Science.gov

Sample records for human brain morphology

  1. Genetic contributions to human brain morphology and intelligence.

    PubMed

    Hulshoff Pol, Hilleke E; Schnack, Hugo G; Posthuma, Danielle; Mandl, René C W; Baaré, Wim F; van Oel, Clarine; van Haren, Neeltje E; Collins, D Louis; Evans, Alan C; Amunts, Katrin; Bürgel, Uli; Zilles, Karl; de Geus, Eco; Boomsma, Dorret I; Kahn, René S

    2006-10-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images of 54 monozygotic and 58 dizygotic twin pairs and 34 of their siblings. For genetic analyses, we used structural equation modeling and voxel-based morphometry. To explore the common genetic origin of focal GM and WM areas with intelligence, we obtained cross-trait/cross-twin correlations in which the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0.55). Intelligence shared a common genetic origin with superior occipitofrontal, callosal, and left optical radiation WM and frontal, occipital, and parahippocampal GM (phenotypic correlations up to 0.35). These findings point to a neural network that shares a common genetic origin with human intelligence. PMID:17021179

  2. Human brain potentials indicate morphological decomposition in visual word recognition.

    PubMed

    Barber, Horacio; Domínguez, Alberto; de Vega, Manuel

    2002-02-01

    Stem homographs are pairs of words with the same orthographic description of their stem but which are semantically and morphologically unrelated (e.g. in Spanish: rata/rato (rat/moment)). In priming tasks, stem homographs produce inhibition, unlike morphologically related words (loca/loco (madwoman/madman)) which produce facilitation. An event-related potentials study was conducted to compare morphological and stem homographic priming effects. The results show a similar attenuation of the N400 component at the 350-500 ms temporal window for the two conditions. In contrast, a broad negativity occurs only for stem homographs at the 500-600 ms window. This late negativity is interpreted as the consequence of an inhibitory effect for stem homographs that delays the stage of meaning integration. PMID:11803121

  3. Paracingulate sulcus morphology is associated with hallucinations in the human brain.

    PubMed

    Garrison, Jane R; Fernyhough, Charles; McCarthy-Jones, Simon; Haggard, Mark; Simons, Jon S

    2015-01-01

    Hallucinations are common in psychiatric disorders, and are also experienced by many individuals who are not mentally ill. Here, in 153 participants, we investigate brain structural markers that predict the occurrence of hallucinations by comparing patients with schizophrenia who have experienced hallucinations against patients who have not, matched on a number of demographic and clinical variables. Using both newly validated visual classification techniques and automated, data-driven methods, hallucinations were associated with specific brain morphology differences in the paracingulate sulcus, a fold in the medial prefrontal cortex, with a 1?cm reduction in sulcal length increasing the likelihood of hallucinations by 19.9%, regardless of the sensory modality in which they were experienced. The findings suggest a specific morphological basis for a pervasive feature of typical and atypical human experience. PMID:26573408

  4. Paracingulate sulcus morphology is associated with hallucinations in the human brain

    PubMed Central

    Garrison, Jane R.; Fernyhough, Charles; McCarthy-Jones, Simon; Haggard, Mark; Carr, Vaughan; Schall, Ulrich; Scott, Rodney; Jablensky, Assen; Mowry, Bryan; Michie, Patricia; Catts, Stanley; Henskens, Frans; Pantelis, Christos; Loughland, Carmel; Simons, Jon S.

    2015-01-01

    Hallucinations are common in psychiatric disorders, and are also experienced by many individuals who are not mentally ill. Here, in 153 participants, we investigate brain structural markers that predict the occurrence of hallucinations by comparing patients with schizophrenia who have experienced hallucinations against patients who have not, matched on a number of demographic and clinical variables. Using both newly validated visual classification techniques and automated, data-driven methods, hallucinations were associated with specific brain morphology differences in the paracingulate sulcus, a fold in the medial prefrontal cortex, with a 1?cm reduction in sulcal length increasing the likelihood of hallucinations by 19.9%, regardless of the sensory modality in which they were experienced. The findings suggest a specific morphological basis for a pervasive feature of typical and atypical human experience. PMID:26573408

  5. A mechanical model predicts morphological abnormalities in the developing human brain

    PubMed Central

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-01-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

  6. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  7. Morphology and morphometry of the human embryonic brain: A three-dimensional analysis.

    PubMed

    Shiraishi, N; Katayama, A; Nakashima, T; Yamada, S; Uwabe, C; Kose, K; Takakuwa, T

    2015-07-15

    The three-dimensional dynamics and morphology of the human embryonic brain have not been previously analyzed using modern imaging techniques. The morphogenesis of the cerebral vesicles and ventricles was analyzed using images derived from human embryo specimens from the Kyoto Collection, which were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. A total of 101 embryos between Carnegie stages (CS) 13 and 23, without apparent morphological damage or torsion in the brain ventricles and axes, were studied. To estimate the uneven development of the cerebral vesicles, the volumes of the whole embryo and brain, prosencephalon, mesencephalon, and rhombencephalon with their respective ventricles were measured using image analyzing Amira™ software. The brain volume, excluding the ventricles (brain tissue), was 1.15 ± 0.43 mm(3) (mean ± SD) at CS13 and increased exponentially to 189.10 ± 36.91 mm(3) at CS23, a 164.4-fold increase, which is consistent with the observed morphological changes. The mean volume of the prosencephalon was 0.26 ± 0.15 mm(3) at CS13. The volume increased exponentially until CS23, when it reached 110.99 ± 27.58 mm(3). The mean volumes of the mesencephalon and rhombencephalon were 0.20 ± 0.07 mm(3) and 0.69 ± 0.23 mm(3) at CS13, respectively; the volumes reached 21.86 ± 3.30 mm(3) and 56.45 ± 7.64 mm(3) at CS23, respectively. The ratio of the cerebellum to the rhombencephalon was approximately 7.2% at CS20, and increased to 12.8% at CS23. The ratio of the volume of the cerebral vesicles to that of the whole embryo remained nearly constant between CS15 and CS23 (11.6-15.5%). The non-uniform thickness of the brain tissue during development, which may indicate the differentiation of the brain, was visualized with surface color mapping by thickness. At CS23, the basal regions of the prosencephalon and rhombencephalon were thicker than the corresponding dorsal regions. The brain was further studied by the serial digital subtraction of layers of tissue from both the external and internal surfaces to visualize the core region (COR) of the thickening brain tissue. The COR, associated with the development of nuclei, became apparent after CS16; this was particularly visible in the prosencephalon. The anatomical positions of the COR were mostly consistent with the formation of the basal ganglia, thalamus, and pyramidal tract. This was confirmed through comparisons with serial histological sections of the human embryonic brain. The approach used in this study may be suitable as a convenient alternative method for estimating the development and differentiation of the neural ganglia and tracts. These findings contribute to a better understanding of brain and cerebral ventricle development. PMID:25934469

  8. Paracingulate sulcus morphology is associated with hallucinations in the human brain

    E-print Network

    Garrison, Jane R.; Fernyhough, Charles; McCarthy-Jones, Simon; Haggard, Mark; Australian Schizophrenia Research Bank; Simon, Jon S.

    2015-10-17

    , hallucinations were associated with specific brain morphology differences in the paracingulate sulcus, a fold in the medial prefrontal cortex, with a 1?cm reduction in sulcal length increasing the likelihood of hallucinations by 19.9%, regardless of the sensory...

  9. Visualization of perivascular spaces in the human brain at 7T: sequence optimization and morphology characterization.

    PubMed

    Zong, Xiaopeng; Park, Sang Hyun; Shen, Dinggang; Lin, Weili

    2016-01-15

    Noninvasive imaging of perivascular spaces (PVSs) may provide useful insights into their role in normal brain physiology and diseases. Fast MRI sequences with sub-millimeter spatial resolutions and high contrast-to-noise ratio (CNR) are required for accurate delineation of PVS in human. To achieve the optimal condition for PVS imaging at 7T, we carried out detailed simulation and experimental studies to characterize the dependence of CNR on imaging sequences (T1 versus T2-weighted) and sequence parameters. In addition, PVSs were segmented semi-automatically, which revealed much larger numbers of PVSs in young healthy subjects (age 21-37years) than previously reported. To the best of our knowledge, our study provides, for the first time, detailed length, volume, and diameter distributions of PVS in the white matter and subcortical nuclei, which can serve as a reference for future studies of PVS abnormalities under diseased conditions. PMID:26520772

  10. Human Functional Brain Imaging

    E-print Network

    Rambaut, Andrew

    Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review Summary Brain Imaging #12 three-fold: · to identify the key landmarks and influences on the human functional brain imaging Trust's impact on this landscape · to consider the future direction of human functional brain imaging

  11. Human Functional Brain Imaging

    E-print Network

    Rambaut, Andrew

    Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review #12;2 | Portfolio Review: Human Functional Brain ImagingThe Wellcome Trust is a charity registered in England and Wales, no's role in supporting human functional brain imaging and have informed `our' speculations for the future

  12. The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans.

    PubMed

    Colcombe, Stan J; Kramer, Arthur F; Erickson, Kirk I; Scalf, Paige

    2005-09-01

    The authors assessed individual differences in cortical recruitment, brain morphology, and inhibitory task performance. Similar to previous studies, older adults tended toward bilateral activity during task performance more than younger adults. However, better performing older adults showed less bilateral activity than poorer performers, contrary to the idea that additional activity is universally compensatory. A review of the results and of extant literature suggests that compensatory activity in prefrontal cortex may only be effective if the additional cortical processors brought to bear on the task can play a complementary role in task performance. Morphological analyses revealed that frontal white matter tracts differed as a function of performance in older adults, suggesting that hemispheric connectivity might impact both patterns of recruitment and cognitive performance. PMID:16248697

  13. BrainPrint: a discriminative characterization of brain morphology.

    PubMed

    Wachinger, Christian; Golland, Polina; Kremen, William; Fischl, Bruce; Reuter, Martin

    2015-04-01

    We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets. PMID:25613439

  14. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. PMID:20650319

  15. Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI

    PubMed Central

    Kong, Xiang-zhen; Liu, Zhaoguo; Huang, Lijie; Wang, Xu; Yang, Zetian; Zhou, Guangfu; Zhen, Zonglei; Liu, Jia

    2015-01-01

    Representing brain morphology as a network has the advantage that the regional morphology of ‘isolated’ structures can be described statistically based on graph theory. However, very few studies have investigated brain morphology from the holistic perspective of complex networks, particularly in individual brains. We proposed a new network framework for individual brain morphology. Technically, in the new network, nodes are defined as regions based on a brain atlas, and edges are estimated using our newly-developed inter-regional relation measure based on regional morphological distributions. This implementation allows nodes in the brain network to be functionally/anatomically homogeneous but different with respect to shape and size. We first demonstrated the new network framework in a healthy sample. Thereafter, we studied the graph-theoretical properties of the networks obtained and compared the results with previous morphological, anatomical, and functional networks. The robustness of the method was assessed via measurement of the reliability of the network metrics using a test-retest dataset. Finally, to illustrate potential applications, the networks were used to measure age-related changes in commonly used network metrics. Results suggest that the proposed method could provide a concise description of brain organization at a network level and be used to investigate interindividual variability in brain morphology from the perspective of complex networks. Furthermore, the method could open a new window into modeling the complexly distributed brain and facilitate the emerging field of human connectomics. PMID:26536598

  16. Book Reviews From Monkey Brain to Human Brain: A Fys-

    E-print Network

    Schoenemann, P. Thomas

    Book Reviews From Monkey Brain to Human Brain: A Fys- sen Foundation Symposium. Edited by Stanislas- setts: MIT Press. 2005. $55.00 (cloth). To unravel the complex story of human brain evolution Monkey Brain to Human Brain is that it collects, in one place, detailed discussions of both anatomy

  17. Leading Edge BRAIN Initiative and Human Brain Project

    E-print Network

    Raymond, Jennifer L.

    Leading Edge Voices BRAIN Initiative and Human Brain Project: Hopes and Reservations's Human Brain Project, there is an opportunity to accelerate fundamental brain sciences. The ambitions CNRS, Unit of Neuroscience, Information and Complexity As a member of the Human Brain Project (HBP), I

  18. Brain Morphological Defects in Prolidase Deficient Mice: First Report

    PubMed Central

    Insolia, V.

    2014-01-01

    Prolidase gene (PEPD) encodes prolidase enzyme, which is responsible for hydrolysis of dipeptides containing proline or hydroxypro-line at their C-terminal end. Mutations in PEPD gene cause, in human, prolidase deficiency (PD), a rare autosomal recessive disorder. PD patients show reduced or absent prolidase activity and a broad spectrum of phenotypic traits including various degrees of mental retardation. This is the first report correlating PD and brain damages using as a model system prolidase deficient mice, the so called dark-like (dal) mutant mice. We focused our attention on dal postnatal brain development, revealing a panel of different morphological defects in the cerebral and cerebellar cortices, such as undulations of the cerebral cortex, cell rarefaction, defects in cerebellar cortex lobulation, and blood vessels overgrowth. These anomalies might be ascribed to altered angiogenic process and loss of pial basement membrane integrity. Further studies will be directed to find a correlation between neuroarchitecture alterations and functional consequences. PMID:25308848

  19. Educating the Human Brain. Human Brain Development Series

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  20. Developmental Dyslexia, Neurolinguistic Theory and Deviations in Brain Morphology.

    ERIC Educational Resources Information Center

    Hynd, George W.; And Others

    1991-01-01

    Reviews computer tomography and magnetic resonance imaging studies examining deviations in brain morphology. Discusses methodological and technical issues. Concludes that dyslexics show variations in specific brain regions. Suggests that neuroimaging procedures appear to provide direct evidence supporting the importance of deviations in normal…

  1. Feeding the human brain model.

    PubMed

    Tiesinga, Paul; Bakker, Rembrandt; Hill, Sean; Bjaalie, Jan G

    2015-06-01

    The goal of the Human Brain Project is to develop, during the next decade, an infrastructure capable of simulating a draft human brain model based on available experimental data. One of the key issues is therefore to integrate and make accessible the experimental data necessary to constrain and fully specify this model. The required data covers many different spatial scales, ranging from the molecular scale to the whole brain and these data are obtained using a variety of techniques whose measurements may not be directly comparable. Furthermore, these data are incomplete, and will remain so at least for the coming decade. Here we review new neuroinformatics techniques that need to be developed and applied to address these issues. PMID:25725212

  2. Understanding complexity in the human brain

    E-print Network

    Gazzaniga, Michael

    Understanding complexity in the human brain Danielle S. Bassett1 and Michael S. Gazzaniga2 1 in order to study mind­brain mechanisms. The state of the mind­brain dilemma The human mind is a complex the ultimate aim of neuroscientific enquiry is to gain an understanding of the brain and how its work- ings

  3. Decoding Patterns of Human Brain Activity

    E-print Network

    Tong, Frank

    Decoding Patterns of Human Brain Activity Frank Tong and Michael S. Pratte Psychology Department be decoded from noninvasive measures of human brain activity. Analyses of brain activ- ity patterns can models can be used to investigate how the brain encodes complex visual scenes or abstract semantic

  4. Segmentation of Skull and Scalp in 3-D Human MRI Using Mathematical Morphology

    E-print Network

    Frey, Pascal

    Segmentation of Skull and Scalp in 3-D Human MRI Using Mathematical Morphology Belma Dogdas,1 David of skull and scalp in T1-weighted magnetic resonance images (MRIs) of the human head. Our method uses mathematical morphological operations to generate realistic models of the skull, scalp, and brain

  5. Epigenetics in the Human Brain

    PubMed Central

    Houston, Isaac; Peter, Cyril J; Mitchell, Amanda; Straubhaar, Juerg; Rogaev, Evgeny; Akbarian, Schahram

    2013-01-01

    Many cellular constituents in the human brain permanently exit from the cell cycle during pre- or early postnatal development, but little is known about epigenetic regulation of neuronal and glial epigenomes during maturation and aging, including changes in mood and psychosis spectrum disorders and other cognitive or emotional disease. Here, we summarize the current knowledge base as it pertains to genome organization in the human brain, including the regulation of DNA cytosine methylation and hydroxymethylation, and a subset of (altogether >100) residue-specific histone modifications associated with gene expression, and silencing and various other functional chromatin states. We propose that high-resolution mapping of epigenetic markings in postmortem brain tissue or neural cultures derived from induced pluripotent cells (iPS), in conjunction with transcriptome profiling and whole-genome sequencing, will increasingly be used to define the molecular pathology of specific cases diagnosed with depression, schizophrenia, autism, or other major psychiatric disease. We predict that these highly integrative explorations of genome organization and function will provide an important alternative to conventional approaches in human brain studies, which mainly are aimed at uncovering group effects by diagnosis but generally face limitations because of cohort size. PMID:22643929

  6. MAPPING GENETIC INFLUENCES ON HUMAN BRAIN STRUCTURE

    E-print Network

    Thompson, Paul

    MAPPING GENETIC INFLUENCES ON HUMAN BRAIN STRUCTURE 1 Paul Thompson PhD, 2 Tyrone D. Cannon PhD, 1 can be derived from population-based atlases, shedding light on familial risk for human brain disorders.' [from page 15]. #12;3 MAPPING GENETIC INFLUENCES ON HUMAN BRAIN STRUCTURE c Paul Thompson PhD, 2

  7. Malarial antigen from human brain

    PubMed Central

    Williams, A. I. O.; McFarlane, H.

    1968-01-01

    A method is described for purifying malarial antigen from human brain. The antigen appears to be highly specific for malarial antibodies. On double diffusion in agar gel a precipitin reaction was produced only with sera from persons with malarial parasites in their peripheral blood and those with high malarial fluorescent antibody titre. No precipitin lines were formed with sera from persons who were known to be free from malarial infection. ImagesFig. 1Fig. 3 PMID:4975061

  8. Social control of brain morphology in a eusocial mammal

    E-print Network

    Breedlove, Marc

    Social control of brain morphology in a eusocial mammal Melissa M. Holmes* , Greta J. Rosen reproductive hierarchy among mammals. Naked mole-rats live in large, subterranean colonies where breeding linked to reproduction and shown to be sexually dimorphic in other mammals. Stereological analyses

  9. Physical biology of human brain development

    PubMed Central

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales–from phenomena on the cellular level toward form and function on the organ level–to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia. PMID:26217183

  10. A Direct Brain-to-Brain Interface in Humans

    PubMed Central

    Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.

    2014-01-01

    We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285

  11. Brain bases of morphological processing in young children.

    PubMed

    Arredondo, Maria M; Ip, Ka I; Shih Ju Hsu, Lucy; Tardif, Twila; Kovelman, Ioulia

    2015-08-01

    How does the developing brain support the transition from spoken language to print? Two spoken language abilities form the initial base of child literacy across languages: knowledge of language sounds (phonology) and knowledge of the smallest units that carry meaning (morphology). While phonology has received much attention from the field, the brain mechanisms that support morphological competence for learning to read remain largely unknown. In the present study, young English-speaking children completed an auditory morphological awareness task behaviorally (n?=?69, ages 6-12) and in fMRI (n?=?16). The data revealed two findings: First, children with better morphological abilities showed greater activation in left temporoparietal regions previously thought to be important for supporting phonological reading skills, suggesting that this region supports multiple language abilities for successful reading acquisition. Second, children showed activation in left frontal regions previously found active in young Chinese readers, suggesting morphological processes for reading acquisition might be similar across languages. These findings offer new insights for developing a comprehensive model of how spoken language abilities support children's reading acquisition across languages. PMID:25930011

  12. Lipid transport and human brain development.

    PubMed

    Betsholtz, Christer

    2015-07-01

    How the human brain rapidly builds up its lipid content during brain growth and maintains its lipids in adulthood has remained elusive. Two new studies show that inactivating mutations in MFSD2A, known to be expressed specifically at the blood-brain barrier, lead to microcephaly, thereby offering a simple and surprising solution to an old enigma. PMID:26111510

  13. Morphology and digitally aided morphometry of the human paracentral lobule.

    PubMed

    Spasojevi?, Goran; Malobabic, Slobodan; Pilipovi?-Spasojevi?, Olivera; Djuki?-Macut, Nataša; Malikovi?, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations. PMID:23749705

  14. Fast and intuitive segmentation of gyri of the human brain

    NASA Astrophysics Data System (ADS)

    Weiler, Florian; Hahn, Horst K.

    2015-03-01

    The cortical surface of the human brain consists of a large number of folds forming valleys and ridges, the gyri and sulci. Often, it is desirable to perform a segmentation of a brain image into these underlying structures in order to assess parameters relative to these functional components. Typical examples for this include measurements of cortical thickness for individual functional areas, or the correlation of functional areas derived from fMRI data to corresponding anatomical areas seen in structural imaging. In this paper, we present a novel interactive technique, that allows for fast and intuitive segmentation of these functional areas from T1-weighted MR images of the brain. Our segmentation approach is based exclusively on morphological image processing operations, eliminating the requirement for explicit reconstruction of the brains surface.

  15. Histology and Morphology of the Brain Subarachnoid Trabeculae

    PubMed Central

    Saboori, Parisa; Sadegh, Ali

    2015-01-01

    The interface between the brain and the skull consists of three fibrous tissue layers, dura mater, arachnoid, and pia mater, known as the meninges, and strands of collagen tissues connecting the arachnoid to the pia mater, known as trabeculae. The space between the arachnoid and the pia mater is filled with cerebrospinal fluid which stabilizes the shape and position of the brain during head movements or impacts. The histology and architecture of the subarachnoid space trabeculae in the brain are not well established in the literature. The only recognized fact about the trabeculae is that they are made of collagen fibers surrounded by fibroblast cells and they have pillar- and veil-like structures. In this work the histology and the architecture of the brain trabeculae were studied, via a series of in vivo and in vitro experiments using cadaveric and animal tissue. In the cadaveric study fluorescence and bright field microscopy were employed while scanning and transmission electron microscopy were used for the animal studies. The results of this study reveal that the trabeculae are collagen based type I, and their architecture is in the form of tree-shaped rods, pillars, and plates and, in some regions, they have a complex network morphology. PMID:26090230

  16. Ultrastructural Morphology of Sperm from Human Globozoospermia

    PubMed Central

    Ricci, Giuseppe; Andolfi, Laura; Zabucchi, Giuliano; Luppi, Stefania; Boscolo, Rita; Martinelli, Monica; Zweyer, Marina; Trevisan, Elisa

    2015-01-01

    Globozoospermia is a rare disorder characterized by the presence of sperm with round head, lacking acrosome. Coiling tail around the nucleus has been reported since early human studies, but no specific significance has conferred it. By contrast, studies on animal models suggest that coiling tail around the nucleus could represent a crucial step of defective spermatogenesis, resulting in round-headed sperm. No observations, so far, support the transfer of this hypothesis to human globozoospermia. The purpose of this work was to compare ultrastructural morphology of human and mouse model globozoospermic sperm. Sperm have been investigated by using scanning and transmission electron microscopy. The images that we obtained show significant similarities to those described in GOPC knockout mice, an animal model of globozoospermia. By using this model as reference, we were able to identify the probable steps of the tail coiling process in human globozoospermia. Although we have no evidence that there is the same pathophysiology in man and knocked-out mouse, the similarities between these ultrastructural observations in human and those in the experimental model are very suggestive. This is the first demonstration of the existence of relevant morphological homologies between the tail coiling in animal model and human globozoospermia. PMID:26436098

  17. Neural Plasticity in Human Brain Connectivity: The Effects of Long Term Deep Brain Stimulation of the

    E-print Network

    Deco, Gustavo

    Neural Plasticity in Human Brain Connectivity: The Effects of Long Term Deep Brain Stimulation in human neural plasticity after long-term deep brain stimulation and may help to identify the underlying. (2014) Neural Plasticity in Human Brain Connectivity: The Effects of Long Term Deep Brain Stimulation

  18. BrainKnowledge: A Human Brain Function Mapping Knowledge-Base System

    E-print Network

    Chen, Chein Chung

    BrainKnowledge: A Human Brain Function Mapping Knowledge-Base System Mei-Yu Hsiao & Chien and interpretation of fMRI data. Here, we present a human brain function mapping knowledge-base system (Brain. 1992), is a non-invasive approach for studying human brain function. Due to the increasing popularity

  19. Brain shape in human microcephalics and Homo floresiensis

    PubMed Central

    Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M. J.; Sutikna, Thomas; Jatmiko; Saptomo, E. Wayhu; Imhof, Herwig; Seidler, Horst; Prior, Fred

    2007-01-01

    Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm3, some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an ?3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species. PMID:17277082

  20. The human parental brain: In vivo neuroimaging

    PubMed Central

    Swain, James E.

    2015-01-01

    Interacting parenting thoughts and behaviors, supported by key brain circuits, critically shape human infants’ current and future behavior. Indeed, the parent–infant relationship provides infants with their first social environment, forming templates for what they can expect from others, how to interact with them and ultimately how they go on to themselves to be parents. This review concentrates on magnetic resonance imaging experiments of the human parent brain, which link brain physiology with parental thoughts and behaviors. After reviewing brain imaging techniques, certain social cognitive and affective concepts are reviewed, including empathy and trust—likely critical to parenting. Following that is a thorough study-by-study review of the state-of-the-art with respect to human neuroimaging studies of the parental brain—from parent brain responses to salient infant stimuli, including emotionally charged baby cries and brief visual stimuli to the latest structural brain studies. Taken together, this research suggests that networks of highly conserved hypothalamic–midbrain–limbic–paralimbic–cortical circuits act in concert to support parental brain responses to infants, including circuits for limbic emotion response and regulation. Thus, a model is presented in which infant stimuli activate sensory analysis brain regions, affect corticolimbic limbic circuits that regulate emotional response, motivation and reward related to their infant, ultimately organizing parenting impulses, thoughts and emotions into coordinated behaviors as a map for future studies. Finally, future directions towards integrated understanding of the brain basis of human parenting are outlined with profound implications for understanding and contributing to long term parent and infant mental health. PMID:21036196

  1. Exploring candidate genes for human brain diseases from a brain-specific gene network

    E-print Network

    Jiang,Tianzi

    Exploring candidate genes for human brain diseases from a brain-specific gene network Bing Liu identifying multiple candidate genes for genetic human brain diseases from a brain-specific gene network knowledge of a specific brain disease, we can effectively iden- tify multiple candidate genes

  2. Models in the Brain Naturalizing Human Intentionality

    E-print Network

    Ryder, Dan

    Models in the Brain Naturalizing Human Intentionality Dan Ryder University of British Columbia it is shown how this idea can be natural- ized, and how the representational contents of our internal models, and proper- ties that form the objects of human perception and thought. It is then shown how this account

  3. A versatile new technique to clear mouse and human brain

    NASA Astrophysics Data System (ADS)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  4. Human brain mapping: Experimental and computational approaches

    SciTech Connect

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J.; Sanders, J.; Belliveau, J.

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  5. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13R?2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13R?2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  6. Transcriptional Landscape of the Prenatal Human Brain

    PubMed Central

    Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L.; Aiona, Kaylynn; Arnold, James M.; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A.; Dee, Nick; Dolbeare, Tim A.; Facer, Benjamin A. C.; Feng, David; Fliss, Tim P.; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W.; Gu, Guangyu; Howard, Robert E.; Jochim, Jayson M.; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A.; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick F.; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana E.; Player, Allison Stevens; Pletikos, Mihovil; Reding, Melissa; Royall, Joshua J.; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V.; Shen, Elaine H.; Sjoquist, Nathan; Slaughterbeck, Clifford R.; Smith, Michael; Sodt, Andy J.; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B.; Geschwind, Daniel H.; Glass, Ian A.; Hawrylycz, Michael J.; Hevner, Robert F.; Huang, Hao; Jones, Allan R.; Knowles, James A.; Levitt, Pat; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G.; Lein, Ed S.

    2014-01-01

    Summary The anatomical and functional architecture of the human brain is largely determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and postmitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and human-expanded outer subventricular zones. Both germinal and postmitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in frontal lobe. Finally, many neurodevelopmental disorder and human evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development. PMID:24695229

  7. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  8. Reirradiation Tolerance of the Human Brain

    SciTech Connect

    Mayer, Ramona; Sminia, Peter

    2008-04-01

    Purpose: To give an overview of current available clinical data on reirradiation of glioma with respect to the tolerance dose of normal brain tissue. Methods and Materials: Clinical brain reirradiation studies from January 1996 to December 2006 were considered on radiation-induced late adverse effects-i.e., brain tissue necrosis. The studies were analyzed by using the linear quadratic model to derive information on the cumulative biologic effective tolerance dose and equivalent doses in 2-Gy fractions for the healthy human brain. Results: The cumulative dose in conventional reirradiation series (of 81.6-101.9 Gy) were generally lower than in fractionated stereotactic radiotherapy (FSRT) ( 90-133.9 Gy.) or LINAC-based stereotactic radiosurgery series (of 111.6-137.2 Gy). No correlation between the time interval between the initial and reirradiation course and the incidence of radionecrosis was noted. The analysis showed the prescribed to increase with decreasing treatment volume, which is allowed by modern conformal radiation techniques. Conclusion: Radiation-induced normal brain tissue necrosis is found to occur at >100 Gy. The applied reirradiation dose and increases with a change in irradiation technique from conventional to radiosurgery re-treatment, without increasing the probability of normal brain necrosis. Taken together, modern conformal treatment options, because of their limited volume of normal brain tissue exposure, allow brain reirradiation for palliative treatment of recurrent high grade glioma with an acceptable probability of radionecrosis.

  9. The Infancy of the Human Brain.

    PubMed

    Dehaene-Lambertz, G; Spelke, E S

    2015-10-01

    The human infant brain is the only known machine able to master a natural language and develop explicit, symbolic, and communicable systems of knowledge that deliver rich representations of the external world. With the emergence of noninvasive brain imaging, we now have access to the unique neural machinery underlying these early accomplishments. After describing early cognitive capacities in the domains of language and number, we review recent findings that underline the strong continuity between human infants' and adults' neural architecture, with notably early hemispheric asymmetries and involvement of frontal areas. Studies of the strengths and limitations of early learning, and of brain dynamics in relation to regional maturational stages, promise to yield a better understanding of the sources of human cognitive achievements. PMID:26447575

  10. Cytogenetics of human brain tumors

    SciTech Connect

    Finkernagel, S.W.; Kletz, T.; Day-Salvatore, D.L.

    1994-09-01

    Chromosome studies of 55 brain tumors, including meningiomas, gliomas, astrocyomas and pituatary adenomas, were performed. Primary and first passage cultures were successfully obtained in 75% of these samples with an average of 18 G-banded metaphases analyzed per tumor. 44% of all the brain tumors showed numerical and or structural abnormalities. 46% of the primary and 38% of the first passage cultures showed similar numerical gains/losses and complex karyotypic changes. The most frequent numerical abnormalities (n {ge} 5) included loss of chromosomes 10, 22, and Y. The structural abnormalities most often seen involved 1p, 2, 5, 7, 17q and 19. This is an ongoing study which will attempt to correlate tumor type with specific karyotypic changes and to see if any of the observed chromosomal abnormalities provide prognostic indicators.

  11. Revisiting Glycogen Content in the Human Brain.

    PubMed

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  12. Human Misato regulates mitochondrial distribution and morphology

    SciTech Connect

    Kimura, Masashi . E-mail: yo@gifu-u.ac.jp; Okano, Yukio

    2007-04-15

    Misato of Drosophila melanogaster and Saccharomyces cerevisiae DML1 are conserved proteins having a homologous region with a part of the GTPase family that includes eukaryotic tubulin and prokaryotic FtsZ. We characterized human Misato sharing homology with Misato of D. melanogaster and S. cerevisiae DML1. Tissue distribution of Misato exhibited ubiquitous distribution. Subcellular localization of the protein studied using anti-Misato antibody suggested that it is localized to the mitochondria. Further experiments of fractionating mitochondria revealed that Misato was localized to the outer membrane. The transfection of Misato siRNA led to growth deficiencies compared with control siRNA transfected HeLa cells, and the Misato-depleted HeLa cells showed apoptotic nuclear fragmentation resulting in cell death. After silencing of Misato, the filamentous mitochondrial network disappeared and fragmented mitochondria were observed, indicating human Misato has a role in mitochondrial fusion. To examine the effects of overexpression, COS-7 cells were transfected with cDNA encoding EGFP-Misato. Its overexpression resulted in the formation of perinuclear aggregations of mitochondria in these cells. The Misato-overexpressing cells showed low viability and had no nuclei or a small and structurally unusual ones. These results indicated that human Misato has a role(s) in mitochondrial distribution and morphology and that its unregulated expression leads to cell death.

  13. Regional Patterns of Gene Expression in Human and Chimpanzee Brains

    E-print Network

    Pääbo, Svante

    Regional Patterns of Gene Expression in Human and Chimpanzee Brains Philipp Khaitovich,1,7 Bjoern expression in various brain regions of humans and chimpanzees. Within both human and chimpanzee individuals lineage to humans rela- tive to the amount on the lineage to chimpanzees was higher in the brain than

  14. Human intelligence and brain networks

    PubMed Central

    Colom, Roberto; Karama, Sherif; Jung, Rex E.; Haier, Richard J.

    2010-01-01

    Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other. PMID:21319494

  15. Wavelets and functional magnetic resonance imaging of the human brain

    E-print Network

    Breakspear, Michael

    Wavelets and functional magnetic resonance imaging of the human brain Ed Bullmore,a,* Jalal Fadili, such as functional magnetic resonance images of the human brain, which often demonstrate scale invariant or fractal Breakspeare a Brain Mapping Unit and Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke

  16. MRI Technologies in Recent Human Brain Mapping

    NASA Astrophysics Data System (ADS)

    Sasaki, Yuka

    The recent magnetic resonance imaging (MRI) technology and techniques used in human brain mapping are remarkable. They are getting, faster, stronger and better. The advanced MRI technologies and techniques include, but not to limited to, the magnetic resonance imaging at higher magnetic field strengths, diffusion tensor imaging, multimodal neuroimaging, and monkey functional MRI. In this article, these advanced MRI techniques are briefly overviewed.

  17. CARBOXYHEMOGLOBIN AND BRAIN BLOOD FLOW IN HUMANS

    EPA Science Inventory

    It has been shown that with increased carboxyhemoglobin (COHb) and associated decrease in blood oxygen-carrying capacity, a compensatory increase in brain-blood flow (BBF) develops. he BBF response in humans has been shown to be quite variable. wo experiments were conducted in wh...

  18. Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans

    PubMed Central

    Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C.

    2014-01-01

    Different brain components can evolve in a coordinated fashion or they can show divergent evolutionary trajectories according to a mosaic pattern of variation. Understanding the relationship between these brain evolutionary patterns, which are not mutually exclusive, can be informed by the examination of intraspecific variation. Our study evaluates patterns of brain anatomical covariation in chimpanzees and humans to infer their influence on brain evolution in the hominin clade. We show that chimpanzee and human brains have a modular structure that may have facilitated mosaic evolution from their last common ancestor. Spatially adjacent regions covary with one another to the strongest degree and separated regions are more independent from each other, which might be related to a predominance of local association connectivity. Despite the undoubted importance of developmental and functional factors in determining brain morphology, we find that these constraints are subordinate to the primary effect of local spatial interactions. PMID:25047085

  19. Diffusion tensor imaging and fiber tractography of human brain pathways

    E-print Network

    Wandell, Brian A.

    Diffusion tensor imaging and fiber tractography of human brain pathways Brian Wandell Anthony no non- invasive methods to estimate white matter tracts in the living human brain. New magnetic of human brain pathways Brian Wandell, Anthony Sherbondy, Robert Dougherty, Michal Ben-Shachar Psychology

  20. Making Human Connectome Faster: GPU Acceleration of Brain Network Analysis

    E-print Network

    Wang, Yu

    1 Making Human Connectome Faster: GPU Acceleration of Brain Network Analysis Di Wu, Tianji Wu, Yi of the human brain and disease-related alterations. Recent studies have suggested a noninvasive way to model and analyze human brain networks by using multi-modal imaging and graph theoretical approaches. Both

  1. Zo Rebecca Hunter Plasticity of the adult human brain

    E-print Network

    Kallenrode, May-Britt

    Zoë Rebecca Hunter Plasticity of the adult human brain and motor recovery after stroke PICS © Institute of Cognitive Science #12;1 Bachelor's Thesis Plasticity of the adult human brain and motor of the adult human brain and the possibility of functional recovery through mechanisms of plasticity

  2. A morphological approach for infant brain segmentation in MRI data

    E-print Network

    Whelan, Paul F.

    a skull stripping method for premature infant data. Skull stripping involves the extraction of brain of brain MRI segmentation called skull stripping. This procedure involves the removal of all non- brain tissue such as eyes, fat, fluid and skull. The remaining parts consists of the cortical grey matter

  3. Endocranial morphology of Palaeocene Plesiadapis tricuspidens and evolution of the early primate brain

    PubMed Central

    Orliac, Maeva J.; Ladevèze, Sandrine; Gingerich, Philip D.; Lebrun, Renaud; Smith, Thierry

    2014-01-01

    Expansion of the brain is a key feature of primate evolution. The fossil record, although incomplete, allows a partial reconstruction of changes in primate brain size and morphology through time. Palaeogene plesiadapoids, closest relatives of Euprimates (or crown-group primates), are crucial for understanding early evolution of the primate brain. However, brain morphology of this group remains poorly documented, and major questions remain regarding the initial phase of euprimate brain evolution. Micro-CT investigation of the endocranial morphology of Plesiadapis tricuspidens from the Late Palaeocene of Europe—the most complete plesiadapoid cranium known—shows that plesiadapoids retained a very small and simple brain. Plesiadapis has midbrain exposure, and minimal encephalization and neocorticalization, making it comparable with that of stem rodents and lagomorphs. However, Plesiadapis shares a domed neocortex and downwardly shifted olfactory-bulb axis with Euprimates. If accepted phylogenetic relationships are correct, then this implies that the euprimate brain underwent drastic reorganization during the Palaeocene, and some changes in brain structure preceded brain size increase and neocortex expansion during evolution of the primate brain. PMID:24573845

  4. Evolving networks in the human epileptic brain

    E-print Network

    Lehnertz, Klaus; Bialonski, Stephan; Dickten, Henning; Geier, Christian; Porz, Stephan

    2013-01-01

    Network theory provides novel concepts that promise an improved characterization of interacting dynamical systems. Within this framework, evolving networks can be considered as being composed of nodes, representing systems, and of time-varying edges, representing interactions between these systems. This approach is highly attractive to further our understanding of the physiological and pathophysiological dynamics in human brain networks. Indeed, there is growing evidence that the epileptic process can be regarded as a large-scale network phenomenon. We here review methodologies for inferring networks from empirical time series and for a characterization of these evolving networks. We summarize recent findings derived from studies that investigate human epileptic brain networks evolving on timescales ranging from few seconds to weeks. We point to possible pitfalls and open issues, and discuss future perspectives.

  5. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  6. Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology

    E-print Network

    Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology March 1, 2000) Steroid hormone action during brain development exerts profound effects on reproductive physiology and behavior that last into adulthood. A variety of in vitro studies indicate that steroid

  7. Spatiotemporal transcriptome of the human brain

    PubMed Central

    Kang, Hyo Jung; Kawasawa, Yuka Imamura; Cheng, Feng; Zhu, Ying; Xu, Xuming; Li, Mingfeng; Sousa, André M. M.; Pletikos, Mihovil; Meyer, Kyle A.; Sedmak, Goran; Guennel, Tobias; Shin, Yurae; Johnson, Matthew B.; Krsnik, Željka; Mayer, Simone; Fertuzinhos, Sofia; Umlauf, Sheila; Lisgo, Steven N.; Vortmeyer, Alexander; Weinberger, Daniel R.; Mane, Shrikant; Hyde, Thomas M.; Huttner, Anita; Reimers, Mark; Kleinman, Joel E.; Šestan, Nenad

    2012-01-01

    Summary Here we report the generation and analysis of genome-wide exon-level transcriptome data from 16 brain regions comprising the cerebellar cortex, mediodorsal nucleus of the thalamus, striatum, amygdala, hippocampus, and 11 areas of the neocortex. The dataset was generated from 1,340 tissue samples collected from one or both hemispheres of 57 postmortem human brains, spanning from embryonic development to late adulthood and representing males and females of multiple ethnicities. We also performed genotyping of 2.5 million SNPs and assessed copy number variations for all donors. Approximately 86% of protein-coding genes were found to be expressed using stringent criteria, and over 90% of these were differentially regulated at the whole transcript or exon level across regions and/or time. The majority of these spatiotemporal differences occurred before birth, followed by an increase in the similarity among regional transcriptomes during postnatal lifespan. Genes were organized into functionally distinct co-expression networks, and sex differences were present in gene expression and exon usage. Finally, we demonstrate how these results can be used to profile trajectories of genes associated with neurodevelopmental processes, cell types, neurotransmitter systems, autism, and schizophrenia, as well as to discover associations between SNPs and spatiotemporal gene expression. This study provides a comprehensive, publicly available dataset on the spatiotemporal human brain transcriptome and new insights into the transcriptional foundations of human neurodevelopment. PMID:22031440

  8. Auditory brain stem responses evoked by lateralized clicks: is lateralization extracted in the human brain stem?

    E-print Network

    Oldenburg, Carl von Ossietzky, Universität

    Auditory brain stem responses evoked by lateralized clicks: is lateralization extracted of stimulus lateralization in the brain stem. Auditory brain stem responses to binaural click stimuli with all in the human brain stem? Helmut Riedel, Birger Kollmeier * AG Medizinische Physik, Universita«t Oldenburg, D

  9. r Human Brain Mapping 00:000000 (2011) r Brain Growth Rate Abnormalities Visualized in

    E-print Network

    Thompson, Paul

    2011-01-01

    r Human Brain Mapping 00:000­000 (2011) r Brain Growth Rate Abnormalities Visualized in Adolescents 2 Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, California r r Abstract: Autism spectrum disorder is a heterogeneous disorder of brain

  10. Brain structures in the sciences and humanities.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia). PMID:25079346

  11. Dynamic reconfiguration of human brain networks during learning

    E-print Network

    Indiana University

    Dynamic reconfiguration of human brain networks during learning Danielle S. Bassetta,1 , Nicholas F) Human learning is a complex phenomenon requiring flexibility to adapt existing brain function of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, CA 93106; c Oxford Centre

  12. HIERARCHICAL TOPOLOGICAL NETWORK ANALYSIS OF ANATOMICAL HUMAN BRAIN CONNECTIVITY AND

    E-print Network

    HIERARCHICAL TOPOLOGICAL NETWORK ANALYSIS OF ANATOMICAL HUMAN BRAIN CONNECTIVITY AND DIFFERENCES Human Brain Connectivity and Differences Related to Sex and Kinship Julio M. Duarte-Carvajalinoa , Neda, Brisbane, Australia Abstract Modern non-invasive brain imaging technologies, such as diffusion weighted

  13. Diffusion Based Modeling of Human Brain Response to External Stimuli

    E-print Network

    Namazi, Hamidreza

    2012-01-01

    Human brain response is the overall ability of the brain in analyzing internal and external stimuli in the form of transferred energy to the mind/brain phase-space and thus, making the proper decisions. During the last decade scientists discovered about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research there was less effort which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling of human EEG signal, as an alert state of overall human brain activity monitoring, due to receiving external stimuli, based on fractional diffusion equation. The results of this modeling show very good agreement with the real human EEG signal and thus, this model can be used as a strong representative of the human brain activity.

  14. Visualization of monoamine oxidase in human brain

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  15. Population Differences in Brain Morphology and Microstructure among Chinese, Malay, and Indian Neonates

    PubMed Central

    Bai, Jordan; Abdul-Rahman, Muhammad Farid; Rifkin-Graboi, Anne; Chong, Yap-Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M.; Gluckman, Peter D.; Fortier, Marielle V.; Meaney, Michael J.; Qiu, Anqi

    2012-01-01

    We studied a sample of 75 Chinese, 73 Malay, and 29 Indian healthy neonates taking part in a cohort study to examine potential differences in neonatal brain morphology and white matter microstructure as a function of ethnicity using both structural T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). We first examined the differences in global size and morphology of the brain among the three groups. We then constructed the T2-weighted MRI and DTI atlases and employed voxel-based analysis to investigate ethnic differences in morphological shape of the brain from the T2-weighted MRI, and white matter microstructure measured by fractional anisotropy derived from DTI. Compared with Malay neonates, the brains of Indian neonates’ tended to be more elongated in anterior and posterior axis relative to the superior-inferior axis of the brain even though the total brain volume was similar among the three groups. Although most anatomical regions of the brain were similar among Chinese, Malay, and Indian neonates, there were anatomical variations in the spinal-cerebellar and cortical-striatal-thalamic neural circuits among the three populations. The population-related brain regions highlighted in our study are key anatomical substrates associated with sensorimotor functions. PMID:23112850

  16. Development of human brain connectivity in health and disease

    E-print Network

    Colby, John Benjamin

    2012-01-01

    Morphometric study of human cerebral cortex development.c aims The study of human brain development is crucial for aDevelopment of the human corpus callosum during childhood and adolescence: a longitudinal MRI study.

  17. Evolution, development, and plasticity of the human brain: from molecules to bones

    PubMed Central

    Hrvoj-Mihic, Branka; Bienvenu, Thibault; Stefanacci, Lisa; Muotri, Alysson R.; Semendeferi, Katerina

    2013-01-01

    Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research. PMID:24194709

  18. Molecular biology of the human brain

    SciTech Connect

    Jones, E.G.

    1988-01-01

    This book examines new methods of molecular biology that are providing valuable insights into the human brain, the genes that govern its assembly and function, and the many genetic defects that cause neurological diseases such as Alzheimer's, Cri du Chat syndrome, Huntington's disease, and bipolar depression disorder. In addition, the book reviews techniques in molecular neurobiological research, including the use of affinity reagents, chimeric receptors, and site-directed mutagenesis in localizing the ion channel and cholinergic binding site, and the application of somatic cell genetics in isolating specific chromosomes or chromosomal segments.

  19. Growth Simulation of Human Embryo Brain S. Czanner

    E-print Network

    Durikovic, Roman

    Growth Simulation of Human Embryo Brain S. Czanner , R. Durikovic and H. Inoue Software Department of human embryo is chang- ing through a long time in the body of mother. So it is very difficult to observe necessary for their stud- ies. But to create the realistic human embryo brain models and to do

  20. r Human Brain Mapping 0000:000000 (2011) r Multivariate Patterns of BrainCognition

    E-print Network

    Gaser, Christian

    2011-01-01

    and have been previously linked to fronto-temporo-limbic brain alterations. Both neurocognitive system-level covariance patterns between whole-brain morphological data and processing speed, working a generalized association of neuro- cognitive measures with predominantly prefronto-temporo-limbic

  1. Algorithms for enhanced spatiotemporal imaging of human brain function

    E-print Network

    Krishnaswamy, Pavitra

    2014-01-01

    Studies of human brain function require technologies to non-invasively image neuronal dynamics with high spatiotemporal resolution. The electroencephalogram (EEG) and magnetoencephalogram (MEG) measure neuronal activity ...

  2. The Human Brain in Numbers: A Linearly Scaled-up Primate Brain

    PubMed Central

    Herculano-Houzel, Suzana

    2009-01-01

    The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10× more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a novel method to determine the cellular composition of the brain of humans and other primates as well as of rodents and insectivores show that, since different cellular scaling rules apply to the brains within these orders, brain size can no longer be considered a proxy for the number of neurons in the brain. These studies also showed that the human brain is not exceptional in its cellular composition, as it was found to contain as many neuronal and non-neuronal cells as would be expected of a primate brain of its size. Additionally, the so-called overdeveloped human cerebral cortex holds only 19% of all brain neurons, a fraction that is similar to that found in other mammals. In what regards absolute numbers of neurons, however, the human brain does have two advantages compared to other mammalian brains: compared to rodents, and probably to whales and elephants as well, it is built according to the very economical, space-saving scaling rules that apply to other primates; and, among economically built primate brains, it is the largest, hence containing the most neurons. These findings argue in favor of a view of cognitive abilities that is centered on absolute numbers of neurons, rather than on body size or encephalization, and call for a re-examination of several concepts related to the exceptionality of the human brain. PMID:19915731

  3. Evaluating the microstructure of human brain tissues using synchrotron radiation-based micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Morel, Anne; Imholz, Martha S.; Deyhle, Hans; Weitkamp, Timm; Zanette, Irene; Pfeiffer, Franz; David, Christian; Müller-Gerbl, Magdalena; Müller, Bert

    2010-09-01

    Minimally invasive deep brain neurosurgical interventions require a profound knowledge of the morphology of the human brain. Generic brain atlases are based on histology including multiple preparation steps during the sectioning and staining. In order to correct the distortions induced in the anisotropic, inhomogeneous soft matter and therefore improve the accuracy of brain atlases, a non-destructive 3D imaging technique with the required spatial and density resolution is of great significance. Micro computed tomography provides true micrometer resolution. The application to post mortem human brain, however, is questionable because the differences of the components concerning X-ray absorption are weak. Therefore, magnetic resonance tomography has become the method of choice for three-dimensional imaging of human brain. Because the spatial resolution of this method is limited, an alternative has to be found for the three-dimensional imaging of cellular microstructures within the brain. Therefore, the present study relies on the synchrotron radiationbased micro computed tomography in the recently developed grating-based phase contrast mode. Using data acquired at the beamline ID 19 (ESRF, Grenoble, France) we demonstrate that grating-based tomography yields premium images of human thalamus, which can be used for the correction of histological distortions by 3D non-rigid registration.

  4. Morphological features of the neonatal brain support development of subsequent cognitive, language, and motor abilities

    PubMed Central

    Spann, Marisa N.; Bansal, Ravi; Rosen, Tove S.; Peterson, Bradley S.

    2014-01-01

    Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through two years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first two years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults. PMID:24615961

  5. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    PubMed Central

    Nitzsche, Björn; Frey, Stephen; Collins, Louis D.; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H.; Fonov, Vladimir S.; Boltze, Johannes

    2015-01-01

    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species. PMID:26089780

  6. COMPARING THE EMOTIONAL BRAINS OF HUMANS AND OTHER ANIMALS

    E-print Network

    Berridge, Kent

    25 3 COMPARING THE EMOTIONAL BRAINS OF HUMANS AND OTHER ANIMALS Kent C. Berridge How is emotion embodied in the brain? That is the ques- tion posed by affective neuroscience (Cacioppo & Gardner, 1999 and emotion at both psychological and neurobiological levels. Evidence regarding the brain substrates

  7. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  8. r Human Brain Mapping 000:000000 (2009) r Brain Structure and Obesity

    E-print Network

    Thompson, Paul

    2009-01-01

    r Human Brain Mapping 000:000­000 (2009) r Brain Structure and Obesity Cyrus A. Raji,1,2y April J, School of Medicine, Pittsburgh, Pennsylvania r r Abstract: Obesity is associated with increased risk obesity and Type II diabetes, are associ- ated with specific patterns of brain atrophy. We used tensor

  9. Tracking Hierarchical Processing in Morphological Decomposition with Brain Potentials

    ERIC Educational Resources Information Center

    Lavric, Aureliu; Elchlepp, Heike; Rastle, Kathleen

    2012-01-01

    One important debate in psycholinguistics concerns the nature of morphological decomposition processes in visual word recognition (e.g., darkness = {dark} + {-ness}). One theory claims that these processes arise during orthographic analysis and prior to accessing meaning (Rastle & Davis, 2008), and another argues that these processes arise through…

  10. Moment-to-moment brain signal variability: A next frontier in human brain mapping?

    PubMed Central

    Garrett, Douglas D.; Samanez-Larkin, Gregory R.; MacDonald, Stuart W.S.; Lindenberger, Ulman; McIntosh, Anthony R.; Grady, Cheryl L.

    2013-01-01

    Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human life-span development, cognitive performance, and various clinical conditions. As a result, brain signal variability is evolving as a bona fide signal of interest, and should no longer be dismissed as meaningless noise when mapping the human brain. PMID:23458776

  11. “Messing with the mind”: evolutionary challenges to human brain augmentation

    PubMed Central

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P.

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce “augmented” brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties. PMID:25324734

  12. "Messing with the mind": evolutionary challenges to human brain augmentation.

    PubMed

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce "augmented" brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties. PMID:25324734

  13. Spread of epileptic activity in human brain

    NASA Astrophysics Data System (ADS)

    Milton, John

    1997-03-01

    For many patients with medically refractory epilepsy surgical resection of the site of seizure onset (epileptic focus) offers the best hope for cure. Determination of the nature of seizure propagation should lead to improved methods for locating the epileptic focus (and hence reduce patient morbidity) and possibly to new treatment modalities directed at blocking seizure spread. Theoretical studies of neural networks emphasize the role of traveling waves for the propagation of activity. However, the nature of seizure propagation in human brain remains poorly characterized. The spread of epileptic activity in patients undergoing presurgical evaluation for epilepsy surgery was measured by placing subdural grids of electrodes (interelectrode spacings of 3-10 mm) over the frontal and temporal lobes. The exact location of each electrode relative to the surface of the brain was determined using 3--D MRI imaging techniques. Thus it is possible to monitor the spread of epileptic activity in both space and time. The observations are discussed in light of models for seizure propagation.

  14. Exercises in Anatomy, Connectivity, and Morphology using Neuromorpho.org and the Allen Brain Atlas.

    PubMed

    Chu, Philip; Peck, Joshua; Brumberg, Joshua C

    2015-01-01

    Laboratory instruction of neuroscience is often limited by the lack of physical resources and supplies (e.g., brains specimens, dissection kits, physiological equipment). Online databases can serve as supplements to material labs by providing professionally collected images of brain specimens and their underlying cellular populations with resolution and quality that is extremely difficult to access for strictly pedagogical purposes. We describe a method using two online databases, the Neuromorpho.org and the Allen Brain Atlas (ABA), that freely provide access to data from working brain scientists that can be modified for laboratory instruction/exercises. Neuromorpho.org is the first neuronal morphology database that provides qualitative and quantitative data from reconstructed cells analyzed in published scientific reports. The Neuromorpho.org database contains cross species and multiple neuronal phenotype datasets which allows for comparative examinations. The ABA provides modules that allow students to study the anatomy of the rodent brain, as well as observe the different cellular phenotypes that exist using histochemical labeling. Using these tools in conjunction, advanced students can ask questions about qualitative and quantitative neuronal morphology, then examine the distribution of the same cell types across the entire brain to gain a full appreciation of the magnitude of the brain's complexity. PMID:25838808

  15. Morphologic Effect of Dimethyl Sulfoxide on the Blood-Brain Barrier

    NASA Astrophysics Data System (ADS)

    Broadwell, Richard D.; Salcman, Michael; Kaplan, Richard S.

    1982-07-01

    Dimethyl sulfoxide (DMSO) opens the blood-brain barrier of mice to the enzymatic tracer horseradish peroxidase. A single injection of horseradish peroxidase in 10 to 15 percent DMSO into the tail vein along with 10 to 15 percent DMSO delivered intraperitoneally allowed horseradish peroxidase to fill the extracellular clefts throughout the brain within 2 hours. In the absence of DMSO, peroxidase failed to enter brain parenchyma except through the circumventricular organs. Opening of the blood-brain barrier by DMSO is reversible. Dimethyl sulfoxide stimulated the pinocytosis of horseradish peroxidase by the cerebral endothelium; the peroxidase was then directed to lysosomal dense bodies for degradation. Vesicular transport of horseradish peroxidase from the luminal to the abluminal wall of the endothelial cell was not observed. Dimethyl sulfoxide did not alter the morphology of endothelial cells or brain parenchyma.

  16. Dynamic shim updating on the human brain.

    PubMed

    Koch, Kevin M; McIntyre, Scott; Nixon, Terence W; Rothman, Douglas L; de Graaf, Robin A

    2006-06-01

    Dynamic alteration of shim settings during a multi-slice imaging experiment can improve static magnetic-field homogeneity over extended volumes. In this report, a pre-emphasized dynamic shim updating (DSU) system capable of rapidly updating all non-degenerate zeroth through second-order shims is presented and applied to high-field multi-slice imaging studies on the human brain. DSU is utilized in both non-oblique and oblique slicing geometries while updating in-plane and through-slice shims. Image-based magnetic-field maps are used to quantify homogeneity improvements and comparisons are made on a slice-specific basis between static global shimming and increasing orders of shim inclusion utilized DSU. The influence of oblique slicing geometry on DSU-utilized global homogeneity is also quantified computationally. Finally, the effect of DSU on susceptibility artifact reduction in single-shot axial-sliced EPI is analyzed using experimental acquisitions. PMID:16574443

  17. Dynamic shim updating on the human brain

    NASA Astrophysics Data System (ADS)

    Koch, Kevin M.; McIntyre, Scott; Nixon, Terence W.; Rothman, Douglas L.; de Graaf, Robin A.

    2006-06-01

    Dynamic alteration of shim settings during a multi-slice imaging experiment can improve static magnetic-field homogeneity over extended volumes. In this report, a pre-emphasized dynamic shim updating (DSU) system capable of rapidly updating all non-degenerate zeroth through second-order shims is presented and applied to high-field multi-slice imaging studies on the human brain. DSU is utilized in both non-oblique and oblique slicing geometries while updating in-plane and through-slice shims. Image-based magnetic-field maps are used to quantify homogeneity improvements and comparisons are made on a slice-specific basis between static global shimming and increasing orders of shim inclusion utilized DSU. The influence of oblique slicing geometry on DSU-utilized global homogeneity is also quantified computationally. Finally, the effect of DSU on susceptibility artifact reduction in single-shot axial-sliced EPI is analyzed using experimental acquisitions.

  18. In vivo measurements of human brain displacement.

    PubMed

    Ji, Songbai; Zhu, Qiliang; Dougherty, Lawrence; Margulies, Susan S

    2004-11-01

    Finite element models are increasingly important in understanding head injury mechanisms and designing new injury prevention equipment. Although boundary conditions strongly influence model responses, only limited quantitative data are available. While experimental studies revealed some motion between brain and skull, little data exists regarding the base of the skull. Using magnetic resonance images (MRI) of the caudal brain regions, we measured in vivo, quasi-static angular displacement of the cerebellum (CB) and brainstem (BS) relative to skull, and axial displacement of BS at the foramen magnum in supine human subjects (N=5). Images were obtained in flexion (7 degrees - 54 degrees ) and neutral postures using SPAMM tagging technique (N=47 pairs). Rigid body skull rotation angle from neutral posture (theta, degrees) was determined by extracting the edge feature points of the skull, and rotating and displacing the coordinates in one image until they matched those in the other. Tissue rotation was obtained by comparing tag lines in image pairs before and after flexion, and the motion of BS and CB were expressed relative to skull rotation and displacement. During flexion, the CB rotated in the flexion direction, exceeding the skull rotation, but relative BS rotations were negligible. Meanwhile, the BS moved caudally toward the foramen magnum. With a flexion angle of 54 degrees , the 95% confidence interval for the relative CB rotation was 2.7 degrees - 4.3 degrees , and 0.8 - 1.6mm for the relative BS axial displacement. Albeit quasi-static, this study provides important data that can be implemented to create more life-like boundary conditions in human finite element models. PMID:17230268

  19. Unique human orbital morphology compared with that of apes

    PubMed Central

    Denion, Eric; Hitier, Martin; Guyader, Vincent; Dugué, Audrey-Emmanuelle; Mouriaux, Frédéric

    2015-01-01

    Humans’ and apes’ convergent (front-facing) orbits allow a large overlap of monocular visual fields but are considered to limit the lateral visual field extent. However, humans can greatly expand their lateral visual fields using eye motion. This study aimed to assess whether the human orbital morphology was unique compared with that of apes in avoiding lateral visual field obstruction. The orbits of 100 human skulls and 120 ape skulls (30 gibbons; 30 orangutans; 30 gorillas; 30 chimpanzees and bonobos) were analyzed. The orbital width/height ratio was calculated. Two orbital angles representing orbital convergence and rearward position of the orbital margin respectively were recorded using a protractor and laser levels. Humans have the largest orbital width/height ratio (1.19; p?Humans and gibbons have orbits which are significantly less convergent than those of chimpanzees / bonobos, gorillas and orangutans (p?morphology favoring lateral vision in humans. More specifically, the human orbit has a uniquely rearward temporal orbital margin (107.1°; p?morphology may have evolved mainly as an adaptation to open-country habitat and bipedal locomotion. PMID:26111067

  20. Metabolic costs and evolutionary implications of human brain development

    PubMed Central

    Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

    2014-01-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  1. Gross Brain Morphology in Schizophrenia: A Regional Analysis of Traditional Diagnostic Subtypes.

    ERIC Educational Resources Information Center

    Raz, Sarah

    1994-01-01

    Categorized 56 patients with chronic schizophrenia into 2 groups based on traditional diagnostic subtypology. Compared groups on indices of cortical and subcortical cerebrospinal fluid (SCF) volume to explore whether more virulent nonparanoid disorder was linked to cortical/subcortical morphological brain abnormalities. Two groups differed…

  2. A Culture-Behavior-Brain Loop Model of Human Development.

    PubMed

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. PMID:26440111

  3. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey

    E-print Network

    Mars, Rogier Bertrand

    Connectivity profiles reveal the relationship between brain areas for social cognition in human. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain as human TPJ interacts with other human brain regions. In other words, we look for brain regions

  4. Brain morphology and regional cerebral blood flow in anorexia nervosa.

    PubMed

    Krieg, J C; Lauer, C; Leinsinger, G; Pahl, J; Schreiber, W; Pirke, K M; Moser, E A

    1989-04-15

    Cranial computed tomography (CT) was performed in 12 patients with anorexia nervosa, revealing that the majority of the patients displayed ventricular dilatation and/or sulcal widening. In addition, regional cerebral blood flow (rCBF) was measured at admission and once again after weight gain, using xenon-133 dynamic single-photon emission tomography (dSPECT). The mean flow rates assessed at the first examination did not significantly differ from those assessed at the second examination and from those of a control group. There was a significant inverse relationship between the size of the cerebrospinal fluid spaces and the cerebral blood flow in the anorectics; a decrease in ventricular size after weight gain was associated with an increase in cerebral blood flow in this area. This finding, however, has to be interpreted with caution, as partial volume effects render the flow rates ambiguous in brain areas, which, in addition to neuronal tissue, also include ventricular and sulcal structures. PMID:2785821

  5. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  6. Sex beyond the genitalia: The human brain mosaic.

    PubMed

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-12-15

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains ("female brain" or "male brain"). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only "male" or only "female" features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the "maleness-femaleness" continuum are rare. Rather, most brains are comprised of unique "mosaics" of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  7. Sex beyond the genitalia: The human brain mosaic

    PubMed Central

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains (“female brain” or “male brain”). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only “male” or only “female” features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the “maleness-femaleness” continuum are rare. Rather, most brains are comprised of unique “mosaics” of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  8. Genomic connectivity networks based on the BrainSpan atlas of the developing human brain

    NASA Astrophysics Data System (ADS)

    Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

    2014-03-01

    The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

  9. Influence of curvature on the morphology of brain microvascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Ye, Mao; Yang, Zhen; Wong, Andrew; Searson, Peter; Searson Group Team

    2013-03-01

    There are hundreds or thousands of endothelial cells around the perimeter of a single artery or vein, and hence an individual cell experiences little curvature. In contrast, a single endothelial cell may wrap around itself to form the lumen of a brain capillary. Curvature plays a key role in many biological, chemical and physical processes, however, its role in dictating the morphology and polarization of brain capillary endothelial cells has not been investigated. We hypothesize that curvature and shear flow play a key role in determining the structure and function of the blood-brain barrier (BBB). We have developed the ``rod'' assay to study the influence of curvature on the morphology of confluent monolayers of endothelial cells. In this assay cells are plated onto glass rods pulled down to the desired diameter in the range from 5 - 500 ?m and coated with collagen. We show that curvature has a significant influence on the morphology of endothelial cells and may have an important role in blood-brain barrier function.

  10. Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.

    PubMed

    Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

    2015-01-01

    Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. PMID:25399806

  11. HUMAN MOTOR CONTROL THROUGH ELECTROCORTICOGRAPHIC BRAIN MACHINE INTERFACES

    E-print Network

    Slatton, Clint

    HUMAN MOTOR CONTROL THROUGH ELECTROCORTICOGRAPHIC BRAIN MACHINE INTERFACES By AYSEGUL GUNDUZ brain and close the lid once you are done using it, rather knowledge is dynamic. I hope the day will come when I will be "thinking like the electrical engineer" he aspires me to be. I would like to thank

  12. Brain Prostheses as a Dynamic System (Immortalizing the Human Brain?)

    E-print Network

    Astakhov, Vadim

    2007-01-01

    Interest in development of brain prostheses, which might be proposed to recover mental functions lost due to neuron-degenerative disease or trauma, requires new methods in molecular engineering and nanotechnology to build artificial brain tissues. We develop a Dynamic Core model to analyze complexity of damaged biological neural network as well as transition and recovery of the system functionality due to changes in the system environment. We provide a method to model complexity of physical systems which might be proposed as an artificial tissue or prosthesis. Delocalization of Dynamic Core model is developed to analyze migration of mental functions in dynamic bio-systems which undergo architecture transition induced by trauma. Term Dynamic Core is used to define a set of causally related functions and Delocalization is used to describe the process of migration. Information geometry and topological formalisms are proposed to analyze information processes. A holographic model is proposed to construct dynamic e...

  13. r Human Brain Mapping 32:665675 (2011) r Dissociable Brain States Linked to Common and

    E-print Network

    Thompson-Schill, Sharon

    2011-01-01

    r Human Brain Mapping 32:665­675 (2011) r Dissociable Brain States Linked to Common and Creative, Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania r r Abstract: Studies of conceptual processing have revealed that the prefrontal cortex is implicated in close-ended, deliberate

  14. Prenatal tobacco exposure and brain morphology: a prospective study in young children.

    PubMed

    El Marroun, Hanan; Schmidt, Marcus N; Franken, Ingmar H A; Jaddoe, Vincent W V; Hofman, Albert; van der Lugt, Aad; Verhulst, Frank C; Tiemeier, Henning; White, Tonya

    2014-03-01

    It is well known that smoking during pregnancy can affect offspring health. Prenatal tobacco exposure has been associated with negative behavioral and cognitive outcomes in childhood, adolescence, and young adulthood. These associations between prenatal tobacco exposure and psychopathology in offspring could possibly be explained by the influence of prenatal tobacco exposure on brain development. In this prospective study, we investigated the association between prenatal tobacco exposure, behavioral and emotional functioning and brain morphology in young children. On the basis of age and gender, we matched 113 children prenatally exposed to tobacco with 113 unexposed controls. These children were part of a population-based study in the Netherlands, the Generation R Study, and were followed from pregnancy onward. Behavioral and emotional functioning was assessed at age 6 with the Child Behavior Checklist. We assessed brain morphology using magnetic resonance imaging techniques in children aged 6-8 years. Children exposed to tobacco throughout pregnancy have smaller total brain volumes and smaller cortical gray matter volumes. Continued prenatal tobacco exposure was associated with cortical thinning, primarily in the superior frontal, superior parietal, and precentral cortices. These children also demonstrated increased scores of affective problems. In addition, thickness of the precentral and superior frontal cortices was associated with affective problems. Importantly, brain development in offspring of mothers who quit smoking during pregnancy resembled that of nonexposed controls (no smaller brain volumes and no thinning of the cortex). Our findings suggest an association between continued prenatal tobacco exposure and brain structure and function in school-aged children. PMID:24096296

  15. Early morphological changes in organ cultured human corneal endothelium.

    PubMed

    Sperling, S

    1978-10-01

    Nineteen human cadaver corneas with few damaged endothelial cells were incubated under tissue culture conditions for time periods ranging from five min to 48 h. Morphological alterations of the endothelial cells were studied in whole wet mounts stained by alizarine red-alkohol-trypane blue and by scanning electron microscopy. Joint meetings of three cells are characteristic for normal corneal endothelium. After 15--60 min of incubation, damaged cells were expelled from the coherent cell sheet by expanding neighbouring cells. Joint meetings of 5--8 expanding cells were formed. After 24 h of incubation, joint meetings of four cells were the dominating morphological abnormality. Morphological changes during reduction of the numbers of cells in joint meetings are described. PMID:80914

  16. Brain Prostheses as a Dynamic System (Immortalizing the Human Brain?)

    E-print Network

    Vadim Astakhov; Tamara Astakhova

    2007-05-17

    Interest in development of brain prostheses, which might be proposed to recover mental functions lost due to neuron-degenerative disease or trauma, requires new methods in molecular engineering and nanotechnology to build artificial brain tissues. We develop a Dynamic Core model to analyze complexity of damaged biological neural network as well as transition and recovery of the system functionality due to changes in the system environment. We provide a method to model complexity of physical systems which might be proposed as an artificial tissue or prosthesis. Delocalization of Dynamic Core model is developed to analyze migration of mental functions in dynamic bio-systems which undergo architecture transition induced by trauma. Term Dynamic Core is used to define a set of causally related functions and Delocalization is used to describe the process of migration. Information geometry and topological formalisms are proposed to analyze information processes. A holographic model is proposed to construct dynamic environment with self-poetic Dynamic Core which preserve functional properties under transition from one host to another. We found statistical constraints for complex systems which conserve a Dynamic Core under environment transition. Also we suggest those constraints might provide recommendations for nanotechnologies and tissue engineering used in development of an artificial brain tissue.

  17. MRI of the human brain at 130 microtesla

    E-print Network

    Inglis, Ben

    We present in vivo images of the human brain acquired with an ultralow field MRI (ULFMRI) system operating at a magnetic field B[subscript 0] ? 130 ?T. The system features prepolarization of the proton spins at B[subscript ...

  18. The Compositional Nature of Event Representations in the Human Brain

    E-print Network

    Barbu, Andrei

    2014-07-14

    How does the human brain represent simple compositions of constituents: actors, verbs, objects, directions, and locations? Subjects viewed videos during neuroimaging (fMRI) sessions from which sentential descriptions of ...

  19. Classification of normal and pathological aging processes based on brain MRI morphology measures

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, J. L.; Yanez-Suarez, O.; Medina-Bañuelos, V.

    2014-03-01

    Reported studies describing normal and abnormal aging based on anatomical MRI analysis do not consider morphological brain changes, but only volumetric measures to distinguish among these processes. This work presents a classification scheme, based both on size and shape features extracted from brain volumes, to determine different aging stages: healthy control (HC) adults, mild cognitive impairment (MCI), and Alzheimer's disease (AD). Three support vector machines were optimized and validated for the pair-wise separation of these three classes, using selected features from a set of 3D discrete compactness measures and normalized volumes of several global and local anatomical structures. Our analysis show classification rates of up to 98.3% between HC and AD; of 85% between HC and MCI and of 93.3% for MCI and AD separation. These results outperform those reported in the literature and demonstrate the viability of the proposed morphological indexes to classify different aging stages.

  20. Making Connections: Teaching and the Human Brain.

    ERIC Educational Resources Information Center

    Caine, Renate Nummela; Caine, Geoffrey

    This book adds to the growing body of knowledge and research suggesting that educators need to move beyond simplistic, narrow approaches to teaching and learning. In Part I, "Accessing the Brain's Potential," current educational practices are examined in light of critical findings of brain researchers. In Part II, "Facts and Theories about the…

  1. Artificial Brain Based on Credible Neural Circuits in a Human Brain

    E-print Network

    Burger, John Robert

    2010-01-01

    Neurons are individually translated into simple gates to plan a brain with human psychology and intelligence. State machines, assumed previously learned in subconscious associative memory are shown to enable equation solving and rudimentary thinking using nanoprocessing within short term memory.

  2. Centrality of Social Interaction in Human Brain Function.

    PubMed

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-01

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. PMID:26447580

  3. Similar structures for face selectivity in human and monkey brains Extensive network of brain areas in macaques responds to faces

    E-print Network

    Similar structures for face selectivity in human and monkey brains Extensive network of brain areas in monkeys is significantly different from that in humans ­ and that different parts of the brain is remarkably similar in both macaques and humans. Consequently, macaque monkeys could be suitable model

  4. Alcohol-Related Brain Damage in Humans

    PubMed Central

    Erdozain, Amaia M.; Morentin, Benito; Bedford, Lynn; King, Emma; Tooth, David; Brewer, Charlotte; Wayne, Declan; Johnson, Laura; Gerdes, Henry K.; Wigmore, Peter; Callado, Luis F.; Carter, Wayne G.

    2014-01-01

    Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann’s area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin ? II, and ?- and ?-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in ?-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in ?-spectrin protein levels, and a significant increase in transmembranous ?3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of ?-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic ?- and ?-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics. PMID:24699688

  5. General Anesthesia and Human Brain Connectivity

    PubMed Central

    2012-01-01

    Abstract General anesthesia consists of amnesia, hypnosis, analgesia, and areflexia. Of these, the mechanism of hypnosis, or loss of consciousness, has been the most elusive, yet a fascinating problem. How anesthetic agents suppress human consciousness has been investigated with neuroimaging for two decades. Anesthetics substantially reduce the global cerebral metabolic rate and blood flow with a degree of regional heterogeneity characteristic to the anesthetic agent. The thalamus appears to be a common site of modulation by several anesthetics, but this may be secondary to cortical effects. Stimulus-dependent brain activation is preserved in primary sensory areas, suggesting that unconsciousness cannot be explained by cortical deafferentation or a diminution of cortical sensory reactivity. The effect of general anesthetics in functional and effective connectivity is varied depending on the agent, dose, and network studied. At an anesthetic depth characterized by the subjects' unresponsiveness, a partial, but not complete, reduction in connectivity is generally observed. Functional connectivity of the frontoparietal association cortex is often reduced, but a causal role of this change for the loss of consciousness remains uncertain. Functional connectivity of the nonspecific (intralaminar) thalamic nuclei is preferentially reduced by propofol. Higher-order thalamocortical connectivity is also reduced with certain anesthetics. The changes in functional connectivity during anesthesia induction and emergence do not mirror each other; the recovery from anesthesia may involve increases in functional connectivity above the normal wakeful baseline. Anesthetic loss of consciousness is not a block of corticofugal information transfer, but a disruption of higher-order cortical information integration. The prime candidates for functional networks of the forebrain that play a critical role in maintaining the state of consciousness are those based on the posterior parietal-cingulate-precuneus region and the nonspecific thalamus. PMID:23153273

  6. Anatomical regional differences in selenium levels in the human brain.

    PubMed

    Ramos, Patrícia; Santos, Agostinho; Pinto, Nair Rosas; Mendes, Ricardo; Magalhães, Teresa; Almeida, Agostinho

    2015-02-01

    The role of selenium in human brain physiology, as well as in aging and neurodegenerative processes, remains unclear. Thus, the aim of this study was to establish the "normal" (reference) levels for selenium in the human brain, as well as anatomical regional differences and age-related changes. Using inductively coupled plasma-mass spectrometry after sample microwave-assisted acid digestion, selenium levels were measured in 14 different areas of the brain of adult individuals (n?=?42; 71?±?12, range 50-101 years old) without a known history of neurodegenerative, neurological, or psychiatric disorders. In the whole data set (n?=?588; 42 individuals?×?14 brain areas), selenium levels ranged from 552 to 1435 ng/g, with a mean?±?SD content of 959?±?178 ng/g (dry weight basis). Selenium distribution across the different brain areas was heterogeneous, with the highest levels in the putamen, parietal inferior lobule, and occipital cortex and the lowest expression in the medulla and cerebellum. Selenium levels were unchanged with aging. Compared with the age-matched control group, significantly increased levels of selenium were found in the globus pallidus, superior temporal gyrus, and frontal cortex of Parkinson's disease (n?=?1) and Alzheimer's disease (n?=?2) patients. This study provides new data on the anatomical regional differences in selenium levels in the human brain, which will aid future interpretation of studies examining brain tissue affected by neurodegenerative (and other) brain diseases. PMID:25413879

  7. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  8. Human-induced morphological shifts in an island lizard

    PubMed Central

    Marnocha, Erin; Pollinger, John; Smith, Thomas B

    2011-01-01

    Understanding the evolutionary consequences of anthropogenic change is an emerging topic in evolutionary biology. While highly sensitive species may go extinct in response to anthropogenic habitat alteration, those with broader environmental tolerances may persist and adapt to the changes. Here, we use morphological data from the brown anole (Anolis sagrei), a lizard species that lives in both natural and human-disturbed habitats, to examine the impact of anthropogenic habitat alteration. We find populations inhabiting disturbed habitats were significantly larger in snout-vent length, hindspan, and mass and provide evidence that the observed divergence in hindspan is driven by human-induced changes in habitat structure. Populations were found to be genetically distinct among islands but are not genetically differentiated between habitat types on islands. Thus, the observed pattern of intra-island morphological differences cannot be explained by separate founding populations. Rather, our results are consistent with morphological differences between habitats having arisen in situ on each island. Results underscore the significant impact anthropogenic change may have on evolutionary trajectories of populations that persist in human-altered habitats. PMID:25567980

  9. Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies

    PubMed Central

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  10. Imaging structural co-variance between human brain regions

    PubMed Central

    Alexander-Bloch, Aaron; Giedd, Jay N.; Bullmore, Ed

    2014-01-01

    Brain structure varies between people in a markedly organized fashion. Communities of brain regions co-vary in their morphological properties. For example, cortical thickness in one region influences the thickness of structurally and functionally connected regions. Such networks of structural co-variance partially recapitulate the functional networks of healthy individuals and the foci of grey matter loss in neurodegenerative disease. This architecture is genetically heritable, is associated with behavioural and cognitive abilities and is changed systematically across the lifespan. The biological meaning of this structural co-variance remains controversial, but it appears to reflect developmental coordination or synchronized maturation between areas of the brain. This Review discusses the state of current research into brain structural co-variance, its underlying mechanisms and its potential value in the understanding of various neurological and psychiatric conditions. PMID:23531697

  11. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  12. Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line.

    PubMed

    Yoder, Elizabeth J

    2002-04-15

    Astrocytes extend specialized endfoot processes to perisynaptic and perivascular regions, and thus are positioned to mediate the bidirectional flow of metabolic, ionic, and other transmissive substances between neurons and the blood stream. While mutual structural and functional interactions between neurons and astrocytes have been documented, less is known about the interactions between astrocytes and cerebrovascular cells. For example, although the ability of astrocytes to induce structural and functional changes in endothelial cells is established, the reciprocity of brain endothelial cells to induce changes in astrocytes is undetermined. This issue is addressed in the present study. Changes in primary cultures of neonatal mouse cortical astrocytes were investigated following their coculture with mouse brain capillary endothelial (bEnd3) cells. The presence of bEnd3 cells altered the morphology of astrocytes by transforming them from confluent monolayers into networks of elongated multicellular columns. These columns did not occur when either bEnd3 cells or astrocytes were cocultured with other cell types, suggesting that astrocytes undergo specific morphological consequences when placed in close proximity to brain endothelial cells. In addition to these structural changes, the pharmacological profile of astrocytes was modified by coculture with bEnd3 cells. Astrocytes in the cocultures showed an increased Ca2+ responsiveness to bradykinin and glutamate, but no change in responsiveness to ATP, as compared to controls. Coculturing the astrocytes with a neuronal cell line resulted in increased responsiveness of the glial responses to glutamate but not to bradykinin. These studies indicate that brain endothelial cells induce changes in astrocyte morphology and pharmacology. PMID:11948807

  13. A New Antigen Retrieval Technique for Human Brain Tissue

    PubMed Central

    Byne, William; Haroutunian, Vahram; García-Villanueva, Mercedes; Rábano, Alberto; García-Amado, María; Prensa, Lucía; Giménez-Amaya, José Manuel

    2008-01-01

    Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times. PMID:18852880

  14. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  15. The Relationship between Social Defiance, Vindictiveness, Anger, and Brain Morphology in Eight-Year-Old Boys and Girls

    ERIC Educational Resources Information Center

    Fahim, Cherine; Fiori, Marina; Evans, Alan C.; Perusse, Daniel

    2012-01-01

    The goal of this study is twofold: (1) to assess brain anatomical differences between children meeting diagnostic criteria for oppositional defiant disorder (ODD) and healthy controls, and (2) to investigate whether morphological brain characteristics associated with ODD differ in boys and girls. Eight-year-old participants (N = 38) were scanned…

  16. BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics

    PubMed Central

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/). PMID:23861951

  17. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    ERIC Educational Resources Information Center

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  18. The brain-mind quiddity: ethical issues in the use of human brain tissue for therapeutic and scientific purposes.

    PubMed Central

    Burd, L; Gregory, J M; Kerbeshian, J

    1998-01-01

    The use of human brain tissue in neuroscience research is increasing. Recent developments include transplanting neural tissue, growing or maintaining neural tissue in laboratories and using surgically removed tissue for experimentation. Also, it is likely that in the future there will be attempts at partial or complete brain transplants. A discussion of the ethical issues of using human brain tissue for research and brain transplantation has been organized around nine broadly defined topic areas. Criteria for human brain tissue transplantation and laboratory use of brain tissue are proposed. PMID:9602999

  19. The brain-mind quiddity: ethical issues in the use of human brain tissue for therapeutic and scientific purposes.

    PubMed

    Burd, L; Gregory, J M; Kerbeshian, J

    1998-04-01

    The use of human brain tissue in neuroscience research is increasing. Recent developments include transplanting neural tissue, growing or maintaining neural tissue in laboratories and using surgically removed tissue for experimentation. Also, it is likely that in the future there will be attempts at partial or complete brain transplants. A discussion of the ethical issues of using human brain tissue for research and brain transplantation has been organized around nine broadly defined topic areas. Criteria for human brain tissue transplantation and laboratory use of brain tissue are proposed. PMID:9602999

  20. Shortcomings of the Human Brain and Remedial Action by Religion

    ERIC Educational Resources Information Center

    Reich, K. Helmut

    2010-01-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial…

  1. Conservation of Regional Gene Expression in Mouse and Human Brain

    PubMed Central

    Strand, Andrew D; Aragaki, Aaron K; Baquet, Zachary C; Hodges, Angela; Cunningham, Philip; Holmans, Peter; Jones, Kevin R; Jones, Lesley; Kooperberg, Charles; Olson, James M

    2007-01-01

    Many neurodegenerative diseases have a hallmark regional and cellular pathology. Gene expression analysis of healthy tissues may provide clues to the differences that distinguish resistant and sensitive tissues and cell types. Comparative analysis of gene expression in healthy mouse and human brain provides a framework to explore the ability of mice to model diseases of the human brain. It may also aid in understanding brain evolution and the basis for higher order cognitive abilities. Here we compare gene expression profiles of human motor cortex, caudate nucleus, and cerebellum to one another and identify genes that are more highly expressed in one region relative to another. We separately perform identical analysis on corresponding brain regions from mice. Within each species, we find that the different brain regions have distinctly different expression profiles. Contrasting between the two species shows that regionally enriched genes in one species are generally regionally enriched genes in the other species. Thus, even when considering thousands of genes, the expression ratios in two regions from one species are significantly correlated with expression ratios in the other species. Finally, genes whose expression is higher in one area of the brain relative to the other areas, in other words genes with patterned expression, tend to have greater conservation of nucleotide sequence than more widely expressed genes. Together these observations suggest that region-specific genes have been conserved in the mammalian brain at both the sequence and gene expression levels. Given the general similarity between patterns of gene expression in healthy human and mouse brains, we believe it is reasonable to expect a high degree of concordance between microarray phenotypes of human neurodegenerative diseases and their mouse models. Finally, these data on very divergent species provide context for studies in more closely related species that address questions such as the origins of cognitive differences. PMID:17447843

  2. Morphological brain network assessed using graph theory and network filtration in deaf adults.

    PubMed

    Kim, Eunkyung; Kang, Hyejin; Lee, Hyekyoung; Lee, Hyo-Jeong; Suh, Myung-Whan; Song, Jae-Jin; Oh, Seung-Ha; Lee, Dong Soo

    2014-09-01

    Prolonged deprivation of auditory input can change brain networks in pre- and postlingual deaf adults by brain-wide reorganization. To investigate morphological changes in these brains voxel-based morphometry, voxel-wise correlation with the primary auditory cortex, and whole brain network analyses using morphological covariance were performed in eight prelingual deaf, eleven postlingual deaf, and eleven hearing adults. Network characteristics based on graph theory and network filtration based on persistent homology were examined. Gray matter density in the primary auditor cortex was preserved in prelingual deafness, while it tended to decrease in postlingual deafness. Unlike postlingual, prelingual deafness showed increased bilateral temporal connectivity of the primary auditory cortex compared to the hearing adults. Of the graph theory-based characteristics, clustering coefficient, betweenness centrality, and nodal efficiency all increased in prelingual deafness, while all the parameters of postlingual deafness were similar to the hearing adults. Patterns of connected components changing during network filtration were different between prelingual deafness and hearing adults according to the barcode, dendrogram, and single linkage matrix representations, while these were the same in postlingual deafness. Nodes in fronto-limbic and left temporal components were closely coupled, and nodes in the temporo-parietal component were loosely coupled, in prelingual deafness. Patterns of connected components changing in postlingual deafness were the same as hearing adults. We propose that the preserved density of auditory cortex associated with increased connectivity in prelingual deafness, and closer coupling between certain brain areas, represent distinctive reorganization of auditory and related cortices compared with hearing or postlingual deaf adults. The differential network reorganization in the prelingual deaf adults could be related to the absence of auditory speech experience. PMID:25016143

  3. Functional network organization of the human brain

    PubMed Central

    Power, Jonathan D; Cohen, Alexander L; Nelson, Steven M; Wig, Gagan S; Barnes, Kelly Anne; Church, Jessica A; Vogel, Alecia C; Laumann, Timothy O; Miezin, Fran M; Schlaggar, Bradley L; Petersen, Steven E

    2011-01-01

    Summary Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. PMID:22099467

  4. Carboxy terminal of beta-amyloid deposits in aged human, canine, and polar bear brains.

    PubMed

    Tekirian, T L; Cole, G M; Russell, M J; Yang, F; Wekstein, D R; Patel, E; Snowdon, D A; Markesbery, W R; Geddes, J W

    1996-01-01

    Immunocytochemistry, using antibodies specific for different carboxy termini of beta-amyloid. A beta 40 and A beta 42(43), was used to compare beta-amyloid deposits in aged animal models to nondemented and demented Alzheimer's disease human cases. Aged beagle dogs exhibit diffuse plaques in the absence of neurofibrillary pathology and the aged polar bear brains contain diffuse plaques and PHF-1-positive neurofibrillary tangles. The brains of nondemented human subjects displayed abundant diffuse plaques, whereas the AD cases had both diffuse and mature (cored) neuritic plaques. Diffuse plaques were positively immunostained with an antibody against A beta 42(43) in all examined species, whereas A beta 40 immunopositive mature plaques were observed only in the human brain. Anti-A beta 40 strongly immunolabeled cerebrovascular beta-amyloid deposits in each of the species examined, although some deposits in the polar bear brain were preferentially labeled with anti-A beta 42(43). beta-amyloid deposition was evident in the outer molecular layer of the dentate gyrus in the aged dog, polar bear, and human. Within this layer, A beta 42 was present as diffuse deposits, although these deposits were morphologically distinct in each of the examined animal models. In dogs, A beta 42 was cloud-like in nature; the polar bear demonstrated a more aggregated type of deposition, and the nondemented human displayed well-defined deposits. Alzheimer's disease cases were most frequently marked by neuritic plaques in this region. Taken together, the data indicate that beta-amyloid deposition in aged mammals is similar to the earliest stages observed in human brain. In each species, A beta 42(43) is the initially deposited isoform in diffuse plaques. PMID:8744406

  5. Segmentation of a Human Brain Cortical Surface Mesh Using WatershedsDecember 17, 2002 1 Segmentation of a Human Brain Cortical

    E-print Network

    Dyer, Charles R.

    Segmentation of a Human Brain Cortical Surface Mesh Using WatershedsDecember 17, 2002 1 Segmentation of a Human Brain Cortical Surface Mesh Using Watersheds Kathleen Marty, CS766 Final Project, 12 based upon #12;Segmentation of a Human Brain Cortical Surface Mesh Using WatershedsDecember 17, 2002 2

  6. 29: Monkeys, Humans Get Brain-Driven Prostheses -Discover Magazine -s...ology magazine articles 29: Monkeys, Humans Get Brain-Driven Prostheses Logout Here

    E-print Network

    29: Monkeys, Humans Get Brain-Driven Prostheses - Discover Magazine - s...ology magazine articles - Discover Magazine - s...ology magazine articles 29: Monkeys, Humans Get Brain-Driven Prostheses motorized 29: Monkeys, Humans Get Brain-Driven Prostheses Logout Here Discover Magazine > Issues > jan-05

  7. The bilingual brain: Flexibility and control in the human cortex

    NASA Astrophysics Data System (ADS)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  8. Dynamic process of information transmission complexity in human brains.

    PubMed

    Chen, F; Xu, J; Gu, F; Yu, X; Meng, X; Qiu, Z

    2000-10-01

    Based on a complexity analysis of mutual information transmission of EEG developed by us [Xu J, Liu Z, Liu R, Yang Q (1997) Physica D 106: 363-374], dynamic processes of the complexity of mutual information transmission in human brains were studied. To diminish possible problems due to coarse graining preprocessing, some new measures of complexity were used. The results show that, just before and after generalized seizures, the complexities of almost all information transmission between different brain areas drop significantly; there is also a temporary decrease of complexity when subjects shift their attention. The above facts suggest that there is a transient decrease of information transmission complexity when brain state changes occur suddenly. Mental arithmetic tasks activate the left temporal lobe to exchange more information with other brain areas. The results hint that the methods used here might be an approach to observe quick processes in the living brain. PMID:11039700

  9. The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans.

    PubMed

    Bruner, Emiliano; Amano, Hideki; de la Cuétara, José Manuel; Ogihara, Naomichi

    2015-09-01

    The spatial relationships between brain and braincase represent a major topic in surgery and evolutionary neuroanatomy. In paleoneurology, neurocranial landmarks are often used as references for brain areas. In this study, we analyze the variation and covariation of midsagittal brain and skull coordinates in a sample of adult modern humans in order to demonstrate spatial associations between hard and soft tissues. The correlation between parietal lobe size and parietal bone size is very low, and there is a marked individual variation. The distances between lobes and bones are partially influenced by the dimensions of the parietal lobes. The main pattern of morphological variability among individuals, associated with the size of the precuneus, apparently does not influence the position of the neurocranial sutures. Therefore, variations in precuneal size modify the distance between the paracentral lobule and bregma, and between the parietal lobe and lambda. Hence, the relative position of the cranial and cerebral landmarks can change as a function of the parietal dimensions. The slight correlation and covariation among these elements suggests a limited degree of spatial integration between soft and hard tissues. Therefore, although the brain influences the cranial size and shape during morphogenesis, the specific position of the cerebral components is sensitive to multiple effects and local factors, without a strict correspondence with the bone landmarks. This absence of correspondent change between brain and skull boundaries suggests caution when making inferences about the brain areas from the position of the cranial sutures. The fact that spatial relationships between cranial and brain areas may vary according to brain proportions must be considered in paleoneurology, when brain anatomy is inferred from cranial evidence. PMID:26200138

  10. Decade of the Brain 1990--2000: Maximizing human potential

    SciTech Connect

    Not Available

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  11. Lifespan maturation and degeneration of human brain white matter

    PubMed Central

    Yeatman, Jason D.; Wandell, Brian A.; Mezer, Aviv A.

    2014-01-01

    Properties of human brain tissue change across the lifespan. Here we model these changes in the living human brain by combining quantitative MRI measurements of R1 (1/T1) with diffusion MRI and tractography (N=102, ages 7–85). The amount of R1 change during development differs between white matter fascicles, but in each fascicle the rate of development and decline are mirror symmetric; the rate of R1 development as the brain approaches maturity predicts the rate of R1 degeneration in aging. Quantitative measurements of macromolecule tissue volume (MTV) confirm that R1 is an accurate index of the growth of new brain tissue. In contrast to R1, diffusion development follows an asymmetric time-course with rapid childhood changes but a slow rate of decline in old age. Together, the time-courses of R1 and diffusion changes demonstrate that multiple biological processes drive changes in white matter tissue properties over the lifespan. PMID:25230200

  12. ANALYZING DEPENDENCE STRUCTURE OF THE HUMAN BRAIN IN RESPONSE TO VISUAL STIMULI

    E-print Network

    Slatton, Clint

    ANALYZING DEPENDENCE STRUCTURE OF THE HUMAN BRAIN IN RESPONSE TO VISUAL STIMULI Bilal H. Fadlallah in the human brain in response to two different visual stimuli, face and mock with the goal of (1) assessingVEP), a well-known physiological tool in human brain studies [3]. ssVEPs are continuous brain re- sponses

  13. Divergent Whole-Genome Methylation Maps of Human and Chimpanzee Brains Reveal

    E-print Network

    Yi, Soojin

    ARTICLE Divergent Whole-Genome Methylation Maps of Human and Chimpanzee Brains Reveal Epigenetic exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might

  14. UNCORRECTEDPROOF Optimization in Brain? Modeling Human

    E-print Network

    Wu, Changxu (Sean)

    ]. With these computational models, researchers are able to validate, test, and up- date psychological theories in ways and the psychological refractory period (PRP). This model also proposes brain changes that may accompany the typing and PRP practice effects that could be tested empirically with neuroimaging. All of the modeled phenomena

  15. Human and rat brain lipofuscin proteome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may have yet ...

  16. Toward discovery science of human brain function.

    PubMed

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

    2010-03-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/. PMID:20176931

  17. Pain perception and its genesis in the human brain.

    PubMed

    C N Chen, Andrew

    2008-10-25

    In the past two decades, pain perception in the human brain has been studied with EEG/MEG brain topography and PET/fMRI neuroimaging techniques. A host of cortical and subcortical loci can be activated by various nociceptive conditions. The activation in pain perception can be induced by physical (electrical, thermal, mechanical), chemical (capsacin, ascoric acid), psychological (anxiety, stress, nocebo) means, and pathological (e.g. migraine, neuropathic) diseases. This article deals mainly on the activation, but not modulation, of human pain in the brain. The brain areas identified are named pain representation, matrix, neuraxis, or signature. The sites are not uniformly isolated across various studies, but largely include a set of cores sites: thalamus and primary somatic area (SI), second somatic area (SII), insular cortex (IC), prefrontal cortex (PFC), cingulate, and parietal cortices. Other areas less reported and considered important in pain perception include brainstem, hippocampus, amygdala and supplementary motor area (SMA). The issues of pain perception basically encompass both the site and the mode of brain function. Although the site issue is delineared to a large degree, the mode issue has been much less explored. From the temporal dynamics, IC can be considered as the initial stage in genesis of pain perception as conscious suffering, the unique aversion in the human brain. PMID:18958377

  18. A navigational guidance system in the human brain

    PubMed Central

    Spiers, Hugo J.; Maguire, Eleanor A.

    2008-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one’s current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional MRI (fMRI) as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analysed in combination with metric measures of proximity and direction to goal destinations which were derived from each individual subject’s coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behaviour in general. PMID:17492693

  19. Distribution of vesicular glutamate transporters in the human brain

    PubMed Central

    Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah

    2015-01-01

    Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains. PMID:25798091

  20. Brain potentials for derivational morphology: an ERP study of deadjectival nominalizations in Spanish.

    PubMed

    Havas, Viktória; Rodríguez-Fornells, Antoni; Clahsen, Harald

    2012-03-01

    This study investigates brain potentials to derived word forms in Spanish. Two experiments were performed on derived nominals that differ in terms of their productivity and semantic properties but are otherwise similar, an acceptability judgment task and a reading experiment using event-related brain potentials (ERPs) in which correctly and incorrectly formed derived words were presented in sentence contexts. The first experiment indicated productivity differences between the different nominalization processes in Spanish. The second experiment yielded a pattern of ERP responses that differed from both the familiar lexical-semantic and grammatical ERP effects. Violations of derivational morphology elicited an increased N400 component plus a late positivity (P600), unlike gender-agreement violations, which produced the biphasic LAN/P600 ERP pattern known from previous studies of morpho-syntactic violations. We conclude that the recognition of derived word forms engages both word-level (lexical-semantic) and decompositional (morpheme-based) processes. PMID:22169628

  1. Catecholaminergic Gene Polymorphisms Are Associated with GI Symptoms and Morphological Brain Changes in Irritable Bowel Syndrome

    PubMed Central

    Shih, Wendy; Presson, Angela P.; Hammer, Christian; Niesler, Beate; Heendeniya, Nuwanthi; Mayer, Emeran A.; Chang, Lin

    2015-01-01

    Background Genetic and environmental factors contribute to the pathophysiology of irritable bowel syndrome (IBS). In particular, early adverse life events (EALs) and the catecholaminergic system have been implicated. Aims To investigate whether catecholaminergic SNPs with or without interacting with EALs are associated with: 1) a diagnosis of IBS, 2) IBS symptoms and 3) morphological alterations in brain regions associated with somatosensory, viscerosensory, and interoceptive processes. Methods In 277 IBS and 382 healthy control subjects (HCs), 11 SNPs in genes of the catecholaminergic signaling pathway were genotyped. A subset (121 IBS, 209 HCs) underwent structural brain imaging (magnetic resonance imaging [MRI]). Logistic and linear regressions evaluated each SNP separately and their interactions with EALs in predicting IBS and GI symptom severity, respectively. General linear models determined grey matter (GM) alterations from the SNPs and EALs that were predictive of IBS. Results 1) Diagnosis: There were no statistically significant associations between the SNPs and IBS status with or without the interaction with EAL after adjusting for multiple comparisons. 2) Symptoms: GI symptom severity was associated with ADRA1D rs1556832 (P = 0.010). 3) Brain morphometry: In IBS, the homozygous genotype of the major ADRA1D allele was associated with GM increases in somatosensory regions (FDR q = 0.022), left precentral gyrus (q = 0.045), and right hippocampus (q = 0.009). In individuals with increasing sexual abuse scores, the ADRA?2 SNP was associated with GM changes in the left posterior insula (q = 0.004) and left putamen volume (q = 0.029). Conclusion In IBS, catecholaminergic SNPs are associated with symptom severity and morphological changes in brain regions concerned with sensory processing and modulation and affect regulation. Thus, certain adrenergic receptor genes may facilitate or worsen IBS symptoms. PMID:26288143

  2. Measuring dopamine release in the human brain with PET

    SciTech Connect

    Volkow, N.D. |; Fowler, J.S.; Logan, J.; Wang, G.J.

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  3. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  4. Simplified detection system for neuroreceptor studies in the human brain

    SciTech Connect

    Bice, A.N.; Wagner, H.N. Jr.; Frost, J.J.; Natarajan, T.K.; Lee, M.C.; Wong, D.F.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Links, J.M.

    1986-02-01

    A simple, inexpensive dual-detector system has been developed for measurement of positronemitting receptor-binding drugs in the human brain. This high efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of (11C)carfentanil, a high affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist indicates the potential utility of this system for estimating different degrees of receptor occupation in the human brain.

  5. PET evaluation of the dopamine system of the human brain

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Gatley, S. |

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  6. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08?×?10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  7. Human brain functional MRI and DTI visualization with virtual reality

    PubMed Central

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-01-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed. PMID:23256049

  8. Abnormal Brain Iron Homeostasis in Human and Animal Prion Disorders

    PubMed Central

    Mohan, Maradumane L.; Cohen, Mark L.; Chen, Fusong; Kong, Qingzhong; Bartz, Jason; Singh, Neena

    2009-01-01

    Neurotoxicity in all prion disorders is believed to result from the accumulation of PrP-scrapie (PrPSc), a ?-sheet rich isoform of a normal cell-surface glycoprotein, the prion protein (PrPC). Limited reports suggest imbalance of brain iron homeostasis as a significant associated cause of neurotoxicity in prion-infected cell and mouse models. However, systematic studies on the generality of this phenomenon and the underlying mechanism(s) leading to iron dyshomeostasis in diseased brains are lacking. In this report, we demonstrate that prion disease–affected human, hamster, and mouse brains show increased total and redox-active Fe (II) iron, and a paradoxical increase in major iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) at the end stage of disease. Furthermore, examination of scrapie-inoculated hamster brains at different timepoints following infection shows increased levels of Tf with time, suggesting increasing iron deficiency with disease progression. Sporadic Creutzfeldt-Jakob disease (sCJD)–affected human brains show a similar increase in total iron and a direct correlation between PrP and Tf levels, implicating PrPSc as the underlying cause of iron deficiency. Increased binding of Tf to the cerebellar Purkinje cell neurons of sCJD brains further indicates upregulation of TfR and a phenotype of neuronal iron deficiency in diseased brains despite increased iron levels. The likely cause of this phenotype is sequestration of iron in brain ferritin that becomes detergent-insoluble in PrPSc-infected cell lines and sCJD brain homogenates. These results suggest that sequestration of iron in PrPSc–ferritin complexes induces a state of iron bio-insufficiency in prion disease–affected brains, resulting in increased uptake and a state of iron dyshomeostasis. An additional unexpected observation is the resistance of Tf to digestion by proteinase-K, providing a reliable marker for iron levels in postmortem human brains. These data implicate redox-iron in prion disease–associated neurotoxicity, a novel observation with significant implications for prion disease pathogenesis. PMID:19283067

  9. The modular and integrative functional architecture of the human brain.

    PubMed

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions. PMID:26598686

  10. Microtesla MRI of the human brain combined with MEG

    PubMed Central

    Zotev, Vadim S.; Matlashov, Andrei N.; Volegov, Petr L.; Savukov, Igor M.; Espy, Michelle A.; Mosher, John C.; Gomez, John J.; Kraus, Robert H.

    2008-01-01

    One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method-SQUID-based microtesla MRI-can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microtesla measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment-low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging-are practical. PMID:18619876

  11. Hemodynamic effects of long-term morphological changes in the human carotid sinus.

    PubMed

    Seong, Jaehoon; Jeong, Woowon; Smith, Nataliya; Towner, Rheal A

    2015-04-13

    Previous investigations of morphology for human carotid artery bifurcation from infancy to young adulthood found substantial growth of the internal carotid artery with advancing age, and the development of the carotid sinus at the root of the internal carotid artery during teenage years. Although the reasons for the appearance of the carotid sinus are not clearly understood yet, it has been hypothesized that the dilation of the carotid sinus serves to support pressure sensing, and slows the blood flow to reduce pulsatility to protect the brain. In order to understand this interesting evolvement at the carotid bifurcation in the aspects of fluid mechanics, we performed in vitro phase-contrast MR flow experiments using compliant silicone replicas of age-dependent carotid artery bifurcations. The silicone models in childhood, adolescence, and adulthood were fabricated using a rapid prototyping technique, and incorporated with a bench-top flow mock circulation loop using a computer-controlled piston pump. The results of the in vitro flow study showed highly complex flow characteristics at the bifurcation in all age-dependent models. However, the highest magnitude of kinetic energy was found at the internal carotid artery in the child model. The high kinetic energy in the internal carotid artery during childhood might be one of the local hemodynamic forces that initiate morphological long-term development of the carotid sinus in the human carotid bifurcation. PMID:25702250

  12. Visual dictionaries as intermediate features in the human brain

    PubMed Central

    Ramakrishnan, Kandan; Scholte, H. Steven; Groen, Iris I. A.; Smeulders, Arnold W. M.; Ghebreab, Sennay

    2015-01-01

    The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW) model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2, and V3. However, BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain. PMID:25642183

  13. Genetic Control of Human Brain Transcript Expression in Alzheimer Disease

    PubMed Central

    Webster, Jennifer A.; Gibbs, J. Raphael; Clarke, Jennifer; Ray, Monika; Zhang, Weixiong; Holmans, Peter; Rohrer, Kristen; Zhao, Alice; Marlowe, Lauren; Kaleem, Mona; McCorquodale, Donald S.; Cuello, Cindy; Leung, Doris; Bryden, Leslie; Nath, Priti; Zismann, Victoria L.; Joshipura, Keta; Huentelman, Matthew J.; Hu-Lince, Diane; Coon, Keith D.; Craig, David W.; Pearson, John V.; Heward, Christopher B.; Reiman, Eric M.; Stephan, Dietrich; Hardy, John; Myers, Amanda J.

    2009-01-01

    We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease. PMID:19361613

  14. Simple instrument for biochemical studies of the living human brain

    SciTech Connect

    Bice, A.N.; Wagner, H.N. Jr.; Lee, M.C.; Frost, J.J.

    1986-09-01

    A simple, relatively inexpensive radiation detection system was developed for measurement of positron-emitting receptor-binding drugs in the human brain. This high-efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of (/sup 11/C)-carfentanil, a high-affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist exemplifies the use of this system for estimating different degrees of receptor binding of drugs in the human brain. The instrument has also been used for measurement of the transport into the brain of other positron-emitting radiotracers, such as large neutral amino acids.

  15. Wavelets and statistical analysis of functional magnetic resonance images of the human brain

    E-print Network

    Breakspear, Michael

    Wavelets and statistical analysis of functional magnetic resonance images of the human brain Ed. Wavelets are particularly well suited to analysis of biological signals and images, such as human brain Bullmore Brain Mapping Unit and Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke

  16. The Relationship between Brain Morphology and Polysomnography in Healthy Good Sleepers

    PubMed Central

    Reinhard, Matthias A.; Regen, Wolfram; Baglioni, Chiara; Nissen, Christoph; Feige, Bernd; Hennig, Jürgen; Riemann, Dieter; Spiegelhalder, Kai

    2014-01-01

    Background Normal sleep continuity and architecture show remarkable inter-individual variability. Previous studies suggest that brain morphology may explain inter-individual differences in sleep variables. Method Thirty-eight healthy subjects spent two consecutive nights at the sleep laboratory with polysomnographic monitoring. Furthermore, high-resolution T1-weighted MRI datasets were acquired in all participants. EEG sleep recordings were analyzed using standard sleep staging criteria and power spectral analysis. Using the FreeSurfer software for automated segmentation, 174 variables were determined representing the volume and thickness of cortical segments and the volume of subcortical brain areas. Regression analyses were performed to examine the relationship with polysomnographic and spectral EEG power variables. Results The analysis did not provide any support for the a-priori formulated hypotheses of an association between brain morphology and polysomnographic variables. Exploratory analyses revealed that the thickness of the left caudal anterior cingulate cortex was positively associated with EEG beta2 power (24–32 Hz) during REM sleep. The volume of the left postcentral gyrus was positively associated with periodic leg movements during sleep (PLMS). Conclusions The function of the anterior cingulate cortex as well as EEG beta power during REM sleep have been related to dreaming and sleep-related memory consolidation, which may explain the observed correlation. Increased volumes of the postcentral gyrus may be the result of increased sensory input associated with PLMS. However, due to the exploratory nature of the corresponding analyses, these results have to be replicated before drawing firm conclusions. PMID:25275322

  17. Integrin triplets of marine sponges in human brain receptor heteromers.

    PubMed

    Tarakanov, Alexander O; Fuxe, Kjell G; Borroto-Escuela, Dasiel O

    2012-09-01

    Based on our theory, we have discovered main triplets of amino acid residues in cell-adhesion receptors of marine sponges, which appear also as homologies in several receptor heteromers of human brain. The obtained results strengthen our hypothesis that these triplets may "guide-and-clasp" receptor-receptor interactions. PMID:22573093

  18. Addiction circuitry in the human brain (*).

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

    2011-09-27

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

  19. The Adaptive Brain Human health and the rational behavior of individuals, groups, and populations depends upon healthy

    E-print Network

    Resler, Lynn M.

    The Adaptive Brain Human health and the rational behavior of individuals, groups, and populations area will embrace multidisciplinary approaches to understanding the adaptive brain in human disorders brain development as a component of human development, aging and healing the foundations

  20. Can Resonant Oscillations of the Earth Ionosphere Influence the Human Brain Biorhythm?

    E-print Network

    V. D. Rusov; K. A. Lukin; T. N. Zelentsova; E. P. Linnik; M. E. Beglaryan; V. P. Smolyar; M. Filippov; B. Vachev

    2012-08-23

    Within the frames of Alfv\\'en sweep maser theory the description of morphological features of geomagnetic pulsations in the ionosphere with frequencies (0.1-10 Hz) in the vicinity of Schumann resonance (7.83 Hz) is obtained. It is shown that the related regular spectral shapes of geomagnetic pulsations in the ionosphere determined by "viscosity" and "elasticity" of magneto-plasma medium that control the nonlinear relaxation of energy and deviation of Alfv\\'en wave energy around its equilibrium value. Due to the fact that the frequency bands of Alfv\\'{e}n maser resonant structures practically coincide with the frequency band delta- and partially theta-rhythms of human brain, the problem of degree of possible impact of electromagnetic "pearl" type resonant structures (0.1-5 Hz) onto the brain bio-rhythms stability is discussed.

  1. Can Resonant Oscillations of the Earth Ionosphere Influence the Human Brain Biorhythm?

    E-print Network

    Rusov, V D; Zelentsova, T N; Linnik, E P; Beglaryan, M E; Smolyar, V P; Filippov, M; Vachev, B

    2012-01-01

    Within the frames of Alfv\\'en sweep maser theory the description of morphological features of geomagnetic pulsations in the ionosphere with frequencies (0.1-10 Hz) in the vicinity of Schumann resonance (7.83 Hz) is obtained. It is shown that the related regular spectral shapes of geomagnetic pulsations in the ionosphere determined by "viscosity" and "elasticity" of magneto-plasma medium that control the nonlinear relaxation of energy and deviation of Alfv\\'en wave energy around its equilibrium value. Due to the fact that the frequency bands of Alfv\\'{e}n maser resonant structures practically coincide with the frequency band delta- and partially theta-rhythms of human brain, the problem of degree of possible impact of electromagnetic "pearl" type resonant structures (0.1-5 Hz) onto the brain bio-rhythms stability is discussed.

  2. To Your Health: NLM update transcript - International efforts to understand the human brain

    MedlinePLUS

    ... update Transcript International efforts to understand the human brain : 12/07/2015 To use the sharing features ... to revolutionize the scientific understanding of the human brain, explains a perspective recently published in Science. The ...

  3. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment

    E-print Network

    Jean, Aurelie H.

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain ...

  4. Robotic actions in the human brain Robotic movement preferentially engages the action observation network

    E-print Network

    Hamilton, Antonia

    Robotic actions in the human brain 1 Robotic movement., Stadler, W. & Prinz, W. (in press / 2011). Robotic movement preferentially engages the action observation network. Human Brain Mapping. #12;Robotic

  5. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10?33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  6. Topological Isomorphisms of Human Brain and Financial Market Networks

    PubMed Central

    Vértes, Petra E.; Nicol, Ruth M.; Chapman, Sandra C.; Watkins, Nicholas W.; Robertson, Duncan A.; Bullmore, Edward T.

    2011-01-01

    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets – the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular – more highly optimized for information processing – than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets. PMID:22007161

  7. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  8. Gene Expression Switching of Receptor Subunits in Human Brain Development.

    PubMed

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-12-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  9. Abnormal deposits of chromium in the pathological human brain.

    PubMed Central

    Duckett, S

    1986-01-01

    Three patients presented with encephalopathies: an undiagnosed degenerative disease of the brain, a degenerative cerebral disease in a patient with a myeloma but without a myelomatous deposit in the CNS and a malignant astrocytoma. Perivascular pallidal deposits (vascular siderosis) containing chromium, phosphorus and calcium plus sometimes traces of other elements were present in the three cases. Such deposits were present in the pallidal parenchyma and around vessels in the cerebellum in one case. Calcium and phosphorus are always present in any CNS calcification but the presence of chromium has not been reported. Chromium and its compounds (ingested, injected or inhaled) are toxic to humans and animals in trace doses. Approximately 900 cases of chromium intoxication have been reported and usually have had dermatological or pulmonary lesions (including cancer) but there is no report of involvement of the CNS. Sublethal doses of chromium nitrate injected intraperitoneally in rats and rabbits results in the presence of chromium in the brain. A thorough investigation was made to find the source of the chromium in these patients. Chromium was found to be present in trace amounts in the radiological contrast agents administered to these patients and in the KCl replacement solution and in mylanta, an antacid, given to one case. The evidence that chromium induced pathological changes in these three brains is circumstantial but shows that chromium can penetrate the human brain. This study indicates that vascular siderosis found in the brains of the majority of middle-aged and elderly humans is not simply an anecdotal pathological curiosity, but that it can serve as a route of entry for toxic products into the brain. Images PMID:3958742

  10. Environmental influence in the brain, human welfare and mental health.

    PubMed

    Tost, Heike; Champagne, Frances A; Meyer-Lindenberg, Andreas

    2015-10-01

    The developing human brain is shaped by environmental exposures--for better or worse. Many exposures relevant to mental health are genuinely social in nature or believed to have social subcomponents, even those related to more complex societal or area-level influences. The nature of how these social experiences are embedded into the environment may be crucial. Here we review select neuroscience evidence on the neural correlates of adverse and protective social exposures in their environmental context, focusing on human neuroimaging data and supporting cellular and molecular studies in laboratory animals. We also propose the inclusion of innovative methods in social neuroscience research that may provide new and ecologically more valid insight into the social-environmental risk architecture of the human brain. PMID:26404717

  11. Luria: a unitary view of human brain and mind.

    PubMed

    Mecacci, Luciano

    2005-12-01

    Special questions the eminent Russian psychologist and neuropsychologist Aleksandr R. Luria (1902-1977) dealt with in his research regarded the relationship between animal and human brain, child and adult mind, normal and pathological, theory and rehabilitation, clinical and experimental investigation. These issues were integrated in a unitary theory of cerebral and psychological processes, under the influence of both different perspectives active in the first half of the Nineteenth century (psychoanalysis and historical-cultural school, first of all) and the growing contribution of neuropsychological research on brain-injured patients. PMID:16350662

  12. From monkeys to humans: what do we now know about brain homologies?

    E-print Network

    Sereno, Martin

    From monkeys to humans: what do we now know about brain homologies? Martin I Sereno and Roger BH within the brains of the surviving branches (e.g. humans, macaque monkeys, owl monkeys) is difficult The detailed homology of brain regions among monkeys, apes and humans is intrinsically interesting to evolution

  13. Did brain-specific genes evolve faster in humans than in chimpanzees?

    E-print Network

    Zhang, Jianzhi

    Did brain-specific genes evolve faster in humans than in chimpanzees? Peng Shi* , Margaret A distinctive characteristics of humans among primates is the size, organization and function of the brain among the five sets of brain-specific genes, none of them supports human acceleration. On the contrary

  14. hierarchy demonstrated a biologically sensible or-ganizational structure of the human brain.

    E-print Network

    Hall, Spencer

    hierarchy demonstrated a biologically sensible or- ganizational structure of the human brain. We influences on cortical areal expan- sion. This system constitutes the first human brain atlas based solely both order and disorder in the human brain. References and Notes 1. H. Bergquist, B. Kallen, Acta Anat

  15. NE OF THE GREAT MYSTERIES of the human brain is how it understands and produces language.

    E-print Network

    Bellugi, Ursula

    O NE OF THE GREAT MYSTERIES of the human brain is how it understands and produces language. Until HOW DOES THE HUMAN BRAIN PROCESS LANGUAGE? NEW STUDIES OF DEAF SIGNERS HINT AT AN ANSWER COPYRIGHT have illuminated the workings of the human brain and may help neurologists treat the ills of their deaf

  16. Induced gene expression in human brain after the split from chimpanzee

    E-print Network

    Gu, Xun

    Induced gene expression in human brain after the split from chimpanzee Jianying Gu and Xun Gu Dept alterations in the expression of genes in the human brain since the split from chimpanzees, mainly caused by a set of genes with increased (rather than decreased) expression in the human brain. An unsolved mystery

  17. New Approaches for Exploring Anatomical and Functional Connectivity in the Human Brain

    E-print Network

    Penny, Will

    REVIEWS New Approaches for Exploring Anatomical and Functional Connectivity in the Human Brain architecture of networks in the living human brain with diffusion tensor imaging (DTI). We also highlight transmission across networks in the human brain (functional and effective connectivity). Key Words: Diffusion

  18. The Spectral Diversity of Resting-State Fluctuations in the Human Brain

    E-print Network

    Filzmoser, Peter

    The Spectral Diversity of Resting-State Fluctuations in the Human Brain Klaudius Kalcher1 of Resting-State Fluctuations in the Human Brain. PLoS ONE 9(4): e93375. doi:10.1371/journal.pone.0093375 Editor: Daniel Margulies, Max Planck Institute for Human Cognitive and Brain Sciences, Germany Received

  19. Corpora and Cognition: The Semantic Composition of Adjectives and Nouns in the Human Brain

    E-print Network

    Corpora and Cognition: The Semantic Composition of Adjectives and Nouns in the Human Brain Alona and Nouns in the Human Brain Alona Fyshe February 2015 CMU-ML-15-100 Machine Learning Department School composition in the human brain are not well understood. In this thesis, we explore semantics (word meaning

  20. Corpora and Cognition: The Semantic Composition of Adjectives and Nouns in the Human Brain

    E-print Network

    Corpora and Cognition: The Semantic Composition of Adjectives and Nouns in the Human Brain Alona people. Still, the processes that govern semantic composition in the human brain are not well understood, from matching human judgements of semantics to pre- dicting words from brain activity. Thirdly, we

  1. Parallel Computation in Simulating Di usion and Deformation in Human Brain

    E-print Network

    Zhang, Jun

    Parallel Computation in Simulating Di#11;usion and Deformation in Human Brain #3; Ning Kang y Jun of parallel and high performance computation in simulating the di#11;usion process in the human brain and in modeling the deformation of the human brain. Computational neuroscience is a branch of biomedical science

  2. A NEW MULTIPLE-KERNEL-LEARNING WEIGHTING METHOD FOR LOCALIZING HUMAN BRAIN MAGNETIC ACTIVITY

    E-print Network

    Takiguchi, Tetsuya

    A NEW MULTIPLE-KERNEL-LEARNING WEIGHTING METHOD FOR LOCALIZING HUMAN BRAIN MAGNETIC ACTIVITY T classification based on machine learning is a powerful tool to analyze human brain activity data obtained recently been used to study how stimulus fea- tures are processed in the human brain. In particular

  3. Induction of P-Glycoprotein by Antiretroviral Drugs in Human Brain Microvessel Endothelial Cells

    PubMed Central

    Chan, Gary N. Y.; Patel, Rucha; Cummins, Carolyn L.

    2013-01-01

    The membrane-associated drug transporter P-glycoprotein (P-gp) plays an essential role in drug efflux from the brain. Induction of this protein at the blood-brain barrier (BBB) could further affect the ability of a drug to enter the brain. At present, P-gp induction mediated by antiretroviral drugs at the BBB has not been fully investigated. Since P-gp expression is regulated by ligand-activated nuclear receptors, i.e., human pregnane X receptor (hPXR) and human constitutive androstane receptor (hCAR), these receptors could represent potential pathways involved in P-gp induction by antiretroviral drugs. The aims of this study were (i) to determine whether antiretroviral drugs currently used in HIV pharmacotherapy are ligands for hPXR or hCAR and (ii) to examine P-gp function and expression in human brain microvessel endothelial cells treated with antiretroviral drugs identified as ligands of hPXR and/or hCAR. Luciferase reporter gene assays were performed to examine the activation of hPXR and hCAR by antiretroviral drugs. The hCMEC/D3 cell line, which is known to display several morphological and biochemical properties of the BBB in humans, was used to examine P-gp induction following 72 h of exposure to these agents. Amprenavir, atazanavir, darunavir, efavirenz, ritonavir, and lopinavir were found to activate hPXR, whereas abacavir, efavirenz, and nevirapine were found to activate hCAR. P-gp expression and function were significantly induced in hCMEC/D3 cells treated with these drugs at clinical concentrations in plasma. Together, our data suggest that P-gp induction could occur at the BBB during chronic treatment with antiretroviral drugs identified as ligands of hPXR and/or hCAR. PMID:23836171

  4. Human Induced Rotation and Reorganization of the Brain of Domestic Dogs

    PubMed Central

    Roberts, Taryn; McGreevy, Paul; Valenzuela, Michael

    2010-01-01

    Domestic dogs exhibit an extraordinary degree of morphological diversity. Such breed-to-breed variability applies equally to the canine skull, however little is known about whether this translates to systematic differences in cerebral organization. By looking at the paramedian sagittal magnetic resonance image slice of canine brains across a range of animals with different skull shapes (N?=?13), we found that the relative reduction in skull length compared to width (measured by Cephalic Index) was significantly correlated to a progressive ventral pitching of the primary longitudinal brain axis (r?=?0.83), as well as with a ventral shift in the position of the olfactory lobe (r?=?0.81). Furthermore, these findings were independent of estimated brain size or body weight. Since brachycephaly has arisen from generations of highly selective breeding, this study suggests that the remarkable diversity in domesticated dogs' body shape and size appears to also have led to human-induced adaptations in the organization of the canine brain. PMID:20668685

  5. Red and NIR light dosimetry in the human deep brain

    NASA Astrophysics Data System (ADS)

    Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.

    2015-04-01

    Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated ?eff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.

  6. An anatomically comprehensive atlas of the adult human brain transcriptome

    PubMed Central

    Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.

    2014-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553

  7. Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model

    SciTech Connect

    Altman, J.

    1987-10-01

    In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brain regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references.

  8. A2A adenosine receptor regulates the human blood brain barrier permeability

    PubMed Central

    Kim, Do-Geun; Bynoe, Margaret S.

    2015-01-01

    The blood brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents, to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human brain endothelial barrier (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent down-regulation of Claudin-5 and VE-Cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human. PMID:25262373

  9. The Evolution of Brains from Early Mammals to Humans

    PubMed Central

    Kaas, Jon H.

    2012-01-01

    The large size and complex organization of the human brain makes it unique among primate brains. In particular, the neocortex constitutes about 80% of the brain, and this cortex is subdivided into a large number of functionally specialized regions, the cortical areas. Such a brain mediates accomplishments and abilities unmatched by any other species. How did such a brain evolve? Answers come from comparative studies of the brains of present-day mammals and other vertebrates in conjunction with information about brain sizes and shapes from the fossil record, studies of brain development, and principles derived from studies of scaling and optimal design. Early mammals were small, with small brains, an emphasis on olfaction, and little neocortex. Neocortex was transformed from the single layer of output pyramidal neurons of the dorsal cortex of earlier ancestors to the six layers of all present-day mammals. This small cap of neocortex was divided into 20–25 cortical areas, including primary and some of the secondary sensory areas that characterize neocortex in nearly all mammals today. Early placental mammals had a corpus callosum connecting the neocortex of the two hemispheres, a primary motor area, M1, and perhaps one or more premotor areas. One line of evolution, Euarchontoglires, led to present-day primates, tree shrews, flying lemurs, rodents and rabbits. Early primates evolved from small-brained, nocturnal, insect-eating mammals with an expanded region of temporal visual cortex. These early nocturnal primates were adapted to the fine branch niche of the tropical rainforest by having an even more expanded visual system that mediated visually guided reaching and grasping of insects, small vertebrates, and fruits. Neocortex was greatly expanded, and included an array of cortical areas that characterize neocortex of all living primates. Specializations of the visual system included new visual areas that contributed to a dorsal stream of visuomotor processing in a greatly enlarged region of posterior parietal cortex and an expanded motor system and the addition of a ventral premotor area. Higher visual areas in a large temporal lobe facilitated object recognition, and frontal cortex, included granular prefrontal cortex. Auditory cortex included the primary and secondary auditory areas that characterize prosimian and anthropoid primates today. As anthropoids emerged as diurnal primates, the visual system specialized for detailed foveal vision. Other adaptations included an expansion of prefrontal cortex and insular cortex. The human and chimpanzee-bonobo lineages diverged some 6–8 million years ago with brains that were about one-third the size of modern humans. Over the last two million years, the brains of our more recent ancestors increased greatly in size, especially in the prefrontal, posterior parietal, lateral temporal, and insular regions. Specialization of the two cerebral hemispheres for related, but different functions became pronounced, and language and other impressive cognitive abilities emerged. PMID:23529256

  10. The Influence of Genome and Cell Size on Brain Morphology in Amphibians.

    PubMed

    Roth, Gerhard; Walkowiak, Wolfgang

    2015-09-01

    In amphibians, nerve cell size is highly correlated with genome size, and increases in genome and cell size cause a retardation of the rate of development of nervous (as well as nonnervous) tissue leading to secondary simplification. This yields an inverse relationship between genome and cell size on the one hand and morphological complexity of the tectum mesencephali as the main visual center, the size of the torus semicircularis as the main auditory center, the size of the amphibian papilla as an important peripheral auditory structure, and the size of the cerebellum as a major sensorimotor center. Nervous structures developing later (e.g., torus and cerebellum) are more affected by secondary simplification than those that develop earlier (e.g., the tectum). This effect is more prominent in salamanders and caecilians than in frogs owing to larger genome and cells sizes in the former two taxa. We hypothesize that because of intragenomic evolutionary processes, important differences in brain morphology can arise independently of specific environmental selection. PMID:26261281

  11. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  12. Carbonic anhydrase II in the developing and adult human brain.

    PubMed

    Kida, Elizabeth; Palminiello, Sonia; Golabek, Adam A; Walus, Mariusz; Wierzba-Bobrowicz, Teresa; Rabe, Ausma; Albertini, Giorgio; Wisniewski, Krystyna E

    2006-07-01

    Carbonic anhydrase II (CA II) is one of 14 isozymes of carbonic anhydrases, zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. Mutations in CA II in humans lead to osteopetrosis with renal tubular acidosis and cerebral calcifications, a disorder often associated with mental retardation. Recently, new avenues in CA II research have opened as a result of discoveries that the enzyme increases bicarbonate and proton fluxes and may play an important role in brain tissue. In the human brain, CA II was localized to oligodendrocytes, myelin, and choroid plexus epithelium. Because this conclusion was based on a few fragmentary reports, we analyzed in more detail the expression of the enzyme in human telencephalon. By immunoblotting, we found a gradual increase in CA II levels from 17 weeks' gestation to childhood and adolescence. By immunohistochemistry, CA II was found to be present not only in oligodendrocytes and choroid plexus epithelium (declining with aging in both these locations), but also in a subset of neurons mostly with GABAergic phenotype, in a few astrocytes, and transiently during brain development in the endothelial cells of microvessels. The enzyme also occurred in oligodendrocyte processes in contact with myelinating axons, myelin sheaths, and axolemma, but was either absent or appeared in minute amounts in compact myelin. These findings suggest the possible involvement of CA II in a wide spectrum of biologic processes in the developing and adult human brain and may contribute to better understanding of the pathogenesis of cerebral calcifications and mental retardation caused by CA II deficiency. PMID:16825953

  13. Shape analysis of the human brain: a brief survey.

    PubMed

    Nitzken, Matthew J; Casanova, Manuel F; Gimelfarb, Georgy; Inanc, Tamer; Zurada, Jacek M; El-Baz, Ayman

    2014-07-01

    The survey outlines and compares popular computational techniques for quantitative description of shapes of major structural parts of the human brain, including medial axis and skeletal analysis, geodesic distances, Procrustes analysis, deformable models, spherical harmonics, and deformation morphometry, as well as other less widely used techniques. Their advantages, drawbacks, and emerging trends, as well as results of applications, in particular, for computer-aided diagnostics, are discussed. PMID:25014938

  14. Neuroanatomical abnormalities in chronic tinnitus in the human brain

    PubMed Central

    Adjamian, Peyman; Hall, Deborah A.; Palmer, Alan R.; Allan, Thomas W.; Langers, Dave R.M.

    2014-01-01

    In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research. PMID:24892904

  15. ORIGINAL ARTICLE Mutations of the human interferon alpha-2b gene in brain

    E-print Network

    Cai, Long

    ORIGINAL ARTICLE Mutations of the human interferon alpha-2b gene in brain tumor patients exposed interferon alpha-2b) in low- and high-grade brain tumor patients and correlate from hematological profiles. A molecular analysis was performed in which DNAs were extracted from brain biopsy samples of brain tumor

  16. Association between SNPs and gene expression in multiple regions of the human brain

    E-print Network

    Lee, Doheon

    Association between SNPs and gene expression in multiple regions of the human brain S Kim1 , H Cho2-nucleotide polymorphisms (SNPs)) and gene expression in brain tissue may be a promising approach to find functionally associations between 648 transcripts and 6725 SNPs in the various brain regions. Several SNPs showed brain

  17. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human

    E-print Network

    Mars, Rogier Bertrand

    Connectivity reveals relationship of brain areas for reward-guided learning and decision making, 2015 (received for review June 9, 2014) Reward-guided decision-making depends on a network of brain in the macaque that resembled 10 human areas identified with decision making and brain regions in the human

  18. Functional Representation of Human Embryo Brain Models Roman Durikovic Silvester Czanner

    E-print Network

    Durikovic, Roman

    Functional Representation of Human Embryo Brain Models Roman Durikovic Silvester Czanner Hirofumi embryo brain is organic and has many folds that are difficult to model or animate with conventional metamorphosis during the growth of some human embryo organs, partic- ularly brain and stomach. Popular methods

  19. Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI

    E-print Network

    Hua, Jing

    Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI Cui Lin1 , Shiyong datasets and show good performance in detecting anatomical connectivity patterns in the human brain. 1 neuroscience is to discover anatomical features that reflect the functional organization of the brain

  20. Negative Association of Neuroticism with Brain Volume Ratio in Healthy Humans

    E-print Network

    Knutson, Brian

    Negative Association of Neuroticism with Brain Volume Ratio in Healthy Humans Brian Knutson, Reza Introduction Individual humans vary widely in brain size (Appel and Appel 1942). To date, scientists have Momenan, Robert R. Rawlings, Grace W. Fong, and Daniel Hommer Background: Brain volume decreases

  1. MRI of the human brain at 130 microtesla

    PubMed Central

    Inglis, Ben; Buckenmaier, Kai; SanGiorgio, Paul; Pedersen, Anders F.; Nichols, Matthew A.; Clarke, John

    2013-01-01

    We present in vivo images of the human brain acquired with an ultralow field MRI (ULFMRI) system operating at a magnetic field B0 ? 130 ?T. The system features prepolarization of the proton spins at Bp ? 80 mT and detection of the NMR signals with a superconducting, second-derivative gradiometer inductively coupled to a superconducting quantum interference device (SQUID). We report measurements of the longitudinal relaxation time T1 of brain tissue, blood, and scalp fat at B0 and Bp, and cerebrospinal fluid at B0. We use these T1 values to construct inversion recovery sequences that we combine with Carr–Purcell–Meiboom–Gill echo trains to obtain images in which one species can be nulled and another species emphasized. In particular, we show an image in which only blood is visible. Such techniques greatly enhance the already high intrinsic T1 contrast obtainable at ULF. We further present 2D images of T1 and the transverse relaxation time T2 of the brain and show that, as expected at ULF, they exhibit similar contrast. Applications of brain ULFMRI include integration with systems for magnetoencephalography. More generally, these techniques may be applicable, for example, to the imaging of tumors without the need for a contrast agent and to modalities recently demonstrated with T1? contrast imaging (T1 in the rotating frame) at fields of 1.5 T and above. PMID:24255111

  2. Channelrhodopsin-assisted patching: in vivo electrophysiological recording of genetically and morphologically identified neurons throughout the brain

    PubMed Central

    Muñoz, William; Tremblay, Robin; Rudy, Bernardo

    2014-01-01

    Summary Brain networks contain a large diversity of functionally distinct neuronal elements, each with unique properties, enabling computational capacities and supporting brain functions. Understanding their functional implications for behavior requires the precise identification of the cell types of a network and in vivo monitoring of their activity profiles. Here, we developed a channelrhodopsin-assisted patching method allowing the efficient in vivo targeted recording of neurons identified by their molecular, electrophysiological and morphological features. The method has a high yield, does not require visual guidance, and thus can be applied at any depth in the brain. This approach overcomes limitations of present technologies. We validate this strategy by in vivo recordings of identified subtypes of GABAergic and glutamatergic neurons in deep cortical layers, subcortical cholinergic neurons and neurons in the thalamic reticular nucleus in anesthetized and awake mice. We propose this method as an important complement to existing technologies to relate specific cell type activity to brain circuitry, function and behavior. PMID:25533350

  3. Canonical genetic signatures of the adult human brain.

    PubMed

    Hawrylycz, Michael; Miller, Jeremy A; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L; Jegga, Anil G; Aronow, Bruce J; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F; Dierker, Donna L; Menche, Jörg; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R; Jones, Allan; Van Essen, David C; Koch, Christof; Lein, Ed

    2015-12-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  4. Human Brains Aren't Distinctly Male or Female, Study Says

    MedlinePLUS

    ... nih.gov/medlineplus/news/fullstory_155961.html Human Brains Aren't Distinctly Male or Female, Study Says ... such thing as a distinctly male or female brain, new research suggests. An analysis of more than ...

  5. Methods to assess changes in human brain structure across the lifecourse 

    E-print Network

    Dickie, David Alexander

    2014-11-28

    Human brain structure can be measured across the lifecourse (“in vivo”) with magnetic resonance imaging (MRI). MRI data are often used to create “atlases” and statistical models of brain structure across the lifecourse. ...

  6. Rest Is Not Idleness Implications of the Brain's Default Mode for Human Development and Education

    E-print Network

    Loudon, Catherine

    Rest Is Not Idleness Implications of the Brain's Default Mode for Human Development and Education Mary Helen Immordino-Yang, Ed.D. Associate that DM brain systems activated during rest are also important for active

  7. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors

    E-print Network

    Liua, Hesheng

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic ...

  8. Functional specificity for high-level linguistic processing in the human brain

    E-print Network

    Fedorenko, Evelina G.

    Neuroscientists have debated for centuries whether some regions of the human brain are selectively engaged in specific high-level mental functions or whether, instead, cognition is implemented in multifunctional brain ...

  9. Accuracy Test of Microsoft Kinect for Human Morphologic Measurements

    NASA Astrophysics Data System (ADS)

    Molnár, B.; Toth, C. K.; Detrek?i, A.

    2012-08-01

    The Microsoft Kinect sensor, a popular gaming console, is widely used in a large number of applications, including close-range 3D measurements. This low-end device is rather inexpensive compared to similar active imaging systems. The Kinect sensors include an RGB camera, an IR projector, an IR camera and an audio unit. The human morphologic measurements require high accuracy with fast data acquisition rate. To achieve the highest accuracy, the depth sensor and the RGB camera should be calibrated and co-registered to achieve high-quality 3D point cloud as well as optical imagery. Since this is a low-end sensor, developed for different purpose, the accuracy could be critical for 3D measurement-based applications. Therefore, two types of accuracy test are performed: (1) for describing the absolute accuracy, the ranging accuracy of the device in the range of 0.4 to 15 m should be estimated, and (2) the relative accuracy of points depending on the range should be characterized. For the accuracy investigation, a test field was created with two spheres, while the relative accuracy is described by sphere fitting performance and the distance estimation between the sphere center points. Some other factors can be also considered, such as the angle of incidence or the material used in these tests. The non-ambiguity range of the sensor is from 0.3 to 4 m, but, based on our experiences, it can be extended up to 20 m. Obviously, this methodology raises some accuracy issues which make accuracy testing really important.

  10. A theoretical model of phase transitions in the human brain.

    PubMed

    Jirsa, V K; Friedrich, R; Haken, H; Kelso, J A

    1994-01-01

    An experiment using a multisensor SQUID (superconducting quantum interference device) array was performed by Kelso and colleagues (1992) which combined information from three different sources: perception, motor response, and brain signals. When an acoustic stimulus frequency is changed systematically, a spontaneous transition in coordination occurs at a critical frequency in both motor behavior and brain signals. Qualitatively analogous transitions are known for physical and biological systems such as changes in the coordination of human hand movements (Kelso 1981, 1984). In this paper we develop a theoretical model based on methods from the interdisciplinary field of synergetics (Haken 1983, 1987) and nonlinear oscillator theory that reproduces the main experimental features very well and suggests a formulation of a fundamental biophysical coupling. PMID:8054384

  11. Consequences of Traumatic Brain Injury for Human Vergence Dynamics

    PubMed Central

    Tyler, Christopher W.; Likova, Lora T.; Mineff, Kristyo N.; Elsaid, Anas M.; Nicholas, Spero C.

    2015-01-01

    Purpose: Traumatic brain injury involving loss of consciousness has focal effects in the human brainstem, suggesting that it may have particular consequences for eye movement control. This hypothesis was investigated by measurements of vergence eye movement parameters. Methods: Disparity vergence eye movements were measured for a population of 123 normally sighted individuals, 26 of whom had suffered diffuse traumatic brain injury (dTBI) in the past, while the remainder served as controls. Vergence tracking responses were measured to sinusoidal disparity modulation of a random-dot field. Disparity vergence step responses were characterized in terms of their dynamic parameters separately for the convergence and divergence directions. Results: The control group showed notable differences between convergence and divergence dynamics. The dTBI group showed significantly abnormal vergence behavior on many of the dynamic parameters. Conclusion: The results support the hypothesis that occult injury to the oculomotor control system is a common residual outcome of dTBI. PMID:25691880

  12. The Functional Connectivity Landscape of the Human Brain

    PubMed Central

    Fatima, Zainab; Jonides, John; McIntosh, Anthony R.

    2014-01-01

    Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment. PMID:25350370

  13. Resilience of human brain functional coactivation networks under thresholding

    E-print Network

    Sarkar, S; Weng, H

    2014-01-01

    Recent studies have demonstrated the existence of community structure and rich club nodes, (i.e., highly interconnected, high degree hub nodes), in human brain functional networks. The cognitive relevance of the detected modules and hubs has also been demonstrated, for both task based and default mode networks, suggesting that the brain self-organizes into patterns of co-activated sets of regions for performing specific tasks or in resting state. In this paper, we report studies on the resilience or robustness of this modular structure: under systematic erosion of connectivity in the network under thresholding, how resilient is the modularity and hub structure? The results show that the network shows show strong resilience properties, with the modularity and hub structure maintaining itself over a large range of connection strengths. Then, at a certain critical threshold that falls very close to 0, the connectivity, the modularity, and hub structure suddenly break down, showing a phase transition like propert...

  14. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    PubMed Central

    2012-01-01

    Background Congenital human cytomegalovirus (HCMV) infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR) methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV), microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC). However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1beta), and interleukin-6 (IL-6). Pericytes exposed to SBCMV elicited higher levels of IL-6 compared to both mock-infected as well as heat-killed virus controls. A 6.6-fold induction of IL-6 and no induction TNF-alpha was observed in SBCMV-infected cell supernatants at 24 hours postinfection. Using archival brain tissue from a patient coinfected with HCMV and HIV, we also found evidence of HCMV infection of pericytes using dual-label immunohistochemistry, as monitored by NG2 proteoglycan staining. Conclusion HCMV lytic infection of primary human brain pericytes suggests that pericytes contribute to both virus dissemination in the CNS as well as neuroinflammation. PMID:22607552

  15. Social Rewards and Social Networks in the Human Brain.

    PubMed

    Fareri, Dominic S; Delgado, Mauricio R

    2014-02-21

    The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations. PMID:24561513

  16. The Connectome Visualization Utility: Software for Visualization of Human Brain Networks

    E-print Network

    LaPlante, Roan A.

    In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, ...

  17. Traumatic brain injury induces elevation of Co in the human brain.

    PubMed

    Roberts, Blaine R; Hare, Dominic J; McLean, Catriona A; Conquest, Alison; Lind, Monica; Li, Qiao-Xin; Bush, Ashley I; Masters, Colin L; Morganti-Kossmann, Maria-Christina; Frugier, Tony

    2015-01-01

    Traumatic brain injury (TBI) is the most common cause of death and disability in young adults, yet the molecular mechanisms that follow TBI are poorly understood. We previously reported a perturbation in iron (Fe) levels following TBI. Here we report that the distribution of cobalt (Co) is modulated in post-mortem human brain following injury. We also investigated how the distribution of other biologically relevant elements changes in TBI. Cobalt is increased due to TBI while copper (Cu), magnesium (Mg), manganese (Mn), phosphorus (P), potassium (K), rubidium (Rb), selenium (Se) and zinc (Zn) remain unchanged. The elevated Co has important implications for positron emission tomography neuroimaging. This is the first demonstration of the accumulation of Co in injured tissue explaining the previous utility of (55)Co-PET imaging in TBI. PMID:25424382

  18. Possible functional links among brain- and skull-related genes selected in modern humans.

    PubMed

    Benítez-Burraco, Antonio; Boeckx, Cedric

    2015-01-01

    The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language. PMID:26136701

  19. Possible functional links among brain- and skull-related genes selected in modern humans

    PubMed Central

    Benítez-Burraco, Antonio; Boeckx, Cedric

    2015-01-01

    The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language. PMID:26136701

  20. Early Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses

    E-print Network

    Jones, Peter JS

    Early Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses Susanne: Shultz S, Maslin M (2013) Early Human Speciation, Brain Expansion and Dispersal Influenced by African Kingdom, 2 Department of Geography, University College London, London, United Kingdom Abstract Early human

  1. The structure of creative cognition in the human brain

    PubMed Central

    Jung, Rex E.; Mead, Brittany S.; Carrasco, Jessica; Flores, Ranee A.

    2013-01-01

    Creativity is a vast construct, seemingly intractable to scientific inquiry—perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR). Behaviorally, one can limit the “blind variation” component to idea generation tests as manifested by measures of divergent thinking. The “selective retention” component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (1H-MRS). We also review lesion studies, considered to be the “gold standard” of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981). We provide a perspective, involving aspects of the default mode network (DMN), which might provide a “first approximation” regarding how creative cognition might map on to the human brain. PMID:23847503

  2. The representation of biological classes in the human brain.

    PubMed

    Connolly, Andrew C; Guntupalli, J Swaroop; Gors, Jason; Hanke, Michael; Halchenko, Yaroslav O; Wu, Yu-Chien; Abdi, Hervé; Haxby, James V

    2012-02-22

    Evidence of category specificity from neuroimaging in the human visual system is generally limited to a few relatively coarse categorical distinctions-e.g., faces versus bodies, or animals versus artifacts-leaving unknown the neural underpinnings of fine-grained category structure within these large domains. Here we use fMRI to explore brain activity for a set of categories within the animate domain, including six animal species-two each from three very different biological classes: primates, birds, and insects. Patterns of activity throughout ventral object vision cortex reflected the biological classes of the stimuli. Specifically, the abstract representational space-measured as dissimilarity matrices defined between species-specific multivariate patterns of brain activity-correlated strongly with behavioral judgments of biological similarity of the same stimuli. This biological class structure was uncorrelated with structure measured in retinotopic visual cortex, which correlated instead with a dissimilarity matrix defined by a model of V1 cortex for the same stimuli. Additionally, analysis of the shape of the similarity space in ventral regions provides evidence for a continuum in the abstract representational space-with primates at one end and insects at the other. Further investigation into the cortical topography of activity that contributes to this category structure reveals the partial engagement of brain systems active normally for inanimate objects in addition to animate regions. PMID:22357845

  3. PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY Fried--Single Neuron Studies of the Human Brain

    E-print Network

    Kreiman, Gabriel

    of the Human Brain R IV CONCLUSIONS #12;PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY Fried--Single Neuron Studies of the Human Brain R #12;PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY Fried--Single Neuron Studies of the Human Brain R The brain is arguably one

  4. Development of Open Brain Simulator for Human Biomechatronics

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko; Takagi, Toshihisa; Asama, Hajime

    Modeling and simulation based on mechanisms is important in order to design and control mechatronic systems. In particular, in-depth understanding and realistic modeling of biological systems is indispensable for biomechatronics. This paper presents open brain simulator, which estimates the neural state of human through external measurement for the purpose of improving motor and social skills. Macroscopic anatomical nervous systems model was built which can be connected to the musculoskeletal model. Microscopic anatomical and physiological neural models were interfaced to the macroscopic model. Neural activities of somatosensory area and Purkinje cell were calculated from motion capture data. The simulator provides technical infrastructure for human biomechatronics, which is promising for the novel diagnosis of neurological disorders and their treatments through medication and movement therapy, and for motor learning support system supporting acquisition of motor skill considering neural mechanism.

  5. Middle Pleistocene human facial morphology in an evolutionary and developmental context.

    PubMed

    Freidline, Sarah E; Gunz, Philipp; Harvati, Katerina; Hublin, Jean-Jacques

    2012-11-01

    Neanderthals and modern humans exhibit distinct facial architectures. The patterning of facial morphology of their predecessors, the Middle Pleistocene humans, is more mosaic showing a mix of archaic and modern morphologies. Significant changes in facial size and robusticity occurred throughout Pleistocene human evolution, resulting in temporal trends in both facial reduction and enlargement. However, the allometric patterning in facial morphology in archaic humans is not well understood. This study explores temporal trends in facial morphology in order to gain a clearer understanding of the polarity of features, and describes the allometric patterning of facial shape. The modern human sample comprises cross-sectional growth series of four morphologically distinct human populations. The fossil sample covers specimens from the Middle Pleistocene to the Upper Paleolithic. We digitized landmarks and semilandmarks on surface and computed tomography scans and analyzed the Procrustes shape coordinates. Principal component analyses were performed, and Procrustes distances were used to identify phenetic similarities between fossil hominins. In order to explore the influence of size on facial features, allometric trajectories were calculated for fossil and modern human groups, and developmental simulations were performed. We show that facial features can be used to separate Pleistocene humans into temporal clusters. The distinctly modern human pattern of facial morphology is already present around 170 ka. Species- and population-specific facial features develop before two years of age, and several of the large-scale facial differences between Neanderthals and Middle Pleistocene humans are due to scaling along a shared allometric trajectory. These features include aspects of the frontal bone, browridge morphology, nasal aperture size and facial prognathism. Infraorbital surface topography and orientation of the midface in the European Middle Pleistocene hominins is intermediate between the African Middle Pleistocene and Neanderthal condition. This could suggest that the European Middle Pleistocene hominins display incipient Neanderthal features. PMID:22981042

  6. Knowledge-based localization of hippocampus in human brain MRI

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Siadat, Mohammad-Reza

    1999-05-01

    Hippocampus is an important structure of the human brain limbic system. The variations in the volume and architecture of this structure have been related to certain neurological diseases such as schizophrenia and epilepsy. This paper presents a two-stage method for localizing hippocampus in human brain MRI automatically. The first stage utilizes image processing techniques such as nonlinear filtering and histogram analysis to extract information from MRI. This stage generates binary images, locates lateral and third ventricles, and the inferior limit of Sylvian Fissure. The second stage uses a shell of expert system named VP-EXPERT to analyze the information extracted in the first stage. This stage utilizes absolute and relative spatial rules and spatial symmetry rules to locate the hippocampus. The system has been tested using MRI studies of six epilepsy patients. MRI data consisted of a total of 128 images. The system correctly identified all of the slices without hippocampus, and correctly localized hippocampus is about n 78% of the slices with hippocampus.

  7. Dynamic reconfiguration of human brain networks during learning

    E-print Network

    Danielle S. Bassett; Nicholas F. Wymbs; Mason A. Porter; Peter J. Mucha; Jean M. Carlson; Scott T. Grafton

    2011-10-24

    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.

  8. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    PubMed

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching. PMID:24336036

  9. Synchronization in the Default Network of the Human Brain Aaron Kirschner

    E-print Network

    Handy, Todd C.

    1 Synchronization in the Default Network of the Human Brain Aaron Kirschner In Collaboration October 2010 #12;2 Abstract Several brain-imaging experiments have shown that during periods when peoples attention is directed inward, a collection of brain regions known as the default network becomes active

  10. Impact of Chemotherapy for Childhood Leukemia on Brain Morphology and Function

    PubMed Central

    Abolmaali, Nasreddin; Krone, Franziska; Hoffmann, Andre; Holfeld, Elisabeth; Vorwerk, Peter; Kramm, Christof; Gruhn, Bernd; Koustenis, Elisabeth; Hernaiz-Driever, Pablo; Mandal, Rakesh; Suttorp, Meinolf; Hummel, Thomas; Ikonomidou, Chrysanthy; Kirschbaum, Clemens; Smolka, Michael N.

    2013-01-01

    Objective Using multidisciplinary treatment modalities the majority of children with cancer can be cured but we are increasingly faced with therapy-related toxicities. We studied brain morphology and neurocognitive functions in adolescent and young adult survivors of childhood acute, low and standard risk lymphoblastic leukemia (ALL), which was successfully treated with chemotherapy. We expected that intravenous and intrathecal chemotherapy administered in childhood will affect grey matter structures, including hippocampus and olfactory bulbs, areas where postnatal neurogenesis is ongoing. Methods We examined 27 ALL-survivors and 27 age-matched healthy controls, ages 15–22 years. ALL-survivors developed disease prior to their 11th birthday without central nervous system involvement, were treated with intrathecal and systemic chemotherapy and received no radiation. Volumes of grey, white matter and olfactory bulbs were measured on T1 and T2 magnetic resonance images manually, using FIRST (FMRIB’s integrated Registration and Segmentation Tool) and voxel-based morphometry (VBM). Memory, executive functions, attention, intelligence and olfaction were assessed. Results Mean volumes of left hippocampus, amygdala, thalamus and nucleus accumbens were smaller in the ALL group. VBM analysis revealed significantly smaller volumes of the left calcarine gyrus, both lingual gyri and the left precuneus. DTI data analysis provided no evidence for white matter pathology. Lower scores in hippocampus-dependent memory were measured in ALL-subjects, while lower figural memory correlated with smaller hippocampal volumes. Interpretation Findings demonstrate that childhood ALL, treated with chemotherapy, is associated with smaller grey matter volumes of neocortical and subcortical grey matter and lower hippocampal memory performance in adolescence and adulthood. PMID:24265700

  11. Magnetic resonance spectroscopy and imaging on fresh human brain tumor biopsies at microscopic resolution.

    PubMed

    Martínez-Bisbal, M Carmen; Martínez-Granados, Beatriz; Rovira, Vicente; Celda, Bernardo; Esteve, Vicent

    2015-09-01

    The metabolic composition and concentration knowledge provided by magnetic resonance spectroscopy (MRS) liquid and high-resolution magic angle spinning spectroscopy (HR-MAS) has a relevant impact in clinical practice during magnetic resonance imaging (MRI) monitoring of human tumors. In addition, the combination of morphological and chemical information by MRI and MRS has been particularly useful for diagnosis and prognosis of tumor evolution. MRI spatial resolution reachable in human beings is limited for safety reasons and the demanding necessary conditions are only applicable on experimental model animals. Nevertheless, MRS and MRI can be performed on human biopsies at high spatial resolution, enough to allow a direct correlation between the chemical information and the histological features observed in such biopsies. Although HR-MAS is nowadays a well-established technique for spectroscopic analysis of tumor biopsies, with this approach just a mean metabolic profile of the whole sample can be obtained and thus the high histological heterogeneity of some important tumors is mostly neglected. The value of metabolic HR-MAS data strongly depends on a wide statistical analysis and usually the microanatomical rationale for the correlation between histology and spectroscopy is lost. We present here a different approach for the combined use of MRI and MRS on fresh human brain tumor biopsies with native contrast. This approach has been designed to achieve high spatial (18?×?18?×?50 ?m) and spectral (0.031 ?L) resolution in order to obtain as much spatially detailed morphological and metabolical information as possible without any previous treatment that can alter the sample. The preservation of native tissue conditions can provide information that can be translated to in vivo studies and additionally opens the possibility of performing other techniques to obtain complementary information from the same sample. PMID:26123440

  12. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost

    PubMed Central

    Herculano-Houzel, Suzana

    2012-01-01

    Neuroscientists have become used to a number of “facts” about the human brain: It has 100 billion neurons and 10- to 50-fold more glial cells; it is the largest-than-expected for its body among primates and mammals in general, and therefore the most cognitively able; it consumes an outstanding 20% of the total body energy budget despite representing only 2% of body mass because of an increased metabolic need of its neurons; and it is endowed with an overdeveloped cerebral cortex, the largest compared with brain size. These facts led to the widespread notion that the human brain is literally extraordinary: an outlier among mammalian brains, defying evolutionary rules that apply to other species, with a uniqueness seemingly necessary to justify the superior cognitive abilities of humans over mammals with even larger brains. These facts, with deep implications for neurophysiology and evolutionary biology, are not grounded on solid evidence or sound assumptions, however. Our recent development of a method that allows rapid and reliable quantification of the numbers of cells that compose the whole brain has provided a means to verify these facts. Here, I review this recent evidence and argue that, with 86 billion neurons and just as many nonneuronal cells, the human brain is a scaled-up primate brain in its cellular composition and metabolic cost, with a relatively enlarged cerebral cortex that does not have a relatively larger number of brain neurons yet is remarkable in its cognitive abilities and metabolism simply because of its extremely large number of neurons. PMID:22723358

  13. The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation

    PubMed Central

    Krishnadas, Rajeev; Kim, Jongrae; McLean, John; Batty, G. David; McLean, Jennifer S.; Millar, Keith; Packard, Chris J.; Cavanagh, Jonathan

    2013-01-01

    Complex cognitive functions are widely recognized to be the result of a number of brain regions working together as large-scale networks. Recently, complex network analysis has been used to characterize various structural properties of the large-scale network organization of the brain. For example, the human brain has been found to have a modular architecture i.e., regions within the network form communities (modules) with more connections between regions within the community compared to regions outside it. The aim of this study was to examine the modular and overlapping modular architecture of the brain networks using complex network analysis. We also examined the association between neighborhood level deprivation and brain network structure—modularity and gray nodes. We compared network structure derived from anatomical MRI scans of 42 middle-aged neurologically healthy men from the least (LD) and the most deprived (MD) neighborhoods of Glasgow with their corresponding random networks. Cortical morphological covariance networks were constructed from the cortical thickness derived from the MRI scans of the brain. For a given modularity threshold, networks derived from the MD group showed similar number of modules compared to their corresponding random networks, while networks derived from the LD group had more modules compared to their corresponding random networks. The MD group also had fewer gray nodes—a measure of overlapping modular structure. These results suggest that apparent structural difference in brain networks may be driven by differences in cortical thicknesses between groups. This demonstrates a structural organization that is consistent with a system that is less robust and less efficient in information processing. These findings provide some evidence of the relationship between socioeconomic deprivation and brain network topology. PMID:24273501

  14. How do we make friends and why: An investigation into the human social brain 

    E-print Network

    Brockerhoff, Maja Andrea

    2008-06-27

    The Social Brain Hypothesis regards large social groups of primates and particularly in humans as the result of the development of cognitive skills necessary for social interactions. However, it has not yet been discovered how humans can maintain...

  15. Copyright 2003 by the Genetics Society of America Evolution of the Human ASPM Gene, a Major Determinant of Brain Size

    E-print Network

    Zhang, Jianzhi

    , 2003 ABSTRACT The size of human brain tripled over a period of 2 million years (MY) that ended 0 characterized by a 70% reduction in brain size. Here I provide evidence suggesting that human ASPM went through underlying the evolution of the human brain. AMONG mammals, humans have an exceptionally big The reduction

  16. Selectivity to Translational Egomotion in Human Brain Motion Areas

    PubMed Central

    Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2013-01-01

    The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096

  17. Abstract representations of associated emotions in the human brain.

    PubMed

    Kim, Junsuk; Schultz, Johannes; Rohe, Tim; Wallraven, Christian; Lee, Seong-Whan; Bülthoff, Heinrich H

    2015-04-01

    Emotions can be aroused by various kinds of stimulus modalities. Recent neuroimaging studies indicate that several brain regions represent emotions at an abstract level, i.e., independently from the sensory cues from which they are perceived (e.g., face, body, or voice stimuli). If emotions are indeed represented at such an abstract level, then these abstract representations should also be activated by the memory of an emotional event. We tested this hypothesis by asking human participants to learn associations between emotional stimuli (videos of faces or bodies) and non-emotional stimuli (fractals). After successful learning, fMRI signals were recorded during the presentations of emotional stimuli and emotion-associated fractals. We tested whether emotions could be decoded from fMRI signals evoked by the fractal stimuli using a classifier trained on the responses to the emotional stimuli (and vice versa). This was implemented as a whole-brain searchlight, multivoxel activation pattern analysis, which revealed successful emotion decoding in four brain regions: posterior cingulate cortex (PCC), precuneus, MPFC, and angular gyrus. The same analysis run only on responses to emotional stimuli revealed clusters in PCC, precuneus, and MPFC. Multidimensional scaling analysis of the activation patterns revealed clear clustering of responses by emotion across stimulus types. Our results suggest that PCC, precuneus, and MPFC contain representations of emotions that can be evoked by stimuli that carry emotional information themselves or by stimuli that evoke memories of emotional stimuli, while angular gyrus is more likely to take part in emotional memory retrieval. PMID:25855179

  18. Brain

    MedlinePLUS

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  19. Determining the sex of human remains through cranial morphology.

    PubMed

    Rogers, Tracy L

    2005-05-01

    Sex determination is the keystone of a biological profile, yet few qualitative methods of cranial sex determination have been tested. This analysis examines the accuracy and precision of 17 morphological features of the skull commonly used to determine the sex of unknown skeletal remains. The sample consists of 46 identified skulls from the 19th century St. Thomas' Anglican Church Cemetery in Belleville, Canada. Nasal aperature, zygomatic extension, malar size/rugosity, and supraorbital ridge proved the most useful; of secondary value are chin form and nuchal crest; mastoid size is of tertiary consideration; nasal size and mandibular symphysis/ramus size rank fourth; forehead shape ranks fifth; and palate size/shape are sixth. Skull size/architecture provides an internal standard to assess the relative sizes of other traits. This research is a necessary step in establishing the credibility of morphological sex determination with respect to the Daubert and Mohan criteria for admissibility in a court of law. PMID:15932077

  20. Phenylethylamine N-methylation by human brain preparations

    SciTech Connect

    Mosnaim, A.D.; Callaghan, O.H.; Wolf, M.E.

    1986-03-05

    Alterations in the brain metabolism of biogenic amines has been postulated to play a role in the pathophysiology of several psychiatric disorders. There is some evidence suggesting schizogenic properties for some abnormal neuroamine methylated derivatives. The authors now report that postmortem human brain preparations, obtained from the putamen and thalamus, convert phenylethylamine (PEA) to its behaviorally active derivative N-methyl PEA, a reaction which is carried out by the 100,000 xg supernatant (in presence of 1 x 10 /sup -5/M pargyline) and enhanced by the addition of NADPH. PEA N-methylation occurred in schizophrenics as well as in sex and age matched controls. The formation of increased amounts of (/sup 3/H-) or (/sup 14/C-) N-methyl PEA when incubating either cold amine and /sup 3/H-SAM or 1-/sup 14/C PEA and cold SAM, respectively, indicates that SAM is a methyl group donor in this reaction. They will discuss the physiological and pharmacological implications of these results.

  1. Human brain activity with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Chance, Britton

    1999-09-01

    Human brain activity was studied with a real time functional Near-InfraRed Imager (fNIRI). The imager has 16 measurement channels and covers 4 cm by 9 cm detection area. Brain activities in occipital, motor and prefrontal area were studied with the fNIRI. In prefrontal stimulation, language cognition, analogies, forming memory for new associations, emotional thinking, and mental arithmetic were carried out. Experimental results measured with fNIRI are demonstrated in this paper. It was shown that fNIRI technique is able to reveal the occipital activity during visual stimulation, and co-register well with results of fMRI in the motor cortex activity during finger tapping. In the studies of the effects of left prefrontal lobe on forming memory for new associations, it is shown that left prefrontal lobe activated more under deep conditions than that under shallow encoding, especially the dorsal part. In the studies of emotional thinking, it was shown that the responses were different between positive- negative emotional thinking and negative-positive emotional thinking. In mental arithmetic studies, higher activation was found in the first task than in the second, regardless of the difficulty, and higher activation was measured in subtraction of 17 than in subtraction of 3.

  2. Giovanni Aldini: from animal electricity to human brain stimulation.

    PubMed

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834. PMID:15595271

  3. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment

    PubMed Central

    Jean, Aurélie; Nyein, Michelle K.; Zheng, James Q.; Moore, David F.; Joannopoulos, John D.; Radovitzky, Raúl

    2014-01-01

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans. PMID:25267617

  4. Reprogramming the fate of human glioma cells to impede brain tumor development

    PubMed Central

    Su, Z; Zang, T; Liu, M-L; Wang, L-L; Niu, W; Zhang, C-L

    2014-01-01

    Malignant gliomas, the most common solid tumors in the central nervous system, are essentially incurable due to their rapid growth and very invasive nature. One potential approach to eradicating glioma cells is to force these cells to undergo terminal differentiation and, in the process, to irreversible postmitotic arrest. Here, we show that neurogenin 2 (NGN2, also known as NEUROG2) synergizes with sex-determining region Y-box 11 (SOX11) to very efficiently convert human glioma cells to terminally differentiated neuron-like cells in both cell culture and adult mouse brains. These cells exhibit neuronal morphology, marker expression, and electrophysiological properties. The conversion process is accompanied by cell cycle exit, which dramatically inhibits glioma cell proliferation and tumor development after orthotopic transplantation. Most importantly, intracranial injection of NGN2- and SOX11-expressing virus into the tumor mass also curtails glioma growth and significantly improves survival of tumor-bearing mice. Taken together, this study shows a simple and highly efficient strategy for reprogramming malignant glioma cells into postmitotic cells, which might be a promising therapeutic approach for brain tumors. PMID:25321470

  5. Videomicroscopy, Image Processing, and Analysis of Whole Histologic Sections of the Human Brain

    E-print Network

    Modersitzki, Jan

    Videomicroscopy, Image Processing, and Analysis of Whole Histologic Sections of the Human Brain registration ABSTRACT Serial histologic sections of a whole human brain may have extensions of up to 130 Â 130 be applied to a systematic analysis of a larger sequence of serial histologic sections. The objective

  6. Chemical Mapping of Anxiety in the Brain of Healthy Humans: An in vivo 1

    E-print Network

    Apkarian, A. Vania

    recently presented results in an in vivo study of human brain chemistry in `physiologic' anxiety, iChemical Mapping of Anxiety in the Brain of Healthy Humans: An in vivo 1 H-MRS Study on the Effects and Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York Abstract: We

  7. HUMAN NEUROSCIENCE tion that served as a bottleneck,and activated the same brain struc-

    E-print Network

    Butterworth, Brian

    HUMAN NEUROSCIENCE tion that served as a bottleneck,and activated the same brain struc- ture-symbolic numerical abilities serve as the foundation for later, symbolic of numerical cognition and our understanding of information processing in the human brain, but also on educa

  8. Category-Specific Organization in the Human Brain Does Not Require Visual Experience

    E-print Network

    Caramazza, Alfonso

    Neuron Article Category-Specific Organization in the Human Brain Does Not Require Visual Experience Caramazza1,2,* 1Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN 38068, Italy 2). It is also known that occip- ital-temporal cortex in humans and nonhuman primates contains populations

  9. Getting it: human event-related brain response to jokes in good and poor comprehenders

    E-print Network

    Coulson, Seana

    Getting it: human event-related brain response to jokes in good and poor comprehenders Seana event-related brain potentials (ERPs) from adults reading one-line jokes or non-joke controls The ability to appreciate humor is an intriguing aspect of human behavior, considered by many to be a defining

  10. Noninvasive quantification of human brain antioxidant concentrations after an intravenous bolus of vitamin C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Until now, antioxidant based initiatives for preventing dementia have lacked a means to detect deficiency or measure pharmacologic effect in the human brain in situ. Objective: Our objective was to apply a novel method to measure key human brain antioxidant concentrations throughout the ...

  11. Early Modern Humans and Morphological Variation in Southeast Asia: Fossil Evidence from Tam Pa Ling, Laos

    PubMed Central

    Demeter, Fabrice; Shackelford, Laura; Westaway, Kira; Duringer, Philippe; Bacon, Anne-Marie; Ponche, Jean-Luc; Wu, Xiujie; Sayavongkhamdy, Thongsa; Zhao, Jian-Xin; Barnes, Lani; Boyon, Marc; Sichanthongtip, Phonephanh; Sénégas, Frank; Karpoff, Anne-Marie; Patole-Edoumba, Elise; Coppens, Yves; Braga, José

    2015-01-01

    Little is known about the timing of modern human emergence and occupation in Eastern Eurasia. However a rapid migration out of Africa into Southeast Asia by at least 60 ka is supported by archaeological, paleogenetic and paleoanthropological data. Recent discoveries in Laos, a modern human cranium (TPL1) from Tam Pa Ling‘s cave, provided the first evidence for the presence of early modern humans in mainland Southeast Asia by 63-46 ka. In the current study, a complete human mandible representing a second individual, TPL 2, is described using discrete traits and geometric morphometrics with an emphasis on determining its population affinity. The TPL2 mandible has a chin and other discrete traits consistent with early modern humans, but it retains a robust lateral corpus and internal corporal morphology typical of archaic humans across the Old World. The mosaic morphology of TPL2 and the fully modern human morphology of TPL1 suggest that a large range of morphological variation was present in early modern human populations residing in the eastern Eurasia by MIS 3. PMID:25849125

  12. Human brain development in infants with PET and FDG

    SciTech Connect

    Phelps, M.E.; Chugani, H.T.

    1985-05-01

    The authors used studies of local cerebral metabolic rate for glucose (LCMRGlc) to examine development of cerebral organization in 5 days to 1 year old children. A group (n=8) of infants with diverse pediatric disorders allowed investigation of developmental changes in LCMRGlc, while also providing relevant clinical management information. Patients consisted of questionable and definite neonatal seizures, cerebral embolism from cardiac sources, and otherwise normal infants with facial nevi with consideration of Sturge-Weber. Gradual increase in cortical LCMRGlc coincides with suppression of intrinsic subcortical reflexes present in all newborns. Two retarded children (2 years old) showed LCMRGlc developmental patterns of a few days old, which corresponded to their functional and mental status. These studies illustrate great potential of PET to study normal and altered states of human brain development.

  13. Face Encoding and Recognition in the Human Brain

    NASA Astrophysics Data System (ADS)

    Haxby, James V.; Ungerleider, Leslie G.; Horwitz, Barry; Maisog, Jose Ma.; Rapoport, Stanley I.; Grady, Cheryl L.

    1996-01-01

    A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.

  14. The power of love on the human brain.

    PubMed

    Bianchi-Demicheli, Francesco; Grafton, Scott T; Ortigue, Stephanie

    2006-01-01

    Romantic love has been the source for some of the greatest achievements of mankind throughout the ages. The recent localization of romantic love within subcortico-cortical reward, motivation and emotion systems in the human brain has suggested that love is a goal-directed drive with predictable facilitation effects on cognitive behavior, rather than a pure emotion. Here we show that the subliminal exposure of a beloved's name (romantic prime) during a lexical decision task dramatically improves performance in women in love (Experiment 1), as the subliminal presentation of a passion's descriptive noun does (Experiment 2). The parallel between love and passion allows us to interpret these facilitation effects as corresponding to cognitive top-down processes within a motivation-enhanced neural network. PMID:18633778

  15. Dynamic Shimming of the Human Brain at 7 Tesla.

    PubMed

    Juchem, Christoph; Nixon, Terence W; Diduch, Piotr; Rothman, Douglas L; Starewicz, Piotr; de Graaf, Robin A

    2010-07-01

    Dynamic shim updating (DSU) of the zero- to second-order spherical harmonic field terms has previously been shown to improve the magnetic field homogeneity in the human brain at 4 Tesla. The increased magnetic field inhomogeneity at 7 Tesla can benefit from inclusion of third-order shims during DSU. However, pulsed higher-order shims can generate a multitude of temporally varying magnetic fields arising from eddy-currents that can strongly degrade the magnetic field homogeneity.The first realization of zero- to third-order DSU with full preemphasis and B(0) compensation enabled improved shimming of the human brain at 7 Tesla not only in comparison with global (i.e. static) shimming, but also when compared to state-of-the-art zero- to second-order DSU. Temporal shim-to-shim interactions were measured for each of the 16 zero- to third-order shim coils along 1D column projections on a spherical phantom. The decomposition into up to 3 exponentials allowed full preemphasis and B(0) compensation of all 16 shims covering 67 potential shim-to-shim interactions. Despite the significant improvements achievable with DSU, the magnetic field homogeneity is still not perfect even when updating all zero- through third-order shims. This is because DSU is still inherently limited by the shallowness of the low order spherical harmonic fields and their inability to compensate the higher-order inhomogeneities encountered in vivo. However, DSU maximizes the usefulness of conventional shim coil systems and provides magnetic field homogeneity that is adequate for a wide range of applications. PMID:20657809

  16. A mouse model of human repetitive mild traumatic brain injury

    PubMed Central

    Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

  17. Dynamic Shimming of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; Diduch, Piotr; Rothman, Douglas L.; Starewicz, Piotr; de Graaf, Robin A.

    2010-01-01

    Dynamic shim updating (DSU) of the zero- to second-order spherical harmonic field terms has previously been shown to improve the magnetic field homogeneity in the human brain at 4 Tesla. The increased magnetic field inhomogeneity at 7 Tesla can benefit from inclusion of third-order shims during DSU. However, pulsed higher-order shims can generate a multitude of temporally varying magnetic fields arising from eddy-currents that can strongly degrade the magnetic field homogeneity. The first realization of zero- to third-order DSU with full preemphasis and B0 compensation enabled improved shimming of the human brain at 7 Tesla not only in comparison with global (i.e. static) shimming, but also when compared to state-of-the-art zero- to second-order DSU. Temporal shim-to-shim interactions were measured for each of the 16 zero- to third-order shim coils along 1D column projections on a spherical phantom. The decomposition into up to 3 exponentials allowed full preemphasis and B0 compensation of all 16 shims covering 67 potential shim-to-shim interactions. Despite the significant improvements achievable with DSU, the magnetic field homogeneity is still not perfect even when updating all zero- through third-order shims. This is because DSU is still inherently limited by the shallowness of the low order spherical harmonic fields and their inability to compensate the higher-order inhomogeneities encountered in vivo. However, DSU maximizes the usefulness of conventional shim coil systems and provides magnetic field homogeneity that is adequate for a wide range of applications. PMID:20657809

  18. Fractional Diffusion Based Modelling and Prediction of Human Brain Response to External Stimuli

    PubMed Central

    Kulish, Vladimir V.

    2015-01-01

    Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling and prediction of the human EEG signal, as an alert state of overall human brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as prediction of seizure onset in patient with epilepsy. PMID:26089955

  19. Optimization of electron microscopy for human brains with long-term fixation and fixed-frozen sections

    PubMed Central

    2014-01-01

    Background Abnormal connectivity across brain regions underlies many neurological disorders including multiple sclerosis, schizophrenia and autism, possibly due to atypical axonal organization within white matter. Attempts at investigating axonal organization on post-mortem human brains have been hindered by the availability of high-quality, morphologically preserved tissue, particularly for neurodevelopmental disorders such as autism. Brains are generally stored in a fixative for long periods of time (often greater than 10 years) and in many cases, already frozen and sectioned on a microtome for histology and immunohistochemistry. Here we present a method to assess the quality and quantity of axons from long-term fixed and frozen-sectioned human brain samples to demonstrate their use for electron microscopy (EM) measures of axonal ultrastructure. Results Six samples were collected from white matter below the superior temporal cortex of three typically developing human brains and prepared for EM analyses. Five samples were stored in fixative for over 10 years, two of which were also flash frozen and sectioned on a freezing microtome, and one additional case was fixed for 3 years and sectioned on a freezing microtome. In all six samples, ultrastructural qualitative and quantitative analyses demonstrate that myelinated axons can be identified and counted on the EM images. Although axon density differed between brains, axonal ultrastructure and density was well preserved and did not differ within cases for fixed and frozen tissue. There was no significant difference between cases in axon myelin sheath thickness (g-ratio) or axon diameter; approximately 70% of axons were in the small (0.25 ?m) to medium (0.75 ?m) range. Axon diameter and g-ratio were positively correlated, indicating that larger axons may have thinner myelin sheaths. Conclusion The current study demonstrates that long term formalin fixed and frozen-sectioned human brain tissue can be used for ultrastructural analyses. Axon integrity is well preserved and can be quantified using the methods presented here. The ability to carry out EM on frozen sections allows for investigation of axonal organization in conjunction with other cellular and histological methods, such as immunohistochemistry and stereology, within the same brain and even within the same frozen cut section. PMID:24721148

  20. Morphological changes in human melanoma cells following irradiation with thermal neutrons

    SciTech Connect

    Barkla, D.H.; Allen, B.J.; Brown, J.K.; Mountford, M.; Mishima, Y.; Ichihashi, M. )

    1989-07-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  1. Impaired insulin action in the human brain: causes and metabolic consequences.

    PubMed

    Heni, Martin; Kullmann, Stephanie; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich

    2015-12-01

    Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined. PMID:26460339

  2. COMPUTER MODEL OF HUMAN LUNG MORPHOLOGY TO COMPLEMENT SPECT ANALYSES

    EPA Science Inventory

    Aerosol therapy protocols could be improved if inhaled pharmacologic drugs were selectively deposited within the human lung. he targeted delivery to specific sites, such as receptors and sensitive airway cells, would enhance the efficacies of airborne pharmaceuticals. he high res...

  3. Neanderthal brain size at birth provides insights into the evolution of human life history

    PubMed Central

    Ponce de León, Marcia S.; Golovanova, Lubov; Doronichev, Vladimir; Romanova, Galina; Akazawa, Takeru; Kondo, Osamu; Ishida, Hajime; Zollikofer, Christoph P. E.

    2008-01-01

    From birth to adulthood, the human brain expands by a factor of 3.3, compared with 2.5 in chimpanzees [DeSilva J and Lesnik J (2006) Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. J Hum Evol 51: 207–212]. How the required extra amount of human brain growth is achieved and what its implications are for human life history and cognitive development are still a matter of debate. Likewise, because comparative fossil evidence is scarce, when and how the modern human pattern of brain growth arose during evolution is largely unknown. Virtual reconstructions of a Neanderthal neonate from Mezmaiskaya Cave (Russia) and of two Neanderthal infant skeletons from Dederiyeh Cave (Syria) now provide new comparative insights: Neanderthal brain size at birth was similar to that in recent Homo sapiens and most likely subject to similar obstetric constraints. Neanderthal brain growth rates during early infancy were higher, however. This pattern of growth resulted in larger adult brain sizes but not in earlier completion of brain growth. Because large brains growing at high rates require large, late-maturing, mothers [Leigh SR and Blomquist GE (2007) in Campbell CJ et al. Primates in perspective; pp 396–407], it is likely that Neanderthal life history was similarly slow, or even slower-paced, than in recent H. sapiens. PMID:18779579

  4. Neanderthal brain size at birth provides insights into the evolution of human life history.

    PubMed

    Ponce de León, Marcia S; Golovanova, Lubov; Doronichev, Vladimir; Romanova, Galina; Akazawa, Takeru; Kondo, Osamu; Ishida, Hajime; Zollikofer, Christoph P E

    2008-09-16

    From birth to adulthood, the human brain expands by a factor of 3.3, compared with 2.5 in chimpanzees [DeSilva J and Lesnik J (2006) Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. J Hum Evol 51: 207-212]. How the required extra amount of human brain growth is achieved and what its implications are for human life history and cognitive development are still a matter of debate. Likewise, because comparative fossil evidence is scarce, when and how the modern human pattern of brain growth arose during evolution is largely unknown. Virtual reconstructions of a Neanderthal neonate from Mezmaiskaya Cave (Russia) and of two Neanderthal infant skeletons from Dederiyeh Cave (Syria) now provide new comparative insights: Neanderthal brain size at birth was similar to that in recent Homo sapiens and most likely subject to similar obstetric constraints. Neanderthal brain growth rates during early infancy were higher, however. This pattern of growth resulted in larger adult brain sizes but not in earlier completion of brain growth. Because large brains growing at high rates require large, late-maturing, mothers [Leigh SR and Blomquist GE (2007) in Campbell CJ et al. Primates in perspective; pp 396-407], it is likely that Neanderthal life history was similarly slow, or even slower-paced, than in recent H. sapiens. PMID:18779579

  5. Brain Potentials for Derivational Morphology: An ERP Study of Deadjectival Nominalizations in Spanish

    ERIC Educational Resources Information Center

    Havas, Viktoria; Rodriguez-Fornells, Antoni; Clahsen, Harald

    2012-01-01

    This study investigates brain potentials to derived word forms in Spanish. Two experiments were performed on derived nominals that differ in terms of their productivity and semantic properties but are otherwise similar, an acceptability judgment task and a reading experiment using event-related brain potentials (ERPs) in which correctly and…

  6. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    PubMed Central

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  7. Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness

    PubMed Central

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Pieszek, Raik; Sherwood, Chet C.; Hof, Patrick R.; Ely, John J.; Steinhauser, Dirk; Willmitzer, Lothar; Bangsbo, Jens; Hansson, Ola; Call, Josep; Giavalisco, Patrick; Khaitovich, Philipp

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. PMID:24866127

  8. Cold stress induced morphological microglial activation and increased IL-1? expression in astroglial cells in rat brain.

    PubMed

    Sugama, Shuei; Takenouchi, Takato; Fujita, Masayo; Kitani, Hiroshi; Hashimoto, Makoto

    2011-04-01

    The present study investigated the possible impact of cold stress on the immune functions of the brain. Wistar rats were exposed to 4°C for 2h prior to analysis of immunohistochemical analysis of OX-42 and IL-1?, which are markers of microglia and inflammation, respectively. Exposure to cold stress induced morphological microglial activation in as early as 30 min, and the activation lasted up to 2h following the stress. In addition, increased IL-1?-immunoreactivity was detected in the hippocampus and hypothalamus. However, IL-1? was not co-localized with microglia, and was predominantly expressed in astroglia. The present study provides the first evidence that cold stress contributes to neuro-immunomodulation in the brain through microglial activation and expression of IL-1? in astroglia. PMID:21115202

  9. Genome-wide uniparental disomy screen in human discarded morphologically abnormal embryos

    PubMed Central

    Xu, Jiawei; Zhang, Meixiang; Niu, Wenbin; Yao, Guidong; Sun, Bo; Bao, Xiao; Wang, Linlin; Du, Linqing; Sun, Yingpu

    2015-01-01

    Uniparental disomy (UPD) has been shown to be rare in human normal blastocysts, but its frequency in discarded morphologically abnormal embryos and its relevance to embryonic self-correction of aneuploid remains unknown. The aim of this study was to detect UPD in discarded morphologically abnormal embryos. Both discarded morphologically abnormal embryos, including zero-pronuclear zygotes (0PN), one-pronuclear zygotes (1PN), three-pronuclear zygotes (3PN) and 2PN embryos scored as low development potential were cultured into blastocysts then underwent trophectoderm biopsy. Genome-wide UPD screening of the trophectoderm of 241 discarded morphologically abnormal embryo sourced blastocysts showed that UPD occurred in nine embryos. Five embryos exhibited UPDs with euploid chromosomes, and four displayed UPDs with chromosomal aneuploid. The percentage of UPDs among the morphologically abnormal sourced blastocysts was 3.73%, which is significant higher than the percentage observed in normal blastocysts. The frequency of UPD in 3PN-sourced blastocysts was 7.69%, which is significantly higher than that in normal blastocysts. This study provides the first systematic genome-wide profile of UPD in discarded morphologically abnormal embryos. Our results indicated that UPD may be a common phenomenon in discarded morphologically abnormal embryos and may be relevant to human embryonic self-correction. PMID:26194013

  10. ConnectomeDB-Sharing human brain connectivity data.

    PubMed

    Hodge, Michael R; Horton, William; Brown, Timothy; Herrick, Rick; Olsen, Timothy; Hileman, Michael E; McKay, Michael; Archie, Kevin A; Cler, Eileen; Harms, Michael P; Burgess, Gregory C; Glasser, Matthew F; Elam, Jennifer S; Curtiss, Sandra W; Barch, Deanna M; Oostenveld, Robert; Larson-Prior, Linda J; Ugurbil, Kamil; Van Essen, David C; Marcus, Daniel S

    2016-01-01

    ConnectomeDB is a database for housing and disseminating data about human brain structure, function, and connectivity, along with associated behavioral and demographic data. It is the main archive and dissemination platform for data collected under the WU-Minn consortium Human Connectome Project. Additional connectome-style study data is and will be made available in the database under current and future projects, including the Connectome Coordination Facility. The database currently includes multiple modalities of magnetic resonance imaging (MRI) and magnetoencephalograpy (MEG) data along with associated behavioral data. MRI modalities include structural, task, resting state and diffusion. MEG modalities include resting state and task. Imaging data includes unprocessed, minimally preprocessed and analysis data. Imaging data and much of the behavioral data are publicly available, subject to acceptance of data use terms, while access to some sensitive behavioral data is restricted to qualified investigators under a more stringent set of terms. ConnectomeDB is the public side of the WU-Minn HCP database platform. As such, it is geared towards public distribution, with a web-based user interface designed to guide users to the optimal set of data for their needs and a robust backend mechanism based on the commercial Aspera fasp service to enable high speed downloads. HCP data is also available via direct shipment of hard drives and Amazon S3. PMID:25934470

  11. Absence of human cytomegalovirus infection in childhood brain tumors

    PubMed Central

    Sardi, Iacopo; Lucchesi, Maurizio; Becciani, Sabrina; Facchini, Ludovica; Guidi, Milena; Buccoliero, Anna Maria; Moriondo, Maria; Baroni, Gianna; Stival, Alessia; Farina, Silvia; Genitori, Lorenzo; de Martino, Maurizio

    2015-01-01

    Human cytomegalovirus (HCMV) is a common human pathogen which induces different clinical manifestations related to the age and the immune conditions of the host. HCMV infection seems to be involved in the pathogenesis of adult glioblastomas. The aim of our study was to detect the presence of HCMV in high grade gliomas and other pediatric brain tumors. This hypothesis might have important therapeutic implications, offering a new target for adjuvant therapies. Among 106 pediatric patients affected by CNS tumors we selected 27 patients with a positive HCMV serology. The serological analysis revealed 7 patients with positive HCMV IGG (?14 U/mL), whom had also a high HCMV IgG avidity, suggesting a more than 6 months-dated infection. Furthermore, HCMV IGM were positive (?22 U/mL) in 20 patients. Molecular and immunohistochemical analyses were performed in all the 27 samples. Despite a positive HCMV serology, confirmed by ELISA, no viral DNA was shown at the PCR analysis in the patients’ neoplastic cells. At immunohistochemistry, no expression of HCMV antigens was observed in tumoral cells. Our results are in agreement with recent results in adults which did not evidence the presence of HCMV genome in glioblastoma lesions. We did not find any correlation between HCMV infection and pediatric CNS tumors. PMID:26396923

  12. Top-Down Causation and the Human Brain

    NASA Astrophysics Data System (ADS)

    Ellis, George F. R.

    A reliable understanding of the nature of causation is the core feature of science. In this paper the concept of top-down causation in the hierarchy of structure and causation is examined in depth. Five different classes of top-down causation are identified and illustrated with real-world examples. They are (1) al gorithmic top-down causation; (2) top-down causation via nonadaptive information control; (3) top-down causation via adaptive selection; (4) top-down causation via adaptive information control; and (5) intelligent top-down causation (i.e., the effect of the human mind on the physical world). Recognizing these forms of causation implies that other kinds of causes than physical and chemical interactions are effective in the real world. Because of the existence of random processes at the bottom, there is sufficient causal slack at the physical level to allow all these kinds of causation to occur without violation of physical causation. That they do indeed occur is indicated by many kinds of evidence. Each such kind of causation takes place in particular in the human brain, as is indicated by specific examples.

  13. Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase-2 and expression in human pancreas.

    PubMed Central

    Yalowitz, Joel A; Xiao, Suhong; Biju, Mangatt P; Antony, A?ok C; Cummings, Oscar W; Deeg, Mark A; Jayaram, Hiremagalur N

    2004-01-01

    NMNAT (nicotinamide 5'-mononucleotide adenylyltransferase; EC 2.7.7.1) catalyses the transfer of the adenylyl group from ATP to NMN to form NAD. We have cloned a novel human NMNAT cDNA, designated hNMNAT-2, from human brain. The cDNA contains a 924 bp open reading frame that encodes a 307 amino acid peptide that was expressed as a histidine-patch-containing thioredoxin fusion protein. Expressed hNMNAT-2 shared only 35% amino acid sequence homology with the human NMNAT enzyme (hNMNAT-1), but possessed enzymic activity comparable with hNMNAT-1. Using human genomic databases, hNMNAT-2 was localized to chromosome 1q25 within a 171 kb gene, whereas hNMNAT-1 is on chromosome 1p32-35. Northern blot analysis revealed highly restricted expression of hNMNAT-2 to brain, heart and muscle tissues, which contrasts with the wide tissue expression of hNMNAT-1; different regions of the brain exhibited differential expression of hNMNAT-2. Substitution mutations of either of two invariant residues, His-24 or Trp-92, abolished enzyme activity. Anti-peptide antibody to a unique epitope within hNMNAT-2 was produced, and immunohistochemical analysis of sections of normal adult human pancreas revealed that hNMNAT-2 protein was markedly expressed in the islets of Langerhans. However, the pancreatic exocrine cells exhibited weak expression of hNMNAT-2 protein. Sections of pancreas from insulinoma patients showed strong expression of hNMNAT-2 protein in the insulin-producing tumour cells, whereas acinar cells exhibited relatively low expression of hNMNAT-2 protein. These data suggest that the unique tissue-expression patterns of hNMNAT-2 reflect distinct functions for the isoforms in the regulation of NAD metabolism. PMID:14516279

  14. Picroside II Inhibits Neuronal Apoptosis and Improves the Morphology and Structure of Brain Tissue following Cerebral Ischemic Injury in Rats

    PubMed Central

    Wang, Tingting; Zhao, Li; Guo, Yunliang; Zhang, Meizeng; Pei, Haitao

    2015-01-01

    This paper aimed to explore the protective effects of picroside II against the neuronal apoptosis and changes in morphology and structure that follow cerebral ischemic injury in rats. A focal cerebral ischemic model was established by inserting a monofilament thread to achieve middle cerebral artery occlusion (MCAO) in 60 Wistar rats, and intraperitoneal injections of picroside II (20 mg/kg) were administered. The neurobehavioral functions were evaluated with the modified neurological severity score (mNSS) test. The cerebral infarct volumes were measured with tetrazolium chloride (TTC) staining. The morphology and ultrastructure of the cortical brain tissues were observed with hematoxylin-eosin staining and transmission electron microscopy, respectively. The apoptotic cells were counted with terminal deoxynucleotidyl transferase dUTP nick-end labeling and flow cytometry, and pERK1/2 expression was determined by immunohistochemical assay and Western blot. The results indicated that neurological behavioral malfunctions and cerebral infarcts were present in the MCAO rats. In the model group, the damage to the structures of the neurons and the blood brain barrier (BBB) in the cortex was more severe, and the numbers of apoptotic cells, the early apoptotic ratio (EAR) and pERK1/2 expression were significantly increased in this group compared to the control group (P<0.05). In the treatment group, the neurological behavioral function and the morphology and ultrastructure of the neurons and the BBB were improved including the number of Mi increased and relative area of condensed chromosome and basement (BM) thickness descreased, and the cerebral infarct volume, the number of apoptotic cells, the EAR and pERK1/2 expression were significantly decreased compared to the model group (P<0.05). These results suggest that picroside II reduced apoptosis and improved the morphology and ultrastructure of the neurons and the BBB and that these effects resulted in the recovery of the neurobehavioral function of rats with cerebral ischemia. PMID:25927985

  15. Morphological Integration of the Modern Human Mandible during Ontogeny

    PubMed Central

    Polanski, Joshua M.

    2011-01-01

    Craniofacial integration is prevalent in anatomical modernity research. Little investigation has been done on mandibular integration. Integration patterns were quantified in a longitudinal modern human sample of mandibles. This integration pattern is one of modularization between the alveolar and muscle attachment regions, but with age-specific differences. The ascending ramus and nonalveolar portions of the corpus remain integrated throughout ontogeny. The alveolar region is dynamic, becoming modularized according to the needs of the mandible at a particular developmental stage. Early in ontogeny, this modularity reflects the need for space for the developing dentition; later, modularity is more reflective of mastication. The overall pattern of modern human mandibular integration follows the integration pattern seen in other mammals, including chimpanzees. Given the differences in craniofacial integration patterns between humans and chimpanzees, but the similarities in mandibular integration, it is likely that the mandible has played the more passive role in hominin skull evolution. PMID:21716741

  16. Endocannabinoids modulate human blood–brain barrier permeability in vitro

    PubMed Central

    Hind, William H; Tufarelli, Cristina; Neophytou, Maria; Anderson, Susan I; England, Timothy J; O'Sullivan, Saoirse E

    2015-01-01

    Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was modelled by oxygen-glucose deprivation (OGD) and permeability was measured by transepithelial electrical resistance. Endocannabinoids or endocannabinoid-like compounds were assessed for their ability to modulate baseline permeability or OGD-induced hyperpermeability. Target sites of action were investigated using receptor antagonists and subsequently identified with real-time PCR. Key Results Anandamide (10??M) and oleoylethanolamide (OEA, 10??M) decreased BBB permeability (i.e. increased resistance). This was mediated by cannabinoid CB2 receptors, transient receptor potential vanilloid 1 (TRPV1) channels, calcitonin gene-regulated peptide (CGRP) receptor (anandamide only) and PPAR? (OEA only). Application of OEA, palmitoylethanolamide (both PPAR? mediated) or virodhamine (all 10??M) decreased the OGD-induced increase in permeability during reperfusion. 2-Arachidonoyl glycerol, noladin ether and oleamide did not affect BBB permeability in normal or OGD conditions. N-arachidonoyl-dopamine increased permeability through a cytotoxic mechanism. PPAR? and ?, CB1 receptors, TRPV1 channels and CGRP receptors were expressed in both cell types, but mRNA for CB2 receptors was only present in astrocytes. Conclusion and Implication The endocannabinoids may play an important modulatory role in normal BBB physiology, and also afford protection to the BBB during ischaemic stroke, through a number of target sites. PMID:25651941

  17. Human brain circuits for learning hierarchical temporal structures.

    PubMed

    Wang, Rui; Shen, Yuan; Tino, Peter; Kourtzi, Zoe

    2015-09-01

    Experience is known to facilitate our ability to extract regularities from simple repetitive patterns to more complex probabilistic combinations (e.g. as in language, music, navigation). However, little is known about the neural mechanisms that mediate our ability to learn hierarchical structures. Here we combine behavioral and functional MRI measurements to investigate the human brain circuits involved in learning of hierarchical structures. In particular, we employed variable memory length Markov models to design hierarchically structured temporal sequences of increasing complexity. We first trained observers with sequences of four symbols that were determined by their probability of occurrence (0.2, 0.8, 0, 0) and then sequences determined by their temporal context. We measured performance and fMRI responses before and after training on these two sequence types. In each trial, we presented observers with a sequence of symbols followed by a test stimulus. Observers were asked to indicate whether the test stimulus was expected or not. Our results demonstrate that dissociable brain circuits are involved in learning regularities determined by frequency of occurrence vs. temporal context. In particular, learning occurrence probabilities engaged frontal (inferior and middle frontal gyrus), parietal (inferior parietal lobule) and superior temporal regions, while learning temporal context engaged frontal (superior and medial frontal gyrus, cingulate) and subcortical circuits (putamen). Fronto-parietal regions showed increased fMRI responses to structured compared to random sequences early in training while decreased responses after training. In contrast, in subcortical regions, higher responses were observed for structured compared to random sequences only after training. Our results are consistent with the role of fronto-parietal circuits in identifying novel patterns, and the involvement of subcortical regions in contextual learning. Thus, our findings suggest that learning hierarchical structures is implemented by fast learning of frequency statistics in fronto-parietal regions, while conditional probability learning in subcortical regions later in training. Meeting abstract presented at VSS 2015. PMID:26326082

  18. Feedback Timing Modulates Brain Systems for Learning in Humans

    PubMed Central

    Foerde, Karin; Shohamy, Daphna

    2012-01-01

    The ability to learn from the consequences of actions—no matter when those consequences take place—is central to adaptive behavior. Despite major advances in understanding how immediate feedback drives learning, it remains unknown precisely how the brain learns from delayed feedback. Here, we present converging evidence from neuropsychology and neuroimaging for distinct roles for the striatum and the hippocampus in learning, depending on whether feedback is immediate or delayed. We show that individuals with striatal dysfunction due to Parkinson’s disease are impaired at learning when feedback is immediate, but not when feedback is delayed by a few seconds. Using functional imaging (fMRI) combined with computational model-derived analyses, we further demonstrate that healthy individuals show activation in the striatum during learning from immediate feedback and activation in the hippocampus during learning from delayed feedback. Additionally, later episodic memory for delayed feedback events was enhanced, suggesting that engaging distinct neural systems during learning had consequences for the representation of what was learned. Together, these findings provide direct evidence from humans that striatal systems are necessary for learning from immediate feedback and that delaying feedback leads to a shift in learning from the striatum to the hippocampus. The results provide a link between learning impairments in Parkinson’s disease and evidence from single-unit recordings demonstrating that the timing of reinforcement modulates activity of midbrain dopamine neurons. Collectively, these findings indicate that relatively small changes in the circumstances under which information is learned can shift learning from one brain system to another. PMID:21917799

  19. A LEARNING BY EXAMPLE APPROACH FOR MRI ANALYSIS OF HUMAN BRAIN IN THE CONTEXT OF MENTAL HEALTH

    E-print Network

    Castellani, Umberto

    A LEARNING BY EXAMPLE APPROACH FOR MRI ANALYSIS OF HUMAN BRAIN IN THE CONTEXT OF MENTAL HEALTH for the analysis of human brains in the context of mental health research, i.e. to distinguish between healthy be useful for human brain analysis. ·The results are very promising since up to 82% of patients

  20. Liu A K, Belliveau J W, Dale A M 1998 Spatiotemporal imaging of human brain activity using functional MRI constrained

    E-print Network

    Silverman, Bernard

    Liu A K, Belliveau J W, Dale A M 1998 Spatiotemporal imaging of human brain activity using States of America 95: 765­72 Raichle M E 2000 A brief history of human functional brain mapping. In: Toga in human brain functional anatomy during nonmotor learning. Cerebral Cortex 4: 8­26 Raichle M E, Mac

  1. Playing 20 Questions with the Mind: Collaborative Problem Solving by Humans Using a Brain-to-Brain Interface

    PubMed Central

    Stocco, Andrea; Prat, Chantel S.; Losey, Darby M.; Cronin, Jeneva A.; Wu, Joseph; Abernethy, Justin A.; Rao, Rajesh P. N.

    2015-01-01

    We present, to our knowledge, the first demonstration that a non-invasive brain-to-brain interface (BBI) can be used to allow one human to guess what is on the mind of another human through an interactive question-and-answering paradigm similar to the “20 Questions” game. As in previous non-invasive BBI studies in humans, our interface uses electroencephalography (EEG) to detect specific patterns of brain activity from one participant (the “respondent”), and transcranial magnetic stimulation (TMS) to deliver functionally-relevant information to the brain of a second participant (the “inquirer”). Our results extend previous BBI research by (1) using stimulation of the visual cortex to convey visual stimuli that are privately experienced and consciously perceived by the inquirer; (2) exploiting real-time rather than off-line communication of information from one brain to another; and (3) employing an interactive task, in which the inquirer and respondent must exchange information bi-directionally to collaboratively solve the task. The results demonstrate that using the BBI, ten participants (five inquirer-respondent pairs) can successfully identify a “mystery item” using a true/false question-answering protocol similar to the “20 Questions” game, with high levels of accuracy that are significantly greater than a control condition in which participants were connected through a sham BBI. PMID:26398267

  2. Triploidy alters brain morphology in pre-smolt Atlantic salmon Salmo salar: possible implications for behaviour.

    PubMed

    Fraser, T W K; Fjelldal, P G; Skjæraasen, J E; Hansen, T; Mayer, I

    2012-12-01

    Total brain mass and the volumes of five specific brain regions in diploid and triploid Atlantic salmon Salmo salar pre-smolts were measured using digital images. There were no significant differences (P > 0·05) in total brain mass when corrected for fork length, or the volumes of the optic tecta or hypothalamus when corrected for brain mass, between diploids and triploids. There was a significant effect (P < 0·01) of ploidy on the volume of the olfactory bulb, with it being 9·0% larger in diploids compared with triploids. The cerebellum and telencephalon, however, were significantly larger, 17 and 8% respectively, in triploids compared with diploids. Sex had no significant effect (P > 0·05) on total brain mass or the volumes of any measured brain region. As the olfactory bulbs, cerebellum and telencephalon are implicated in a number of functions, including foraging ability, aggression and spatial cognition, these results may explain some of the behavioural differences previously reported between diploids and triploids. PMID:23252734

  3. Morphological maturation of the mouse brain: An in vivo MRI and histology investigation.

    PubMed

    Hammelrath, Luam; Škoki?, Siniša; Khmelinskii, Artem; Hess, Andreas; van der Knaap, Noortje; Staring, Marius; Lelieveldt, Boudewijn P F; Wiedermann, Dirk; Hoehn, Mathias

    2016-01-15

    With the wide access to studies of selected gene expressions in transgenic animals, mice have become the dominant species as cerebral disease models. Many of these studies are performed on animals of not more than eight weeks, declared as adult animals. Based on the earlier reports that full brain maturation requires at least three months in rats, there is a clear need to discern the corresponding minimal animal age to provide an "adult brain" in mice in order to avoid modulation of disease progression/therapy studies by ongoing developmental changes. For this purpose, we have studied anatomical brain alterations of mice during their first six months of age. Using T2-weighted and diffusion-weighted MRI, structural and volume changes of the brain were identified and compared with histological analysis of myelination. Mouse brain volume was found to be almost stable already at three weeks, but cortex thickness kept decreasing continuously with maximal changes during the first three months. Myelination is still increasing between three and six months, although most dramatic changes are over by three months. While our results emphasize that mice should be at least three months old when adult animals are needed for brain studies, preferred choice of one particular metric for future investigation goals will result in somewhat varying age windows of stabilization. PMID:26458518

  4. Quantitative analyses of human pubic symphyseal morphology using three dimensional data: the potential utility for aging adult human skeletons

    E-print Network

    -going research at PRISM applies to forensic anthropology. Specifically, morphological bone features currently is a critical component of forensic anthropology. One of the most reliable methods for estimating age to quantify the age-related skeletal changes that occur to human pubic symphyses. Abstract Forensic

  5. Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells

    PubMed Central

    Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis

    2015-01-01

    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used. PMID:26498381

  6. Noise-induced entrainment and stochastic resonance in human brain waves.

    PubMed

    Mori, Toshio; Kai, Shoichi

    2002-05-27

    We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a subthreshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g., perception and cognition, may exploit SR. PMID:12059504

  7. Communication and the primate brain: Insights from neuroimaging studies in humans, chimpanzees and macaques

    PubMed Central

    Wilson, Benjamin; Petkov, Christopher I.

    2012-01-01

    Considerable knowledge is available on the neural substrates for speech and language from brain imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and non-linguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language. PMID:21615285

  8. The Human Brain Encodes Event Frequencies While Forming Subjective Beliefs

    PubMed Central

    d’Acremont, Mathieu; Schultz, Wolfram; Bossaerts, Peter

    2015-01-01

    To make adaptive choices, humans need to estimate the probability of future events. Based on a Bayesian approach, it is assumed that probabilities are inferred by combining a priori, potentially subjective, knowledge with factual observations, but the precise neurobiological mechanism remains unknown. Here, we study whether neural encoding centers on subjective posterior probabilities, and data merely lead to updates of posteriors, or whether objective data are encoded separately alongside subjective knowledge. During fMRI, young adults acquired prior knowledge regarding uncertain events, repeatedly observed evidence in the form of stimuli, and estimated event probabilities. Participants combined prior knowledge with factual evidence using Bayesian principles. Expected reward inferred from prior knowledge was encoded in striatum. BOLD response in specific nodes of the default mode network (angular gyri, posterior cingulate, and medial prefrontal cortex) encoded the actual frequency of stimuli, unaffected by prior knowledge. In this network, activity increased with frequencies and thus reflected the accumulation of evidence. In contrast, Bayesian posterior probabilities, computed from prior knowledge and stimulus frequencies, were encoded in bilateral inferior frontal gyrus. Here activity increased for improbable events and thus signaled the violation of Bayesian predictions. Thus, subjective beliefs and stimulus frequencies were encoded in separate cortical regions. The advantage of such a separation is that objective evidence can be recombined with newly acquired knowledge when a reinterpretation of the evidence is called for. Overall this study reveals the coexistence in the brain of an experience-based system of inference and a knowledge-based system of inference. PMID:23804108

  9. Brain computer interface to enhance episodic memory in human participants

    PubMed Central

    Burke, John F.; Merkow, Maxwell B.; Jacobs, Joshua; Kahana, Michael J.

    2015-01-01

    Recent research has revealed that neural oscillations in the theta (4–8 Hz) and alpha (9–14 Hz) bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI) to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG) in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of pre-stimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding. PMID:25653605

  10. Characterization of integrin receptors in normal and neoplastic human brain.

    PubMed Central

    Paulus, W.; Baur, I.; Schuppan, D.; Roggendorf, W.

    1993-01-01

    We studied the immunohistochemical expression of integrin alpha and beta chains in the normal and neoplastic human brain. Normal astrocytes expressed alpha 2, alpha 3, alpha 6, beta 1, and beta 4 chains in some areas facing major interstitial tissues, but they were consistently negative for the other integrins examined (alpha 4, alpha 5, alpha V, alpha L, alpha M, alpha X, beta 2, beta 3). Neoplastic astrocytes in vivo and in vitro showed increased expression of alpha 3 and beta 1, and some also of alpha 5, alpha V, beta 3, and beta 4. Neoexpression of alpha 4 and reduced levels of beta 4 were detected in glioblastoma vascular proliferations compared with normal endothelial cells. Oligodendroglioma, ependymoma, choroid plexus papilloma, pituitary adenoma, and meningioma cells showed the same integrin pattern as their normal counterparts. Adhesion assays using the astrocytoma cell lines U-138 MG and U-373 MG revealed strong attachment to collagen types I to VI and undulin, which was inhibited by antibodies to beta 1, but not by those to alpha 2, alpha 3, alpha 6, and alpha V. We conclude that astrocytomas show increased levels or neoexpression of various integrins and strong attachment to various extracellular matrix components, which appears to be almost exclusively mediated by beta 1-integrins. Images Figure 1 PMID:8317546

  11. Human immunodeficiency virus type 1 infection of the brain.

    PubMed Central

    Atwood, W J; Berger, J R; Kaderman, R; Tornatore, C S; Major, E O

    1993-01-01

    Direct infection of the central nervous system by human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, was not appreciated in the early years of the AIDS epidemic. Neurological complications associated with AIDS were largely attributed to opportunistic infections that arose as a result of the immunocompromised state of the patient and to depression. In 1985, several groups succeeded in isolating HIV-1 directly from brain tissue. Also that year, the viral genome was completely sequenced, and HIV-1 was found to belong to a neurotropic subfamily of retrovirus known as the Lentivirinae. These findings clearly indicated that direct HIV-1 infection of the central nervous system played a role in the development of AIDS-related neurological disease. This review summarizes the clinical manifestations of HIV-1 infection of the central nervous system and the related neuropathology, the tropism of HIV-1 for specific cell types both within and outside of the nervous system, the possible mechanisms by which HIV-1 damages the nervous system, and the current strategies for diagnosis and treatment of HIV-1-associated neuropathology. Images PMID:8269391

  12. Transcriptional regulation of the ?-synuclein gene in human brain tissue.

    PubMed

    Brenner, Steffen; Wersinger, Christophe; Gasser, Thomas

    2015-07-10

    The transcriptional regulation of the gene encoding ?-synuclein (SNCA) is thought to play a critical role in the pathogenesis of Parkinson's disease (PD), as common genetic variability in this gene is associated with an elevated risk of developing PD. However, the relevant mechanisms are still poorly understood. So far, only few proteins have been identified as transcription factors (TFs) of SNCA in cellular models. Here we show that two of these TFs bind to the DNA in human brain tissue: the zinc finger protein ZSCAN21 occupies a region within SNCA intron 1, as described before, while GATA2 occupies a specific region within intron 2, where we have identified a new binding site within the complex structure of the 5'-promoter region of SNCA. Electrophoretic mobility shift assays confirmed these binding sites. Genetic investigations revealed no polymorphisms or mutations within these sites. A better understanding of TF-DNA interactions within SNCA may allow to develop novel therapies designed to reduce ?-synuclein levels. PMID:26002080

  13. Local Model of Arteriovenous Malformation of the Human Brain

    NASA Astrophysics Data System (ADS)

    Nadezhda Telegina, Ms; Aleksandr Chupakhin, Mr; Aleksandr Cherevko, Mr

    2013-02-01

    Vascular diseases of the human brain are one of the reasons of deaths and people's incapacitation not only in Russia, but also in the world. The danger of an arteriovenous malformation (AVM) is in premature rupture of pathological vessels of an AVM which may cause haemorrhage. Long-term prognosis without surgical treatment is unfavorable. The reduced impact method of AVM treatment is embolization of a malformation which often results in complete obliteration of an AVM. Pre-surgical mathematical modeling of an arteriovenous malformation can help surgeons with an optimal sequence of the operation. During investigations, the simple mathematical model of arteriovenous malformation is developed and calculated, and stationary and non-stationary processes of its embolization are considered. Various sequences of embolization of a malformation are also considered. Calculations were done with approximate steady flow on the basis of balanced equations derived from conservation laws. Depending on pressure difference, a fistula-type AVM should be embolized at first, and then small racemose AVMs are embolized. Obtained results are in good correspondence with neurosurgical AVM practice.

  14. Crystalline ribosomes are present in brains from senile humans.

    PubMed Central

    O'Brien, L; Shelley, K; Towfighi, J; McPherson, A

    1980-01-01

    Paracrystalline inclusions known as Hirano bodies characteristically appear in the hippocampal region of the brains of humans exhibiting senile and presenile dementias as well as several other neurodegenerative diseases. We present evidence that the currently accepted model for those structures based on alternating filament sheets is not correct, but that Hirano bodies are stacked sheets of membrane-bound ribosomal particles derived from partially degraded rough endoplasmic reticulum or Nissl substance. Using fluorescence staining with acridine orange and ethidium bromide, were have shown that the bodies contain RNA. Spatial filtering of electron micrographs by Fourier techniques shows that the individual particles that make up the arrays have a characteristic shape previously reported for the large subunit of eukaryotic ribosomes. The storage of these ribosomal particles in inclusion bodies may indicate a quiescent state of protein synthesis in the cells. This withdrawal of synthetic mechanisms in the hippocampus may have significant consequences in the loss of ability to consolidate short-term to long-term memory. Images PMID:6929549

  15. Human brain imaging during controlled and natural viewing

    NASA Astrophysics Data System (ADS)

    Klein, Stanley A.; Carney, Thom; Kim, David; Dandekar, Sangita; Privitera, Claudio

    2010-02-01

    Assorted technologies such as; EEG, MEG, fMRI, BEM, MRI, TMS and BCI are being integrated to understand how human visual cortical areas interact during controlled laboratory and natural viewing conditions. Our focus is on the problem of separating signals from the spatially close early visual areas. The solution involves taking advantage of known functional anatomy to guide stimulus selection and employing principles of spatial and temporal response properties that simplify analysis. The method also unifies MEG and EEG recordings and provides a means for improving existing boundary element head models. In going beyond carefully controlled stimuli, in natural viewing with scanning eye movements, assessing brain states with BCI is a most challenging task. Frequent eye movements contribute artifacts to the recordings. A linear regression method is introduced that is shown to effectively characterize these frequent artifacts and could be used to remove them. In free viewing, saccadic landings initiate visual processing epochs and could be used to trigger strictly time based analysis methods. However, temporal instabilities indicate frequency based analysis would be an important adjunct. The class of Cauchy filter functions is introduced that have narrow time and frequency properties well matched to the EEG/MEG spectrum for avoiding channel leakage.

  16. Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies.

    PubMed

    Tong, Junchao; Meyer, Jeffrey H; Furukawa, Yoshiaki; Boileau, Isabelle; Chang, Li-Jan; Wilson, Alan A; Houle, Sylvain; Kish, Stephen J

    2013-06-01

    Positron emission tomography (PET) imaging of monoamine oxidases (MAO-A: [(11)C]harmine, [(11)C]clorgyline, and [(11)C]befloxatone; MAO-B: [(11)C]deprenyl-D2) has been actively pursued given clinical importance of MAOs in human neuropsychiatric disorders. However, it is unknown how well PET outcome measures for the different radiotracers are quantitatively related to actual MAO protein levels. We measured regional distribution (n=38) and developmental/aging changes (21?hours to 99 years) of both MAOs by quantitative immunoblotting in autopsied normal human brain. MAO-A was more abundant than MAO-B in infants, which was reversed as MAO-B levels increased faster before 1 year and, unlike MAO-A, kept increasing steadily to senescence. In adults, regional protein levels of both MAOs were positively and proportionally correlated with literature postmortem data of MAO activities and binding densities. With the exception of [(11)C]befloxatone (binding potential (BP), r=0.61, P=0.15), correlations between regional PET outcome measures of binding in the literature and MAO protein levels were good (P<0.01) for [(11)C]harmine (distribution volume, r=0.86), [(11)C]clorgyline (?k3, r=0.82), and [(11)C]deprenyl-D2 (?k3 or modified Patlak slope, r=0.78 to 0.87), supporting validity of the latter imaging measures. However, compared with in vitro data, the latter PET measures underestimated regional contrast by ?2-fold. Further studies are needed to address cause of the in vivo vs. in vitro nonproportionality. PMID:23403377

  17. Evidence for hubs in human functional brain networks

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

    2013-01-01

    Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601

  18. Coronal in vivo forward-imaging of rat brain morphology with an ultra-small optical coherence tomography fiber probe

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Bonin, Tim; Löffler, Susanne; Hüttmann, Gereon; Tronnier, Volker; Hofmann, Ulrich G.

    2013-02-01

    A well-established navigation method is one of the key conditions for successful brain surgery: it should be accurate, safe and online operable. Recent research shows that optical coherence tomography (OCT) is a potential solution for this application by providing a high resolution and small probe dimension. In this study a fiber-based spectral-domain OCT system utilizing a super-luminescent-diode with the center wavelength of 840 nm providing 14.5 ?m axial resolution was used. A composite 125 ?m diameter detecting probe with a gradient index (GRIN) fiber fused to a single mode fiber was employed. Signals were reconstructed into grayscale images by horizontally aligning A-scans from the same trajectory with different depths. The reconstructed images can display brain morphology along the entire trajectory. For scans of typical white matter, the signals showed a higher reflection of light intensity with lower penetration depth as well as a steeper attenuation rate compared to the scans typical for gray matter. Micro-structures such as axon bundles (70 ?m) in the caudate nucleus are visible in the reconstructed images. This study explores the potential of OCT to be a navigation modality in brain surgery.

  19. Recent news reports that an electrical brain-stimulation technique improved human memory

    E-print Network

    Squire, Larry R.

    Recent news reports that an electrical brain- stimulation technique improved human memory draws brain systems support different kinds of memory. The main distinction is between our capacity change as the result of experience and in that sense deserves the term memory, but the change happens

  20. The Human Nervous System: A Framework for Teaching and the Teaching Brain

    ERIC Educational Resources Information Center

    Rodriguez, Vanessa

    2013-01-01

    The teaching brain is a new concept that mirrors the complex, dynamic, and context-dependent nature of the learning brain. In this article, I use the structure of the human nervous system and its sensing, processing, and responding components as a framework for a re-conceptualized teaching system. This teaching system is capable of responses on an…

  1. r Human Brain Mapping 32:15191534 (2011) r Repetition Suppression in Occipitotemporal

    E-print Network

    Henson, Rik

    2011-01-01

    neural response in certain brain regions when a task-relevant stimulus is repeated (``repetitionr Human Brain Mapping 32:1519­1534 (2011) r Repetition Suppression in Occipitotemporal Cortex. Repetition of visual objects is associated with RS in the ventral and lateral occipital/temporal regions

  2. Use of Neuroimaging to Clarify How Human Brains Perform Mental Calculations

    ERIC Educational Resources Information Center

    Ortiz, Enrique

    2010-01-01

    The purpose of this study was to analyze participants' levels of hemoglobin as they performed arithmetic mental calculations using Optical Topography (OT, helmet type brain-scanning system, also known as Functional Near-Infrared Spectroscopy or fNIRS). A central issue in cognitive neuroscience involves the study of how the human brain encodes and…

  3. Natural Learning for a Connected World: Education, Technology, and the Human Brain

    ERIC Educational Resources Information Center

    Caine, Renate N.; Caine, Geoffrey

    2011-01-01

    Why do video games fascinate kids so much that they will spend hours pursuing a difficult skill? Why don't they apply this kind of intensity to their schoolwork? These questions are answered by the authors who pioneered brain/mind learning with the publication of "Making Connections: Teaching and the Human Brain". In their new book, "Natural…

  4. Development of Spatial and Verbal Working Memory Capacity in the Human Brain

    ERIC Educational Resources Information Center

    Thomason, Moriah E.; Race, Elizabeth; Burrows, Brittany; Whitfield-Gabrieli, Susan; Glover, Gary H.; Gabrieli, John D. E.

    2009-01-01

    A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between children (ages 7-12 years) and adults (ages 20-29 years) performing tests of verbal and spatial WM with varying amounts (loads)…

  5. WINTER/SPRING 19 hen trauma to the human brain occurs,

    E-print Network

    Robertson, Lynn

    on the location and extent of brain tissue affected. One striking difference in the deficits observed dependsWINTER/SPRING 19 W hen trauma to the human brain occurs, functional loss will depend accompany left-hemisphere stroke. It is obvi- ous when a loved one cannot speak or has difficulty

  6. Functional specificity in the human brain: A window into the functional architecture of the mind

    E-print Network

    Kanwisher, Nancy

    Functional specificity in the human brain: A window into the functional architecture of the mind Nancy Kanwisher1 McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 This contribution is part of the special series of Inaugural Articles by members

  7. Human Brain Mapping 2009 Print Abstract Number: 993 Submitted By: Xue Hua

    E-print Network

    Thompson, Paul

    : In a longitudinal MRI study, we applied tensor-based morphometry (TBM) to generate 3D maps tracking brainHuman Brain Mapping 2009 Print Abstract Number: 993 Submitted By: Xue Hua Last Modified: January 9; alpha = 0.05, power = 80 or 90%). Power numbers were computed to gauge the effects of varying two

  8. Notch-1 Signalling Is Activated in Brain Arteriovenous Malformations in Humans

    ERIC Educational Resources Information Center

    ZhuGe, Qichuan; Zhong, Ming; Zheng, WeiMing; Yang, Guo-Yuan; Mao, XiaoOu; Xie, Lin; Chen, Gourong; Chen, Yongmei; Lawton, Michael T.; Young, William L.; Greenberg, David A.; Jin, Kunlin

    2009-01-01

    A role for the Notch signalling pathway in the formation of arteriovenous malformations during development has been suggested. However, whether Notch signalling is involved in brain arteriovenous malformations in humans remains unclear. Here, we performed immunohistochemistry on surgically resected brain arteriovenous malformations and found that,…

  9. Brain morphological abnormalities in 49,XXXXY syndrome: A pediatric magnetic resonance imaging study???

    PubMed Central

    Blumenthal, Jonathan D.; Baker, Eva H.; Lee, Nancy Raitano; Wade, Benjamin; Clasen, Liv S.; Lenroot, Rhoshel K.; Giedd, Jay N.

    2013-01-01

    As a group, people with the sex chromosome aneuploidy 49,XXXXY have characteristic physical and cognitive/behavioral tendencies, although there is high individual variation. In this study we use magnetic resonance imaging (MRI) to examine brain morphometry in 14 youth with 49,XXXXY compared to 42 age-matched healthy controls. Total brain size was significantly smaller (t = 9.0, p < .001), and rates of brain abnormalities such as colpocephaly, plagiocephaly, periventricular cysts, and minor craniofacial abnormalities were significantly increased. White matter lesions were identified in 50% of subjects, supporting the inclusion of 49,XXXXY in the differential diagnosis of small multifocal white matter lesions. Further evidence of abnormal development of white matter was provided by the smaller cross sectional area of the corpus callosum. These results suggest that increased dosage of genes on the X chromosome has adverse effects on white matter development. PMID:23667827

  10. Influence of nanoparticles of platinum on chicken embryo development and brain morphology

    PubMed Central

    2013-01-01

    Platinum nanoparticles (NP-Pt) are noble metal nanoparticles with unique physiochemical properties that have recently elicited much interest in medical research. However, we still know little about their toxicity and influence on general health. We investigated effects of NP-Pt on the growth and development of the chicken embryo model with emphasis on brain tissue micro- and ultrastructure. The embryos were administered solutions of NP-Pt injected in ovo at concentrations from 1 to 20 ?g/ml. The results demonstrate that NP-Pt did not affect the growth and development of the embryos; however, they induced apoptosis and decreased the number of proliferating cells in the brain tissue. These preliminary results indicate that properties of NP-Pt might be utilized in brain cancer therapy, but potential toxic side effects must be elucidated in extensive follow-up research. PMID:23705751

  11. Influence of nanoparticles of platinum on chicken embryo development and brain morphology.

    PubMed

    Prasek, Marta; Sawosz, Ewa; Jaworski, Slawomir; Grodzik, Marta; Ostaszewska, Teresa; Kamaszewski, Maciej; Wierzbicki, Mateusz; Chwalibog, Andre

    2013-01-01

    Platinum nanoparticles (NP-Pt) are noble metal nanoparticles with unique physiochemical properties that have recently elicited much interest in medical research. However, we still know little about their toxicity and influence on general health. We investigated effects of NP-Pt on the growth and development of the chicken embryo model with emphasis on brain tissue micro- and ultrastructure. The embryos were administered solutions of NP-Pt injected in ovo at concentrations from 1 to 20 ?g/ml. The results demonstrate that NP-Pt did not affect the growth and development of the embryos; however, they induced apoptosis and decreased the number of proliferating cells in the brain tissue. These preliminary results indicate that properties of NP-Pt might be utilized in brain cancer therapy, but potential toxic side effects must be elucidated in extensive follow-up research. PMID:23705751

  12. Intrinsic Functional Brain Architecture Derived from Graph Theoretical Analysis in the Human Fetus

    PubMed Central

    Thomason, Moriah E.; Brown, Jesse A.; Dassanayake, Maya T.; Shastri, Rupal; Marusak, Hilary A.; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S.; Romero, Roberto

    2014-01-01

    The human brain undergoes dramatic maturational changes during late stages of fetal and early postnatal life. The importance of this period to the establishment of healthy neural connectivity is apparent in the high incidence of neural injury in preterm infants, in whom untimely exposure to ex-uterine factors interrupts neural connectivity. Though the relevance of this period to human neuroscience is apparent, little is known about functional neural networks in human fetal life. Here, we apply graph theoretical analysis to examine human fetal brain connectivity. Utilizing resting state functional magnetic resonance imaging (fMRI) data from 33 healthy human fetuses, 19 to 39 weeks gestational age (GA), our analyses reveal that the human fetal brain has modular organization and modules overlap functional systems observed postnatally. Age-related differences between younger (GA <31 weeks) and older (GA?31 weeks) fetuses demonstrate that brain modularity decreases, and connectivity of the posterior cingulate to other brain networks becomes more negative, with advancing GA. By mimicking functional principles observed postnatally, these results support early emerging capacity for information processing in the human fetal brain. Current technical limitations, as well as the potential for fetal fMRI to one day produce major discoveries about fetal origins or antecedents of neural injury or disease are discussed. PMID:24788455

  13. To Err Is Human: Learning from Error Potentials in Brain-Computer Interfaces

    E-print Network

    To Err Is Human: Learning from Error Potentials in Brain-Computer Interfaces Ricardo Chavarriaga1 of a new kind of human-computer interaction where the former provides monitoring signals that can be used, respectively. Moreover, evoked potentials have also been described when errors are generated by a human

  14. Visual motion and the human brain: what has neuroimaging Jody Culham a,*

    E-print Network

    He, Sheng

    ). This interest is not at all surprising given that it is an extremely important faculty of the human mind. LifeVisual motion and the human brain: what has neuroimaging told us? Jody Culham a,* , Sheng He b,1 of human motion perception, complementing established techniques such as psychophysics, neurophysiology

  15. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  16. Preparation, characterisation and transcriptome analysis of RNA frm human vCJD brains

    E-print Network

    Sherwood, Karen

    2008-01-01

    The pathological mechanisms of variant Creutzfeldt-Jakob disease (vCJD) in the human brain remain poorly understood. Gene expression data may provide insight into the molecular mechanisms involved. This requires analysis ...

  17. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    E-print Network

    Schwartz, Ernst

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous ...

  18. Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging

    E-print Network

    Augustinack, Jean

    Ex vivo magnetic resonance imaging yields high resolution images that reveal detailed cerebral anatomy and explicit cytoarchitecture in the cerebral cortex, subcortical structures, and white matter in the human brain. Our ...

  19. Convergent transcriptional specializations in the brains of humans and song-learning birds

    PubMed Central

    Pfenning, Andreas R.; Hara, Erina; Whitney, Osceola; Rivas, Miriam V.; Wang, Rui; Roulhac, Petra L.; Howard, Jason T.; Wirthlin, Morgan; Lovell, Peter V.; Ganapathy, Ganeshkumar; Mouncastle, Jacquelyn; Moseley, M. Arthur; Thompson, J. Will; Soderblom, Erik J.; Iriki, Atsushi; Kato, Masaki; Gilbert, M. Thomas P.; Zhang, Guojie; Bakken, Trygve; Bongaarts, Angie; Bernard, Amy; Lein, Ed; Mello, Claudio V.; Hartemink, Alexander J.; Jarvis, Erich D.

    2015-01-01

    Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes. PMID:25504733

  20. Convergent transcriptional specializations in the brains of humans and song-learning birds.

    PubMed

    Pfenning, Andreas R; Hara, Erina; Whitney, Osceola; Rivas, Miriam V; Wang, Rui; Roulhac, Petra L; Howard, Jason T; Wirthlin, Morgan; Lovell, Peter V; Ganapathy, Ganeshkumar; Mouncastle, Jacquelyn; Moseley, M Arthur; Thompson, J Will; Soderblom, Erik J; Iriki, Atsushi; Kato, Masaki; Gilbert, M Thomas P; Zhang, Guojie; Bakken, Trygve; Bongaarts, Angie; Bernard, Amy; Lein, Ed; Mello, Claudio V; Hartemink, Alexander J; Jarvis, Erich D

    2014-12-12

    Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes. PMID:25504733

  1. Medical Imaging and the Human Brain: Being Warped is Not Always a Bad Thing

    SciTech Connect

    Patterson, James C. II

    2005-03-31

    The capacity to look inside the living human brain and image its function has been present since the early 1980s. There are some clinicians who use functional brain imaging for diagnostic or prognostic purposes, but much of the work done still relates to research evaluation of brain function. There is a striking dichotomy in the use of functional brain imaging between these two fields. Clinical evaluation of a brain PET or SPECT scan is subjective; that is, a Nuclear Medicine physician examines the brain image, and states whether the brain image looks normal or abnormal. On the other hand, modern research evaluation of functional brain images is almost always objective. Brain images are processed and analyzed with advanced software tools, and a mathematical result that relates to regional changes in brain activity is provided. The potential for this research methodology to provide a more accurate and reliable answer to clinical questions about brain function and pathology are immense, but there are still obstacles to overcome. Foremost in this regard is the use of a standardized normal control database for comparison of patient scan data. The tools and methods used in objective analysis of functional imaging data, as well as potential clinical applications will be the focus of my presentation.

  2. On the Theoretical Possibility of Quantum Visual Information Transfer to the Human Brain

    E-print Network

    V. Salari; M. Rahnama; J. A. Tuszynski

    2010-12-13

    The feasibility of wave function collapse in the human brain has been the subject of vigorous scientific debates since the advent of quantum theory. Scientists like Von Neumann, London, Bauer and Wigner (initially) believed that wave function collapse occurs in the brain or is caused by the mind of the observer. It is a legitimate question to ask how human brain can receive subtle external visual quantum information intact when it must pass through very noisy and complex pathways from the eye to the brain? There are several approaches to investigate information processing in the brain, each of which presents a different set of conclusions. Penrose and Hameroff have hypothesized that there is quantum information processing inside the human brain whose material substrate involves microtubules and consciousness is the result of a collective wavefunction collapse occurring in these structures. Conversely, Tegmark stated that owing to thermal decoherence there cannot be any quantum processing in neurons of the brain and processing in the brain must be classical for cognitive processes. However, Rosa and Faber presented an argument for a middle way which shows that none of the previous authors are completely right and despite the presence of decoherence, it is still possible to consider the brain to be a quantum system. Additionally, Thaheld, has concluded that quantum states of photons do collapse in the human eye and there is no possibility for collapse of visual quantum states in the brain and thus there is no possibility for the quantum state reduction in the brain. In this paper we conclude that if we accept the main essence of the above approaches taken together, each of them can provide a different part of a teleportation mechanism.

  3. Human Behavior, Learning, and the Developing Brain: Typical Development

    ERIC Educational Resources Information Center

    Coch, Donna, Ed.; Fischer, Kurt W., Ed.; Dawson, Geraldine, Ed.

    2010-01-01

    This volume brings together leading authorities from multiple disciplines to examine the relationship between brain development and behavior in typically developing children. Presented are innovative cross-sectional and longitudinal studies that shed light on brain-behavior connections in infancy and toddlerhood through adolescence. Chapters…

  4. Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control

    PubMed Central

    Cole, Michael W.; Laurent, Patryk; Stocco, Andrea

    2012-01-01

    The human ability to flexibly adapt to novel circumstances is extraordinary. Perhaps the most illustrative yet underappreciated form of this cognitive flexibility is rapid instructed task learning (RITL) – the ability to rapidly reconfigure our minds to perform new tasks from instruction. This ability is important for everyday life (e.g., learning to use new technologies), and is used to instruct participants in nearly every study of human cognition. We review the development of RITL as a circumscribed domain of cognitive neuroscience investigation, culminating in recent demonstrations that RITL is implemented via brain circuits centered on lateral prefrontal cortex. We then build on this and other insights to develop an integrative theory of cognitive flexibility and cognitive control, identifying theoretical principles and mechanisms that may make RITL possible in the human brain. Insights gained from this new theoretical account have important implications for further developments and applications of RITL research. PMID:23065743

  5. New X-chromosomal interactors of dFMRP regulate axonal and synaptic morphology of brain neurons in Drosophila melanogaster

    PubMed Central

    Georgieva, Dimitrina; Dimitrov, Roumen; Kitanova, Meglena; Genova, Ginka

    2014-01-01

    Fragile X syndrome is a neuro-developmental disease caused by transcriptional inactivation of the gene FMR1 (fragile X mental retardation 1) and loss of its protein product FMRP. FMRP has multiple neuronal functions which are implemented together with other proteins. To better understand these functions, the aim of this study was to reveal new protein interactors of dFMRP. In a forward genetic screen, we isolated ethyl-metanesulphonate-induced X-chromosomal modifier mutations of dfmr1. Four of them were identified and belong to the genes: peb/hindsight, rok, shaggy and ras. They are dominant suppressors of the dfmr1 overexpression wing phenotype ‘notched wings’. These mutations dominantly affected the axonal and synaptic morphology of the lateral ventral neurons (LNv's) in adult Drosophila brains. Heterozygotes for each of them displayed effects in the axonal growth, pathfinding, branching and in the synapse formation of these neurons. Double heterozygotes for both dfmr1-null mutation and for each of the suppressor mutations showed robust genetic interactions in the fly central nervous system. The mutations displayed severe defects in the axonal growth and synapse formation of the LNv's in adult brains. Our biochemical studies showed that neither of the proteins – Rok, Shaggy, Peb/Hnt or Ras – encoded by the four mutated genes regulates the protein level of dFMRP, but dFMRP negatively regulates the protein expression level of Rok in the brain. Altogether, these data suggest that Rok, Shaggy, Peb/Hnt and Ras are functional partners of dFMRP, which are required for correct wing development and for neuronal connectivity in Drosophila brain.

  6. Triple-echo steady-state T2 relaxometry of the human brain at high to ultra-high fields.

    PubMed

    Heule, Rahel; Bär, Peter; Mirkes, Christian; Scheffler, Klaus; Trattnig, Siegfried; Bieri, Oliver

    2014-09-01

    Quantitative MRI techniques, such as T2 relaxometry, have demonstrated the potential to detect changes in the tissue microstructure of the human brain with higher specificity to the underlying pathology than in conventional morphological imaging. At high to ultra-high field strengths, quantitative MR-based tissue characterization benefits from the higher signal-to-noise ratio traded for either improved resolution or reduced scan time, but is impaired by severe static (B0 ) and transmit (B1 ) field heterogeneities. The objective of this study was to derive a robust relaxometry technique for fast T2 mapping of the human brain at high to ultra-high fields, which is highly insensitive to B0 and B1 field variations. The proposed method relies on a recently presented three-dimensional (3D) triple-echo steady-state (TESS) imaging approach that has proven to be suitable for fast intrinsically B1 -insensitive T2 relaxometry of rigid targets. In this work, 3D TESS imaging is adapted for rapid high- to ultra-high-field two-dimensional (2D) acquisitions. The achieved short scan times of 2D TESS measurements reduce motion sensitivity and make TESS-based T2 quantification feasible in the brain. After validation in vitro and in vivo at 3?T, T2 maps of the human brain were obtained at 7 and 9.4?T. Excellent agreement between TESS-based T2 measurements and reference single-echo spin-echo data was found in vitro and in vivo at 3?T, and T2 relaxometry based on TESS imaging was proven to be feasible and reliable in the human brain at 7 and 9.4?T. Although prominent B0 and B1 field variations occur at ultra-high fields, the T2 maps obtained show no B0 - or B1 -related degradations. In conclusion, as a result of the observed robustness, TESS T2 may emerge as a valuable measure for the early diagnosis and progression monitoring of brain diseases in high-resolution 2D acquisitions at high to ultra-high fields. PMID:24986791

  7. Development of Cortical Morphology Evaluated with Longitudinal MR Brain Images of Preterm Infants

    PubMed Central

    Moeskops, Pim; Benders, Manon J. N. L.; Kersbergen, Karina J.; Groenendaal, Floris; de Vries, Linda S.; Viergever, Max A.; Išgum, Ivana

    2015-01-01

    Introduction The cerebral cortex develops rapidly in the last trimester of pregnancy. In preterm infants, brain development is very vulnerable because of their often complicated extra-uterine conditions. The aim of this study was to quantitatively describe cortical development in a cohort of 85 preterm infants with and without brain injury imaged at 30 and 40 weeks postmenstrual age (PMA). Methods In the acquired T2-weighted MR images, unmyelinated white matter (UWM), cortical grey matter (CoGM), and cerebrospinal fluid in the extracerebral space (CSF) were automatically segmented. Based on these segmentations, cortical descriptors evaluating volume, surface area, thickness, gyrification index, and global mean curvature were computed at both time points, for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes separately. Additionally, visual scoring of brain abnormality was performed using a conventional scoring system at 40 weeks PMA. Results The evaluated descriptors showed larger change in the occipital lobes than in the other lobes. Moreover, the cortical descriptors showed an association with the abnormality scores: gyrification index and global mean curvature decreased, whereas, interestingly, median cortical thickness increased with increasing abnormality score. This was more pronounced at 40 weeks PMA than at 30 weeks PMA, suggesting that the period between 30 and 40 weeks PMA might provide a window of opportunity for intervention to prevent delay in cortical development. PMID:26161536

  8. Regional growth and atlasing of the developing human brain.

    PubMed

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  9. Calculation of hemoglobin saturation from in vivo human brain tissues using a modified diffusion theory model

    NASA Astrophysics Data System (ADS)

    Johns, Maureen; Giller, Cole A.; Liu, Hanli

    2001-06-01

    During deep brain stimulation, a neurosurgical procedure to relieve tremors, a thin electrode is inserted into deep brain regions to provide stimulation. Accurate electrode placement is crucial to provide tremor suppression without damaging adjacent optical and motor regions. A portable, real-time display fiber optic reflectance probe is used to obtain reflected signals from living, human brain tissues. The optical results are compared to pre-operative MRI scans to confirm anatomical structures and verify electrode placement. In addition to reflectance, tissue oxygen saturation may assist brain tissue identification.

  10. A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar.

    PubMed

    Momtazi, Moein; Kwan, Peter; Ding, Jie; Anderson, Colin C; Honardoust, Dariush; Goekjian, Serge; Tredget, Edward E

    2013-01-01

    Hypertrophic scar (HSc) is a fibroproliferative disorder that occurs following deep dermal injury. Lack of a relevant animal model is one barrier toward better understanding its pathophysiology. Our objective is to demonstrate that grafting split-thickness human skin onto nude mice results in survival of engrafted human skin and murine scars that are morphologically, histologically, and immunohistochemically consistent with human HSc. Twenty nude mice were xenografted with split-thickness human skin. Animals were euthanized at 30, 60, 120, and 180 days postoperatively. Eighteen controls were autografted with full-thickness nude mouse skin and euthanized at 30 and 60 days postoperatively. Scar biopsies were harvested at each time point. Blinded scar assessment was performed using a modified Manchester Scar Scale. Histologic analysis included hematoxylin and eosin, Masson's trichrome, toluidine blue, and picrosirius red staining. Immunohistochemistry included anti-human human leukocyte antigen-ABC, ?-smooth muscle actin, decorin, and biglycan staining. Xenografted mice developed red, shiny, elevated scars similar to human HSc and supported by blinded scar assessment. Autograft controls appeared morphologically and histologically similar to normal skin. Xenografts survived up to 180 days and showed increased thickness, loss of hair follicles, adnexal structures and rete pegs, hypercellularity, whorled collagen fibers parallel to the surface, myofibroblasts, decreased decorin and increased biglycan expression, and increased mast cell density. Grafting split-thickness human skin onto nude mice results in persistent scars that show morphologic, histologic, and immunohistochemical consistency with human HSc. Therefore, this model provides a promising technique to study HSc formation and to test novel treatment options. PMID:23126488

  11. C A N C E R I M A G I N G Detection of human brain tumor infiltration with

    E-print Network

    Xie, Xiaoliang Sunney

    C A N C E R I M A G I N G Detection of human brain tumor infiltration with quantitative stimulated, to reveal glioma infiltration in animal models. We show that SRS reveals human brain tumor infil- tration Oren Sagher,2 Xiaoliang Sunney Xie,1 Daniel A. Orringer2 Differentiating tumor from normal brain

  12. Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development.

    PubMed

    Brenna, J Thomas; Carlson, Susan E

    2014-12-01

    Humans evolved a uniquely large brain among terrestrial mammals. Brain and nervous tissue is rich in the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). Docosahexaenoic acid is required for lower and high order functions in humans because of understood and emerging molecular mechanisms. Among brain components that depend on dietary components, DHA is limiting because its synthesis from terrestrial plant food precursors is low but its utilization when consumed in diet is very efficient. Negligible DHA is found in terrestrial plants, but in contrast, DHA is plentiful at the shoreline where it is made by single-celled organisms and plants, and in the seas supports development of very large marine mammal brains. Modern human brains accumulate DHA up to age 18, most aggressively from about half-way through gestation to about two years of age. Studies in modern humans and non-human primates show that modern infants consuming infant formulas that include only DHA precursors have lower DHA levels than for those with a source of preformed DHA. Functional measures show that infants consuming preformed DHA have improved visual and cognitive function. Dietary preformed DHA in the breast milk of modern mothers supports many-fold greater breast milk DHA than is found in the breast milk of vegans, a phenomenon linked to consumption of shore-based foods. Most current evidence suggests that the DHA-rich human brain required an ample and sustained source of dietary DHA to reach its full potential. PMID:24780861

  13. Nicotine regulates the expression of UDP-glucuronosyltransferase (UGT) in humanized UGT1 mouse brain.

    PubMed

    Sakamoto, Masaya; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2015-08-01

    UDP-glucuronosyltransferase (UGT) is a family of enzymes that catalyze the glucuronidation of various compounds, and thereby has an important role in metabolism and detoxification of a large number of xenobiotic and endogenous compounds. UGTs are present highly in the liver and small intestine, while several investigations on quantification of UGT mRNA reported that UGTs were also expressed in the brain. However, reported expression patterns of UGT isoforms in human brain were often incongruous with each other. In the present study, therefore, we investigated UGT mRNA expressions in brains of humanized UGT1 (hUGT1) mice. We found that among the human UGT1 members, UGT1A1, 1A3, and 1A6 were expressed in the brain. We further observed that nicotine (3 mg/kg) induced the expression of UGT1A3 mRNA in the brain, but not liver. While it was not statistically significant, the nicotine treatment resulted in an increase in the chenodeoxycholic acid glucuronide-formation activity in the brain microsomes. UGT1A3 is involved in metabolism of various antidepressants and non-steroidal antiinflammatory drugs, which exhibit their pharmacological effects in the brain. Therefore, nicotine-treated hUGT1 mice might be useful to investigate the role of brain UGT1A3 in the regulation of local levels of these drugs and their response. PMID:26210671

  14. Neuroleptic drugs in the human brain: clinical impact of persistence and region-specific distribution.

    PubMed

    Kornhuber, Johannes; Wiltfang, Jens; Riederer, Peter; Bleich, Stefan

    2006-08-01

    After discontinuation of neuroleptic agents, their effects are still present for a long time. The exact underlaying mechanisms are still unclear. In two previous studies we measured the concentrations and region-specific distribution of haloperidol (Kornhuber et al. 1999) and levomepromazine (Kornhuber et al. 2006) in postmortem human brain tissues. The aim of the present paper is to compare the results of these two studies. Even after short-term treatment, haloperidol and levomepromazine concentrations reach high levels in human brain tissue. Haloperidol concentrations in brain tissue are 10-30 times higher than the optimum serum concentrations in the treatment of schizophrenia. The brain-to-blood concentration ratio of levomepromazine is about 10. The estimated elimination half-life of these drugs in brain tissue are 6.8 days (haloperidol), 7.9 days (levomepromazine) and 27.8 days for the metabolite desmethyl-levomepromazine, respectively. After two half-lives (about 2 weeks), a considerable amount of drug remains in brain tissue. Haloperidol concentrations appeared to be homogeneously distributed across different brain areas, whereas levomepromazine shows a region-specific distribution, with highest values in the basal ganglia. The persistence of neuroleptic drugs in the human brain might explain their prolonged effects and side effects. The region-specific distribution of levomepromazine may increase our understanding of both the preferential toxicity of neuroleptic drugs against basal ganglia structures and higher basal ganglia volumes in patients treated with neuroleptics. PMID:16788768

  15. Quantitative Morphological and Biochemical Studies on Human Downy Hairs using 3-D Quantitative Phase Imaging

    E-print Network

    Lee, SangYun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    This study presents the morphological and biochemical findings on human downy arm hairs using 3-D quantitative phase imaging techniques. 3-D refractive index tomograms and high-resolution 2-D synthetic aperture images of individual downy arm hairs were measured using a Mach-Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the biochemical and morphological parameters of downy hairs were non-invasively quantified including the mean refractive index, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.

  16. [Determination of the power jigsaw sawing velocity from the morphological properties of the affected human skin].

    PubMed

    Nazarov, Iu V; Tolmachev, I A

    2014-01-01

    The objective of the present work was to elucidate the characteristic morphological features of the injuries inflicted to the human skin by a power jigsaw depending on the sawing velocity. The study has demonstrated the possibility of mathematical analysis of the sawing velocity based on the morphological peculiarities of the injury to the skin. The data obtained indicate that forensic medical expertise of the injuries inflicted by a power jigsaw can be based on the study of the width of the abraded edges of the wound in order to determine the sawing velocity. PMID:25796928

  17. Integration of visual and motor functional streams in the human brain.

    PubMed

    Sepulcre, Jorge

    2014-05-01

    A long-standing difficulty in brain research has been to disentangle how information flows across circuits composed by multiple local and distant cerebral areas. At the large-scale level, several brain imaging methods have contributed to the understanding of those circuits by capturing the covariance or coupling patterns of blood oxygen level-dependent (BOLD) activity between distributed brain regions. The hypothesis is that underlying information processes are closely associated to synchronized brain activity, and therefore to the functional connectivity structure of the human brain. In this study, we have used a recently developed method called stepwise functional connectivity analysis. Our results show that motor and visual connectivity merge in a multimodal integration network that links together perception, action and cognition in the human functional connectome. PMID:24699175

  18. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotovi?, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  19. The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity

    PubMed Central

    DeFelipe, Javier

    2011-01-01

    The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of microcircuits with a similar basic structure, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective. PMID:21647212

  20. Concentration of rare earth elements, As, and Th in human brain and brain tumors, determined by neutron activation analysis.

    PubMed

    Zhuang, G; Zhou, Y; Lu, H; Lu, W; Zhou, M; Wang, Y; Tan, M

    1996-01-01

    Toxic elements As and Th, six rare-earth elemental profiles of brain tumor tissues from 16 patients of astrocytomas (grade I-III), and normal human brain tissues of 18 male, age-matched autopsies serving as controls have been studied by radiochemical neutron activation analysis. P-204 [di(2-ethylhexyl) phosphate] extraction chromatography column was used for group separation of rare-earth element (REE) by one step. Compared with the normal brain tissues, the analytical results showed that the concentrations of Th, La, Ce, Gd, and Lu were significantly higher in tumor tissues (P < 0.01 or 0.001). The possible effects of REE on tumor cell were discussed. PMID:8862736

  1. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood–brain barrier

    PubMed Central

    St-Amour, Isabelle; Paré, Isabelle; Alata, Wael; Coulombe, Katherine; Ringuette-Goulet, Cassandra; Drouin-Ouellet, Janelle; Vandal, Milène; Soulet, Denis; Bazin, Renée; Calon, Frédéric

    2013-01-01

    Intravenous immunoglobulin (IVIg) is currently evaluated in clinical trials for the treatment of various disorders of the central nervous system. To assess its capacity to reach central therapeutic targets, the brain bioavailability of IVIg must be determined. We thus quantified the passage of IVIg through the blood–brain barrier (BBB) of C57Bl/6 mice using complementary quantitative and qualitative methodologies. As determined by enzyme-linked immunosorbent assay, a small proportion of systemically injected IVIg was detected in the brain of mice (0.009±0.001% of injected dose in the cortex) whereas immunostaining revealed localization mainly within microvessels and less frequently in neurons. Pharmacokinetic analyses evidenced a low elimination rate constant (0.0053? per hour) in the cortex, consistent with accumulation within cerebral tissue. In situ cerebral perfusion experiments revealed that a fraction of IVIg crossed the BBB without causing leakage. A dose-dependent decrease of brain uptake was consistent with a saturable blood-to-brain transport mechanism. Finally, brain uptake of IVIg after a subchronic treatment was similar in the 3xTg-AD mouse model of Alzheimer disease compared with nontransgenic controls. In summary, our results provide evidence of BBB passage and bioavailability of IVIg into the brain in the absence of BBB leakage and in sufficient concentration to interact with the therapeutic targets. PMID:24045402

  2. Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data

    PubMed Central

    2015-01-01

    Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. Results In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. Conclusions This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation. PMID:26043779

  3. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest.

    PubMed

    Fauvel, Baptiste; Groussard, Mathilde; Chételat, Gaël; Fouquet, Marine; Landeau, Brigitte; Eustache, Francis; Desgranges, Béatrice; Platel, Hervé

    2014-04-15

    The aim of this study was to explore whether musical practice-related gray matter increases in brain regions are accompanied by modifications in their resting-state functional connectivity. 16 young musically experienced adults and 17 matched nonmusicians underwent an anatomical magnetic resonance imaging (MRI) and a resting-state functional MRI (rsfMRI). A whole-brain two-sample t test run on the T1-weighted structural images revealed four clusters exhibiting significant increases in gray matter (GM) volume in the musician group, located within the right posterior and middle cingulate gyrus, left superior temporal gyrus and right inferior orbitofrontal gyrus. Each cluster was used as a seed region to generate and compare whole-brain resting-state functional connectivity maps. The two clusters within the cingulate gyrus exhibited greater connectivity for musicians with the right prefrontal cortex and left temporal pole, which play a role in autobiographical and semantic memory, respectively. The cluster in the left superior temporal gyrus displayed enhanced connectivity with several language-related areas (e.g., left premotor cortex, bilateral supramarginal gyri). Finally, the cluster in the right inferior frontal gyrus displayed more synchronous activity at rest with claustrum, areas thought to play a role in binding sensory and motor information. We interpreted these findings as the consequence of repeated collaborative use in general networks supporting some of the memory, perceptual-motor and emotional features of musical practice. PMID:24418502

  4. Investigation of genes important in neurodevelopment disorders in adult human brain.

    PubMed

    Maussion, Gilles; Diallo, Alpha B; Gigek, Carolina O; Chen, Elizabeth S; Crapper, Liam; Théroux, Jean-Francois; Chen, Gary G; Vasuta, Cristina; Ernst, Carl

    2015-10-01

    Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40-50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to developing human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention. PMID:26194112

  5. Responses to Vocalizations and Auditory Controls in the Human Newborn Brain

    PubMed Central

    Cristia, Alejandrina; Minagawa, Yasuyo; Dupoux, Emmanuel

    2014-01-01

    In the adult brain, speech can recruit a brain network that is overlapping with, but not identical to, that involved in perceiving non-linguistic vocalizations. Using the same stimuli that had been presented to human 4-month-olds and adults, as well as adult macaques, we sought to shed light on the cortical networks engaged when human newborns process diverse vocalization types. Near infrared spectroscopy was used to register the response of 40 newborns' perisylvian regions when stimulated with speech, human and macaque emotional vocalizations, as well as auditory controls where the formant structure was destroyed but the long-term spectrum was retained. Left fronto-temporal and parietal regions were significantly activated in the comparison of stimulation versus rest, with unclear selectivity in cortical activation. These results for the newborn brain are qualitatively and quantitatively compared with previous work on newborns, older human infants, adult humans, and adult macaques reported in previous work. PMID:25517997

  6. Studying variability in human brain aging in a population-based German cohort—rationale and design of 1000BRAINS

    PubMed Central

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W.; Gras, Vincent; Eickhoff, Simon B.; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E.; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C.; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M.; Sturma, Dieter; Bauer, Andreas; Jon Shah, N.; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45–75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates. PMID:25071558

  7. A Mind of Three Minds: Evolution of the Human Brain

    ERIC Educational Resources Information Center

    MacLean, Paul D.

    1978-01-01

    The author examines the evolutionary and neural roots of a triune intelligence comprised of a primal mind, an emotional mind, and a rational mind. A simple brain model and some definitions of unfamiliar behavioral terms are included. (Author/MA)

  8. Computational modeling of primary blast effects on the human brain

    E-print Network

    Nyein, Michelle K. (Michelle Kyaw)

    2013-01-01

    Since the beginning of the military conflicts in Iraq and Afghanistan, there have been over 250,000 diagnoses of traumatic brain injury (TBI) in the U.S. military, with the majority of incidents caused by improvised explosive ...

  9. Structure-function relationships in human brain development

    E-print Network

    Saygin, Zeynep Mevhibe

    2012-01-01

    The integration of anatomical, functional, and developmental approaches in cognitive neuroscience is essential for generating mechanistic explanations of brain function. In this thesis, I first establish a proof-of-principle ...

  10. Fifth dimension of life and the 4/5 allometric scaling law for human brain.

    PubMed

    He, Ji-Huan; Zhang, Juan

    2004-01-01

    Brain cells are not spherical. The basal metabolic rate (B) of a spherical cell scales as B approximately r2, where r is the radius of the cell; that of a brain cell scales as B approximately r(d), where r is the characteristic radius of the cell and d is the fractal dimensionality of its contour. The fractal geometry of the cell leads to a 4/5 allometric scaling law for human brain, uniquely endowing humans with a 5th dimension and successfully explains why the scaling exponent varies during rest and exercise. A striking analogy between Kleiber's 3/4 law and Newton's second law is heuristically illustrated. A physical explanation is given for the 4th dimension of life for three-dimensional organisms and the 5th dimension for human brain. PMID:15563403

  11. Distribution and possible metabolic role of class III alcohol dehydrogenase in the human brain.

    PubMed

    Giri, P R; Linnoila, M; O'Neill, J B; Goldman, D

    1989-02-27

    In human brain, the sole alcohol dehydrogenase (ADH) present in significant quantity has been shown to be Class III (chi) ADH and this ADH is ineffective in generating potentially toxic and reactive acetaldehyde from ethanol at concentrations attainable in living brain tissue. We have extended this finding to show that Class I ADH potentially present is undetectable even when concentrated several hundred-fold. Purified Class III ADH from human brain is identical in its pattern of tryptic peptides and in other properties to Class III ADH from human liver. Immunohistochemical staining and western immunoblots using polyclonal antibodies reveal that Class III ADH is widely distributed in brian and most concentrated in the subependymal layer and perivascular areas. Class III ADH closely resembles omega-hydroxyfatty acid dehydrogenase and a possible role for the brain enzyme is in the oxidation of long chain fatty alcohols and omega-hydroxyfatty acids. PMID:2650803

  12. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    PubMed Central

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  13. Hyper-Brain Networks Support Romantic Kissing in Humans

    PubMed Central

    Müller, Viktor; Lindenberger, Ulman

    2014-01-01

    Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies. Here, we introduce a method of network construction based on the cross-frequency coupling (CFC) and examine whether coordinated social interaction is associated with CFC within and between brains. Specifically, we compare the electroencephalograms (EEG) of 15 heterosexual couples during romantic kissing to kissing one’s own hand, and to kissing one another while performing silent arithmetic. Using graph-theory methods, we identify theta–alpha hyper-brain networks, with alpha serving a cleaving or pacemaker function. Network strengths were higher and characteristic path lengths shorter when individuals were kissing each other than when they were kissing their own hand. In both partner-oriented kissing conditions, greater strength and shorter path length for 5-Hz oscillation nodes correlated reliably with greater partner-oriented kissing satisfaction. This correlation was especially strong for inter-brain connections in both partner-oriented kissing conditions but not during kissing one’s own hand. Kissing quality assessed after the kissing with silent arithmetic correlated reliably with intra-brain strength of 10-Hz oscillation nodes during both romantic kissing and kissing with silent arithmetic. We conclude that hyper-brain networks based on CFC may capture neural mechanisms that support interpersonally coordinated voluntary action and bonding behavior. PMID:25375132

  14. Spontaneous functional network dynamics and associated structural substrates in the human brain

    PubMed Central

    Liao, Xuhong; Yuan, Lin; Zhao, Tengda; Dai, Zhengjia; Shu, Ni; Xia, Mingrui; Yang, Yihong; Evans, Alan; He, Yong

    2015-01-01

    Recent imaging connectomics studies have demonstrated that the spontaneous human brain functional networks derived from resting-state functional MRI (R-fMRI) include many non-trivial topological properties, such as highly efficient small-world architecture and densely connected hub regions. However, very little is known about dynamic functional connectivity (D-FC) patterns of spontaneous human brain networks during rest and about how these spontaneous brain dynamics are constrained by the underlying structural connectivity. Here, we combined sub-second multiband R-fMRI data with graph-theoretical approaches to comprehensively investigate the dynamic characteristics of the topological organization of human whole-brain functional networks, and then employed diffusion imaging data in the same participants to further explore the associated structural substrates. At the connection level, we found that human whole-brain D-FC patterns spontaneously fluctuated over time, while homotopic D-FC exhibited high connectivity strength and low temporal variability. At the network level, dynamic functional networks exhibited time-varying but evident small-world and assortativity architecture, with several regions (e.g., insula, sensorimotor cortex and medial prefrontal cortex) emerging as functionally persistent hubs (i.e., highly connected regions) while possessing large temporal variability in their degree centrality. Finally, the temporal characteristics (i.e., strength and variability) of the connectional and nodal properties of the dynamic brain networks were significantly associated with their structural counterparts. Collectively, we demonstrate the economical, efficient, and flexible characteristics of dynamic functional coordination in large-scale human brain networks during rest, and highlight their relationship with underlying structural connectivity, which deepens our understandings of spontaneous brain network dynamics in humans. PMID:26388757

  15. Description and classification of normal and pathological aging processes based on brain magnetic resonance imaging morphology measures

    PubMed Central

    Perez-Gonzalez, Jorge Luis; Yanez-Suarez, Oscar; Bribiesca, Ernesto; Cosío, Fernando Arámbula; Jiménez, Juan Ramón; Medina-Bañuelos, Veronica

    2014-01-01

    Abstract. We present a discrete compactness (DC) index, together with a classification scheme, based both on the size and shape features extracted from brain volumes, to determine different aging stages: healthy controls (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). A set of 30 brain magnetic resonance imaging (MRI) volumes for each group was segmented and two indices were measured for several structures: three-dimensional DC and normalized volumes (NVs). The discrimination power of these indices was determined by means of the area under the curve (AUC) of the receiver operating characteristic, where the proposed compactness index showed an average AUC of 0.7 for HC versus MCI comparison, 0.9 for HC versus AD separation, and 0.75 for MCI versus AD groups. In all cases, this index outperformed the discrimination capability of the NV. Using selected features from the set of DC and NV measures, three support vector machines were optimized and validated for the pairwise separation of the three classes. Our analysis shows classification rates of up to 98.3% between HC and AD, 85% between HC and MCI, and 93.3% for MCI and AD separation. These results outperform those reported in the literature and demonstrate the viability of the proposed morphological indices to classify different aging stages. PMID:26158061

  16. Watching brain TV and playing brain ball exploring novel BCI strategies using real-time analysis of human intracranial data.

    PubMed

    Jerbi, Karim; Freyermuth, Samson; Minotti, Lorella; Kahane, Philippe; Berthoz, Alain; Lachaux, Jean-Philippe

    2009-01-01

    A large body of evidence from animal studies indicates that motor intention can be decoded via multiple single-unit recordings or from local field potentials (LFPs) recorded not only in primary motor cortex, but also in premotor or parietal areas. In humans, reports of invasive data acquisition for the purpose of BCI developments are less numerous and signal selection for optimal control still remains poorly investigated. Here we report on our recent implementation of a real-time analysis platform for the investigation of ongoing oscillations in human intracerebral recordings and review various results illustrating its utility for the development of novel brain-computer and brain-robot interfaces. Our findings show that the insight gained both from off-line experiments and from online functional exploration can be used to guide future selection of the sites and frequency bands to be used in a translation algorithm such as the one needed for a BCI-driven cursor control. Overall, the findings reported with our online spectral analysis platforms (Brain TV and Brain Ball) indicate the feasibility of online functional exploration via intracranial recordings in humans and outline the direct benefits of this approach for the improvement of invasive BCI strategies in humans. In particular, our findings suggest that current BCI performance may be improved by using signals recorded from various systems previously unexplored in the context of BCI research such as the oscillatory activity recorded in the oculomotor networks as well as higher cognitive processes including working memory, attention, and mental calculation networks. Finally, we discuss current limitations of the methodology and outline future paths for innovative BCI research. PMID:19607998

  17. Working Memory Performance Is Correlated with Local Brain Morphology in the Medial Frontal and Anterior Cingulate Cortex in Fibromyalgia Patients: Structural Correlates of Pain-Cognition Interaction

    ERIC Educational Resources Information Center

    Luerding, R.; Weigand, T.; Bogdahn, U.; Schmidt-Wilcke, T.

    2008-01-01

    Fibromyalgia (FM) is a disorder of unknown aetiology, characterized by chronic widespread pain, stiffness and sleep disturbances. In addition, patients frequently complain of memory and attention deficits. Accumulating evidence suggests that FM is associated with CNS dysfunction and with an altered brain morphology. However, few studies have…

  18. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution.

    PubMed

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-11-01

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution. PMID:23090991

  19. Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome

    PubMed Central

    Illingworth, Robert S.; Gruenewald-Schneider, Ulrike; De Sousa, Dina; Webb, Shaun; Merusi, Cara; Kerr, Alastair R. W.; James, Keith D.; Smith, Colin; Walker, Robert; Andrews, Robert; Bird, Adrian P.

    2015-01-01

    The possibility that alterations in DNA methylation are mechanistic drivers of development, aging and susceptibility to disease is widely acknowledged, but evidence remains patchy or inconclusive. Of particular interest in this regard is the brain, where it has been reported that DNA methylation impacts on neuronal activity, learning and memory, drug addiction and neurodegeneration. Until recently, however, little was known about the ‘landscape’ of the human brain methylome. Here we assay 1.9 million CpGs in each of 43 brain samples representing different individuals and brain regions. The cerebellum was a consistent outlier compared to all other regions, and showed over 16 000 differentially methylated regions (DMRs). Unexpectedly, the sequence characteristics of hypo- and hypermethylated domains in cerebellum were distinct. In contrast, very few DMRs distinguished regions of the cortex, limbic system and brain stem. Inter-individual DMRs were readily detectable in these regions. These results lead to the surprising conclusion that, with the exception of cerebellum, DNA methylation patterns are more homogeneous between different brain regions from the same individual, than they are for a single brain region between different individuals. This finding suggests that DNA sequence composition, not developmental status, is the principal determinant of the human brain DNA methylome. PMID:25572316

  20. Detecting Genetic Association of Common Human Facial Morphological Variation Using High Density 3D Image Registration

    PubMed Central

    Hu, Sile; Zhou, Hang; Guo, Jing; Jin, Li; Tang, Kun

    2013-01-01

    Human facial morphology is a combination of many complex traits. Little is known about the genetic basis of common facial morphological variation. Existing association studies have largely used simple landmark-distances as surrogates for the complex morphological phenotypes of the face. However, this can result in decreased statistical power and unclear inference of shape changes. In this study, we applied a new image registration approach that automatically identified the salient landmarks and aligned the sample faces using high density pixel points. Based on this high density registration, three different phenotype data schemes were used to test the association between the common facial morphological variation and 10 candidate SNPs, and their performances were compared. The first scheme used traditional landmark-distances; the second relied on the geometric analysis of 15 landmarks and the third used geometric analysis of a dense registration of ?30,000 3D points. We found that the two geometric approaches were highly consistent in their detection of morphological changes. The geometric method using dense registration further demonstrated superiority in the fine inference of shape changes and 3D face modeling. Several candidate SNPs showed potential associations with different facial features. In particular, one SNP, a known risk factor of non-syndromic cleft lips/palates, rs642961 in the IRF6 gene, was validated to strongly predict normal lip shape variation in female Han Chinese. This study further demonstrated that dense face registration may substantially improve the detection and characterization of genetic association in common facial variation. PMID:24339768

  1. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    PubMed Central

    Shu, Ni; Liu, Yaou; Duan, Yunyun; Li, Kuncheng

    2015-01-01

    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535

  2. Relaxed genetic control of cortical organization in human brains compared with chimpanzees.

    PubMed

    Gómez-Robles, Aida; Hopkins, William D; Schapiro, Steven J; Sherwood, Chet C

    2015-12-01

    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution. PMID:26627234

  3. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  4. Frequency-specific network topologies in the resting human brain

    PubMed Central

    Sasai, Shuntaro; Homae, Fumitaka; Watanabe, Hama; Sasaki, Akihiro T.; Tanabe, Hiroki C.; Sadato, Norihiro; Taga, Gentaro

    2014-01-01

    A community is a set of nodes with dense inter-connections, while there are sparse connections between different communities. A hub is a highly connected node with high centrality. It has been shown that both “communities” and “hubs” exist simultaneously in the brain's functional connectivity network (FCN), as estimated by correlations among low-frequency spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signal changes (0.01–0.10 Hz). This indicates that the brain has a spatial organization that promotes both segregation and integration of information. Here, we demonstrate that frequency-specific network topologies that characterize segregation and integration also exist within this frequency range. In investigating the coherence spectrum among 87 brain regions, we found that two frequency bands, 0.01–0.03 Hz (very low frequency [VLF] band) and 0.07–0.09 Hz (low frequency [LF] band), mainly contributed to functional connectivity. Comparing graph theoretical indices for the VLF and LF bands revealed that the network in the former had a higher capacity for information segregation between identified communities than the latter. Hubs in the VLF band were mainly located within the anterior cingulate cortices, whereas those in the LF band were located in the posterior cingulate cortices and thalamus. Thus, depending on the timescale of brain activity, at least two distinct network topologies contributed to information segregation and integration. This suggests that the brain intrinsically has timescale-dependent functional organizations. PMID:25566037

  5. Acute Effects of Cocaine in Lower Human Brain: An FMRI Study P. R. Kufahl1

    E-print Network

    Rowe, Daniel B.

    Acute Effects of Cocaine in Lower Human Brain: An FMRI Study P. R. Kufahl1 , Z. Li1 , R. Risinger1: This FMRI study used controlled doses of cocaine to induce BOLD signal changes in the human orbitofrontal cocaine-induced activation patterns across nine different subjects imaged at 1.5 Tesla. INTRODUCTION

  6. r Human Brain Mapping 0000:0000 (2010) r Eye Muscle Proprioception Is Represented

    E-print Network

    Miall, Chris

    2010-01-01

    r Human Brain Mapping 0000:00­00 (2010) r Eye Muscle Proprioception Is Represented Bilaterally of the extraocular muscles (EOM) of an eye were recently found within the con- tralateral central sulcus. In humans: The cortical representation of eye position is still uncertain. In the monkey a propriocep- tive representation

  7. Cholinergic modulation of learning and memory in the human brain as detected with functional neuroimaging

    E-print Network

    of psychopharmacological approaches in conjunction with neuroimaging. The paper will introduce the combination of neuroi- maging and psychopharmacology as a tool to study neurochemical modulation of human brain function: Acetylcholine; Neuroimaging; Learning; Memory; Review; Drug; Psychopharmacology; fMRI; PET; Human 1

  8. Functional specificity in the human brain: A window into the functional architecture of the mind

    E-print Network

    Kanwisher, Nancy

    Is the human mind/brain composed of a set of highly specialized components, each carrying out a specific aspect of human cognition, or is it more of a general-purpose device, in which each component participates in a wide ...

  9. Topological organization of the human brain functional connectome across the lifespan.

    PubMed

    Cao, Miao; Wang, Jin-Hui; Dai, Zheng-Jia; Cao, Xiao-Yan; Jiang, Li-Li; Fan, Feng-Mei; Song, Xiao-Wei; Xia, Ming-Rui; Shu, Ni; Dong, Qi; Milham, Michael P; Castellanos, F Xavier; Zuo, Xi-Nian; He, Yong

    2014-01-01

    Human brain function undergoes complex transformations across the lifespan. We employed resting-state functional MRI and graph-theory approaches to systematically chart the lifespan trajectory of the topological organization of human whole-brain functional networks in 126 healthy individuals ranging in age from 7 to 85 years. Brain networks were constructed by computing Pearson's correlations in blood-oxygenation-level-dependent temporal fluctuations among 1024 parcellation units followed by graph-based network analyses. We observed that the human brain functional connectome exhibited highly preserved non-random modular and rich club organization over the entire age range studied. Further quantitative analyses revealed linear decreases in modularity and inverted-U shaped trajectories of local efficiency and rich club architecture. Regionally heterogeneous age effects were mainly located in several hubs (e.g., default network, dorsal attention regions). Finally, we observed inverse trajectories of long- and short-distance functional connections, indicating that the reorganization of connectivity concentrates and distributes the brain's functional networks. Our results demonstrate topological changes in the whole-brain functional connectome across nearly the entire human lifespan, providing insights into the neural substrates underlying individual variations in behavior and cognition. These results have important implications for disease connectomics because they provide a baseline for evaluating network impairments in age-related neuropsychiatric disorders. PMID:24333927

  10. Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains

    PubMed Central

    Orliac, M. J.; Gilissen, E.

    2012-01-01

    The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls. PMID:22764165

  11. Stereotactic PET atlas of the human brain: Aid for visual interpretation of functional brain images

    SciTech Connect

    Minoshima, S.; Koeppe, R.A.; Frey, A.; Ishihara, M.; Kuhl, D.E.

    1994-06-01

    In the routine analysis of functional brain images obtained by PET, subjective visual interpretation is often used for anatomic localization. To enhance the accuracy and consistency of the anatomic interpretation, a PET stereotactic atlas and localization approach was designed for functional brain images. The PET atlas was constructed from a high-resolution [{sup 18}F]fluorodeoxyglucose (FDG) image set of a normal volunteer (a 41-yr-ld woman). The image set was reoriented stereotactically, according to the intercommissural (anterior and posterior commissures) line and transformed to the standard stereotactic atlas coordinates. Cerebral structures were annotated on the transaxial planes using a proportional grid system and surface-rendered images. The stereotactic localization technique was applied to image sets from patients with Alzheimer`s disease, and areas of functional alteration were localized visually by referring to the PET atlas. Major brain structures were identified on both transaxial planes and surface-rendered images. In the stereotactic system, anatomic correspondence between the PET atlas and stereotactically reoriented individual image sets of patients with Alzheimer`s disease facilitated both indirect and direct localization of the cerebral structures. Because rapid stereotactic alignment methods for PET images are now available for routine use, the PET atlas will serve as an aid for visual interpretation of functional brain images in the stereotactic system. Widespread application of stereotactic localization may be used in functional brain images, not only in the research setting, but also in routine clinical situations. 41 refs., 3 figs.

  12. Human Infections with Spirometra decipiens Plerocercoids Identified by Morphologic and Genetic Analyses in Korea

    PubMed Central

    Jeon, Hyeong-Kyu; Park, Hansol; Lee, Dongmin; Choe, Seongjun; Kim, Kyu-Heon; Huh, Sun; Sohn, Woon-Mok; Chai, Jong-Yil; Eom, Keeseon S.

    2015-01-01

    Tapeworms of the genus Spirometra are pseudophyllidean cestodes endemic in Korea. At present, it is unclear which Spirometra species are responsible for causing human infections, and little information is available on the epidemiological profiles of Spirometra species infecting humans in Korea. Between 1979 and 2009, a total of 50 spargana from human patients and 2 adult specimens obtained from experimentally infected carnivorous animals were analyzed according to genetic and taxonomic criteria and classified as Spirometra erinaceieuropaei or Spirometra decipiens depending on the morphology. Morphologically, S. erinaceieuropaei and S. decipiens are different in that the spirally coiled uterus in S. erinaceieuropaei has 5-7 complete coils, while in S. decipiens it has only 4.5 coils. In addition, there is a 9.3% (146/1,566) sequence different between S. erinaceieuropaei and S. decipiens in the cox1 gene. Partial cox1 sequences (390 bp) from 35 Korean isolates showed 99.4% (388/390) similarity with the reference sequence of S. erinaceieuropaei from Korea (G1724; GenBank KJ599680) and an additional 15 Korean isolates revealed 99.2% (387/390) similarity with the reference sequences of S. decipiens from Korea (G1657; GenBank KJ599679). Based on morphologic and molecular databases, the estimated population ratio of S. erinaceieuropaei to S. decipiens was 35: 15. Our results indicate that both S. erinaceieuropaei and S. decipiens found in Korea infect humans, with S. erinaceieuropaei being 2 times more prevalent than S. decipiens. This study is the first to report human sparganosis caused by S. decipiens in humans in Korea. PMID:26174823

  13. Effects of tachyplesin on the morphology and ultrastructure of human gastric carcinoma cell line BGC-823

    PubMed Central

    Li, Qi Fu; Ou-Yang, Gao Liang; Li, Chang You; Hong, Shui Gen

    2000-01-01

    AIM: To investigate the morphological and ultrastructural changes in the human gastric carcinoma cell line BGC-823 after being treated with tachyplesin. METHODS: Tachyplesin was isolated from acid extracts of Chinese horseshoe crab (Tachypleus tridentatus) hemocytes. BGC-823 cells and the cells treated with 2.0 mg/L tachyplesin were examined respectively under light microscope, scanning and transmission electron microscope. RESULTS: BGC-823 cells had undergone the restorational alteration in morphology and ultrastructure after tachyplesin treatment. The changes were as follows: the shape of cells was unanimous, the volume enlarged and cells turned to be flat and spread, the nucleo-cytoplasmic ratio lessened and nuclear shape became rather regular, the number of nucleolus reduced and its volume lessened, heter-chromatin decreased while euchromatin increased in nucleus. In the cytoplasm, mitochondria grew in number with consistent structure relatively, Golgi complex turned to be typical and well-developed, rough endoplasmic reticulum increased and polyribosome decreased. The microvilli at cellular surface were rare and the filopodia reduced while lamellipodia increased at the cell edge. CONCLUSION: Tachyplesin could alter the malignant morphological and ultrastructural characteristics of human gastric carcinoma cells effectively and have a certain inducing differen-tiation effect on human gastric carcinoma cells. PMID:11819673

  14. The Bounds Of Education In The Human Brain Connectome

    PubMed Central

    Marques, P.; Soares, J. M.; Magalhães, R.; Santos, N. C.; Sousa, N.

    2015-01-01

    Inter-individual heterogeneity is evident in aging; education level is known to contribute for this heterogeneity. Using a cross-sectional study design and network inference applied to resting-state fMRI data, we show that aging was associated with decreased functional connectivity in a large cortical network. On the other hand, education level, as measured by years of formal education, produced an opposite effect on the long-term. These results demonstrate the increased brain efficiency in individuals with higher education level that may mitigate the impact of age on brain functional connectivity. PMID:26245669

  15. The Bounds Of Education In The Human Brain Connectome.

    PubMed

    Marques, P; Soares, J M; Magalhães, R; Santos, N C; Sousa, N

    2015-01-01

    Inter-individual heterogeneity is evident in aging; education level is known to contribute for this heterogeneity. Using a cross-sectional study design and network inference applied to resting-state fMRI data, we show that aging was associated with decreased functional connectivity in a large cortical network. On the other hand, education level, as measured by years of formal education, produced an opposite effect on the long-term. These results demonstrate the increased brain efficiency in individuals with higher education level that may mitigate the impact of age on brain functional connectivity. PMID:26245669

  16. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  17. The effects of acute alcohol administration on the human brain: Insights from neuroimaging

    PubMed Central

    Bjork, James M.; Gilman, Jodi M.

    2014-01-01

    Over the last quarter century, researchers have peered into the living human brain to develop and refine mechanistic accounts of alcohol-induced behavior, as well as neurobiological mechanisms for development and maintenance of addiction. These in vivo neuroimaging studies generally show that acute alcohol administration affects brain structures implicated in motivation and behavior control, and that chronic intoxication is correlated with structural and functional abnormalities in these same structures, where some elements of these decrements normalize with extended sobriety. In this review, we will summarize recent findings about acute human brain responses to alcohol using neuroimaging techniques, and how they might explain behavioral effects of alcohol intoxication. We then briefly address how chronic alcohol intoxication (as inferred from cross-sectional differences between various drinking populations and controls) may yield individual brain differences between drinking subjects that may confound interpretation of acute alcohol administration effects. PMID:23978384

  18. Dynamic multi-coil shimming of the human brain at 7 T

    NASA Astrophysics Data System (ADS)

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Boer, Vincent O.; Rothman, Douglas L.; de Graaf, Robin A.

    2011-10-01

    High quality magnetic field homogenization of the human brain (i.e. shimming) for MR imaging and spectroscopy is a demanding task. The susceptibility differences between air and tissue are a longstanding problem as they induce complex field distortions in the prefrontal cortex and the temporal lobes. To date, the theoretical gains of high field MR have only been realized partially in the human brain due to limited magnetic field homogeneity. A novel shimming technique for the human brain is presented that is based on the combination of non-orthogonal basis fields from 48 individual, circular coils. Custom-built amplifier electronics enabled the dynamic application of the multi-coil shim fields in a slice-specific fashion. Dynamic multi-coil (DMC) shimming is shown to eliminate most of the magnetic field inhomogeneity apparent in the human brain at 7 T and provided improved performance compared to state-of-the-art dynamic shim updating with zero through third order spherical harmonic functions. The novel technique paves the way for high field MR applications of the human brain for which excellent magnetic field homogeneity is a prerequisite.

  19. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    PubMed

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)). PMID:26072250

  20. Morphological Brain Changes after Climbing to Extreme Altitudes—A Prospective Cohort Study

    PubMed Central

    Rummel, Christian; Hauf, Martinus; Hefti, Urs; Merz, Tobias Michael

    2015-01-01

    Background Findings of cerebral cortical atrophy, white matter lesions and microhemorrhages have been reported in high-altitude climbers. The aim of this study was to evaluate structural cerebral changes in a large cohort of climbers after an ascent to extreme altitudes and to correlate these findings with the severity of hypoxia and neurological signs during the climb. Methods Magnetic resonance imaging (MRI) studies were performed in 38 mountaineers before and after participating in a high altitude (7126m) climbing expedition. The imaging studies were assessed for occurrence of new WM hyperintensities and microhemorrhages. Changes of partial volume estimates of cerebrospinal fluid, grey matter, and white matter were evaluated by voxel-based morphometry. Arterial oxygen saturation and acute mountain sickness scores were recorded daily during the climb. Results On post-expedition imaging no new white matter hyperintensities were observed. Compared to baseline testing, we observed a significant cerebrospinal fluid fraction increase (0.34% [95% CI 0.10–0.58], p = 0.006) and a white matter fraction reduction (-0.18% [95% CI -0.32–-0.04], p = 0.012), whereas the grey matter fraction remained stable (0.16% [95% CI -0.46–0.13], p = 0.278). Post-expedition imaging revealed new microhemorrhages in 3 of 15 climbers reaching an altitude of over 7000m. Affected climbers had significantly lower oxygen saturation values but not higher acute mountain sickness scores than climbers without microhemorrhages. Conclusions A single sojourn to extreme altitudes is not associated with development of focal white matter hyperintensities and grey matter atrophy but leads to a decrease in brain white matter fraction. Microhemorrhages indicative of substantial blood-brain barrier disruption occur in a significant number of climbers attaining extreme altitudes. PMID:26509635

  1. Two Dream Machines: Television and the Human Brain.

    ERIC Educational Resources Information Center

    Deming, Caren J.

    Research into brain physiology and dream psychology have helped to illuminate the biological purposes and processes of dreaming. Physical and functional characteristics shared by dreaming and television include the perception of visual and auditory images, operation in a binary mode, and the encoding of visual information. Research is needed in…

  2. Predicting Human Brain Activity Associated with the Meanings

    E-print Network

    . This model is trained with a combination of data from a trillion-word text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once trained, the model predicts fMRI activation conceptual knowledge has been studied by many scientific commu- nities. Neuroscientists using brain imaging

  3. Neural Correlates of Socioeconomic Status in the Developing Human Brain

    ERIC Educational Resources Information Center

    Noble, Kimberly G.; Houston, Suzanne M.; Kan, Eric; Sowell, Elizabeth R.

    2012-01-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that…

  4. Functional associations among G protein-coupled neurotransmitter receptors in the human brain

    PubMed Central

    2014-01-01

    Background The activity of neurons is controlled by groups of neurotransmitter receptors rather than by individual receptors. Experimental studies have investigated some receptor interactions, but currently little information is available about transcriptional associations among receptors at the whole-brain level. Results A total of 4950 correlations between 100 G protein-coupled neurotransmitter receptors were examined across 169 brain regions in the human brain using expression data published in the Allen Human Brain Atlas. A large number of highly significant correlations were found, many of which have not been investigated in hypothesis-driven studies. The highest positive and negative correlations of each receptor are reported, which can facilitate the construction of receptor sets likely to be affected by altered transcription of one receptor (such sets always exist, but their members are difficult to predict). A graph analysis isolated two large receptor communities, within each of which receptor mRNA levels were strongly cross-correlated. Conclusions The presented systematic analysis shows that the mRNA levels of many G protein-coupled receptors are interdependent. This finding is not unexpected, since the brain is a highly integrated complex system. However, the analysis also revealed two novel properties of global brain structure. First, receptor correlations are described by a simple statistical distribution, which suggests that receptor interactions may be guided by qualitatively similar processes. Second, receptors appear to form two large functional communities, which might be differentially affected in brain disorders. PMID:24438157

  5. The Human Functional Brain Network Demonstrates Structural and Dynamical Resilience to Targeted Attack

    PubMed Central

    Joyce, Karen E.; Hayasaka, Satoru; Laurienti, Paul J.

    2013-01-01

    In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI) networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics. PMID:23358557

  6. Long-term neuroglobin expression of human astrocytes following brain trauma.

    PubMed

    Chen, Xiameng; Liu, Yuan; Zhang, Lin; Zhu, Peng; Zhu, Haibiao; Yang, Yu; Guan, Peng

    2015-10-01

    Neuroglobin (Ngb), a 17kDa monomeric protein, was initially described as a vertebrate oxygen-binding heme protein in 2000 and detected in metabolically active organs or cells, like the brain, peripheral nervous system as well as certain endocrine cells. A large array of initial experimental work reported that Ngb displayed a neuron restricted expression pattern in mammalian brains. However, growing evidence indicated astrocytes may also express Ngb under pathological conditions. To address the question whether human astrocytes express Ngb under traumatic insults, we investigated Ngb immuno-reactivity in post-mortem human brain tissues that died of acute, sub-acute and chronic brain trauma, respectively. We observed astrocytic Ngb expression in sub-acute and chronic traumatic brains rather than acute traumatic brains. Strikingly, the Ngb immuno-reactive astrocytes were still strongly detectable in groups that died 12 months after brain trauma. Our findings may imply an unexplored role of Ngb in astrocytes and the involved mechanisms were suggested to be further characterized. Also, therapeutic application of Ngb or Ngb-inducible chemical compounds in neuro-genesis or astrocytic scar forming can be expected. PMID:26362813

  7. 1/f Noise Outperforms White Noise in Sensitizing Baroreflex Function in the Human Brain

    NASA Astrophysics Data System (ADS)

    Soma, Rika; Nozaki, Daichi; Kwak, Shin; Yamamoto, Yoshiharu

    2003-08-01

    We show that externally added 1/f noise more effectively sensitizes the baroreflex centers in the human brain than white noise. We examined the compensatory heart rate response to a weak periodic signal introduced via venous blood pressure receptors while adding 1/f or white noise with the same variance to the brain stem through bilateral cutaneous stimulation of the vestibular afferents. In both cases, this noisy galvanic vestibular stimulation optimized covariance between the weak input signals and the heart rate responses. However, the optimal level with 1/f noise was significantly lower than with white noise, suggesting a functional benefit of 1/f noise for neuronal information transfer in the brain.

  8. Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide

    SciTech Connect

    Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.; Biegon, A. )

    1990-11-01

    In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measured by autoradiography.

  9. Ultrastructural Pathology of Oligodendroglial Cells in Traumatic and Hydrocephalic Human Brain Edema: A Review.

    PubMed

    Castejón, Orlando J

    2015-12-01

    Oligodendroglial cell changes in human traumatic brain injuries and hydrocephalus have been reviewed and compared with experimental brain edema. Resting unreactive oligodendrocytes, reactive oligodendrocytes, anoxic-ischemic oligodendrocytes, hyperthrophic phagocytic oligodendrocytes, and apoptotic oligodendrocytes are found. Anoxic-ischemic oligodendrocytes exhibit enlargement of endoplasmic reticulum, Golgi complex, and enlargement and disassembly of nuclear envelope. They appear in contact with degenerated myelinated axons. Hypertrophic phagocytic oligodendrocytes engulf degenerated myelinated axons exerting myelinolytic effects. A continuum oncotic and apoptotic cell death type leading to necrosis is observed. The vasogenic and cytotoxic components of brain edema are discussed in relation to oligodendroglial cell changes and reactivity. PMID:26548433

  10. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n?=?77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  11. Brain dynamics of meal size selection in humans.

    PubMed

    Toepel, Ulrike; Bielser, Marie-Laure; Forde, Ciaran; Martin, Nathalie; Voirin, Alexandre; le Coutre, Johannes; Murray, Micah M; Hudry, Julie

    2015-06-01

    Although neuroimaging research has evidenced specific responses to visual food stimuli based on their nutritional quality (e.g., energy density, fat content), brain processes underlying portion size selection remain largely unexplored. We identified spatio-temporal brain dynamics in response to meal images varying in portion size during a task of ideal portion selection for prospective lunch intake and expected satiety. Brain responses to meal portions judged by the participants as 'too small', 'ideal' and 'too big' were measured by means of electro-encephalographic (EEG) recordings in 21 normal-weight women. During an early stage of meal viewing (105-145 ms), data showed an incremental increase of the head-surface global electric field strength (quantified via global field power; GFP) as portion judgments ranged from 'too small' to 'too big'. Estimations of neural source activity revealed that brain regions underlying this effect were located in the insula, middle frontal gyrus and middle temporal gyrus, and are similar to those reported in previous studies investigating responses to changes in food nutritional content. In contrast, during a later stage (230-270 ms), GFP was maximal for the 'ideal' relative to the 'non-ideal' portion sizes. Greater neural source activity to 'ideal' vs. 'non-ideal' portion sizes was observed in the inferior parietal lobule, superior temporal gyrus and mid-posterior cingulate gyrus. Collectively, our results provide evidence that several brain regions involved in attention and adaptive behavior track 'ideal' meal portion sizes as early as 230 ms during visual encounter. That is, responses do not show an increase paralleling the amount of food viewed (and, in extension, the amount of reward), but are shaped by regulatory mechanisms. PMID:25812716

  12. Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: Neuroprotective role in maintaining blood brain barrier integrity.

    PubMed

    Parikh, Neil U; Aalinkeel, R; Reynolds, J L; Nair, B B; Sykes, D E; Mammen, M J; Schwartz, S A; Mahajan, S D

    2015-10-22

    Methamphetamine (Meth) abuse can lead to the breakdown of the blood-brain barrier (BBB) integrity leading to compromised CNS function. The role of Galectins in the angiogenesis process in tumor-associated endothelial cells (EC) is well established; however no data are available on the expression of Galectins in normal human brain microvascular endothelial cells and their potential role in maintaining BBB integrity. We evaluated the basal gene/protein expression levels of Galectin-1, -3 and -9 in normal primary human brain microvascular endothelial cells (BMVEC) that constitute the BBB and examined whether Meth altered Galectin expression in these cells, and if Galectin-1 treatment impacted the integrity of an in-vitro BBB. Our results showed that BMVEC expressed significantly higher levels of Galectin-1 as compared to Galectin-3 and -9. Meth treatment increased Galectin-1 expression in BMVEC. Meth induced decrease in TJ proteins ZO-1, Claudin-3 and adhesion molecule ICAM-1 was reversed by Galectin-1. Our data suggests that Galectin-1 is involved in BBB remodeling and can increase levels of TJ proteins ZO-1 and Claudin-3 and adhesion molecule ICAM-1 which helps maintain BBB tightness thus playing a neuroprotective role. Galectin-1 is thus an important regulator of immune balance from neurodegeneration to neuroprotection, which makes it an important therapeutic agent/target in the treatment of drug addiction and other neurological conditions. PMID:26236024

  13. The evolution of the complex sensory and motor systems of the human brain

    PubMed Central

    Kaas, Jon H.

    2008-01-01

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20–25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size. PMID:18331903

  14. Imaging of human mesenchymal stromal cells: homing to human brain tumors.

    PubMed

    Menon, Lata G; Pratt, John; Yang, Hong Wei; Black, Peter M; Sorensen, Gregory A; Carroll, Rona S

    2012-04-01

    Human mesenchymal stromal cells (hMSC) can be used as a drug delivery vehicle for the treatment of GBM. However, tracking the migration and distribution of these transplanted cells is necessary to interpret therapeutic efficacy. We compared three labeling techniques for their ability to track the migration of transplanted hMSC in an orthotopic mouse xenograft model. hMSC were labeled with three different imaging tags (fluorescence, luciferase or ferumoxide) for imaging by fluorescence, bioluminescence or magnetic resonance imaging (MRI), respectively. hMSC were labeled for all imaging modalities without the use of transfection agents. The labeling efficacy of the tags was confirmed, followed by in vitro and in vivo migration assays to track hMSC migration towards U87 glioma cells. Our results confirmed that the labeled hMSC retained their migratory ability in vitro, similar to unlabeled hMSC. In addition, labeled hMSC migrated towards the U87 tumor site, demonstrating their retention of tumor tropism. hMSC tumor tropism was confirmed by all three imaging modalities; however, MRI provides both real time assessment and the high resolution needed for clinical studies. Our findings suggest that ferumoxide labeling of hMSC is feasible, does not alter their migratory ability and allows detection by MRI. Non invasive tracking of transplanted therapeutic hMSC in the brain will allow further development of human cell based therapies. PMID:22081298

  15. What makes man human: thirty-ninth James Arthur lecture on the evolution of the human brain, 1970

    PubMed Central

    Pribram, Karl H

    2006-01-01

    What makes man human is his brain. This brain is obviously different from those of nonhuman primates. It is larger, shows hemispheric dominance and specialization, and is cytoarchitecturally somewhat more generalized. But are these the essential characteristics that determine the humanness of man? This paper cannot give an answer to this question for the answer is not known. But the problem can be stated more specifically, alternatives spelled out on the basis of available research results, and directions given for further inquiry. My theme will be that the human brain is so constructed that man, and only man, feels the thrust to make meaningful all his experiences and encounters. Development of this theme demands an analysis of the brain mechanisms that make meaning–and an attempt to define biologically the process of meaning. In this pursuit of meaning a fascinating variety of topics comes into focus: the coding and recoding operations of the brain; how it engenders and processes information and redundancy; and, how it makes possible signs and symbols and prepositional utterances. Of these, current research results indicate that only in the making of propositions is man unique–so here perhaps are to be found the keynotes that compose the theme. PMID:17132178

  16. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells.

    PubMed

    Mitchell, Ryan W; On, Ngoc H; Del Bigio, Marc R; Miller, Donald W; Hatch, Grant M

    2011-05-01

    The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC. PMID:21395585

  17. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy.

    PubMed Central

    Gruetter, R; Novotny, E J; Boulware, S D; Rothman, D L; Mason, G F; Shulman, G I; Shulman, R G; Tamborlane, W V

    1992-01-01

    Glucose is the main fuel for energy metabolism in the normal human brain. It is generally assumed that glucose transport into the brain is not rate-limiting for metabolism. Since brain glucose concentrations cannot be determined directly by radiotracer techniques, we used 13C NMR spectroscopy after infusing enriched D-[1-13C]glucose to measure brain glucose concentrations at euglycemia and at hyperglycemia (range, 4.5-12.1 mM) in six healthy children (13-16 years old). Brain glucose concentrations averaged 1.0 +/- 0.1 mumol/ml at euglycemia (4.7 +/- 0.3 mM plasma) and 1.8-2.7 mumol/ml at hyperglycemia (7.3-12.1 mM plasma). Michaelis-Menten parameters of transport were calculated to be Kt = 6.2 +/- 1.7 mM and Tmax = 1.2 +/- 0.1 mumol/g.min from the relationship between plasma and brain glucose concentrations. The brain glucose concentrations and transport constants are consistent with transport not being rate-limiting for resting brain metabolism at plasma levels greater than 3 mM. PMID:1736294

  18. Optimising vitrification of human oocytes using multiple cryoprotectants and morphological and functional assessment.

    PubMed

    Seet, V Y K; Al-Samerria, S; Wong, J; Stanger, J; Yovich, J L; Almahbobi, G

    2013-01-01

    Oocyte vitrification is a clinical practice that allows preservation of fertility potential in women. Vitrification involves quick cooling using high concentrations of cryoprotectants to minimise freezing injuries. However, high concentrations of cryoprotectants have detrimental effects on oocyte quality and eventually the offspring. In addition, current assessment of oocyte quality after vitrification is commonly based only on the morphological appearance of the oocyte, raising concerns regarding its efficiency. Using both morphological and functional assessments, the present study investigated whether combinations of cryoprotectants at lower individual concentrations result in better cryosurvival rates than single cryoprotectants at higher concentrations. Surplus oocytes from IVF patients were vitrified within 24h after retrieval using the Cryotop method with several cryoprotectants, either individually or in combination. The morphological and functional quality of the vitrified oocytes was investigated using light microscopy and computer-based quantification of mitochondrial integrity, respectively. Oocyte quality was significantly higher using a combination of cryoprotectants than vitrification with individual cryoprotectants. In addition, the quality of vitrified oocyte varied depending on the cryoprotectants and type of combination used. The results of the present study indicate that observations based purely on the morphological appearance of the oocyte to assess the cryosurvival rate are insufficient and sometimes misleading. The outcome will have a significant implication in the area of human oocyte cryopreservation as an important approach for fertility preservation. PMID:22967503

  19. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells

    PubMed Central

    HAYASHI, YOSHIHIRO; OSANAI, MAKOTO; LEE, GANG-HONG

    2015-01-01

    The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1-positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells. PMID:26252838

  20. A role for the brain network mechanisms of flexible cognitive control in human intelligence Michael W. Cole

    E-print Network

    connectivity in the brain, and that gF was predicted by lateral prefrontal cortex's betweenA role for the brain network mechanisms of flexible cognitive control in human intelligence Michael and gF. Indeed, evidence is emerging that one of the largest networks in the brain ­ the fronto

  1. Architectonic Mapping of the Human Brain beyond Brodmann.

    PubMed

    Amunts, Katrin; Zilles, Karl

    2015-12-16

    Brodmann has pioneered structural brain mapping. He considered functional and pathological criteria for defining cortical areas in addition to cytoarchitecture. Starting from this idea of structural-functional relationships at the level of cortical areas, we will argue that the cortical architecture is more heterogeneous than Brodmann's map suggests. A triple-scale concept is proposed that includes repetitive modular-like structures and micro- and meso-maps. Criteria for defining a cortical area will be discussed, considering novel preparations, imaging and optical methods, 2D and 3D quantitative architectonics, as well as high-performance computing including analyses of big data. These new approaches contribute to an understanding of the brain on multiple levels and challenge the traditional, mosaic-like segregation of the cerebral cortex. PMID:26687219

  2. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    PubMed Central

    Hurst, Jillian H; Mumaw, Jennifer; Machacek, David W; Sturkie, Carla; Callihan, Phillip; Stice, Steve L; Hooks, Shelley B

    2008-01-01

    Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP) cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA) and Sphingosine-1-phosphate (S1P) receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR)- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors. PMID:19077254

  3. Describing the Neuron Axons Network of the Human Brain by Continuous Flow Models

    NASA Astrophysics Data System (ADS)

    Hizanidis, J.; Katsaloulis, P.; Verganelakis, D. A.; Provata, A.

    2014-12-01

    The multifractal spectrum Dq (Rényi dimensions) is used for the analysis and comparison between the Neuron Axons Network (NAN) of healthy and pathological human brains because it conveys information about the statistics in many scales, from the very rare to the most frequent network configurations. Comparison of the Fractional Anisotropy Magnetic Resonance Images between healthy and pathological brains is performed with and without noise reduction. Modelling the complex structure of the NAN in the human brain is undertaken using the dynamics of the Lorenz model in the chaotic regime. The Lorenz multifractal spectra capture well the human brain characteristics in the large negative q's which represent the rare network configurations. In order to achieve a closer approximation in the positive part of the spectrum (q > 0) two independent modifications are considered: a) redistribution of the dense parts of the Lorenz model's phase space into their neighbouring areas and b) inclusion of additive uniform noise in the Lorenz model. Both modifications, independently, drive the Lorenz spectrum closer to the human NAN one in the positive q region without destroying the already good correspondence of the negative spectra. The modelling process shows that the unmodified Lorenz model in its full chaotic regime has a phase space distribution with high fluctuations in its dense parts, while the fluctuations in the human brain NAN are smoother. The induced modifications (phase space redistribution or additive noise) moderate the fluctuations only in the positive part of the Lorenz spectrum leading to a faithful representation of the human brain axons network in all scales.

  4. Metabolic changes in schizophrenia and human brain evolution

    E-print Network

    Khaitovich, Philipp; Lockstone, Helen E.; Wayland, Matthew T.; Tsang, Tsz M.; Jayatilaka, Samantha D.; Guo, Arfu J.; Zhou, Jie; Somel, Mehmet; Harris, Laura W.; Holmes, Elaine; Paabo, Svante; Bahn, Sabine

    2008-08-05

    in this study, approximately 60-80 mg prefrontal cortex tissue (Brodmann area 46) was dis- sected from a frozen brain sample on dry ice without thawing. Special care was taken to avoid differences in the gray matter to white matter ratio between samples... with metabolites not altered in schizophrenia. Both an excess of adaptive changes and a relaxation of selective constraint could cause such an increase in evolutionary divergence. However, the fact that we find signatures of recent positive selection...

  5. Human brain somatic representation: a functional magnetic resonance mapping

    NASA Astrophysics Data System (ADS)

    Romero-Romo, Juan; Rojas, Rafael; Salgado, Perla; Sánchez-Cortázar, Julián; Vazquez-Vela, Arturo; Barrios, Fernando A.

    2001-10-01

    Central nervous system studies of injury and plasticity for the reorganization in the phantom limb sensation area presented. In particular functional magnetic resonance imaging (fMRI) mapping of the somatic and motor cortex of amputee patients, in the case of referred sensations. Using fMRI we can show the correlation between structure and functional field and study the reorganization due to plasticity in the brain.

  6. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier

    PubMed Central

    2012-01-01

    Background The sphingosine 1-phosphate (S1P) receptor modulator FTY720P (Gilenya®) potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are related to altered endothelial and blood–brain barrier (BBB) functionality. However, to date it remains unknown whether brain endothelial S1P receptors are involved in the maintenance of the function of the BBB thereby mediating immune quiescence of the brain. Here we demonstrate that the brain endothelial receptor S1P5 largely contributes to the maintenance of brain endothelial barrier function. Methods We analyzed the expression of S1P5 in human post-mortem tissues using immunohistochemistry. The function of S1P5 at the BBB was assessed in cultured human brain endothelial cells (ECs) using agonists and lentivirus-mediated knockdown of S1P5. Subsequent analyses of different aspects of the brain EC barrier included the formation of a tight barrier, the expression of BBB proteins and markers of inflammation and monocyte transmigration. Results We show that activation of S1P5 on cultured human brain ECs by a selective agonist elicits enhanced barrier integrity and reduced transendothelial migration of monocytes in vitro. These results were corroborated by genetically silencing S1P5 in brain ECs. Interestingly, functional studies with these cells revealed that S1P5 strongly contributes to brain EC barrier function and underlies the expression of specific BBB endothelial characteristics such as tight junctions and permeability. In addition, S1P5 maintains the immunoquiescent state of brain ECs with low expression levels of leukocyte adhesion molecules and inflammatory chemokines and cytokines through lowering the activation of the transcription factor NF?B. Conclusion Our findings demonstrate that S1P5 in brain ECs contributes to optimal barrier formation and maintenance of immune quiescence of the barrier endothelium. PMID:22715976

  7. Genotype and ancestry modulate brain's DAT availability in healthy humans

    SciTech Connect

    Shumay, E.; Shumay, E.; Chen, J.; Fowler, J.S.; Volkow, N.D.

    2011-08-01

    The dopamine transporter (DAT) is a principal regulator of dopaminergic neurotransmission and its gene (the SLC6A3) is a strong biological candidate gene for various behavioral- and neurological disorders. Intense investigation of the link between the SLC6A3 polymorphisms and behavioral phenotypes yielded inconsistent and even contradictory results. Reliance on objective brain phenotype measures, for example, those afforded by brain imaging, might critically improve detection of DAT genotype-phenotype association. Here, we tested the relationship between the DAT brain availability and the SLC6A3 genotypes using an aggregate sample of 95 healthy participants of several imaging studies. These studies employed positron emission tomography (PET) with [{sup 11}C] cocaine wherein the DAT availability was estimated as Bmax/Kd; while the genotype values were obtained on two repeat polymorphisms - 3-UTR- and intron 8- VNTRs. The main findings are the following: (1) both polymorphisms analyzed as single genetic markers and in combination (haplotype) modulate DAT density in midbrain; (2) ethnic background and age influence the strength of these associations; and (3) age-related changes in DAT availability differ in the 3-UTR and intron8 - genotype groups.

  8. Comparison of morphological and molecular genetic sex-typing on mediaeval human skeletal remains?

    PubMed Central

    Bauer, Christiane Maria; Niederstätter, Harald; McGlynn, George; Stadler, Harald; Parson, Walther

    2013-01-01

    Archaeological excavations conducted at an early mediaeval cemetery in Volders (Tyrol, Austria) produced 141 complete skeletal remains dated between the 5th/6th and 12th/13th centuries. These skeletons represent one of the largest historical series of human remains ever discovered in the East Alpine region. Little historical information is available for this region and time period. The good state of preservation of these bioarchaeological finds offered the opportunity of performing molecular genetic investigations. Adequate DNA extraction methods were tested in the attempt to obtain as high DNA yields as possible for further analyses. Molecular genetic sex-typing using a dedicated PCR multiplex (“Genderplex”) gave interpretable results in 88 remains, 78 of which had previously been sexed based on morphological features. We observed a discrepancy in sex determination between the two methods in 21 cases. An unbiased follow-up morphological examination of these finds showed congruence with the DNA results in all but five samples. PMID:23941903

  9. Comparison of morphological and molecular genetic sex-typing on mediaeval human skeletal remains.

    PubMed

    Bauer, Christiane Maria; Niederstätter, Harald; McGlynn, George; Stadler, Harald; Parson, Walther

    2013-12-01

    Archaeological excavations conducted at an early mediaeval cemetery in Volders (Tyrol, Austria) produced 141 complete skeletal remains dated between the 5th/6th and 12th/13th centuries. These skeletons represent one of the largest historical series of human remains ever discovered in the East Alpine region. Little historical information is available for this region and time period. The good state of preservation of these bioarchaeological finds offered the opportunity of performing molecular genetic investigations. Adequate DNA extraction methods were tested in the attempt to obtain as high DNA yields as possible for further analyses. Molecular genetic sex-typing using a dedicated PCR multiplex ("Genderplex") gave interpretable results in 88 remains, 78 of which had previously been sexed based on morphological features. We observed a discrepancy in sex determination between the two methods in 21 cases. An unbiased follow-up morphological examination of these finds showed congruence with the DNA results in all but five samples. PMID:23941903

  10. Simulation of Local Blood Flow in Human Brain under Altered Gravity

    NASA Technical Reports Server (NTRS)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    In addition to the altered gravitational forces, specific shapes and connections of arteries in the brain vary in the human population (Cebral et al., 2000; Ferrandez et al., 2002). Considering the geometric variations, pulsatile unsteadiness, and moving walls, computational approach in analyzing altered blood circulation will offer an economical alternative to experiments. This paper presents a computational approach for modeling the local blood flow through the human brain under altered gravity. This computational approach has been verified through steady and unsteady experimental measurements and then applied to the unsteady blood flows through a carotid bifurcation model and an idealized Circle of Willis (COW) configuration under altered gravity conditions.

  11. Adaptation of human brain bioelectrical activity to low-level microwave.

    PubMed

    Bachmann, Maie; Rubljova, Jekaterina; Lass, Jaanus; Tomson, Ruth; Tuulik, Viiu; Hinrikus, Hiie

    2007-01-01

    The experiments of adaptation of the human brain bioelectrical activity were carried out on a group of 14 healthy volunteers exposed to 450 MHz microwave radiation modulated at 40 Hz frequencies. The field power density at the scalp was 0.16 mW/cm(2). Results of the study indicate that adaptation effect of human brain to low-level microwave exposure is evident. The initial increase of EEG power was compensated and even overcompensated. The adaptation phenomena were obvious in EEG alpha and beta rhythms.. PMID:18003066

  12. Socioeconomic status and the brain: mechanistic insights from human and animal research

    PubMed Central

    Hackman, Daniel A.; Farah, Martha J.; Meaney, Michael J.

    2010-01-01

    Human brain development occurs within a socioeconomic context and childhood socioeconomic status (SES) influences neural development — particularly of the systems that subserve language and executive function. Research in humans and in animal models has implicated prenatal factors, parent–child interactions and cognitive stimulation in the home environment in the effects of SES on neural development. These findings provide a unique opportunity for understanding how environmental factors can lead to individual differences in brain development, and for improving the programmes and policies that are designed to alleviate SES-related disparities in mental health and academic achievement. PMID:20725096

  13. Illicit Stimulant Use Is Associated with Abnormal Substantia Nigra Morphology in Humans

    PubMed Central

    Todd, Gabrielle; Noyes, Carolyn; Flavel, Stanley C.; Della Vedova, Chris B.; Spyropoulos, Peter; Chatterton, Barry; Berg, Daniela; White, Jason M.

    2013-01-01

    Use of illicit stimulants such as methamphetamine, cocaine, and ecstasy is an increasing health problem. Chronic use can cause neurotoxicity in animals and humans but the long-term consequences are not well understood. The aim of the current study was to investigate the long-term effect of stimulant use on the morphology of the human substantia nigra. We hypothesised that history of illicit stimulant use is associated with an abnormally bright and enlarged substantia nigra (termed ‘hyperechogenicity’) when viewed with transcranial sonography. Substantia nigra morphology was assessed in abstinent stimulant users (n?=?36; 31±9 yrs) and in two groups of control subjects: non-drug users (n?=?29; 24±5 yrs) and cannabis users (n?=?12; 25±7 yrs). Substantia nigra morphology was viewed with transcranial sonography and the area of echogenicity at the anatomical site of the substantia nigra was measured at its greatest extent. The area of substantia nigra echogenicity was significantly larger in the stimulant group (0.273±0.078 cm2) than in the control (0.201±0.054 cm2; P<0.001) and cannabis (0.202±0.045 cm2; P<0.007) groups. 53% of stimulant users exhibited echogenicity that exceeded the 90th percentile for the control group. The results of the current study suggest that individuals with a history of illicit stimulant use exhibit abnormal substantia nigra morphology. Substantia nigra hyperechogenicity is a strong risk factor for developing Parkinson's disease later in life and further research is required to determine if the observed abnormality in stimulant users is associated with a functional deficit of the nigro-striatal system. PMID:23418568

  14. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells.

    PubMed

    Matsuoka, Fumiko; Takeuchi, Ichiro; Agata, Hideki; Kagami, Hideaki; Shiono, Hirofumi; Kiyota, Yasujiro; Honda, Hiroyuki; Kato, Ryuji

    2013-01-01

    Human bone marrow mesenchymal stem cells (hBMSCs) are widely used cell source for clinical bone regeneration. Achieving the greatest therapeutic effect is dependent on the osteogenic differentiation potential of the stem cells to be implanted. However, there are still no practical methods to characterize such potential non-invasively or previously. Monitoring cellular morphology is a practical and non-invasive approach for evaluating osteogenic potential. Unfortunately, such image-based approaches had been historically qualitative and requiring experienced interpretation. By combining the non-invasive attributes of microscopy with the latest technology allowing higher throughput and quantitative imaging metrics, we studied the applicability of morphometric features to quantitatively predict cellular osteogenic potential. We applied computational machine learning, combining cell morphology features with their corresponding biochemical osteogenic assay results, to develop prediction model of osteogenic differentiation. Using a dataset of 9,990 images automatically acquired by BioStation CT during osteogenic differentiation culture of hBMSCs, 666 morphometric features were extracted as parameters. Two commonly used osteogenic markers, alkaline phosphatase (ALP) activity and calcium deposition were measured experimentally, and used as the true biological differentiation status to validate the prediction accuracy. Using time-course morphological features throughout differentiation culture, the prediction results highly correlated with the experimentally defined differentiation marker values (R>0.89 for both marker predictions). The clinical applicability of our morphology-based prediction was further examined with two scenarios: one using only historical cell images and the other using both historical images together with the patient's own cell images to predict a new patient's cellular potential. The prediction accuracy was found to be greatly enhanced by incorporation of patients' own cell features in the modeling, indicating the practical strategy for clinical usage. Consequently, our results provide strong evidence for the feasibility of using a quantitative time series of phase-contrast cellular morphology for non-invasive cell quality prediction in regenerative medicine. PMID:23437049

  15. Human brain evolution: From gene discovery to phenotype discovery

    PubMed Central

    Preuss, Todd M.

    2012-01-01

    The rise of comparative genomics and related technologies has added important new dimensions to the study of human evolution. Our knowledge of the genes that underwent expression changes or were targets of positive selection in human evolution is rapidly increasing, as is our knowledge of gene duplications, translocations, and deletions. It is now clear that the genetic differences between humans and chimpanzees are far more extensive than previously thought; their genomes are not 98% or 99% identical. Despite the rapid growth in our understanding of the evolution of the human genome, our understanding of the relationship between genetic changes and phenotypic changes is tenuous. This is true even for the most intensively studied gene, FOXP2, which underwent positive selection in the human terminal lineage and is thought to have played an important role in the evolution of human speech and language. In part, the difficulty of connecting genes to phenotypes reflects our generally poor knowledge of human phenotypic specializations, as well as the difficulty of interpreting the consequences of genetic changes in species that are not amenable to invasive research. On the positive side, investigations of FOXP2, along with genomewide surveys of gene-expression changes and selection-driven sequence changes, offer the opportunity for “phenotype discovery,” providing clues to human phenotypic specializations that were previously unsuspected. What is more, at least some of the specializations that have been proposed are amenable to testing with noninvasive experimental techniques appropriate for the study of humans and apes. PMID:22723367

  16. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI

    PubMed Central

    Bastiani, Matteo; Roebroeck, Alard

    2015-01-01

    The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI) contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post-mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso-, and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these. PMID:26106304

  17. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases

    PubMed Central

    Takatsuki, Hanae; Satoh, Katsuya; Sano, Kazunori; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Ishibashi, Daisuke; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 ?g/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission. PMID:26070208

  18. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI.

    PubMed

    Bastiani, Matteo; Roebroeck, Alard

    2015-01-01

    The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI) contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post-mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso-, and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these. PMID:26106304

  19. Imaging dopamine receptors in the human brain by position tomography

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1983-01-01

    Neurotransmitter receptors may be involved in a number of neuropsychiatric disease states. The ligand 3-N-(/sup 11/C)methylspiperone, which preferentially binds to dopamine receptors in vivo, was used to image the receptors by positron emission tomography scanning in baboons and in humans. This technique holds promise for noninvasive clinical studies of dopamine receptors in humans.

  20. Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta.

    PubMed

    Jyothi, H J; Vidyadhara, D J; Mahadevan, Anita; Philip, Mariamma; Parmar, Suresh Kumar; Manohari, S Gowri; Shankar, S K; Raju, Trichur R; Alladi, Phalguni Anand

    2015-12-01

    Age being a risk factor for Parkinson's disease, assessment of age-related changes in the human substantia nigra may elucidate its pathogenesis. Increase in Marinesco bodies, ?-synuclein, free radicals and so forth in the aging nigral neurons are clear indicators of neurodegeneration. Here, we report the glial responses in aging human nigra. The glial numbers were determined on Nissl-stained sections. The expression of glial fibrillary acidic protein, S100?, 2', 3'-cyclic nucleotide 3' phosphodiesterase, and Iba1 was assessed on cryosections of autopsied midbrains by immunohistochemistry and densitometry. The glial counts showed a biphasic increase, of which, the first prominent phase from fetal age to birth could be physiological gliogenesis whereas the second one after middle age may reflect mild age-related gliosis. Astrocytic morphology was altered, but glial fibrillary acidic protein expression increased only mildly. Presence of type-4 microglia suggests possibility of neuroinflammation. Mild reduction in 2', 3'-cyclic nucleotide 3' phosphodiesterase-labeled area denotes subtle demyelination. Stable age-related S100? expression indicates absence of calcium overload. Against the expected prominent gliosis, subtle age-related morphological alterations in human nigral glia attribute them a participatory role in aging. PMID:26433682

  1. Energy landscape and dynamics of brain activity during human bistable perception

    PubMed Central

    Watanabe, Takamitsu; Masuda, Naoki; Megumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-01-01

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception. PMID:25163855

  2. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET

    SciTech Connect

    Redies, C.; Hoffer, L.J.; Beil, C.; Marliss, E.B.; Evans, A.C.; Lariviere, F.; Marrett, S.; Meyer, E.; Diksic, M.; Gjedde, A.

    1989-06-01

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylation fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.

  3. The significance of the subplate for evolution and developmental plasticity of the human brain.

    PubMed

    Judaš, Miloš; Sedmak, Goran; Kostovi?, Ivica

    2013-01-01

    The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate (RMR) in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid ancestors managed to lift-up metabolic constraints to increase in brain size by several interrelated ecological, behavioral and social adaptations, such as dietary change, invention of cooking, creation of family-bonded reproductive units, and life-history changes. This opened new vistas for the developing brain, because it became possible to metabolically support transient patterns of brain organization as well as developmental brain plasticity for much longer period and with much greater number of neurons and connectivity combinations in comparison to apes. This included the shaping of cortical connections through the interaction with infant's social environment, which probably enhanced typically human evolution of language, cognition and self-awareness. In this review, we propose that the transient subplate zone and its postnatal remnant (interstitial neurons of the gyral white matter) probably served as the main playground for evolution of these developmental shifts, and describe various features that makes human subplate uniquely positioned to have such a role in comparison with other primates. PMID:23935575

  4. The potential of the human connectome as a biomarker of brain disease

    PubMed Central

    Kaiser, Marcus

    2013-01-01

    The human connectome at the level of fiber tracts between brain regions has been shown to differ in patients with brain disorders compared to healthy control groups. Nonetheless, there is a potentially large number of different network organizations for individual patients that could lead to cognitive deficits prohibiting correct diagnosis. Therefore changes that can distinguish groups might not be sufficient to diagnose the disease that an individual patient suffers from and to indicate the best treatment option for that patient. We describe the challenges introduced by the large variability of connectomes within healthy subjects and patients and outline three common strategies to use connectomes as biomarkers of brain diseases. Finally, we propose a fourth option in using models of simulated brain activity (the dynamic connectome) based on structural connectivity rather than the structure (connectome) itself as a biomarker of disease. Dynamic connectomes, in addition to currently used structural, functional, or effective connectivity, could be an important future biomarker for clinical applications. PMID:23966935

  5. The Potential of the Human Connectome as a Biomarker of Brain Disease

    E-print Network

    Kaiser, Marcus

    2013-01-01

    The human connectome at the level of fiber tracts between brain regions has been shown to differ in patients with brain disorders compared to healthy control groups. Nonetheless, there is a potentially large number of different network organizations for individual patients that could lead to cognitive deficits prohibiting correct diagnosis. Therefore changes that can distinguish groups might not be sufficient to diagnose the disease that an individual patient suffers from and to indicate the best treatment option for that patient. We describe the challenges introduced by the large variability of connectomes within healthy subjects and patients and outline three common strategies to use connectomes as biomarkers of brain diseases. Finally, we propose a fourth option in using models of simulated brain activity (the dynamic connectome) based on structural connectivity rather than the structure (connectome) itself as a biomarker of disease. Dynamic connectomes, in addition to currently used structural, functional...

  6. [Near-infrared optical imaging of human brain function--a novel approach to the brain and the mind].

    PubMed

    Hoshi, Yoko

    2002-01-01

    Near-infrared spectroscopy (NIRS) can measure changes in the hemoglobin oxygenation state in the human brain. NIRS has been oriented toward use for clinical monitoring of tissue oxygenation. However, we and others have recently demonstrated that NIRS also has the potential for neuroimaging. NIRS instruments, which use continuous wave light (CW) as a light source, are now commercially available. These CW-type NIRS instruments have high temporal resolution (less than 1 second) and allow long-term and continuous measurements, though they do not provide absolute values of changes in hemoglobin concentrations. In contrast, time-resolved spectroscopy (TRS), which uses short pulsed laser diodes as light sources, makes quantification possible. Quantification is necessary for the imaging of brain activity. Topographical images can be obtained by the use of our recently developed 64-channel time-resolved optical tomographic imaging system (optical CT) or by combining the 1 channel TRS instrument with the multichannel CW-type NIRS instrument. NIRS is completely non-invasive and does not require strict motion restriction during measurements unlike PET and fMRI. It is, thus, expected that NIRS will open a window into brain physiology in subjects who are difficult to examine with PET and fMRI such as children, the elderly, and patients with psychoneurological problems. PMID:12187655

  7. Representation of human vision in the brain: how does human perception recognize images?

    NASA Astrophysics Data System (ADS)

    Stark, Lawrence W.; Privitera, Claudio M.; Yang, Huiyang; Azzariti, Michela; Ho, Yeuk F.; Blackmon, Theodore T.; Chernyak, Dimitri A.

    2001-01-01

    The repetitive scanpath eye movement, EM, sequence enabled an approach to the representation of visual images in the human brain. We supposed that there were several levels of binding--semantic or symbolic binding; structural binding for the spatial locations of the regions-of-interest; and sequential binding for the dynamic execution program that yields the sequence of EMs. The scanpath sequences enable experimental evaluation of these various bindings that appear to play independent roles and are likely located in different parts of the modular cortex. EMs play an essential role in top-down control of the flow of visual information. The scanpath theory proposes that an internal spatial- cognitive model controls perception and the active looking EMs. Evidence supporting the scanpath theory includes experiments with ambiguous figures, visual imagery, and dynamic scenes. It is further explicated in a top-down computer vision tracking scheme for telerobots using design elements from the scanpath procedures. We also introduce procedures--calibration of EMs, identification of regions- of-interest, and analysis and comparison programs--for studying scanpaths. Although philosophers have long speculated that we see in our mind's eye, yet until the scanpath theory, no strong scientific evidence was available to support these conjectures.

  8. Correlating 3D morphology with molecular pathology: fibrotic remodelling in human lung biopsies.

    PubMed

    Kellner, Manuela; Wehling, Judith; Warnecke, Gregor; Heidrich, Marko; Izykowski, Nicole; Vogel-Claussen, Jens; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios; Janciauskiene, Sabina; Grothausmann, Roman; Knudsen, Lars; Ripken, Tammo; Meyer, Heiko; Kreipe, Hans; Ochs, Matthias; Jonigk, Danny; Kühnel, Mark Philipp

    2015-12-01

    Assessing alterations of the parenchymal architecture is essential in understanding fibrosing interstitial lung diseases. Here, we present a novel method to visualise fibrotic remodelling in human lungs and correlate morphological three-dimensional (3D) data with gene and protein expression in the very same sample. The key to our approach is a novel embedding resin that clears samples to full optical transparency and simultaneously allows 3D laser tomography and preparation of sections for histology, immunohistochemistry and RNA isolation. Correlating 3D laser tomography with molecular diagnostic techniques enables new insights into lung diseases. This approach has great potential to become an essential tool in pulmonary research. PMID:26108569

  9. Individual Variability in Functional Connectivity Architecture of the Human Brain

    PubMed Central

    Mueller, Sophia; Wang, Danhong; Fox, Michael D.; Thomas Yeo, B. T.; Sepulcre, Jorge; Sabuncu, Mert R.; Shafee, Rebecca; Lu, Jie; Liu, Hesheng

    2013-01-01

    Summary The fact that people think or behave differently from one another is rooted in individual differences in brain anatomy and connectivity. Here we used repeated-measurement resting-state functional MRI to explore inter-subject variability in connectivity. Individual differences in functional connectivity were heterogeneous across the cortex, with significantly higher variability in heteromodal association cortex and lower variability in unimodal cortices. Inter-subject variability in connectivity was significantly correlated with the degree of evolutionary cortical expansion, suggesting a potential evolutionary root of functional variability. The connectivity variability was also related to variability in sulcal depth but not cortical thickness, positively correlated with the degree of long-range connectivity but negatively correlated with local connectivity. A meta-analysis further revealed that regions predicting individual differences in cognitive domains are predominantly located in regions of high connectivity variability. Our findings have potential implications for understanding brain evolution and development, guiding intervention, and interpreting statistical maps in neuroimaging. PMID:23395382

  10. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    USGS Publications Warehouse

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human and macaque blood.

  11. Methodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human

    PubMed Central

    Rostami, Maryam; Golesorkhi, Mehrshad; Ekhtiari, Hamed

    2013-01-01

    Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modification in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments of many neuropsychiatric disorders based on its inexpensive, simple, safe, noninvasive, painless, semi-focal excitatory and inhibitory effects. Given this, a comparison amongst different brain stimulation modalities has been made to determine the potential advantages of the TCS method. In addition, considerable methodological details on using TCS in basic and clinical neuroscience studies in human subjects have been introduced. Technical characteristics of TCS devices and their related accessories with regard to safety concerns have also been well articulated. Finally, some TCS application opportunities have been emphasized, including its potential use in the near future. PMID:25337348

  12. Electrical potentials in human brain during cognition: new method reveals dynamic patterns of correlation.

    PubMed

    Gevins, A S; Doyle, J C; Cutillo, B A; Schaffer, R E; Tannehill, R S; Ghannam, J H; Gilcrease, V A; Yeager, C L

    1981-08-21

    A new technique has been developed for identifying, in humans, dynamic spatiotemporal electrical patterns of the brain during purposive behaviors. In this method, single-trial time-series correlations between brain macropotentials recorded from different scalp sites are analyzed by distribution-independent mathematical pattern recognition. Dynamic patterns of correlation clearly distinguished two brief visuomotor tasks differing only in type of mental judgement required (spatial or numeric). These complex patterns shifted in the anterior-posterior and left-right axes between successive 175-millisecond intervals, indicating that many areas in both cerebral hemispheres were involved even in these simple judgements. These patterns were not obtainable by conventional analysis of averaged evoked potentials or by linear analysis of correlations, suggesting that the new technique will advance the study of human brain activity related to cognition and goal-directed behaviors. PMID:7256287

  13. Working against time: Rapid radiotracer synthesis and imaging the human brain

    SciTech Connect

    Fowler, J.S.; Wolf, A.P.

    1997-04-01

    In this Account, the authors describe some advances in radiotracer chemistry which have made it possible to probe the chemical anatomy of the human brain while working within a very restricted time scale. Though we highlight research from our laboratory, it is important to emphasize that advances in PET brain imaging have come from many laboratories throughout the world. Thus, for a more comprehensive treatment of PET technology the reader is referred to textbooks and review articles cited in this Account. Since many of the milestones in delineating biochemical transformations and the movement of drugs in the human brain have involved radiosynthesis with carbon-11 and fluorine-18, we focus on these two isotopes. 50 refs., 6 figs., 1 tab.

  14. Brain, mind and limitations of a scientific theory of human consciousness.

    PubMed

    Gierer, Alfred

    2008-05-01

    In biological terms, human consciousness appears as a feature associated with the functioning of the human brain. The corresponding activities of the neural network occur strictly in accord with physical laws; however, this fact does not necessarily imply that there can be a comprehensive scientific theory of consciousness, despite all the progress in neurobiology, neuropsychology and neurocomputation. Predictions of the extent to which such a theory may become possible vary widely in the scientific community. There are basic reasons-not only practical but also epistemological-why the brain-mind relation may never be fully "decodable" by general finite procedures. In particular self-referential features of consciousness, such as self-representations involved in strategic thought and dispositions, may not be resolvable in all their essential aspects by brain analysis. Assuming that such limitations exist, objective analysis by the methods of natural science cannot, in principle, fully encompass subjective, mental experience. PMID:18404733

  15. Bridging animal and human models of exercise-induced brain plasticity

    PubMed Central

    Voss, Michelle W.; Vivar, Carmen; Kramer, Arthur F.; van Praag, Henriette

    2015-01-01

    Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer’s disease (AD) in humans. PMID:24029446

  16. Analysis of the morphological substrate for information processing in the pallidal nuclear complex of the dog brain in terms of the organizational characteristics of its afferent projections.

    PubMed

    Chivileva, O G

    2004-03-01

    Axonal transport of retrograde markers was used to study the distribution of the afferent projections of the nuclei of the pallidal complex (the globus pallidus, the entopeduncular nucleus, and the ventral pallidum) from functionally diverse cortical and subcortical structures (cortical fields, substantia nigra, ventral tegmental field, and thalamus) in the dog brain. The results were used to analyze the morphological aspects both of the functional heterogeneity of the pallidum and integrative information processing, which underlie the mechanisms of adaptive behavior. PMID:15151181

  17. Assessment of dopamine receptor densities in the human brain with carbon-11-labeled N-methylspiperone

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstroem, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1984-01-01

    We describe the use of carbon-11-labeled 3-N-methylspiperone, a ligand that preferentially binds to dopamine receptors in vivo, to image the receptors by positron emission tomography scanning in baboons and, for the first time, in a human. The method has now been used in 58 humans for noninvasive assessment of the state of brain dopamine receptors under normal and pathological conditions.

  18. Increased vulnerability to focal ischemic brain injury in human apolipoprotein E4 knock-in mice.

    PubMed

    Mori, Takashi; Kobayashi, Mariko; Town, Terrence; Fujita, Shinobu C; Asano, Takao

    2003-03-01

    Accumulating evidence suggests that among the 3 human apolipoprotein E (apoE) isoforms encoded by the human APOE gene, the e4 allele may act to exacerbate brain damage in humans and animals. This study aimed to compare the isoform-specific vulnerability conferred by human apoE to ischemic brain damage, using mice expressing human apoE isoforms (apoE2, apoE3, or apoE4) in place of mouse apoE, produced by the gene-targeting technique in embryonic stem cells (knock-in, KI). Homozygous human apoE2 (2/2), apoE3 (3/3), or apoE4 (4/4) KI mice were subjected to permanent focal cerebral ischemia by a modified intraluminal suture method. Twenty-four h thereafter, brain damage, (as estimated by infarct volume and neurologic deficit) was significantly worse in 4/4 KI mice versus 2/2 or 3/3 KI mice (p < 0.001 for each comparison), with no significant differences between 2/2 and 3/3 KI mice. Immunohistochemistry for human apoE expression revealed similar apoE distribution with no significant difference in the immunostaining intensity among the 3 lines of KI mice. Notably. increased expression of human apoE was detected in neurons and astrocytes in the peri-infarct area, and a punctate expression pattern was evident in the border between the infarct and peri-infarct areas in all KI mice subjected to ischemia. Taken together, our results show that apoE affects the outcome of acute brain damage in an isoform-specific fashion (apoE4 > apoE3 = apoE2) in genetically engineered mice. PMID:12638732

  19. On the interaction of the ultrashort laser pulses with human brain matter

    E-print Network

    J. Marciak-Kozlowska; M. Kozlowski

    2011-06-27

    In this paper the modified Schrodinger equation for attosecond laser pulses interaction with "atoms" of human brain . i.e. neurons is developed and solved. Considering that the mass of the human neuron is of the order of Planck mass =10-5 g the model equation for Planck masses is applied to the laser pulse neuron interaction. Key words: Modified Schr\\"odinger Equation, Planck particles, neurons

  20. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.

    PubMed

    Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping

    2015-04-01

    Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. PMID:25616867

  1. Rethinking International Migration of Human Capital and Brain Circulation: The Case of Chinese-Canadian Academics

    ERIC Educational Resources Information Center

    Blachford, Dongyan Ru; Zhang, Bailing

    2014-01-01

    This article examines the dynamics of brain circulation through a historical review of the debates over international migration of human capital and a case study on Chinese-Canadian academics. Interviews with 22 Chinese-Canadian professors who originally came from China provide rich data regarding the possibilities and problems of the contemporary…

  2. Avalanche Dynamics of Human Brain Oscillations: Relation to Critical Branching Processes and

    E-print Network

    van Ooyen, Arjen

    Avalanche Dynamics of Human Brain Oscillations: Relation to Critical Branching Processes be interpreted as neuronal avalanches propagating in a network with a critical branching ratio. However, a direct and characterize the activity propagation in terms of avalanche life-time distributions and temporal correlations

  3. 1. Words in the brain: Where? Why? How? Human language production is caused by neuronal activity

    E-print Network

    Makous, Walter

    1. Words in the brain: Where? Why? How? Human language production is caused by neuronal activity classes. At school, one learns to categorize words into fifty or so lexical categories, such as noun or verb, and one may also be asked to categorize words on the basis of their meaning, according

  4. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  5. HUMAN NEUROSCIENCE Visual object categorization in the brain: what can we really

    E-print Network

    Caldara, Roberto

    HUMAN NEUROSCIENCE Visual object categorization in the brain: what can we really learn from ERP; Rousselet et al., 2004; Rossion and Jacques, 2008): categorical design, uncontrolled task demands, group,butonlywhenthe shortcomingsreviewedbelowareaddressed. Beyond categorical designs Categorical designs compare few categories of input stimuli against

  6. r Human Brain Mapping 00:0000 (2011) r Modulation of Working Memory Function by

    E-print Network

    2011-01-01

    r Human Brain Mapping 00:00­00 (2011) r Modulation of Working Memory Function by Motivation Through through potential monetary punishment on working memory. We employed functional MRI during a delayed mod- ulate performance on working memory tasks through top-down signals via amplification of activity

  7. Acupuncture Modulates the Limbic System and Subcortical Gray Structures of the Human Brain

    E-print Network

    Moore, Christopher

    for Morphometric Analysis, Department of Neurology, Massachusetts General Hospital and Harvard Medical School of regionally specific, quantifiable acupuncture effects on relevant structures of the human brain would. Research with animal models of acupuncture indicates that many of the beneficial effects may be mediated

  8. r Human Brain Mapping 00:000000 (2012) r The Right Inhibition? Callosal Correlates of Hand

    E-print Network

    Thompson, Paul

    2012-01-01

    r Human Brain Mapping 00:000­000 (2012) r The Right Inhibition? Callosal Correlates of Hand Performance in Healthy Children and Adolescents Callosal Correlates of Hand Performance Florian Kurth,1 that interhemispheric inhibition--relayed via the corpus cal- losum--plays an important role in unilateral hand motions

  9. Editorial: Local Control of the Timing of Thyroid Hormone Action in the Developing Human Brain

    E-print Network

    Zoeller, R. Thomas

    Editorial: Local Control of the Timing of Thyroid Hormone Action in the Developing Human Brain Frog metamorphosis has long been a fascinating example of thyroid hormone actions on development (1), and insights gained from studies of frog metamorphosis are helping us understand the role of thyroid hormone

  10. Neurobiology of Disease Structural Abnormalities in the Brains of Human Subjects

    E-print Network

    Thompson, Paul

    Methamphetamine Paul M. Thompson,1 Kiralee M. Hayashi,1 Sara L. Simon,2 Jennifer A. Geaga,1 Michael S. Hong,1, the profile of structural deficits in the human brain associated with chronic methamphetamine (MA) abuse-based maps suggest that chronic methamphetamine abuse causes a selective pattern of cerebral deterioration

  11. Fear extinction in rats: Implications for human brain imaging and anxiety disorders

    E-print Network

    Quirk, Gregory J.

    Fear extinction in rats: Implications for human brain imaging and anxiety disorders Mohammed R 2005 Available online 13 February 2006 Abstract Fear extinction is the decrease in conditioned fear of the aversive unconditioned stimulus (US). Extinction does not erase the initial CS­US association

  12. Information flow between interacting human brains: Identification, validation, and relationship to social expertise

    PubMed Central

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D.; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-01-01

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender’s and receiver’s temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions. PMID:25848050

  13. Blind deconvolution of human brain SPECT images using a distribution mixture estimation

    E-print Network

    Mignotte, Max

    Blind deconvolution of human brain SPECT images using a distribution mixture estimation Max and then to facilitate their interpretation, we propose herein to implement a deconvolution procedure relying of the object to be deconvolved when this one is needed. In this context, we compare the deconvolution results

  14. Conductivity tensor mapping of the human brain using diffusion tensor MRI

    E-print Network

    Sereno, Martin

    Conductivity tensor mapping of the human brain using diffusion tensor MRI David S. Tuch*§¶ , Van J of the electrical conductivity properties of excitable tissues is essential for relating the electromagnetic fields from the ability to measure the electrical conductivity properties of the tissue noninvasively. Here

  15. Mapping human brain function: a comparison between Variational Bayes Techniques and LCMV Beamformer On Display

    E-print Network

    /EEG source localization (Friston et al., 2008b; Wipf et al., 2010). While several methods show applicability), that we denominated Empirical Bayes Beamformer (EBB). Our parameters of interest were: 1. NumberMapping human brain function: a comparison between Variational Bayes Techniques and LCMV Beamformer

  16. Human Brain Mapping 2009 Print Abstract Number: 870 Submitted By: Ming-Chang Chiang

    E-print Network

    Thompson, Paul

    (the symmetrized Kullback-Leibler divergence). We then computed 3D maps of WM integrity basedHuman Brain Mapping 2009 Print Abstract Number: 870 Submitted By: Ming-Chang Chiang Last Modified at each voxel. The significance of genetic effects on GFA was evaluated by comparing the full ACE versus

  17. Early gene response of human brain endothelial cells to Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene expression of human brain microvascular endothelial cells (HBMEC) to Listeria monocytogenes at 4 hour infection was analyzed. Four hours after infection, the expression of 456 genes of HBMEC had changed (p<0.05). We noted that many active genes were involved in the formyl-methionylleucylph...

  18. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    ERIC Educational Resources Information Center

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  19. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology.

    PubMed

    Ward, Carol V; Tocheri, Matthew W; Plavcan, J Michael; Brown, Francis H; Manthi, Fredrick Kyalo

    2014-01-01

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ?1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato. PMID:24344276

  20. Revealing fine microstructural morphology in the living human retina using Optical Coherence Tomography with pancorrection

    NASA Astrophysics Data System (ADS)

    Torti, C.; Považay, B.; Hofer, B.; Unterhuber, A.; Hermann, B.; Drexler, W.

    2008-09-01

    Ultra-high speed optical coherence tomography employing an ultra-broadband light source has been combined with adaptive optics utilizing a single high stroke deformable mirror and chromatic aberration compensation. The reduction of motion artefacts, geometric and chromatic aberrations (pancorrection) permits to achieve an isotropic resolution of 2-3 ?m in the human eye. The performance of this non-invasive imaging modality enables to resolve cellular structures including cone photoreceptors, nerve fibre bundles and collagenous plates of the lamina cribrosa, and retinal pigment epithelial (RPE) cells in the human retina in vivo with superior detail. Alterations of cellular morphology due to cone degeneration in a colour-blind subject are investigated in ultra-high resolution with selective depth sectioning for the first time.

  1. The Physiological Action of Picolinic Acid in the Human Brain

    PubMed Central

    Grant, R.S.; Coggan, S.E.; Smythe, G.A.

    2009-01-01

    Picolinic Acid is an endogenous metabolite of L-tryptophan (TRP) that has been reported to possess a wide range of neuroprotective, immunological, and anti-proliferative affects within the body. However the salient physiological function of this molecule is yet to be established. The synthesis of picolinic acid as a product of the kynurenine pathway (KP) suggests that, similar to other KP metabolites, picolinic acid may play a role in the pathogenesis of inflammatory disorders within the CNS and possibly other organs. In this paper we review the limited body of literature dealing with the physiological actions of picolinic acid in the CNS and its associated synthesis via the kynurenine pathway in health and disease. Discrepancies and gaps in our current knowledge of picolinic acid are identified highlighting areas of research to promote a more complete understanding of its endogenous function in the brain. PMID:22084583

  2. The postnatal development and growth of the human lung. II. Morphology.

    PubMed

    Zeltner, T B; Burri, P H

    1987-03-01

    The morphology of postnatal human lung development and growth has been investigated by light and by scanning and transmission electron microscopy in seven children dying from non-respiratory causes and aged between 26 days and 64 months. The findings are compared with those of adult human lungs and are discussed in relation to the postnatal lung development in other species, particularly rodents. Within the first 1 1/2 postnatal years lung parenchyma undergoes a substantial structural remodeling due to bulk alveolar formation and to the restructuring of septal morphology. At one month alveolar formation appears to be well under way: The human lung is comparable then to a rat lung aged one week. In the parenchyma, numerous short and blunt tissue ridges, so-called secondary septa, subdivide the peripheral airspaces into an increasing number of still very shallow alveoli. The parenchymal septa present during and after alveolization are immature: they contain a double capillary network with a central, highly cellular sheet of connective tissue. The septal maturation sets in a few months after birth and consists of a reduction in the interstitial tissue mass and a complex process of capillary remodeling. Both alveolization and parenchymal maturation progress rapidly: by 6 months the lung has taken a big step towards maturity. By 1 1/2 years most septa show the adult structure where a single capillary network interwoven with connective tissue strands stabilizes the interalveolar wall. After the septal restructuring, lung development is considered complete, and the lung enters a period of normal growth that lasts until adulthood. From our observations we conclude that postnatal human lung development is made of two overlapping stages: (a) the alveolar stage, which starts in late fetal life and lasts to about 1-1 1/2 years, and (b) a stage of microvascular maturation, thought to extend from the first months after birth to the age of 2-3 years. PMID:3575906

  3. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    PubMed

    Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. PMID:26017716

  4. Ultrastructural and morphological characteristics of human anterior cruciate ligament and hamstring tendons.

    PubMed

    Zhu, Jingxian; Zhang, Xin; Ma, Yong; Zhou, Chunyan; Ao, Yingfang

    2012-09-01

    Hamstring tendons are a commonly used substitute for anterior cruciate ligament (ACL) reconstruction. Ligaments and tendons are similar in composition but the ACL is more complex than hamstring tendons in function and gross morphology, which are highly dependent on its structure and ultrastructure. The purpose of this study was to compare the morphology and ultrastructure of normal human ACL and hamstring tendons, including the cell type and arrangement, expression level of proteoglycans, diameter, and density of collagen fibrils. Twenty semitendinosus or gracilis tendons and 20 ACL specimens were harvested from patients with ACL rupture or osteoarthritis undergoing routine total knee arthroplasty. The specimens were examined histologically and the ultrastructure was observed using scanning and transmission electron microscopy. Semitendinosus and gracilis tendons showed a homogeneous arrangement of collagen fibers and cell type. They had lower fibril density and more widely distributed fibril diameters. In the ACL, there was a more complex arrangement of collagen fibers, distribution of proteoglycans and different cell types. Electronic microscopy demonstrated a combination of parallel, helical and nonlinear networks of ACL fibrils, and fibril diameters were smaller and more nonuniform. This study compared the anatomy of normal human ACL and hamstring tendons, which may provide a standard for evaluating hamstring tendons grafts after ACL reconstruction and may facilitate the application of hamstring tendons in clinical applications. PMID:22807249

  5. Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex.

    PubMed

    Li, Yansong; Sescousse, Guillaume; Amiez, Céline; Dreher, Jean-Claude

    2015-01-28

    Experienced value representations within the human orbitofrontal cortex (OFC) are thought to be organized through an antero-posterior gradient corresponding to secondary versus primary rewards. Whether this gradient depends upon specific morphological features within this region, which displays considerable intersubject variability, remains unknown. To test the existence of such relationships, we performed a subject-by-subject analysis of fMRI data taking into account the local morphology of each individual. We tested 38 subjects engaged in a simple incentive delay task manipulating both monetary and visual erotic rewards, focusing on reward outcome (experienced value signal). The results showed reliable and dissociable primary (erotic) and secondary (monetary) experienced value signals at specific OFC sulci locations. More specifically, experienced value signal induced by monetary reward outcome was systematically located in the rostral portion of the medial orbital sulcus. Experienced value signal related to erotic reward outcome was located more posteriorly, that is, at the intersection between the caudal portion of the medial orbital sulcus and transverse orbital sulcus. Thus, the localizations of distinct experienced value signals can be predicted from the organization of the human orbitofrontal sulci. This study provides insights into the anatomo-functional parcellation of the anteroposterior OFC gradient observed for secondary versus primary rewards because there is a direct relationship between value signals at the time of reward outcome and unique OFC sulci locations. PMID:25632140

  6. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n?=?6), foetal human neural stem cells (n?=?1) and human brain tissues (n?=?12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate. PMID:25514637

  7. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    PubMed

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells. PMID:26354505

  8. A natural history of the human mind: tracing evolutionary changes in brain and cognition

    PubMed Central

    Sherwood, Chet C; Subiaul, Francys; Zawidzki, Tadeusz W

    2008-01-01

    Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300–400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species’ cognitive and linguistic abilities. PMID:18380864

  9. A natural history of the human mind: tracing evolutionary changes in brain and cognition.

    PubMed

    Sherwood, Chet C; Subiaul, Francys; Zawidzki, Tadeusz W

    2008-04-01

    Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300-400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species' cognitive and linguistic abilities. PMID:18380864

  10. Identifying functional subdivisions in the human brain using meta-analytic activation modeling-based parcellation.

    PubMed

    Yang, Yong; Fan, Lingzhong; Chu, Congying; Zhuo, Junjie; Wang, Jiaojian; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2016-01-01

    Parcellation of the human brain into fine-grained units by grouping voxels into distinct clusters has been an effective approach for delineating specific brain regions and their subregions. Published neuroimaging studies employing coordinate-based meta-analyses have shown that the activation foci and their corresponding behavioral categories may contain useful information about the anatomical-functional organization of brain regions. Inspired by these developments, we proposed a new parcellation scheme called meta-analytic activation modeling-based parcellation (MAMP) that uses meta-analytically obtained information. The raw meta data, including the experiments and the reported activation coordinates related to a brain region of interest, were acquired from the Brainmap database. Using this data, we first obtained the "modeled activation" pattern by modeling the voxel-wise activation probability given spatial uncertainty for each experiment that featured at least one focus within the region of interest. Then, we processed these "modeled activation" patterns across the experiments with a K-means clustering algorithm to group the voxels into different subregions. In order to verify the reliability of the method, we employed our method to parcellate the amygdala and the left Brodmann area 44 (BA44). The parcellation results were quite consistent with previous cytoarchitectonic and in vivo neuroimaging findings. Therefore, the MAMP proposed in the current study could be a useful complement to other methods for uncovering the functional organization of the human brain. PMID:26296500

  11. A geometric network model of intrinsic grey-matter connectivity of the human brain

    PubMed Central

    Lo, Yi-Ping; O’Dea, Reuben; Crofts, Jonathan J.; Han, Cheol E.; Kaiser, Marcus

    2015-01-01

    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuroscience is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections. PMID:26503036

  12. Creating Anatomically Accurate and Reproducible Intracranial Xenografts of Human Brain Tumors

    PubMed Central

    Pierce, Angela M.; Keating, Amy K.

    2015-01-01

    Orthotopic tumor models are currently the best way to study the characteristics of a tumor type, with and without intervention, in the context of a live animal – particularly in sites with unique physiological and architectural qualities such as the brain. In vitro and ectopic models cannot account for features such as vasculature, blood brain barrier, metabolism, drug delivery and toxicity, and a host of other relevant factors. Orthotopic models have their limitations too, but with proper technique tumor cells of interest can be accurately engrafted into tissue that most closely mimics conditions in the human brain. By employing methods that deliver precisely measured volumes to accurately defined locations at a consistent rate and pressure, mouse models of human brain tumors with predictable growth rates can be reproducibly created and are suitable for reliable analysis of various interventions. The protocol described here focuses on the technical details of designing and preparing for an intracranial injection, performing the surgery, and ensuring successful and reproducible tumor growth and provides starting points for a variety of conditions that can be customized for a range of different brain tumor models. PMID:25285381

  13. Differential regional and cellular distribution of TFF3 peptide in the human brain.

    PubMed

    Bernstein, Hans-Gert; Dobrowolny, Henrik; Trübner, Kurt; Steiner, Johann; Bogerts, Bernhard; Hoffmann, Werner

    2015-05-01

    TFF3 is a member of the trefoil factor family (TFF) predominantly secreted by mucous epithelia. Minute amounts are also expressed in the immune system and the brain. In the latter, particularly the hypothalamo-pituitary axis has been investigated in detail in the past. Functionally, cerebral TFF3 has been reported to be involved in several processes such as fear, depression, learning and object recognition, and opiate addiction. Furthermore, TFF3 has been linked with neurodegenerative and neuropsychiatric disorders (e.g., Alzheimer's disease, schizophrenia, and alcoholism). Here, using immunohistochemistry, a systematic survey of the TFF3 localization in the adult human brain is presented focusing on extrahypothalamic brain areas. In addition, the distribution of TFF3 in the developing human brain is described. Taken together, neurons were identified as the predominant cell type to express TFF3, but to different extent; TFF3 was particularly enriched in various midbrain and brain stem nuclei. Besides, TFF3 immunostaining staining was observed in oligodendroglia and the choroid plexus epithelium. The wide cerebral distribution should help to explain its multiple effects in the CNS. PMID:25691144

  14. A geometric network model of intrinsic grey-matter connectivity of the human brain

    NASA Astrophysics Data System (ADS)

    Lo, Yi-Ping; O’Dea, Reuben; Crofts, Jonathan J.; Han, Cheol E.; Kaiser, Marcus

    2015-10-01

    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuroscience is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections.

  15. A geometric network model of intrinsic grey-matter connectivity of the human brain.

    PubMed

    Lo, Yi-Ping; O'Dea, Reuben; Crofts, Jonathan J; Han, Cheol E; Kaiser, Marcus

    2015-01-01

    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuroscience is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct 'shortcuts' through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections. PMID:26503036

  16. Effects of diet on brain plasticity in animal and human studies: mind the gap.

    PubMed

    Murphy, Tytus; Dias, Gisele Pereira; Thuret, Sandrine

    2014-01-01

    Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease-with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function. PMID:24900924

  17. An anti-inflammatory role for C/EBP? in human brain pericytes

    PubMed Central

    Rustenhoven, Justin; Scotter, Emma L.; Jansson, Deidre; Kho, Dan T.; Oldfield, Robyn L.; Bergin, Peter S.; Mee, Edward W.; Faull, Richard L. M.; Curtis, Maurice A.; Graham, Scott E.; Park, Thomas I-H.; Dragunow, Mike

    2015-01-01

    Neuroinflammation contributes to the pathogenesis of several neurological disorders and pericytes are implicated in brain inflammatory processes. Cellular inflammatory responses are orchestrated by transcription factors but information on transcriptional control in pericytes is lacking. Because the transcription factor CCAAT/enhancer binding protein delta (C/EBP?) is induced in a number of inflammatory brain disorders, we sought to investigate its role in regulating pericyte immune responses. Our results reveal that C/EBP? is induced in a concentration- and time-dependent fashion in human brain pericytes by interleukin-1? (IL-1?). To investigate the function of the induced C/EBP? in pericytes we used siRNA to knockdown IL-1?-induced C/EBP? expression. C/EBP? knockdown enhanced IL-1?-induced production of intracellular adhesion molecule-1 (ICAM-1), interleukin-8, monocyte chemoattractant protein-1 (MCP-1) and IL-1?, whilst attenuating cyclooxygenase-2 and superoxide dismutase-2 gene expression. Altered ICAM-1 and MCP-1 protein expression were confirmed by cytometric bead array and immunocytochemistry. Our results show that knock-down of C/EBP? expression in pericytes following immune stimulation increased chemokine and adhesion molecule expression, thus modifying the human brain pericyte inflammatory response. The induction of C/EBP? following immune stimulation may act to limit infiltration of peripheral immune cells, thereby preventing further inflammatory responses in the brain. PMID:26166618

  18. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap

    PubMed Central

    Dias, Gisele Pereira

    2014-01-01

    Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease—with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function. PMID:24900924

  19. New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain.

    PubMed

    Chen, A C

    2001-10-01

    With the maturation of EEG/MEG brain mapping and PET/fMRI neuroimaging in the 1990s, greater understanding of pain processing in the brain now elucidates and may even challenge the classical theory of pain mechanisms. This review scans across the cultural diversity of pain expression and modulation in man. It outlines the difficulties in defining and studying human pain. It then focuses on methods of studying the brain in experimental and clinical pain, the cohesive results of brain mapping and neuroimaging of noxious perception, the implication of pain research in understanding human consciousness and the relevance to clinical care as well as to the basic science of human psychophysiology. Non-invasive brain studies in man start to unveil the age-old puzzles of pain-illusion, hypnosis and placebo in pain modulation. The neurophysiological and neurohemodynamic brain measures of experimental pain can now largely satisfy the psychophysiologist's dream, unimaginable only a few years ago, of modelling the body-brain, brain-mind, mind-matter duality in an inter-linking 3-P triad: physics (stimulus energy); physiology (brain activities); and psyche (perception). For neuropsychophysiology greater challenges lie ahead: (a) how to integrate a cohesive theory of human pain in the brain; (b) what levels of analyses are necessary and sufficient; (c) what constitutes the structural organisation of the pain matrix; (d) what are the modes of processing among and across the sites of these structures; and (e) how can neural computation of these processes in the brain be carried out? We may envision that modular identification and delineation of the arousal-attention, emotion-motivation and perception-cognition neural networks of pain processing in the brain will also lead to deeper understanding of the human mind. Two foreseeable impacts on clinical sciences and basic theories from brain mapping/neuroimaging are the plausible central origin in persistent pain and integration of sensory-motor function in pain perception. PMID:11587773

  20. Effect of Simulated Microgravity on Human Brain Gray Matter and White Matter – Evidence from MRI

    PubMed Central

    Li, Ke; Guo, Xiaojuan; Jin, Zhen; Ouyang, Xin; Zeng, Yawei; Feng, Jinsheng; Wang, Yu; Yao, Li; Ma, Lin

    2015-01-01

    Background There is limited and inconclusive evidence that space environment, especially microgravity condition, may affect microstructure of human brain. This experiment hypothesized that there would be modifications in gray matter (GM) and white matter (WM) of the brain due to microgravity. Method Eighteen male volunteers were recruited and fourteen volunteers underwent -6° head-down bed rest (HDBR) for 30 days simulated microgravity. High-resolution brain anatomical imaging data and diffusion tensor imaging images were collected on a 3T MR system before and after HDBR. We applied voxel-based morphometry and tract-based spatial statistics analysis to investigate the structural changes in GM and WM of brain. Results We observed significant decreases of GM volume in the bilateral frontal lobes, temporal poles, parahippocampal gyrus, insula and right hippocampus, and increases of GM volume in the vermis, bilateral paracentral lobule, right precuneus gyrus, left precentral gyrus and left postcentral gyrus after HDBR. Fractional anisotropy (FA) changes were also observed in multiple WM tracts. Conclusion These regions showing GM changes are closely associated with the functional domains of performance, locomotion, learning, memory and coordination. Regional WM alterations may be related to brain function decline and adaption. Our findings provide the neuroanatomical evidence of brain dysfunction or plasticity in microgravity condition and a deeper insight into the cerebral mechanisms in microgravity condition. PMID:26270525