). In contrast to grafted primary neural cells, they remained largely confined to subventricular clusters with little evidence for intraparenchymal integration. Thus, the neurogenic environment of the embryonic ventricular zone does not promote the elaboration of a neural phenotype in HUCB-derived cells. PMID:16106216

  2. Development of functional imaging in the human brain (fMRI); the University of Minnesota experience.

    PubMed

    Uğurbil, Kâmil

    2012-08-15

    The human functional magnetic resonance imaging (fMRI) experiments performed in the Center for Magnetic Resonance Research (CMRR), University of Minnesota, were planned between two colleagues who had worked together previously in Bell Laboratories in the late nineteen seventies, namely myself and Seiji Ogawa. These experiments were motivated by the Blood Oxygenation Level Dependent (BOLD) contrast developed by Seiji. We discussed and planned human studies to explore imaging human brain activity using the BOLD mechanism on the 4 Tesla human system that I was expecting to receive for CMRR. We started these experiments as soon as this 4 Tesla instrument became marginally operational. These were the very first studies performed on the 4 Tesla scanner in CMRR; had the scanner become functional earlier, they would have been started earlier as well. We were aware of the competing effort at the Massachusetts General Hospital (MGH) and we knew that they had been informed of our initiative in Minneapolis to develop fMRI. We had positive results certainly by August 1991 annual meeting of the Society of Magnetic Resonance in Medicine (SMRM). I believe, however, that neither the MGH colleagues nor us, at the time, had enough data and/or conviction to publish these extraordinary observations; it took more or less another six months or so before the papers from these two groups were submitted for publication within five days of each other to the Proceedings of the National Academy of Sciences, USA, after rejection by Nature in our case. Thus, fMRI was achieved independently and at about the same time at MGH, in an effort credited largely to Ken Kwong, and in CMRR, University of Minnesota in an effort led by myself and Seiji Ogawa. PMID:22342875

  3. Infections and Brain Development

    PubMed Central

    Cordeiro, Christina N.; Tsimis, Michael; Burd, Irina

    2016-01-01

    Several different bodies of evidence support a link between infection and altered brain development. Maternal infections, such as influenza and human immunodeficiency virus, have been linked to the development of autism spectrum disorders, differences in cognitive test scores, and bipolar disorder; an association that has been shown in both epidemiologic and retrospective studies. Several viral, bacterial, and parasitic illnesses are associated with alterations in fetal brain structural anomalies including brain calcifications and hydrocephalus. The process of infection can activate inflammatory pathways causing the release of various proinflammatory biomarkers and histological changes consistent with an infectious intrauterine environment (chorioamnionitis) or umbilical cord (funisitis). Elevations in inflammatory cytokines are correlated with cerebral palsy, schizophrenias, and autism. Animal studies indicate that the balance of proinflammatory and anti-inflammatory cytokines is critical to the effect prenatal inflammation plays in neurodevelopment. Finally, chorioamnionitis is associated with cerebral palsy and other abnormal neurodevelopmental outcomes. In conclusion, a plethora of evidence supports, albeit with various degrees of certainty, the theory that maternal infection and inflammation that occur during critical periods of fetal development could theoretically alter brain structure and function in a time-sensitive manner. PMID:26490164

  4. Development of functional imaging in the human brain (fMRI); the University of Minnesota experience

    PubMed Central

    Uğurbil, Kâmil

    2012-01-01

    The human functional magnetic resonance imaging (fMRI) experiments performed in the Center for Magnetic Resonance Research (CMRR), University of Minnesota, were planned between two colleagues who had worked together previously in Bell Laboratories in the late nineteen seventies, namely myself and Seiji Ogawa. These experiments were motivated by the Blood Oxygenation Level Dependent (BOLD) contrast developed by Seiji. We discussed and planned human studies to explore imaging human brain activity using the BOLD mechanism on the 4 Tesla human system that I was expecting to receive for CMRR. We started these experiments as soon as this 4 Tesla instrument became marginally operational. These were the very first studies performed on the 4 Tesla scanner in CMRR; had the scanner became functional earlier, they would have been started earlier as well. We had positive results certainly by August 1991 annual meeting of the Society of Magnetic Resonance in Medicine (SMRM) and took some of the data with us to that meeting. I believe, however, that neither the MGH colleagues nor us, at the time, had enough data and/or conviction to publish these extraordinary observations; it took more or less another six months or so before the papers from these two groups were submitted for publication within five days of each other to the Proceedings of the National Academy of Sciences, USA, after rejections by Nature. Based on this record, it is fair to say that fMRI was achieved independently and at about the same time at MGH, in an effort credited largely to Ken Kwong, and in CMRR, University of Minnesota in an effort led by myself and Seiji Ogawa. PMID:22342875

  5. Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: Relation with normal brain development and aging

    SciTech Connect

    Nomura, Toshiyuki; Sakuma, Hajime; Takeda, Kan; Tagami, Tomoyasu; Okuda, Yasuyuki; Nakagawa, Tsuyoshi )

    1994-02-01

    To analyze diffusional anisotropy in frontal and occipital white matter of human brain quantitatively as a function of age by using diffusion-weighted MR imaging. Ten neonates (<1 month), 13 infants (1-10 months), 9 children (1-11 years), and 16 adults (20-79 years) were examined. After taking axial spin-echo images of the brain, diffusion-sensitive gradients were added parallel or perpendicular to the orientation of nerve fibers. The apparent diffusion coefficient parallel to the nerve fibers (0) and that perpendicular to the fibers (90) were computed. The anisotropic ratio (90/0) was calculated as a function of age. Anisotropic ratios of frontal white matter were significantly larger in neonates as compared with infants, children, or adults. The ratios showed rapid decrease until 6 months and thereafter were identical in all subjects. In the occipital lobe, the ratios were also greater in neonates, but the differences from other age groups were not so prominent as in the frontal lobe. Comparing anisotropic ratios between frontal and occipital lobes, a significant difference was observed only in neonates. Diffusion-weighted images demonstrated that the myelination process starts earlier in the occipital lobe than in the frontal lobe. The changes of diffusional anisotropy in white matter are completed within 6 months after birth. Diffusion-weighted imaging provides earlier detection of brain myelination compared with the conventional T1- and T2-weighted images. 18 refs., 6 figs., 1 tab.

  6. Development of MRI-based atlases of non-human brains.

    PubMed

    Ullmann, Jeremy F P; Janke, Andrew L; Reutens, David; Watson, Charles

    2015-02-15

    Brain atlases are a fundamental resource for neuroscience research. In the past few decades they have undergone a transition from traditional printed histological atlases to digital atlases made up of multiple data sets from multiple modalities, and atlases based on magnetic resonance imaging (MRI) have become widespread. Here we discuss the methods involved in making an MRI brain atlas, including registration of multiple data sets into a model, ontological classification, segmentation of a minimum deformation model, dissemination strategies, and applications of these atlases. Finally, we discuss possible future directions in the development of brain atlases. PMID:25236843

  7. Long-term influence of normal variation in neonatal characteristics on human brain development

    PubMed Central

    Walhovd, Kristine B.; Fjell, Anders M.; Brown, Timothy T.; Kuperman, Joshua M.; Chung, Yoonho; Hagler, Donald J.; Roddey, J. Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Libiger, Ondrej; Schork, Nicholas J.; Darst, Burcu F.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Frazier, Jean; Gruen, Jeffrey R.; Kaufmann, Walter E.; Murray, Sarah S.; van Zijl, Peter; Mostofsky, Stewart; Dale, Anders M.; Jernigan, Terry L.; McCabe, Connor; Chang, Linda; Akshoomoff, Natacha; Newman, Erik; Dale, Anders M.; Ernst, Thomas; Dale, Anders M.; Van Zijl, Peter; Kuperman, Joshua; Murray, Sarah; Bloss, Cinnamon; Schork, Nicholas J.; Appelbaum, Mark; Gamst, Anthony; Thompson, Wesley; Bartsch, Hauke; Jernigan, Terry L.; Dale, Anders M.; Akshoomoff, Natacha; Chang, Linda; Ernst, Thomas; Keating, Brian; Amaral, David; Sowell, Elizabeth; Kaufmann, Walter; Van Zijl, Peter; Mostofsky, Stewart; Casey, B.J.; Ruberry, Erika J.; Powers, Alisa; Rosen, Bruce; Kenet, Tal; Frazier, Jean; Kennedy, David; Gruen, Jeffrey

    2012-01-01

    It is now recognized that a number of cognitive, behavioral, and mental health outcomes across the lifespan can be traced to fetal development. Although the direct mediation is unknown, the substantial variance in fetal growth, most commonly indexed by birth weight, may affect lifespan brain development. We investigated effects of normal variance in birth weight on MRI-derived measures of brain development in 628 healthy children, adolescents, and young adults in the large-scale multicenter Pediatric Imaging, Neurocognition, and Genetics study. This heterogeneous sample was recruited through geographically dispersed sites in the United States. The influence of birth weight on cortical thickness, surface area, and striatal and total brain volumes was investigated, controlling for variance in age, sex, household income, and genetic ancestry factors. Birth weight was found to exert robust positive effects on regional cortical surface area in multiple regions as well as total brain and caudate volumes. These effects were continuous across birth weight ranges and ages and were not confined to subsets of the sample. The findings show that (i) aspects of later child and adolescent brain development are influenced at birth and (ii) relatively small differences in birth weight across groups and conditions typically compared in neuropsychiatric research (e.g., Attention Deficit Hyperactivity Disorder, schizophrenia, and personality disorders) may influence group differences observed in brain parameters of interest at a later stage in life. These findings should serve to increase our attention to early influences. PMID:23169628

  8. Adolescent Brain Development and Drugs

    ERIC Educational Resources Information Center

    Winters, Ken C.; Arria, Amelia

    2011-01-01

    Research now suggests that the human brain is still maturing during adolescence. The developing brain may help explain why adolescents sometimes make decisions that are risky and can lead to safety or health concerns, including unique vulnerabilities to drug abuse. This article explores how this new science may be put to use in our prevention and…

  9. Development of a Rat Plasma and Brain Extracellular Fluid Pharmacokinetic Model for Bupropion and Hydroxybupropion Based on Microdialysis Sampling, and Application to Predict Human Brain Concentrations.

    PubMed

    Cremers, Thomas I F H; Flik, Gunnar; Folgering, Joost H A; Rollema, Hans; Stratford, Robert E

    2016-05-01

    Administration of bupropion [(±)-2-(tert-butylamino)-1-(3-chlorophenyl)propan-1-one] and its preformed active metabolite, hydroxybupropion [(±)-1-(3-chlorophenyl)-2-[(1-hydroxy-2-methyl-2-propanyl)amino]-1-propanone], to rats with measurement of unbound concentrations by quantitative microdialysis sampling of plasma and brain extracellular fluid was used to develop a compartmental pharmacokinetics model to describe the blood-brain barrier transport of both substances. The population model revealed rapid equilibration of both entities across the blood-brain barrier, with resultant steady-state brain extracellular fluid/plasma unbound concentration ratio estimates of 1.9 and 1.7 for bupropion and hydroxybupropion, respectively, which is thus indicative of a net uptake asymmetry. An overshoot of the brain extracellular fluid/plasma unbound concentration ratio at early time points was observed with bupropion; this was modeled as a time-dependent uptake clearance of the drug across the blood-brain barrier. Translation of the model was used to predict bupropion and hydroxybupropion exposure in human brain extracellular fluid after twice-daily administration of 150 mg bupropion. Predicted concentrations indicate that preferential inhibition of the dopamine and norepinephrine transporters by the metabolite, with little to no contribution by bupropion, would be expected at this therapeutic dose. Therefore, these results extend nuclear imaging studies on dopamine transporter occupancy and suggest that inhibition of both transporters contributes significantly to bupropion's therapeutic efficacy. PMID:26916207

  10. Brain Structure and Development.

    ERIC Educational Resources Information Center

    Teyler, T.J.; Chiaia, N.

    1983-01-01

    Considers basic biology of brain, what is known of how it operates, and something of how it develops. Discusses properties of neurons and specialized regions of the brain in linguistic and higher order processing skills, as well as genetic and environmental influences on brain development. (CMG)

  11. Development-related expression of AKAP79 in the striatal compartments of the human brain.

    PubMed

    Ulfig, N; Neudörfer, F; Bohl, J

    2001-01-01

    The expression of AKAP79 which tethers regulatory proteins within postsynaptic densities has been studied in the two striatal compartments, i.e. patches and matrix, at different stages of the developing human brain by means of immunohistochemistry. The two striatal compartments exhibit various intensities of diffuse immunolabelling and a different number of immunoreactive nerve cells. From the 14th to 20th gestational week a nearly homogeneous distribution of immunoreactive structures in the two compartments of the striatum is seen. Thereafter, a decrease in immunoreactive structures within the matrix is observed (22nd-25th week, intermediate stage). From the 27th week onwards the patch compartment contains distinctly more immunoreactive puncta and nerve cells. Thus, the patches stand out clearly in the immunopreparations. This distribution pattern does not change during proceeding development. AKAP79-immunoreactive nerve cells closely resemble those constituting the class of medium-sized inhibitory projection neurons that receive the dopaminergic input of the striatum. Literature data suggest that AKAP79 may be functionally attributed to dopaminergic inputs. Accordingly, the patterns of AKAP79 expression can at least in part be correlated with the sequential occurrence of dopaminergic innervation. The mature matrix containing a dopaminergic innervation being as dense as in the patches displays distinctly less AKAP79-immunoreactive neurons and puncta than the patches. This discrepancy might indicate that a subpopulation of matrix neurons may, despite dopaminergic input, not express AKAP79. PMID:11275698

  12. Poverty and Brain Development During Childhood: An Approach from Cognitive Psychology and Neuroscience. Human Brain Development Series

    ERIC Educational Resources Information Center

    Lipina, Sebastian J.; Colombo, Jorge A.

    2009-01-01

    Poverty remains an urgent crisis worldwide. In the United States, 28.6 million children live in low-income families and 12.7 million children live in poor families. In nations belonging to the Organization for Economic Co-operation and Development (OECD), 47 million children live below national poverty lines. These figures pertain to…

  13. Development of a preclinical therapeutic model of human brain metastasis with chemoradiotherapy.

    PubMed

    Martínez-Aranda, Antonio; Hernández, Vanessa; Picón, Cristina; Modolell, Ignasi; Sierra, Angels

    2013-01-01

    Currently, survival of breast cancer patients with brain metastasis ranges from 2 to 16 months. In experimental brain metastasis studies, only 10% of lesions with the highest permeability exhibited cytotoxic responses to paclitaxel or doxorubicin. Therefore, radiation is the most frequently used treatment, and sensitizing agents, which synergize with radiation, can improve the efficacy of the therapy. In this study we used 435-Br1 cells containing the fluorescent protein (eGFP) gene and the photinus luciferase (PLuc) gene to develop a new brain metastatic cell model in mice through five in vivo/in vitro rounds. BR-eGFP-CMV/Luc-V5 brain metastatic cells induce parenchymal brain metastasis within 60.8 ± 13.8 days of intracarotid injection in all mice. We used this model to standardize a preclinical chemoradiotherapy protocol comprising three 5.5 Gy fractions delivered on consecutive days (overall dose of 16.5 Gy) which improved survival with regard to controls (60.29 ± 8.65 vs. 47.20 ± 11.14). Moreover, the combination of radiotherapy with temozolomide, 60 mg/Kg/day orally for five consecutive days doubled survival time of the mice 121.56 ± 52.53 days (Kaplan-Meier Curve, p < 0.001). This new preclinical chemoradiotherapy protocol proved useful for the study of radiation response/resistance in brain metastasis, either alone or in combination with new sensitizing agents. PMID:23591844

  14. Changes of MR and DTI appearance in early human brain development

    NASA Astrophysics Data System (ADS)

    Marc, Cassian; Vachet, Clement; Gerig, Guido; Blocher, Joseph; Gilmore, John; Styner, Martin

    2010-03-01

    Understanding myelination in early brain development is of clinical importance, as many neurological disorders have their origin in early cerebral organization and maturation. The goal of this work is to study a large neonate database acquired with standard MR imagery to illuminate effects of early development in MRI. 90 neonates were selected from a study of healthy brain development. Subjects were imaged via MRI postnatally. MR acquisition included high-resolution structural and diffusion tensor images. Unbiased atlases for structural and DTI data were generated and co-registered into a single coordinate frame for voxel-wise comparison of MR and DTI appearance across time. All original datasets were mapped into this frame and structural image data was additionally intensity normalized. In addition, myelinated white matter probabilistic segmentations from our neonate tissue segmentation were mapped into the same space to study how our segmentation results were affected by the changing intensity characteristics in early development Linear regression maps and p-value maps were computed and visualized. The resulting visualization of voxelswise corresponding maps of all MR and DTI properties captures early development information in MR imagery. Surprisingly, we encountered regions of seemingly decreased myelinated WM probability over time even though we expected a confident increase for all of the brain. The intensity changes in the MR images in those regions help explain this counterintuitive result. The regressional results indicate that this is an effect of intensity changes due not solely to myelination processes but also likely brain dehydration processes in early postnatal development.

  15. Stereotaxic administrations of allogeneic human Vγ9Vδ2 T cells efficiently control the development of human glioblastoma brain tumors.

    PubMed

    Jarry, Ulrich; Chauvin, Cynthia; Joalland, Noémie; Léger, Alexandra; Minault, Sandrine; Robard, Myriam; Bonneville, Marc; Oliver, Lisa; Vallette, François M; Vié, Henri; Pecqueur, Claire; Scotet, Emmanuel

    2016-06-01

    Glioblastoma multiforme (GBM) represents the most frequent and deadliest primary brain tumor. Aggressive treatment still fails to eliminate deep brain infiltrative and highly resistant tumor cells. Human Vγ9Vδ2 T cells, the major peripheral blood γδ T cell subset, react against a wide array of tumor cells and represent attractive immune effector T cells for the design of antitumor therapies. This study aims at providing a preclinical rationale for immunotherapies in GBM based on stereotaxic administration of allogeneic human Vγ9Vδ2 T cells. The feasibility and the antitumor efficacy of stereotaxic Vγ9Vδ2 T cell injections have been investigated in orthotopic GBM mice model using selected heterogeneous and invasive primary human GBM cells. Allogeneic human Vγ9Vδ2 T cells survive and patrol for several days within the brain parenchyma following adoptive transfer and can successfully eliminate infiltrative GBM primary cells. These striking observations pave the way for optimized stereotaxic antitumor immunotherapies targeting human allogeneic Vγ9Vδ2 T cells in GBM patients. PMID:27471644

  16. Brain white matter development is associated with a human-specific haplotype increasing the synthesis of long chain fatty acids.

    PubMed

    Peters, Bart D; Voineskos, Aristotle N; Szeszko, Philip R; Lett, Tristram A; DeRosse, Pamela; Guha, Saurav; Karlsgodt, Katherine H; Ikuta, Toshikazu; Felsky, Daniel; John, Majnu; Rotenberg, David J; Kennedy, James L; Lencz, Todd; Malhotra, Anil K

    2014-04-30

    The genetic and molecular pathways driving human brain white matter (WM) development are only beginning to be discovered. Long chain polyunsaturated fatty acids (LC-PUFAs) have been implicated in myelination in animal models and humans. The biosynthesis of LC-PUFAs is regulated by the fatty acid desaturase (FADS) genes, of which a human-specific haplotype is strongly associated with ω-3 and ω-6 LC-PUFA concentrations in blood. To investigate the relationship between LC-PUFA synthesis and human brain WM development, we examined whether this FADS haplotype is associated with age-related WM differences across the life span in healthy individuals 9-86 years of age (n = 207). Diffusion tensor imaging was performed to measure fractional anisotropy (FA), a putative measure of myelination, of the cerebral WM tracts. FADS haplotype status was determined with a single nucleotide polymorphism (rs174583) that tags this haplotype. Overall, normal age-related WM differences were observed, including higher FA values in early adulthood compared with childhood, followed by lower FA values across older age ranges. However, individuals homozygous for the minor allele (associated with lower LC-PUFA concentrations) did not display these normal age-related WM differences (significant age × genotype interactions, p(corrected) < 0.05). These findings suggest that LC-PUFAs are involved in human brain WM development from childhood into adulthood. This haplotype and LC-PUFAs may play a role in myelin-related disorders of neurodevelopmental origin. PMID:24790207

  17. Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome.

    PubMed

    Mahfouz, Ahmed; Ziats, Mark N; Rennert, Owen M; Lelieveldt, Boudewijn P F; Reinders, Marcel J T

    2015-12-01

    Autism spectrum disorder (ASD) is a neurodevelopmental syndrome known to have a significant but complex genetic etiology. Hundreds of diverse genes have been implicated in ASD; yet understanding how many genes, each with disparate function, can all be linked to a single clinical phenotype remains unclear. We hypothesized that understanding functional relationships between autism candidate genes during normal human brain development may provide convergent mechanistic insight into the genetic heterogeneity of ASD. We analyzed the co-expression relationships of 455 genes previously implicated in autism using the BrainSpan human transcriptome database, across 16 anatomical brain regions spanning prenatal life through adulthood. We discovered modules of ASD candidate genes with biologically relevant temporal co-expression dynamics, which were enriched for functional ontologies related to synaptogenesis, apoptosis, and GABA-ergic neurons. Furthermore, we also constructed co-expression networks from the entire transcriptome and found that ASD candidate genes were enriched in modules related to mitochondrial function, protein translation, and ubiquitination. Hub genes central to these ASD-enriched modules were further identified, and their functions supported these ontological findings. Overall, our multi-dimensional co-expression analysis of ASD candidate genes in the normal developing human brain suggests the heterogeneous set of ASD candidates share transcriptional networks related to synapse formation and elimination, protein turnover, and mitochondrial function. PMID:26399424

  18. Chronic drug exposures during development in nonhuman primates: models of brain dysfunction in humans.

    PubMed

    Paule, Merle G

    2005-01-01

    This review of our work presents three specific examples of how nonhuman primates (rhesus monkeys, Macaca mulatta) have been used to study the effects of chronic drug exposures on brain function during different stages of development. In all cases, exposure levels similar to those experienced by humans were employed and the focus was on long-term--not acute--effects. In the case of the marijuana studies, exposures occurred during the adolescent period; for the cocaine studies, exposures occurred in binge-like fashion entirely before birth (in utero); and for the remacemide studies, exposures occurred daily in juveniles, prior to adolescence. An automated battery of behavioral tasks, the National Center for Toxicological Research Operant Test Battery (NCTR OTB), designed to assess aspects of motivation, visual discrimination, time perception, short-term memory, and learning, was used to monitor treatment effects. Chronic marijuana smoke exposure resulted in an 'amotivational' syndrome--even in weekend-only smokers--that resolved within three months of exposure cessation. In utero cocaine exposure was shown to cause behavioral rigidity or lack of plasticity as evidenced by the difficulty of subjects to adjust to rules changes for some OTB tasks. These effects were seen in adult subjects suggesting that the effects of gestational cocaine exposure are long-term or permanent. In addition, animals exposed to cocaine in utero were less sensitive to the behaviorally-disrupting effects of cocaine as adults. Remacemide caused profound and long-lasting, perhaps permanent, changes in learning task performance and because performance of this same task by children is significantly correlated with traditional measures of intelligence (IQ), these data suggest that such treatment may provide a valuable model of chemically-induced mental retardation. PMID:15970490

  19. Mapping Brain Development and Aggression

    PubMed Central

    Paus, Tomás

    2005-01-01

    Introduction This article provides an overview of the basic principles guiding research on brain-behaviour relationships in general, and as applied to studies of aggression during human development in particular. Method Key literature on magnetic resonance imaging of the structure and function of a developing brain was reviewed. Results The article begins with a brief introduction to the methodology of techniques used to map the developing brain, with a special emphasis on magnetic resonance imaging (MRI). It then reviews briefly the current knowledge of structural maturation, assessed by MRI, of the human brain during childhood and adolescence. The last part describes some of the results of neuroimaging studies aimed at identifying neural circuits involved in various aspects of aggression and social cognition. Conclusion The article concludes by discussing the potential and limitations of the neuroimaging approach in this field. PMID:19030495

  20. Epigenetics in the Human Brain

    PubMed Central

    Houston, Isaac; Peter, Cyril J; Mitchell, Amanda; Straubhaar, Juerg; Rogaev, Evgeny; Akbarian, Schahram

    2013-01-01

    Many cellular constituents in the human brain permanently exit from the cell cycle during pre- or early postnatal development, but little is known about epigenetic regulation of neuronal and glial epigenomes during maturation and aging, including changes in mood and psychosis spectrum disorders and other cognitive or emotional disease. Here, we summarize the current knowledge base as it pertains to genome organization in the human brain, including the regulation of DNA cytosine methylation and hydroxymethylation, and a subset of (altogether >100) residue-specific histone modifications associated with gene expression, and silencing and various other functional chromatin states. We propose that high-resolution mapping of epigenetic markings in postmortem brain tissue or neural cultures derived from induced pluripotent cells (iPS), in conjunction with transcriptome profiling and whole-genome sequencing, will increasingly be used to define the molecular pathology of specific cases diagnosed with depression, schizophrenia, autism, or other major psychiatric disease. We predict that these highly integrative explorations of genome organization and function will provide an important alternative to conventional approaches in human brain studies, which mainly are aimed at uncovering group effects by diagnosis but generally face limitations because of cohort size. PMID:22643929

  1. Chance, structure, stress: the birth and development of the human mind-brain.

    PubMed

    Faber, M D

    1993-01-01

    Recent physiological studies of the human mind-brain lend support to the theory of object relations, and in particular to the manner in which the object of the early period enters the infant's dawning psyche to elicit a perdurable pattern of both positive and negative response to stimuli. The psychoanalytic concept of reactivation, and the psychoanalytic view of language as (in part) a substitute for the absent object, are linked with specific cerebral mechanisms to disclose the bodily realities that underlie emotive disturbance. PMID:8153195

  2. CDK5RAP2 expression during murine and human brain development correlates with pathology in primary autosomal recessive microcephaly.

    PubMed

    Issa, Lina; Kraemer, Nadine; Rickert, Christian H; Sifringer, Marco; Ninnemann, Olaf; Stoltenburg-Didinger, Gisela; Kaindl, Angela M

    2013-09-01

    Homozygous mutations in the cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 cause primary autosomal recessive microcephaly (MCPH). MCPH is characterized by a pronounced reduction of brain volume, particularly of the cerebral cortex, and mental retardation. Though it is a rare developmental disorder, MCPH has moved into the spotlight of neuroscience because of its proposed central role in stem-cell biology and brain development. Investigation of the neural basis of genetically defined MCPH has been limited to animal studies and neuroimaging of affected patients as no neuropathological studies have been published. In the present study, we depict the spatiotemporal expression of CDK5RAP2 in the developing brain of mouse and human. We found intriguing concordance between regions of high CDK5RAP2 expression in the mouse and sites of pathology suggested by neuroimaging studies in humans and mouse. Our findings in human tissue confirm those in mouse tissues, underlining the function of CDK5RAP2 in cell proliferation and arguing for a conserved role of this protein in the development of the mammalian cerebral cortex. PMID:22806269

  3. The Developing Brain.

    ERIC Educational Resources Information Center

    Schatz, Carla J.

    1992-01-01

    Discusses neural activity and stimulation crucial in fetal brain development and the formation of the mind. Focuses on activity-dependent remodeling related to development of the visual system and retinal activity. (MCO)

  4. Comparison of cortical folding measures for evaluation of developing human brain.

    PubMed

    Shimony, Joshua S; Smyser, Christopher D; Wideman, Graham; Alexopoulos, Dimitrios; Hill, Jason; Harwell, John; Dierker, Donna; Van Essen, David C; Inder, Terrie E; Neil, Jeffrey J

    2016-01-15

    We evaluated 22 measures of cortical folding, 20 derived from local curvature (curvature-based measures) and two based on other features (sulcal depth and gyrification index), for their capacity to distinguish between normal and aberrant cortical development. Cortical surfaces were reconstructed from 12 term-born control and 63 prematurely-born infants. Preterm infants underwent 2-4 MR imaging sessions between 27 and 42weeks postmenstrual age (PMA). Term infants underwent a single MR imaging session during the first postnatal week. Preterm infants were divided into two groups. One group (38 infants) had no/minimal abnormalities on qualitative assessment of conventional MR images. The second group (25 infants) consisted of infants with injury on conventional MRI at term equivalent PMA. For both preterm infant groups, all folding measures increased or decreased monotonically with increasing PMA, but only sulcal depth and gyrification index differentiated preterm infants with brain injury from those without. We also compared scans obtained at term equivalent PMA (36-42weeks) for all three groups. No curvature-based measured distinguished between the groups, whereas sulcal depth distinguished term control from injured preterm infants and gyrification index distinguished all three groups. When incorporating total cerebral volume into the statistical model, sulcal depth no longer distinguished between the groups, though gyrification index distinguished between all three groups and positive shape index distinguished between the term control and uninjured preterm groups. We also analyzed folding measures averaged over brain lobes separately. These results demonstrated similar patterns to those obtained from the whole brain analyses. Overall, though the curvature-based measures changed during this period of rapid cerebral development, they were not sensitive for detecting the differences in folding associated with brain injury and/or preterm birth. In contrast, gyrification

  5. Human development XIII: the connection between the structure of the overtone system and the tone language of music. Some implications for our understanding of the human brain.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Kandel, Isack; Merrick, Joav

    2008-01-01

    The functioning brain behaves like one highly-structured, coherent, informational field. It can be popularly described as a "coherent ball of energy", making the idea of a local highly-structured quantum field that carries the consciousness very appealing. If that is so, the structure of the experience of music might be a quite unique window into a hidden quantum reality of the brain, and even of life itself. The structure of music is then a mirror of a much more complex, but similar, structure of the energetic field of the working brain. This paper discusses how the perception of music is organized in the human brain with respect to the known tone scales of major and minor. The patterns used by the brain seem to be similar to the overtones of vibrating matter, giving a positive experience of harmonies in major. However, we also like the minor scale, which can explain brain patterns as fractal-like, giving a symmetric "downward reflection" of the major scale into the minor scale. We analyze the implication of beautiful and ugly tones and harmonies for the model. We conclude that when it comes to simple perception of harmonies, the most simple is the most beautiful and the most complex is the most ugly, but in music, even the most disharmonic harmony can be beautiful, if experienced as a part of a dynamic release of musical tension. This can be taken as a general metaphor of painful, yet meaningful, and developing experiences in human life. PMID:18661052

  6. The human brain in 1700 pieces: design and development of a three-dimensional, interactive and reference atlas.

    PubMed

    Nowinski, W L; Chua, B C; Qian, G Y; Nowinska, N G

    2012-02-15

    As the human brain is the most complex living organ, constructing its detailed model with exploration capabilities in a form of an atlas is a challenge. Our overall goal is to construct an advanced, detailed, parcellated, labeled, accurate, interactive, three-dimensional (3D), and scalable whole human brain atlas of structure, vasculature, tracts and systems. The objectives of this work are three-fold; to present: (1) method of atlas design and development including design principles, accuracy requirements, atlas content, architecture, functionality, user interface, and customized tools; (2) creation of an atlas of structure and systems including its modeling method and validation; and (3) integration of this atlas with the cerebrovasculature and tracts created earlier. The atlas is created from multiple in vivo 3/7 T scans. Its design based on "pyramidal principle" enables scalability while preserving design principles and exploits interaction paradigm "from blocks to brain". The atlas contains (1) navigator with modules for system/object/object state management, interaction, user interfacing, and rendering; and (2) brain model with cerebrum, cerebellum, brainstem, spinal cord, white matter, deep structures, systems, ventricles, arteries, veins, sinuses, and tracts. The brain model is parcellated, labeled, consistent, realistic, of high resolution, polygonal/volumetric, dissectible, extendable, and deformable. It has over 1700 3D components. The atlas has sub-voxel accuracy of 0.1mm and the smallest vessels of 80 μm. Brain exploration includes dynamic scene composition, manipulation-independent 3D labeling, interaction combined with animation, meta-labeling, and quantification. This atlas is useful in education, research, and clinical applications. It can potentially be foundation for a multi-level molecular-cellular-anatomical-physiological-behavioral platform. PMID:22062451

  7. Allostasis and the developing human brain: explicit consideration of implicit models.

    PubMed

    Ganzel, Barbara L; Morris, Pamela A

    2011-11-01

    We previously used the theory of allostasis as the foundation for a model of the current stress process. This work highlighted the core emotional systems of the brain as the central mediator of the relationship between stress and health. In this paper, we extend this theoretical approach to consider the role of developmental timing. In doing so, we note that there are strong implicit models that underlie current developmental stress research in the social and life sciences. We endeavor to illustrate these models explicitly as we review the evidence behind each one and discuss their implications. We then extend these models to reflect recent findings from research in life span human neuroscience. The result is a new set of developmental allostatic models that provide fodder for future empirical research, as well as novel perspectives on intervention. PMID:22018076

  8. Global Developmental Gene Expression and Pathway Analysis of Normal Brain Development and Mouse Models of Human Neuronal Migration Defects

    PubMed Central

    Pramparo, Tiziano; Libiger, Ondrej; Jain, Sonia; Li, Hong; Youn, Yong Ha; Hirotsune, Shinji; Schork, Nicholas J.; Wynshaw-Boris, Anthony

    2011-01-01

    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define

  9. Human Development, Human Evolution.

    ERIC Educational Resources Information Center

    Smillie, David

    One of the truly remarkable events in human evolution is the unprecedented increase in the size of the brain of "Homo" over a brief span of 2 million years. It would appear that some significant selective pressure or opportunity presented itself to this branch of the hominid line and caused a rapid increase in the brain, introducing a wholly new…

  10. Transcriptional neoteny in the human brain

    PubMed Central

    Somel, Mehmet; Franz, Henriette; Yan, Zheng; Lorenc, Anna; Guo, Song; Giger, Thomas; Kelso, Janet; Nickel, Birgit; Dannemann, Michael; Bahn, Sabine; Webster, Maree J.; Weickert, Cynthia S.; Lachmann, Michael; Pääbo, Svante; Khaitovich, Philipp

    2009-01-01

    In development, timing is of the utmost importance, and the timing of developmental processes often changes as organisms evolve. In human evolution, developmental retardation, or neoteny, has been proposed as a possible mechanism that contributed to the rise of many human-specific features, including an increase in brain size and the emergence of human-specific cognitive traits. We analyzed mRNA expression in the prefrontal cortex of humans, chimpanzees, and rhesus macaques to determine whether human-specific neotenic changes are present at the gene expression level. We show that the brain transcriptome is dramatically remodeled during postnatal development and that developmental changes in the human brain are indeed delayed relative to other primates. This delay is not uniform across the human transcriptome but affects a specific subset of genes that play a potential role in neural development. PMID:19307592

  11. Trisomy and early brain development

    PubMed Central

    Haydar, Tarik F.; Reeves, Roger H.

    2011-01-01

    Trisomy for human chromosome 21 (Hsa21) results in Down syndrome (DS). The finished human genome sequence provides a thorough catalog of the genetic elements whose altered dosage perturbs development and function in DS. However, understanding how small alterations in the steady state transcript levels for <2% of human genes can disrupt development and function of essentially every cell presents a more complicated problem. Mouse models that recapitulate specific aspects of DS have been used to identify changes in brain morphogenesis and function. Here we provide a few examples of how trisomy for specific genes affects the development of the cortex and cerebellum to illustrate how gene dosage effects might contribute to divergence between the trisomic and euploid brains. PMID:22169531

  12. Zika virus impairs growth in human neurospheres and brain organoids.

    PubMed

    Garcez, Patricia P; Loiola, Erick Correia; Madeiro da Costa, Rodrigo; Higa, Luiza M; Trindade, Pablo; Delvecchio, Rodrigo; Nascimento, Juliana Minardi; Brindeiro, Rodrigo; Tanuri, Amilcar; Rehen, Stevens K

    2016-05-13

    Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased considerably in Brazil; however, causality between the viral epidemic and malformations in fetal brains needs further confirmation. We examined the effects of ZIKV infection in human neural stem cells growing as neurospheres and brain organoids. Using immunocytochemistry and electron microscopy, we showed that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and brain organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development. PMID:27064148

  13. Human development III: bridging brain-mind and body-mind. introduction to "deep" (fractal, poly-ray) cosmology.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Rald, Erik; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Clausen, Birgitte; Merrick, Joav

    2006-01-01

    Reality can be interpreted in many ways, but two distinctly different ways are the mental and the emotional interpretation. The traditional way of thinking in science today is the first: an often simple and mechanical interpretation of reality that empowers us to handle the outer physical world with great, often brutal efficiency. The development of a mind that enables us to handle the outer physical world and survive makes a lot of sense from an evolutionary perspective; the problem is that the mental reason and linear logic reduces all phenomena to well-defined interacting objects, which might not exist from a deeper perspective of reality. A more intuitive way to interpret the world makes much more sense, when it comes to our human relations. So to function as a human being, we need both these two ways of seeing the world, and two different modi operandi. In many patients, we find an internalized conflict between logical and mental reasoning on one hand, and emotional and sexual approach to reality and human needs on the other. We speculate that this conflict causes the deep emotional problems that really are the basis of most human diseases. Only by merging brain-mind and body-mind will we be whole and free and truly ourselves. We need to develop our mental understanding, deepen our cosmology, and develop our sexuality and body-mind in order to make them meet and merge. To facilitate this existential healing, we propose a third integrative way of looking at our human nature, which we call "the energetic-informational interpretation of reality". What it does is allows us to look at both brain-mind and body-mind as a highly structured field of "energy and information". Energy and information are actually the same from a scientific point of view; when the world is seen through the body-mind, it looks more like energy; when seen though the brain-mind, it looks more like information. PMID:16830048

  14. Preferential Detachment During Human Brain Development: Age- and Sex-Specific Structural Connectivity in Diffusion Tensor Imaging (DTI) Data

    PubMed Central

    Lim, Sol; Han, Cheol E.; Uhlhaas, Peter J.; Kaiser, Marcus

    2015-01-01

    Human brain maturation is characterized by the prolonged development of structural and functional properties of large-scale networks that extends into adulthood. However, it is not clearly understood which features change and which remain stable over time. Here, we examined structural connectivity based on diffusion tensor imaging (DTI) in 121 participants between 4 and 40 years of age. DTI data were analyzed for small-world parameters, modularity, and the number of fiber tracts at the level of streamlines. First, our findings showed that the number of fiber tracts, small-world topology, and modular organization remained largely stable despite a substantial overall decrease in the number of streamlines with age. Second, this decrease mainly affected fiber tracts that had a large number of streamlines, were short, within modules and within hemispheres; such connections were affected significantly more often than would be expected given their number of occurrences in the network. Third, streamline loss occurred earlier in females than in males. In summary, our findings suggest that core properties of structural brain connectivity, such as the small-world and modular organization, remain stable during brain maturation by focusing streamline loss to specific types of fiber tracts. PMID:24343892

  15. Rest Is Not Idleness: Implications of the Brain's Default Mode for Human Development and Education.

    PubMed

    Immordino-Yang, Mary Helen; Christodoulou, Joanna A; Singh, Vanessa

    2012-07-01

    When people wakefully rest in the functional MRI scanner, their minds wander, and they engage a so-called default mode (DM) of neural processing that is relatively suppressed when attention is focused on the outside world. Accruing evidence suggests that DM brain systems activated during rest are also important for active, internally focused psychosocial mental processing, for example, when recalling personal memories, imagining the future, and feeling social emotions with moral connotations. Here the authors review evidence for the DM and relations to psychological functioning, including associations with mental health and cognitive abilities like reading comprehension and divergent thinking. This article calls for research into the dimensions of internally focused thought, ranging from free-form daydreaming and off-line consolidation to intensive, effortful abstract thinking, especially with socioemotional relevance. It is argued that the development of some socioemotional skills may be vulnerable to disruption by environmental distraction, for example, from certain educational practices or overuse of social media. The authors hypothesize that high environmental attention demands may bias youngsters to focus on the concrete, physical, and immediate aspects of social situations and self, which may be more compatible with external attention. They coin the term constructive internal reflection and advocate educational practices that promote effective balance between external attention and internal reflection. PMID:26168472

  16. Mapping genetic influences on human brain structure.

    PubMed

    Thompson, Paul; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Recent advances in brain imaging and genetics have empowered the mapping of genetic and environmental influences on the human brain. These techniques shed light on the 'nature/nurture' debate, revealing how genes determine individual differences in intelligence quotient (IQ) or risk for disease. They visualize which aspects of brain structure and function are heritable, and to what degree, linking these features with behavioral or cognitive traits or disease phenotypes. In genetically transmitted disorders such as schizophrenia, patterns of brain structure can be associated with increased disease liability, and sites can be mapped where non-genetic triggers may initiate disease. We recently developed a large-scale computational brain atlas, including data components from the Finnish Twin registry, to store information on individual variations in brain structure and their heritability. Algorithms from random field theory, anatomical modeling, and population genetics were combined to detect a genetic continuum in which brain structure is heavily genetically determined in some areas but not others. These algorithmic advances motivate studies of disease in which the normative atlas acts as a quantitative reference for the heritability of structural differences and deficits in patient populations. The resulting genetic brain maps isolate biological markers for inherited traits and disease susceptibility, which may serve as targets for genetic linkage and association studies. Computational methods from brain imaging and genetics can be fruitfully merged, to shed light on the inheritance of personality differences and behavioral traits, and the genetic transmission of diseases that affect the human brain. PMID:12553492

  17. Imaging Brain Development: Benefiting from Individual Variability

    PubMed Central

    Sharda, Megha; Foster, Nicholas E.V.; Hyde, Krista L.

    2015-01-01

    Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widespread interindividual variability in brain development. This review highlights how this variability can inform our understanding of developmental processes. The latest studies in the field of brain development are reviewed, with a particular focus on the role of individual variability and the consequent heterogeneity in brain structural and functional development. This review also highlights how such heterogeneity might be utilized to inform our understanding of complex neuropsychiatric disorders and recommends the use of more dimensional approaches to study brain development. PMID:26648753

  18. New Developments in Human Neurocognition: Clinical, Genetic and Brain Imaging Correlates of Impulsivity and Compulsivity

    PubMed Central

    Fineberg, Naomi A.; Chamberlain, Samuel R.; Goudriaan, Anna E.; Stein, Dan J.; Vanderschuren, Louk J.M.J.; Gillan, Claire M.; Shekar, Sameer; Gorwood, Philip A.P.M.; Voon, Valerie; Morein-Zamir, Sharon; Denys, Damiaan; Sahakian, Barbara J.; Moeller, F. Gerard; Robbins, Trevor W.; Potenza, Marc N.

    2014-01-01

    Impulsivity and compulsivity represent useful conceptualizations that involve dissociable cognitive functions, mediated by neuroanatomically and neurochemically distinct components of cortico-subcortical circuitry. The constructs were historically viewed as diametrically opposed, with impulsivity being associated with risk-seeking and compulsivity with harm-avoidance. However, they are increasingly recognized to be linked by shared neuropsychological mechanisms involving dysfunctional inhibition of thoughts and behaviors. In this paper, we selectively review new developments in the investigation of the neurocognition of impulsivity and compulsivity in humans, in order to advance our understanding of the pathophysiology of impulsive, compulsive and addictive disorders and indicate new directions for research. PMID:24512640

  19. Human brain mapping: Experimental and computational approaches

    SciTech Connect

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J.; Sanders, J.; Belliveau, J.

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  20. Musical Training Shapes Structural Brain Development

    PubMed Central

    Hyde, Krista L.; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C.; Schlaug, Gottfried

    2010-01-01

    The human brain has the remarkable capacity to alter in response to environmental demands. Training-induced structural brain changes have been demonstrated in the healthy adult human brain. However, no study has yet directly related structural brain changes to behavioral changes in the developing brain, addressing the question of whether structural brain differences seen in adults (comparing experts with matched controls) are a product of “nature” (via biological brain predispositions) or “nurture” (via early training). Long-term instrumental music training is an intense, multisensory, and motor experience and offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity. PMID:19279238

  1. Undernutrition and the Developing Brain: The Relevance of Animal Models to the Human Problem

    ERIC Educational Resources Information Center

    Dobbing, John

    1972-01-01

    Discusses evidence for a permanent, measurable effect of early restriction on the physical growth of the brain, arguing that undernutrition has been considered for too long in adult terms as a series of deficiency diseases whose main consequences can be reversed on restoration of the deficient component. (Author/JM)

  2. [Brain development and plasticity].

    PubMed

    Martinez-Morga, M; Martinez, S

    2016-01-01

    Neurodevelopmental disorders are associated to functional anomalies of the brain that become manifest early on in life. Traditionally, they have been related almost exclusively to the appearance of intellectual disability and delayed psychomotor development. The causes of these disorders have been partially described, and include anomalies due to genetic causes (Down syndrome, fragile X syndrome, etc.), exposure to toxic factors during pregnancy (foetal alcohol syndrome), infections (cytomegalovirus, toxoplasmosis, etc.) or other alterations, including a status of great immaturity at birth (very preterm). Epidemiological data based on a better knowledge of the diseases affecting the central nervous system suggest that some mental disorders, which appear in adolescence or early adulthood, also have their origin in anomalies in brain development. This review aims to offer an overview of brain development. Some of the cellular and molecular processes that may account for the similarities and differences in the phenotypes that generate alterations affecting normal development are also analysed. The study is conducted with a view to clearly identifying processes that are susceptible to modification by means of therapeutic intervention consisting in an early care programme. PMID:26922956

  3. Human Embryonic Stem Cell-Derived Neural Precursors Develop Into Neurons and Integrate Into the Host Brain

    PubMed Central

    Guillaume, Daniel J.; Johnson, M. Austin; Li, Xue-Jun; Zhang, Su-Chun

    2009-01-01

    Whether and how in-vitro-produced human neural precursors mature and integrate into the brain are crucial to the utility of human embryonic stem (hES) cells in treating neurological disorders. After transplantation into the ventricles of neonatal immune-deficient mice, hES-cell-derived neural precursors stopped expressing the cell division marker Ki67, except in neurogenic areas, and differentiated into neurons and then glia in a temporal course intrinsic to that of human cells regardless of location. The human cells located in the gray matter became neurons in the olfactory bulb and striatum, whereas those in the white matter produced exclusively glia. Importantly, the grafted human cells formed synapses. Thus, the in-vitro-produced human neural precursors follow their intrinsic temporal program to produce neurons and glia and, in response to environmental signals, generate cells appropriate to their target regions and integrate into the brain. PMID:16941479

  4. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    SciTech Connect

    Jung, Jin Ho; Choi, Yong Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  5. Development of the Young Brain

    MedlinePlus

    ... items) NIMH (24 items) Development of the Young Brain May 2, 2011 For more than twenty years, ... Giedd has studied the development of the adolescent brain. Decades of imaging work have led to remarkable ...

  6. Cellular and molecular introduction to brain development.

    PubMed

    Jiang, Xiangning; Nardelli, Jeannette

    2016-08-01

    Advances in the study of brain development over the last decades, especially recent findings regarding the evolutionary expansion of the human neocortex, and large-scale analyses of the proteome/transcriptome in the human brain, have offered novel insights into the molecular mechanisms guiding neural maturation, and the pathophysiology of multiple forms of neurological disorders. As a preamble to reviews of this issue, we provide an overview of the cellular, molecular and genetic bases of brain development with an emphasis on the major mechanisms associated with landmarks of normal neural development in the embryonic stage and early postnatal life, including neural stem/progenitor cell proliferation, cortical neuronal migration, evolution and folding of the cerebral cortex, synaptogenesis and neural circuit development, gliogenesis and myelination. We will only briefly depict developmental disorders that result from perturbations of these cellular or molecular mechanisms, and the most common perinatal brain injuries that could disturb normal brain development. PMID:26184894

  7. Transcriptional Landscape of the Prenatal Human Brain

    PubMed Central

    Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L.; Aiona, Kaylynn; Arnold, James M.; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A.; Dee, Nick; Dolbeare, Tim A.; Facer, Benjamin A. C.; Feng, David; Fliss, Tim P.; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W.; Gu, Guangyu; Howard, Robert E.; Jochim, Jayson M.; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A.; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick F.; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana E.; Player, Allison Stevens; Pletikos, Mihovil; Reding, Melissa; Royall, Joshua J.; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V.; Shen, Elaine H.; Sjoquist, Nathan; Slaughterbeck, Clifford R.; Smith, Michael; Sodt, Andy J.; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B.; Geschwind, Daniel H.; Glass, Ian A.; Hawrylycz, Michael J.; Hevner, Robert F.; Huang, Hao; Jones, Allan R.; Knowles, James A.; Levitt, Pat; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G.; Lein, Ed S.

    2014-01-01

    Summary The anatomical and functional architecture of the human brain is largely determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and postmitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and human-expanded outer subventricular zones. Both germinal and postmitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in frontal lobe. Finally, many neurodevelopmental disorder and human evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development. PMID:24695229

  8. A functional haplotype implicated in vulnerability to develop cocaine dependence is associated with reduced PDYN expression in human brain.

    PubMed

    Yuferov, Vadim; Ji, Fei; Nielsen, David A; Levran, Orna; Ho, Ann; Morgello, Susan; Shi, Ruijin; Ott, Jurg; Kreek, Mary Jeanne

    2009-04-01

    Dynorphin peptides and the kappa-opioid receptor are important in the rewarding properties of cocaine, heroin, and alcohol. We tested polymorphisms of the prodynorphin gene (PDYN) for association with cocaine dependence and cocaine/alcohol codependence. We genotyped six single nucleotide polymorphisms (SNPs), located in the promoter region, exon 4 coding, and 3' untranslated region, in 106 Caucasians and 204 African Americans who were cocaine dependent, cocaine/alcohol codependent, or controls. In Caucasians, we found point-wise significant associations of 3'UTR SNPs (rs910080, rs910079, and rs2235749) with cocaine dependence and cocaine/alcohol codependence. These SNPs are in high linkage disequilibrium, comprising a haplotype block. The haplotype CCT was significantly experiment-wise associated with cocaine dependence and with combined cocaine dependence and cocaine/alcohol codependence (false discovery rate, q=0.04 and 0.03, respectively). We investigated allele-specific gene expression of PDYN, using SNP rs910079 as a reporter, in postmortem human brains from eight heterozygous subjects, using SNaPshot assay. There was significantly lower expression for C allele (rs910079), with ratios ranging from 0.48 to 0.78, indicating lower expression of the CCT haplotype of PDYN in both the caudate and nucleus accumbens. Analysis of total PDYN expression in 43 postmortem brains also showed significantly lower levels of preprodynorphin mRNA in subjects having the risk CCT haplotype. This study provides evidence that a 3'UTR PDYN haplotype, implicated in vulnerability to develop cocaine addiction and/or cocaine/alcohol codependence, is related to lower mRNA expression of the PDYN gene in human dorsal and ventral striatum. PMID:18923396

  9. Sex Differences and Brain Development: A Bibliography.

    ERIC Educational Resources Information Center

    Motomatsu, Nancy; Patterson, Bobbie

    This bibliography cites references dealing with background material on the functions of the human brain and current research on sex differences in brain development. A list of 10 books published since 1974 is followed by a more extensive annotated bibliography of 29 articles, and a bibliography of 19 reports, complete with ERIC reference numbers…

  10. Human Maternal Brain Plasticity: Adaptation to Parenting.

    PubMed

    Kim, Pilyoung

    2016-09-01

    New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human mothers' brains, and explore how such plasticity supports mothers' psychological adaptation to parenting and sensitive maternal behaviors. Last, I discuss pregnancy and the early postpartum period as a window of vulnerabilities and opportunities when the human maternal brain is influenced by stress and psychopathology, but also receptive to interventions. PMID:27589497

  11. Functional and Topological Conditions for Explosive Synchronization Develop in Human Brain Networks with the Onset of Anesthetic-Induced Unconsciousness.

    PubMed

    Kim, Minkyung; Mashour, George A; Moraes, Stefanie-Blain; Vanini, Giancarlo; Tarnal, Vijay; Janke, Ellen; Hudetz, Anthony G; Lee, Uncheol

    2016-01-01

    Sleep, anesthesia, and coma share a number of neural features but the recovery profiles are radically different. To understand the mechanisms of reversibility of unconsciousness at the network level, we studied the conditions for gradual and abrupt transitions in conscious and anesthetized states. We hypothesized that the conditions for explosive synchronization (ES) in human brain networks would be present in the anesthetized brain just over the threshold of unconsciousness. To test this hypothesis, functional brain networks were constructed from multi-channel electroencephalogram (EEG) recordings in seven healthy subjects across conscious, unconscious, and recovery states. We analyzed four variables that are involved in facilitating ES in generic, non-biological networks: (1) correlation between node degree and frequency, (2) disassortativity (i.e., the tendency of highly-connected nodes to link with less-connected nodes, or vice versa), (3) frequency difference of coupled nodes, and (4) an inequality relationship between local and global network properties, which is referred to as the suppressive rule. We observed that the four network conditions for ES were satisfied in the unconscious state. Conditions for ES in the human brain suggest a potential mechanism for rapid recovery from the lightly-anesthetized state. This study demonstrates for the first time that the network conditions for ES, formerly shown in generic networks only, are present in empirically-derived functional brain networks. Further investigations with deep anesthesia, sleep, and coma could provide insight into the underlying causes of variability in recovery profiles of these unconscious states. PMID:26834616

  12. Functional and Topological Conditions for Explosive Synchronization Develop in Human Brain Networks with the Onset of Anesthetic-Induced Unconsciousness

    PubMed Central

    Kim, Minkyung; Mashour, George A.; Moraes, Stefanie-Blain; Vanini, Giancarlo; Tarnal, Vijay; Janke, Ellen; Hudetz, Anthony G.; Lee, Uncheol

    2016-01-01

    Sleep, anesthesia, and coma share a number of neural features but the recovery profiles are radically different. To understand the mechanisms of reversibility of unconsciousness at the network level, we studied the conditions for gradual and abrupt transitions in conscious and anesthetized states. We hypothesized that the conditions for explosive synchronization (ES) in human brain networks would be present in the anesthetized brain just over the threshold of unconsciousness. To test this hypothesis, functional brain networks were constructed from multi-channel electroencephalogram (EEG) recordings in seven healthy subjects across conscious, unconscious, and recovery states. We analyzed four variables that are involved in facilitating ES in generic, non-biological networks: (1) correlation between node degree and frequency, (2) disassortativity (i.e., the tendency of highly-connected nodes to link with less-connected nodes, or vice versa), (3) frequency difference of coupled nodes, and (4) an inequality relationship between local and global network properties, which is referred to as the suppressive rule. We observed that the four network conditions for ES were satisfied in the unconscious state. Conditions for ES in the human brain suggest a potential mechanism for rapid recovery from the lightly-anesthetized state. This study demonstrates for the first time that the network conditions for ES, formerly shown in generic networks only, are present in empirically-derived functional brain networks. Further investigations with deep anesthesia, sleep, and coma could provide insight into the underlying causes of variability in recovery profiles of these unconscious states. PMID:26834616

  13. CARBOXYHEMOGLOBIN AND BRAIN BLOOD FLOW IN HUMANS

    EPA Science Inventory

    It has been shown that with increased carboxyhemoglobin (COHb) and associated decrease in blood oxygen-carrying capacity, a compensatory increase in brain-blood flow (BBF) develops. he BBF response in humans has been shown to be quite variable. wo experiments were conducted in wh...

  14. Transcriptomic changes in brain development

    PubMed Central

    Dillman, Allissa A.; Cookson, Mark R.

    2015-01-01

    The transcriptome changes hugely during development of the brain. Whole genes, alternate exons and single base pair changes related to RNA editing all show differences between embryonic and mature brain. Collectively, these changes control proteomic diversity as the brain develops. Additionally, there are many changes in non-coding RNAs (miRNA and lncRNA) that interact with mRNA to influence the overall transcriptional landscape. Here we will discuss what is known about such changes in brain development, particularly focussing on high throughput approaches and how those can be used to infer mechanisms by which gene expression is controlled in the brain as it matures. PMID:25172477

  15. Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart

    PubMed Central

    Mao, Rong; Wang, Xiaowen; Spitznagel, Edward L; Frelin, Laurence P; Ting, Jason C; Ding, Huashi; Kim, Jung-whan; Ruczinski, Ingo; Downey, Thomas J; Pevsner, Jonathan

    2005-01-01

    Background Down syndrome, caused by trisomic chromosome 21, is the leading genetic cause of mental retardation. Recent studies demonstrated that dosage-dependent increases in chromosome 21 gene expression occur in trisomy 21. However, it is unclear whether the entire transcriptome is disrupted, or whether there is a more restricted increase in the expression of those genes assigned to chromosome 21. Also, the statistical significance of differentially expressed genes in human Down syndrome tissues has not been reported. Results We measured levels of transcripts in human fetal cerebellum and heart tissues using DNA microarrays and demonstrated a dosage-dependent increase in transcription across different tissue/cell types as a result of trisomy 21. Moreover, by having a larger sample size, combining the data from four different tissue and cell types, and using an ANOVA approach, we identified individual genes with significantly altered expression in trisomy 21, some of which showed this dysregulation in a tissue-specific manner. We validated our microarray data by over 5,600 quantitative real-time PCRs on 28 genes assigned to chromosome 21 and other chromosomes. Gene expression values from chromosome 21, but not from other chromosomes, accurately classified trisomy 21 from euploid samples. Our data also indicated functional groups that might be perturbed in trisomy 21. Conclusions In Down syndrome, there is a primary transcriptional effect of disruption of chromosome 21 gene expression, without a pervasive secondary effect on the remaining transcriptome. The identification of dysregulated genes and pathways suggests molecular changes that may underlie the Down syndrome phenotypes. PMID:16420667

  16. Cannabis and adolescent brain development.

    PubMed

    Lubman, Dan I; Cheetham, Ali; Yücel, Murat

    2015-04-01

    Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence. PMID:25460036

  17. Revisiting Glycogen Content in the Human Brain.

    PubMed

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  18. Development of the system for visualization of electric conductivity distribution in human brain and its activity by the magnetic induction tomography (MIT) method

    NASA Astrophysics Data System (ADS)

    Sapetsky, S.; Cherepenin, V.; Korjenevsky, A.; Kornienko, V.; Vartanov, A.

    2010-04-01

    Currently rapid development of functional activity researches of human brain sets the problem of reliable and non-invasive detection of mental processes and states. At present we know some traditional methods of rapid and contactless acquisition of brain activity characteristics, such as functional tomography (fMRI) and magnetoencephalography. But these methods have low temporal resolution, complicated and ambiguous association of measured values with information processes in brain. So possibility of MIT application is investigated. Estimation of possibility of such changes registration is performed. Investigations of magnetic field configuration, schematics of transmit-receive modules and numerical algorithms are in progress. It may allow us to register high speed conductivity changes in brain tissues.

  19. Language and the Developing Brain.

    ERIC Educational Resources Information Center

    Eliot, Lise

    2001-01-01

    Discusses the centers of language in the brain and the critical period for language acquisition. Explains developmental milestones of language development--receptive language, babbling, short phrases, full sentences--in the context of brain development. Emphasizes parents' role in language development, including talking to the child, dialogic…

  20. Research on prevention of bilirubin-induced brain injury and kernicterus: National Institute of Child Health and Human Development conference executive summary. 2003.

    PubMed

    Blackmon, Lillian R; Fanaroff, Avroy A; Raju, Tonse N K

    2004-07-01

    In July 2003, the National Institute of Child Health and Human Development convened a conference, "Research on Prevention of Bilirubin-Induced Brain Injury and Kernicterus: Bench-to-Bedside." This article will provide a summary of presentations and discussions from this conference. The summary will focus on the identified knowledge gaps in 5 areas related to bilirubin-induced brain injury and kernicterus: 1) neurobiology and neuroimaging; 2) epidemiology and issues of clinical management; 3) methodologies for assessing clinical jaundice and direct and noninvasive measurement of serum bilirubin and hemolysis; 4) therapies for management of neonatal hyperbilirubinemia; and 5) public health surveillance and systems-based approaches to prevention. PMID:15231933

  1. Epilepsy: Extreme Events in the Human Brain

    NASA Astrophysics Data System (ADS)

    Lehnertz, Klaus

    The analysis of Xevents arising in dynamical systems with many degrees of freedom represents a challenge for many scientific fields. This is especially true for the open, dissipative, and adaptive system known as the human brain. Due to its complex structure, its immense functionality, and — as in the case of epilepsy — due to the coexistence of normal and abnormal functions, the brain can be regarded as one of the most complex and fascinating systems in nature. Data gathered so far show that the epileptic process exhibits a high spatial and temporal variability. Small, specific, regions of the brain are responsible for the generation of focal epileptic seizures, and the amount of time a patient spends actually having seizures is only a small fraction of his/her lifetime. In between these Xevents large parts of the brain exhibit normal functioning. Since the occurrence of seizures usually can not be explained by exogenous factors, and since the brain recovers its normal state after a seizure in the majority of cases, this might indicate that endogenous nonlinear (deterministic and/or stochastic) properties are involved in the control of these Xevents. In fact, converging evidence now indicates that (particularly) nonlinear approaches to the analysis of brain activity allow us to define precursors which, provided sufficient sensitivity and specificity can be obtained, might lead to the development of patient-specific seizure anticipation and seizure prevention strategies.

  2. Toward Developmental Connectomics of the Human Brain.

    PubMed

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  3. Toward Developmental Connectomics of the Human Brain

    PubMed Central

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  4. A Direct Brain-to-Brain Interface in Humans

    PubMed Central

    Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.

    2014-01-01

    We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285

  5. Moment-to-moment brain signal variability: A next frontier in human brain mapping?

    PubMed Central

    Garrett, Douglas D.; Samanez-Larkin, Gregory R.; MacDonald, Stuart W.S.; Lindenberger, Ulman; McIntosh, Anthony R.; Grady, Cheryl L.

    2013-01-01

    Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human life-span development, cognitive performance, and various clinical conditions. As a result, brain signal variability is evolving as a bona fide signal of interest, and should no longer be dismissed as meaningless noise when mapping the human brain. PMID:23458776

  6. Segmentation of human brain using structural MRI.

    PubMed

    Helms, Gunther

    2016-04-01

    Segmentation of human brain using structural MRI is a key step of processing in imaging neuroscience. The methods have undergone a rapid development in the past two decades and are now widely available. This non-technical review aims at providing an overview and basic understanding of the most common software. Starting with the basis of structural MRI contrast in brain and imaging protocols, the concepts of voxel-based and surface-based segmentation are discussed. Special emphasis is given to the typical contrast features and morphological constraints of cortical and sub-cortical grey matter. In addition to the use for voxel-based morphometry, basic applications in quantitative MRI, cortical thickness estimations, and atrophy measurements as well as assignment of cortical regions and deep brain nuclei are briefly discussed. Finally, some fields for clinical applications are given. PMID:26739264

  7. Early Brain Development Research Review and Update

    ERIC Educational Resources Information Center

    Schiller, Pam

    2010-01-01

    Thanks to imaging technology used in neurobiology, people have access to useful and critical information regarding the development of the human brain. This information allows them to become much more effective in helping children in their early development. In fact, when people base their practices on the findings from medical science research,…

  8. Human Brain Reacts to Transcranial Extraocular Light.

    PubMed

    Sun, Lihua; Peräkylä, Jari; Kovalainen, Anselmi; Ogawa, Keith H; Karhunen, Pekka J; Hartikainen, Kaisa M

    2016-01-01

    Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear canals abolished normal emotional modulation of attention related brain responses. With no extraocular light delivered, emotional distractors reduced centro-parietal P300 amplitude compared to neutral distractors. This phenomenon disappeared with extraocular light delivery. Extraocular light delivered through the ear canals was shown to penetrate at the base of the scull of a cadaver. Thus, we have shown that extraocular light impacts human brain functioning calling for further research on the mechanisms of action of light on the human brain. PMID:26910350

  9. Human Brain Reacts to Transcranial Extraocular Light

    PubMed Central

    Sun, Lihua; Peräkylä, Jari; Kovalainen, Anselmi; Ogawa, Keith H.; Karhunen, Pekka J.; Hartikainen, Kaisa M.

    2016-01-01

    Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear canals abolished normal emotional modulation of attention related brain responses. With no extraocular light delivered, emotional distractors reduced centro-parietal P300 amplitude compared to neutral distractors. This phenomenon disappeared with extraocular light delivery. Extraocular light delivered through the ear canals was shown to penetrate at the base of the scull of a cadaver. Thus, we have shown that extraocular light impacts human brain functioning calling for further research on the mechanisms of action of light on the human brain. PMID:26910350

  10. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    PubMed Central

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  11. Ascorbic acid in fetal human brain

    PubMed Central

    Adlard, B. P. F.; De Souza, S. W.; Moon, Susan

    1974-01-01

    Ascorbic acid concentrations in fetal human forebrain in the period 11 to 19 weeks' gestational age were 4 to 11 times higher than those of adults. Levels fell progressively with increasing gestational age but, in term babies dying within 4 weeks of birth, were still at least 3 times those of adults. It was confirmed that, in women delivering at term, ascorbic acid concentrations are approximately 4 times higher in cord blood plasma than in maternal blood plasma. The possible importance of ascorbic acid for normal human brain development is discussed. PMID:4830116

  12. Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR.

    PubMed

    Marcorelles, Pascale; Friocourt, Gaëlle; Uguen, Arnaud; Ledé, Françoise; Férec, Claude; Laquerrière, Annie

    2014-11-01

    Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein has recently been shown to be expressed in the human adult central nervous system (CNS). As CFTR expression has also been documented during embryonic development in several organs, such as the respiratory tract, the intestine and the male reproductive system, suggesting a possible role during development we decided to investigate the expression of CFTR in the human developing CNS. In addition, as some, although rare, neurological symptoms have been reported in patients with CF, we compared the expression of normal and mutated CFTR at several fetal stages. Immunohistochemistry was performed on brain and spinal cord samples of foetuses between 13 and 40 weeks of gestation and compared with five patients with cystic fibrosis (CF) of similar ages. We showed in this study that CFTR is only expressed in neurons and has an early and widespread distribution during development. Although we did not observe any cerebral abnormality in patients with CF, we observed a slight delay in the maturation of several brain structures. We also observed different expression and localization of CFTR depending on the brain structure or the cell maturation stage. Our findings, along with a literature review on the neurological phenotypes of patients with CF, suggest that this gene may play previously unsuspected roles in neuronal maturation or function. PMID:25062999

  13. Brain Plasticity and Behaviour in the Developing Brain

    PubMed Central

    Kolb, Bryan; Gibb, Robbin

    2011-01-01

    Objective: To review general principles of brain development, identify basic principles of brain plasticity, and discuss factors that influence brain development and plasticity. Method: A literature review of relevant English-language manuscripts on brain development and plasticity was conducted. Results: Brain development progresses through a series of stages beginning with neurogenesis and progressing to neural migration, maturation, synaptogenesis, pruning, and myelin formation. Eight basic principles of brain plasticity are identified. Evidence that brain development and function is influenced by different environmental events such as sensory stimuli, psychoactive drugs, gonadal hormones, parental-child relationships, peer relationships, early stress, intestinal flora, and diet. Conclusions: The development of the brain reflects more than the simple unfolding of a genetic blueprint but rather reflects a complex dance of genetic and experiential factors that shape the emerging brain. Understanding the dance provides insight into both normal and abnormal development. PMID:22114608

  14. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  15. Global Epigenomic Reconfiguration During Mammalian Brain Development

    PubMed Central

    Nery, Joseph R.; Urich, Mark; Puddifoot, Clare A.; Johnson, Nicholas D.; Lucero, Jacinta; Huang, Yun; Dwork, Andrew J.; Schultz, Matthew D.; Yu, Miao; Tonti-Filippini, Julian; Heyn, Holger; Hu, Shijun; Wu, Joseph C.; Rao, Anjana; Esteller, Manel; He, Chuan; Haghighi, Fatemeh G.; Sejnowski, Terrence J.; Behrens, M. Margarita; Ecker, Joseph R.

    2013-01-01

    DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity. PMID:23828890

  16. Spatial and temporal localization during embryonic and fetal human development of the transcription factor SIM2 in brain regions altered in Down syndrome.

    PubMed

    Rachidi, Mohammed; Lopes, Carmela; Charron, Giselle; Delezoide, Anne-Lise; Paly, Evelyne; Bloch, Bernard; Delabar, Jean-Maurice

    2005-08-01

    Human SIM2 is the ortholog of Drosophila single-minded (sim), a master regulator of neurogenesis and transcriptional factor controlling midline cell fate determination. We previously localized SIM2 in a chromosome 21 critical region for Down syndrome (DS). Here, we studied SIM2 gene using a new approach to provide insights in understanding of its potential role in human development. For the first time, we showed SIM2 spatial and temporal expression pattern during human central nervous system (CNS) development, from embryonic to fetal stages. Additional investigations were performed using a new optic microscopy technology to compare signal intensity and cell density [M. Rachidi, C. Lopes, S. Gassanova, P.M. Sinet, M. Vekemans, T. Attie, A.L. Delezoide, J.M. Delabar, Regional and cellular specificity of the expression of TPRD, the tetratricopeptide Down syndrome gene, during human embryonic development, Mech. Dev. 93 (2000) 189--193]. In embryonic stages, SIM2 was identified predominantly in restricted regions of CNS, in ventral part of D1/D2 diencephalic neuroepithelium, along the neural tube and in a few cell subsets of dorsal root ganglia. In fetal stages, SIM2 showed differential expression in pyramidal and granular cell layers of hippocampal formation, in cortical cells and in cerebellar external granular and Purkinje cell layers. SIM2 expression in embryonic and fetal brain could suggest a potential role in human CNS development, in agreement with Drosophila and mouse Sim mutant phenotypes and with the conservation of the Sim function in CNS development from Drosophila to Human. SIM2 expression in human fetal brain regions, which correspond to key structures for cognitive processes, correlates well with the behavioral phenotypes of Drosophila Sim mutants and transgenic mice overexpressing Sim2. In addition, SIM2-expressing brain regions correspond to the altered structures in DS patients. All together, these findings suggest a potential role of SIM2 in CNS

  17. Asymmetry of the Brain: Development and Implications.

    PubMed

    Duboc, Véronique; Dufourcq, Pascale; Blader, Patrick; Roussigné, Myriam

    2015-01-01

    Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity. PMID:26442849

  18. [Planimetric volumetry of human brains].

    PubMed

    Orthner, H; Seler, W

    1975-04-01

    1) Coronal sections measuring exactly 4 mm in thickness of 106 human brains (212 cerebral hemispheres) were cut with the Göttinger Hirnmakrotom. Planimetric volumetry of various macroscopically delineated structures was performed on photographs of the sections. 2) The volumes ovtained from 58 "normal cases" were used for determining preliminary standards as well as mean values and standard deviations for age and sex. The female-male ratio of the structures measured varies between 86 and 92%. Comparing right and left a predominance of the left pallidum for both sexes is apparent showing an error probability of less than 5%. In "normal" men a significant predominance of the rightsided frontal structures, located anterior to the anterior commissure, have been found (error probability of less than 1%). 3) Regarding the 48 "abnormal cases", striatum and pallidum show a uniform picture in Huntington's disease, namely an extreme shrinkage. The pallidum shrinks to a similar extent as the striatum, although its neurones are not substantially affected by this system atrophy. Other structures do not display similarly uniform changes in this disease. 4) In Parkinson's syndrome a tendency of the pallidum to enlarge -- though statistically not significant -- is seen. This raises the question whether a constitutional hyperplasia of this structure is sometimes involved in the pathogenesis. 5) In Pick's disease, it is not only the histologically impressive centers of shrinkage of the cerebral cortex that are atrophic, but, to a somewhat lesser degree, also the whole telencephalon. 6) In an 18-year-old girl with malignant obsessional neurosis (schizophrenia?) the volume of the striatum was highly above average values enlarged. 7) Bibliographical data of macroscopic-quantitative brain research reveal many problems which can be solved today due to improved methods. PMID:125721

  19. Normal Development of Brain Circuits

    PubMed Central

    Tau, Gregory Z; Peterson, Bradley S

    2010-01-01

    Spanning functions from the simplest reflex arc to complex cognitive processes, neural circuits have diverse functional roles. In the cerebral cortex, functional domains such as visual processing, attention, memory, and cognitive control rely on the development of distinct yet interconnected sets of anatomically distributed cortical and subcortical regions. The developmental organization of these circuits is a remarkably complex process that is influenced by genetic predispositions, environmental events, and neuroplastic responses to experiential demand that modulates connectivity and communication among neurons, within individual brain regions and circuits, and across neural pathways. Recent advances in neuroimaging and computational neurobiology, together with traditional investigational approaches such as histological studies and cellular and molecular biology, have been invaluable in improving our understanding of these developmental processes in humans in both health and illness. To contextualize the developmental origins of a wide array of neuropsychiatric illnesses, this review describes the development and maturation of neural circuits from the first synapse through critical periods of vulnerability and opportunity to the emergent capacity for cognitive and behavioral regulation, and finally the dynamic interplay across levels of circuit organization and developmental epochs. PMID:19794405

  20. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    PubMed

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  1. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    PubMed Central

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  2. The human brain and face: mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18.

    PubMed

    Gondré-Lewis, Marjorie C; Gboluaje, Temitayo; Reid, Shaina N; Lin, Stephen; Wang, Paul; Green, William; Diogo, Rui; Fidélia-Lambert, Marie N; Herman, Mary M

    2015-09-01

    The study of inborn genetic errors can lend insight into mechanisms of normal human development and congenital malformations. Here, we present the first detailed comparison of cranial and neuro pathology in two exceedingly rare human individuals with cyclopia and alobar holoprosencephaly (HPE) in the presence and absence of aberrant chromosome 18 (aCh18). The aCh18 fetus contained one normal Ch18 and one with a pseudo-isodicentric duplication of chromosome 18q and partial deletion of 18p from 18p11.31 where the HPE gene, TGIF, resides, to the p terminus. In addition to synophthalmia, the aCh18 cyclopic malformations included a failure of induction of most of the telencephalon - closely approximating anencephaly, unchecked development of brain stem structures, near absence of the sphenoid bone and a malformed neurocranium and viscerocranium that constitute the median face. Although there was complete erasure of the olfactory and superior nasal structures, rudiments of nasal structures derived from the maxillary bone were evident, but with absent pharyngeal structures. The second non-aCh18 cyclopic fetus was initially classified as a true Cyclops, as it appeared to have a proboscis and one median eye with a single iris, but further analysis revealed two eye globes as expected for synophthalmic cyclopia. Furthermore, the proboscis was associated with the medial ethmoid ridge, consistent with an incomplete induction of these nasal structures, even as the nasal septum and paranasal sinuses were apparently developed. An important conclusion of this study is that it is the brain that predicts the overall configuration of the face, due to its influence on the development of surrounding skeletal structures. The present data using a combination of macroscopic, computed tomography (CT) and magnetic resonance imaging (MRI) techniques provide an unparalleled analysis on the extent of the effects of median defects, and insight into normal development and patterning of the brain

  3. Protein phosphorylation systems in postmortem human brain

    SciTech Connect

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P. )

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders.

  4. DHA Effects in Brain Development and Function

    PubMed Central

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  5. DHA Effects in Brain Development and Function.

    PubMed

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B S; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  6. Peroxisomes in brain development and function.

    PubMed

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-05-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer's disease, autism and amyotrophic lateral sclerosis. PMID:26686055

  7. Optogenetic control of human neurons in organotypic brain cultures.

    PubMed

    Andersson, My; Avaliani, Natalia; Svensson, Andreas; Wickham, Jenny; Pinborg, Lars H; Jespersen, Bo; Christiansen, Søren H; Bengzon, Johan; Woldbye, David P D; Kokaia, Merab

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies. PMID:27098488

  8. Optogenetic control of human neurons in organotypic brain cultures

    PubMed Central

    Andersson, My; Avaliani, Natalia; Svensson, Andreas; Wickham, Jenny; Pinborg, Lars H.; Jespersen, Bo; Christiansen, Søren H.; Bengzon, Johan; Woldbye, David P.D.; Kokaia, Merab

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies. PMID:27098488

  9. Development of the Teenage Brain

    ERIC Educational Resources Information Center

    Choudhury, Suparna; Charman, Tony; Blakemore, Sarah-Jayne

    2008-01-01

    Adolescence is a time characterized by change--hormonally, physically, and mentally. We now know that some brain areas, particularly the frontal cortex, continue to develop well beyond childhood. There are two main changes with puberty. First, there is an increase in axonal myelination, which increases transmission speed. Second, there is a…

  10. Gesture in the Developing Brain

    ERIC Educational Resources Information Center

    Dick, Anthony Steven; Goldin-Meadow, Susan; Solodkin, Ana; Small, Steven L.

    2012-01-01

    Speakers convey meaning not only through words, but also through gestures. Although children are exposed to co-speech gestures from birth, we do not know how the developing brain comes to connect meaning conveyed in gesture with speech. We used functional magnetic resonance imaging (fMRI) to address this question and scanned 8- to 11-year-old…

  11. The Somatostatin 2A Receptor Is Enriched in Migrating Neurons during Rat and Human Brain Development and Stimulates Migration and Axonal Outgrowth

    PubMed Central

    Le Verche, Virginia; Kaindl, Angela M.; Verney, Catherine; Csaba, Zsolt; Peineau, Stéphane; Olivier, Paul; Adle-Biassette, Homa; Leterrier, Christophe; Vitalis, Tania; Renaud, Julie; Dargent, Bénédicte; Gressens, Pierre; Dournaud, Pascal

    2009-01-01

    The neuropeptide somatostatin has been suggested to play an important role during neuronal development in addition to its established modulatory impact on neuroendocrine, motor and cognitive functions in adults. Although six somatostatin G protein-coupled receptors have been discovered, little is known about their distribution and function in the developing mammalian brain. In this study, we have first characterized the developmental expression of the somatostatin receptor sst2A, the subtype found most prominently in the adult rat and human nervous system. In the rat, the sst2A receptor expression appears as early as E12 and is restricted to post-mitotic neuronal populations leaving the ventricular zone. From E12 on, migrating neuronal populations immunopositive for the receptor were observed in numerous developing regions including the cerebral cortex, hippocampus and ganglionic eminences. Intense but transient immunoreactive signals were detected in the deep part of the external granular layer of the cerebellum, the rostral migratory stream and in tyrosine hydroxylase- and serotonin- positive neurons and axons. Activation of the sst2A receptor in vitro in rat cerebellar microexplants and primary hippocampal neurons revealed stimulatory effects on neuronal migration and axonal growth, respectively. In the human cortex, receptor immunoreactivity was located in the preplate at early development stages (8 gestational weeks) and was enriched to the outer part of the germinal zone at later stages. In the cerebellum, the deep part of the external granular layer was strongly immunoreactive at 19 gestational weeks, similar to the finding in rodents. In addition, migrating granule cells in the internal granular layer were also receptor-positive. Together, theses results strongly suggest that the somatostatin sst2A receptor participates in the development and maturation of specific neuronal populations during rat and human brain ontogenesis. PMID:19434240

  12. Brain development during the preschool years

    PubMed Central

    Brown, Timothy T.; Jernigan, Terry L.

    2012-01-01

    The preschool years represent a time of expansive psychological growth, with the initial expression of many psychological abilities that will continue to be refined into young adulthood. Likewise, brain development during this age is characterized by its “blossoming” nature, showing some of its most dynamic and elaborative anatomical and physiological changes. In this article, we review human brain development during the preschool years, sampling scientific evidence from a variety of sources. First, we cover neurobiological foundations of early postnatal development, explaining some of the primary mechanisms seen at a larger scale within neuroimaging studies. Next, we review evidence from both structural and functional imaging studies, which now accounts for a large portion of our current understanding of typical brain development. Within anatomical imaging, we focus on studies of developing brain morphology and tissue properties, including diffusivity of white matter fiber tracts. We also present new data on changes during the preschool years in cortical area, thickness, and volume. Physiological brain development is then reviewed, touching on influential results from several different functional imaging and recording modalities in the preschool and early school-age years, including positron emission tomography (PET), electroencephalography (EEG) and event-related potentials (ERP), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS). Here, more space is devoted to explaining some of the key methodological factors that are required for interpretation. We end with a section on multimodal and multidimensional imaging approaches, which we believe will be critical for increasing our understanding of brain development and its relationship to cognitive and behavioral growth in the preschool years and beyond. PMID:23007644

  13. Brain connectivity in normally developing children and adolescents.

    PubMed

    Khundrakpam, Budhachandra S; Lewis, John D; Zhao, Lu; Chouinard-Decorte, François; Evans, Alan C

    2016-07-01

    The developing human brain undergoes an astonishing sequence of events that continuously shape the structural and functional brain connectivity. Distinct regional variations in the timelines of maturational events (synaptogenesis and synaptic pruning) occurring at the synaptic level are reflected in brain measures at macroscopic resolution (cortical thickness and gray matter density). Interestingly, the observed brain changes coincide with cognitive milestones suggesting that the changing scaffold of brain circuits may subserve cognitive development. Recent advances in connectivity analysis propelled by graph theory have allowed, on one hand, the investigation of maturational changes in global organization of structural and functional brain networks; and on the other hand, the exploration of specific networks within the context of global brain networks. An emerging picture from several connectivity studies is a system-level rewiring that constantly refines the connectivity of the developing brain. PMID:27054487

  14. Reflectance Diffuse Optical Tomography: Its Application to Human Brain Mapping

    NASA Astrophysics Data System (ADS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-09-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases.

  15. Human freedom and the brain.

    PubMed

    Kornhuber, Hans Helmut

    2009-06-01

    Freedom of will does exist, it is self-leadership of man based on reason and ethos. Evidence comes from truth. Determinism cannot be proved since if you try, you mean to prove a truth; but there is no truth without freedom. By contrast for freedom there are many pieces of evidence e.g. science, arts, technology. Freedom utilizes creative abstract thinking with phantasy. Freedom is graded, limited, based on nature, but not developed without good will. We perceive reliably freedom by self-consciousness and in other persons as long as we are sober. Freedom needs intelligence, but is more, it is a creative and moral virtue. The basis for freedom is phylogenesis and culture, in the individual learning and experimenting. Factors in the becoming of freedom are not only genes and environment but also self-discipline. But the creativity of free will is dangerous. Man therefore needs morale. Drives and feelings become humanized, cultural interests are developed. There is a humane nobility from long good will. PMID:25384854

  16. Two phylogenetic specializations in the human brain.

    PubMed

    Allman, John; Hakeem, Atiya; Watson, Karli

    2002-08-01

    In this study, two anatomical specializations of the brain in apes and humans are considered. One of these is a whole cortical area located in the frontal polar cortex (Brodmann's area 10), and the other is a morphologically distinctive cell type, the spindle neuron of the anterior cingulate cortex. The authors suggest that the spindle cells may relay to other parts of the brain--especially to area 10, the outcome of processing within the anterior cingulate cortex. This relay conveys the motivation to act. It particularly concerns the recognition of having committed an error that leads to the initiation of adaptive responses to these adverse events so as to reduce error commission. This capacity is related to the development of self-control as an individual matures and gains social insight. Although the anterior cingulate deals with the individual's immediate response to changing conditions, area 10 is involved in the retrieval of memories from the individual's past experience and the capacity to plan adaptive responses. The authors suggest that these neurobehavioral specializations are crucial aspects of intelligence as defined as the capacity to make adaptive responses to changing conditions. The authors further hypothesize that these specializations facilitated the evolution of the unique capacity for the intergenerational transfer of the food and information characteristic of human extended families. PMID:12194502

  17. Conscious brain-to-brain communication in humans using non-invasive technologies.

    PubMed

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  18. Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies

    PubMed Central

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  19. Characteristics of the Cation Cotransporter NKCC1 in Human Brain: Alternate Transcripts, Expression in Development, and Potential Relationships to Brain Function and Schizophrenia

    PubMed Central

    Morita, Yukitaka; Callicott, Joseph H.; Testa, Lauren R.; Mighdoll, Michelle I.; Dickinson, Dwight; Chen, Qiang; Tao, Ran; Lipska, Barbara K.; Kolachana, Bhaskar; Law, Amanda J.; Ye, Tianzhang; Straub, Richard E.; Weinberger, Daniel R.; Kleinman, Joel E.

    2014-01-01

    Early in development, GABA, an inhibitory neurotransmitter in adults, is excitatory. NKCC1 (SLC12A2) encodes one of two cation chloride cotransporters mediating the conversion of GABA from excitatory to inhibitory. Using 3′ and 5′ RACE and PCR, we verified previously characterized alternative transcripts of NKCC1a (1–27) and NKCC1b (1–27(Δ21)), identified new NKCC1 transcripts, and explored their expression patterns during human prefrontal cortical development. A novel ultra-short transcript (1–2a) was expressed preferentially in the fetus. Expression of NKCC1b and 1–2a were decreased in schizophrenia compared with controls (NKCC1b: 0.8-fold decrease, p = 0.013; 1–2a: 0.8-fold decrease, p = 0.006). Furthermore, the expression of NKCC1b was associated with NKCC1 polymorphism rs3087889. The minor allele at rs3087889, associated with reduced NKCC1b expression (homozygous for major allele: N = 37; homozygous for minor allele: N = 15; 1.5-fold decrease; p < 0.01), was also associated with a modest increase in schizophrenia risk in a case-control sample (controls: N = 435; cases: N = 397, OR = 1.5). This same allele was then found associated with cognitive (n = 369) and fMRI (n = 313) intermediate phenotypes associated with schizophrenia—working memory (Cohen's d = 0.35), global cognition or g (d = 0.18), and prefrontal inefficiency (d = 0.36) as measured by BOLD fMRI during a working memory task. Together, these preclinical and clinical results suggest that variation in NKCC1 may increase risk for schizophrenia via alterations of mRNA expression at the molecular level and impairment of optimal prefrontal function at the macro or systems level. PMID:24695712

  20. Evolution of the human brain: when bigger is better

    PubMed Central

    Hofman, Michel A.

    2014-01-01

    Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the brain and its underlying neuronal network. The object of this review is to present current perspectives on primate brain evolution, especially in humans, and to examine some hypothetical organizing principles that underlie the brain's complex organization. Some of the design principles and operational modes that underlie the information processing capacity of the cerebral cortex in primates will be explored. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains, then otherwise would have been possible. In view of the central importance placed on brain evolution in explaining the success of our own species, one may wonder whether there are physical limits that constrain its processing power and evolutionary potential. It will be argued that at a brain size of about 3500 cm3, corresponding to a brain volume two to three times that of modern man, the brain seems to reach its maximum processing capacity. The larger the brain grows beyond this critical size, the less efficient it will become, thus limiting any improvement in cognitive power. PMID:24723857

  1. The human parental brain: In vivo neuroimaging

    PubMed Central

    Swain, James E.

    2015-01-01

    Interacting parenting thoughts and behaviors, supported by key brain circuits, critically shape human infants’ current and future behavior. Indeed, the parent–infant relationship provides infants with their first social environment, forming templates for what they can expect from others, how to interact with them and ultimately how they go on to themselves to be parents. This review concentrates on magnetic resonance imaging experiments of the human parent brain, which link brain physiology with parental thoughts and behaviors. After reviewing brain imaging techniques, certain social cognitive and affective concepts are reviewed, including empathy and trust—likely critical to parenting. Following that is a thorough study-by-study review of the state-of-the-art with respect to human neuroimaging studies of the parental brain—from parent brain responses to salient infant stimuli, including emotionally charged baby cries and brief visual stimuli to the latest structural brain studies. Taken together, this research suggests that networks of highly conserved hypothalamic–midbrain–limbic–paralimbic–cortical circuits act in concert to support parental brain responses to infants, including circuits for limbic emotion response and regulation. Thus, a model is presented in which infant stimuli activate sensory analysis brain regions, affect corticolimbic limbic circuits that regulate emotional response, motivation and reward related to their infant, ultimately organizing parenting impulses, thoughts and emotions into coordinated behaviors as a map for future studies. Finally, future directions towards integrated understanding of the brain basis of human parenting are outlined with profound implications for understanding and contributing to long term parent and infant mental health. PMID:21036196

  2. Chasing Tics in the Human Brain: Development of Open, Scheduled and Closed Loop Responsive Approaches to Deep Brain Stimulation for Tourette Syndrome

    PubMed Central

    Martinez-Ramirez, Daniel; Rossi, Peter J.; Peng, Zhongxing; Gunduz, Aysegul; Okun, Michael S.

    2015-01-01

    Tourette syndrome is a childhood-onset disorder characterized by a combination of motor and vocal tics, often associated with psychiatric comorbidities including attention deficit and hyperactivity disorder and obsessive-compulsive disorder. Despite an onset early in life, half of patients may present symptoms in adulthood, with variable degrees of severity. In select cases, the syndrome may lead to significant physical and social impairment, and a worrisome risk for self injury. Evolving research has provided evidence supporting the idea that the pathophysiology of Tourette syndrome is directly related to a disrupted circuit involving the cortex and subcortical structures, including the basal ganglia, nucleus accumbens, and the amygdala. There has also been a notion that a dysfunctional group of neurons in the putamen contributes to an abnormal facilitation of competing motor responses in basal ganglia structures ultimately underpinning the generation of tics. Surgical therapies for Tourette syndrome have been reserved for a small group of patients not responding to behavioral and pharmacological therapies, and these therapies have been directed at modulating the underlying pathophysiology. Lesion therapy as well as deep brain stimulation has been observed to suppress tics in at least some of these cases. In this article, we will review the clinical aspects of Tourette syndrome, as well as the evolution of surgical approaches and we will discuss the evidence and clinical responses to deep brain stimulation in various brain targets. We will also discuss ongoing research and future directions as well as approaches for open, scheduled and closed loop feedback-driven electrical stimulation for the treatment of Tourette syndrome. PMID:25851890

  3. On Expression Patterns and Developmental Origin of Human Brain Regions

    PubMed Central

    Kirsch, Lior; Chechik, Gal

    2016-01-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions. PMID:27564987

  4. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast

    PubMed Central

    Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik

    2015-01-01

    Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy. PMID:25792832

  5. Symmetry and asymmetry in the human brain

    NASA Astrophysics Data System (ADS)

    Hugdahl, Kenneth

    2005-10-01

    Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective, focusing on the pioneering work of Broca, Wernicke, Sperry, and Geschwind. Structural and functional asymmetry is exemplified from work done in our laboratory on auditory laterality using an empirical procedure called dichotic listening. This also involves different ways of validating the dichotic listening procedure against both invasive and non-invasive techniques, including PET and fMRI blood flow recordings. A major argument is that the human brain shows a substantial interaction between structurally, or "bottom-up" asymmetry and cognitively, or "top-down" modulation, through a focus of attention to the right or left side in auditory space. These results open up a more dynamic and interactive view of functional brain asymmetry than the traditional static view that the brain is lateralized, or asymmetric, only for specific stimuli and stimulus properties.

  6. Multiple aldehyde reductases of human brain.

    PubMed

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-01-01

    Human brain contains four forms of aldehyde reducing enzymes. One major activity, designated AR3, has properties indicating its identity with the NADPH-dependent aldehyde reductase, EC 1.1.1.2. The other major form of human brain enzyme, AR1, which is also NADPH-dependent, reduces both aldehyde and ketone-containing substrates, including vitamin K3 (menadione) and daunorubicin, a cancer chemotherapeutic agent. This enzyme is very sensitive to inhibition by the flavonoids quercitrin and quercetine, and may be analogous to a daunorubicin reductase previously described in liver of other species. One minor form of human brain aldehyde reductase, AR2, demonstrates substrate specificity and inhibitor sensitivity which suggest its similarity to aldose reductases found in lens and other tissues of many species. This enzyme, which can also use NADH as cofactor to some extent, is the most active in reducing the aldehyde derivatives of the biogenic amines. The fourth human brain enzyme ("SSA reductase") differs from the other forms in its ability to use NADH as well as or better than NADPH as cofactor, and in its molecular weight, which is nearly twice that of the other forms. It is quite specific for succinic semialdehyde (SSA) as substrate, and was found to be significantly inhibited only by quercetine and quercitrin. AR3 can also reduce SSA, and both enzymes may contribute to the production of gamma-hydroxybutyric acid in vivo. These results indicate that the human brain aldehyde reductases can play relatively specific physiologic roles. PMID:7424738

  7. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    ERIC Educational Resources Information Center

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  8. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2016-01-01

    The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1-1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the

  9. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain

    PubMed Central

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint

    2016-01-01

    The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1–1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the

  10. Cytogenetics of human brain tumors

    SciTech Connect

    Finkernagel, S.W.; Kletz, T.; Day-Salvatore, D.L.

    1994-09-01

    Chromosome studies of 55 brain tumors, including meningiomas, gliomas, astrocyomas and pituatary adenomas, were performed. Primary and first passage cultures were successfully obtained in 75% of these samples with an average of 18 G-banded metaphases analyzed per tumor. 44% of all the brain tumors showed numerical and or structural abnormalities. 46% of the primary and 38% of the first passage cultures showed similar numerical gains/losses and complex karyotypic changes. The most frequent numerical abnormalities (n {ge} 5) included loss of chromosomes 10, 22, and Y. The structural abnormalities most often seen involved 1p, 2, 5, 7, 17q and 19. This is an ongoing study which will attempt to correlate tumor type with specific karyotypic changes and to see if any of the observed chromosomal abnormalities provide prognostic indicators.

  11. Seasonality in human cognitive brain responses.

    PubMed

    Meyer, Christelle; Muto, Vincenzo; Jaspar, Mathieu; Kussé, Caroline; Lambot, Erik; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Luxen, André; Middleton, Benita; Archer, Simon N; Collette, Fabienne; Dijk, Derk-Jan; Phillips, Christophe; Maquet, Pierre; Vandewalle, Gilles

    2016-03-15

    Daily variations in the environment have shaped life on Earth, with circadian cycles identified in most living organisms. Likewise, seasons correspond to annual environmental fluctuations to which organisms have adapted. However, little is known about seasonal variations in human brain physiology. We investigated annual rhythms of brain activity in a cross-sectional study of healthy young participants. They were maintained in an environment free of seasonal cues for 4.5 d, after which brain responses were assessed using functional magnetic resonance imaging (fMRI) while they performed two different cognitive tasks. Brain responses to both tasks varied significantly across seasons, but the phase of these annual rhythms was strikingly different, speaking for a complex impact of season on human brain function. For the sustained attention task, the maximum and minimum responses were located around summer and winter solstices, respectively, whereas for the working memory task, maximum and minimum responses were observed around autumn and spring equinoxes. These findings reveal previously unappreciated process-specific seasonality in human cognitive brain function that could contribute to intraindividual cognitive changes at specific times of year and changes in affective control in vulnerable populations. PMID:26858432

  12. A quantitative way to estimate clinical off-target effects for human membrane brain targets in CNS research and development

    PubMed Central

    Spiros, Athan; Geerts, Hugo

    2012-01-01

    Although many preclinical programs in central nervous system research and development intend to develop highly selective and potent molecules directed at the primary target, they often act upon other off-target receptors. The simple rule of taking the ratios of affinities for the candidate drug at the different receptors is flawed since the affinity of the endogenous ligand for that off-target receptor or drug exposure is not taken into account. We have developed a mathematical receptor competition model that takes into account the competition between active drug moiety and the endogenous neurotransmitter to better assess the off-target effects on postsynaptic receptor activation under the correct target exposure conditions. As an example, we investigate the possible functional effects of the weak off-target effects for dopamine-1 receptor (D1R) in a computer simulation of a dopaminergic cortical synapse that is calibrated using published fast-cyclic rodent voltammetry and human imaging data in subjects with different catechol-O-methyltransferase genotypes. We identify the conditions under which off-target effects at the D1R can lead to clinically detectable consequences on cognitive tests, such as the N-back working memory test. We also demonstrate that certain concentrations of dimebolin (Dimebon), a recently tested Alzheimer drug, can affect D1R activation resulting in clinically detectable cognitive decrease. This approach can be extended to other receptor systems and can improve the selection of clinical candidate compounds by potentially dialing-out harmful off-target effects or dialing-in beneficial off-target effects in a quantitative and controlled way.

  13. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  14. Cholesterol metabolites exported from human brain.

    PubMed

    Iuliano, Luigi; Crick, Peter J; Zerbinati, Chiara; Tritapepe, Luigi; Abdel-Khalik, Jonas; Poirot, Marc; Wang, Yuqin; Griffiths, William J

    2015-07-01

    The human brain contains approximately 25% of the body's cholesterol. The brain is separated from the circulation by the blood brain barrier. While cholesterol will not passes this barrier, oxygenated forms of cholesterol can cross the barrier. Here by measuring the difference in the oxysterol content of blood plasma in the jugular vein and in a forearm vein by mass spectrometry (MS) we were able to determine the flux of more than 20 cholesterol metabolites between brain and the circulation. We confirm that 24S-hydroxycholesterol is exported from brain at a rate of about 2-3mg/24h. Gas chromatography (GC)-MS data shows that the cholesterol metabolites 5α-hydroxy-6-oxocholesterol (3β,5α-dihydroxycholestan-6-one), 7β-hydroxycholesterol and 7-oxocholesterol, generally considered to be formed through reactive oxygen species, are similarly exported from brain at rates of about 0.1, 2 and 2mg/24h, respectively. Although not to statistical significance both GC-MS and liquid chromatography (LC)-MS methods indicate that (25R)26-hydroxycholesterol is imported to brain, while LC-MS indicates that 7α-hydroxy-3-oxocholest-4-enoic acid is exported from brain. PMID:25668615

  15. Child Psychiatry Branch of the National Institute of Mental Health Longitudinal Structural Magnetic Resonance Imaging Study of Human Brain Development

    PubMed Central

    Giedd, Jay N; Raznahan, Armin; Alexander-Bloch, Aaron; Schmitt, Eric; Gogtay, Nitin; Rapoport, Judith L

    2015-01-01

    The advent of magnetic resonance imaging, which safely allows in vivo quantification of anatomical and physiological features of the brain, has revolutionized pediatric neuroscience. Longitudinal studies are useful for the characterization of developmental trajectories (ie, changes in imaging measures by age). Developmental trajectories (as opposed to static measures) have proven to have greater power in discriminating healthy from clinical groups and in predicting cognitive/behavioral measures, such as IQ. Here we summarize results from an ongoing longitudinal pediatric neuroimaging study that has been conducted at the Child Psychiatry Branch of the National Institute of Mental Health since 1989. Developmental trajectories of structural MRI brain measures from healthy youth are compared and contrasted with trajectories in attention-deficit/hyperactivity disorder (ADHD) and childhood-onset schizophrenia. Across ages 5–25 years, in both healthy and clinical populations, white matter volumes increase and gray matter volumes follow an inverted U trajectory, with peak size occurring at different times in different regions. At a group level, differences related to psychopathology are seen for gray and white matter volumes, rates of change, and for interconnectedness among disparate brain regions. PMID:25195638

  16. The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability.

    PubMed

    Crawford, Michael A; Broadhurst, C Leigh

    2012-01-01

    hypothesis from fossil evidence of human evolution taking advantage of the marine food web. Lipids are still modifying the present evolutionary phase of our species; their signature is evident in the changing panorama of non-communicable diseases. The most worrying change in disease pattern is the sharp rise in brain disorders, which, in the European Union, has overtaken the cost of all other burdens of ill health at €386 billion for the 25 member states at 2004 prices. In 2007, the UK cost was estimated at £77 billion and confirmed in 2010 at £105 billion - greater than heart disease and cancer combined. The rise in mental ill health is now being globalised. The solution to the rising vascular disorders in the last century and now brain disorders in this century lies in a radical reappraisal of the food system, which last century was focussed on protein and calories, with little attention paid to the requirements of the brain - the very organ that was the determinant of human evolution. With the marine fish catch having plateaued 20 years ago and its sustainability now under threat, a critical aspect of this revision is the development of marine agriculture from estuarine, coastal and oceanic resources. Such action is likely to play a key role in future health and intelligence. PMID:22544773

  17. BrainNet Viewer: a network visualization tool for human brain connectomics.

    PubMed

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/). PMID:23861951

  18. The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome.

    PubMed

    Brodsky, G; Barnes, T; Bleskan, J; Becker, L; Cox, M; Patterson, D

    1997-11-01

    Purines are critical for energy metabolism, cell signalling and cell reproduction. Nevertheless, little is known about the regulation of this essential biochemical pathway during mammalian development. In humans, the second, third and fifth steps of de novo purine biosynthesis are catalyzed by a trifunctional protein with glycinamide ribonucleotide synthetase (GARS), aminoimidazole ribonucleotide synthetase (AIRS) and glycinamide ribonucleotide formyltransferase (GART) enzymatic activities. The gene encoding this trifunctional protein is located on chromosome 21. The enzyme catalyzing the intervening fourth step of de novo purine biosynthesis, phosphoribosylformylglycineamide amidotransferase (FGARAT), is encoded by a separate gene on chromosome 17. To investigate the regulation of these proteins, we have generated monoclonal and/or polyclonal antibodies specific to each of these enzymatic domains. Using these antibodies on western blots of Chinese hamster ovary (CHO) cells transfected with the human GARS-AIRS-GART gene, we show that this gene encodes not only the trifunctional protein of 110 kDa, but also a monofunctional GARS protein of 50 kDa. This carboxy-truncated human GARS protein is produced by alternative splicing resulting in the use of a polyadenylation site in the intron between the terminal GARS and the first AIRS exons. The expression of both the GARS and GARS-AIRS-GART proteins are regulated during development of the human cerebellum, while the expression of FGARAT appears to be constitutive. All three proteins are expressed at high levels during normal prenatal cerebellum development while the GARS and GARS-AIRS-GART proteins become undetectable in this tissue shortly after birth. In contrast, the GARS and GARS-AIRS-GART proteins continue to be expressed during the postnatal development of the cerebellum in individuals with Down syndrome. PMID:9328467

  19. BrainKnowledge: a human brain function mapping knowledge-base system.

    PubMed

    Hsiao, Mei-Yu; Chen, Chien-Chung; Chen, Jyh-Horng

    2011-03-01

    Associating fMRI image datasets with the available literature is crucial for the analysis and interpretation of fMRI data. Here, we present a human brain function mapping knowledge-base system (BrainKnowledge) that associates fMRI data analysis and literature search functions. BrainKnowledge not only contains indexed literature, but also provides the ability to compare experimental data with those derived from the literature. BrainKnowledge provides three major functions: (1) to search for brain activation models by selecting a particular brain function; (2) to query functions by brain structure; (3) to compare the fMRI data with data extracted from the literature. All these functions are based on our literature extraction and mining module developed earlier (Hsiao, Chen, Chen. Journal of Biomedical Informatics 42, 912-922, 2009), which automatically downloads and extracts information from a vast amount of fMRI literature and generates co-occurrence models and brain association patterns to illustrate the relevance of brain structures and functions. BrainKnowledge currently provides three co-occurrence models: (1) a structure-to-function co-occurrence model; (2) a function-to-structure co-occurrence model; and (3) a brain structure co-occurrence model. Each model has been generated from over 15,000 extracted Medline abstracts. In this study, we illustrate the capabilities of BrainKnowledge and provide an application example with the studies of affect. BrainKnowledge, which combines fMRI experimental results with Medline abstracts, may be of great assistance to scientists not only by freeing up resources and valuable time, but also by providing a powerful tool that collects and organizes over ten thousand abstracts into readily usable and relevant sources of information for researchers. PMID:20857233

  20. Human intelligence and brain networks

    PubMed Central

    Colom, Roberto; Karama, Sherif; Jung, Rex E.; Haier, Richard J.

    2010-01-01

    Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other. PMID:21319494

  1. Development of a large-scale functional brain network during human non-rapid eye movement sleep.

    PubMed

    Spoormaker, Victor I; Schröter, Manuel S; Gleiser, Pablo M; Andrade, Katia C; Dresler, Martin; Wehrle, Renate; Sämann, Philipp G; Czisch, Michael

    2010-08-25

    Graph theoretical analysis of functional magnetic resonance imaging (fMRI) time series has revealed a small-world organization of slow-frequency blood oxygen level-dependent (BOLD) signal fluctuations during wakeful resting. In this study, we used graph theoretical measures to explore how physiological changes during sleep are reflected in functional connectivity and small-world network properties of a large-scale, low-frequency functional brain network. Twenty-five young and healthy participants fell asleep during a 26.7 min fMRI scan with simultaneous polysomnography. A maximum overlap discrete wavelet transformation was applied to fMRI time series extracted from 90 cortical and subcortical regions in normalized space after residualization of the raw signal against unspecific sources of signal fluctuations; functional connectivity analysis focused on the slow-frequency BOLD signal fluctuations between 0.03 and 0.06 Hz. We observed that in the transition from wakefulness to light sleep, thalamocortical connectivity was sharply reduced, whereas corticocortical connectivity increased; corticocortical connectivity subsequently broke down in slow-wave sleep. Local clustering values were closest to random values in light sleep, whereas slow-wave sleep was characterized by the highest clustering ratio (gamma). Our findings support the hypothesis that changes in consciousness in the descent to sleep are subserved by reduced thalamocortical connectivity at sleep onset and a breakdown of general connectivity in slow-wave sleep, with both processes limiting the capacity of the brain to integrate information across functional modules. PMID:20739559

  2. Self-Representation and Brain Development

    ERIC Educational Resources Information Center

    Lewis, Michael; Carmody, Dennis P.

    2008-01-01

    This study examined the relation between self-representation and brain development in infants and young children. Self-representation was assessed by mirror recognition, personal pronoun use, and pretend play. Structural brain images were obtained from magnetic resonance imaging (MRI). Brain development was assessed by a quantitative measure of…

  3. Genetic Changes Shaping the Human Brain

    PubMed Central

    Bae, Byoung-il; Jayaraman, Divya; Walsh, Christopher A.

    2015-01-01

    Summary The development and function of our brain are governed by a genetic blueprint, which reflects dynamic changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-generation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with a neuroanatomical or neurobehavioral phenotype. Here, we review some of the genetic changes in both protein-coding and noncoding regions that affect brain development and evolution, as well as recent progress in brain transcriptomics. Understanding these genetic changes may provide novel insights into neurological and neuropsychiatric disorders, such as autism and schizophrenia. PMID:25710529

  4. Drugs, Biogenic Amine Targets and the Developing Brain

    PubMed Central

    Frederick, Aliya L.; Stanwood, Gregg D.

    2009-01-01

    Defects in the development of the brain have profound impacts on mature brain functions and underlie psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetycholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple, diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by a variety of illicit drugs of abuse, neurotherapeutics, and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life. PMID:19372683

  5. Decoding Spontaneous Emotional States in the Human Brain.

    PubMed

    Kragel, Philip A; Knodt, Annchen R; Hariri, Ahmad R; LaBar, Kevin S

    2016-09-01

    Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems. PMID:27627738

  6. Development of cortical shape in the human brain from 6 to 24months of age via a novel measure of shape complexity.

    PubMed

    Kim, Sun Hyung; Lyu, Ilwoo; Fonov, Vladimir S; Vachet, Clement; Hazlett, Heather C; Smith, Rachel G; Piven, Joseph; Dager, Stephen R; Mckinstry, Robert C; Pruett, John R; Evans, Alan C; Collins, D Louis; Botteron, Kelly N; Schultz, Robert T; Gerig, Guido; Styner, Martin A

    2016-07-15

    The quantification of local surface morphology in the human cortex is important for examining population differences as well as developmental changes in neurodegenerative or neurodevelopmental disorders. We propose a novel cortical shape measure, referred to as the 'shape complexity index' (SCI), that represents localized shape complexity as the difference between the observed distributions of local surface topology, as quantified by the shape index (SI) measure, to its best fitting simple topological model within a given neighborhood. We apply a relatively small, adaptive geodesic kernel to calculate the SCI. Due to the small size of the kernel, the proposed SCI measure captures fine differences of cortical shape. With this novel cortical feature, we aim to capture comparatively small local surface changes that capture a) the widening versus deepening of sulcal and gyral regions, as well as b) the emergence and development of secondary and tertiary sulci. Current cortical shape measures, such as the gyrification index (GI) or intrinsic curvature measures, investigate the cortical surface at a different scale and are less well suited to capture these particular cortical surface changes. In our experiments, the proposed SCI demonstrates higher complexity in the gyral/sulcal wall regions, lower complexity in wider gyral ridges and lowest complexity in wider sulcal fundus regions. In early postnatal brain development, our experiments show that SCI reveals a pattern of increased cortical shape complexity with age, as well as sexual dimorphisms in the insula, middle cingulate, parieto-occipital sulcal and Broca's regions. Overall, sex differences were greatest at 6months of age and were reduced at 24months, with the difference pattern switching from higher complexity in males at 6months to higher complexity in females at 24months. This is the first study of longitudinal, cortical complexity maturation and sex differences, in the early postnatal period from 6 to 24months

  7. Socioeconomic status and structural brain development.

    PubMed

    Brito, Natalie H; Noble, Kimberly G

    2014-01-01

    Recent advances in neuroimaging methods have made accessible new ways of disentangling the complex interplay between genetic and environmental factors that influence structural brain development. In recent years, research investigating associations between socioeconomic status (SES) and brain development have found significant links between SES and changes in brain structure, especially in areas related to memory, executive control, and emotion. This review focuses on studies examining links between structural brain development and SES disparities of the magnitude typically found in developing countries. We highlight how highly correlated measures of SES are differentially related to structural changes within the brain. PMID:25249931

  8. Socioeconomic status and structural brain development

    PubMed Central

    Brito, Natalie H.; Noble, Kimberly G.

    2014-01-01

    Recent advances in neuroimaging methods have made accessible new ways of disentangling the complex interplay between genetic and environmental factors that influence structural brain development. In recent years, research investigating associations between socioeconomic status (SES) and brain development have found significant links between SES and changes in brain structure, especially in areas related to memory, executive control, and emotion. This review focuses on studies examining links between structural brain development and SES disparities of the magnitude typically found in developing countries. We highlight how highly correlated measures of SES are differentially related to structural changes within the brain. PMID:25249931

  9. Resonance of human brain under head acceleration.

    PubMed

    Laksari, Kaveh; Wu, Lyndia C; Kurt, Mehmet; Kuo, Calvin; Camarillo, David C

    2015-07-01

    Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull-brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull-brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain-skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities. PMID:26063824

  10. 'What' and 'where' in the human brain.

    PubMed

    Ungerleider, L G; Haxby, J V

    1994-04-01

    Multiple visual areas in the cortex of nonhuman primates are organized into two hierarchically organized and functionally specialized processing pathways, a 'ventral stream' for object vision and a 'dorsal stream' for spatial vision. Recent findings from positron emission tomography activation studies have localized these pathways within the human brain, yielding insights into cortical hierarchies, specialization of function, and attentional mechanisms. PMID:8038571

  11. Electromagnetic field and brain development.

    PubMed

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system. PMID:26686296

  12. Measuring dopamine release in the human brain with PET

    SciTech Connect

    Volkow, N.D. |; Fowler, J.S.; Logan, J.; Wang, G.J.

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  13. In vivo studies of brain development by magnetic resonance techniques.

    PubMed

    Inder, T E; Huppi, P S

    2000-01-01

    Understanding of the morphological development of the human brain has largely come from neuropathological studies obtained postmortem. Magnetic resonance (MR) techniques have recently allowed the provision of detailed structural, metabolic, and functional information in vivo on the human brain. These techniques have been utilized in studies from premature infants to adults and have provided invaluable data on the sequence of normal human brain development. This article will focus on MR techniques including conventional structural MR imaging techniques, quantitative morphometric MR techniques, diffusion weighted MR techniques, and MR spectroscopy. In order to understand the potential applications and limitations of MR techniques, relevant physical and biological principles for each of the MR techniques are first reviewed. This is followed by a review of the understanding of the sequence of normal brain development utilizing these techniques. MRDD Research Reviews 6:59-67, 2000. PMID:10899798

  14. Simplified detection system for neuroreceptor studies in the human brain

    SciTech Connect

    Bice, A.N.; Wagner, H.N. Jr.; Frost, J.J.; Natarajan, T.K.; Lee, M.C.; Wong, D.F.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Links, J.M.

    1986-02-01

    A simple, inexpensive dual-detector system has been developed for measurement of positronemitting receptor-binding drugs in the human brain. This high efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of (11C)carfentanil, a high affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist indicates the potential utility of this system for estimating different degrees of receptor occupation in the human brain.

  15. Peroxisomes in brain development and function☆

    PubMed Central

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-01-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26686055

  16. Magnetite biomineralization in the human brain.

    PubMed Central

    Kirschvink, J L; Kobayashi-Kirschvink, A; Woodford, B J

    1992-01-01

    Although the mineral magnetite (Fe3O4) is precipitated biochemically by bacteria, protists, and a variety of animals, it has not been documented previously in human tissue. Using an ultrasensitive superconducting magnetometer in a clean-lab environment, we have detected the presence of ferromagnetic material in a variety of tissues from the human brain. Magnetic particle extracts from solubilized brain tissues examined with high-resolution transmission electron microscopy, electron diffraction, and elemental analyses identify minerals in the magnetite-maghemite family, with many of the crystal morphologies and structures resembling strongly those precipitated by magnetotactic bacteria and fish. These magnetic and high-resolution transmission electron microscopy measurements imply the presence of a minimum of 5 million single-domain crystals per gram for most tissues in the brain and greater than 100 million crystals per gram for pia and dura. Magnetic property data indicate the crystals are in clumps of between 50 and 100 particles. Biogenic magnetite in the human brain may account for high-field saturation effects observed in the T1 and T2 values of magnetic resonance imaging and, perhaps, for a variety of biological effects of low-frequency magnetic fields. Images PMID:1502184

  17. The Human Brain Project and neuromorphic computing

    PubMed Central

    Calimera, Andrea; Macii, Enrico; Poncino, Massimo

    Summary Understanding how the brain manages billions of processing units connected via kilometers of fibers and trillions of synapses, while consuming a few tens of Watts could provide the key to a completely new category of hardware (neuromorphic computing systems). In order to achieve this, a paradigm shift for computing as a whole is needed, which will see it moving away from current “bit precise” computing models and towards new techniques that exploit the stochastic behavior of simple, reliable, very fast, low-power computing devices embedded in intensely recursive architectures. In this paper we summarize how these objectives will be pursued in the Human Brain Project. PMID:24139655

  18. Resonance of human brain under head acceleration

    PubMed Central

    Laksari, Kaveh; Wu, Lyndia C.; Kurt, Mehmet; Kuo, Calvin; Camarillo, David C.

    2015-01-01

    Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull–brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull–brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain–skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities. PMID:26063824

  19. PET evaluation of the dopamine system of the human brain

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Gatley, S. |

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  20. Tracking neuronal fiber pathways in the living human brain

    PubMed Central

    Conturo, Thomas E.; Lori, Nicolas F.; Cull, Thomas S.; Akbudak, Erbil; Snyder, Abraham Z.; Shimony, Joshua S.; McKinstry, Robert C.; Burton, Harold; Raichle, Marcus E.

    1999-01-01

    Functional imaging with positron emission tomography and functional MRI has revolutionized studies of the human brain. Understanding the organization of brain systems, especially those used for cognition, remains limited, however, because no methods currently exist for noninvasive tracking of neuronal connections between functional regions [Crick, F. & Jones, E. (1993) Nature (London) 361, 109–110]. Detailed connectivities have been studied in animals through invasive tracer techniques, but these invasive studies cannot be done in humans, and animal results cannot always be extrapolated to human systems. We have developed noninvasive neuronal fiber tracking for use in living humans, utilizing the unique ability of MRI to characterize water diffusion. We reconstructed fiber trajectories throughout the brain by tracking the direction of fastest diffusion (the fiber direction) from a grid of seed points, and then selected tracks that join anatomically or functionally (functional MRI) defined regions. We demonstrate diffusion tracking of fiber bundles in a variety of white matter classes with examples in the corpus callosum, geniculo-calcarine, and subcortical association pathways. Tracks covered long distances, navigated through divergences and tight curves, and manifested topological separations in the geniculo-calcarine tract consistent with tracer studies in animals and retinotopy studies in humans. Additionally, previously undescribed topologies were revealed in the other pathways. This approach enhances the power of modern imaging by enabling study of fiber connections among anatomically and functionally defined brain regions in individual human subjects. PMID:10468624

  1. Understanding complexity in the human brain

    PubMed Central

    Bassett, Danielle S.; Gazzaniga, Michael S.

    2011-01-01

    Although the ultimate aim of neuroscientific enquiry is to gain an understanding of the brain and how its workings relate to the mind, the majority of current efforts are largely focused on small questions using increasingly detailed data. However, it might be possible to successfully address the larger question of mind–brain mechanisms if the cumulative findings from these neuroscientific studies are coupled with complementary approaches from physics and philosophy. The brain, we argue, can be understood as a complex system or network, in which mental states emerge from the interaction between multiple physical and functional levels. Achieving further conceptual progress will crucially depend on broad-scale discussions regarding the properties of cognition and the tools that are currently available or must be developed in order to study mind–brain mechanisms. PMID:21497128

  2. Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia.

    PubMed

    Thompson, Paul M; Hayashi, Kiralee M; Sowell, Elizabeth R; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; de Zubicaray, Greig I; Janke, Andrew L; Rose, Stephen E; Semple, James; Doddrell, David M; Wang, Yalin; van Erp, Theo G M; Cannon, Tyrone D; Toga, Arthur W

    2004-01-01

    This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound

  3. The neurobiology of childhood structural brain development: conception through adulthood.

    PubMed

    Houston, Suzanne M; Herting, Megan M; Sowell, Elizabeth R

    2014-01-01

    The study of the function and structure of the human brain dates back centuries, when philosophers and physicians theorized about the localization of specific cognitive functions and the structure and organization of underlying brain tissue. In more recent years, the advent of non-invasive techniques such as Magnetic Resonance Imaging (MRI) has allowed scientists unprecedented opportunities to further our understanding not only of structure and function, but of trajectories of brain development in typical and a-typical child and adult populations. In this chapter, we hope to provide a system-level approach to introduce what we have learned about structural brain development from conception through adulthood. We discuss important findings from MRI studies, and the directions that future imaging studies can take in the concerted effort to enhance our understanding of brain development, and thus to enhance our ability to develop interventions for various neurodevelopmental disorders. PMID:24357437

  4. The Neurobiology of Childhood Structural Brain Development: Conception Through Adulthood

    PubMed Central

    Houston, Suzanne M.; Herting, Megan M.

    2014-01-01

    The study of the function and structure of the human brain dates back centuries, when philosophers and physicians theorized about the localization of specific cognitive functions and the structure and organization of underlying brain tissue. In more recent years, the advent of non-invasive techniques such as Magnetic Resonance Imaging (MRI) has allowed scientists unprecedented opportunities to further our understanding not only of structure and function, but of trajectories of brain development in typical and a-typical child and adult populations. In this chapter, we hope to provide a system-level approach to introduce what we have learned about structural brain development from conception through adulthood. We discuss important findings from MRI studies, and the directions that future imaging studies can take in the concerted effort to enhance our understanding of brain development, and thus to enhance our ability to develop interventions for various neuro developmental disorders. PMID:24357437

  5. The impact of poverty on the development of brain networks

    PubMed Central

    Lipina, Sebastián J.; Posner, Michael I.

    2012-01-01

    Although the study of brain development in non-human animals is an old one, recent imaging methods have allowed non-invasive studies of the gray and white matter of the human brain over the lifespan. Classic animal studies show clearly that impoverished environments reduce cortical gray matter in relation to complex environments and cognitive and imaging studies in humans suggest which networks may be most influenced by poverty. Studies have been clear in showing the plasticity of many brain systems, but whether sensitivity to learning differs over the lifespan and for which networks is still unclear. A major task for current research is a successful integration of these methods to understand how development and learning shape the neural networks underlying achievements in literacy, numeracy, and attention. This paper seeks to foster further integration by reviewing the current state of knowledge relating brain changes to behavior and indicating possible future directions. PMID:22912613

  6. Infrasounds and biorhythms of the human brain

    NASA Astrophysics Data System (ADS)

    Panuszka, Ryszard; Damijan, Zbigniew; Kasprzak, Cezary; McGlothlin, James

    2002-05-01

    Low Frequency Noise (LFN) and infrasound has begun a new public health hazard. Evaluations of annoyance of (LFN) on human occupational health were based on standards where reactions of human auditory system and vibrations of parts of human body were small. Significant sensitivity has been observed on the central nervous system from infrasonic waves especially below 10 Hz. Observed follow-up effects in the brain gives incentive to study the relationship between parameters of waves and reactions obtained of biorhythms (EEG) and heart action (EKG). New results show the impact of LFN on the electrical potentials of the brain are dependent on the pressure waves on the human body. Electrical activity of circulatory system was also affected. Signals recorded in industrial workplaces were duplicated by loudspeakers and used to record data from a typical LFN spectra with 5 and 7 Hz in a laboratory chamber. External noise, electromagnetic fields, temperature, dust, and other elements were controlled. Results show not only a follow-up effect in the brain but also a result similar to arrhythmia in the heart. Relaxations effects were observed of people impacted by waves generated from natural sources such as streams and waterfalls.

  7. Molecular genetic determinants of human brain size.

    PubMed

    Tang, Bor Luen

    2006-07-01

    Cognitive skills such as tool use, syntactical languages, and self-awareness differentiate humans from other primates. The underlying basis for this cognitive difference has been widely associated with a high encephalization quotient and an anatomically distinct, exceptionally large cerebral cortex. Investigations on congenital microcephaly had revealed several genes that affect mammalian brain size when mutated. At least four of these, microcephalin (MCPH1), abnormal spindle-like microcephaly-associated (ASPM), cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), and centromere-associated protein J (CENPJ) are known to have undergone significant positive selection in the great apes and human lineages during primate evolution. MCPH1 and ASPM both have very young single nucleotide polymorphism haplotypes associated with modern humans, and these genes are presumably still evolving in Homo sapiens. Microcephalin has a role in DNA damage response and regulation of cell cycle checkpoints. The other known microcephaly-associated genes encode microtubule-associated centrosomal proteins that might regulate neural progenitor cell division and cell number. Recent reports have also unveiled a previously unknown function of ephrins and Eph in the regulation of neural progenitor cell death with a consequential effect on brain size. Understanding the mechanism for developmental control of brain organogenesis by these genes, and others such as FOXP2, shall provide fresh perspectives on the evolution of human intelligence. PMID:16716254

  8. Human brain disease recreated in mice

    SciTech Connect

    Marx, J.

    1990-12-14

    In the early 1980s, neurologist Stanley Prusiner suggested that scrapie, an apparently infectious degenerative brain disease of sheep, could be transmitted by prions, infectious particles made just of protein - and containing no nucleic acids. But prion research has come a long way since then. In 1985, the cloning of the gene encoding the prion protein proved that it does in fact exist. And the gene turned out to be widely expressed in the brains of higher organisms, a result suggesting that the prion protein has a normal brain function that can somehow be subverted, leading to brain degeneration. Then studies done during the past 2 years suggested that specific mutations in the prion gene might cause two similar human brain diseases, Gerstmann-Straeussler-Scheinker syndrome (GSS) and Creutzfelt-Jakob disease. Now, Prusiner's group at the University of California, San Francisco, has used genetic engineering techniques to recreate GSS by transplanting the mutated prion gene into mice. Not only will the animal model help neurobiologists answer the many remaining questions about prions and how they work, but it may also shed some light on other neurodegenerative diseases as well.

  9. Evolving networks in the human epileptic brain

    NASA Astrophysics Data System (ADS)

    Lehnertz, Klaus; Ansmann, Gerrit; Bialonski, Stephan; Dickten, Henning; Geier, Christian; Porz, Stephan

    2014-01-01

    Network theory provides novel concepts that promise an improved characterization of interacting dynamical systems. Within this framework, evolving networks can be considered as being composed of nodes, representing systems, and of time-varying edges, representing interactions between these systems. This approach is highly attractive to further our understanding of the physiological and pathophysiological dynamics in human brain networks. Indeed, there is growing evidence that the epileptic process can be regarded as a large-scale network phenomenon. We here review methodologies for inferring networks from empirical time series and for a characterization of these evolving networks. We summarize recent findings derived from studies that investigate human epileptic brain networks evolving on timescales ranging from few seconds to weeks. We point to possible pitfalls and open issues, and discuss future perspectives.

  10. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  11. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  12. Simple instrument for biochemical studies of the living human brain

    SciTech Connect

    Bice, A.N.; Wagner, H.N. Jr.; Lee, M.C.; Frost, J.J.

    1986-09-01

    A simple, relatively inexpensive radiation detection system was developed for measurement of positron-emitting receptor-binding drugs in the human brain. This high-efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of (/sup 11/C)-carfentanil, a high-affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist exemplifies the use of this system for estimating different degrees of receptor binding of drugs in the human brain. The instrument has also been used for measurement of the transport into the brain of other positron-emitting radiotracers, such as large neutral amino acids.

  13. MRI and MRS of human brain tumors.

    PubMed

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM). PMID:19381963

  14. Efflux transporters in blood-brain interfaces of the developing brain

    PubMed Central

    Strazielle, Nathalie; Ghersi-Egea, Jean-François

    2015-01-01

    The cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-CSF barrier (BCSFB) operate as gatekeepers for the central nervous system. Exposure of the vulnerable developing brain to chemical insults can have dramatic consequences for brain maturation and lead to life-long neurological diseases. The ability of blood-brain interfaces to efficiently protect the immature brain is therefore an important pathophysiological issue. This is also key to our understanding of drug entry into the brain of neonatal and pediatric patients. Non-specific paracellular diffusion through barriers is restricted early during development, but other neuroprotective properties of these interfaces differ between the developing and adult brains. This review focuses on the developmental expression and function of various classes of efflux transporters. These include the multispecific transporters of the ATP-binding cassette transporter families ABCB, ABCC, ABCG, the organic anion and cation transporters of the solute carrier families SLC21/SLCO and SLC22, and the peptide transporters of the SLC15 family. These transporters play a key role in preventing brain entry of blood-borne molecules such as drugs, environmental toxicants, and endogenous metabolites, or else in increasing the clearance of potentially harmful organic ions from the brain. The limited data available for laboratory animals and human highlight transporter-specific developmental patterns of expression and function, which differ between blood-brain interfaces. The BCSFB achieves an adult phenotype earlier than BBB. Efflux transporters at the BBB appear to be regulated by various factors subsequently secreted by neural progenitors and astrocytes during development. Their expression is also modulated by oxidative stress, inflammation, and exposure to xenobiotic inducers. A better understanding of these regulatory pathways during development, in particular

  15. Mapping Fetal Brain Development in utero Using MRI: The Big Bang of Brain Mapping

    PubMed Central

    Studholme, Colin

    2012-01-01

    The development of tools to construct and investigate probabilistic maps of the adult human brain from MRI have led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence, childhood and even neonatal and premature neonatal imaging. Looking even earlier in development, parallel developments in clinical fetal Magnetic Resonance Imaging (MRI) have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments that combine optimal fast MRI scans with techniques derived from computer vision that allow full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article will review the developments that have led us to this point, and examine the current state of the art in the fields of fast fetal imaging, motion correction and the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatio-temporal atlases will be examined, together with techniques to map fetal brain growth patterns. PMID:21568716

  16. Brain structures in the sciences and humanities.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia). PMID:25079346

  17. A versatile new technique to clear mouse and human brain

    NASA Astrophysics Data System (ADS)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  18. Vitamin D3 and brain development.

    PubMed

    Eyles, D; Brown, J; Mackay-Sim, A; McGrath, J; Feron, F

    2003-01-01

    Evidence for the presence of the vitamin D receptor in brain implies this vitamin may have some function in this organ. This study investigates whether vitamin D(3) acts during brain development. We demonstrate that rats born to vitamin D(3)-deficient mothers had profound alterations in the brain at birth. The cortex was longer but not wider, the lateral ventricles were enlarged, the cortex was proportionally thinner and there was more cell proliferation throughout the brain. There were reductions in brain content of nerve growth factor and glial cell line-derived neurotrophic factor and reduced expression of p75(NTR), the low-affinity neurotrophin receptor. Our findings would suggest that low maternal vitamin D(3) has important ramifications for the developing brain. PMID:12710973

  19. Structural brain correlates of human sleep oscillations.

    PubMed

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

  20. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  1. Structural Brain Correlates of Human Sleep Oscillations

    PubMed Central

    Saletin, Jared M.; van der Helm, Els; Walker, Matthew P.

    2014-01-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Grey matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, grey matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, grey matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

  2. Exploring human brain lateralization with molecular genetics and genomics.

    PubMed

    Francks, Clyde

    2015-11-01

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic-developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions. PMID:25950729

  3. A Child's Brain. Part II. The Human Brain: How Every Single Cell is Organized for Action.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1982-01-01

    The second in a series of three articles concerning children's brain development focuses on the organization of the brain. Aspects of the brain's vertical, neocortex, and temporal organization are discussed and references for further reading are provided. (CJ)

  4. Visualization of monoamine oxidase in human brain

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  5. Lifespan maturation and degeneration of human brain white matter.

    PubMed

    Yeatman, Jason D; Wandell, Brian A; Mezer, Aviv A

    2014-01-01

    Properties of human brain tissue change across the lifespan. Here we model these changes in the living human brain by combining quantitative magnetic resonance imaging (MRI) measurements of R1 (1/T1) with diffusion MRI and tractography (N=102, ages 7-85). The amount of R1 change during development differs between white-matter fascicles, but in each fascicle the rate of development and decline are mirror-symmetric; the rate of R1 development as the brain approaches maturity predicts the rate of R1 degeneration in aging. Quantitative measurements of macromolecule tissue volume (MTV) confirm that R1 is an accurate index of the growth of new brain tissue. In contrast to R1, diffusion development follows an asymmetric time-course with rapid childhood changes but a slow rate of decline in old age. Together, the time-courses of R1 and diffusion changes demonstrate that multiple biological processes drive changes in white-matter tissue properties over the lifespan. PMID:25230200

  6. Diffusion Tensor Imaging for Understanding Brain Development in Early Life

    PubMed Central

    Qiu, Anqi; Mori, Susumu; Miller, Michael I.

    2015-01-01

    The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination. PMID:25559117

  7. Practical MRI atlas of neonatal brain development

    SciTech Connect

    Barkovich, A.J.; Truwit, C.L.

    1990-01-01

    This book is an anatomical reference for cranial magnetic resonance imaging (MRI) studies in neonates and infants. It contains 122 clear, sharp MRI scans and drawings showing changes in the normal appearance of the brain and skull during development. Sections of the atlas depict the major processes of maturation: brain myelination, development of the corpus callosum, development of the cranial bone marrow, and iron deposition in the brain. High-quality scans illustrate how these changes appear on magnetic resonance images during various stages of development.

  8. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  9. Self-Control and the Developing Brain

    ERIC Educational Resources Information Center

    Tarullo, Amanda R.; Obradovic, Jelena; Gunnar, Megan R.

    2009-01-01

    Self-control is a skill that children need to succeed academically, socially, and emotionally. Brain regions essential to self-control are immature at birth and develop slowly throughout childhood. From ages 3 to 6 years, as these brain regions become more mature, children show improved ability to control impulses, shift their attention flexibly,…

  10. Tuning the developing brain to social signals of emotions

    PubMed Central

    Leppänen, Jukka M.; Nelson, Charles A.

    2010-01-01

    PREFACE Humans in diverse cultures develop a similar capacity to recognize the emotional signals of different facial expressions. This capacity is mediated by a brain network that involves emotion-related brain circuits and higher-level visual representation areas. Recent studies suggest that the key components of this network begin to emerge early in life. The studies also suggest that initial biases in emotion-related brain circuits and the early coupling of these circuits and cortical perceptual areas provides a foundation for a rapid acquisition of representations of those facial features that denote specific emotions. PMID:19050711

  11. Molecular biology of the human brain

    SciTech Connect

    Jones, E.G.

    1988-01-01

    This book examines new methods of molecular biology that are providing valuable insights into the human brain, the genes that govern its assembly and function, and the many genetic defects that cause neurological diseases such as Alzheimer's, Cri du Chat syndrome, Huntington's disease, and bipolar depression disorder. In addition, the book reviews techniques in molecular neurobiological research, including the use of affinity reagents, chimeric receptors, and site-directed mutagenesis in localizing the ion channel and cholinergic binding site, and the application of somatic cell genetics in isolating specific chromosomes or chromosomal segments.

  12. Dopaminergic Neurotransmission in the Human Brain: New Lessons from Perturbation and Imaging

    PubMed Central

    Ko, Ji Hyun; Strafella, Antonio P.

    2012-01-01

    Dopamine plays an important role in several brain functions and is involved in the pathogenesis of several psychiatric and neurological disorders. Neuroimaging techniques such as positron emission tomography allow us to quantify dopaminergic activity in the living human brain. Combining these with brain stimulation techniques offers us the unique opportunity to tackle questions regarding region-specific neurochemical activity. Such studies may aid clinicians and scientists to disentangle neural circuitries within the human brain and thereby help them to understand the underlying mechanisms of a given function in relation to brain diseases. Furthermore, it may also aid the development of alternative treatment approaches for various neurological and psychiatric conditions. PMID:21536838

  13. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  14. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  15. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides.

    PubMed

    Sarbu, Mirela; Robu, Adrian C; Ghiulai, Roxana M; Vukelić, Željka; Clemmer, David E; Zamfir, Alina D

    2016-05-17

    The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series. PMID:27088833

  16. Nuclear magnetic resonance imaging and spectroscopy of human brain function.

    PubMed Central

    Shulman, R G; Blamire, A M; Rothman, D L; McCarthy, G

    1993-01-01

    The techniques of in vivo magnetic resonance (MR) imaging and spectroscopy have been established over the past two decades. Recent applications of these methods to study human brain function have become a rapidly growing area of research. The development of methods using standard MR contrast agents within the cerebral vasculature has allowed measurements of regional cerebral blood volume (rCBV), which are activity dependent. Subsequent investigations linked the MR relaxation properties of brain tissue to blood oxygenation levels which are also modulated by consumption and blood flow (rCBF). These methods have allowed mapping of brain activity in human visual and motor cortex as well as in areas of the frontal lobe involved in language. The methods have high enough spatial and temporal sensitivity to be used in individual subjects. MR spectroscopy of proton and carbon-13 nuclei has been used to measure rates of glucose transport and metabolism in the human brain. The steady-state measurements of brain glucose concentrations can be used to monitor the glycolytic flux, whereas subsequent glucose metabolism--i.e., the flux into the cerebral glutamate pool--can be used to measure tricarboxylic acid cycle flux. Under visual stimulation the concentration of lactate in the visual cortex has been shown to increase by MR spectroscopy. This increase is compatible with an increase of anaerobic glycolysis under these conditions as earlier proposed from positron emission tomography studies. It is shown how MR spectroscopy can extend this understanding of brain metabolism. Images Fig. 1 Fig. 2 Fig. 3 PMID:8475050

  17. The Blood-Brain Barrier: Bottleneck in Brain Drug Development

    PubMed Central

    Pardridge, William M.

    2005-01-01

    Summary: The blood-brain barrier (BBB) is formed by the brain capillary endothelium and excludes from the brain ∼100% of large-molecule neurotherapeutics and more than 98% of all small-molecule drugs. Despite the importance of the BBB to the neurotherapeutics mission, the BBB receives insufficient attention in either academic neuroscience or industry programs. The combination of so little effort in developing solutions to the BBB problem, and the minimal BBB transport of the majority of all potential CNS drugs, leads predictably to the present situation in neurotherapeutics, which is that there are few effective treatments for the majority of CNS disorders. This situation can be reversed by an accelerated effort to develop a knowledge base in the fundamental transport properties of the BBB, and the molecular and cellular biology of the brain capillary endothelium. This provides the platform for CNS drug delivery programs, which should be developed in parallel with traditional CNS drug discovery efforts in the molecular neurosciences. PMID:15717053

  18. Development of large-scale functional brain networks in children.

    PubMed

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

  19. The maternal brain and its plasticity in humans.

    PubMed

    Kim, Pilyoung; Strathearn, Lane; Swain, James E

    2016-01-01

    This article is part of a Special Issue "Parental Care". Early mother-infant relationships play important roles in infants' optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers' brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  20. Toward discovery science of human brain function.

    PubMed

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

    2010-03-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/. PMID

  1. Effects of embryonic cyclosporine exposures on brain development and behavior

    PubMed Central

    Clift, Danielle E.; Thorn, Robert J.; Passarelli, Emily A.; Kapoor, Mrinal; LoPiccolo, Mary K.; Richendrfer, Holly A.; Colwill, Ruth M.; Creton, Robbert

    2015-01-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning, since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate, because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures. PMID:25591474

  2. Effects of embryonic cyclosporine exposures on brain development and behavior.

    PubMed

    Clift, Danielle E; Thorn, Robert J; Passarelli, Emily A; Kapoor, Mrinal; LoPiccolo, Mary K; Richendrfer, Holly A; Colwill, Ruth M; Creton, Robbert

    2015-04-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures. PMID:25591474

  3. Virtual model of the human brain for neurosurgical simulation.

    PubMed

    De Paolis, Lucio T; De Mauro, Alessandro; Raczkowsky, Joerg; Aloisio, Giovanni

    2009-01-01

    The aim of this work is to develop a realistic virtual model of the human brain that could be used in a neurosurgical simulation for both educational and preoperative planning purposes. The goal of such a system would be to enhance the practice of surgery students, avoiding the use of animals, cadavers and plastic phantoms. A surgeon, before carrying out the real procedure, will, with this system, be able to rehearse by using a surgical simulator based on detailed virtual reality models of the human brain, reconstructed with real patient's medical images. In order to obtain a realistic and useful simulation we focused our research on the physical modelling of the brain as a deformable body and on the interactions with surgical instruments. The developed prototype is based on the mass-spring-damper model and, in order to obtain deformations similar to the real ones, a three tiered structure has been built. In this way, we have obtained local and realistic deformations using an ad-hoc point distribution in the volume where the contact between the brain surface and a surgical instrument takes place. PMID:19745425

  4. The α1, α2, α3, and γ2 subunits of GABAA receptors show characteristic spatial and temporal expression patterns in rhombencephalic structures during normal human brain development.

    PubMed

    Stojanovic, Tamara; Capo, Ivan; Aronica, Eleonora; Adle-Biassette, Homa; Höger, Harald; Sieghart, Werner; Kovacs, Gabor G; Milenkovic, Ivan

    2016-06-15

    γ-Aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in adult mammalian brain, mediating its actions chiefly via a pentameric chloride ion channel, the GABAA receptor. Nineteen different subunits (α1-6, β1-3, γ1-3, δ, ε, π, θ, ρ1-3) can give rise to multiple receptor subtypes that are the site of action of many clinically important drugs. In the developing brain, however, GABAA receptors mediate excitatory actions due to an increased chloride concentration within neurons and seem to control cell proliferation, migration, differentiation, synapse maturation, and cell death. Little is known about the distribution of single subunits in the human brain. Here we describe developmental changes in the immunohistochemical distribution of four subunits (α1, α2, α3, and γ2) in the human rhombencephalon. The γ2 was the most abundant subunit in all rhombencephalic structures during development and in adults, whereas α subunits showed a structure- and age-characteristic distribution. The α1 was expressed prenatally in the molecular and Purkinje cell layer, but only postnatally in the granule cell layer and the dentate nucleus. Expression was completely absent in the inferior olivary nucleus. The α2 gradually increased during development, showing some layer specificity in the cerebellar cortex. The α3-immunoreactivity in the cerebellar cortex was relatively weak, but it was abundantly observed in different cell populations in the subcortical cerebellar structures. Structure- and age-characteristic colocalization between subunits during development suggests differences in GABAA receptor composition. Interestingly, subunit expression in several instances differed between human and rodent brain, underlining the importance of immunohistochemical studies in humans. J. Comp. Neurol. 524:1805-1824, 2016. © 2015 Wiley Periodicals, Inc. PMID:26518133

  5. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  6. The Human Brain in Numbers: A Linearly Scaled-up Primate Brain

    PubMed Central

    Herculano-Houzel, Suzana

    2009-01-01

    The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10× more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a novel method to determine the cellular composition of the brain of humans and other primates as well as of rodents and insectivores show that, since different cellular scaling rules apply to the brains within these orders, brain size can no longer be considered a proxy for the number of neurons in the brain. These studies also showed that the human brain is not exceptional in its cellular composition, as it was found to contain as many neuronal and non-neuronal cells as would be expected of a primate brain of its size. Additionally, the so-called overdeveloped human cerebral cortex holds only 19% of all brain neurons, a fraction that is similar to that found in other mammals. In what regards absolute numbers of neurons, however, the human brain does have two advantages compared to other mammalian brains: compared to rodents, and probably to whales and elephants as well, it is built according to the very economical, space-saving scaling rules that apply to other primates; and, among economically built primate brains, it is the largest, hence containing the most neurons. These findings argue in favor of a view of cognitive abilities that is centered on absolute numbers of neurons, rather than on body size or encephalization, and call for a re-examination of several concepts related to the exceptionality of the human brain. PMID:19915731

  7. [Neuroethics: Ethical Endowments of Human Brain].

    PubMed

    López Moratalla, Natalia

    2015-01-01

    The neurobiological processes underlying moral judgement have been the focus of Neuroethics. Neurosciences demonstrate which cerebral areas are active and inactive whilst people decide how to act when facing a moral dilemma; in this way we know the correlation between determined cerebral areas and our human acts. We can explain how the ″ethical endowments″ of each person, common to all human beings, is ″embedded″ in the dynamic of cerebral flows. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion related areas of the brain contribute to moral judgement. The outcome of man's natural inclinations is on one hand linked to instinctive systems of animal survival and to basic emotions, and on the other, to the life of each individual human uninhibited by automatism of the biological laws, because he is governed by the laws of freedom. The capacity to formulate an ethical judgement is an innate asset of the human mind. PMID:26546796

  8. The BRAIN Initiative: developing technology to catalyse neuroscience discovery.

    PubMed

    Jorgenson, Lyric A; Newsome, William T; Anderson, David J; Bargmann, Cornelia I; Brown, Emery N; Deisseroth, Karl; Donoghue, John P; Hudson, Kathy L; Ling, Geoffrey S F; MacLeish, Peter R; Marder, Eve; Normann, Richard A; Sanes, Joshua R; Schnitzer, Mark J; Sejnowski, Terrence J; Tank, David W; Tsien, Roger Y; Ugurbil, Kamil; Wingfield, John C

    2015-05-19

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions. PMID:25823863

  9. The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    PubMed Central

    Jorgenson, Lyric A.; Newsome, William T.; Anderson, David J.; Bargmann, Cornelia I.; Brown, Emery N.; Deisseroth, Karl; Donoghue, John P.; Hudson, Kathy L.; Ling, Geoffrey S. F.; MacLeish, Peter R.; Marder, Eve; Normann, Richard A.; Sanes, Joshua R.; Schnitzer, Mark J.; Sejnowski, Terrence J.; Tank, David W.; Tsien, Roger Y.; Ugurbil, Kamil; Wingfield, John C.

    2015-01-01

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions. PMID:25823863

  10. A Novel Human Body Area Network for Brain Diseases Analysis.

    PubMed

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system. PMID:27526187

  11. Left Brain to Right Brain: Notes from the Human Laboratory.

    ERIC Educational Resources Information Center

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  12. Human-specific hypomethylation of CENPJ, a key brain size regulator.

    PubMed

    Shi, Lei; Lin, Qiang; Su, Bing

    2014-03-01

    Both the enlarged brain and concurrent highly developed cognitive skills are often seen as distinctive characteristics that set humans apart from other primates. Despite this obvious differentiation, the genetic mechanisms that underlie such human-specific traits are not clearly understood. In particular, whether epigenetic regulations may play a key role in human brain evolution remain elusive. In this study, we used bisulfite sequencing to compare the methylation patterns of four known genes that regulate brain size (ASPM, CDK5RAP2, CENPJ, and MCPH1) in the prefrontal cortex among several primate species spanning the major lineages of primates (i.e., humans, great apes, lesser apes, and Old World monkeys). The results showed a human-specific hypomethylation in the 5' UTR of CENPJ in the brain, where methylation levels among humans are only about one-third of those found among nonhuman primates. Similar methylation patterns were also detected in liver, kidney, and heart tissues, although the between-species differences were much less pronounced than those in the brain. Further in vitro methylation assays indicated that the methylation status of the CENPJ promoter could influence its expression. We also detected a large difference in CENPJ expression in the human and nonhuman primate brains of both adult individuals and throughout the major stages of fetal brain development. The hypomethylation and comparatively high expression of CENPJ in the central nervous system of humans suggest that a human-specific--and likely heritable--epigenetic modification likely occurred during human evolution, potentially leading to a much larger neural progenitor pool during human brain development, which may have eventually contributed to the dramatically enlarged brain and highly developed cognitive abilities associated with humans. PMID:24288161

  13. Identification and Analysis of Intermediate Size Noncoding RNAs in the Human Fetal Brain

    PubMed Central

    Chen, Xiaoyan; Fan, Zhen; Chen, Runsheng

    2011-01-01

    The involvement of noncoding RNAs (ncRNAs) in the development of the human brain remains largely unknown. Applying a cloning strategy for detection of intermediate size (50–500 nt) ncRNAs (is-ncRNAs) we have identified 82 novel transcripts in human fetal brain tissue. Most of the novel is-ncRNAs are not well conserved in vertebrates, and several transcripts were only found in primates. Northern blot and microarray analysis indicated considerable variation in expression across human fetal brain development stages and fetal tissues for both novel and known is-ncRNAs. Expression of several of the novel is-ncRNAs was conspicuously absent in one or two brain cancer cell lines, and transient overexpression of some transcripts in cancer cells significantly inhibited cell proliferation. Overall, our results suggest that is-ncRNAs play important roles in the development and tumorigenesis of human brain. PMID:21789175

  14. Sex differences in the structural connectome of the human brain.

    PubMed

    Ingalhalikar, Madhura; Smith, Alex; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2014-01-14

    Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes. PMID:24297904

  15. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  16. Dynamic analysis of the human brain with complex cerebral sulci.

    PubMed

    Tseng, Jung-Ge; Huang, Bo-Wun; Ou, Yi-Wen; Yen, Ke-Tien; Wu, Yi-Te

    2016-07-01

    The brain is one of the most vulnerable organs inside the human body. Head accidents often appear in daily life and are easy to cause different level of brain damage inside the skull. Once the brain suffered intense locomotive impact, external injuries, falls, or other accidents, it will result in different degrees of concussion. This study employs finite element analysis to compare the dynamic characteristics between the geometric models of an assumed simple brain tissue and a brain tissue with complex cerebral sulci. It is aimed to understand the free vibration of the internal brain tissue and then to protect the brain from injury caused by external influences. Reverse engineering method is used for a Classic 5-Part Brain (C18) model produced by 3B Scientific Corporation. 3D optical scanner is employed to scan the human brain structure model with complex cerebral sulci and imported into 3D graphics software to construct a solid brain model to simulate the real complex brain tissue. Obtaining the normal mode analysis by inputting the material properties of the true human brain into finite element analysis software, and then to compare the simplified and the complex of brain models. PMID:27459595

  17. Cognitive neuroscience 2.0: building a cumulative science of human brain function

    PubMed Central

    Yarkoni, Tal; Poldrack, Russell A.; Van Essen, David C.; Wager, Tor D.

    2010-01-01

    Cognitive neuroscientists increasingly recognize that continued progress in understanding human brain function will require not only the acquisition of new data, but also the synthesis and integration of data across studies and laboratories. Here we review ongoing efforts to develop a more cumulative science of human brain function. We discuss the rationale for an increased focus on formal synthesis of the cognitive neuroscience literature, provide an overview of recently developed tools and platforms designed to facilitate the sharing and integration of neuroimaging data, and conclude with a discussion of several emerging developments that hold even greater promise in advancing the study of human brain function. PMID:20884276

  18. Spread of epileptic activity in human brain

    NASA Astrophysics Data System (ADS)

    Milton, John

    1997-03-01

    For many patients with medically refractory epilepsy surgical resection of the site of seizure onset (epileptic focus) offers the best hope for cure. Determination of the nature of seizure propagation should lead to improved methods for locating the epileptic focus (and hence reduce patient morbidity) and possibly to new treatment modalities directed at blocking seizure spread. Theoretical studies of neural networks emphasize the role of traveling waves for the propagation of activity. However, the nature of seizure propagation in human brain remains poorly characterized. The spread of epileptic activity in patients undergoing presurgical evaluation for epilepsy surgery was measured by placing subdural grids of electrodes (interelectrode spacings of 3-10 mm) over the frontal and temporal lobes. The exact location of each electrode relative to the surface of the brain was determined using 3--D MRI imaging techniques. Thus it is possible to monitor the spread of epileptic activity in both space and time. The observations are discussed in light of models for seizure propagation.

  19. Proton spectroscopic imaging of human brain

    NASA Astrophysics Data System (ADS)

    Moonen, Chrit T. W.; Sobering, Geoffrey; Van Zijl, Peter C. M.; Gillen, Joe; Von Kienlin, Markus; Bizzi, Alberto

    Signals from water and fat can cause artifacts in proton spectroscopic imaging in the human brain. The major problem is variation of the B0 field over a range of several ppm within the sensitive volume of the standard whole-head coil. Here, the coherence-pathway formalism is used to describe and evaluate the origin of artifacts in a double spin-echo (PRESS) sequence. The attenuation of unwanted coherences using pulsed field gradients is described for homogeneous and inhomogeneous B0 fields. The effect of the following parameters on the quality of the spectroscopic images is analyzed: (a) directional order of plane selection, (b) positioning of phase-encode gradients in the sequence, (c) postprocessing spatial windowing, and (d) motion. It is shown that, for a typical echo time of 272 ms, it is not necessary to first select a region of interest within the brain borders when sufficient phase-encode steps are used. Examples of 2D proton spectroscopic images with a nominal voxel volume of 0.85 ml are given for a healthy volunteer and a patient with a low-grade glioma.

  20. Rich-club organization of the newborn human brain

    PubMed Central

    Ball, Gareth; Aljabar, Paul; Zebari, Sally; Tusor, Nora; Arichi, Tomoki; Merchant, Nazakat; Robinson, Emma C.; Ogundipe, Enitan; Rueckert, Daniel; Edwards, A. David; Counsell, Serena J.

    2014-01-01

    Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a “rich club”—a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical–subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants. PMID:24799693

  1. The development of the Drosophila larval brain.

    PubMed

    Hartenstein, Volker; Spindler, Shana; Pereanu, Wayne; Fung, Siaumin

    2008-01-01

    In this chapter we will start out by describing in more detail the progenitors of the nervous system, the neuroblasts and ganglion mother cells. Subsequently we will survey the generic cell types that make up the developing Drosophila brain, namely neurons, glial cells and tracheal cells. Finally, we will attempt a synopsis of the neuronal connectivity of the larval brain that can be deduced from the analysis of neural lineages and their relationship to neuropile compartments. PMID:18683635

  2. Reading skill and structural brain development

    PubMed Central

    Houston, S.M.; Lebel, C.; Katzir, T.; Manis, F.R.; Kan, E.; Rodriguez, G.R.; Sowell, E.R.

    2014-01-01

    Reading is a learned skill that is likely influenced by both brain maturation and experience. Functional imaging studies have identified brain regions important for skilled reading, but the structural brain changes that co-occur with reading acquisition remain largely unknown. We investigated maturational volume changes in brain reading regions and their association with performance on reading measures. Sixteen typically developing children (5-15 years old, 8 male, mean age of sample=10.06 ±3.29) received two magnetic resonance imaging (MRI) scans, (mean inter-scan interval =2.19 years), and were administered a battery of cognitive measures. Volume changes between time points in five bilateral cortical regions of interest were measured, and assessed for relationships to three measures of reading. Better baseline performances on measures of word reading, fluency and rapid naming, independent of age and total cortical gray matter volume change, were associated with volume decrease in the left inferior parietal cortex. Better baseline performance on a rapid naming measure was associated with volume decrease in the left inferior frontal region. These results suggest that children who are better readers, and who perhaps read more than less skilled readers, exhibit different development trajectories in brain reading regions. Understanding relationships between reading performance, reading experience and brain maturation trajectories may help with the development and evaluation of targeted interventions. PMID:24407200

  3. Transolfactory neuroinvasion by viruses threatens the human brain.

    PubMed

    Mori, I

    2015-12-01

    Viral neuroinvasion via the olfactory system has been investigated in a variety of virus-animal models by scientists in many fields including virologists, pathologists, and neurologists. In humans, herpes simplex virus type 1 (HSV-1), human herpesvirus 6 (HHV-6), Borna disease virus, rabies virus, and influenza A virus have been shown to take the olfactory route for neuroinvasion based on forensic and post-mortem specimens. This article briefly summarizes the anatomy, physiology, and immunology of the olfactory system and presents a battery of neurovirulent viruses that may threaten the human brain by invading through this peripheral pathway, especially focusing on two of the most intensively studied viruses--HSV-1 and influenza A virus. Viruses may insidiously invade the olfactory neural network not only to precipitate encephalitis/encephalopathy but also to promote the development of neurodegenerative and demyelinating disorders. Substantial information obtained by analyzing human specimens is required to argue for or against this hypothesis. PMID:26666182

  4. [The effects of alcohol on the developing brain].

    PubMed

    Zimatkin, S M; bon', E I

    2014-01-01

    In the review the literature data on the effect of alcohol on the developing brain of human and animals are summarized. The information is presented on the neuroimaging, histological, cellular and molecular-genetic disturbances in the brain in fetal alcohol syndrome and following exposure to alcohol during the early postnatal period. The structural developmental abnormalities of the different parts of the brain, disorders of neurogenesis and neuronal apoptosis, changes in metabolism, receptors and secondary signals system of neurons are described. Prenatal alcohol exposure causes significant, various long-term disturbances of the brain structures at the organ, tissue, cellular and subcellular level, which may lay in the basis of the observed neurological, behavioral and metal disorders. PMID:25282832

  5. The Evolution of Brains from Early Mammals to Humans

    PubMed Central

    Kaas, Jon H.

    2012-01-01

    The large size and complex organization of the human brain makes it unique among primate brains. In particular, the neocortex constitutes about 80% of the brain, and this cortex is subdivided into a large number of functionally specialized regions, the cortical areas. Such a brain mediates accomplishments and abilities unmatched by any other species. How did such a brain evolve? Answers come from comparative studies of the brains of present-day mammals and other vertebrates in conjunction with information about brain sizes and shapes from the fossil record, studies of brain development, and principles derived from studies of scaling and optimal design. Early mammals were small, with small brains, an emphasis on olfaction, and little neocortex. Neocortex was transformed from the single layer of output pyramidal neurons of the dorsal cortex of earlier ancestors to the six layers of all present-day mammals. This small cap of neocortex was divided into 20–25 cortical areas, including primary and some of the secondary sensory areas that characterize neocortex in nearly all mammals today. Early placental mammals had a corpus callosum connecting the neocortex of the two hemispheres, a primary motor area, M1, and perhaps one or more premotor areas. One line of evolution, Euarchontoglires, led to present-day primates, tree shrews, flying lemurs, rodents and rabbits. Early primates evolved from small-brained, nocturnal, insect-eating mammals with an expanded region of temporal visual cortex. These early nocturnal primates were adapted to the fine branch niche of the tropical rainforest by having an even more expanded visual system that mediated visually guided reaching and grasping of insects, small vertebrates, and fruits. Neocortex was greatly expanded, and included an array of cortical areas that characterize neocortex of all living primates. Specializations of the visual system included new visual areas that contributed to a dorsal stream of visuomotor processing in a

  6. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  7. Bisphenol A, an endocrine-disrupting chemical, and brain development.

    PubMed

    Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2012-08-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in various industries and the field of dentistry. The consequent increase in BPA exposure among humans has led us to some concerns regarding the potential deleterious effects on reproduction and brain development. The emphasis of this review is on the effects of prenatal and lactational exposure to low doses of BPA on brain development in mice. We demonstrated that prenatal exposure to BPA affected fetal murine neocortical development by accelerating neuronal differentiation/migration during the early embryonic stage, which was associated with up- and down-regulation of the genes critical for brain development, including the basic helix-loop-helix transcription factors. In the adult mice brains, both abnormal neocortical architecture and abnormal corticothalamic projections persisted in the group exposed to the BPA. Functionally, BPA exposure disturbed murine behavior, accompanied with a disrupted neurotransmitter system, including monoamines, in the postnatal development period and in adult mice. We also demonstrated that epigenetic alterations in promoter-associated CpG islands might underlie some of the effects on brain development after exposure to BPA. PMID:22239237

  8. Brain Development and Early Learning: Research on Brain Development. Quality Matters. Volume 1, Winter 2007

    ERIC Educational Resources Information Center

    Edie, David; Schmid, Deborah

    2007-01-01

    For decades researchers have been aware of the extraordinary development of a child's brain during the first five years of life. Recent advances in neuroscience have helped crystallize earlier findings, bringing new clarity and understanding to the field of early childhood brain development. Children are born ready to learn. They cultivate 85…

  9. Fetal Brain Behavior and Cognitive Development.

    ERIC Educational Resources Information Center

    Joseph, R.

    2000-01-01

    Presents information on prenatal brain development, detailing the functions controlled by the medulla, pons, and midbrain, and the implications for cognitive development. Concludes that fetal cognitive motor activity, including auditory discrimination, orienting, the wake-sleep cycle, fetal heart rate accelerations, and defensive reactions,…

  10. Positive Youth Cultures and the Developing Brain

    ERIC Educational Resources Information Center

    Laursen, Erik K.

    2009-01-01

    The maturation of the adolescent brain is focused on two tasks: developing autonomy and understanding self in context of the community. Therefore, parents and other adults must assure that young people have multiple opportunities to interact in supportive environments where they can develop the capacity to self-regulate and achieve autonomy.…

  11. The Brain and Development of Function.

    ERIC Educational Resources Information Center

    Touwen, Bert C. L.

    1998-01-01

    Examines the weak relationship between structural and functional brain development. Maintains that variability is the basic characteristic of normal development, and that involves the ability to construct pluriform strategies and to select the proper strategy in any particular situation. Argues that McGraw recognized intra- and inter-individual…

  12. Aligning Technology Education Teaching with Brain Development

    ERIC Educational Resources Information Center

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  13. Still Developing: Teenagers, Brains, and the Arts

    ERIC Educational Resources Information Center

    Smith, Claire Annelise

    2011-01-01

    In seeking an understanding of the teenage brain, this author was struck by the interplay between the development of executive functioning and the development of the system that controls emotions and memory. This in turn has impacted her work as a member of faculty at a seminary with responsibilities for both directing a program with high school…

  14. In vitro prediction of human intestinal absorption and blood-brain barrier partitioning: development of a lipid analog for micellar liquid chromatography.

    PubMed

    De Vrieze, Mike; Janssens, Pieter; Szucs, Roman; Van der Eycken, Johan; Lynen, Frédéric

    2015-09-01

    Over the past decades, several in vitro methods have been tested for their ability to predict either human intestinal absorption (HIA) or penetration across the blood-brain barrier (BBB) of drugs. Micellar liquid chromatography (MLC) has been a successful approach for retention time measurements of drugs to establish models together with other molecular descriptors. Thus far, MLC approaches have only made use of commercial surfactants such as sodium dodecyl sulfate (SDS) and polyoxyethylene (23) lauryl ether (Brij35), which are not representative for the phospholipids present in human membranes. Miltefosine, a phosphocholine-based lipid, is presented here as an alternative surfactant for MLC measurements. By using the obtained retention factors and several computed descriptors for a set of 48 compounds, two models were constructed: one for the prediction of HIA and another for the prediction of penetration across the BBB expressed as log BB. All data were correlated to experimental HIA and log BB values, and the performance of the models was evaluated. Log BB prediction performed better than HIA prediction, although HIA prediction was also improved a lot (from 0.5530 to 0.7175) compared to in silico predicted HIA values. PMID:26277183

  15. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    PubMed

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching. PMID:24336036

  16. Neanderthal brain size at birth provides insights into the evolution of human life history

    PubMed Central

    Ponce de León, Marcia S.; Golovanova, Lubov; Doronichev, Vladimir; Romanova, Galina; Akazawa, Takeru; Kondo, Osamu; Ishida, Hajime; Zollikofer, Christoph P. E.

    2008-01-01

    From birth to adulthood, the human brain expands by a factor of 3.3, compared with 2.5 in chimpanzees [DeSilva J and Lesnik J (2006) Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. J Hum Evol 51: 207–212]. How the required extra amount of human brain growth is achieved and what its implications are for human life history and cognitive development are still a matter of debate. Likewise, because comparative fossil evidence is scarce, when and how the modern human pattern of brain growth arose during evolution is largely unknown. Virtual reconstructions of a Neanderthal neonate from Mezmaiskaya Cave (Russia) and of two Neanderthal infant skeletons from Dederiyeh Cave (Syria) now provide new comparative insights: Neanderthal brain size at birth was similar to that in recent Homo sapiens and most likely subject to similar obstetric constraints. Neanderthal brain growth rates during early infancy were higher, however. This pattern of growth resulted in larger adult brain sizes but not in earlier completion of brain growth. Because large brains growing at high rates require large, late-maturing, mothers [Leigh SR and Blomquist GE (2007) in Campbell CJ et al. Primates in perspective; pp 396–407], it is likely that Neanderthal life history was similarly slow, or even slower-paced, than in recent H. sapiens. PMID:18779579

  17. Brain Development and Its Relationship to Early Childhood Education.

    ERIC Educational Resources Information Center

    Slegers, Brenda

    New research on brain development has profound implications in the areas of child development and education. This review of the research describes how the brain develops to shape children's growing intelligence, addressing such questions as: (1) What are the brain's functions? (2) What are the critical or sensitive periods in brain development?…

  18. miRNAs in brain development

    SciTech Connect

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function.

  19. Human pancreas development.

    PubMed

    Jennings, Rachel E; Berry, Andrew A; Strutt, James P; Gerrard, David T; Hanley, Neil A

    2015-09-15

    A wealth of data and comprehensive reviews exist on pancreas development in mammals, primarily mice, and other vertebrates. By contrast, human pancreatic development has been less comprehensively reviewed. Here, we draw together those studies conducted directly in human embryonic and fetal tissue to provide an overview of what is known about human pancreatic development. We discuss the relevance of this work to manufacturing insulin-secreting β-cells from pluripotent stem cells and to different aspects of diabetes, especially permanent neonatal diabetes, and its underlying causes. PMID:26395141

  20. The developing brain in a multitasking world

    PubMed Central

    Rothbart, Mary K.; Posner, Michael I.

    2015-01-01

    To understand the problem of multitasking, it is necessary to examine the brain’s attention networks that underlie the ability to switch attention between stimuli and tasks and to maintain a single focus among distractors. In this paper we discuss the development of brain networks related to the functions of achieving the alert state, orienting to sensory events, and developing self-control. These brain networks are common to everyone, but their efficiency varies among individuals and reflects both genes and experience. Training can alter brain networks. We consider two forms of training: (1) practice in tasks that involve particular networks, and (2) changes in brain state through such practices as meditation that may influence many networks. Playing action video games and multitasking are themselves methods of training the brain that can lead to improved performance but also to overdependence on media activity. We consider both of these outcomes and ideas about how to resist overdependence on media. Overall, our paper seeks to inform the reader about what has been learned about attention that can influence multitasking over the course of development. PMID:25821335

  1. State of the Art Review: Poverty and the Developing Brain.

    PubMed

    Johnson, Sara B; Riis, Jenna L; Noble, Kimberly G

    2016-04-01

    In the United States, >40% of children are either poor or near-poor. As a group, children in poverty are more likely to experience worse health and more developmental delay, lower achievement, and more behavioral and emotional problems than their more advantaged peers; however, there is broad variability in outcomes among children exposed to similar conditions. Building on a robust literature from animal models showing that environmental deprivation or enrichment shapes the brain, there has been increasing interest in understanding how the experience of poverty may shape the brain in humans. In this review, we summarize research on the relationship between socioeconomic status and brain development, focusing on studies published in the last 5 years. Drawing on a conceptual framework informed by animal models, we highlight neural plasticity, epigenetics, material deprivation (eg, cognitive stimulation, nutrient deficiencies), stress (eg, negative parenting behaviors), and environmental toxins as factors that may shape the developing brain. We then summarize the existing evidence for the relationship between child poverty and brain structure and function, focusing on brain areas that support memory, emotion regulation, and higher-order cognitive functioning (ie, hippocampus, amygdala, prefrontal cortex) and regions that support language and literacy (ie, cortical areas of the left hemisphere). We then consider some limitations of the current literature and discuss the implications of neuroscience concepts and methods for interventions in the pediatric medical home. PMID:26952506

  2. MCPH1: a window into brain development and evolution

    PubMed Central

    Pulvers, Jeremy N.; Journiac, Nathalie; Arai, Yoko; Nardelli, Jeannette

    2015-01-01

    The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene. PMID:25870538

  3. Measuring complexity and synchronization phenomena in the human epileptic brain

    NASA Astrophysics Data System (ADS)

    Lehnertz, Klaus

    2006-03-01

    The framework of the theory of nonlinear dynamics provides new concepts and powerful algorithms to study complicated dynamics such as the human electroencephalogram (EEG). Although different influencing factors render the use of nonlinear measures (such as measures for complexity, synchronization, or interdependencies) in a strict sense problematic, converging evidence from various investigations now indicates that nonlinear EEG analysis provides a means to reliably characterize different states of normal and pathological brain function and thus, promises to be important for clinical practice. This talk will focus on applications of nonlinear EEG analysis in epileptology. Epilepsy affects more than 50 million individuals worldwide - approximately 1 % of the world's population. The disease is characterized by a recurrent and sudden malfunction of the brain that is termed seizure. Epileptic seizures are the clinical manifestation of an excessive and hypersynchronous activity of neurons in the brain. It is assumed that seizure activity will be induced when a critical mass of neurons is progressively involved in closely time-linked high frequency discharging. Recent investigations of intracranially recorded EEG involving nonlinear time series analysis techniques indicate that this build up of a critical mass can indeed be tracked over time scales lasting minutes to hours. Future real-time analysis devices may enable both investigations of basic mechanisms leading to seizure initiation in humans and the development of adequate seizure warning and prevention strategies.

  4. Specialization in the human brain: the case of numbers.

    PubMed

    Cohen Kadosh, Roi; Bahrami, Bahador; Walsh, Vincent; Butterworth, Brian; Popescu, Tudor; Price, Cathy J

    2011-01-01

    How numerical representation is encoded in the adult human brain is important for a basic understanding of human brain organization, its typical and atypical development, its evolutionary precursors, cognitive architectures, education, and rehabilitation. Previous studies have shown that numerical processing activates the same intraparietal regions irrespective of the presentation format (e.g., symbolic digits or non-symbolic dot arrays). This has led to claims that there is a single format-independent, numerical representation. In the current study we used a functional magnetic resonance adaptation paradigm, and effective connectivity analysis to re-examine whether numerical processing in the intraparietal sulci is dependent or independent on the format of the stimuli. We obtained two novel results. First, the whole brain analysis revealed that format change (e.g., from dots to digits), in the absence of a change in magnitude, activated the same intraparietal regions as magnitude change, but to a greater degree. Second, using dynamic causal modeling as a tool to disentangle neuronal specialization across regions that are commonly activated, we found that the connectivity between the left and right intraparietal sulci is format-dependent. Together, this line of results supports the idea that numerical representation is subserved by multiple mechanisms within the same parietal regions. PMID:21808615

  5. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  6. Canonical genetic signatures of the adult human brain.

    PubMed

    Hawrylycz, Michael; Miller, Jeremy A; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L; Jegga, Anil G; Aronow, Bruce J; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F; Dierker, Donna L; Menche, Jörg; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R; Jones, Allan; Van Essen, David C; Koch, Christof; Lein, Ed

    2015-12-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  7. Human brain networks function in connectome-specific harmonic waves

    PubMed Central

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call ‘connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory–inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation–inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267

  8. Notch-1 Signalling Is Activated in Brain Arteriovenous Malformations in Humans

    ERIC Educational Resources Information Center

    ZhuGe, Qichuan; Zhong, Ming; Zheng, WeiMing; Yang, Guo-Yuan; Mao, XiaoOu; Xie, Lin; Chen, Gourong; Chen, Yongmei; Lawton, Michael T.; Young, William L.; Greenberg, David A.; Jin, Kunlin

    2009-01-01

    A role for the Notch signalling pathway in the formation of arteriovenous malformations during development has been suggested. However, whether Notch signalling is involved in brain arteriovenous malformations in humans remains unclear. Here, we performed immunohistochemistry on surgically resected brain arteriovenous malformations and found that,…

  9. Marketing Human Resource Development.

    ERIC Educational Resources Information Center

    Frank, Eric, Ed.

    1994-01-01

    Describes three human resource development activities: training, education, and development. Explains marketing from the practitioners's viewpoint in terms of customer orientation; external and internal marketing; and market analysis, research, strategy, and mix. Shows how to design, develop, and implement strategic marketing plans and identify…

  10. Trim69 regulates zebrafish brain development by ap-1 pathway

    PubMed Central

    Han, Ruiqin; Wang, Renxian; Zhao, Qing; Han, Yongqing; Zong, Shudong; Miao, Shiying; Song, Wei; Wang, Linfang

    2016-01-01

    Proteins belonging to the TRIM family have been implicated in a variety of cellular processes such as apoptosis, differentiation, neurogenesis, muscular physiology and innate immune responses. Trim69, previously identified as a novel gene cloned from a human testis cDNA library, has a homologous gene in zebrafish and this study focused on investigating the function of trim69 in zebrafish neurogenesis. Trim69 was found to be expressed in zebrafish embryo brain at the early stages. Knockdown of trim69 led to deformed brain development, obvious signs of apoptosis present in the head, and decreased expression of neuronal differentiation and stem cell markers. This phenotype was rescued upon co-injection of human mRNA together along with the trim69 knockdown. Results of this study also showed an interaction between TRIM69 and c-Jun in human cells, and upon TRIM69 knock down c-Jun expression subsequently increased, whereas the over-expression of TRIM69 led to the down-regulation of c-Jun. Additionally, knockdown both c-Jun and trim69 can rescue the deformed brain, evident cellular apoptosis in the head and decreased expression of neuronal differentiation and stem cell markers. Overall, our results support a role for trim69 in the development of the zebrafish brain through ap-1 pathway. PMID:27050765

  11. Sex beyond the genitalia: The human brain mosaic.

    PubMed

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-12-15

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains ("female brain" or "male brain"). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only "male" or only "female" features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the "maleness-femaleness" continuum are rare. Rather, most brains are comprised of unique "mosaics" of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  12. A supervised patch-based approach for human brain labeling

    PubMed Central

    Rousseau, François; Habas, Piotr A.; Studholme, Colin

    2012-01-01

    We propose in this work a patch-based image labeling method relying on a label propagation framework. Based on image intensity similarities between the input image and an anatomy textbook, an original strategy which does not require any non-rigid registration is presented. Following recent developments in non-local image denoising, the similarity between images is represented by a weighted graph computed from an intensity-based distance between patches. Experiments on simulated and in-vivo MR images show that the proposed method is very successful in providing automated human brain labeling. PMID:21606021

  13. Medical Perspectives on Brain Damage and Development. Revised.

    ERIC Educational Resources Information Center

    McCrae, Marcia Q.

    The author describes damage and normal development of the brain, as well as assessment and intervention with brain-damaged children. After a brief introduction on the complex and delicate process of brain development and a review of incidence, aspects of etiology such as genetic and postnatal causes are discussed. Brain development is examined…

  14. Brain Basics: Know Your Brain

    MedlinePlus

    ... fact sheet is a basic introduction to the human brain. It may help you understand how the healthy ... largest and most highly developed part of the human brain: it consists primarily of the cerebrum ( 2 ) and ...

  15. Stress, Early Brain Development, and Behavior.

    ERIC Educational Resources Information Center

    Gunnar, Megan R.; Barr, Ronald G.

    1998-01-01

    Reviews research on the effect of stress hormones, particularly glucocorticoids, on the brain and early development. It describes the psychological and social processes that reduce stress hormone responses to threatening and painful procedures. Research on the cognitive and emotional effects of synthetic glucocorticoids is also discussed.…

  16. Nutrition and brain development: social policy implications.

    PubMed

    Tanner, Emily M; Finn-Stevenson, Matia

    2002-04-01

    Undernutrition among young children is widespread in the United States and has a detrimental impact on brain development. This article explores the risks associated with undernutrition and the potential for recovery when diet and the environment improve. Three policy implications are discussed: (a) increasing access to federal food programs, (b) promoting breastfeeding, and (c) working toward reducing child poverty. PMID:15792058

  17. Cognitive Development in Children with Brain Damage.

    ERIC Educational Resources Information Center

    Bortner, Morton

    Presented is a report on a cross-sectional and longitudinal study concerned with the course of intellectual development in 210 children (6-12 years old) educationally designated as brain damaged (learning disabled and/or behavior problems) and assigned to special school placement. The report is divided into four sections which focus on…

  18. Relations between Brain and Cognitive Development.

    ERIC Educational Resources Information Center

    Fischer, Kurt W.

    1987-01-01

    The developmental pattern of concurrent synaptogenesis in rhesus monkeys is consistent with a straightforward model of relations between brain and cognitive development. Concurrent synaptogenesis is hypothesized to lay the primary cortical foundation for a series of developmental levels in middle infancy that have been empirically documented in…

  19. Evolution of human brain functions: the functional structure of human consciousness.

    PubMed

    Cloninger, C Robert

    2009-11-01

    The functional structure of self-aware consciousness in human beings is described based on the evolution of human brain functions. Prior work on heritable temperament and character traits is extended to account for the quantum-like and holographic properties (i.e. parts elicit wholes) of self-aware consciousness. Cladistic analysis is used to identify the succession of ancestors leading to human beings. The functional capacities that emerge along this lineage of ancestors are described. The ecological context in which each cladogenesis occurred is described to illustrate the shifting balance of evolution as a complex adaptive system. Comparative neuroanatomy is reviewed to identify the brain structures and networks that emerged coincident with the emergent brain functions. Individual differences in human temperament traits were well developed in the common ancestor shared by reptiles and humans. Neocortical development in mammals proceeded in five major transitions: from early reptiles to early mammals, early primates, simians, early Homo, and modern Homo sapiens. These transitions provide the foundation for human self-awareness related to sexuality, materiality, emotionality, intellectuality, and spirituality, respectively. The functional structure of human self-aware consciousness is concerned with the regulation of five planes of being: sexuality, materiality, emotionality, intellectuality, and spirituality. Each plane elaborates neocortical functions organized around one of the five special senses. The interactions among these five planes gives rise to a 5 x 5 matrix of subplanes, which are functions that coarsely describe the focus of neocortical regulation. Each of these 25 neocortical functions regulates each of five basic motives or drives that can be measured as temperaments or basic emotions related to fear, anger, disgust, surprise, and happiness/sadness. The resulting 5 x 5 x 5 matrix of human characteristics provides a general and testable model of the

  20. Future developments in brain-machine interface research

    PubMed Central

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition. PMID:21779720

  1. Development of the Brain's Functional Network Architecture

    PubMed Central

    Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.

    2013-01-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563

  2. Total Brain Death and the Integration of the Body Required of a Human Being.

    PubMed

    Lee, Patrick

    2016-06-01

    I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change-the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. PMID:27097647

  3. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity

    PubMed Central

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2016-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  4. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity.

    PubMed

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2015-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  5. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  6. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    between CSDM - BrIC and MPS - BrIC respectively. AIS 3+, 4+ and 5+ field risk of anatomic brain injuries was also estimated using the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) database for crash conditions similar to the frontal NCAP and side impact conditions that the ATDs were tested in. This was done to assess the risk curve ratios derived from HIC risk curves. The results of the study indicated that: (1) the two available human head models - SIMon and GHBMC - were found to be highly correlated when CSDMs and max principal strains were compared; (2) BrIC correlates best to both - CSDM and MPS, and rotational velocity (not rotational acceleration) is the mechanism for brain injuries; and (3) the critical values for angular velocity are directionally dependent, and are independent of the ATD used for measuring them. The newly developed brain injury criterion is a complement to the existing HIC, which is based on translational accelerations. Together, the two criteria may be able to capture most brain injuries and skull fractures occurring in automotive or any other impact environment. One of the main limitations for any brain injury criterion, including BrIC, is the lack of human injury data to validate the criteria against, although some approximation for AIS 2+ injury is given based on the angular velocities calculated at 50% probability of concussion in college football players instrumented with 5 DOF helmet system. Despite the limitations, a new kinematic rotational brain injury criterion - BrIC - may offer a way to capture brain injuries in situations when using translational accelerations based HIC alone may not be sufficient. PMID:24435734

  7. Alcohol-Related Brain Damage in Humans

    PubMed Central

    Erdozain, Amaia M.; Morentin, Benito; Bedford, Lynn; King, Emma; Tooth, David; Brewer, Charlotte; Wayne, Declan; Johnson, Laura; Gerdes, Henry K.; Wigmore, Peter; Callado, Luis F.; Carter, Wayne G.

    2014-01-01

    Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann’s area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics. PMID:24699688

  8. General Anesthesia and Human Brain Connectivity

    PubMed Central

    2012-01-01

    Abstract General anesthesia consists of amnesia, hypnosis, analgesia, and areflexia. Of these, the mechanism of hypnosis, or loss of consciousness, has been the most elusive, yet a fascinating problem. How anesthetic agents suppress human consciousness has been investigated with neuroimaging for two decades. Anesthetics substantially reduce the global cerebral metabolic rate and blood flow with a degree of regional heterogeneity characteristic to the anesthetic agent. The thalamus appears to be a common site of modulation by several anesthetics, but this may be secondary to cortical effects. Stimulus-dependent brain activation is preserved in primary sensory areas, suggesting that unconsciousness cannot be explained by cortical deafferentation or a diminution of cortical sensory reactivity. The effect of general anesthetics in functional and effective connectivity is varied depending on the agent, dose, and network studied. At an anesthetic depth characterized by the subjects' unresponsiveness, a partial, but not complete, reduction in connectivity is generally observed. Functional connectivity of the frontoparietal association cortex is often reduced, but a causal role of this change for the loss of consciousness remains uncertain. Functional connectivity of the nonspecific (intralaminar) thalamic nuclei is preferentially reduced by propofol. Higher-order thalamocortical connectivity is also reduced with certain anesthetics. The changes in functional connectivity during anesthesia induction and emergence do not mirror each other; the recovery from anesthesia may involve increases in functional connectivity above the normal wakeful baseline. Anesthetic loss of consciousness is not a block of corticofugal information transfer, but a disruption of higher-order cortical information integration. The prime candidates for functional networks of the forebrain that play a critical role in maintaining the state of consciousness are those based on the posterior parietal

  9. Adolescent brain development in normality and psychopathology

    PubMed Central

    LUCIANA, MONICA

    2014-01-01

    Since this journal’s inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical–cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology–context interactions, represent the field’s most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled. PMID:24342843

  10. A comprehensive transcriptional map of primate brain development.

    PubMed

    Bakken, Trygve E; Miller, Jeremy A; Ding, Song-Lin; Sunkin, Susan M; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A; Royall, Joshua J; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L; Wohnoutka, Paul; Gibbs, Richard A; Rogers, Jeffrey; Hohmann, John G; Hawrylycz, Michael J; Hevner, Robert F; Molnár, Zoltán; Phillips, John W; Dang, Chinh; Jones, Allan R; Amaral, David G; Bernard, Amy; Lein, Ed S

    2016-07-21

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey. PMID:27409810

  11. Reconstituting a human brain in animals: a Jewish perspective on human sanctity.

    PubMed

    Loike, John D; Tendler, Moshe

    2008-12-01

    The potential use of stem cells in the treatment of a variety of human diseases has been a major driving force for embryonic stem cell research. Another productive area of research has been the use of human stem cells to reconstitute human organ systems in animals in an attempt to create new animal models for human diseases. However, the possibility of transplanting human embryonic brain cells or precursor brain cells into an animal fetus presents numerous ethical challenges. This paper examines, from a Jewish perspective on human dignity, several bioethical concerns related to the reconstitution of animal brains with human neurons. PMID:19143409

  12. Dynamic reconfiguration of human brain networks during learning

    PubMed Central

    Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Carlson, Jean M.; Grafton, Scott T.

    2011-01-01

    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes—flexibility and selection—must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance. PMID:21502525

  13. [Brain evolution of the human from the paleoneurologic viewpoint].

    PubMed

    Brandt, M

    1993-12-01

    Paleoneurology interprets natural or artificial endocasts. It is, therefore, the only method which is able to provide direct information on the ancestry of the human brain. Australopithecus, Homo habilis and Homo erectus are of outstanding importance concerning human evolution. This short review deals with some well-preserved endocasts of these forms. Possibilities and limitations of paleoneurology are discussed with respect to the taxonomic attribution of fossil specimens. Functional aspects of the cortical sulcus pattern can be interpreted rather strictly and is, therefore, of considerably phylogenetic significance. It indicates that even some early hominids exhibit a human-like brain organization (e.g. KNM-ER 1470) while others (such a KNM-ER 1805) feature a rather pongid-like brain organization. However, controversy over the interpretation of endocasts from early hominids continues: It has not been possible to unequivocally demonstrate a human-like feature of the Australopithecus brain. PMID:8285598

  14. Sex beyond the genitalia: The human brain mosaic

    PubMed Central

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains (“female brain” or “male brain”). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only “male” or only “female” features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the “maleness-femaleness” continuum are rare. Rather, most brains are comprised of unique “mosaics” of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  15. Overview of the human brain as a distributed computing network

    SciTech Connect

    Gevins, A.S.

    1983-01-01

    The hierarchically organized human brain is viewed as a prime example of a massively parallel, adaptive information processing and process control system. A brief overview of the human brain is provided for computer architects, in hopes that the principles of massive parallelism, dense connectivity and self-organization of assemblies of processing elements will prove relevant to the design of fifth generation VLSI computing networks. 6 references.

  16. Bisphenol A Interaction With Brain Development and Functions

    PubMed Central

    2015-01-01

    Brain development is an organized, but constantly adaptive, process in which genetic and epigenetic signals allow neurons to differentiate, to migrate, and to develop correct connections. Gender specific prenatal sex hormone milieu participates in the dimorphic development of many neuronal networks. Environmental cues may interfere with these developmental programs, producing adverse outcomes. Bisphenol A (BPA), an estrogenic/antiandrogenic endocrine disruptor widely diffused in the environment, produces adverse effects at levels below the acceptable daily intake. This review analyzes the recent literature on the consequences of perinatal exposure to BPA environmental doses on the development of a dimorphic brain. The BPA interference with the development and function of the neuroendocrine hypothalamus and of the nuclei controlling energy balance, and with the hippocampal memory processing is also discussed. The detrimental action of BPA appears complex, involving different hormonal and epigenetic pathways activated, often in a dimorphic way, within clearcut susceptibility windows. To date, discrepancies in experimental approaches and in related outcomes make unfeasible to translate the available information into clear dose–response models for human risk assessment. Evaluation of BPA brain levels in relation to the appearance of adverse effects in future basic studies will certainly give better definition of the warning threshold for human health. PMID:26672480

  17. Annual Research Review: Parenting and Children's Brain Development--The End of the Beginning

    ERIC Educational Resources Information Center

    Belsky, Jay; de Haan, Michelle

    2011-01-01

    After questioning the practical significance of evidence that parenting influences brain development--while highlighting the scientific importance of such work for understanding "how" family experience shapes human development--this paper reviews evidence suggesting that brain structure and function are "chiselled" by parenting. Although the…

  18. Brain Development in Children. Unit for Child Studies Selected Papers Number 2.

    ERIC Educational Resources Information Center

    Watson, Charles

    This brief seminar presentation for parents and child minders points out aspects of brain development in human infants and provides answers to questions asked by seminar participants. Basic facts of anatomy, including the development of micro- and macroneurons, nerve cell migration, sprouting synapse formation and the death of brain cells are…

  19. Collaborative approach in the development of high-performance brain-computer interfaces for a neuroprosthetic arm: translation from animal models to human control.

    PubMed

    Collinger, Jennifer L; Kryger, Michael A; Barbara, Richard; Betler, Timothy; Bowsher, Kristen; Brown, Elke H P; Clanton, Samuel T; Degenhart, Alan D; Foldes, Stephen T; Gaunt, Robert A; Gyulai, Ferenc E; Harchick, Elizabeth A; Harrington, Deborah; Helder, John B; Hemmes, Timothy; Johannes, Matthew S; Katyal, Kapil D; Ling, Geoffrey S F; McMorland, Angus J C; Palko, Karina; Para, Matthew P; Scheuermann, Janet; Schwartz, Andrew B; Skidmore, Elizabeth R; Solzbacher, Florian; Srikameswaran, Anita V; Swanson, Dennis P; Swetz, Scott; Tyler-Kabara, Elizabeth C; Velliste, Meel; Wang, Wei; Weber, Douglas J; Wodlinger, Brian; Boninger, Michael L

    2014-02-01

    Our research group recently demonstrated that a person with tetraplegia could use a brain-computer interface (BCI) to control a sophisticated anthropomorphic robotic arm with skill and speed approaching that of an able-bodied person. This multiyear study exemplifies important principles in translating research from foundational theory and animal experiments into a clinical study. We present a roadmap that may serve as an example for other areas of clinical device research as well as an update on study results. Prior to conducting a multiyear clinical trial, years of animal research preceded BCI testing in an epilepsy monitoring unit, and then in a short-term (28 days) clinical investigation. Scientists and engineers developed the necessary robotic and surgical hardware, software environment, data analysis techniques, and training paradigms. Coordination among researchers, funding institutes, and regulatory bodies ensured that the study would provide valuable scientific information in a safe environment for the study participant. Finally, clinicians from neurosurgery, anesthesiology, physiatry, psychology, and occupational therapy all worked in a multidisciplinary team along with the other researchers to conduct a multiyear BCI clinical study. This teamwork and coordination can be used as a model for others attempting to translate basic science into real-world clinical situations. PMID:24528900

  20. COLLABORATIVE APPROACH IN THE DEVELOPMENT OF HIGH PERFORMANCE BRAIN-COMPUTER INTERFACES FOR A NEUROPROSTHETIC ARM: TRANSLATION FROM ANIMAL MODELS TO HUMAN CONTROL

    PubMed Central

    Collinger, Jennifer; Kryger, Michael; Barbara, Richard; Betler, Timothy; Bowsher, Kristen; Brown, Elke HP; Clanton, Samuel T.; Degenhart, Alan; Foldes, Stephen; Gaunt, Robert A; Gyulai, Ferenc E; Harchick, Elizabeth A; Harrington, Deborah; Helder, John B; Hemmes, Timothy; Johannes, Matthew S; Katyal, Kapil D; Ling, Geoffrey SF; McMorland, Angus JC; Palko, Karina; Para, Matthew P; Scheuermann, Janet; Schwartz, Andrew; Skidmore, Elizabeth R; Solzbacher, Florian; Srikameswaran, Anita V.; Swanson, Dennis P; Swetz, Scott; Tyler-Kabara, Elizabeth C; Velliste, Meel; Wang, Wei; Weber, Douglas J; Wodlinger, Brian; Boninger, Michael

    2013-01-01

    Our research group recently demonstrated that a person with tetraplegia could use a brain-computer interface (BCI) to control a sophisticated anthropomorphic robotic arm with skill and speed approaching that of an able-bodied person. This multi-year study exemplifies important principles in translating research from foundational theory and animal experiments into a clinical study. We present a roadmap that may serve as an example for other areas of clinical device research as well as an update on study results. Prior to conducting a multi-year clinical trial, years of animal research preceded BCI testing in an epilepsy monitoring unit, and then in a short term (28 days) clinical investigation. Scientists and engineers developed the necessary robotic and surgical hardware, software environment, data analysis techniques, and training paradigms. Coordination among researchers, funding institutes and regulatory bodies ensured that the study would provide valuable scientific information in a safe environment for the study participant. Finally, clinicians from neurosurgery, anesthesiology, physiatry, psychology and occupational therapy all worked in a multidisciplinary team along with the other researchers to conduct a multi-year BCI clinical study. This teamwork and coordination can be used as a model for others attempting to translate basic science into real-world clinical situations. PMID:24528900

  1. Increased morphological asymmetry, evolvability and plasticity in human brain evolution

    PubMed Central

    Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C.

    2013-01-01

    The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with special emphasis on the study of asymmetric variation. Our study reveals that chimpanzee–human differences in cerebral morphology are mainly symmetric; by contrast, there is continuity in asymmetric variation between species, with humans showing an increased range of variation. Moreover, asymmetric variation does not appear to be the result of allometric scaling at intraspecific levels, whereas symmetric changes exhibit very slight allometric effects within each species. Our results emphasize two key properties of brain evolution in the hominine clade: first, evolution of chimpanzee and human brains (and probably their last common ancestor and related species) is not strongly morphologically constrained, thus making their brains highly evolvable and responsive to selective pressures; second, chimpanzee and, especially, human brains show high levels of fluctuating asymmetry indicative of pronounced developmental plasticity. We infer that these two characteristics can have a role in human cognitive evolution. PMID:23615289

  2. Development and Validation of an UPLC-MS/MS Assay for Quantitative Analysis of the Ghrelin Receptor Inverse Agonist PF-5190457 in Human or Rat Plasma and Rat Brain

    PubMed Central

    Ghareeb, Mwlod; Leggio, Lorenzo; El-Kattan, Ayman; Akhlaghi, Fatemeh

    2015-01-01

    PF-5190457 is a ghrelin receptor inverse agonist that is currently undergoing clinical development for the treatment of alcoholism. Our aim was to develop and validate a simple and sensitive assay for quantitative analysis of PF-5190457 in human or rat plasma and rat brain using liquid chromatography-tandem mass spectrometry. The analyte and stable isotope internal standard were extracted from 50 μL plasma or rat brain homogenate by protein precipitation using 0.1% formic acid in acetonitrile. Chromatography was carried on an Acquity UPLC BEH C18 (2.1 mm X 50 mm) with 1.7 μm particle size and 130Å pore size. Flow rate was 0.5 mL/min and total chromatographic run time was 2.2 minutes. Mobile phase consisted of gradient mixture of water: acetonitrile 95:5% (v/v) containing 0.1% formic acid (Solvent A), and 100% acetonitrile containing 0.1% formic acid (Solvent B). Multiple reaction monitoring was carried out in positive electro-spray ionization mode using m/z 513.35 → 209.30 for PF-5190457 and m/z 518.47 → 214.43 for the internal standard. The recovery ranged from 102-118% with CV less than 6% for all matrices. The calibration curves for all matrices were linear over the studied concentration range (R2 ≥ 0.998, n = 3). Lower limit of quantification was 1 ng/mL in rat or human plasma and 0.75 ng/g in rat brain. Intra- and inter-run mean percent accuracy were between 85–115% and percent imprecision was ≤ 15%. The assays were successfully utilized to measure the concentration of PF-5190457 in pre-clinical and clinical pharmacology studies of the compound. PMID:25943263

  3. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  4. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde.

    PubMed

    Korzhevskii, D E; Sukhorukova, E G; Kirik, O V; Grigorev, I P

    2015-01-01

    Tissue fixation is critical for immunohistochemistry. Recently, we developed a zinc-ethanol-formalin fixative (ZEF), and the present study was aimed to assess the applicability of the ZEF for the human brain histology and immunohistochemistry and to evaluate the detectability of different antigens in the human brain fixed with ZEF. In total, 11 antigens were tested, including NeuN, neuron-specific enolase, GFAP, Iba-1, calbindin, calretinin, choline acetyltransferase, glutamic acid decarboxylase (GAD65), tyrosine hydroxylase, synaptophysin, and α-tubulin. The obtained data show that: i) the ZEF has potential for use in general histological practice, where detailed characterization of human brain morphology is needed; ii) the antigens tested are well-preserved in the human brain specimens fixed in the ZEF. PMID:26428887

  5. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size

    PubMed Central

    Kadir, Rotem; Harel, Tamar; Markus, Barak; Perez, Yonatan; Bakhrat, Anna; Cohen, Idan; Volodarsky, Michael; Feintsein-Linial, Miora; Chervinski, Elana; Zlotogora, Joel; Sivan, Sara; Birnbaum, Ramon Y.; Abdu, Uri; Shalev, Stavit; Birk, Ohad S.

    2016-01-01

    Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size. PMID:27008544

  6. Developing Human Performance Measures

    SciTech Connect

    Jeffrey Joe; Bruce Hallbert; Larry Blackwood; Donald Dudehoeffer; Kent Hansen

    2006-05-01

    Through the reactor oversight process (ROP), the U.S. Nuclear Regulatory Commission (NRC) monitors the performance of utilities licensed to operate nuclear power plants. The process is designed to assure public health and safety by providing reasonable assurance that licensees are meeting the cornerstones of safety and designated crosscutting elements. The reactor inspection program, together with performance indicators (PIs), and enforcement activities form the basis for the NRC’s risk-informed, performance based regulatory framework. While human performance is a key component in the safe operation of nuclear power plants and is a designated cross-cutting element of the ROP, there is currently no direct inspection or performance indicator for assessing human performance. Rather, when human performance is identified as a substantive cross cutting element in any 1 of 3 categories (resources, organizational or personnel), it is then evaluated for common themes to determine if follow-up actions are warranted. However, variability in human performance occurs from day to day, across activities that vary in complexity, and workgroups, contributing to the uncertainty in the outcomes of performance. While some variability in human performance may be random, much of the variability may be attributed to factors that are not currently assessed. There is a need to identify and assess aspects of human performance that relate to plant safety and to develop measures that can be used to successfully assure licensee performance and indicate when additional investigation may be required. This paper presents research that establishes a technical basis for developing human performance measures. In particular, we discuss: 1) how historical data already gives some indication of connection between human performance and overall plant performance, 2) how industry led efforts to measure and model human performance and organizational factors could serve as a data source and basis for a

  7. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. PMID:26595445

  8. Human Development Student Modules.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This set of 61 student learning modules deals with various topics pertaining to human development. The modules, which are designed for use in performance-based vocational education programs, each contain the following components: an introduction for the student, a performance objective, a variety of learning activities, content information, a…

  9. Strategic Human Resource Development.

    ERIC Educational Resources Information Center

    Garavan, Thomas N.

    1991-01-01

    Reviews literature on strategic human resource development (HRD) focusing on the characteristics of such activities, conditions necessary for the promotion of HRD, and the benefits to an organization pursuing such activities. Empirical evidence is presented on HRD policy formation and planning processes in Irish high technology companies. (JOW)

  10. Developing Human Resources.

    ERIC Educational Resources Information Center

    Nadler, Leonard

    This book attempts to capture the essence of a rapidly emerging field, that of Human Resource Development (HRD). HRD includes improving performance on the present job (training), preparing individuals for future but identifiable jobs within the organization (education), and helping individuals grow to meet future organizational growth…

  11. "Healthy" Human Development Indices

    ERIC Educational Resources Information Center

    Engineer, Merwan; Roy, Nilanjana; Fink, Sari

    2010-01-01

    In the Human Development Index (HDI), life expectancy is the only indicator used in modeling the dimension "a long and healthy life". Whereas life expectancy is a direct measure of quantity of life, it is only an indirect measure of healthy years lived. In this paper we attempt to remedy this omission by introducing into the HDI the morbidity…

  12. Do glutathione levels decline in aging human brain?

    PubMed

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. PMID:26845616

  13. The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity

    PubMed Central

    DeFelipe, Javier

    2011-01-01

    The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of microcircuits with a similar basic structure, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective. PMID:21647212

  14. On-line optical imaging of the human brain with 160-ms temporal resolution

    NASA Astrophysics Data System (ADS)

    Franceschini, Maria Angela; Toronov, Vladislav; Filiaci, M.; Gratton, Enrico; Fantini, Sergio

    2000-01-01

    We have developed an instrument for non-invasive optical imaging of the human brain that produces on-line images with a temporal resolution of 160 ms. The imaged quantities are the temporal changes in cerebral oxy-hemoglobin and deoxy-hemoglobin concentrations. We report real-time videos of the arterial pulsation and motor activation recorded on a 4 x 9 cm 2 area of the cerebral cortex in a healthy human subject. This approach to optical brain imaging is a powerful tool for the investigation of the spatial and temporal features of the optical signals collected on the brain.

  15. Neuroethics of deep brain stimulation for mental disorders: brain stimulation reward in humans.

    PubMed

    Oshima, Hideki; Katayama, Yoichi

    2010-01-01

    The theoretical basis of some deep brain stimulation (DBS) trials undertaken in the early years was the phenomenon of "brain stimulation reward (BSR)," which was first identified in rats. The animals appeared to be rewarded by pleasure caused by the stimulation of certain brain regions (reward system), such as the septal area. "Self-stimulation" experiments, in which rats were allowed to stimulate their own brain by pressing a freely accessible lever, they quickly learned lever pressing and sometimes continued to stimulate until they exhausted themselves. BSR was also observed with DBS of the septal area in humans. DBS trials in later years were undertaken on other theoretical bases, but unexpected BSR was sometimes induced by stimulation of some areas, such as the locus coeruleus complex. When BSR was induced, the subjects experienced feelings that were described as "cheerful," "alert," "good," "well-being," "comfort," "relaxation," "joy," or "satisfaction." Since the DBS procedure is equivalent to a "self-stimulation" experiment, they could become "addicted to the stimulation itself" or "compulsive about the stimulation," and stimulate themselves "for the entire day," "at maximum amplitude" and, in some instances, "into convulsions." DBS of the reward system has recently been applied to alleviate anhedonia in patients with refractory major depression. Although this approach appears promising, there remains a difficult problem: who can adjust their feelings and reward-oriented behavior within the normal range? With a self-stimulation procedure, the BSR may become uncontrollable. To develop DBS to the level of a standard therapy for mental disorders, we need to discuss "Who has the right to control the mental condition?" and "Who makes decisions" on "How much control is appropriate?" in daily life. PMID:20885119

  16. Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development

    PubMed Central

    Goyal, Manu S.; Venkatesh, Siddarth; Milbrandt, Jeffrey; Gordon, Jeffrey I.; Raichle, Marcus E.

    2015-01-01

    The human gut contains a microbial community composed of tens of trillions of organisms that normally assemble during the first 2–3 y of postnatal life. We propose that brain development needs to be viewed in the context of the developmental biology of this “microbial organ” and its capacity to metabolize the various diets we consume. We hypothesize that the persistent cognitive abnormalities seen in children with undernutrition are related in part to their persistent gut microbiota immaturity and that specific regions of the brain that normally exhibit persistent juvenile (neotenous) patterns of gene expression, including those critically involved in various higher cognitive functions such as the brain’s default mode network, may be particularly vulnerable to the effects of microbiota immaturity in undernourished children. Furthermore, we postulate that understanding the interrelationships between microbiota and brain metabolism in childhood undernutrition could provide insights about responses to injury seen in adults. We discuss approaches that can be used to test these hypotheses, their ramifications for optimizing nutritional recommendations that promote healthy brain development and function, and the potential societal implications of this area of investigation. PMID:26578751

  17. The shape of the human language-ready brain.

    PubMed

    Boeckx, Cedric; Benítez-Burraco, Antonio

    2014-01-01

    Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals-Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny. PMID:24772099

  18. The shape of the human language-ready brain

    PubMed Central

    Boeckx, Cedric; Benítez-Burraco, Antonio

    2014-01-01

    Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny. PMID:24772099

  19. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  20. Training the developing brain: a neurocognitive perspective

    PubMed Central

    Jolles, Dietsje D.; Crone, Eveline A.

    2012-01-01

    Developmental training studies are important to increase our understanding of the potential of the developing brain by providing answers to questions such as: “Which functions can and which functions cannot be improved as a result of practice?,” “Is there a specific period during which training has more impact?,” and “Is it always advantageous to train a particular function?”In addition, neuroimaging methods provide valuable information about the underlying mechanisms that drive cognitive plasticity. In this review, we describe how neuroscientific studies of training effects inform us about the possibilities of the developing brain, pointing out that childhood is a special period during which training may have different effects. We conclude that there is much complexity in interpreting training effects in children. Depending on the type of training and the level of maturation of the individual, training may influence developmental trajectories in different ways. We propose that the immature brain structure might set limits on how much can be achieved with training, but that the immaturity can also have advantages, in terms of flexibility for learning. PMID:22509161

  1. Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain

    NASA Astrophysics Data System (ADS)

    Ponce L., Ernesto; Ponce S., Daniel

    2008-11-01

    Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.

  2. Socioeconomic status and the brain: mechanistic insights from human and animal research

    PubMed Central

    Hackman, Daniel A.; Farah, Martha J.; Meaney, Michael J.

    2010-01-01

    Human brain development occurs within a socioeconomic context and childhood socioeconomic status (SES) influences neural development — particularly of the systems that subserve language and executive function. Research in humans and in animal models has implicated prenatal factors, parent–child interactions and cognitive stimulation in the home environment in the effects of SES on neural development. These findings provide a unique opportunity for understanding how environmental factors can lead to individual differences in brain development, and for improving the programmes and policies that are designed to alleviate SES-related disparities in mental health and academic achievement. PMID:20725096

  3. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  4. Mitochondrial viability in mouse and human postmortem brain

    PubMed Central

    Barksdale, Keri A.; Perez-Costas, Emma; Gandy, Johanna C.; Melendez-Ferro, Miguel; Roberts, Rosalinda C.; Bijur, Gautam N.

    2010-01-01

    Neuronal function in the brain requires energy in the form of ATP, and mitochondria are canonically associated with ATP production in neurons. The electrochemical gradient, which underlies the mitochondrial transmembrane potential (ΔΨmem), is harnessed for ATP generation. Here we show that ΔΨmem and ATP-production can be engaged in mitochondria isolated from human brains up to 8.5 h postmortem. Also, a time course of postmortem intervals from 0 to 24 h using mitochondria isolated from mouse cortex reveals that ΔΨmem in mitochondria can be reconstituted beyond 10 h postmortem. It was found that complex I of the mitochondrial electron transport chain was affected adversely with increasing postmortem intervals. Mitochondria isolated from postmortem mouse brains maintain the ability to produce ATP, but rates of production decreased with longer postmortem intervals. Furthermore, we show that postmortem brain mitochondria retain their ΔΨmem and ATP-production capacities following cryopreservation. Our finding that ΔΨmem and ATP-generating capacity can be reinitiated in brain mitochondria hours after death indicates that human postmortem brains can be an abundant source of viable mitochondria to study metabolic processes in health and disease. It is also possible to archive these mitochondria for future studies.—Barksdale, K. A., Perez-Costas, E., Gandy, J. C., Melendez-Ferro, M., Roberts, R. C., Bijur, G. N. Mitochondrial viability in mouse and human postmortem brain. PMID:20466876

  5. Progress on the paternal brain: theory, animal models, human brain research, and mental health implications.

    PubMed

    Swain, J E; Dayton, C J; Kim, P; Tolman, R M; Volling, B L

    2014-01-01

    With a secure foundation in basic research across mammalian species in which fathers participate in the raising of young, novel brain-imaging approaches are outlining a set of consistent brain circuits that regulate paternal thoughts and behaviors in humans. The newest experimental paradigms include increasingly realistic baby-stimuli to provoke paternal cognitions and behaviors with coordinated hormone measures to outline brain networks that regulate motivation, reflexive caring, emotion regulation, and social brain networks with differences and similarities to those found in mothers. In this article, on the father brain, we review all brain-imaging studies on PubMed to date on the human father brain and introduce the topic with a selection of theoretical models and foundational neurohormonal research on animal models in support of the human work. We discuss potentially translatable models for the identification and treatment of paternal mood and father-child relational problems, which could improve infant mental health and developmental trajectories with potentially broad public health importance. PMID:25798491

  6. Low-field MRI for studies of human pulmonary physiology and traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wilson, Alyssa; Devience, Stephen; Rosen, Matthew; Walsworth, Ronald

    2011-05-01

    We describe recent progress on the development of an open-access low-magnetic-field MRI system for studies of human pulmonary physiology and traumatic brain injury. Low-field MRI benefits from reduced magnetic susceptibility effects and can provide high-resolution images of the human body when used with hyperpolarized media such as 3He and 129Xe.

  7. TV, Brain Waves and Human Behavior

    ERIC Educational Resources Information Center

    Science News, 1978

    1978-01-01

    Describes the procedure to test the hypothesis that subjects' brain waves in response to a television flicker (distraction) would be smaller in amplitude during television programs of high, in contrast to low, interest. Results from 12 viewers support the hypothesis. (CP)

  8. Human and rat brain lipofuscin proteome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may have yet ...

  9. Sibling rivalry among paralogs promotes evolution of the human brain.

    PubMed

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution. PMID:22579279

  10. Shortcomings of the Human Brain and Remedial Action by Religion

    ERIC Educational Resources Information Center

    Reich, K. Helmut

    2010-01-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial…

  11. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)?*

    EPA Science Inventory

    Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...

  12. Development of auditory-specific brain rhythm in infants.

    PubMed

    Fujioka, Takako; Mourad, Nasser; Trainor, Laurel J

    2011-02-01

    Human infants rapidly develop their auditory perceptual abilities and acquire culture-specific knowledge in speech and music in the second 6 months of life. In the adult brain, neural rhythm around 10 Hz in the temporal lobes is thought to reflect sound analysis and subsequent cognitive processes such as memory and attention. To study when and how such rhythm emerges in infancy, we examined electroencephalogram (EEG) recordings in infants 4 and 12 months of age during sound stimulation and silence. In the 4-month-olds, the amplitudes of narrowly tuned 4-Hz brain rhythm, recorded from bilateral temporal electrodes, were modulated by sound stimuli. In the 12-month-olds, the sound-induced modulation occurred at faster 6-Hz rhythm at temporofrontal locations. The brain rhythms in the older infants consisted of more complex components, as even evident in individual data. These findings suggest that auditory-specific rhythmic neural activity, which is already established before 6 months of age, involves more speed-efficient long-range neural networks by the age of 12 months when long-term memory for native phoneme representation and for musical rhythmic features is formed. We suggest that maturation of distinct rhythmic components occurs in parallel, and that sensory-specific functions bound to particular thalamo-cortical networks are transferred to newly developed higher-order networks step by step until adult hierarchical neural oscillatory mechanisms are achieved across the whole brain. PMID:21226773

  13. Spatiotemporal dynamics of the postnatal developing primate brain transcriptome

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Luo, Rui; Bernard, Amy; Bennett, Jeffrey L.; Lee, Chang-Kyu; Bertagnolli, Darren; Parikshak, Neelroop N.; Smith, Kimberly A.; Sunkin, Susan M.; Amaral, David G.; Geschwind, Daniel H.; Lein, Ed S.

    2015-01-01

    Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD. PMID:25954031

  14. Development of multifunctional nanoparticles for brain tumor diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Veiseh, Omid

    Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents developed for magnetic resonance (MR) imaging and drug delivery. MNPs have traditionally been developed for disease imaging via passive targeting, but recent advances in nanotechnology have enabled cellular-specific targeting, drug delivery and multi-modal imaging using these nanoparticles. Opportunities now exist to engineer MNP with designated features (e.g., size, coatings, and molecular functionalizations) for specific biomedical applications. The goal of this interdisciplinary research project is to develop targeting multifunctional nanoparticles, serving as both contrast agents and drug carriers that can effectively pass biological barriers, for diagnosis, staging and treatment of brain tumors. The developed nanoparticle system consists of a superparamagnetic iron oxide nanoparticle core (NP) and a shell comprised of biodegradable polymers such as polyethylene glycol (PEG) and chitosan. Additionally, near-infrared fluorescing (NIRF) molecules were integrated onto the NP shell to enable optical detection. Tumor targeting was achieved by the addition of chlorotoxin, a peptide with that has high affinity to 74 out of the 79 classifications of primary brain tumors and ability to illicit a therapeutic effect. This novel NP system was tested both in vitro and in vivo and was shown to specifically target gliomas in tissue culture and medulloblastomas in transgenic mice with an intact blood brain barriers (BBB), and delineate tumor boundaries in both MR and optical imaging. Additionally, the therapeutic potential of this NP system was explored in vitro, which revealed a unique nanoparticle-enabled pathway that enhances the therapeutic potential of bound peptides by promoting the internalization of membrane bound cell surface receptors. This NP system was further modified with siRNA and evaluated as a carrier for brain tumor targeted gene therapy. Most significantly, the evaluation of

  15. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    ERIC Educational Resources Information Center

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  16. Researchers Find Essential Brain Circuit in Visual Development

    MedlinePlus

    ... If this circuit could be controlled in the human brain — for example, with a drug or with implants ... the nation’s leading funder of research on the brain and nervous system. The ... of Health and Human Services. NIH is the primary federal agency conducting ...

  17. The bilingual brain: Flexibility and control in the human cortex

    NASA Astrophysics Data System (ADS)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  18. Translational Meta-analytical Methods to Localize the Regulatory Patterns of Neurological Disorders in the Human Brain

    PubMed Central

    Sochat, Vanessa; David, Maude; Wall, Dennis P

    2015-01-01

    The task of mapping neurological disorders in the human brain must be informed by multiple measurements of an individual’s phenotype - neuroimaging, genomics, and behavior. We developed a novel meta-analytical approach to integrate disparate resources and generated transcriptional maps of neurological disorders in the human brain yielding a purely computational procedure to pinpoint the brain location of transcribed genes likely to be involved in either onset or maintenance of the neurological condition. PMID:26958307

  19. Vitamin D in fetal brain development.

    PubMed

    Eyles, Darryl; Burne, Thomas; McGrath, John

    2011-08-01

    In this review we will provide a concise summary of the evidence implicating a role for vitamin D in the developing brain. Vitamin D is known to affect a diverse array of cellular functions. Over the past 10 years data has emerged implicating numerous ways in which this vitamin could also affect the developing brain including its effects on cell differentiation, neurotrophic factor expression, cytokine regulation, neurotransmitter synthesis, intracellular calcium signaling, anti-oxidant activity, and the expression of genes/proteins involved in neuronal differentiation, structure and metabolism. Dysfunction in any of these processes could adversely affect development. Although there are many ways to study the effects of vitamin D on the developing CNS in vivo, we will concentrate on one experimental model that has examined the impact of the dietary absence of vitamin D in utero. Finally, we discuss the epidemiological data that suggests that vitamin D deficiency either in utero or in early life may have adverse neuropsychiatric implications. PMID:21664981

  20. Evaluating the microstructure of human brain tissues using synchrotron radiation-based micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Morel, Anne; Imholz, Martha S.; Deyhle, Hans; Weitkamp, Timm; Zanette, Irene; Pfeiffer, Franz; David, Christian; Müller-Gerbl, Magdalena; Müller, Bert

    2010-09-01

    Minimally invasive deep brain neurosurgical interventions require a profound knowledge of the morphology of the human brain. Generic brain atlases are based on histology including multiple preparation steps during the sectioning and staining. In order to correct the distortions induced in the anisotropic, inhomogeneous soft matter and therefore improve the accuracy of brain atlases, a non-destructive 3D imaging technique with the required spatial and density resolution is of great significance. Micro computed tomography provides true micrometer resolution. The application to post mortem human brain, however, is questionable because the differences of the components concerning X-ray absorption are weak. Therefore, magnetic resonance tomography has become the method of choice for three-dimensional imaging of human brain. Because the spatial resolution of this method is limited, an alternative has to be found for the three-dimensional imaging of cellular microstructures within the brain. Therefore, the present study relies on the synchrotron radiationbased micro computed tomography in the recently developed grating-based phase contrast mode. Using data acquired at the beamline ID 19 (ESRF, Grenoble, France) we demonstrate that grating-based tomography yields premium images of human thalamus, which can be used for the correction of histological distortions by 3D non-rigid registration.

  1. Expectation modulates neural representations of valence throughout the human brain.

    PubMed

    Ramayya, Ashwin G; Pedisich, Isaac; Kahana, Michael J

    2015-07-15

    The brain's sensitivity to unexpected gains or losses plays an important role in our ability to learn new behaviors (Rescorla and Wagner, 1972; Sutton and Barto, 1990). Recent work suggests that gains and losses are ubiquitously encoded throughout the human brain (Vickery et al., 2011), however, the extent to which reward expectation modulates these valence representations is not known. To address this question, we analyzed recordings from 4306 intracranially implanted electrodes in 39 neurosurgical patients as they performed a two-alternative probability learning task. Using high-frequency activity (HFA, 70-200 Hz) as an indicator of local firing rates, we found that expectation modulated reward-related neural activity in widespread brain regions, including regions that receive sparse inputs from midbrain dopaminergic neurons. The strength of unexpected gain signals predicted subjects' abilities to encode stimulus-reward associations. Thus, neural signals that are functionally related to learning are widely distributed throughout the human brain. PMID:25937489

  2. Decade of the Brain 1990--2000: Maximizing human potential

    SciTech Connect

    Not Available

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  3. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    PubMed

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing. PMID:26966964

  4. Imaging the Respiratory Effects of Opioids in the Human Brain.

    PubMed

    Pattinson, Kyle T S; Wise, Richard G

    2016-01-01

    Opioid analgesia is limited by the potentially fatal side effect of respiratory depression. In humans the brain mechanisms of opioid-induced respiratory depression are poorly understood. Investigating pharmacological influences upon breathing helps us to understand better the brain's respiratory control networks. Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (FMRI) maps neuronal activity in the brain, and is therefore a potentially useful, noninvasive technique to investigate the functional neuroanatomy of respiratory control in humans. Contrast in FMRI is derived from the vascular response to brain activity (neurovascular coupling). Therefore, FMRI studies of the neuronal effects of opioids are rendered more complex by the nonneuronal effects of opioids including those on systemic physiology, cerebral blood flow, and direct effects on the cerebral vasculature such as altered vascular reactivity. Here we review our series of studies that dissect the vascular and neuronal breathing-related effects of opioids in the brain. These methodological considerations have enabled successful FMRI studies revealing the brain networks responsible for opioid effects upon respiratory awareness. Similar considerations would be necessary for FMRI studies in hypoxia or in disease states that affect the physiological state of the brain. PMID:27343094

  5. A neural representation of categorization uncertainty in the human brain.

    PubMed

    Grinband, Jack; Hirsch, Joy; Ferrera, Vincent P

    2006-03-01

    The ability to classify visual objects into discrete categories ("friend" versus "foe"; "edible" versus "poisonous") is essential for survival and is a fundamental cognitive function. The cortical substrates that mediate this function, however, have not been identified in humans. To identify brain regions involved in stimulus categorization, we developed a task in which subjects classified stimuli according to a variable categorical boundary. Psychophysical functions were used to define a decision variable, categorization uncertainty, which was systematically manipulated. Using event-related functional MRI, we discovered that activity in a fronto-striatal-thalamic network, consisting of the medial frontal gyrus, anterior insula, ventral striatum, and dorsomedial thalamus, was modulated by categorization uncertainty. We found this network to be distinct from the frontoparietal attention network, consisting of the frontal and parietal eye fields, where activity was not correlated with categorization uncertainty. PMID:16504950

  6. An integrative analysis of regional gene expression profiles in the human brain.

    PubMed

    Myers, Emma M; Bartlett, Christopher W; Machiraju, Raghu; Bohland, Jason W

    2015-02-01

    Studies of the brain's transcriptome have become prominent in recent years, resulting in an accumulation of datasets with somewhat distinct attributes. These datasets, which are often analyzed only in isolation, also are often collected with divergent goals, which are reflected in their sampling properties. While many researchers have been interested in sampling gene expression in one or a few brain areas in a large number of subjects, recent efforts from the Allen Institute for Brain Sciences and others have focused instead on dense neuroanatomical sampling, necessarily limiting the number of individual donor brains studied. The purpose of the present work is to develop methods that draw on the complementary strengths of these two types of datasets for study of the human brain, and to characterize the anatomical specificity of gene expression profiles and gene co-expression networks derived from human brains using different specific technologies. The approach is applied using two publicly accessible datasets: (1) the high anatomical resolution Allen Human Brain Atlas (AHBA, Hawrylycz et al., 2012) and (2) a relatively large sample size, but comparatively coarse neuroanatomical dataset described previously by Gibbs et al. (2010). We found a relatively high degree of correspondence in differentially expressed genes and regional gene expression profiles across the two datasets. Gene co-expression networks defined in individual brain regions were less congruent, but also showed modest anatomical specificity. Using gene modules derived from the Gibbs dataset and from curated gene lists, we demonstrated varying degrees of anatomical specificity based on two classes of methods, one focused on network modularity and the other focused on enrichment of expression levels. Two approaches to assessing the statistical significance of a gene set's modularity in a given brain region were studied, which provide complementary information about the anatomical specificity of a gene

  7. A navigational guidance system in the human brain.

    PubMed

    Spiers, Hugo J; Maguire, Eleanor A

    2007-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one's current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional magnetic resonance imaging as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analyzed in combination with metric measures of proximity and direction to goal destinations that were derived from each individual subject's coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behavior in general. PMID:17492693

  8. Several methods to determine heavy metals in the human brain

    NASA Astrophysics Data System (ADS)

    Andrási, Erzsébet; Igaz, Sarolta; Szoboszlai, Norbert; Farkas, Éva; Ajtony, Zsolt

    1999-05-01

    The determination of naturally occurring heavy metals in various parts of the human brain is discussed. The patients had no diseases in their central nervous systems (five individuals, mean age 70 years). Twenty brain parts were selected from both hemispheres. The analysis was carried out by graphite furnace atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis methods. Accuracy and precision of the applied techniques were tested by using standard reference materials. Two digestion methods were used to dissolve the brain samples for ICP-AES and GF-AAS. One was performed in a Parr-bomb and the second in a microwave oven. The present results show a non-homogeneous distribution of the essential elements (Cu, Fe, Mn, Zn) in normal human brain. Corresponding regions in both hemispheres showed an almost identical concentration of these elements. In the case of toxic elements (Pb, Cd) an average value in different brain regions can not be established because of the high variability of individual data. This study indicates that beside differences in Pb and Cd intake with foods or cigarette smoke inhalation, the main factors of the high inter-individual variability of these element concentrations in human brain parts may be a marked difference in individual elimination or accumulation capabilities.

  9. Distribution of vesicular glutamate transporters in the human brain

    PubMed Central

    Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah

    2015-01-01

    Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains. PMID:25798091

  10. A navigational guidance system in the human brain

    PubMed Central

    Spiers, Hugo J.; Maguire, Eleanor A.

    2008-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one’s current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional MRI (fMRI) as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analysed in combination with metric measures of proximity and direction to goal destinations which were derived from each individual subject’s coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behaviour in general. PMID:17492693

  11. The effects of acute alcohol administration on the human brain: Insights from neuroimaging

    PubMed Central

    Bjork, James M.; Gilman, Jodi M.

    2014-01-01

    Over the last quarter century, researchers have peered into the living human brain to develop and refine mechanistic accounts of alcohol-induced behavior, as well as neurobiological mechanisms for development and maintenance of addiction. These in vivo neuroimaging studies generally show that acute alcohol administration affects brain structures implicated in motivation and behavior control, and that chronic intoxication is correlated with structural and functional abnormalities in these same structures, where some elements of these decrements normalize with extended sobriety. In this review, we will summarize recent findings about acute human brain responses to alcohol using neuroimaging techniques, and how they might explain behavioral effects of alcohol intoxication. We then briefly address how chronic alcohol intoxication (as inferred from cross-sectional differences between various drinking populations and controls) may yield individual brain differences between drinking subjects that may confound interpretation of acute alcohol administration effects. PMID:23978384

  12. Linking brains and brawn: exercise and the evolution of human neurobiology

    PubMed Central

    Raichlen, David A.; Polk, John D.

    2013-01-01

    The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance. PMID:23173208

  13. How the Arts Develop the Young Brain

    ERIC Educational Resources Information Center

    Sousa, David A.

    2006-01-01

    The arts play an important role in human development, enhancing the growth of cognitive, emotional, and psychomotor pathways. Neuroscience research reveals the impressive impact of arts instruction, such as, music, drawing and physical activity, on students' cognitive, social and emotional development. Much of what young children do as…

  14. Giovanni Aldini: from animal electricity to human brain stimulation.

    PubMed

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834. PMID:15595271

  15. The disturbed blood-brain barrier in human glioblastoma.

    PubMed

    Wolburg, Hartwig; Noell, Susan; Fallier-Becker, Petra; Mack, Andreas F; Wolburg-Buchholz, Karen

    2012-01-01

    The aim of this article is to describe alterations of the blood-brain barrier (BBB) in gliomas. The main clinical problem of human gliomas is the edematous swelling and the dramatic increase of intracerebral pressure, also compromising healthy areas of the brain. According to our concept, one of the main reasons on the cellular level for these clinical problems is the loss or reduction of astroglial polarity. Astroglial polarity means the specific accumulation of potassium and water channels in the superficial and perivascular astroglial endfeet membranes. The most important water channel in the CNS is the astroglial water channel protein aquaporin-4 (AQP4) which is arranged in a morphologically spectacular way, the so-called orthogonal arrays of particles (OAPs) to be observed in freeze-fracture replicas. In brain tumors, but also under conditions of trauma or inflammation, these OAPs are redistributed to membrane domains apart from endfeet areas. Probably, this dislocation might be due to the degradation of the proteoglycan agrin by the matrix metalloproteinase 3 (MMP3). Agrin binds to the dystrophin-dystroglycan-complex (DDC), which in turn is connected to AQP4. As a consequence, agrin loss may lead to a redistribution of AQP4 and a compromised directionality of water transport out of the cell, finally to cytotoxic edema. This in turn is hypothesized to lead to a breakdown of the BBB characterized by disturbed tight junctions, and thus to the development of vasogenic edema. However, the mechanism how the loss of polarity is related to the disturbance of microvascular tight junctions is completely unknown so far. PMID:22387049

  16. Decoding the visual and subjective contents of the human brain.

    PubMed

    Kamitani, Yukiyasu; Tong, Frank

    2005-05-01

    The potential for human neuroimaging to read out the detailed contents of a person's mental state has yet to be fully explored. We investigated whether the perception of edge orientation, a fundamental visual feature, can be decoded from human brain activity measured with functional magnetic resonance imaging (fMRI). Using statistical algorithms to classify brain states, we found that ensemble fMRI signals in early visual areas could reliably predict on individual trials which of eight stimulus orientations the subject was seeing. Moreover, when subjects had to attend to one of two overlapping orthogonal gratings, feature-based attention strongly biased ensemble activity toward the attended orientation. These results demonstrate that fMRI activity patterns in early visual areas, including primary visual cortex (V1), contain detailed orientation information that can reliably predict subjective perception. Our approach provides a framework for the readout of fine-tuned representations in the human brain and their subjective contents. PMID:15852014

  17. Individual differences in anthropomorphic attributions and human brain structure

    PubMed Central

    Kanai, Ryota; Bahrami, Bahador; Rees, Geraint

    2014-01-01

    Anthropomorphism is the attribution of human characteristics or behaviour to animals, non-living things or natural phenomena. It is pervasive among humans, yet nonetheless exhibits a high degree of inter-individual variability. We hypothesized that brain areas associated with anthropomorphic thinking might be similar to those engaged in the attribution of mental states to other humans, the so-called ‘theory of mind’ or mentalizing network. To test this hypothesis, we related brain structure measured using magnetic resonance imaging in a sample of 83 healthy young adults to a simple, self-report questionnaire that measured the extent to which our participants made anthropomorphic attributions about non-human animals and non-animal stimuli. We found that individual differences in anthropomorphism for non-human animals correlated with the grey matter volume of the left temporoparietal junction, a brain area involved in mentalizing. Our data support previous work indicating a link between areas of the brain involved in attributing mental states to other humans and those involved in anthropomorphism. PMID:23887807

  18. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  19. Elevated gene expression levels distinguish human from non-human primate brains

    PubMed Central

    Cáceres, Mario; Lachuer, Joel; Zapala, Matthew A.; Redmond, John C.; Kudo, Lili; Geschwind, Daniel H.; Lockhart, David J.; Preuss, Todd M.; Barlow, Carrolee

    2003-01-01

    Little is known about how the human brain differs from that of our closest relatives. To investigate the genetic basis of human specializations in brain organization and cognition, we compared gene expression profiles for the cerebral cortex of humans, chimpanzees, and rhesus macaques by using several independent techniques. We identified 169 genes that exhibited expression differences between human and chimpanzee cortex, and 91 were ascribed to the human lineage by using macaques as an outgroup. Surprisingly, most differences between the brains of humans and non-human primates involved up-regulation, with ≈90% of the genes being more highly expressed in humans. By contrast, in the comparison of human and chimpanzee heart and liver, the numbers of up- and down-regulated genes were nearly identical. Our results indicate that the human brain displays a distinctive pattern of gene expression relative to non-human primates, with higher expression levels for many genes belonging to a wide variety of functional classes. The increased expression of these genes could provide the basis for extensive modifications of cerebral physiology and function in humans and suggests that the human brain is characterized by elevated levels of neuronal activity. PMID:14557539

  20. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    PubMed Central

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  1. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases.

    PubMed

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors. PMID:27375363

  2. Glucose transporter of the human brain and blood-brain barrier

    SciTech Connect

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-12-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable (3H)cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific (3H)cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with (3H)cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species.

  3. Using MARCM to study Drosophila brain development.

    PubMed

    Viktorin, Gudrun

    2014-01-01

    Mosaic analysis with a repressible cell marker (MARCM) generates positively labeled, wild-type or mutant mitotic clones by unequally distributing a repressor of a cell lineage marker, originally tubP-driven GAL80 repressing the GAL4/UAS system. Variations of the technique include labeling of both sister clones (twin spot MARCM), the simultaneous use of two different drivers within the same clone (dual MARCM), as well as the use of different repressible transcription systems (Q-MARCM). MARCM can be combined with any UAS-based construct, such as localized GFP fusions to visualize subcellular compartments, genes for rescue and ectopic expression, and modifiers of neural activity. A related technique, the twin spot generator, generates positively labeled clones without the use of a repressor, thus minimizing the lag time between clone induction and appearance of label. The present protocol provides a detailed description of a standard MARCM analysis of brain development that includes generation of MARCM stocks and crosses, induction of clones, brain dissection at various stages of development, immunohistochemistry, and confocal microscopy, and can be modified for similar experiments involving mitotic clones. PMID:24048928

  4. [Intrauterine growth retardation and the developing brain].

    PubMed

    Phan Duy, A; El Khabbaz, F; Renolleau, C; Aberchich, J; Heneau, A; Pham, H; Baud, O

    2013-09-01

    Fetal growth restriction is the second leading cause of perinatal morbidity and mortality, behind prematurity, and is present in 5-12% of all pregnancies in the general population. Often confused with children constitutionally small for gestational age, those who had not achieved their potential for fetal growth and therefore having true growth restriction can be identified using customized growth curves. The point is to accurately identify fetuses with slowing growth or cessation of growth reflecting a pathological process, because these are at risk of death in utero or chronic fetal hypoxia with a significant impact on brain development. The kinetics of growth and prenatal markers of fetal growth restriction will influence the decision to extract the fetus and the gestational age at birth, as well as other factors involved in the neurodevelopmental outcome. Cognitive deficits and executive, motor, and behavioral dysfunctions described in the short term seem to persist together with greater risk of metabolic syndrome in adulthood. Decisions of fetal extraction by C-section continue to be debated until new epidemiological data will be available on large cohorts monitored over the long term using accurate neurocognitive tools. Understanding the effects of fetal growth restriction on the structure and function of the developing brain is essential for improving the relevance of fetal extraction decisions, perinatal care, and early evaluation of treatments for the prevention of neurodevelopmental disorders. PMID:23890731

  5. New deformable human brain atlas for computer-aided diagnosis

    NASA Astrophysics Data System (ADS)

    Lahtinen, Antti J.; Frey, Harry; Eskola, Hannu

    2002-05-01

    Modern software-based image analysis techniques enable accurate detection of the size and shape of various brain lesions. In order to estimate the real load caused by the lesions also their neuro-anatomical location should be taken into account. Therefore deformable brain atlases appear to be essential tools when new image diagnostics methods are developed and tested. We have developed deformable brain atlas software for research and diagnosis. The atlas is used to compare patient brain images with a segmented reference brain image so that it is possible to identify the patient neuroanatomical structures. The atlas software comes with image processing tools for transforming CT or MR image sets into atlas- compatible volume image format. The reference image is deformed to match the patient image, and the segmented neuroanatomical regions of the atlas image can then be blended with the patient image.

  6. Optical dosimetry in photodynamic therapy of human uterus and brain

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Svaasand, Lars O.; Hirschberg, Henry; Tadir, Yona; Tromberg, Bruce J.

    1999-06-01

    Optical 'dose' is one of the fundamental parameters required in the design of an efficacious regimen of photodynamic therapy (PDT). The issues involved in delivering a sufficient optical dose to the human uterus and brain during PDT will be discussed. Specifically, measurements of optical properties and fluence rates in excised human uteri are presented. Measured fluence rates are compared to the predictions of a simple diffusion model and the clinical utility of the treatment is discussed. The delivery of light to brain tissue via a surgically implanted balloon applicator will also be considered. The time required to deliver and adequate dose is calculated based on known optical properties and diffusion theory.

  7. Mu opioid receptor binding sites in human brain

    SciTech Connect

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

  8. Human brain spots emotion in non humanoid robots

    PubMed Central

    Foucher, Aurélie; Jouvent, Roland; Nadel, Jacqueline

    2011-01-01

    The computation by which our brain elaborates fast responses to emotional expressions is currently an active field of brain studies. Previous studies have focused on stimuli taken from everyday life. Here, we investigated event-related potentials in response to happy vs neutral stimuli of human and non-humanoid robots. At the behavioural level, emotion shortened reaction times similarly for robotic and human stimuli. Early P1 wave was enhanced in response to happy compared to neutral expressions for robotic as well as for human stimuli, suggesting that emotion from robots is encoded as early as human emotion expression. Congruent with their lower faceness properties compared to human stimuli, robots elicited a later and lower N170 component than human stimuli. These findings challenge the claim that robots need to present an anthropomorphic aspect to interact with humans. Taken together, such results suggest that the early brain processing of emotional expressions is not bounded to human-like arrangements embodying emotion. PMID:20194513

  9. Human brain spots emotion in non humanoid robots.

    PubMed

    Dubal, Stéphanie; Foucher, Aurélie; Jouvent, Roland; Nadel, Jacqueline

    2011-01-01

    The computation by which our brain elaborates fast responses to emotional expressions is currently an active field of brain studies. Previous studies have focused on stimuli taken from everyday life. Here, we investigated event-related potentials in response to happy vs neutral stimuli of human and non-humanoid robots. At the behavioural level, emotion shortened reaction times similarly for robotic and human stimuli. Early P1 wave was enhanced in response to happy compared to neutral expressions for robotic as well as for human stimuli, suggesting that emotion from robots is encoded as early as human emotion expression. Congruent with their lower faceness properties compared to human stimuli, robots elicited a later and lower N170 component than human stimuli. These findings challenge the claim that robots need to present an anthropomorphic aspect to interact with humans. Taken together, such results suggest that the early brain processing of emotional expressions is not bounded to human-like arrangements embodying emotion. PMID:20194513

  10. Distribution of PSA-NCAM in normal, Alzheimer's and Parkinson's disease human brain.

    PubMed

    Murray, Helen C; Low, Victoria F; Swanson, Molly E V; Dieriks, Birger V; Turner, Clinton; Faull, Richard L M; Curtis, Maurice A

    2016-08-25

    Polysialated neural cell adhesion molecule (PSA-NCAM) is a membrane bound glycoprotein widely expressed during nervous system development. While commonly described in the neurogenic niches of the adult human brain, there is limited evidence of its distribution in other brain regions. PSA-NCAM is an important regulator of cell-cell interactions and facilitates cell migration and plasticity. Recent evidence suggests these functions may be altered in neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD). This study provides a detailed description of the PSA-NCAM distribution throughout the human brain and quantitatively compares the staining load in cortical regions and sub-cortical structures between the control, AD and PD brain. Our results provide evidence of widespread, yet specific, PSA-NCAM expression throughout the human brain including regions devoid of PSA-NCAM in the rodent brain such as the caudate nucleus (CN) and cerebellum (CB). We also detected a significant reduction in PSA-NCAM load in the entorhinal cortex (EC) of cases that was inversely correlated with hyperphosphorylated tau load. These results demonstrate that PSA-NCAM-mediated structural plasticity may not be limited to neurogenic niches and is conserved in the aged brain. We also provide evidence that PSA-NCAM is reduced in the EC, a region severely affected by AD pathology. PMID:27282086

  11. Human brain functional MRI and DTI visualization with virtual reality.

    PubMed

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed. PMID:23256049

  12. Development and validation of an UPLC-MS/MS assay for quantitative analysis of the ghrelin receptor inverse agonist PF-5190457 in human or rat plasma and rat brain.

    PubMed

    Ghareeb, Mwlod; Leggio, Lorenzo; El-Kattan, Ayman; Akhlaghi, Fatemeh

    2015-07-01

    PF-5190457 is a ghrelin receptor inverse agonist that is currently undergoing clinical development for the treatment of alcoholism. Our aim was to develop and validate a simple and sensitive assay for quantitative analysis of PF-5190457 in human or rat plasma and rat brain using liquid chromatography-tandem mass spectrometry. The analyte and stable isotope internal standard were extracted from 50 μL plasma or rat brain homogenate by protein precipitation using 0.1% formic acid in acetonitrile. Chromatography was carried out on an Acquity UPLC BEH C18 (2.1 mm × 50 mm) column with 1.7 μm particle size and 130 Å pore size. The flow rate was 0.5 mL/min and total chromatographic run time was 2.2 min. The mobile phase consisted of a gradient mixture of water: acetonitrile 95:5% (v/v) containing 0.1% formic acid (solvent A) and 100% acetonitrile containing 0.1% formic acid (solvent B). Multiple reaction monitoring was carried out in positive electro-spray ionization mode using m/z 513.35 → 209.30 for PF-5190457 and m/z 518.47 → 214.43 for the internal standard. The recovery ranged from 102 to 118% with coefficient of variation (CV) less than 6% for all matrices. The calibration curves for all matrices were linear over the studied concentration range (R(2) ≥ 0.998, n = 3). The lower limit of quantification was 1 ng/mL in rat or human plasma and 0.75 ng/g in rat brain. Intra- and inter-run mean percent accuracies were between 85 and 115% and percent imprecision was ≤15%. The assays were successfully utilized to measure the concentration of PF-5190457 in pre-clinical and clinical pharmacology studies of the compound. PMID:25943263

  13. Relaxed genetic control of cortical organization in human brains compared with chimpanzees

    PubMed Central

    Gómez-Robles, Aida; Hopkins, William D.; Schapiro, Steven J.; Sherwood, Chet C.

    2015-01-01

    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution. PMID:26627234

  14. Relaxed genetic control of cortical organization in human brains compared with chimpanzees.

    PubMed

    Gómez-Robles, Aida; Hopkins, William D; Schapiro, Steven J; Sherwood, Chet C

    2015-12-01

    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution. PMID:26627234

  15. The modular and integrative functional architecture of the human brain.

    PubMed

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions. PMID:26598686

  16. Fast and intuitive segmentation of gyri of the human brain

    NASA Astrophysics Data System (ADS)

    Weiler, Florian; Hahn, Horst K.

    2015-03-01

    The cortical surface of the human brain consists of a large number of folds forming valleys and ridges, the gyri and sulci. Often, it is desirable to perform a segmentation of a brain image into these underlying structures in order to assess parameters relative to these functional components. Typical examples for this include measurements of cortical thickness for individual functional areas, or the correlation of functional areas derived from fMRI data to corresponding anatomical areas seen in structural imaging. In this paper, we present a novel interactive technique, that allows for fast and intuitive segmentation of these functional areas from T1-weighted MR images of the brain. Our segmentation approach is based exclusively on morphological image processing operations, eliminating the requirement for explicit reconstruction of the brains surface.

  17. Microtesla MRI of the human brain combined with MEG

    NASA Astrophysics Data System (ADS)

    Zotev, Vadim S.; Matlashov, Andrei N.; Volegov, Petr L.; Savukov, Igor M.; Espy, Michelle A.; Mosher, John C.; Gomez, John J.; Kraus, Robert H.

    2008-09-01

    One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method—SQUID-based microtesla MRI—can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 μT measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment—low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging—are practical.

  18. Microtesla MRI of the human brain combined with MEG

    PubMed Central

    Zotev, Vadim S.; Matlashov, Andrei N.; Volegov, Petr L.; Savukov, Igor M.; Espy, Michelle A.; Mosher, John C.; Gomez, John J.; Kraus, Robert H.

    2008-01-01

    One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method-SQUID-based microtesla MRI-can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microtesla measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment-low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging-are practical. PMID:18619876

  19. Addiction circuitry in the human brain (*).

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

    2011-09-27

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

  20. ``the Human BRAIN & Fractal quantum mechanics''

    NASA Astrophysics Data System (ADS)

    Rosary-Oyong, Se, Glory

    In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  1. Addiction Circuitry in the Human Brain*

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo

    2012-01-01

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person’s risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders. PMID:21961707

  2. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574313

  3. Starting Smart: How Early Experiences Affect Brain Development. Second Edition.

    ERIC Educational Resources Information Center

    Hawley, Theresa

    Based on recent research, it is now believed that brain growth is highly dependent upon children's early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring the connections among neurons. The forming and breaking of…

  4. Gaining insight of fetal brain development with diffusion MRI and histology.

    PubMed

    Huang, Hao; Vasung, Lana

    2014-02-01

    Human brain is extraordinarily complex and yet its origin is a simple tubular structure. Its development during the fetal period is characterized by a series of accurately organized events which underlie the mechanisms of dramatic structural changes during fetal development. Revealing detailed anatomy at different stages of human fetal brain development provides insight on understanding not only this highly ordered process, but also the neurobiological foundations of cognitive brain disorders such as mental retardation, autism, schizophrenia, bipolar and language impairment. Diffusion tensor imaging (DTI) and histology are complementary tools which are capable of delineating the fetal brain structures at both macroscopic and microscopic levels. In this review, the structural development of the fetal brains has been characterized with DTI and histology. Major components of the fetal brain, including cortical plate, fetal white matter and cerebral wall layer between the ventricle and subplate, have been delineated with DTI and histology. Anisotropic metrics derived from DTI were used to quantify the microstructural changes during the dynamic process of human fetal cortical development and prenatal development of other animal models. Fetal white matter pathways have been traced with DTI-based tractography to reveal growth patterns of individual white matter tracts and corticocortical connectivity. These detailed anatomical accounts of the structural changes during fetal period may provide the clues of detecting developmental and cognitive brain disorders at their early stages. The anatomical information from DTI and histology may also provide reference standards for diagnostic radiology of premature newborns. PMID:23796901

  5. Nicotine and the Developing Human

    PubMed Central

    England, Lucinda J.; Bunnell, Rebecca E.; Pechacek, Terry F.; Tong, Van T.; McAfee, Tim A.

    2015-01-01

    The elimination of cigarettes and other combusted tobacco products in the U.S. would prevent tens of millions of tobacco-related deaths. It has been suggested that the introduction of less harmful nicotine delivery devices, such as electronic cigarettes or other electronic nicotine delivery systems, will accelerate progress toward ending combustible cigarette use. However, careful consideration of the potential adverse health effects from nicotine itself is often absent from public health debates. Human and animal data support that nicotine exposure during periods of developmental vulnerability (fetal through adolescent stages) has multiple adverse health consequences, including impaired fetal brain and lung development, and altered development of cerebral cortex and hippocampus in adolescents. Measures to protect the health of pregnant women and children are needed and could include (1) strong prohibitions on marketing that increase youth uptake; (2) youth access laws similar to those in effect for other tobacco products; (3) appropriate health warnings for vulnerable populations; (4) packaging to prevent accidental poisonings; (5) protection of non-users from exposure to secondhand electronic cigarette aerosol; (6) pricing that helps minimize youth initiation and use; (7) regulations to reduce product addiction potential and appeal for youth; and (8) the age of legal sale. PMID:25794473

  6. Visual dictionaries as intermediate features in the human brain

    PubMed Central

    Ramakrishnan, Kandan; Scholte, H. Steven; Groen, Iris I. A.; Smeulders, Arnold W. M.; Ghebreab, Sennay

    2015-01-01

    The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW) model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2, and V3. However, BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain. PMID:25642183

  7. Fluid Reasoning and the Developing Brain

    PubMed Central

    Ferrer, Emilio; O'Hare, Elizabeth D.; Bunge, Silvia A.

    2009-01-01

    Fluid reasoning is the cornerstone of human cognition, both during development and in adulthood. Despite this, the neural mechanisms underlying the development of fluid reasoning are largely unknown. In this review, we provide an overview of this important cognitive ability, the method of measurement, its changes over the childhood and adolescence of an individual, and its underlying neurobiological underpinnings. We review important findings from psychometric, cognitive, and neuroscientific literatures, and outline important future directions for this interdisciplinary research. PMID:19753096

  8. Rock magnetism linked to human brain magnetite

    NASA Astrophysics Data System (ADS)

    Kirschvink, Joseph L.

    Magnetite has a long and distinguished career as one of the most important minerals in geophysics, as it is responsible for most of the remanent magnetization in marine sediments and the oceanic crust. It may come as a surprise to discover that it also ranks as the third or fourth most diverse mineral product formed biochemically by living organisms, and forms naturally in a variety of human tissues [Kirschvink et al., 1992].Magnetite was discovered in teeth of the Polyplacophora mollusks over 30 years ago, in magnetotactic bacteria nearly 20 years ago, in honey bees and homing pigeons nearly 15 years ago, but only recently in human tissue.

  9. Expression of glutamate carboxypeptidase II in human brain.

    PubMed

    Sácha, P; Zámecník, J; Barinka, C; Hlouchová, K; Vícha, A; Mlcochová, P; Hilgert, I; Eckschlager, T; Konvalinka, J

    2007-02-23

    Glutamate carboxypeptidase II (GCPII) is a transmembrane glycoprotein expressed in various tissues. When expressed in the brain it cleaves the neurotransmitter N-acetylaspartylglutamate (NAAG), yielding free glutamate. In jejunum it hydrolyzes folylpoly-gamma-glutamate, thus facilitating folate absorption. The prostate form of GCPII, known as prostate specific membrane antigen (PSMA), is an established cancer marker. The NAAG-hydrolyzing activity of GCPII has been implicated in a number of pathological conditions in which glutamate is neurotoxic (e.g. amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, epilepsy, schizophrenia, and stroke). Inhibition of GCPII was shown to be neuroprotective in tissue culture and in animal models. GCPII is therefore an interesting putative therapeutic target. However, only very limited and controversial data on the expression and localization of GCPII in human brain are available. Therefore, we set out to analyze the activity and expression of GCPII in various compartments of the human brain using a radiolabeled substrate of the enzyme and the novel monoclonal antibody GCP-04, which recognizes an epitope on the extracellular portion of the enzyme and is more sensitive to GCPII than to the homologous GCPIII. We show that this antibody is more sensitive in immunoblots than the widely used antibody 7E11. By Western blot, we show that there are approximately 50-300 ng of GCPII/mg of total protein in human brain, depending on the specific area. Immunohistochemical analysis revealed that astrocytes specifically express GCPII in all parts of the brain. GCPII is enzymatically active and the level of activity follows the expression pattern. Using pure recombinant GCPII and homologous GCPIII, we conclude that GCPII is responsible for the majority of overall NAAG-hydrolyzing activity in the human brain. PMID:17150306

  10. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  11. Stem Cells Expand Insights into Human Brain Evolution.

    PubMed

    Dyer, Michael A

    2016-04-01

    Substantial expansion in the number of cerebral cortex neurons is thought to underlie cognitive differences between humans and other primates, although the mechanisms underlying this expansion are unclear. Otani et al. (2016) utilize PSC-derived brain organoids to study how species-specific differences in cortical progenitor proliferation may underlie cortical evolution. PMID:27058930

  12. Adolescent Brain and Cognitive Developments: Implications for Clinical Assessment in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Ciccia, Angela Hein; Meulenbroek, Peter; Turkstra, Lyn S.

    2009-01-01

    Adolescence is a time of significant physical, social, and emotional developments, accompanied by changes in cognitive and language skills. Underlying these are significant developments in brain structures and functions including changes in cortical and subcortical gray matter and white matter tracts. Among the brain regions that develop during…

  13. Development of a permeability-limited model of the human brain and cerebrospinal fluid (CSF) to integrate known physiological and biological knowledge: Estimating time varying CSF drug concentrations and their variability using in vitro data.

    PubMed

    Gaohua, Lu; Neuhoff, Sibylle; Johnson, Trevor N; Rostami-Hodjegan, Amin; Jamei, Masoud

    2016-06-01

    A 4-compartment permeability-limited brain (4Brain) model consisting of brain blood, brain mass, cranial and spinal cerebrospinal fluid (CSF) compartments has been developed and incorporated into a whole body physiologically-based pharmacokinetic (PBPK) model within the Simcyp Simulator. The model assumptions, structure, governing equations and system parameters are described. The model in particular considers the anatomy and physiology of the brain and CSF, including CSF secretion, circulation and absorption, as well as the function of various efflux and uptake transporters existing on the blood-brain barrier (BBB) and blood-CSF barrier (BCSFB), together with the known parameter variability. The model performance was verified using in vitro data and clinical observations for paracetamol and phenytoin. The simulated paracetamol spinal CSF concentration is comparable with clinical lumbar CSF data for both intravenous and oral doses. Phenytoin CSF concentration-time profiles in epileptic patients were simulated after accounting for disease-induced over-expression of efflux transporters within the BBB. Various 'what-if' scenarios, involving variation of specific drug and system parameters of the model, demonstrated that the 4Brain model is able to simulate the possible impact of transporter-mediated drug-drug interactions, the lumbar puncture process and the age-dependent change in the CSF turnover rate on the local PK within the brain. PMID:27236639

  14. Maternal antibodies and developing blood–brain barrier

    PubMed Central

    Athanassiou, Andrew; Chen, Huiyi; Diamond, Betty

    2016-01-01

    We briefly review the protective role of maternal antibodies during fetal development and at early postnatal stages. We describe antibody delivery to fetuses, particularly in the context of the developing blood–brain barrier (BBB), and present the essential concepts regarding the adult BBB, together with existing information on the prenatal developing BBB. We focus on maternal antibody transfer to the developing brain and the consequences of the presence of pathogenic antibodies at early stages of brain development on subsequent brain dysfunction. PMID:26507553

  15. Maternal antibodies and developing blood-brain barrier.

    PubMed

    Kowal, Czeslawa; Athanassiou, Andrew; Chen, Huiyi; Diamond, Betty

    2015-12-01

    We briefly review the protective role of maternal antibodies during fetal development and at early postnatal stages. We describe antibody delivery to fetuses, particularly in the context of the developing blood-brain barrier (BBB), and present the essential concepts regarding the adult BBB, together with existing information on the prenatal developing BBB. We focus on maternal antibody transfer to the developing brain and the consequences of the presence of pathogenic antibodies at early stages of brain development on subsequent brain dysfunction. PMID:26507553

  16. Transfer of ultrasmall iron oxide nanoparticles from human brain-derived endothelial cells to human glioblastoma cells.

    PubMed

    Halamoda Kenzaoui, Blanka; Angeloni, Silvia; Overstolz, Thomas; Niedermann, Philippe; Chapuis Bernasconi, Catherine; Liley, Martha; Juillerat-Jeanneret, Lucienne

    2013-05-01

    Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer. PMID:23578059

  17. The modular and integrative functional architecture of the human brain

    PubMed Central

    Bertolero, Maxwell A.; Yeo, B. T. Thomas; D’Esposito, Mark

    2015-01-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules’ processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author–topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network’s modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules’ functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain’s modular yet integrated implementation of cognitive functions. PMID:26598686

  18. The human brain response to dental pain relief.

    PubMed

    Meier, M L; Widmayer, S; Abazi, J; Brügger, M; Lukic, N; Lüchinger, R; Ettlin, D A

    2015-05-01

    Local anesthesia has made dental treatment more comfortable since 1884, but little is known about associated brain mechanisms. Functional magnetic resonance imaging is a modern neuroimaging tool widely used for investigating human brain activity related to sensory perceptions, including pain. Most brain regions that respond to experimental noxious stimuli have recently been found to react not only to nociception alone, but also to visual, auditory, and other stimuli. Thus, presumed functional attributions have come under scrutiny regarding selective pain processing in the brain. Evidently, innovative approaches are warranted to identify cerebral regions that are nociceptive specific. In this study, we aimed at circumventing known methodological confounders by applying a novel paradigm in 14 volunteers: rather than varying the intensity and thus the salience of painful stimuli, we applied repetitive noxious dental stimuli at constant intensity to the left mandibular canine. During the functional magnetic resonance imaging paradigm, we suppressed the nociceptive barrage by a mental nerve block. Brain activity before and after injection of 4% articaine was compared intraindividually on a group level. Dental pain extinction was observed to correspond to activity reduction in a discrete region of the left posterior insular cortex. These results confirm previous reports demonstrating that direct electrical stimulation of this brain region-but not of others-evokes bodily pain sensations. Hence, our investigation adds further evidence to the notion that the posterior insula plays a unique role in nociceptive processing. PMID:25691071

  19. Topological Isomorphisms of Human Brain and Financial Market Networks

    PubMed Central

    Vértes, Petra E.; Nicol, Ruth M.; Chapman, Sandra C.; Watkins, Nicholas W.; Robertson, Duncan A.; Bullmore, Edward T.

    2011-01-01

    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets – the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular – more highly optimized for information processing – than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets. PMID:22007161

  20. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells.

    PubMed

    Stebbins, Matthew J; Wilson, Hannah K; Canfield, Scott G; Qian, Tongcheng; Palecek, Sean P; Shusta, Eric V

    2016-05-15

    The blood-brain barrier (BBB) is a critical component of the central nervous system (CNS) that regulates the flux of material between the blood and the brain. Because of its barrier properties, the BBB creates a bottleneck to CNS drug delivery. Human in vitro BBB models offer a potential tool to screen pharmaceutical libraries for CNS penetration as well as for BBB modulators in development and disease, yet primary and immortalized models respectively lack scalability and robust phenotypes. Recently, in vitro BBB models derived from human pluripotent stem cells (hPSCs) have helped overcome these challenges by providing a scalable and renewable source of human brain microvascular endothelial cells (BMECs). We have demonstrated that hPSC-derived BMECs exhibit robust structural and functional characteristics reminiscent of the in vivo BBB. Here, we provide a detailed description of the methods required to differentiate and functionally characterize hPSC-derived BMECs to facilitate their widespread use in downstream applications. PMID:26518252

  1. Effects of opiates on brain development.

    PubMed

    Hammer, R P; Ricalde, A A; Seatriz, J V

    1989-01-01

    Perinatal morphine administration affects neuronal growth in the developing animal. Neuronal packing density was reduced by morphine treatment in both primary somatosensory cortex and preoptic area of the hypothalamus. However, glial packing density was increased, but only in hypothalamus, which could reflect greater severity of opiate-induced neurotoxicity in hypothalamus. Cortical pyramidal neurons show morphine-induced reduction of basilar dendritic growth limited to late-developing terminal branches. This effect is completely reversed by concurrent naltrexone administration. This selective effect could be caused by morphine acting at opiate receptors to inhibit extrinsic determinants of dendritic growth (e.g., afferent supply). The ontogeny of opiate receptors is also affected by perinatal morphine administration in a regionally-dependent manner. Mureceptors are downregulated by morphine in hypothalamus, but not in cortex. Differential maturity of receptors in these regions could be a factor in such differential drug effects. Therefore, different critical periods for opiate action in different regions of the developing brain could exist. PMID:2696899

  2. Zinc and the ERK Kinases in the Developing Brain

    PubMed Central

    Nuttall, J. R.

    2015-01-01

    This article reviews evidence in support of the hypothesis that impaired activation of the extracellular signal-regulated kinases (ERK1/2) contributes to the disruptions in neurodevelopment associated with zinc deficiency. These kinases are implicated in major events of brain development, including proliferation of progenitor cells, neuronal migration, differentiation, and apoptotic cell death. In humans, mutations in ERK1/2 genes have been associated with neuro-cardio-facial-cutaneous syndromes. ERK1/2 deficits in mice have revealed impaired neurogenesis, altered cellularity, and behavioral abnormalities. Zinc is an important modulator of ERK1/2 signaling. Conditions of both zinc deficiency and excess affect ERK1/2 phosphorylation in fetal and adult brains. Hypophosphorylation of ERK1/2, associated with decreased zinc availability in cell cultures, is accompanied by decreased proliferation and an arrest of the cell cycle at the G0/G1 phase. Zinc and ERK1/2 have both been shown to modulate neural progenitor cell proliferation and cell death in the brain. Furthermore, behavioral deficits resulting from developmental zinc deficiency are similar to those observed in mice with decreased ERK1/2 signaling. For example, impaired performance on behavioral tests of learning and memory; such as the Morris water maze, fear conditioning, and the radial arm maze; has been reported in both animals exposed to developmental zinc deficiency and transgenic mice with decreased ERK signaling. Future study should clarify the mechanisms through which a dysregulation of ERK1/2 may contribute to altered brain development associated with dietary zinc deficiency and with conditions that limit zinc availability. PMID:22095091

  3. Abnormal deposits of chromium in the pathological human brain.

    PubMed Central

    Duckett, S

    1986-01-01

    Three patients presented with encephalopathies: an undiagnosed degenerative disease of the brain, a degenerative cerebral disease in a patient with a myeloma but without a myelomatous deposit in the CNS and a malignant astrocytoma. Perivascular pallidal deposits (vascular siderosis) containing chromium, phosphorus and calcium plus sometimes traces of other elements were present in the three cases. Such deposits were present in the pallidal parenchyma and around vessels in the cerebellum in one case. Calcium and phosphorus are always present in any CNS calcification but the presence of chromium has not been reported. Chromium and its compounds (ingested, injected or inhaled) are toxic to humans and animals in trace doses. Approximately 900 cases of chromium intoxication have been reported and usually have had dermatological or pulmonary lesions (including cancer) but there is no report of involvement of the CNS. Sublethal doses of chromium nitrate injected intraperitoneally in rats and rabbits results in the presence of chromium in the brain. A thorough investigation was made to find the source of the chromium in these patients. Chromium was found to be present in trace amounts in the radiological contrast agents administered to these patients and in the KCl replacement solution and in mylanta, an antacid, given to one case. The evidence that chromium induced pathological changes in these three brains is circumstantial but shows that chromium can penetrate the human brain. This study indicates that vascular siderosis found in the brains of the majority of middle-aged and elderly humans is not simply an anecdotal pathological curiosity, but that it can serve as a route of entry for toxic products into the brain. Images PMID:3958742

  4. Watching brain TV and playing brain ball exploring novel BCI strategies using real-time analysis of human intracranial data.

    PubMed

    Jerbi, Karim; Freyermuth, Samson; Minotti, Lorella; Kahane, Philippe; Berthoz, Alain; Lachaux, Jean-Philippe

    2009-01-01

    A large body of evidence from animal studies indicates that motor intention can be decoded via multiple single-unit recordings or from local field potentials (LFPs) recorded not only in primary motor cortex, but also in premotor or parietal areas. In humans, reports of invasive data acquisition for the purpose of BCI developments are less numerous and signal selection for optimal control still remains poorly investigated. Here we report on our recent implementation of a real-time analysis platform for the investigation of ongoing oscillations in human intracerebral recordings and review various results illustrating its utility for the development of novel brain-computer and brain-robot interfaces. Our findings show that the insight gained both from off-line experiments and from online functional exploration can be used to guide future selection of the sites and frequency bands to be used in a translation algorithm such as the one needed for a BCI-driven cursor control. Overall, the findings reported with our online spectral analysis platforms (Brain TV and Brain Ball) indicate the feasibility of online functional exploration via intracranial recordings in humans and outline the direct benefits of this approach for the improvement of invasive BCI strategies in humans. In particular, our findings suggest that current BCI performance may be improved by using signals recorded from various systems previously unexplored in the context of BCI research such as the oscillatory activity recorded in the oculomotor networks as well as higher cognitive processes including working memory, attention, and mental calculation networks. Finally, we discuss current limitations of the methodology and outline future paths for innovative BCI research. PMID:19607998

  5. Mapping brain development during childhood, adolescence and young adulthood

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Li, Yao

    2009-02-01

    Using optimized voxel-based morphometry (VBM), this study systematically investigated the differences and similarities of brain structural changes during the early three developmental periods of human lives: childhood, adolescence and young adulthood. These brain changes were discussed in relationship to the corresponding cognitive function development during these three periods. Magnetic Resonance Imaging (MRI) data from 158 Chinese healthy children, adolescents and young adults, aged 7.26 to 22.80 years old, were included in this study. Using the customized brain template together with the gray matter/white matter/cerebrospinal fluid prior probability maps, we found that there were more age-related positive changes in the frontal lobe, less in hippocampus and amygdala during childhood, but more in bilateral hippocampus and amygdala and left fusiform gyrus during adolescence and young adulthood. There were more age-related negative changes near to central sulcus during childhood, but these changes extended to the frontal and parietal lobes, mainly in the parietal lobe, during adolescence and young adulthood, and more in the prefrontal lobe during young adulthood. So gray matter volume in the parietal lobe significantly decreased from childhood and continued to decrease till young adulthood. These findings may aid in understanding the age-related differences in cognitive function.

  6. Metabolic tinkering by the gut microbiome: Implications for brain development and function.

    PubMed

    Selkrig, Joel; Wong, Peiyan; Zhang, Xiaodong; Pettersson, Sven

    2014-01-01

    Brain development is an energy demanding process that relies heavily upon diet derived nutrients. Gut microbiota enhance the host's ability to extract otherwise inaccessible energy from the diet via fermentation of complex oligosaccharides in the colon. This nutrient yield is estimated to contribute up to 10% of the host's daily caloric requirement in humans and fluctuates in response to environmental variations. Research over the past decade has demonstrated a surprising role for the gut microbiome in normal brain development and function. In this review we postulate that perturbations in the gut microbial-derived nutrient supply, driven by environmental variation, profoundly impacts upon normal brain development and function. PMID:24685620

  7. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotović, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  8. Brain injuries in early foetal life: consequences for brain development.

    PubMed

    Mancini, J; Lethel, V; Hugonenq, C; Chabrol, B

    2001-01-01

    Learning disability and cerebral palsy are often related to factors present before birth. We report three patients (two with schizencephaly, one with unilateral cerebellar agenesis) in whom the timing of an insult to the foetus was known. In the first case, the mother had a trauma at 16 weeks of pregnancy and schizencephaly was discovered in the male infant associated with a left hemiplegia. In the second child, amniocentesis performed at 16 weeks into pregnancy may have been responsible for the same cortical anomaly. In the third case, sequential foetal echographies clearly demonstrated that an apparent unilateral cerebellar agenesis was related to an haemorrhagic event secondary to cerebellar trauma that occurred at 19 weeks of pregnancy. It is suggested that these brain malformations are related to an ischemic mechanism or a traumatic event in foetal life. PMID:11201424

  9. Early Development and the Brain: Teaching Resources for Educators

    ERIC Educational Resources Information Center

    Gilkerson, Linda, Ed.; Klein, Rebecca, Ed.

    2008-01-01

    This nine-unit curriculum translates current scientific research on early brain development into practical suggestions to help early childhood professionals understand the reciprocal link between caregiving and brain development. The curriculum was created and extensively field-tested by the Erikson Institute Faculty Development Project on the…

  10. Brain Connectivity Associated with Muscle Synergies in Humans

    PubMed Central

    Rana, Manku; Yani, Moheb S.; Asavasopon, Skulpan; Fisher, Beth E.

    2015-01-01

    The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor hallucis longus (FHL, a toe flexor) and the anal sphincter, as a model that we show to be well suited in elucidating the neural connectivity underlying muscle synergy control. First, using electromyographic recordings, we demonstrate that voluntary FHL contraction is associated with synergistic anal sphincter contraction, but voluntary anal sphincter contraction occurs without FHL contraction. Second, using fMRI, we show that two important medial wall motor cortical regions emerge in relation to these tasks: one located more posteriorly that preferentially activates during voluntary FHL contraction and one located more anteriorly that activates during both voluntary FHL contraction as well as voluntary anal sphincter contraction. Third, using transcranial magnetic stimulation, we demonstrate that the anterior region is more likely to generate anal sphincter contraction than FHL contraction. Finally, using a repository resting-state fMRI dataset, we demonstrate that the anterior and posterior motor cortical regions have significantly different functional connectivity with distinct and distant brain regions. We conclude that specific motor cortical regions in humans provide access to different muscle synergies, which may allow distinct brain networks to coordinate muscle synergies during functional tasks. SIGNIFICANCE STATEMENT How the human nervous system coordinates activity in a large number of muscles is a fundamental question. The brain and spinal cord are believed to simplify the control of muscles by grouping them into functional units called muscle synergies. Motor cortex is

  11. Adolescence as a Sensitive Period of Brain Development.

    PubMed

    Fuhrmann, Delia; Knoll, Lisa J; Blakemore, Sarah-Jayne

    2015-10-01

    Most research on sensitive periods has focussed on early sensory, motor, and language development, but it has recently been suggested that adolescence might represent a second ‘window of opportunity’ in brain development. Here, we explore three candidate areas of development that are proposed to undergo sensitive periods in adolescence: memory, the effects of social stress, and drug use. We describe rodent studies, neuroimaging, and large-scale behavioural studies in humans that have yielded data that are consistent with heightened neuroplasticity in adolescence. Critically however, concrete evidence for sensitive periods in adolescence is mostly lacking. To provide conclusive evidence, experimental studies are needed that directly manipulate environmental input and compare effects in child, adolescent, and adult groups. PMID:26419496

  12. Cell culture: Progenitor cells from human brain after death

    NASA Astrophysics Data System (ADS)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  13. Progress and challenges in probing the human brain.

    PubMed

    Poldrack, Russell A; Farah, Martha J

    2015-10-15

    Perhaps one of the greatest scientific challenges is to understand the human brain. Here we review current methods in human neuroscience, highlighting the ways that they have been used to study the neural bases of the human mind. We begin with a consideration of different levels of description relevant to human neuroscience, from molecules to large-scale networks, and then review the methods that probe these levels and the ability of these methods to test hypotheses about causal mechanisms. Functional MRI is considered in particular detail, as it has been responsible for much of the recent growth of human neuroscience research. We briefly review its inferential strengths and weaknesses and present examples of new analytic approaches that allow inferences beyond simple localization of psychological processes. Finally, we review the prospects for real-world applications and new scientific challenges for human neuroscience. PMID:26469048

  14. Can a few non-coding mutations make a human brain?

    PubMed

    Franchini, Lucía F; Pollard, Katherine S

    2015-10-01

    The recent finding that the human version of a neurodevelopmental enhancer of the Wnt receptor Frizzled 8 (FZD8) gene alters neural progenitor cell cycle timing and brain size is a step forward to understanding human brain evolution. The human brain is distinctive in terms of its cognitive abilities as well as its susceptibility to neurological disease. Identifying which of the millions of genomic changes that occurred during human evolution led to these and other uniquely human traits is extremely challenging. Recent studies have demonstrated that many of the fastest evolving regions of the human genome function as gene regulatory enhancers during embryonic development and that the human-specific mutations in them might alter expression patterns. However, elucidating molecular and cellular effects of sequence or expression pattern changes is a major obstacle to discovering the genetic bases of the evolution of our species. There is much work to do before human-specific genetic and genomic changes are linked to complex human traits. PMID:26350501

  15. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    PubMed

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-01-01

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too. PMID:22947971

  16. Human Resource Development: An Overview.

    ERIC Educational Resources Information Center

    Smith, Robert L.

    This information analysis concerns human resource development (HRD), defined as consisting of programs and activities that positively affect the development of the individual and the productivity and profit of the organization. Several key human resource development components are identified and discussed: (1) training and development; (2)…

  17. Finite element modeling of human brain response to football helmet impacts.

    PubMed

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions. PMID:26867124

  18. Brain-machine interfaces for space applications-research, technological development, and opportunities.

    PubMed

    Summerer, Leopold; Izzo, Dario; Rossini, Luca

    2009-01-01

    Recent advances in brain research and brain-machine interfaces suggest these devices could play a central role in future generation computer interfaces. Successes in the use of brain machine interfaces for patients affected by motor paralysis, as well as first developments of games and gadgets based on this technology have matured the field and brought brain-machine interfaces to the brink of more general usability and eventually of opening new markets. In human space flight, astronauts are the most precious "payload" and astronaut time is extremely valuable. Astronauts operate under difficult and unusual conditions since the absence of gravity renders some of the very simple tasks tedious and cumbersome. Therefore, computer interfaces are generally designed for safety and functionality. All improvements and technical aids to enhance their functionality and efficiency, while not compromising safety or overall mass requirements, are therefore of great interest. Brain machine interfaces show some interesting properties in this respect. It is however not obvious that devices developed for functioning on-ground can be used as hands-free interfaces for astronauts. This chapter intends to highlight the research directions of brain machine interfaces with the perceived highest potential impact on future space applications, and to present an overview of the long-term plans with respect to human space flight. We conclude by suggesting research and development steps considered necessary to include brain-machine interface technology in future architectures for human space flight. PMID:19608002

  19. The effects of vitamin D on brain development and adult brain function.

    PubMed

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-01

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. PMID:21664231

  20. An Embodied Brain Model of the Human Foetus.

    PubMed

    Yamada, Yasunori; Kanazawa, Hoshinori; Iwasaki, Sho; Tsukahara, Yuki; Iwata, Osuke; Yamada, Shigehito; Kuniyoshi, Yasuo

    2016-01-01

    Cortical learning via sensorimotor experiences evoked by bodily movements begins as early as the foetal period. However, the learning mechanisms by which sensorimotor experiences guide cortical learning remain unknown owing to technical and ethical difficulties. To bridge this gap, we present an embodied brain model of a human foetus as a coupled brain-body-environment system by integrating anatomical/physiological data. Using this model, we show how intrauterine sensorimotor experiences related to bodily movements induce specific statistical regularities in somatosensory feedback that facilitate cortical learning of body representations and subsequent visual-somatosensory integration. We also show how extrauterine sensorimotor experiences affect these processes. Our embodied brain model can provide a novel computational approach to the mechanistic understanding of cortical learning based on sensorimotor experiences mediated by complex interactions between the body, environment and nervous system. PMID:27302194

  1. An Embodied Brain Model of the Human Foetus

    PubMed Central

    Yamada, Yasunori; Kanazawa, Hoshinori; Iwasaki, Sho; Tsukahara, Yuki; Iwata, Osuke; Yamada, Shigehito; Kuniyoshi, Yasuo

    2016-01-01

    Cortical learning via sensorimotor experiences evoked by bodily movements begins as early as the foetal period. However, the learning mechanisms by which sensorimotor experiences guide cortical learning remain unknown owing to technical and ethical difficulties. To bridge this gap, we present an embodied brain model of a human foetus as a coupled brain-body-environment system by integrating anatomical/physiological data. Using this model, we show how intrauterine sensorimotor experiences related to bodily movements induce specific statistical regularities in somatosensory feedback that facilitate cortical learning of body representations and subsequent visual-somatosensory integration. We also show how extrauterine sensorimotor experiences affect these processes. Our embodied brain model can provide a novel computational approach to the mechanistic understanding of cortical learning based on sensorimotor experiences mediated by complex interactions between the body, environment and nervous system. PMID:27302194

  2. What makes man human: thirty-ninth James Arthur lecture on the evolution of the human brain, 1970

    PubMed Central

    Pribram, Karl H

    2006-01-01

    What makes man human is his brain. This brain is obviously different from those of nonhuman primates. It is larger, shows hemispheric dominance and specialization, and is cytoarchitecturally somewhat more generalized. But are these the essential characteristics that determine the humanness of man? This paper cannot give an answer to this question for the answer is not known. But the problem can be stated more specifically, alternatives spelled out on the basis of available research results, and directions given for further inquiry. My theme will be that the human brain is so constructed that man, and only man, feels the thrust to make meaningful all his experiences and encounters. Development of this theme demands an analysis of the brain mechanisms that make meaning–and an attempt to define biologically the process of meaning. In this pursuit of meaning a fascinating variety of topics comes into focus: the coding and recoding operations of the brain; how it engenders and processes information and redundancy; and, how it makes possible signs and symbols and prepositional utterances. Of these, current research results indicate that only in the making of propositions is man unique–so here perhaps are to be found the keynotes that compose the theme. PMID:17132178

  3. The adult human brain harbors multipotent perivascular mesenchymal stem cells.

    PubMed

    Paul, Gesine; Özen, Ilknur; Christophersen, Nicolaj S; Reinbothe, Thomas; Bengzon, Johan; Visse, Edward; Jansson, Katarina; Dannaeus, Karin; Henriques-Oliveira, Catarina; Roybon, Laurent; Anisimov, Sergey V; Renström, Erik; Svensson, Mikael; Haegerstrand, Anders; Brundin, Patrik

    2012-01-01

    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain. PMID:22523602

  4. Sigma and opioid receptors in human brain tumors

    SciTech Connect

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. )

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  5. Integrative regulation of human brain blood flow

    PubMed Central

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-01-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60–150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  6. Integrative regulation of human brain blood flow.

    PubMed

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-03-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60-150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  7. Red and NIR light dosimetry in the human deep brain

    NASA Astrophysics Data System (ADS)

    Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.

    2015-04-01

    Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated μeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.

  8. Pulsatile cerebrospinal fluid dynamics in the human brain.

    PubMed

    Linninger, Andreas A; Tsakiris, Cristian; Zhu, David C; Xenos, Michalis; Roycewicz, Peter; Danziger, Zachary; Penn, Richard

    2005-04-01

    Disturbances of the cerebrospinal fluid (CSF) flow in the brain can lead to hydrocephalus, a condition affecting thousands of people annually in the US. Considerable controversy exists about fluid and pressure dynamics, and about how the brain responds to changes in flow patterns and compression in hydrocephalus. This paper presents a new model based on the first principles of fluid mechanics. This model of fluid-structure interactions predicts flows and pressures throughout the brain's ventricular pathways consistent with both animal intracranial pressure (ICP) measurements and human CINE phase-contrast magnetic resonance imaging data. The computations provide approximations of the tissue deformations of the brain parenchyma. The model also quantifies the pulsatile CSF motion including flow reversal in the aqueduct as well as the changes in ICPs due to brain tissue compression. It does not require the existence of large transmural pressure differences as the force for ventricular expansion. Finally, the new model gives an explanation of communicating hydrocephalus and the phenomenon of asymmetric hydrocephalus. PMID:15825857

  9. Sex Biased Gene Expression Profiling of Human Brains at Major Developmental Stages.

    PubMed

    Shi, Lei; Zhang, Zhe; Su, Bing

    2016-01-01

    There are many differences in brain structure and function between males and females. However, how these differences were manifested during development and maintained through adulthood are still unclear. Here we present a time series analyses of genome-wide transcription profiles of the human brain, and we identified genes showing sex biased expression at major developmental stages (prenatal time, early childhood, puberty time and adulthood). We observed a great number of genes (>2,000 genes) showing between-sex expression divergence at all developmental stages with the greatest number (4,164 genes) at puberty time. However, there are little overlap of sex-biased genes among the major developmental stages, an indication of dynamic expression regulation of the sex-biased genes in the brain during development. Notably, the male biased genes are highly enriched for genes involved in neurological and psychiatric disorders like schizophrenia, bipolar disorder, Alzheimer's disease and autism, while no such pattern was seen for the female-biased genes, suggesting that the differences in brain disorder susceptibility between males and females are likely rooted from the sex-biased gene expression regulation during brain development. Collectively, these analyses reveal an important role of sex biased genes in brain development and neurodevelopmental disorders. PMID:26880485

  10. Sex Biased Gene Expression Profiling of Human Brains at Major Developmental Stages

    PubMed Central

    Shi, Lei; Zhang, Zhe; Su, Bing

    2016-01-01

    There are many differences in brain structure and function between males and females. However, how these differences were manifested during development and maintained through adulthood are still unclear. Here we present a time series analyses of genome-wide transcription profiles of the human brain, and we identified genes showing sex biased expression at major developmental stages (prenatal time, early childhood, puberty time and adulthood). We observed a great number of genes (>2,000 genes) showing between-sex expression divergence at all developmental stages with the greatest number (4,164 genes) at puberty time. However, there are little overlap of sex-biased genes among the major developmental stages, an indication of dynamic expression regulation of the sex-biased genes in the brain during development. Notably, the male biased genes are highly enriched for genes involved in neurological and psychiatric disorders like schizophrenia, bipolar disorder, Alzheimer’s disease and autism, while no such pattern was seen for the female-biased genes, suggesting that the differences in brain disorder susceptibility between males and females are likely rooted from the sex-biased gene expression regulation during brain development. Collectively, these analyses reveal an important role of sex biased genes in brain development and neurodevelopmental disorders. PMID:26880485

  11. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  12. The Impact of Maternal Vitamin D Status on Offspring Brain Development and Function: a Systematic Review.

    PubMed

    Pet, Milou A; Brouwer-Brolsma, Elske M

    2016-07-01

    Various studies have examined associations between maternal vitamin D (VD) deficiency and offspring health, including offspring brain health. The purpose of this review was to summarize current evidence concerning the impact of maternal VD deficiency on brain development and function in offspring. A systematic search was conducted within Medline (on Ovid) for studies published through 7 May 2015. Animal and human studies that examined associations between maternal VD status or developmental VD deficiency and offspring brain development and function were included. A total of 26 animal studies and 10 human studies met the inclusion criteria. Several animal studies confirmed the hypothesis that low prenatal VD status may affect brain morphology and physiology as well as behavioral outcomes. In humans, subtle cognitive and psychological impairments in offspring of VD-deficient mothers were observed. However, data obtained from animal and human studies provide inconclusive evidence, and results seem to depend on strain or race and age of offspring. To conclude, prenatal VD status is thought to play an important role in brain development, cognitive function, and psychological function. However, results are inconclusive; validation of these findings and investigation of underlying mechanisms are required. Thus, more investigation is needed before recommending supplementation of VD during pregnancy to promote brain health of offspring. PMID:27422502

  13. Characterization of T2* Heterogeneity in Human Brain White Matter

    PubMed Central

    Li, Tie-Qiang; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Dodd, Stephen; Talagala, Lalith; Koretsky, Alan P.; Duyn, Jeff

    2012-01-01

    Recent in vivo MRI studies at 7.0 T have demonstrated extensive heterogeneity of T2* relaxation in white matter of the human brain. In order to study the origin of this heterogeneity, we performed T2* measurements at 1.5, 3.0, and 7.0 T in normal volunteers. Formalin-fixed brain tissue specimens were also studied using T2*-weighted MRI, histological staining, chemical analysis, and electron microscopy. We found that T2* relaxation rate (R2*=1/ T2*) in white matter in living human brain is linearly dependent on the main magnetic field strength and the T2* heterogeneity in white matter observed at 7.0 T can also be detected, albeit weaker, at 1.5 and 3.0 T. The T2* heterogeneity exists also in white matter of the formalin fixed brain tissue specimens, with prominent differences between the major fiber bundles such as the cingulum and the superior corona radiada. The white matter specimen with substantial difference in T2*have no significant difference in the total iron content as determined by chemical analysis. On the other hand, evidence from histological staining and electron microscopy demonstrate these tissue specimen have apparent difference in myelin content and microstructure. PMID:19859939

  14. Intra-Uterine Undernutrition and Brain Development

    ERIC Educational Resources Information Center

    Chase, H. Peter; And Others

    1971-01-01

    Results of studies with undernourished guinea pig mothers and their offspring suggest that adequate postnatal nutrition can offset some, but not all of the brain biochemical changes resulting from fetal undernutrition. (Author/KW)

  15. Relationships, environment, and the brain: how emerging research is changing what we know about the impact of families on human development.

    PubMed

    Patterson, Jo Ellen; Vakili, Susanna

    2014-03-01

    Recent research is providing family therapists with new information about the complex interaction between an individual's biological makeup and his/her social and physical environment. Family and social relationships, particularly during sensitive periods early in life, can affect a child's biological foundation. Additionally, stress during the early years can have a lasting effect on an individual's physical and mental health and contribute to the onset of severe mental illness. Community programs have been developed to intervene early with families who have an at-risk child to prevent or minimize the onset of mental illness including providing partnerships with at-risk mothers of infants to shape attachment relationships. Programs are also developing individual and family interventions to prevent the onset of psychosis. Practicing family therapists can incorporate emerging neuroscience and early intervention research and leverage the growing base of community programs to enhance the effectiveness and sustainability of mental health outcomes for clients. Additionally, family therapy education programs should broaden student training to incorporate the growing body of information about how family relationships affect individual mental health development. PMID:24372366

  16. Contrast-enhanced diffuse optical tomography of brain perfusion in humans using ICG

    NASA Astrophysics Data System (ADS)

    Habermehl, Christina; Schmitz, Christoph; Steinbrink, Jens

    2012-02-01

    Regular monitoring of brain perfusion at the bedside in neurointensive care is desirable. Currently used imaging modalities are not suited for constant monitoring and often require a transport of the patient. Noninvasive near infrared spectroscopy (NIRS) in combination with an injection of a safe dye (indocyanine green, ICG) could serve as a quasi-continuous brain perfusion monitor. In this work, we evaluate prerequisites for the development of a brain perfusion monitor using continuous wave (cw) NIRS technique. We present results from a high-resolution diffuse optical tomography (HR-DOT) experiment in humans demonstrating the separation of signals from skin from the brain. This technique can help to monitor neurointensive care patients on a regular basis, detecting changes in cortical perfusion in time.

  17. Implications of Right Brain Research on Curriculum Development.

    ERIC Educational Resources Information Center

    MacKinnon, Colin

    The idea that the brain may be more complex and varied in the ways that it responds to and interprets information than is generally recognized suggests that both the left and right hemispheres are in need of total development. In discussing the development of curriculum that will bring into harmony the functions of both brain hemispheres, it is…

  18. Rethinking the Brain: New Insights into Early Development.

    ERIC Educational Resources Information Center

    Shore, Rima

    Recent research on early brain development holds several implications for parents, teachers, health professionals, and policymakers. This report, based on the proceedings from a 1996 national conference on the importance of early brain development for the nation's future well-being, highlights major findings, summarizes their implications for…

  19. Effects of DTNBP1 Genotype on Brain Development in Children

    ERIC Educational Resources Information Center

    Tognin, Stefania; Viding, Essi; McCrory, Eamon J.; Taylor, Lauren; O'Donovan, Michael C.; McGuire, Philip; Mechelli, Andrea

    2011-01-01

    Background: Schizophrenia is a neurodevelopmental disorder, and risk genes are thought to act through disruption of brain development. Several genetic studies have identified dystrobrevin-binding protein 1 (DTNBP1, also known as dysbindin) as a potential susceptibility gene for schizophrenia, but its impact on brain development is poorly…

  20. Insults to the Developing Brain and Impact on Neurodevelopmental Outcome

    ERIC Educational Resources Information Center

    Adams-Chapman, Ira

    2009-01-01

    Premature infants have a disproportionately increased risk for brain injury based on several mechanisms including intraventricular hemorrhage, ischemia and the vulnerability of developing neuronal progenitor cells. Injury to the developing brain often results in neurologic abnormalities that can be correlated with a structural lesion; however more…

  1. Dynamic mapping of normal human hippocampal development.

    PubMed

    Gogtay, Nitin; Nugent, Tom F; Herman, David H; Ordonez, Anna; Greenstein, Deanna; Hayashi, Kiralee M; Clasen, Liv; Toga, Arthur W; Giedd, Jay N; Rapoport, Judith L; Thompson, Paul M

    2006-01-01

    The hippocampus, which plays an important role in memory functions and emotional responses, has distinct subregions subserving different functions. Because the volume and shape of the hippocampus are altered in many neuropsychiatric disorders, it is important to understand the trajectory of normal hippocampal development. We present the first dynamic maps to reveal the anatomical sequence of normal human hippocampal development. A novel hippocampal mapping technique was applied to a database of prospectively obtained brain magnetic resonance imaging (MRI) scans (100 scans in 31 children and adolescents), scanned every 2 yr for 6-10 yr between ages 4 and 25. Our results establish that the structural development of the human hippocampus is remarkably heterogeneous, with significant differences between posterior (increase over time) and anterior (loss over time) subregions. These distinct developmental trajectories of hippocampal subregions may parallel differences in their functional development. PMID:16826559

  2. Brain-Pituitary Axis Development In The CEBAS Minimodule

    NASA Technical Reports Server (NTRS)

    Schreibman, Martin P.; Magliulo-Cepriano, Lucia

    2001-01-01

    The CEBAS minimodule system is a man-made aquatic ecological system that incorporates animals, plants, snails, and microorganisms. It has been proposed that CEBAS will lead to a multigenerational experimental facility for utilization in a space station as well as for the development of an aquatic CELSS to produce animal and plant biomass for human nutrition. In this context, research on the reproductive biology of the organisms within the system should receive the highest priority. 1bus, the goals of our proposal were to provide information on space-flight-induced changes in the brain-pituitary axis and in the organs that receive information from the environment in the vertebrate selected for the CEBAS Minimodule program, the freshwater teleost Xiphophorus helleri (the swordtail). We studied the development of the brain- pituitary axis in neonates, immature and mature swordtails using histology, cytology, immunohistochemistry, morphometry, and in situ histochemistry to evaluate the synthesis, storage, and release of neurotransmitters, neuroregulatory peptides, neurohormones, and pituitary hormones as well as the structure of the organs and cells that produce, store, or are the target organs for these substances. We flew experiments in the CEBAS-minimodule on two shuttle missions, STS-89 and STS-90. In both flights four gravid females and about 200 juvenile (7 days old) swordtails (Xiphophorus helleri) constituted the aquatic vertebrates to be studied, in addition to the plants and snails that were studied by other team members. In a sample sharing agreement developed with Dr. Volker Bluem, organizer of the CEBAS research program, we received a small number of the juveniles and shared the brains of two adult females.

  3. Local Model of Arteriovenous Malformation of the Human Brain

    NASA Astrophysics Data System (ADS)

    Nadezhda Telegina, Ms; Aleksandr Chupakhin, Mr; Aleksandr Cherevko, Mr

    2013-02-01

    Vascular diseases of the human brain are one of the reasons of deaths and people's incapacitation not only in Russia, but also in the world. The danger of an arteriovenous malformation (AVM) is in premature rupture of pathological vessels of an AVM which may cause haemorrhage. Long-term prognosis without surgical treatment is unfavorable. The reduced impact method of AVM treatment is embolization of a malformation which often results in complete obliteration of an AVM. Pre-surgical mathematical modeling of an arteriovenous malformation can help surgeons with an optimal sequence of the operation. During investigations, the simple mathematical model of arteriovenous malformation is developed and calculated, and stationary and non-stationary processes of its embolization are considered. Various sequences of embolization of a malformation are also considered. Calculations were done with approximate steady flow on the basis of balanced equations derived from conservation laws. Depending on pressure difference, a fistula-type AVM should be embolized at first, and then small racemose AVMs are embolized. Obtained results are in good correspondence with neurosurgical AVM practice.

  4. Human immunodeficiency virus type 1 infection of the brain.

    PubMed Central

    Atwood, W J; Berger, J R; Kaderman, R; Tornatore, C S; Major, E O

    1993-01-01

    Direct infection of the central nervous system by human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, was not appreciated in the early years of the AIDS epidemic. Neurological complications associated with AIDS were largely attributed to opportunistic infections that arose as a result of the immunocompromised state of the patient and to depression. In 1985, several groups succeeded in isolating HIV-1 directly from brain tissue. Also that year, the viral genome was completely sequenced, and HIV-1 was found to belong to a neurotropic subfamily of retrovirus known as the Lentivirinae. These findings clearly indicated that direct HIV-1 infection of the central nervous system played a role in the development of AIDS-related neurological disease. This review summarizes the clinical manifestations of HIV-1 infection of the central nervous system and the related neuropathology, the tropism of HIV-1 for specific cell types both within and outside of the nervous system, the possible mechanisms by which HIV-1 damages the nervous system, and the current strategies for diagnosis and treatment of HIV-1-associated neuropathology. Images PMID:8269391

  5. Common astrocytic programs during brain development, injury and cancer

    PubMed Central

    Silver, Daniel J.; Steindler, Dennis A.

    2011-01-01

    In addition to radial glial cells of neurohistogenesis, immature astrocytes with stem-cell-like properties cordon off emerging functional patterns in the developing brain. Astrocytes also can be stem cells during adult neurogenesis, and a proposed potency of injury-associated reactive astrocytes has recently been substantiated. Astrocytic cells might additionally be involved in cancer stem cell-associated gliomagenesis. Thus, there are distinguishing roles for stem-cell-like astrocytes during brain development, in neurogenic niches in the adult, during attempted reactive neurogenesis after brain injury or disease and during brain tumorigenesis. PMID:19398132

  6. Beyond Genotype: Serotonin Transporter Epigenetic Modification Predicts Human Brain Function

    PubMed Central

    Nikolova, Yuliya S.; Koenen, Karestan C.; Galea, Sandro; Wang, Chiou-Miin; Seney, Marianne L.; Sibille, Etienne; Williamson, Douglas E.; Hariri, Ahmad R.

    2014-01-01

    We examined epigenetic regulation in regards to behaviorally and clinically relevant human brain function. Specifically, we found that increased promoter methylation of the serotonin transporter gene predicted increased threat-related amygdala reactivity and decreased mRNA expression in postmortem amygdala tissue. These patterns were independent of functional genetic variation in the same region. Furthermore, the association with amygdala reactivity was replicated in a second cohort and was robust to both sampling methods and age. PMID:25086606

  7. Shape analysis of the human brain: a brief survey.

    PubMed

    Nitzken, Matthew J; Casanova, Manuel F; Gimelfarb, Georgy; Inanc, Tamer; Zurada, Jacek M; El-Baz, Ayman

    2014-07-01

    The survey outlines and compares popular computational techniques for quantitative description of shapes of major structural parts of the human brain, including medial axis and skeletal analysis, geodesic distances, Procrustes analysis, deformable models, spherical harmonics, and deformation morphometry, as well as other less widely used techniques. Their advantages, drawbacks, and emerging trends, as well as results of applications, in particular, for computer-aided diagnostics, are discussed. PMID:25014938

  8. Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction.

    PubMed

    Kawasaki, Masahiro; Yamada, Yohei; Ushiku, Yosuke; Miyauchi, Eri; Yamaguchi, Yoko

    2013-01-01

    Behavioral rhythms synchronize between humans for communication; however, the relationship of brain rhythm synchronization during speech rhythm synchronization between individuals remains unclear. Here, we conducted alternating speech tasks in which two subjects alternately pronounced letters of the alphabet during hyperscanning electroencephalography. Twenty pairs of subjects performed the task before and after each subject individually performed the task with a machine that pronounced letters at almost constant intervals. Speech rhythms were more likely to become synchronized in human-human tasks than human-machine tasks. Moreover, theta/alpha (6-12 Hz) amplitudes synchronized in the same temporal and lateral-parietal regions in each pair. Behavioral and inter-brain synchronizations were enhanced after human-machine tasks. These results indicate that inter-brain synchronizations are tightly linked to speech synchronizations between subjects. Furthermore, theta/alpha inter-brain synchronizations were also found in subjects while they observed human-machine tasks, which suggests that the inter-brain synchronization might reflect empathy for others' speech rhythms. PMID:23603749

  9. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings.

    PubMed

    Li, Wei; Wu, Bing; Avram, Alexandru V; Liu, Chunlei

    2012-02-01

    Frequency shift of gradient-echo MRI provides valuable information for assessing brain tissues. Recent studies suggest that the frequency and susceptibility contrast depend on white matter fiber orientation. However, the molecular underpinning of the orientation dependence is unclear. In this study, we investigated the orientation dependence of susceptibility of human brain in vivo and mouse brains ex vivo. The source of susceptibility anisotropy in white matter is likely to be myelin as evidenced by the loss of anisotropy in the dysmyelinating shiverer mouse brain. A biophysical model is developed to investigate the effect of the molecular susceptibility anisotropy of myelin components, especially myelin lipids, on the bulk anisotropy observed by MRI. This model provides a consistent interpretation of the orientation dependence of macroscopic magnetic susceptibility in normal mouse brain ex vivo and human brain in vivo and the microscopic origin of anisotropic susceptibility. It is predicted by the theoretical model and illustrated by the experimental data that the magnetic susceptibility of the white matter is least diamagnetic along the fiber direction. This relationship allows an efficient extraction of fiber orientation using susceptibility tensor imaging. These results suggest that anisotropy on the molecular level can be observed on the macroscopic level when the molecules are aligned in a highly ordered manner. Similar to the utilization of magnetic susceptibility anisotropy in elucidating molecular structures, imaging magnetic susceptibility anisotropy may also provide a useful tool for elucidating the microstructure of ordered biological tissues. PMID:22036681

  10. Blood-brain barrier dysfunction in disorders of the developing brain

    PubMed Central

    Moretti, Raffaella; Pansiot, Julien; Bettati, Donatella; Strazielle, Nathalie; Ghersi-Egea, Jean-François; Damante, Giuseppe; Fleiss, Bobbi; Titomanlio, Luigi; Gressens, Pierre

    2015-01-01

    Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data. PMID:25741233

  11. Blood-brain barrier dysfunction in disorders of the developing brain.

    PubMed

    Moretti, Raffaella; Pansiot, Julien; Bettati, Donatella; Strazielle, Nathalie; Ghersi-Egea, Jean-François; Damante, Giuseppe; Fleiss, Bobbi; Titomanlio, Luigi; Gressens, Pierre

    2015-01-01

    Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data. PMID:25741233

  12. Differential regional brain growth and rotation of the prenatal human tentorium cerebelli

    PubMed Central

    Jeffery, Nathan

    2002-01-01

    Folds of dura mater, the falx cerebri and tentorium cerebelli, traverse the vertebrate endocranial cavity and compartmentalize the brain. Previous studies suggest that the tentorial fold has adopted an increasingly important role in supporting the increased load of the cerebrum during human evolution, brought about by encephalization and an adaptation to bipedal posture. Ontogenetic studies of the fetal tentorium suggest that its midline profile rotates inferoposteriorly towards the foramen magnum in response to disproportionate growth of the cerebrum. This study tests the hypothesis that differential growth of the cerebral and cerebellar components of the brain underlies the inferoposterior rotation of the tentorium cerebelli during human fetal development. Brain volumes and tentorial angles were taken from high-resolution magnetic resonance images of 46 human fetuses ranging from 10 to 29 gestational weeks. Apart from the expected increases of both supratentorial and infratentorial brain volumes with age, the results confirm previous studies showing a significant relative enlargement of the supratentorial volume. Correlated with this enlargement was a rotation of the midline section of the tentorium towards the posterior cranial base. These findings support the concept that increases of supratentorial volume relative to infratentorial volume affect an inferoposterior rotation of the human fetal tentorium cerebelli. These results are discussed in the context of the role played by the tentorium cerebelli during human evolution and underline implications for phylogenetic and ontogenetic models of encephalization. PMID:11895111

  13. Imaging synaptic density in the living human brain.

    PubMed

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. PMID:27440727

  14. Introductory overview of research instruments for recording the electrical activity of neurons in the human brain

    NASA Astrophysics Data System (ADS)

    Garell, P. C.; Granner, M. A.; Noh, M. D.; Howard, M. A.; Volkov, I. O.; Gillies, G. T.

    1998-12-01

    Scientific advancement is often spurred by the development of new instruments for investigation. Over the last several decades, many new instruments have been produced to further our understanding of the physiology of the human brain. We present a partial overview of some of these instruments, paying particular attention to those which record the electrical activity of the human brain. We preface the review with a brief primer on neuroanatomy and physiology, followed by a discussion of the latest types of apparatus used to investigate various properties of the central nervous system. A special focus is on microelectrode investigations that employ both intracellular and extracellular methods of recording the electrical activity of single neurons; another is on the modern electroencephalographic, electrocorticographic, and magnetoencephalographic methods used to study the spontaneous and evoked field potentials of the brain. Some examples of clinical applications are included, where appropriate.

  15. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain.

    PubMed

    Lake, Blue B; Ai, Rizi; Kaeser, Gwendolyn E; Salathia, Neeraj S; Yung, Yun C; Liu, Rui; Wildberg, Andre; Gao, Derek; Fung, Ho-Lim; Chen, Song; Vijayaraghavan, Raakhee; Wong, Julian; Chen, Allison; Sheng, Xiaoyan; Kaper, Fiona; Shen, Richard; Ronaghi, Mostafa; Fan, Jian-Bing; Wang, Wei; Chun, Jerold; Zhang, Kun

    2016-06-24

    The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from a postmortem brain, generating 3227 sets of single-neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish previously unknown and orthologous neuronal subtypes as well as regional identity and transcriptomic heterogeneity within the human brain. PMID:27339989

  16. Early Parental Care Is Important for Hippocampal Maturation: Evidence from Brain Morphology in Humans

    PubMed Central

    Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M.; Brodsky, Nancy L.; Korczykowski, Marc; Avants, Brian B.; Gee, James C.; Wang, Jiongjiong; Hurt, Hallam; Detre, John A.; Farah, Martha J.

    2009-01-01

    The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation. PMID:19595774

  17. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  18. Software-based Diffusion MR Human Brain Phantom for Evaluating Fiber-tracking Algorithms.

    PubMed

    Shi, Yundi; Roger, Gwendoline; Vachet, Clement; Budin, Francois; Maltbie, Eric; Verde, Audrey; Hoogstoel, Marion; Berger, Jean-Baptiste; Styner, Martin

    2013-03-13

    Fiber tracking provides insights into the brain white matter network and has become more and more popular in diffusion MR imaging. Hardware or software phantom provides an essential platform to investigate, validate and compare various tractography algorithms towards a "gold standard". Software phantoms excel due to their flexibility in varying imaging parameters, such as tissue composition, SNR, as well as potential to model various anatomies and pathologies. This paper describes a novel method in generating diffusion MR images with various imaging parameters from realistically appearing, individually varying brain anatomy based on predefined fiber tracts within a high-resolution human brain atlas. Specifically, joint, high resolution DWI and structural MRI brain atlases were constructed with images acquired from 6 healthy subjects (age 22-26) for the DWI data and 56 healthy subject (age 18-59) for the structural MRI data. Full brain fiber tracking was performed with filtered, two-tensor tractography in atlas space. A deformation field based principal component model from the structural MRI as well as unbiased atlas building was then employed to generate synthetic structural brain MR images that are individually varying. Atlas fiber tracts were accordingly warped into each synthetic brain anatomy. Diffusion MR images were finally computed from these warped tracts via a composite hindered and restricted model of diffusion with various imaging parameters for gradient directions, image resolution and SNR. Furthermore, an open-source program was developed to evaluate the fiber tracking results both qualitatively and quantitatively based on various similarity measures. PMID:24357914

  19. Shortcomings of the human brain and remedial action by religion

    NASA Astrophysics Data System (ADS)

    Reich, K. Helmut

    2010-03-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial action. To determine such an action, a broad-based dialogue is required, based on the most promising ontology and epistemology as well as on appropriate logics.

  20. Ionizing radiation and the developing brain

    SciTech Connect

    Schull, W.J.; Norton, S.; Jensh, R.P. )

    1990-05-01

    The unique susceptibility of the central nervous system to radiation exposure is attributable to its extensive period of development, the vulnerability of its neuronal cells, the migratory activity of many of its cells, its inability to replace mature neurons, and the complexity of the system itself. Radiation effects may be due to glial or neuronal cell death, interruption of migratory activity, impaired capacity to establish correct connections among cells, and/or alterations in dendritic development. These structural changes are often manifested as behavioral alterations later in life. Sensitivity to radiation (dose-response) is markedly similar among all mammalian species when developmental periods are compared. This review compares and contrasts human and animal behavioral data. Neonatal and postnatal adult behavioral tests have been shown to be sensitive, noninvasive measures of prenatal radiation exposure, although currently their predictive validity for humans is uncertain. Additional research is needed to determine the presence and significance of postnatal morphologic and functional alterations due to prenatal exposure to low levels of ionizing radiation.75 references.

  1. Involvement of Sphingolipids in Ethanol Neurotoxicity in the Developing Brain

    PubMed Central

    Saito, Mariko; Saito, Mitsuo

    2013-01-01

    Ethanol-induced neuronal death during a sensitive period of brain development is considered one of the significant causes of fetal alcohol spectrum disorders (FASD). In rodent models, ethanol triggers robust apoptotic neurodegeneration during a period of active synaptogenesis that occurs around the first two postnatal weeks, equivalent to the third trimester in human fetuses. The ethanol-induced apoptosis is mitochondria-dependent, involving Bax and caspase-3 activation. Such apoptotic pathways are often mediated by sphingolipids, a class of bioactive lipids ubiquitously present in eukaryotic cellular membranes. While the central role of lipids in ethanol liver toxicity is well recognized, the involvement of sphingolipids in ethanol neurotoxicity is less explored despite mounting evidence of their importance in neuronal apoptosis. Nevertheless, recent studies indicate that ethanol-induced neuronal apoptosis in animal models of FASD is mediated or regulated by cellular sphingolipids, including via the pro-apoptotic action of ceramide and through the neuroprotective action of GM1 ganglioside. Such sphingolipid involvement in ethanol neurotoxicity in the developing brain may provide unique targets for therapeutic applications against FASD. Here we summarize findings describing the involvement of sphingolipids in ethanol-induced apoptosis and discuss the possibility that the combined action of various sphingolipids in mitochondria may control neuronal cell fate. PMID:24961420

  2. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain

    NASA Astrophysics Data System (ADS)

    Salari, V.; Tuszynski, J.; Bokkon, I.; Rahnama, M.; Cifra, M.

    2011-12-01

    The subject of Ultraweak Photon Emission (UPE) by biological systems is very fascinating, and both evidence of its effects and applications are growing rapidly due to improvements in experimental techniques. Since the relevant equipment should be ultrasensitive with high quantum efficiencies and very low noise levels, the subject of UPE is still hotly debated and some of the interpretations need stronger empirical evidence to be accepted at face value. In this paper we first review different types of interactions between light and living systems based on recent publications. We then discuss the feasibility of UPE production in the human brain. The subject of UPE in the brain is still in early stages of development and needs more accurate experimental methods for proper analysis. In this work we also discuss a possible role of mitochondria in the production of UPE in the neurons of the brain and the plausibility of their effects on microtubules (MTs). MTs have been implicated as playing an important role in the signal and information processing taking place in the mammalian (especially human) brain. Finally, we provide a short discussion about the feasible effects of MTs on electric neural activity in the human brain.

  3. The role of mechanics during brain development

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2014-12-01

    Convolutions are a classical hallmark of most mammalian brains. Brain surface morphology is often associated with intelligence and closely correlated with neurological dysfunction. Yet, we know surprisingly little about the underlying mechanisms of cortical folding. Here we identify the role of the key anatomic players during the folding process: cortical thickness, stiffness, and growth. To establish estimates for the critical time, pressure, and the wavelength at the onset of folding, we derive an analytical model using the Föppl-von Kármán theory. Analytical modeling provides a quick first insight into the critical conditions at the onset of folding, yet it fails to predict the evolution of complex instability patterns in the post-critical regime. To predict realistic surface morphologies, we establish a computational model using the continuum theory of finite growth. Computational modeling not only confirms our analytical estimates, but is also capable of predicting the formation of complex surface morphologies with asymmetric patterns and secondary folds. Taken together, our analytical and computational models explain why larger mammalian brains tend to be more convoluted than smaller brains. Both models provide mechanistic interpretations of the classical malformations of lissencephaly and polymicrogyria. Understanding the process of cortical folding in the mammalian brain has direct implications on the diagnostics of neurological disorders including severe retardation, epilepsy, schizophrenia, and autism.

  4. The role of mechanics during brain development

    PubMed Central

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2014-01-01

    Convolutions are a classical hallmark of most mammalian brains. Brain surface morphology is often associated with intelligence and closely correlated to neurological dysfunction. Yet, we know surprisingly little about the underlying mechanisms of cortical folding. Here we identify the role of the key anatomic players during the folding process: cortical thickness, stiffness, and growth. To establish estimates for the critical time, pressure, and the wavelength at the onset of folding, we derive an analytical model using the Föppl-von-Kármán theory. Analytical modeling provides a quick first insight into the critical conditions at the onset of folding, yet it fails to predict the evolution of complex instability patterns in the post-critical regime. To predict realistic surface morphologies, we establish a computational model using the continuum theory of finite growth. Computational modeling not only confirms our analytical estimates, but is also capable of predicting the formation of complex surface morphologies with asymmetric patterns and secondary folds. Taken together, our analytical and computational models explain why larger mammalian brains tend to be more convoluted than smaller brains. Both models provide mechanistic interpretations of the classical malformations of lissencephaly and polymicrogyria. Understanding the process of cortical folding in the mammalian brain has direct implications on the diagnostics of neurological disorders including severe retardation, epilepsy, schizophrenia, and autism. PMID:25202162

  5. 78 FR 19723 - Proposed Collection; 60-Day Comment Request; Evaluation of the Brain Disorders in the Developing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... HUMAN SERVICES National Institutes of Health Proposed Collection; 60-Day Comment Request; Evaluation of the Brain Disorders in the Developing World Program of the John E. Fogarty International Center...: Evaluation of the Brain Disorders in the Developing World Program of the John E. Fogarty International...

  6. Immune responses at brain barriers and implications for brain development and neurological function in later life

    PubMed Central

    Stolp, Helen B.; Liddelow, Shane A.; Sá-Pereira, Inês; Dziegielewska, Katarzyna M.; Saunders, Norman R.

    2013-01-01

    For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognized that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signaling or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signaling at the brain barriers that may be an important part of the body's response to damage or infection. This signaling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed. PMID:23986663

  7. Human sexual behavior related to pathology and activity of the brain.

    PubMed

    Komisaruk, Barry R; Rodriguez Del Cerro, Maria Cruz

    2015-01-01

    Reviewed in this chapter are: (1) correlations among human sexual behavior, brain pathology, and brain activity, including caveats regarding the interpretation of "cause and effect" among these factors, and the degree to which "hypersexuality" and reported changes in sexual orientation correlated with brain pathology are uniquely sexual or are attributable to a generalized disinhibition of brain function; (2) the effects, in some cases inhibitory, in others facilitatory, on sexual behavior and motivation, of stroke, epileptic seizures, traumatic brain injury, and brain surgery; and (3) insights into sexual motivation and behavior recently gained from functional brain imaging research and its interpretive limitations. We conclude from the reviewed research that the neural orchestra underlying the symphony of human sexuality comprises, rather than brain "centers," multiple integrated brain systems, and that there are more questions than answers in our understanding of the control of human sexual behavior by the brain - a level of understanding that is still in embryonic form. PMID:26003240

  8. Expression of UDP-Glucuronosyltransferase 1 (UGT1) and Glucuronidation Activity toward Endogenous Substances in Humanized UGT1 Mouse Brain