These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Quantitative genetic modeling of variation in human brain morphology  

Microsoft Academic Search

The degree to which individual variation in brain structure in humans is genetically or environmentally determined is as yet not well understood. We studied the brains of 54 monozygotic (33 male, 21 female) and 58 dizygotic (17 male, 20 female, 21 opposite sex) pairs of twins and 34 of their full siblings (19 male, 15 female) by means of high

W. F. C. Baare; H. E. Hulshoff-Poll; Dorret I. Boomsma; Daniëlle Posthuma; Geus de E. J. C; H. G. Snack; Haren van N. E. M; Oel van C. J; René S. Kahn

2001-01-01

2

A mechanical model predicts morphological abnormalities in the developing human brain  

PubMed Central

The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism. PMID:25008163

Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

2014-01-01

3

A mechanical model predicts morphological abnormalities in the developing human brain  

NASA Astrophysics Data System (ADS)

The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

2014-07-01

4

Morphology cluster and prediction of growth of human brain pyramidal neurons?  

PubMed Central

Predicting neuron growth is valuable to understand the morphology of neurons, thus it is helpful in the research of neuron classification. This study sought to propose a new method of predicting the growth of human neurons using 1 907 sets of data in human brain pyramidal neurons obtained from the website of NeuroMorpho.Org. First, we analyzed neurons in a morphology field and used an expectation-maximization algorithm to specify the neurons into six clusters. Second, naive Bayes classifier was used to verify the accuracy of the expectation-maximization algorithm. Experiment results proved that the cluster groups here were efficient and feasible. Finally, a new method to rank the six expectation-maximization algorithm clustered classes was used in predicting the growth of human pyramidal neurons.

Yu, Chao; Han, Zengxin; Zeng, Wencong; Liu, Shenquan

2012-01-01

5

The association between regular cannabis exposure and alterations of human brain morphology: an updated review of the literature.  

PubMed

Cannabis is the most widely used illicit drug worldwide, though it is unclear whether its regular use is associated with persistent alterations in brain morphology. This review examines evidence from human structural neuroimaging investigations of regular cannabis users and focuses on achieving three main objectives. These include examining whether the literature to date provides evidence that alteration of brain morphology in regular cannabis users: i) is apparent, compared to non-cannabis using controls; ii) is associated with patterns of cannabis use; and with iii) measures of psychopathology and neurocognitive performance. The published findings indicate that regular cannabis use is associated with alterations in medial temporal, frontal and cerebellar brain regions. Greater brain morphological alterations were evident among samples that used at higher doses for longer periods. However, the evidence for an association between brain morphology and cannabis use parameters was mixed. Further, there is poor evidence for an association between measures of brain morphology and of psychopathology symptoms/neurocognitive performance. Overall, numerous methodological issues characterize the literature to date. These include investigation of small sample sizes, heterogeneity across studies in sample characteristics (e.g., sex, comorbidity) and in employed imaging techniques, as well as the examination of only a limited number of brain regions. These factors make it difficult to draw firm conclusions from the existing findings. Nevertheless, this review supports the notion that regular cannabis use is associated with alterations of brain morphology, and highlights the need to consider particular methodological issues when planning future cannabis research. PMID:23829361

Lorenzetti, Valentina; Solowij, Nadia; Fornito, Alex; Lubman, Dan Ian; Yucel, Murat

2014-01-01

6

Early parental care is important for hippocampal maturation: Evidence from brain morphology in humans  

Microsoft Academic Search

The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during

Hengyi Rao; Laura Betancourt; Joan M. Giannetta; Nancy L. Brodsky; Marc Korczykowski; Brian B. Avants; James C. Gee; Jiongjiong Wang; Hallam Hurt; John A. Detre; Martha J. Farah

2010-01-01

7

The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain.  

PubMed

Since the early days, how we represent the world around us has been a matter of philosophical speculation. Over the last few decades, modern neuroscience, and specifically the development of methodologies for the structural and the functional exploration of the brain have made it possible to investigate old questions with an innovative approach. In this brief review, we discuss the main findings from a series of brain anatomical and functional studies conducted in sighted and congenitally blind individuals by our's and others' laboratories. Historically, research on the 'blind brain' has focused mainly on the cross-modal plastic changes that follow sensory deprivation. More recently, a novel line of research has been developed to determine to what extent visual experience is truly required to achieve a representation of the surrounding environment. Overall, the results of these studies indicate that most of the brain fine morphological and functional architecture is programmed to develop and function independently from any visual experience. Distinct cortical areas are able to process information in a supramodal fashion, that is, independently from the sensory modality that carries that information to the brain. These observations strongly support the hypothesis of a modality-independent, i.e. more abstract, cortical organization, and may contribute to explain how congenitally blind individuals may interact efficiently with an external world that they have never seen. PMID:24962172

Ricciardi, Emiliano; Handjaras, Giacomo; Pietrini, Pietro

2014-11-01

8

Morphological patterns of the intraparietal sulcus and the anterior intermediate parietal sulcus of Jensen in the human brain.  

PubMed

Distinct parts of the intraparietal sulcal cortex contribute to sensorimotor integration and visual spatial attentional processing. A detailed examination of the morphological relations of the different segments of the complex intraparietal sulcal region in the human brain in standard stereotaxic space, which is a prerequisite for detailed structure-to-function studies, is not available. This study examined the intraparietal sulcus (IPS) and the related sulcus of Jensen in magnetic resonance imaging brain volumes registered in the Montreal Neurological Institute stereotaxic space. It was demonstrated that the IPS is divided into two branches: the anterior ramus and the posterior ramus of the IPS, often separated by a submerged gyral passage. The sulcus of Jensen emerges between the anterior and posterior rami of the IPS, and its ventral end is positioned between the first and second caudal branches of the superior temporal sulcus. In a small number of brains, the sulcus of Jensen may merge superficially with the first caudal branch of the superior temporal sulcus. The above morphological findings are discussed in relation to previously reported functional neuroimaging findings and provide the basis for future exploration of structure-to-function relations in the posterior parietal region of individual subjects. PMID:25377465

Zlatkina, Veronika; Petrides, Michael

2014-12-22

9

Neural dynamics of inflectional and derivational morphology processing in the human brain.  

PubMed

We investigated neural distinctions between inflectional and derivational morphology and their interaction with lexical frequency using the mismatch negativity (MMN), an established neurophysiological index of experience-dependent linguistic memory traces and automatic syntactic processing. We presented our electroencephalography (EEG) study participants with derived and inflected words of variable lexical frequencies against their monomorphemic base forms in a passive oddball paradigm, along with acoustically matched pseudowords. Sensor space and distributed source modelling results showed that at 100-150 msec after the suffix onset, derived words elicited larger responses than inflected words. Furthermore, real derived words showed advantage over pseudo-derivations and frequent derivations elicited larger activation than less frequent ones. This pattern of results is fully in line with previous research that explained lexical MMN enhancement by an activation of strongly connected word-specific long-term memory circuits, and thus suggests stronger lexicalisation for frequently used complex words. At the same time, a strikingly different pattern was found for inflectional forms: higher response amplitude for pseudo-inflections than for real inflected words, with no clear frequency effects. This is fully in line with previous MMN results on combinatorial processing of (morpho)syntactic stimuli: higher response to ungrammatical morpheme strings than grammatical ones, which does not depend on the string's surface frequency. This pattern suggests that, for inflectional forms, combinatorial processing route dominates over whole-form storage and access. In sum, our results suggest that derivations are more likely to form unitary representations than inflections which are likely to be processed combinatorially, and imply at least partially distinct brain mechanisms for the processing and representation of these two types of morphology. These dynamic mechanisms, underpinned by perisylvian networks, are activated rapidly, at 100-150 msec after the information arrives at the input, and in a largely automatic fashion, possibly providing neural basis for the first-pass morphological processing of spoken words. PMID:24075689

Leminen, Alina; Leminen, Miika; Kujala, Teija; Shtyrov, Yury

2013-01-01

10

Cellular Alterations in Human Traumatic Brain Injury: Changes in Mitochondrial Morphology Reflect Regional Levels of Injury Severity  

PubMed Central

Abstract Mitochondrial dysfunction may be central to the pathophysiology of traumatic brain injury (TBI) and often can be recognized cytologically by changes in mitochondrial ultrastructure. This study is the first to broadly characterize and quantify mitochondrial morphologic alterations in surgically resected human TBI tissues from three contiguous cortical injury zones. These zones were designated as injury center (Near), periphery (Far), and Penumbra. Tissues from 22 patients with TBI with varying degrees of damage and time intervals from TBI to surgical tissue collection within the first week post-injury were rapidly fixed in the surgical suite and processed for electron microscopy. A large number of mitochondrial structural patterns were identified and divided into four survival categories: normal, normal reactive, reactive degenerating, and end-stage degenerating profiles. A tissue sample acquired at 38 hours post-injury was selected for detailed mitochondrial quantification, because it best exhibited the wide variation in cellular and mitochondrial changes consistently noted in all the other cases. The distribution of mitochondrial morphologic phenotypes varied significantly between the three injury zones and when compared with control cortical tissue obtained from an epilepsy lobectomy. This study is unique in its comparative quantification of the mitochondrial ultrastructural alterations at progressive distances from the center of injury in surviving TBI patients and in relation to control human cortex. These quantitative observations may be useful in guiding the translation of mitochondrial-based neuroprotective interventions to clinical implementation. PMID:23131111

Balan, Irina S.; Saladino, Andrew J.; Aarabi, Bizhan; Castellani, Rudolf J.; Wade, Christine; Stein, Deborah M.; Eisenberg, Howard M.; Chen, Hegang H.

2013-01-01

11

Human Functional Brain Imaging  

E-print Network

Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review Summary Brain Imaging #12 Dale ­ one of our first Trustees. Understanding the brain remains one of our key strategic aims today three-fold: · to identify the key landmarks and influences on the human functional brain imaging

Rambaut, Andrew

12

BrainPrint: A discriminative characterization of brain morphology.  

PubMed

We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets. PMID:25613439

Wachinger, Christian; Golland, Polina; Kremen, William; Fischl, Bruce; Reuter, Martin

2015-04-01

13

Human Functional Brain Imaging  

E-print Network

forward: speculations on the future of human functional brain imaging 30 4.1 More solution-focused, October 2009 1. The Wellcome Trust has provided substantial funding for neuroscience and mental health

Rambaut, Andrew

14

Measuring Complexity of Mouse Brain Morphological Changes Using GeoEntropy  

NASA Astrophysics Data System (ADS)

Given the current emphasis on research into human neurodegenerative diseases, an effective computing approach for the analysis of complex brain morphological changes would represent a significant technological innovation. The availability of mouse models of such disorders provides an experimental system to test novel approaches to brain image analysis. Here we utilize a mouse model of a neurodegenerative disorder to model changes to cerebellar morphology during the postnatal period, and have applied the GeoEntropy algorithm to measure the complexity of morphological changes.

El-fiqi, Heba Z.; Pham, Tuan D.; Hattori, Haroldo T.; Crane, Denis I.

2010-01-01

15

Book Reviews From Monkey Brain to Human Brain: A Fys-  

E-print Network

Book Reviews From Monkey Brain to Human Brain: A Fys- sen Foundation Symposium. Edited by Stanislas- setts: MIT Press. 2005. $55.00 (cloth). To unravel the complex story of human brain evolution Monkey Brain to Human Brain is that it collects, in one place, detailed discussions of both anatomy

Schoenemann, P. Thomas

16

International Human Capital Formation, Brain Drain and Brain  

E-print Network

EA 4272 International Human Capital Formation, Brain Drain and Brain Gain: A Conceptual Framework DocumentdeTravail WorkingPaper hal-00421166,version1-1Oct2009 #12;1 International Human Capital Formation for examining the interrelation between brain drain, brain gain and the location of human capital formation

Paris-Sud XI, Université de

17

Educating the Human Brain. Human Brain Development Series  

ERIC Educational Resources Information Center

"Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

Posner, Michael I.; Rothbart, Mary K.

2006-01-01

18

Vascular Genomics of the Human Brain  

Microsoft Academic Search

The microvasculature of the human brain plays an important role in the development and maintenance of the central nervous system and in the pathogenesis of brain diseases, and is the site of differential gene expression within the brain. However, human brain microvascular-specific genes may not be detected in whole-brain gene microarray because the volume of the brain microvascular endothelium is

Eric V. Shusta; Ruben J. Boado; Gary W. Mathern; William M. Pardridge

2002-01-01

19

A morphological approach for infant brain segmentation in MRI data  

E-print Network

A morphological approach for infant brain segmentation in MRI data Michele Peporte and Dana E. Ilea a skull stripping method for premature infant data. Skull stripping involves the extraction of brain premature infants Magnetic Resonance Imaging (MRI) data. In this study we focus on a significant step

Whelan, Paul F.

20

Cellular migration and morphological complexity in the caecilian brain  

Microsoft Academic Search

The morphology of the tectum mesencephali and the medial pallium is studied in species representing the six families of caecilians (Amphibia: Gymnophiona) in order to determine whether differences in brain morphology are related to function, phylogenetic history, or life history strate- gies. In general, the caecilian tectum is characterized by simplification in having little to no lamination and few migrated

Andrea Schmidt; Marvalee H. Wake

1997-01-01

21

Archaic and modern human distal humeral morphology.  

PubMed

The morphology of the proximal ulna has been shown to effectively differentiate archaic or premodern humans (such as Homo heidelbergensis and H. neanderthalensis) from modern humans (H. sapiens). Accordingly, the morphology of adjacent, articulating elements should be able to distinguish these two broad groups as well. Here we test the taxonomic utility of another portion of the elbow, the distal humerus, as a discriminator of archaic and modern humans. Principal components analysis was employed on a suite of log-raw and log-shape distal humeral measures to examine differences between Neandertal and modern human distal humeri. In addition, the morphological affinities of Broken Hill (Kabwe) E.898, an archaic human distal humeral fragment from the middle Pleistocene of Zambia, and five Pliocene and early Pleistocene australopith humeri were assessed. The morphometric analyses effectively differentiated the Neandertals from the other groups, while the Broken Hill humerus appears morphologically similar to modern human distal humeri. Thus, an archaic/modern human dichotomy-as previously reported for proximal ulnar morphology-is not supported with respect to distal humeral morphology. Relative to australopiths and modern humans, Neandertal humeri are characterized by large olecranon fossae and small distodorsal medial and lateral pillars. The seeming disparity in morphological affinities of proximal ulnae (in which all archaic human groups appear distinct from modern humans) and distal humeri (in which Neandertals appear distinct from modern humans, but other archaic humans do not) is probably indicative of a highly variable, possibly transitional population of which our knowledge is hampered by sample-size limitations imposed by the scarcity of middle-to-late Pleistocene premodern human fossils outside of Europe. PMID:16959299

Yokley, Todd R; Churchill, Steven E

2006-12-01

22

Does the morphology of high-frequency (100–500 Hz) brain oscillations change during epileptic seizures?  

Microsoft Academic Search

Transient high-frequency (100–500 Hz) oscillations (HFOs) recorded directly from the surface of the human brain are emerging as a potential biomarker for epileptogenic brain tissue. Whether the morphology of these events can be used to understand the process of seizure generation is unknown. In this experiment, we used supervised learning techniques in an attempt to distinguish HFOs occurring during versus

Allison Pearce; Drausin Wulsin; Brian Litt; Justin Blanco

2011-01-01

23

Structural Brain Correlates of Human Sleep Oscillations  

PubMed Central

Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Grey matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, grey matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, grey matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

Saletin, Jared M.; van der Helm, Els; Walker, Matthew P.

2014-01-01

24

Structural brain correlates of human sleep oscillations.  

PubMed

Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

Saletin, Jared M; van der Helm, Els; Walker, Matthew P

2013-12-01

25

A Geographic Cline of Skull and Brain Morphology among Individuals of European Ancestry  

PubMed Central

Background Human skull and brain morphology are strongly influenced by genetic factors, and skull size and shape vary worldwide. However, the relationship between specific brain morphology and genetically-determined ancestry is largely unknown. Methods We used two independent data sets to characterize variation in skull and brain morphology among individuals of European ancestry. The first data set is a historical sample of 1,170 male skulls with 37 shape measurements drawn from 27 European populations. The second data set includes 626 North American individuals of European ancestry participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI) with magnetic resonance imaging, height and weight, neurological diagnosis, and genome-wide single nucleotide polymorphism (SNP) data. Results We found that both skull and brain morphological variation exhibit a population-genetic fingerprint among individuals of European ancestry. This fingerprint shows a Northwest to Southeast gradient, is independent of body size, and involves frontotemporal cortical regions. Conclusion Our findings are consistent with prior evidence for gene flow in Europe due to historical population movements and indicate that genetic background should be considered in studies seeking to identify genes involved in human cortical development and neuropsychiatric disease. PMID:21849792

Bakken, Trygve E.; Dale, Anders M.; Schork, Nicholas J.

2011-01-01

26

Phosphorylase isoenzymes of human brain  

Microsoft Academic Search

The isoenzyme pattern of phosphorylase in human brain was studied by polyacrylamide slab gel electrophoresis and activity\\u000a was revealed by iodine stain and by autoradiography: A major fast-migrating band was similar to isoenzyme I of the heart;\\u000a an intermediate band migrated like the hybrid cardiac isoenzyme II; and a slow-migrating band, best revealed by autoradiography,\\u000a migrated like the “muscle” isoenzyme

Nereo Bresolin; Armand F. Miranda; Mercedes P. Jacobson; Jeen Hyung Lee; Thomas Capilupi; Salvatore Dimauro

1983-01-01

27

Quantitative growth and development of human brain  

Microsoft Academic Search

One hundred and thirty-nine complete human brains ranging in age from 10 weeks' gestation to 7 postnatal years, together with 9 adult brains, have been analysed in order to describe the human brain growth spurt quantitatively. The three major regions were examined for weight, DNA, cholesterol, and water content. The growth spurt period is much more postnatal than has formerly

John Dobbing; Jean Sands

1973-01-01

28

A Direct Brain-to-Brain Interface in Humans  

PubMed Central

We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285

Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.

2014-01-01

29

Gross morphological brain changes with chronic, heavy cannabis use.  

PubMed

We investigated the morphology of multiple brain regions in a rare sample of 15 very heavy cannabis users with minimal psychiatric comorbidity or significant exposure to other substances (compared with 15 age- and IQ-matched non-cannabis-using controls) using manual techniques. Heavy cannabis users demonstrated smaller hippocampus and amygdala volumes, but no alterations of the orbitofrontal and anterior- and paracingulate cortices, or the pituitary gland. These findings indicate that chronic cannabis use has a selective and detrimental impact on the morphology of the mediotemporal lobe. PMID:25431432

Lorenzetti, Valentina; Solowij, Nadia; Whittle, Sarah; Fornito, Alex; Lubman, Dan I; Pantelis, Christos; Yücel, Murat

2015-01-01

30

Detection of blood vessels in human brain 3D magnetic resonance images with the use of mathematical morphology and region growing algorithms  

NASA Astrophysics Data System (ADS)

Detection and quantitative parameterization of brain blood vessels in magnetic resonance images (MRI) are an important aid to diagnosing neoplasmic diseases, planning surgical operations or detecting the atrophy of blood vessels. Fast and effective computer programs are needed to extract quantitative information from MRI data - to increase objectivity, accuracy and repeatability of the diagnosis. To develop such programs we must use algorithms for 3D images segmentation, necessary to build geometrical models of the blood vessels. These models are then used for vessel tree visualization and quantitative description.

Sankowski, Adam; Materka, Andrzej

2009-06-01

31

Effects of abstinence on brain morphology in alcoholism  

Microsoft Academic Search

Chronic alcohol abuse leads to morphological changes of the brain. We investigated if these volumetric changes are reversible\\u000a after a period of abstinence. For this reason 41 male and 15 female alcohol patients underwent MRI-scanning after in-patient\\u000a detoxification (baseline) entering alcoholism treatment programs, and between 6 and 9 months later (follow-up), in a phase\\u000a of convalescence. Additionally, 29 male and 16

Thomas Wobrock; Peter Falkai; Thomas Schneider-Axmann; Nicole Frommann; Wolfgang Wölwer; Wolfgang Gaebel

2009-01-01

32

Cognitive profile and brain morphological changes in obstructive sleep apnea  

PubMed Central

Obstructive sleep apnea (OSA) is accompanied by neurocognitive impairment, likely mediated by injury to various brain regions. We evaluated brain morphological changes in patients with OSA and their relationship to neuropsychological and oximetric data. Sixteen patients affected by moderate-severe OSA (age: 55.8±6.7 years, 13 males) and fourteen control subjects (age: 57.6±5.1 years, 9 males) underwent 3.0 Tesla brain magnetic resonance imaging (MRI) and neuropsychological testing evaluating short and long-term memory, executive functions, language, attention, praxia and non-verbal learning. Volumetric segmentation of cortical and subcortical structures and voxel-based morphometry (VBM) were performed. Patients and controls differed significantly in Rey Auditory- Verbal Learning test (immediate and delayed recall), Stroop test and Digit span backward scores. Volumes of cortical gray matter (GM), right hippocampus, right and left caudate were smaller in patients compared to controls, with also brain parenchymal fraction (a normalized measure of cerebral atrophy) approaching statistical significance. Differences remained significant after controlling for comorbidities (hypertension, diabetes, smoking, hypercholesterolemia). VBM analysis showed regions of decreased GM volume in right and left hippocampus and within more lateral temporal areas in patients with OSA. Our findings indicate that the significant cognitive impairment seen in patients with moderate-severe OSA is associated with brain tissue damage in regions involved in several cognitive tasks. We conclude that OSA can increase brain susceptibility to the effects of aging and other clinical and pathological occurrences. PMID:20888921

Torelli, Federico; Moscufo, Nicola; Garreffa, Girolamo; Placidi, Fabio; Romigi, Andrea; Zannino, Silvana; Bozzali, Marco; Fasano, Fabrizio; Giulietti, Giovanni; Djonlagic, Ina; Malhotra, Atul; Marciani, Maria Grazia; Guttmann, Charles RG

2014-01-01

33

Astroglial growth factors in normal human brain and brain tumors: comparison with embryonic brain  

Microsoft Academic Search

Aqueous extracts of 18-day embryonic chicken brains, 15-day embryonic and adult rat brains and human brain tumors, as well as control histologically-normal adult human brain taken from around brain tumors or around arteriovenous malformations each stimulated the growth of cultured chick astrocytes. Eight mitogenic fractions were separated reproducibly by Bio-Gel P-10 molecular seive chromatography. They had apparent molecular weights (M.W.)

Michel P. Rathbone; Galina K. Szlapetis; Rocco de Villiers; Rolando F. Del Maestro; Joseph Gilbert; John Groves; Kelly Erola; Jae-Kyoung Kim

1992-01-01

34

Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis  

PubMed Central

Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

Koscik, Timothy R.; Tranel, Daniel

2013-01-01

35

Comparing the Sheep Brain to the Human Brain - A visual guide to use during sheep brain dissection laboratories  

NSDL National Science Digital Library

Power Point slides that can be used during the sheep brain dissection laboratory to visually compare the sheep brain to the human brain structures with the goal to learn the anatomy of the human brain.

PhD Margarita P Bracamonte (Northland Community & Technical College Biology)

2009-05-21

36

Understanding complexity in the human brain  

E-print Network

Understanding complexity in the human brain Danielle S. Bassett1 and Michael S. Gazzaniga2 1 the ultimate aim of neuroscientific enquiry is to gain an understanding of the brain and how its work- ings of mind­brain mechanisms if the cumulative findings from these neu- roscientific studies are coupled

Gazzaniga, Michael

37

Brain Graphs: Graphical Models of the Human Brain Connectome  

Microsoft Academic Search

Brain graphs provide a relatively simple and increasingly popular way of modeling the human brain connectome, using graph theory to abstractly define a nervous system as a set of nodes (denoting anatomical regions or recording electrodes) and interconnecting edges (denoting structural or functional connections). Topological and geometrical properties of these graphs can be measured and compared to random graphs and

Edward T. Bullmore; Danielle S. Bassett

2011-01-01

38

Brain Graphs: Graphical Models of the Human Brain Connectome  

Microsoft Academic Search

Brain graphs provide a relatively simple and increasingly popular way of modeling the human brain connectome, using graph theory to abstractly define a nervous system as a set of nodes (denoting anatomical regions or recording electrodes) and interconnecting edges (denoting structural or functional connections). Topological and geometrical properties of these graphs can be measured and compared to random graphs and

Edward T. Bullmore; Danielle S. Bassett

39

Neurobiology of Aging 26 (2005) 491510 Measures of brain morphology and infarction in the framingham  

E-print Network

Neurobiology of Aging 26 (2005) 491­510 Measures of brain morphology and infarction to the possible impact of brain infarction on age-related differences in regional brain volumes. Given the current, particularly with regard to the impact of brain infarctions, we chose to quantify brain MRIs from more than

California at Davis, University of

40

Towards multimodal atlases of the human brain  

PubMed Central

Atlases of the human brain have an important impact on neuroscience. The emergence of ever more sophisticated imaging techniques, brain mapping methods and analytical strategies has the potential to revolutionize the concept of the brain atlas. Atlases can now combine data describing multiple aspects of brain structure or function at different scales from different subjects, yielding a truly integrative and comprehensive description of this organ. These integrative approaches have provided significant impetus for the human brain mapping initiatives, and have important applications in health and disease. PMID:17115077

Toga, Arthur W.; Thompson, Paul M.; Mori, Susumu; Amunts, Katrin; Zilles, Karl

2010-01-01

41

Morphology of human palmaris longus tendon  

Microsoft Academic Search

A systematic morphological investigation of human palmaris longus tendons by polarisation microscopy and low angle x-ray diffraction is reported. It is shown that contrary to some previously reported observations, and in common with other tension bearing soft collagenous tissues, the fibres in this tendon are crimped. A new method of preparation of the tissue enabling one to see directly the

S P Nicholls; L J Gathercole; J S Shah

1984-01-01

42

The Human Connectome: A Structural Description of the Human Brain  

Microsoft Academic Search

T he connection matrix of the human brain (the human ''connectome'') represents an indispensable foundation for basic and applied neurobiological research. However, the network of anatomical connections linking the neuronal elements of the human brain is still largely unknown. While some databases or collations of large- scale anatomical connection patterns exist for other mammalian species, there is currently no connection

Olaf Sporns; Giulio Tononi; Rolf Kötter

2005-01-01

43

Protein phosphorylation systems in postmortem human brain  

SciTech Connect

Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders.

Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P. (Rockefeller Univ., New York, NY (USA))

1989-01-01

44

BrainKnowledge: A Human Brain Function Mapping Knowledge-Base System  

E-print Network

BrainKnowledge: A Human Brain Function Mapping Knowledge-Base System Mei-Yu Hsiao & Chien and interpretation of fMRI data. Here, we present a human brain function mapping knowledge-base system (Brain. 1992), is a non-invasive approach for studying human brain function. Due to the increasing popularity

Chen, Chein Chung

45

Three-dimensional assessment of brain tissue morphology  

NASA Astrophysics Data System (ADS)

The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 ?m thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SR?CT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SR?CT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

2006-08-01

46

Neurosteroid metabolism in the human brain  

Microsoft Academic Search

This review summarizes the current knowledge of the biosynthesis of neurosteroids in the human brain, the enzymes mediating these reactions, their localization and the putative effects of neurosteroids. Molecular biological and biochemical studies have now firmly established the presence of the steroidogenic enzymes cytochrome P450 cholesterol side-chain cleavage (P450SCC), aromatase, 5a-reductase, 3a-hydroxysteroid dehydrogenase and 17b-hydroxysteroid dehydrogenase in human brain. The

Birgit Stoffel-Wagner

2001-01-01

47

Organization of the Human Brain.  

ERIC Educational Resources Information Center

This article reviews the work on patients who have undergone partial or complete brain bisection and addresses the concept of modularity from three different perspectives: (1) structure-function correlations; (2) modular components of cognitive processes; and (3) integration of modular processes. Several brain pictures and diagrams are presented.…

Gazzaniga, Michael S.

1989-01-01

48

Brain shape in human microcephalics and Homo floresiensis  

PubMed Central

Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm3, some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an ?3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species. PMID:17277082

Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M. J.; Sutikna, Thomas; Jatmiko; Saptomo, E. Wayhu; Imhof, Herwig; Seidler, Horst; Prior, Fred

2007-01-01

49

Human-specific transcriptional networks in the brain  

PubMed Central

Summary Understanding human-specific patterns of brain gene expression and regulation can provide key insights into human brain evolution and speciation. Here, we use next generation sequencing, and Illumina and Affymetrix microarray platforms, to compare the transcriptome of human, chimpanzee, and macaque telencephalon. Our analysis reveals a predominance of genes differentially expressed within human frontal lobe and a striking increase in transcriptional complexity specific to the human lineage in the frontal lobe. In contrast, caudate nucleus gene expression is highly conserved. We also identify gene co-expression signatures related to either neuronal processes or neuropsychiatric diseases, including a human-specific module with CLOCK as its hub gene and another module enriched for neuronal morphological processes and genes co-expressed with FOXP2, a gene important for language evolution. These data demonstrate that transcriptional networks have undergone evolutionary remodeling even within a given brain region, providing a new window through which to view the foundation of uniquely human cognitive capacities. PMID:22920253

Konopka, Genevieve; Friedrich, Tara; Davis-Turak, Jeremy; Winden, Kellen; Oldham, Michael C.; Gao, Fuying; Chen, Leslie; Wang, Guang-Zhong; Luo, Rui; Preuss, Todd M.; Geschwind, Daniel H.

2013-01-01

50

Morphological correlates of persistent potentiation in the chick brain slice.  

PubMed

In an in-vitro slice preparation of the chick brain it is possible to induce persistent potentiation of responses to single electrical stimuli by giving two bursts of 300 stimuli at 5 Hz separated by ten minutes of control stimulation at 0.1 Hz. We investigated the morphological correlates of this potentiation in a group of 2 day old chicks using quantitative electron microscopical techniques. It was found that in slices which showed a clearly potentiated response there was a significant increase in the size of the postsynaptic densities of synapses on spines in the left hyperstriatum ventrale (IMHV). No such increases were seen in a control group nor in slices which failed to potentiate. These results provide further evidence for the lability of synapses in the IMHV. PMID:1893094

Bradley, P M; Burns, B D; Titmuss, J; Webb, A C

1991-04-01

51

Significance of Intracranial Pressure Pulse Morphology in Pediatric Traumatic Brain Injury  

E-print Network

Significance of Intracranial Pressure Pulse Morphology in Pediatric Traumatic Brain Injury M. Aboy1 . Keywords-- Beat morphology analysis, head injury, intracra- nial pressure (ICP), traumatic brain injury States [1]. Elevated intracranial pressure (ICP) following TBI may result in secondary injury due

52

Identification of human brain tumour initiating cells  

Microsoft Academic Search

The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem

Sheila K. Singh; Cynthia Hawkins; Ian D. Clarke; Jeremy A. Squire; Jane Bayani; Takuichiro Hide; R. Mark Henkelman; Michael D. Cusimano; Peter B. Dirks

2004-01-01

53

SURFACE-BASED METHOD TO EVALUATE GLOBAL BRAIN SHAPE ASYMMETRIES IN HUMAN AND CHIMPANZEE BRAINS  

E-print Network

SURFACE-BASED METHOD TO EVALUATE GLOBAL BRAIN SHAPE ASYMMETRIES IN HUMAN AND CHIMPANZEE BRAINS Marc, Georgia ABSTRACT In this paper we use humans and chimpanzees brain MRI databases to develop methods populations. The human brain segmentation pipeline is adapted to chimpanzees in order to obtain results

Paris-Sud XI, Université de

54

Outer brain barriers in rat and human development  

PubMed Central

Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13R?2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13R?2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

2015-01-01

55

The development of Human Functional Brain Networks  

PubMed Central

Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306

Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L

2010-01-01

56

Human brain mapping: Experimental and computational approaches  

SciTech Connect

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J. [Los Alamos National Lab., NM (US); Sanders, J. [Albuquerque VA Medical Center, NM (US); Belliveau, J. [Massachusetts General Hospital, Boston, MA (US)

1998-11-01

57

Transcriptional landscape of the prenatal human brain.  

PubMed

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development. PMID:24695229

Miller, Jeremy A; Ding, Song-Lin; Sunkin, Susan M; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L; Royall, Joshua J; Aiona, Kaylynn; Arnold, James M; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A; Dee, Nick; Dolbeare, Tim A; Facer, Benjamin A C; Feng, David; Fliss, Tim P; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Howard, Robert E; Jochim, Jayson M; Kuan, Chihchau L; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D; Parry, Sheana E; Stevens, Allison; Pletikos, Mihovil; Reding, Melissa; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V; Shen, Elaine H; Sjoquist, Nathan; Slaughterbeck, Clifford R; Smith, Michael; Sodt, Andy J; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B; Geschwind, Daniel H; Glass, Ian A; Hawrylycz, Michael J; Hevner, Robert F; Huang, Hao; Jones, Allan R; Knowles, James A; Levitt, Pat; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G; Lein, Ed S

2014-04-10

58

Sexual dimorphism of the developing human brain  

Microsoft Academic Search

1.1. Sexual dimorphism of human brain anatomy has not been well-studied between 4 and 18 years of age, a time of emerging sex differences in behavior and the sexually specific hormonal changes of adrenarche (the predominantly androgenic augmentation of adrenal cortex function occurring at approximately age 8) and puberty.2.2. To assess sex differences in brain structures during this developmental period

Jay N. Giedd; F. Xavier Castellanos; Jagath C. Rajapakse; A. Catherine Vaituzis; Judith L. Rapoport

1997-01-01

59

The Brain Prize 2014: complex human functions.  

PubMed

Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? PMID:25303794

Grigaityte, Kristina; Iacoboni, Marco

2014-11-01

60

Reirradiation Tolerance of the Human Brain  

SciTech Connect

Purpose: To give an overview of current available clinical data on reirradiation of glioma with respect to the tolerance dose of normal brain tissue. Methods and Materials: Clinical brain reirradiation studies from January 1996 to December 2006 were considered on radiation-induced late adverse effects-i.e., brain tissue necrosis. The studies were analyzed by using the linear quadratic model to derive information on the cumulative biologic effective tolerance dose and equivalent doses in 2-Gy fractions for the healthy human brain. Results: The cumulative dose in conventional reirradiation series (of 81.6-101.9 Gy) were generally lower than in fractionated stereotactic radiotherapy (FSRT) ( 90-133.9 Gy.) or LINAC-based stereotactic radiosurgery series (of 111.6-137.2 Gy). No correlation between the time interval between the initial and reirradiation course and the incidence of radionecrosis was noted. The analysis showed the prescribed to increase with decreasing treatment volume, which is allowed by modern conformal radiation techniques. Conclusion: Radiation-induced normal brain tissue necrosis is found to occur at >100 Gy. The applied reirradiation dose and increases with a change in irradiation technique from conventional to radiosurgery re-treatment, without increasing the probability of normal brain necrosis. Taken together, modern conformal treatment options, because of their limited volume of normal brain tissue exposure, allow brain reirradiation for palliative treatment of recurrent high grade glioma with an acceptable probability of radionecrosis.

Mayer, Ramona [Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz (Austria); Sminia, Peter [Department of Radiation Oncology, Division Radiobiology, VU University Medical Center, Amsterdam (Netherlands)], E-mail: p.sminia@vumc.nl

2008-04-01

61

Human Misato regulates mitochondrial distribution and morphology  

SciTech Connect

Misato of Drosophila melanogaster and Saccharomyces cerevisiae DML1 are conserved proteins having a homologous region with a part of the GTPase family that includes eukaryotic tubulin and prokaryotic FtsZ. We characterized human Misato sharing homology with Misato of D. melanogaster and S. cerevisiae DML1. Tissue distribution of Misato exhibited ubiquitous distribution. Subcellular localization of the protein studied using anti-Misato antibody suggested that it is localized to the mitochondria. Further experiments of fractionating mitochondria revealed that Misato was localized to the outer membrane. The transfection of Misato siRNA led to growth deficiencies compared with control siRNA transfected HeLa cells, and the Misato-depleted HeLa cells showed apoptotic nuclear fragmentation resulting in cell death. After silencing of Misato, the filamentous mitochondrial network disappeared and fragmented mitochondria were observed, indicating human Misato has a role in mitochondrial fusion. To examine the effects of overexpression, COS-7 cells were transfected with cDNA encoding EGFP-Misato. Its overexpression resulted in the formation of perinuclear aggregations of mitochondria in these cells. The Misato-overexpressing cells showed low viability and had no nuclei or a small and structurally unusual ones. These results indicated that human Misato has a role(s) in mitochondrial distribution and morphology and that its unregulated expression leads to cell death.

Kimura, Masashi [Department of Molecular Pathobiochemistry, Division of Disease Control, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194 (Japan)]. E-mail: yo@gifu-u.ac.jp; Okano, Yukio [Department of Molecular Pathobiochemistry, Division of Disease Control, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194 (Japan)

2007-04-15

62

Regional Patterns of Gene Expression in Human and Chimpanzee Brains  

E-print Network

Regional Patterns of Gene Expression in Human and Chimpanzee Brains Philipp Khaitovich,1,7 Bjoern expression in various brain regions of humans and chimpanzees. Within both human and chimpanzee individuals lineage to humans rela- tive to the amount on the lineage to chimpanzees was higher in the brain than

Pääbo, Svante

63

Hemispherical map for the human brain cortex  

NASA Astrophysics Data System (ADS)

Understanding the function of the human brain cortex is a primary goal in human brain mapping. Methods to unfold and flatten the cortical surface for visualization and measurement have been described in previous literature; but comparison across multiple subjects is still difficult because of the lack of a standard mapping technique. We describe a new approach that maps each hemisphere of the cortex to a portion of a sphere in a standard way, making comparison of anatomy and function across different subjects possible. Starting with a three-dimensional magnetic resonance image of the brain, the cortex is segmented and represented as a triangle mesh. Defining a cut around the corpus collosum identifies the left and right hemispheres. Together, the two hemispheres are mapped to the complex plane using a conformal mapping technique. A Mobius transformation, which is conformal, is used to transform the points on the complex plane so that a projective transformation maps each brain hemisphere onto a spherical segment comprising a sphere with a cap removed. We determined the best size of the spherical cap by minimizing the relative area distortion between hemispherical maps and original cortical surfaces. The relative area distortion between the hemispherical maps and the original cortical surfaces for fifteen human brains is analyzed.

Tosun, Duygu; Prince, Jerry L.

2001-07-01

64

5 Minute Brain Teaser Old vs. New Thinking Regarding the Human Brain  

E-print Network

determine development. 4. A. Development is linear: the brain's capacity to learn and change grows steadily5 Minute Brain Teaser Old vs. New Thinking Regarding the Human Brain Please circle the statement out of each pair that reflects the most current thinking regarding the human brain. # Statement 1. A

65

Making Human Connectome Faster: GPU Acceleration of Brain Network Analysis  

Microsoft Academic Search

The research on complex Brain Networks plays a vital role in understanding the connectivity patterns of the human brain and disease-related alterations. Recent studies have suggested a noninvasive way to model and analyze human brain networks by using multi-modal imaging and graph theoretical approaches. Both the construction and analysis of the Brain Networks require tremendous computation. As a result, most

Di Wu; Tianji Wu; Yi Shan; Yu Wang; Yong He; Ningyi Xu; Huazhong Yang

2010-01-01

66

Enhanced brain protection during passive hyperthermia in humans  

Microsoft Academic Search

Summary  Selective brain cooling during hyperthermia by emissary venous pathways from the skin of the head to the brain has been reported both in animals and humans. Heat protection of the brain extends tolerance to high deep body temperature in animals, and may be enhanced in humans if the head is cooled. In order to quantify to what extent brain protection

Heiner Brinnel; Tetsuo Nagasaka; Michel Cabanac

1987-01-01

67

MRI Technologies in Recent Human Brain Mapping  

Microsoft Academic Search

The recent magnetic resonance imaging (MRI) technology and techniques used in human brain mapping are remarkable. They are getting, faster, stronger and better. The advanced MRI technologies and techniques include, but not to limited to, the magnetic resonance imaging at higher magnetic field strengths, diffusion tensor imaging, multimodal neuroimaging, and monkey functional MRI. In this article, these advanced MRI techniques

Yuka Sasaki

2008-01-01

68

[Infrasound and biorhythms of the human brain].  

PubMed

A relationship is established between the frequency of the human brain alpha-rhythms and the frequency of infrasonic radiation emanating from overturned waves crests on the surface of seas and oceans. On this ground a recommendation is presented for maintaining the state of man's keeping awake. PMID:1520712

Arabadzhi, V I

1992-01-01

69

Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix.  

PubMed

Astrocytes are the most abundant glial cells in the brain and are responsible for diverse functions, from modulating synapse function to regulating the blood-brain barrier. In vivo, these cells exhibit a star-shaped morphology with multiple radial processes that contact synapses and completely surround brain capillaries. In response to trauma or CNS disease, astrocytes become activated, a state associated with profound changes in gene expression, including upregulation of intermediate filament proteins, such as glial fibrillary acidic protein (GFAP). The inability to recapitulate the complex structure of astrocytes and maintain their quiescent state in vitro is a major roadblock to further developments in tissue engineering and regenerative medicine. Here, we characterize astrocyte morphology and activation in various hydrogels to assess the feasibility of developing a matrix that mimics key aspects of the native microenvironment. We show that astrocytes seeded in optimized matrix composed of collagen, hyaluronic acid, and matrigel exhibit a star-shaped morphology with radial processes and do not upregulate GFAP expression, hallmarks of quiescent astrocytes in the brain. In these optimized gels, collagen I provides structural support, HA mimics the brain extracellular matrix, and matrigel provides endothelial cell compatibility and was found to minimize GFAP upregulation. This defined 3D microenvironment for maintaining human astrocytes in vitro provides new opportunities for developing improved models of the blood-brain barrier and studying their response to stress signals. PMID:25542801

Placone, Amanda L; McGuiggan, Patricia M; Bergles, Dwight E; Guerrero-Cazares, Hugo; Quiñones-Hinojosa, Alfredo; Searson, Peter C

2015-02-01

70

Metabolic changes in schizophrenia and human brain evolution  

E-print Network

in the human brain and compare them to the changes seen in a disorder known to affect human cognitive abilities, schizophrenia. We find that both genes and metabolites relating to energy metabolism and energy-expensive brain functions are altered...

Khaitovich, Philipp; Lockstone, Helen E; Wayland, Matthew T; Tsang, Tsz M; Jayatilaka, Samantha D; Guo, Arfu J; Zhou, Jie; Somel, Mehmet; Harris, Laura W; Holmes, Elaine; Paabo, Svante; Bahn, Sabine

2008-08-05

71

Insulin sensitivity of the human brain.  

PubMed

The brain is an insulin sensitive organ and insulin signaling is important to regulate feeding behavior, body weight, and cognitive processes. Insulin resistance in peripheral tissues is a hallmark in the development of type 2 diabetes mellitus (T2DM), yet the finding of insulin resistance in the brain is relatively novel. Studies in humans revealed that environmental factors like obesity, age, and the genetic background have an impact on central insulin sensitivity. According to the physiological effects of insulin in the brain, disturbances of this signaling chain lead to an impairment of cognitive functions and a deterioration of eating behavior with a potential role in the pathogenesis of obesity and T2DM. First attempts to treat insulin resistance not only in peripheral tissues but also in the CNS have therefore come on its way: Cerebral insulin resistance can at least partially be overcome by intranasal treatment with insulin or by commercial insulins that exhibit specific effects in the brain due to their pharmacokinetic properties. Despite the advances towards a better understanding of insulin function in the human brain in the last years, achieving a more profound knowledge of mechanisms behind central insulin function and identifying further strategies to overcome insulin resistance must be a main goal of future research. PMID:21864751

Ketterer, Caroline; Tschritter, Otto; Preissl, Hubert; Heni, Martin; Häring, Hans-Ulrich; Fritsche, Andreas

2011-08-01

72

Methylomic trajectories across human fetal brain development  

PubMed Central

Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ?400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity. PMID:25650246

Spiers, Helen; Hannon, Eilis; Schalkwyk, Leonard C.; Smith, Rebecca; Wong, Chloe C.Y.; O’Donovan, Michael C.; Bray, Nicholas J.

2015-01-01

73

Methylomic trajectories across human fetal brain development.  

PubMed

Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ?400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity. PMID:25650246

Spiers, Helen; Hannon, Eilis; Schalkwyk, Leonard C; Smith, Rebecca; Wong, Chloe C Y; O'Donovan, Michael C; Bray, Nicholas J; Mill, Jonathan

2015-03-01

74

Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans.  

PubMed

Different brain components can evolve in a coordinated manner or they can show divergent evolutionary trajectories according to a mosaic pattern of variation. Understanding the relationship between these brain evolutionary patterns, which are not mutually exclusive, can be informed by the examination of intraspecific variation. Our study evaluates patterns of brain anatomical covariation in chimpanzees and humans to infer their influence on brain evolution in the hominin clade. We show that chimpanzee and human brains have a modular structure that may have facilitated mosaic evolution from their last common ancestor. Spatially adjacent regions covary with one another to the strongest degree and separated regions are more independent from each other, which might be related to a predominance of local association connectivity. Despite the undoubted importance of developmental and functional factors in determining brain morphology, we find that these constraints are subordinate to the primary effect of local spatial interactions. PMID:25047085

Gómez-Robles, Aida; Hopkins, William D; Sherwood, Chet C

2014-01-01

75

Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans  

PubMed Central

Different brain components can evolve in a coordinated fashion or they can show divergent evolutionary trajectories according to a mosaic pattern of variation. Understanding the relationship between these brain evolutionary patterns, which are not mutually exclusive, can be informed by the examination of intraspecific variation. Our study evaluates patterns of brain anatomical covariation in chimpanzees and humans to infer their influence on brain evolution in the hominin clade. We show that chimpanzee and human brains have a modular structure that may have facilitated mosaic evolution from their last common ancestor. Spatially adjacent regions covary with one another to the strongest degree and separated regions are more independent from each other, which might be related to a predominance of local association connectivity. Despite the undoubted importance of developmental and functional factors in determining brain morphology, we find that these constraints are subordinate to the primary effect of local spatial interactions. PMID:25047085

Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C.

2014-01-01

76

Making Human Connectome Faster: GPU Acceleration of Brain Network Analysis  

E-print Network

1 Making Human Connectome Faster: GPU Acceleration of Brain Network Analysis Di Wu, Tianji Wu, Yi of the human brain and disease-related alterations. Recent studies have suggested a noninvasive way to model and analyze human brain networks by using multi-modal imaging and graph theoretical approaches. Both

Wang, Yu

77

Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation.  

PubMed

Repetitive brain stimulation protocols induce plasticity in the stimulated site in brain slice models. Recent evidence from network models has indicated that additional plasticity-related changes occur in nonstimulated remote regions. Despite increasing use of brain stimulation protocols in experimental and clinical settings, the neural substrates underlying the additional effects in remote regions are unknown. Diffusion-weighted MRI (DWI) probes water diffusion and can be used to estimate morphological changes in cortical tissue that occur with the induction of plasticity. Using DWI techniques, we estimated morphological changes induced by application of repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1). We found that rTMS altered water diffusion in multiple regions including the left M1. Notably, the change in water diffusion was retained longest in the left M1 and remote regions that had a correlation of baseline fluctuations in water diffusion before rTMS. We conclude that synchronization of water diffusion at rest between stimulated and remote regions ensures retention of rTMS-induced changes in water diffusion in remote regions. Synchronized fluctuations in the morphology of cortical microstructures between stimulated and remote regions might identify networks that allow retention of plasticity-related morphological changes in multiple regions after brain stimulation protocols. These results increase our understanding of the effects of brain stimulation-induced plasticity on multiregional brain networks. DWI techniques could provide a tool to evaluate treatment effects of brain stimulation protocols in patients with brain disorders. PMID:24619090

Abe, Mitsunari; Fukuyama, Hidenao; Mima, Tatsuya

2014-03-25

78

Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology  

E-print Network

sensitive target organ for steroid hormones, which differentiate the neural substrate and thereby exertSteroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology March 1, 2000) Steroid hormone action during brain development exerts profound effects on reproductive

79

Morphology of the Brain of Crayfish, Crabs, and Spiny Lobsters: A Common Nomenclature for Homologous Structures  

Microsoft Academic Search

The morphologies of the cerebral ganglia (brains) of three infraorders of the decapod crustaceans (Astacura-crayfish; Brachyura-crabs; Palinura-spiny lob- sters) are described. A common nomenclature is proposed for homologous nerve roots, brain regions, tracts, com- missures, neuropils, and cell body clusters.

DAVID SANDEMAN; RENATE SANDEMAN; CHARLES DERBY; MANFRED SCHMIDT

80

Supplementary Information to: Where is the brain in the Human Brain Project? (Comment in Nature 513, 2729; 2014)  

E-print Network

Supplementary Information to: Where is the brain in the Human Brain Project? (Comment in Nature 513://brainscales.kip.uni-heidelberg.de/ Flagship pre-projects linked to neuroscience Ailamaki, A. et al. The Human Brain Project: A Report://www.ted.com/talks/henry_markram_ supercomputing_the_brain_s_secrets Evaluation of the Blue Brain Project and Human Brain Project (EPFL internal

Napp, Nils

81

Accelerated Recruitment of New Brain Development Genes into the Human Genome  

PubMed Central

How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain. PMID:22028629

Zhang, Yong E.; Landback, Patrick; Vibranovski, Maria D.; Long, Manyuan

2011-01-01

82

Infrasounds and biorhythms of the human brain  

NASA Astrophysics Data System (ADS)

Low Frequency Noise (LFN) and infrasound has begun a new public health hazard. Evaluations of annoyance of (LFN) on human occupational health were based on standards where reactions of human auditory system and vibrations of parts of human body were small. Significant sensitivity has been observed on the central nervous system from infrasonic waves especially below 10 Hz. Observed follow-up effects in the brain gives incentive to study the relationship between parameters of waves and reactions obtained of biorhythms (EEG) and heart action (EKG). New results show the impact of LFN on the electrical potentials of the brain are dependent on the pressure waves on the human body. Electrical activity of circulatory system was also affected. Signals recorded in industrial workplaces were duplicated by loudspeakers and used to record data from a typical LFN spectra with 5 and 7 Hz in a laboratory chamber. External noise, electromagnetic fields, temperature, dust, and other elements were controlled. Results show not only a follow-up effect in the brain but also a result similar to arrhythmia in the heart. Relaxations effects were observed of people impacted by waves generated from natural sources such as streams and waterfalls.

Panuszka, Ryszard; Damijan, Zbigniew; Kasprzak, Cezary; McGlothlin, James

2002-05-01

83

Evolving networks in the human epileptic brain  

E-print Network

Network theory provides novel concepts that promise an improved characterization of interacting dynamical systems. Within this framework, evolving networks can be considered as being composed of nodes, representing systems, and of time-varying edges, representing interactions between these systems. This approach is highly attractive to further our understanding of the physiological and pathophysiological dynamics in human brain networks. Indeed, there is growing evidence that the epileptic process can be regarded as a large-scale network phenomenon. We here review methodologies for inferring networks from empirical time series and for a characterization of these evolving networks. We summarize recent findings derived from studies that investigate human epileptic brain networks evolving on timescales ranging from few seconds to weeks. We point to possible pitfalls and open issues, and discuss future perspectives.

Lehnertz, Klaus; Bialonski, Stephan; Dickten, Henning; Geier, Christian; Porz, Stephan

2013-01-01

84

Imaging Monoamine Oxidase in the Human Brain  

SciTech Connect

Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

1999-11-10

85

Neural Plasticity in Human Brain Connectivity: The Effects of Long Term Deep Brain Stimulation of the  

E-print Network

Neural Plasticity in Human Brain Connectivity: The Effects of Long Term Deep Brain Stimulation of Oxford, Oxford, United Kingdom, 3 Center of Brain and Cognition, Theoretical and Computational are now well established for deep brain stimulation, but little is known about the effects of long

Deco, Gustavo

86

r Human Brain Mapping 00:000000 (2011) r Brain Growth Rate Abnormalities Visualized in  

E-print Network

is behaviorally defined but patients are thought to have protracted alterations in brain maturation- try, we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scansr Human Brain Mapping 00:000­000 (2011) r Brain Growth Rate Abnormalities Visualized in Adolescents

Thompson, Paul

87

Modeling the Impact of Lesions in the Human Brain  

Microsoft Academic Search

Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us to investigate the functional consequences of focal brain lesions in

Jeffrey Alstott; Michael Breakspear; Patric Hagmann; Leila Cammoun; Olaf Sporns

2009-01-01

88

Modeling the Network Architecture of the Human Brain Olaf Sporns  

E-print Network

cell assemblies Macroscopic: Anatomically segregated brain regions and inter-regional pathways. BrainModeling the Network Architecture of the Human Brain Olaf Sporns Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405 http://www.indiana.edu/~cortex , osporns

Bressler, Steven L.

89

Mapping genetic in uences on human brain Paul Thompson  

E-print Network

; anatomy; brain; cognition; genetics; imaging; MRI; quantitative trait loci (QTL); schizophrenia; twin. AnnMapping genetic in uences on human brain structure Paul Thompson 1 , Tyrone D Cannon 2 and Arthur W Toga 1 Recent advances in brain imaging and genetics haveRecent advances in brain imaging and genetics

Thompson, Paul

90

Molecular evolution of microcephalin, a gene determining human brain size  

Microsoft Academic Search

Microcephalin gene is one of the major players in regulating human brain development. It was reported that truncated mutations in this gene can cause primary microcephaly in humans with a brain size comparable with that of early hominids. We studied the molecular evolution of microcephalin by sequencing the coding region of microcephalin gene in humans and 12 representative non-human primate

Yin-qiu Wang; Bing Su

2004-01-01

91

Sex differences in the structural connectome of the human brain  

E-print Network

Sex differences in the structural connectome of the human brain Madhura Ingalhalikara,1 , Alex differences in human brains but do not explain this complementarity. In this work, we modeled the structural females) and discovered unique sex differences in brain connectivity during the course of develop- ment

Dever, Jennifer A.

92

HIERARCHICAL TOPOLOGICAL NETWORK ANALYSIS OF ANATOMICAL HUMAN BRAIN CONNECTIVITY AND  

E-print Network

HIERARCHICAL TOPOLOGICAL NETWORK ANALYSIS OF ANATOMICAL HUMAN BRAIN CONNECTIVITY AND DIFFERENCES Human Brain Connectivity and Differences Related to Sex and Kinship Julio M. Duarte-Carvajalinoa , Neda, Brisbane, Australia Abstract Modern non-invasive brain imaging technologies, such as diffusion weighted

93

Diffusion tensor imaging and fiber tractography of human brain pathways  

E-print Network

Diffusion tensor imaging and fiber tractography of human brain pathways Brian Wandell Anthony are communicated to distant brain regions along pathways comprising many axons. Mapping these pathways- the white of human brain pathways Brian Wandell, Anthony Sherbondy, Robert Dougherty, Michal Ben-Shachar Psychology

Wandell, Brian A.

94

NeuroimagingDecoding mental states from brain activity in humans  

Microsoft Academic Search

Recent advances in human neuroimaging have shown that it is possible to accurately decode a person's conscious experience based only on non-invasive measurements of their brain activity. Such 'brain reading' has mostly been studied in the domain of visual perception, where it helps reveal the way in which individual experiences are encoded in the human brain. The same approach can

Geraint Rees; John-Dylan Haynes

2006-01-01

95

Diffusion Based Modeling of Human Brain Response to External Stimuli  

E-print Network

Human brain response is the overall ability of the brain in analyzing internal and external stimuli in the form of transferred energy to the mind/brain phase-space and thus, making the proper decisions. During the last decade scientists discovered about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research there was less effort which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling of human EEG signal, as an alert state of overall human brain activity monitoring, due to receiving external stimuli, based on fractional diffusion equation. The results of this modeling show very good agreement with the real human EEG signal and thus, this model can be used as a strong representative of the human brain activity.

Namazi, Hamidreza

2012-01-01

96

Phenotypic integration of brain size and head morphology in Lake Tanganyika Cichlids  

PubMed Central

Background Phenotypic integration among different anatomical parts of the head is a common phenomenon across vertebrates. Interestingly, despite centuries of research into the factors that contribute to the existing variation in brain size among vertebrates, little is known about the role of phenotypic integration in brain size diversification. Here we used geometric morphometrics on the morphologically diverse Tanganyikan cichlids to investigate phenotypic integration across key morphological aspects of the head. Then, while taking the effect of shared ancestry into account, we tested if head shape was associated with brain size while controlling for the potentially confounding effect of feeding strategy. Results The shapes of the anterior and posterior parts of the head were strongly correlated, indicating that the head represents an integrated morphological unit in Lake Tanganyika cichlids. After controlling for phylogenetic non-independence, we also found evolutionary associations between head shape, brain size and feeding ecology. Conclusions Geometric morphometrics and phylogenetic comparative analyses revealed that the anterior and posterior parts of the head are integrated, and that head morphology is associated with brain size and feeding ecology in Tanganyikan cichlid fishes. In light of previous results on mammals, our results suggest that the influence of phenotypic integration on brain diversification is a general process. PMID:24593160

2014-01-01

97

Visualization of monoamine oxidase in human brain  

SciTech Connect

Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

1996-12-31

98

Evolution, development, and plasticity of the human brain: from molecules to bones  

PubMed Central

Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research. PMID:24194709

Hrvoj-Mihic, Branka; Bienvenu, Thibault; Stefanacci, Lisa; Muotri, Alysson R.; Semendeferi, Katerina

2013-01-01

99

The proteome of human brain microdialysate  

PubMed Central

Background Cerebral microdialysis has been established as a monitoring tool in neurocritically ill patients suffering from severe stroke. The technique allows to sample small molecules in the brain tissue for subsequent biochemical analysis. In this study, we investigated the proteomic profile of human cerebral microdialysate and if the identified proteins might be useful predictors for disease characteristics in stroke for tissue at risk in the contralateral hemisphere. We analysed cerebral protein expression in microdialysate from three stroke patients sampled from the hemisphere contralateral to the lesion. Using a proteomic approach based on two-dimensional gel electrophoresis and subsequent mass spectrometry, we created a protein map for the global protein expression pattern of human microdialyste. Results We found an average of 158 ± 24 (N = 18) protein spots in the human cerebral microdialysate and could identify 95 spots, representing 27 individual proteins. Most of these have been detected in human cerebrospinal fluid before, but 10 additional proteins mainly of cerebral intracellular origin were identified exclusively in the microdialysate. Conclusions The 10 proteins found exclusively in human cerebral microdialysate, but not in cerebrospinal fluid, indicate the possibility to monitor the progression of the disease towards deterioration. The correlation of protein composition in the human cerebral microdialysate with the patients' clinical condition and results of cerebral imaging may be a useful approach to future applications for neurological stroke diagnosis, prognosis, and treatment. PMID:14675487

Maurer, Martin H; Berger, Christian; Wolf, Margit; Fütterer, Carsten D; Feldmann, Robert E; Schwab, Stefan; Kuschinsky, Wolfgang

2003-01-01

100

Exercises in Anatomy, Connectivity, and Morphology using Neuromorpho.org and the Allen Brain Atlas  

PubMed Central

Laboratory instruction of neuroscience is often limited by the lack of physical resources and supplies (e.g., brains specimens, dissection kits, physiological equipment). Online databases can serve as supplements to material labs by providing professionally collected images of brain specimens and their underlying cellular populations with resolution and quality that is extremely difficult to access for strictly pedagogical purposes. We describe a method using two online databases, the Neuromorpho.org and the Allen Brain Atlas (ABA), that freely provide access to data from working brain scientists that can be modified for laboratory instruction/exercises. Neuromorpho.org is the first neuronal morphology database that provides qualitative and quantitative data from reconstructed cells analyzed in published scientific reports. The Neuromorpho.org database contains cross species and multiple neuronal phenotype datasets which allows for comparative examinations. The ABA provides modules that allow students to study the anatomy of the rodent brain, as well as observe the different cellular phenotypes that exist using histochemical labeling. Using these tools in conjunction, advanced students can ask questions about qualitative and quantitative neuronal morphology, then examine the distribution of the same cell types across the entire brain to gain a full appreciation of the magnitude of the brain’s complexity.

Chu, Philip; Peck, Joshua; Brumberg, Joshua C.

2015-01-01

101

Social control of brain morphology in a eusocial mammal  

E-print Network

of gonadal steroid hormones (1). However, the study of sexual differentiation of the mammalian nervous system and placed with an opposite sex partner, but in nature most individuals never attain reproductive status. We examined the brains of breeding and subordinate naked mole-rats of both sexes, including several regions

Breedlove, Marc

102

Molecular biology of the human brain  

SciTech Connect

This book examines new methods of molecular biology that are providing valuable insights into the human brain, the genes that govern its assembly and function, and the many genetic defects that cause neurological diseases such as Alzheimer's, Cri du Chat syndrome, Huntington's disease, and bipolar depression disorder. In addition, the book reviews techniques in molecular neurobiological research, including the use of affinity reagents, chimeric receptors, and site-directed mutagenesis in localizing the ion channel and cholinergic binding site, and the application of somatic cell genetics in isolating specific chromosomes or chromosomal segments.

Jones, E.G.

1988-01-01

103

The shape of the human language-ready brain  

PubMed Central

Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny. PMID:24772099

Boeckx, Cedric; Benítez-Burraco, Antonio

2014-01-01

104

The shape of the human language-ready brain.  

PubMed

Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals-Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny. PMID:24772099

Boeckx, Cedric; Benítez-Burraco, Antonio

2014-01-01

105

Tracking Hierarchical Processing in Morphological Decomposition with Brain Potentials  

ERIC Educational Resources Information Center

One important debate in psycholinguistics concerns the nature of morphological decomposition processes in visual word recognition (e.g., darkness = {dark} + {-ness}). One theory claims that these processes arise during orthographic analysis and prior to accessing meaning (Rastle & Davis, 2008), and another argues that these processes arise through…

Lavric, Aureliu; Elchlepp, Heike; Rastle, Kathleen

2012-01-01

106

Fast optical imaging of human brain function.  

PubMed

Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods) emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so) interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years) may provide descriptions of localized (to sub-cm level) brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed. PMID:20631845

Gratton, Gabriele; Fabiani, Monica

2010-01-01

107

Human brain lesion-deficit inference remapped.  

PubMed

Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant. Positively, we show that novel machine learning techniques employing high-dimensional inference can nonetheless accurately converge on the true locus. We conclude that current inferences about human brain function and deficits based on lesion mapping must be re-evaluated with methodology that adequately captures the high-dimensional structure of lesion data. PMID:24974384

Mah, Yee-Haur; Husain, Masud; Rees, Geraint; Nachev, Parashkev

2014-09-01

108

Algorithms for enhanced spatiotemporal imaging of human brain function  

E-print Network

Studies of human brain function require technologies to non-invasively image neuronal dynamics with high spatiotemporal resolution. The electroencephalogram (EEG) and magnetoencephalogram (MEG) measure neuronal activity ...

Krishnaswamy, Pavitra

2014-01-01

109

r Human Brain Mapping 000:000000 (2009) r Brain Structure and Obesity  

E-print Network

r Human Brain Mapping 000:000­000 (2009) r Brain Structure and Obesity Cyrus A. Raji,1,2y April J, School of Medicine, Pittsburgh, Pennsylvania r r Abstract: Obesity is associated with increased risk obesity and Type II diabetes, are associ- ated with specific patterns of brain atrophy. We used tensor

Thompson, Paul

110

Morphologic Effect of Dimethyl Sulfoxide on the Blood-Brain Barrier  

NASA Astrophysics Data System (ADS)

Dimethyl sulfoxide (DMSO) opens the blood-brain barrier of mice to the enzymatic tracer horseradish peroxidase. A single injection of horseradish peroxidase in 10 to 15 percent DMSO into the tail vein along with 10 to 15 percent DMSO delivered intraperitoneally allowed horseradish peroxidase to fill the extracellular clefts throughout the brain within 2 hours. In the absence of DMSO, peroxidase failed to enter brain parenchyma except through the circumventricular organs. Opening of the blood-brain barrier by DMSO is reversible. Dimethyl sulfoxide stimulated the pinocytosis of horseradish peroxidase by the cerebral endothelium; the peroxidase was then directed to lysosomal dense bodies for degradation. Vesicular transport of horseradish peroxidase from the luminal to the abluminal wall of the endothelial cell was not observed. Dimethyl sulfoxide did not alter the morphology of endothelial cells or brain parenchyma.

Broadwell, Richard D.; Salcman, Michael; Kaplan, Richard S.

1982-07-01

111

Spatio-temporal transcriptome of the human brain  

Microsoft Academic Search

Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and

Hyo Jung Kang; Yuka Imamura Kawasawa; Feng Cheng; Ying Zhu; Xuming Xu; Mingfeng Li; André M. M. Sousa; Mihovil Pletikos; Kyle A. Meyer; Goran Sedmak; Tobias Guennel; Yurae Shin; Matthew B. Johnson; Zeljka Krsnik; Simone Mayer; Sofia Fertuzinhos; Sheila Umlauf; Steven N. Lisgo; Alexander Vortmeyer; Daniel R. Weinberger; Shrikant Mane; Thomas M. Hyde; Anita Huttner; Mark Reimers; Joel E. Kleinman; Nenad Sestan

2011-01-01

112

COMPARING THE EMOTIONAL BRAINS OF HUMANS AND OTHER ANIMALS  

E-print Network

25 3 COMPARING THE EMOTIONAL BRAINS OF HUMANS AND OTHER ANIMALS Kent C. Berridge How is emotion embodied in the brain? That is the ques- tion posed by affective neuroscience (Cacioppo & Gardner, 1999 and emotion at both psychological and neurobiological levels. Evidence regarding the brain substrates

Berridge, Kent

113

GROWTH PATTERNS IN THE DEVELOPING HUMAN BRAIN DETECTED USING  

E-print Network

brain development, and delineate their fine- scale characteristics. By repeatedly scanning children (age the dynamically changing brain. In one subject scanned at ages 7 and 11, dramatic focal growth of the callosal1 GROWTH PATTERNS IN THE DEVELOPING HUMAN BRAIN DETECTED USING CONTINUUM-MECHANICAL TENSOR MAPPING

Thompson, Paul

114

Exclusive neuronal expression of SUCLA2 in the human brain.  

PubMed

SUCLA2 encodes the ATP-forming ? subunit (A-SUCL-?) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here, we show that immunoreactivity of A-SUCL-? in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL-? immunoreactivity co-localized >99 % with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL-? antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL-? immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming ? subunit (G-SUCL-?) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL-? immunoreactivity that was, however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex. PMID:24085565

Dobolyi, Arpád; Ostergaard, Elsebet; Bagó, Attila G; Dóczi, Tamás; Palkovits, Miklós; Gál, Aniko; Molnár, Mária J; Adam-Vizi, Vera; Chinopoulos, Christos

2015-01-01

115

Moment-to-moment brain signal variability: A next frontier in human brain mapping?  

PubMed Central

Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human life-span development, cognitive performance, and various clinical conditions. As a result, brain signal variability is evolving as a bona fide signal of interest, and should no longer be dismissed as meaningless noise when mapping the human brain. PMID:23458776

Garrett, Douglas D.; Samanez-Larkin, Gregory R.; MacDonald, Stuart W.S.; Lindenberger, Ulman; McIntosh, Anthony R.; Grady, Cheryl L.

2013-01-01

116

Moment-to-moment brain signal variability: a next frontier in human brain mapping?  

PubMed

Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human lifespan development, cognitive performance, and various clinical conditions. As a result, brain signal variability is evolving as a bona fide signal of interest, and should no longer be dismissed as meaningless noise when mapping the human brain. PMID:23458776

Garrett, Douglas D; Samanez-Larkin, Gregory R; MacDonald, Stuart W S; Lindenberger, Ulman; McIntosh, Anthony R; Grady, Cheryl L

2013-05-01

117

“Messing with the mind”: evolutionary challenges to human brain augmentation  

PubMed Central

The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce “augmented” brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties. PMID:25324734

Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P.

2014-01-01

118

Stress induced morphological microglial activation in the rodent brain: Involvement of interleukin-18  

Microsoft Academic Search

The present study investigated the possibility that acute stress might activate microglial cells. Wistar rats were exposed to 2 h period of restraint combined with water immersion stress prior to brain analysis by immunohistochemistry with OX-42, a marker of complement receptor CR3. A single session of stress provoked robust morphological microglial activation in the thalamus, hypothalamus, hippocampus, substantia nigra and

S. Sugama; M. Fujita; M. Hashimoto; B. Conti

2007-01-01

119

The Distribution and Morphological Characteristics of Serotonergic Cells in the Brain of Monotremes  

Microsoft Academic Search

The distribution and cellular morphology of serotonergic neurons in the brain of two species of monotremes are described. Three clusters of serotonergic neurons were found: a hypothalamic cluster, a cluster in the rostral brainstem and a cluster in the caudal brainstem. Those in the hypothalamus consisted of two groups, the periventricular hypothalamic organ and the infundibular recess, that were intimately

Paul R. Manger; Heidi M. Fahringer; John D. Pettigrew; Jerome M. Siegel

2002-01-01

120

Neurochemical and morphological responses to acutely and chronically implanted brain microdialysis probes  

Microsoft Academic Search

The purpose of this study was to compare, in rats, brain microdialysis results obtained using microdialysis probes implanted acutely for 2 h versus probes implanted chronically for 24 h in the caudate. Specific comparisons included: (1) dialysate purine and amino acid profiles during cerebral ischemia; (2) diffusional characteristics of the microdialysis probe; and (3) tissue morphology surrounding the probe. During

Margaret C Grabb; Veronica M Sciotti; Jeffrey M Gidday; Steven A Cohen; David G. L Van Wylen

1998-01-01

121

Beyond classical inheritance: the influence of maternal genotype upon child's brain morphology and behavior.  

PubMed

Genetic variance has been associated with variations in brain morphology, cognition, behavior, and disease risk. One well studied example of how common genetic variance is associated with brain morphology is the serotonin transporter gene polymorphism within the promoter region (5-HTTLPR). Because serotonin is a key neurotrophic factor during brain development, genetically determined variations in serotonin activity during maturation, in particular during early prenatal development, may underlie the observed association. However, the intrauterine microenvironment is not only determined by the child's, but also the mother's genotype. Therefore, we hypothesized that maternal 5-HTTLPR genotype influences the child's brain development beyond direct inheritance. To test this hypothesis, we investigated 76 children who were all heterozygous for the 5-HTTLPR (sl) and who had mothers who were either homozygous for the long (ll) or the short allele (ss). Using MRI, we assessed brain morphology as a function of maternal genotype. Gray matter density of the somatosensory cortex was found to be greater in children of ss mothers compared with children of ll mothers. Behavioral assessment showed that fine motor task performance was altered in children of ll mothers and the degree of this behavioral effect correlated with somatosensory cortex density across individuals. Our findings provide initial evidence that maternal genotype can affect the child's phenotype beyond effects of classical inheritance. Our observation appears to be explained by intrauterine environmental differences or by differences in maternal behavior. PMID:25031395

van der Knaap, Noortje J F; El Marroun, Hanan; Klumpers, Floris; Mous, Sabine E; Jaddoe, Vincent W V; Hofman, Albert; Homberg, Judith R; White, Tonya; Tiemeier, Henning; Fernández, Guillén

2014-07-16

122

Plasticity of the human brain " We never use the same brain twice" Arno Villringer and Burkhard Pleger  

E-print Network

Plasticity of the human brain " We never use the same brain twice" Arno Villringer and Burkhard Pleger Max Planck Institute for Human Brain and Cognitive Sciences, Leipzig Summary With the advent of noninvasive neuroimaging the human brain has become accessible for invivo

123

Social fearfulness in the human brain.  

PubMed

Social fearfulness is expressed on a continuum of severity from moderate distress to incapacitating fear. The present article focuses on the brain states associated with this broad dimension of social anxiety in humans. In total, 70 published studies are summarized documenting the neural correlates of social anxiety during states of rest, threat-related cognitive-affective activation, and acute symptom provocation. Neural exaggeration in limbic (amygdala) and paralimbic (insula) regions appears to be associated with functional outcomes involving increased attention for and processing of social threat. Evidence is also reviewed showing that social anxiety is characterized by atypical functional connectivity in certain brain networks. Despite a higher prevalence of social anxiety disorder among females, males have been overrepresented in the published clinical studies (constituting approximately 56% of the total participants). We evaluate the prospects of nonhuman animal models of social anxiety and discuss several promising directions for future research. The review highlights the need to adopt an integrative, network-based approach to the study of the neural substrates underlying social anxiety. PMID:21855571

Miskovic, Vladimir; Schmidt, Louis A

2012-01-01

124

The adult human brain in preclinical drug development  

Microsoft Academic Search

Neurodegenerative disorders are caused by the death and dysfunction of brain cells, but despite a huge worldwide effort, no neuroprotective treatments that slow cell death currently exist. The failure of translation from animal models to humans in the clinic is due to many factors including species differences, human brain complexity, age, patient variability and disease-specific phenotypes. Additional methods are therefore

Mike Dragunow

2008-01-01

125

Individual Variability in Functional Connectivity Architecture of the Human Brain  

E-print Network

and development, guiding intervention, and interpreting statistical maps in neuroimaging. INTRODUCTION The humanNeuron Article Individual Variability in Functional Connectivity Architecture of the Human Brain another is rooted in individual differences in brain anatomy and connectivity. Here, we used repeated

Hayar, Abdallah

126

Metabolic costs and evolutionary implications of human brain development  

PubMed Central

The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

2014-01-01

127

Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey  

E-print Network

Connectivity profiles reveal the relationship between brain areas for social cognition in human. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain as human TPJ interacts with other human brain regions. In other words, we look for brain regions

Mars, Rogier Bertrand

128

Barriers in the brain: resolving dendritic spine morphology and compartmentalization  

PubMed Central

Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50–400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmentalization is governed by spine morphology, and in particular the diameter of the spine neck, has remained unresolved. Here, we review recent advances in tool development – both experimental and theoretical – that facilitate studying the role of the spine neck in compartmentalization. Special emphasis is given to recent advances in microscopy methods and quantitative modeling applications as we discuss compartmentalization of biochemical signals, membrane receptors and electrical signals in spines. Multidisciplinary approaches should help to answer how dendritic spine architecture affects the cellular and molecular processes required for synapse maintenance and modulation. PMID:25538570

Adrian, Max; Kusters, Remy; Wierenga, Corette J.; Storm, Cornelis; Hoogenraad, Casper C.; Kapitein, Lukas C.

2014-01-01

129

Influence of curvature on the morphology of brain microvascular endothelial cells  

NASA Astrophysics Data System (ADS)

There are hundreds or thousands of endothelial cells around the perimeter of a single artery or vein, and hence an individual cell experiences little curvature. In contrast, a single endothelial cell may wrap around itself to form the lumen of a brain capillary. Curvature plays a key role in many biological, chemical and physical processes, however, its role in dictating the morphology and polarization of brain capillary endothelial cells has not been investigated. We hypothesize that curvature and shear flow play a key role in determining the structure and function of the blood-brain barrier (BBB). We have developed the ``rod'' assay to study the influence of curvature on the morphology of confluent monolayers of endothelial cells. In this assay cells are plated onto glass rods pulled down to the desired diameter in the range from 5 -- 500 ?m and coated with collagen. We show that curvature has a significant influence on the morphology of endothelial cells and may have an important role in blood-brain barrier function.

Ye, Mao; Yang, Zhen; Wong, Andrew; Searson, Peter

2013-03-01

130

Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning.  

PubMed

Changes in brain morphology and white matter lesions are two hallmarks of multiple sclerosis (MS) pathology, but their variability beyond volumetrics is poorly characterized. To further our understanding of complex MS pathology, we aim to build a statistical model of brain images that can automatically discover spatial patterns of variability in brain morphology and lesion distribution. We propose building such a model using a deep belief network (DBN), a layered network whose parameters can be learned from training images. In contrast to other manifold learning algorithms, the DBN approach does not require a prebuilt proximity graph, which is particularly advantageous for modeling lesions, because their sparse and random nature makes defining a suitable distance measure between lesion images challenging. Our model consists of a morphology DBN, a lesion DBN, and a joint DBN that models concurring morphological and lesion patterns. Our results show that this model can automatically discover the classic patterns of MS pathology, as well as more subtle ones, and that the parameters computed have strong relationships to MS clinical scores. PMID:25485412

Brosch, Tom; Yoo, Youngjin; Li, David K B; Traboulsee, Anthony; Tam, Roger

2014-01-01

131

Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.  

PubMed

Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. PMID:25399806

Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

2015-01-01

132

Aneuploidy and Confined Chromosomal Mosaicism in the Developing Human Brain  

PubMed Central

Background Understanding the mechanisms underlying generation of neuronal variability and complexity remains the central challenge for neuroscience. Structural variation in the neuronal genome is likely to be one important mechanism for neuronal diversity and brain diseases. Large-scale genomic variations due to loss or gain of whole chromosomes (aneuploidy) have been described in cells of the normal and diseased human brain, which are generated from neural stem cells during intrauterine period of life. However, the incidence of aneuploidy in the developing human brain and its impact on the brain development and function are obscure. Methodology/Principal Findings To address genomic variation during development we surveyed aneuploidy/polyploidy in the human fetal tissues by advanced molecular-cytogenetic techniques at the single-cell level. Here we show that the human developing brain has mosaic nature, being composed of euploid and aneuploid neural cells. Studying over 600,000 neural cells, we have determined the average aneuploidy frequency as 1.25–1.45% per chromosome, with the overall percentage of aneuploidy tending to approach 30–35%. Furthermore, we found that mosaic aneuploidy can be exclusively confined to the brain. Conclusions/Significance Our data indicates aneuploidization to be an additional pathological mechanism for neuronal genome diversification. These findings highlight the involvement of aneuploidy in the human brain development and suggest an unexpected link between developmental chromosomal instability, intercellural/intertissular genome diversity and human brain diseases. PMID:17593959

Liehr, Thomas; Kolotii, Alexei D.; Kutsev, Sergei I.; Pellestor, Franck; Beresheva, Alfia K.; Demidova, Irina A.; Kravets, Viktor S.; Monakhov, Viktor V.; Soloviev, Ilia V.

2007-01-01

133

Selective Lutheran Glycoprotein Gene Expression at the Blood-Brain Barrier in Normal Brain and in Human Brain Tumors  

Microsoft Academic Search

The Lutheran (LU) glycoprotein was shown to be a specific marker of brain capillary endothelium, which forms the blood-brain barrier (BBB) in vivo. A 1.5 kb partial cDNA encoding the bovine LU was isolated from a bovine brain capillary cDNA library. Sequence analysis showed that the bovine and human LU had a 75% and 79% identity in the amino acid

Ruben J. Boado; Jian Yi Li; William M. Pardridge

2000-01-01

134

Genomic connectivity networks based on the BrainSpan atlas of the developing human brain  

NASA Astrophysics Data System (ADS)

The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

2014-03-01

135

Brain size at birth throughout human evolution: A new method for estimating neonatal brain size in hominins  

Microsoft Academic Search

An increase in brain size is a hallmark of human evolution. Questions regarding the evolution of brain development and obstetric constraints in the human lineage can be addressed with accurate estimates of the size of the brain at birth in hominins. Previous estimates of brain size at birth in fossil hominins have been calculated from regressions of neonatal body or

Jeremy M. DeSilva; Julie J. Lesnik

2008-01-01

136

Cerebral organoids model human brain development and microcephaly  

PubMed Central

The complexity of the human brain has made it difficult to study many brain disorders in model organisms, and highlights the need for an in vitro model of human brain development. We have developed a human pluripotent stem cell-derived 3D organoid culture system, termed cerebral organoid, which develops various discrete though interdependent brain regions. These include cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNAi and patient-specific iPS cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could explain the disease phenotype. Our data demonstrate that 3D organoids can recapitulate development and disease of even this most complex human tissue. PMID:23995685

Lancaster, Madeline A.; Renner, Magdalena; Martin, Carol-Anne; Wenzel, Daniel; Bicknell, Louise S.; Hurles, Matthew E.; Homfray, Tessa; Penninger, Josef M.; Jackson, Andrew P.; Knoblich, Juergen A.

2013-01-01

137

Sports and brain morphology - a voxel-based morphometry study with endurance athletes and martial artists.  

PubMed

Physical exercises and motor skill learning have been shown to induce changes in regional brain morphology, this has been demonstrated for various activities and tasks. Also individuals with special skills show differences in regional brain morphology. This has been indicated for professional musicians, London taxi drivers, as well as for athletes like dancers, golfers and judokas. However little is known about whether sports with different metabolic profiles (aerobic vs. anaerobic) are associated with different patterns of altered brain morphology. In this cross-sectional study we investigated two groups of high-performance athletes, one group performing sports that are thought to be mainly aerobic, and one group performing sports known to have intermittent phases of anaerobic metabolism. Using high-resolution structural imaging and voxel-based morphometry (VBM), we investigated a group of 26 male athletes consisting of 13 martial artists and 13 endurance athletes as well as a group of non-exercising men (n=13). VBM analyses revealed higher gray matter (GM) volumes in the supplementary motor area/dorsal premotor cortex (BA 6) in both athlete groups as compared to the control group. In addition, endurance athletes showed significantly higher GM volume in the medial temporal lobe (MTL), specifically in the hippocampus and parahippocampal gyrus, which was not seen in the martial arts group. Our data suggest that high-performance sports are associated with changes in regional brain morphology in areas implicated in motor planning and motor learning. In addition high-level endurance sports seem to affect MTL structures, areas that have previously been shown to be modulated by aerobic exercise. PMID:24291669

Schlaffke, L; Lissek, S; Lenz, M; Brüne, M; Juckel, G; Hinrichs, T; Platen, P; Tegenthoff, M; Schmidt-Wilcke, T

2014-02-14

138

Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes.  

PubMed

Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. PMID:25567649

Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T; Mueller, Ulrich

2015-02-22

139

Reconstituting a human brain in animals: a Jewish perspective on human sanctity.  

PubMed

The potential use of stem cells in the treatment of a variety of human diseases has been a major driving force for embryonic stem cell research. Another productive area of research has been the use of human stem cells to reconstitute human organ systems in animals in an attempt to create new animal models for human diseases. However, the possibility of transplanting human embryonic brain cells or precursor brain cells into an animal fetus presents numerous ethical challenges. This paper examines, from a Jewish perspective on human dignity, several bioethical concerns related to the reconstitution of animal brains with human neurons. PMID:19143409

Loike, John D; Tendler, Moshe

2008-12-01

140

5 Minute Brain Teaser Old vs. New Thinking Regarding the Human Brain*  

E-print Network

5 Minute Brain Teaser Old vs. New Thinking Regarding the Human Brain* Answer Key Answer Statement 1 discovered that the early years of life are critical. Good prenatal care, warm attachments between young that quality care in the early years is associated with: better social and thinking skills, better language

141

Mapping Human Whole-Brain Structural Networks with  

Microsoft Academic Search

Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool

Patric Hagmann; Maciej Kurant; Xavier Gigandet; Patrick Thiran; Van J. Wedeen; Reto Meuli

142

A role for human brain pericytes in neuroinflammation  

PubMed Central

Background Brain inflammation plays a key role in neurological disease. Although much research has been conducted investigating inflammatory events in animal models, potential differences in human brain versus rodent models makes it imperative that we also study these phenomena in human cells and tissue. Methods Primary human brain cell cultures were generated from biopsy tissue of patients undergoing surgery for drug-resistant epilepsy. Cells were treated with pro-inflammatory compounds IFN?, TNF?, IL-1?, and LPS, and chemokines IP-10 and MCP-1 were measured by immunocytochemistry, western blot, and qRT-PCR. Microarray analysis was also performed on late passage cultures treated with vehicle or IFN? and IL-1?. Results Early passage human brain cell cultures were a mixture of microglia, astrocytes, fibroblasts and pericytes. Later passage cultures contained proliferating fibroblasts and pericytes only. Under basal culture conditions all cell types showed cytoplasmic NF?B indicating that they were in a non-activated state. Expression of IP-10 and MCP-1 were significantly increased in response to pro-inflammatory stimuli. The two chemokines were expressed in mixed cultures as well as cultures of fibroblasts and pericytes only. The expression of IP-10 and MCP-1 were regulated at the mRNA and protein level, and both were secreted into cell culture media. NF?B nuclear translocation was also detected in response to pro-inflammatory cues (except IFN?) in all cell types. Microarray analysis of brain pericytes also revealed widespread changes in gene expression in response to the combination of IFN? and IL-1? treatment including interleukins, chemokines, cellular adhesion molecules and much more. Conclusions Adult human brain cells are sensitive to cytokine challenge. As expected ‘classical’ brain immune cells, such as microglia and astrocytes, responded to cytokine challenge but of even more interest, brain pericytes also responded to such challenge with a rich repertoire of gene expression. Immune activation of brain pericytes may play an important role in communicating inflammatory signals to and within the brain interior and may also be involved in blood brain barrier (BBB) disruption . Targeting brain pericytes, as well as microglia and astrocytes, may provide novel opportunities for reducing brain inflammation and maintaining BBB function and brain homeostasis in human brain disease. PMID:24920309

2014-01-01

143

MRI of the human brain at 130 microtesla  

E-print Network

We present in vivo images of the human brain acquired with an ultralow field MRI (ULFMRI) system operating at a magnetic field B[subscript 0] ? 130 ?T. The system features prepolarization of the proton spins at B[subscript ...

Inglis, Ben

144

Brain and sensory organ morphology in Antarctic eelpouts (Perciformes: Zoarcidae: Lycodinae).  

PubMed

Eelpouts of the family Zoarcidae comprise a monophyletic group of marine fishes with a worldwide distribution. Centers of high zoarcid diversity occur in the North Atlantic and North Pacific, with important radiations into the Arctic, along southern South America, and into the Southern Ocean around Antarctica. Along with snailfishes (Liparidae), zoarcids form an important component of the non-notothenioid fauna in the subzero shelf waters of Antarctica. We document the anatomy and histology of the brains, cranial nerves, olfactory apparatus, cephalic lateral lines, taste buds, and retinas of three Antarctic zoarcid species, living at depths of 310-939 m, representing three of the nine genera from this region. The primary emphasis is on Ophthalmolycus amberensis, and we provide a detailed drawing of the brain and cranial nerves of this species. Although this brain reflects general perciform neural morphology, it exhibits a reduction of the (optic) tecta and the eminentia granulares and crista cerebellares of the lateral line system. Interspecific differences among the three species are slight. The olfactory rosette consists of three to four lamellae and the nasal sac, contrary to the claim of Fanta et al. ([2001] Antarct Rec, Natl Inst Polar Res, Tokyo 45:27-42), is not in communication with the cephalic lateral line system. Primary olfactory neurons are abundant and converge on branches of the olfactory nerve. Numerous taste buds are located in the lips. All three species lack an ocular choroid rete and have relatively thin retinas with a low cell density and a single bank of rods as the only type of photoreceptor. Neural diversification among Antarctic zoarcids has not involved the evolution of sensory specialists; brain and sensory organ morphologies do not approach the condition seen in primary deep-sea fishes, or even that of some sympatric non-perciform secondary deep-sea fishes, including liparids and muraenolepidids (eel cods). There may be phylogenetic constraints on brain morphology in perciforms such that we do not see extreme specialization in sensory and neural systems for deep habitats. We suggest that the brains and sensory organs of Antarctic zoarcids reflect habitation of 500-2,000-m depths and likely reflect morphologies seen in zoarcids living on continental slopes elsewhere in the world. This balance among the sensory modalities makes zoarcids relatively generalized among secondary deep-sea fishes and may be one of the reasons this opportunistic and adaptable group has been successful in colonizing a variety of emergent and ephemeral habitats. PMID:16270315

Lannoo, Michael J; Eastman, Joseph T

2006-01-01

145

Morphological and functional studies on microencapsulated human fetal pancreatic tissue.  

PubMed

Fifty human fetal pancreases of 4-6 months gestation obtained from legal abortions were microencapsulated with alginate, poly-lysine after culture for 4-7 days. The microcapsules were studied morphologically and functionally. Immunocytochemical staining for insulin indicated B-cells were morphologically intact at 48 days. Insulin and C-peptide of the culture medium measured with radioimmuno-assay (RIA) showed that the microcapsules still retained the function of insulin secretion after culture for 25 days. There was no statistical difference when compared with noncapsulated tissues. No exocrine function was detected as evidenced by the amylase determination. We conclude that microencapsulated human fetal pancreatic tissues retain viability in culture for more than 25 days and can be used as transplants in the treatment of diabetes mellitus. PMID:2483542

Yang, H; Wu, Z G

1989-10-01

146

Sequence identification of 2,375 human brain genes  

Microsoft Academic Search

WE recently described a new approach for the rapid characterization of expressed genes by partial DNA sequencing to generate 'expressed sequence tags'1. From a set of 600 human brain complementary DNA clones, 348 were informative nuclear-encoded messenger RNAs. We have now partially sequenced 2,672 new, independent cDNA clones isolated from four human brain cDNA libraries to generate 2,375 expressed sequence

Mark D. Adams; Mark Dubnick; Anthony R. Kerlavage; Ruben Moreno; Jenny M. Kelley; Teresa R. Utterback; James W. Nagle; Chris Fields; J. Craig Venter

1992-01-01

147

Functional connectivity hubs in the human brain  

Microsoft Academic Search

Brain networks appear to have few and well localized regions with high functional connectivity density (hubs) for fast integration of neural processing, and their dysfunction could contribute to neuropsychiatric diseases. However the variability in the distribution of these brain hubs is unknown due in part to the overwhelming computational demands associated to their localization. Recently we developed a fast algorithm

Dardo Tomasi; Nora D. Volkow

2011-01-01

148

New maps of the human brain  

SciTech Connect

This article describes a recent workshop at which advancements in the study of the structure and function of the brain were discussed. Although studies utilizing techniques of MRI, electroencephalography and magnetoencephalography have been useful, positron emission tomography is the only technique capable, at present, of giving images of activity across the entire brain.

Not Available

1990-01-01

149

Alcohol-Related Brain Damage in Humans  

PubMed Central

Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann’s area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin ? II, and ?- and ?-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in ?-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in ?-spectrin protein levels, and a significant increase in transmembranous ?3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of ?-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic ?- and ?-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics. PMID:24699688

Erdozain, Amaia M.; Morentin, Benito; Bedford, Lynn; King, Emma; Tooth, David; Brewer, Charlotte; Wayne, Declan; Johnson, Laura; Gerdes, Henry K.; Wigmore, Peter; Callado, Luis F.; Carter, Wayne G.

2014-01-01

150

Conscious brain-to-brain communication in humans using non-invasive technologies.  

PubMed

Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

2014-01-01

151

Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies  

PubMed Central

Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

2014-01-01

152

The Relationship between Social Defiance, Vindictiveness, Anger, and Brain Morphology in Eight-Year-Old Boys and Girls  

ERIC Educational Resources Information Center

The goal of this study is twofold: (1) to assess brain anatomical differences between children meeting diagnostic criteria for oppositional defiant disorder (ODD) and healthy controls, and (2) to investigate whether morphological brain characteristics associated with ODD differ in boys and girls. Eight-year-old participants (N = 38) were scanned…

Fahim, Cherine; Fiori, Marina; Evans, Alan C.; Perusse, Daniel

2012-01-01

153

Brain power. The human brain may be the most  

E-print Network

who held sway on the nature of human life, the mysteries of consciousness, and other Big Questions: Rachel Thomas Editor: Ian Jones Writers: Lisa Melton, Julie Reza Illustrator: Glen McBeth Advisory board

Rambaut, Andrew

154

Sexual selection and the evolution of behavior, morphology, neuroanatomy and genes in humans and other primates.  

PubMed

Explaining human evolution means developing hypotheses about the occurrence of sex differences in the brain. Neuroanatomy is significantly influenced by sexual selection, involving the cognitive domain through competition for mates and mate choice. Male neuroanatomy emphasizes subcortical brain areas and visual-spatial skills whereas that of females emphasizes the neocortex and social cognitive areas. In primate species with high degrees of male competition, areas of the brain dealing with aggression are emphasized. Females have higher mirror neuron activity scores than males. Hundreds of genes differ in expression profiles between males and females. Sexually selected differences in gene expression can produce neuroanatomical sex differences. A feedback system links genes, gene expression, hormones, morphology, social structure and behavior. Sex differences, often through female choice, can be rapidly modulated by socialization. Human evolution is a dramatic case of how a trend toward pair bonding and monogamy lowered male competition and increased female choice as a necessary step in releasing the cognitive potential of our species. PMID:25445181

Stanyon, Roscoe; Bigoni, Francesca

2014-10-14

155

Morphological brain network assessed using graph theory and network filtration in deaf adults.  

PubMed

Prolonged deprivation of auditory input can change brain networks in pre- and postlingual deaf adults by brain-wide reorganization. To investigate morphological changes in these brains voxel-based morphometry, voxel-wise correlation with the primary auditory cortex, and whole brain network analyses using morphological covariance were performed in eight prelingual deaf, eleven postlingual deaf, and eleven hearing adults. Network characteristics based on graph theory and network filtration based on persistent homology were examined. Gray matter density in the primary auditor cortex was preserved in prelingual deafness, while it tended to decrease in postlingual deafness. Unlike postlingual, prelingual deafness showed increased bilateral temporal connectivity of the primary auditory cortex compared to the hearing adults. Of the graph theory-based characteristics, clustering coefficient, betweenness centrality, and nodal efficiency all increased in prelingual deafness, while all the parameters of postlingual deafness were similar to the hearing adults. Patterns of connected components changing during network filtration were different between prelingual deafness and hearing adults according to the barcode, dendrogram, and single linkage matrix representations, while these were the same in postlingual deafness. Nodes in fronto-limbic and left temporal components were closely coupled, and nodes in the temporo-parietal component were loosely coupled, in prelingual deafness. Patterns of connected components changing in postlingual deafness were the same as hearing adults. We propose that the preserved density of auditory cortex associated with increased connectivity in prelingual deafness, and closer coupling between certain brain areas, represent distinctive reorganization of auditory and related cortices compared with hearing or postlingual deaf adults. The differential network reorganization in the prelingual deaf adults could be related to the absence of auditory speech experience. PMID:25016143

Kim, Eunkyung; Kang, Hyejin; Lee, Hyekyoung; Lee, Hyo-Jeong; Suh, Myung-Whan; Song, Jae-Jin; Oh, Seung-Ha; Lee, Dong Soo

2014-09-01

156

Evolution of the human brain: when bigger is better  

PubMed Central

Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the brain and its underlying neuronal network. The object of this review is to present current perspectives on primate brain evolution, especially in humans, and to examine some hypothetical organizing principles that underlie the brain's complex organization. Some of the design principles and operational modes that underlie the information processing capacity of the cerebral cortex in primates will be explored. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains, then otherwise would have been possible. In view of the central importance placed on brain evolution in explaining the success of our own species, one may wonder whether there are physical limits that constrain its processing power and evolutionary potential. It will be argued that at a brain size of about 3500 cm3, corresponding to a brain volume two to three times that of modern man, the brain seems to reach its maximum processing capacity. The larger the brain grows beyond this critical size, the less efficient it will become, thus limiting any improvement in cognitive power. PMID:24723857

Hofman, Michel A.

2014-01-01

157

Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: An experimental study using light and electron microscopy  

Microsoft Academic Search

This study describes morphological abnormalities of brain cells during acute methamphetamine (METH) intoxication in the rat and demonstrates the role of hyperthermia, disruption of the blood–brain barrier (BBB) and edema in their development. Rats with chronically implanted brain, muscle and skin temperature probes and an intravenous (i.v.) catheter were exposed to METH (9mg\\/kg) at standard (23°C) and warm (29°C) ambient

Hari S. Sharma; Eugene A. Kiyatkin

2009-01-01

158

Magnetic resonance and the human brain: anatomy, function and metabolism.  

PubMed

The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth. PMID:16568243

Talos, I-F; Mian, A Z; Zou, K H; Hsu, L; Goldberg-Zimring, D; Haker, S; Bhagwat, J G; Mulkern, R V

2006-05-01

159

Imaging structural co-variance between human brain regions.  

PubMed

Brain structure varies between people in a markedly organized fashion. Communities of brain regions co-vary in their morphological properties. For example, cortical thickness in one region influences the thickness of structurally and functionally connected regions. Such networks of structural co-variance partially recapitulate the functional networks of healthy individuals and the foci of grey matter loss in neurodegenerative disease. This architecture is genetically heritable, is associated with behavioural and cognitive abilities and is changed systematically across the lifespan. The biological meaning of this structural co-variance remains controversial, but it appears to reflect developmental coordination or synchronized maturation between areas of the brain. This Review discusses the state of current research into brain structural co-variance, its underlying mechanisms and its potential value in the understanding of various neurological and psychiatric conditions. PMID:23531697

Alexander-Bloch, Aaron; Giedd, Jay N; Bullmore, Ed

2013-05-01

160

Understanding complexity in the human brain  

PubMed Central

Although the ultimate aim of neuroscientific enquiry is to gain an understanding of the brain and how its workings relate to the mind, the majority of current efforts are largely focused on small questions using increasingly detailed data. However, it might be possible to successfully address the larger question of mind–brain mechanisms if the cumulative findings from these neuroscientific studies are coupled with complementary approaches from physics and philosophy. The brain, we argue, can be understood as a complex system or network, in which mental states emerge from the interaction between multiple physical and functional levels. Achieving further conceptual progress will crucially depend on broad-scale discussions regarding the properties of cognition and the tools that are currently available or must be developed in order to study mind–brain mechanisms. PMID:21497128

Bassett, Danielle S.; Gazzaniga, Michael S.

2011-01-01

161

Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain.  

PubMed

We have examined the distribution of microglia in the normal adult mouse brain using immunocytochemical detection of the macrophage specific plasma membrane glycoprotein F4/80. We were interested to learn whether the distribution of microglia in the adult brain is related to regional variation in the magnitude of cell death during development and resulting monocyte recruitment, or whether the adult distribution is influenced by other local microenvironmental cues. We further investigated the possibility that microglia are sensitive to their microenvironment by studying their morphology in different brain regions. Microglia are present in large numbers in all major divisions of the brain but are not uniformly distributed. There is a more than five-fold variation in the density of immunostained microglial processes between different regions. More microglia are found in gray matter than white. Particularly, densely populated areas include the hippocampus, olfactory telencephalon, basal ganglia and substantia nigra. In comparison, the less densely populated areas include fibre tracts, cerebellum and much of the brainstem. The cerebral cortex, thalamus and hypothalamus have average cell densities. There was no simple relationship between the amount of developmental cell death and the adult distribution of microglia. An estimate of the total number of microglia in the adult mouse brain, 3.5 x 10(6), is comparable to that found in the liver on a weight for weight basis. However, microglia possess up to twice the surface area of membrane of Kupffer cells, the large resident macrophages of the liver. The proportion of cells that were microglia varied from 5% in the cortex and corpus callosum, to 12% in the substantia nigra. Microglia vary in morphology depending on their location. They were broadly classified into three categories. Compact cells are rounded cells, sometimes with one or two short thick limbs, bearing short processes ("bristles"). They resemble Kupffer cells of the liver and are found exclusively in sites lacking a blood-brain barrier. Longitudinally branched cells are found in fibre tracts and possess several long processes which are usually aligned parallel to, or more occasionally perpendicular to, the longitudinal axis of the nerve fibres. Radially branched cells are found throughout the neuropil. They can be extremely elaborate and there is wide variation in the length and complexity of branching of the processes. There was no evidence of monocyte-like cells in the adult CNS. The systematic variation in microglial morphology provides further evidence that these cells are sensitive to their microenvironment. PMID:2089275

Lawson, L J; Perry, V H; Dri, P; Gordon, S

1990-01-01

162

Toward discovery science of human brain function  

Microsoft Academic Search

Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain

B. B. Biswal; M. Mennes; X.-N. Zuo; S. Gohel; C. Kelly; S. M. Smith; C. F. Beckmann; J. S. Adelstein; R. L. Buckner; S. Colcombe; A.-M. Dogonowski; M. Ernst; D. Fair; M. Hampson; M. J. Hoptman; J. S. Hyde; V. J. Kiviniemi; R. Kotter; S.-J. Li; C.-P. Lin; M. J. Lowe; C. Mackay; D. J. Madden; K. H. Madsen; D. S. Margulies; H. S. Mayberg; K. McMahon; C. S. Monk; S. H. Mostofsky; B. J. Nagel; J. J. Pekar; S. J. Peltier; S. E. Petersen; V. Riedl; S. A. R. B. Rombouts; B. Rypma; B. L. Schlaggar; S. Schmidt; R. D. Seidler; G. J. Siegle; C. Sorg; G.-J. Teng; J. Veijola; A. Villringer; M. Walter; L. Wang; X.-C. Weng; S. Whitfield-Gabrieli; P. Williamson; C. Windischberger; Y.-F. Zang; H.-Y. Zhang; F. X. Castellanos; M. P. Milham

2010-01-01

163

Why Our Kids Can Write; or, Running Slo's through the Right Brain Equals the Morphology of Diddley Doos.  

ERIC Educational Resources Information Center

Proposes that offering students activities that exercise right-brain functions (nonverbal, nonrational, spatial, and intuitive) helps students become more fully developed human beings and better writers. (RL)

Palmer, Thelma

1980-01-01

164

Intra-urban human mobility patterns: An urban morphology perspective  

NASA Astrophysics Data System (ADS)

This paper provides a new perspective on human motion with an investigation of whether and how patterns of human mobility inside cities are affected by two urban morphological characteristics: compactness and size. Mobile phone data have been collected in eight cities in Northeast China and used to extract individuals' movement trajectories. The massive mobile phone data provides a wide coverage and detailed depiction of individuals' movement in space and time. Considering that most individuals' movement is limited within particular urban areas, boundaries of urban agglomerations are demarcated based on the spatial distribution of mobile phone base towers. Results indicate that the distribution of human's intra-urban travel in general follows the exponential law. The exponents, however, vary from city to city and indicate the impact of city sizes and shapes. Individuals living in large or less compact cities generally need to travel farther on a daily basis, and vice versa. A Monte Carlo simulation analysis based on Levy flight is conducted to further examine and validate the relation between intra-urban human mobility and urban morphology.

Kang, Chaogui; Ma, Xiujun; Tong, Daoqin; Liu, Yu

2012-02-01

165

Mitochondrial viability in mouse and human postmortem brain  

PubMed Central

Neuronal function in the brain requires energy in the form of ATP, and mitochondria are canonically associated with ATP production in neurons. The electrochemical gradient, which underlies the mitochondrial transmembrane potential (??mem), is harnessed for ATP generation. Here we show that ??mem and ATP-production can be engaged in mitochondria isolated from human brains up to 8.5 h postmortem. Also, a time course of postmortem intervals from 0 to 24 h using mitochondria isolated from mouse cortex reveals that ??mem in mitochondria can be reconstituted beyond 10 h postmortem. It was found that complex I of the mitochondrial electron transport chain was affected adversely with increasing postmortem intervals. Mitochondria isolated from postmortem mouse brains maintain the ability to produce ATP, but rates of production decreased with longer postmortem intervals. Furthermore, we show that postmortem brain mitochondria retain their ??mem and ATP-production capacities following cryopreservation. Our finding that ??mem and ATP-generating capacity can be reinitiated in brain mitochondria hours after death indicates that human postmortem brains can be an abundant source of viable mitochondria to study metabolic processes in health and disease. It is also possible to archive these mitochondria for future studies.—Barksdale, K. A., Perez-Costas, E., Gandy, J. C., Melendez-Ferro, M., Roberts, R. C., Bijur, G. N. Mitochondrial viability in mouse and human postmortem brain. PMID:20466876

Barksdale, Keri A.; Perez-Costas, Emma; Gandy, Johanna C.; Melendez-Ferro, Miguel; Roberts, Rosalinda C.; Bijur, Gautam N.

2010-01-01

166

BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics  

PubMed Central

The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/). PMID:23861951

Xia, Mingrui; Wang, Jinhui; He, Yong

2013-01-01

167

Shortcomings of the Human Brain and Remedial Action by Religion  

ERIC Educational Resources Information Center

There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial…

Reich, K. Helmut

2010-01-01

168

Broadband Proton Decoupling for In Vivo Brain Spectroscopy in Humans  

E-print Network

Broadband Proton Decoupling for In Vivo Brain Spectroscopy in Humans Peter B. Barker,1,2* Xavier, PBAR, is described for broadband heteronuclear decoupling in vivo in humans at 1.5T. The se- quence Wiley-Liss, Inc. Key words: decoupling; broadband; spectroscopy; in vivo; car- bon-13; phosphorus-31

Ouwerkerk, Ronald

169

Author's personal copy Kinetic analysis in human brain of [11  

E-print Network

) in brain, an enzyme that metabolizes cAMP. The aims of this study were to perform kinetic modeling of [11 C](R)-rolipram in healthy humans using an arterial input function and to replace this arterial input in humans with an image antidepressant drug treatments and to electroconvulsive therapy (Duman et al., 1997). All these effective

Shen, Jun

170

Identification of a Cancer Stem Cell in Human Brain Tumors  

Microsoft Academic Search

Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, there is overwhelming evidence in some malignancies that the tumor clone is heterogeneous with respect to proliferation and differentiation. In human leukemia, the tumor clone is organized as a hierarchy that originates from rare leukemic stem cells that possess

Sheila K. Singh; Ian D. Clarke; Mizuhiko Terasaki; Victoria E. Bonn; Cynthia Hawkins; Jeremy Squire; Peter B. Dirks

2003-01-01

171

Development of human brain structural networks through infancy and childhood.  

PubMed

During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

2015-05-01

172

The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size  

ERIC Educational Resources Information Center

Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

Miller, Geoffrey F.; Penke, Lars

2007-01-01

173

Exploring the Origins of the Human Brain through Molecular Evolution  

PubMed Central

The emergence of the human brain is one of evolution’s most compelling mysteries. With its singular importance and astounding complexity, understanding the forces that gave rise to the human brain is a major undertaking. Recently, the identification and publication of the complete genomic sequence of humans, mice, chimpanzees, and macaques has allowed for large-scale studies looking for the genic substrates of this natural selection. These investigations into positive selection, however, have generally produced incongruous results. Here we consider some of these studies and their differences in methodologies with an eye towards how they affect the results. We also clarify the strengths and weaknesses of each of these approaches and discuss how these can be synthesized to develop a more complete understanding of the genetic correlates behind the human brain and the selective events that have acted upon them. PMID:18836262

Vallender, Eric J.

2009-01-01

174

New insights into differences in brain organization between Neanderthals and anatomically modern humans  

PubMed Central

Previous research has identified morphological differences between the brains of Neanderthals and anatomically modern humans (AMHs). However, studies using endocasts or the cranium itself are limited to investigating external surface features and the overall size and shape of the brain. A complementary approach uses comparative primate data to estimate the size of internal brain areas. Previous attempts to do this have generally assumed that identical total brain volumes imply identical internal organization. Here, we argue that, in the case of Neanderthals and AMHs, differences in the size of the body and visual system imply differences in organization between the same-sized brains of these two taxa. We show that Neanderthals had significantly larger visual systems than contemporary AMHs (indexed by orbital volume) and that when this, along with their greater body mass, is taken into account, Neanderthals have significantly smaller adjusted endocranial capacities than contemporary AMHs. We discuss possible implications of differing brain organization in terms of social cognition, and consider these in the context of differing abilities to cope with fluctuating resources and cultural maintenance. PMID:23486442

Pearce, Eiluned; Stringer, Chris; Dunbar, R. I. M.

2013-01-01

175

ANALYZING DEPENDENCE STRUCTURE OF THE HUMAN BRAIN IN RESPONSE TO VISUAL STIMULI  

E-print Network

ANALYZING DEPENDENCE STRUCTURE OF THE HUMAN BRAIN IN RESPONSE TO VISUAL STIMULI Bilal H. Fadlallah in the human brain in response to two different visual stimuli, face and mock with the goal of (1) assessingVEP), a well-known physiological tool in human brain studies [3]. ssVEPs are continuous brain re- sponses

Slatton, Clint

176

Panic and panacea: brain drain and science and technology human capital policy  

Microsoft Academic Search

Brain drain, the diffusion of skilled human capital, particularly scientific and technical human capital (STHC), from home to host country, is of concern to many nations. Traditional brain drain ‘control’ policies target the human capital embodied in a skilled individual. Based on a case study of brain drain panic in New Zealand in 2000, this paper explores new ‘stimulation’ brain

Sally Davenport

2004-01-01

177

Decade of the Brain 1990--2000: Maximizing human potential  

SciTech Connect

The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

Not Available

1991-04-01

178

Lifespan maturation and degeneration of human brain white matter  

PubMed Central

Properties of human brain tissue change across the lifespan. Here we model these changes in the living human brain by combining quantitative MRI measurements of R1 (1/T1) with diffusion MRI and tractography (N=102, ages 7–85). The amount of R1 change during development differs between white matter fascicles, but in each fascicle the rate of development and decline are mirror symmetric; the rate of R1 development as the brain approaches maturity predicts the rate of R1 degeneration in aging. Quantitative measurements of macromolecule tissue volume (MTV) confirm that R1 is an accurate index of the growth of new brain tissue. In contrast to R1, diffusion development follows an asymmetric time-course with rapid childhood changes but a slow rate of decline in old age. Together, the time-courses of R1 and diffusion changes demonstrate that multiple biological processes drive changes in white matter tissue properties over the lifespan. PMID:25230200

Yeatman, Jason D.; Wandell, Brian A.; Mezer, Aviv A.

2014-01-01

179

Human brain activity with near-infrared spectroscopy  

Microsoft Academic Search

Human brain activity was studied with a real time functional Near-InfraRed Imager (fNIRI). The imager has 16 measurement channels and covers 4 cm by 9 cm detection area. Brain activities in occipital, motor and prefrontal area were studied with the fNIRI. In prefrontal stimulation, language cognition, analogies, forming memory for new associations, emotional thinking, and mental arithmetic were carried out.

Qingming Luo; Britton Chance

1999-01-01

180

Cerebrospinal Fluid Flow in the Normal and Hydrocephalic Human Brain  

Microsoft Academic Search

Advances in magnetic resonance (MR) imaging techniques enable the accurate measurements of cerebrospinal fluid (CSF) flow in the human brain. In addition, image reconstruction tools facilitate the collection of patient-specific brain geometry data such as the exact dimensions of the ventricular and subarachnoidal spaces (SAS) as well as the computer-aided reconstruction of the CSF-filled spaces. The solution of the conservation

Andreas A. Linninger; Michalis Xenos; David C. Zhu; MahadevaBharath R. Somayaji; Srinivasa Kondapalli; Richard D. Penn

2007-01-01

181

Prenatal Development of the Human Blood-Brain Barrier  

Microsoft Academic Search

\\u000a Mammalian, and more specifically human, brain development is the result of a long and complex evolutionary pathway. As we\\u000a move from the simplest jellyfish nervous system, (which forms an undifferentiated network) to vertebrate animals (such as\\u000a fish, amphibians, and reptiles), we observe the development of more complex and larger brains. The developmental process reaches\\u000a its highest form of evolution and

Luca Cucullo

182

Constructing a Dictionary of Human Brain Folding Patterns  

Microsoft Academic Search

Brain imaging provides a wealth of information that computers can explore at a massive scale. Categorizing the patterns of\\u000a the human cortex has been a challenging issue for neuroscience. In this paper, we propose a data mining approach leading to\\u000a the construction of the first computerized dictionary of cortical folding patterns, from a database of 62 brains. The cortical\\u000a folds

Zhong Yi Sun; Matthieu Perrot; Alan Tucholka; Denis Rivière; Jean-francois Mangin

2009-01-01

183

MAPPING GENETIC INFLUENCES ON HUMAN BRAIN STRUCTURE  

E-print Network

, MRI, quantitative trait loci (QTL), schizophrenia, twin 3 KEY MESSAGES (one sentence each, to put recently developed a large-scale computational brain atlas, including data components from the Finnish Twin be fruitfully merged, to shed light on the inheritance of personality differences and behavioral traits

Thompson, Paul

184

Haploinsufficiency of interferon regulatory factor 6 alters brain morphology in the mouse.  

PubMed

Orofacial clefts are among the commonest birth defects. Among many genetic contributors to orofacial clefting, Interferon Regulatory Factor 6 (IRF6) is unique since mutations in this gene cause Van der Woude (VWS), the most common clefting syndrome. Furthermore, variants in IRF6 contribute to increased risk for non-syndromic cleft lip and/or palate (NSCL/P). Our previous work shows that individuals with either VWS or NSCL/P may have cerebral anomalies (larger anterior, smaller posterior regions), and a smaller cerebellum. The objective of this study was to test the hypothesis that disrupting Irf6 in the mouse will result in quantitative brain changes similar to those reported for humans with VWS and NSCL/P. Male mice heterozygous for Irf6 (Irf6(gt1/+); n = 9) and wild-type (Irf6(+/+) ; n = 6) mice at comparable age underwent a 4.7-T MRI scan to obtain quantitative measures of cortical and subcortical brain structures. There was no difference in total brain volume between groups. However, the frontal cortex was enlarged in the Irf6(gt1/+) mice compared to that of wild types (P = 0.028) while the posterior cortex did not differ. In addition, the volume of the cerebellum of Irf6(gt1/+) mice was decreased (P = 0.004). Mice that were heterozygous for Irf6 showed a similar pattern of brain anomalies previously reported in humans with VWS and NSCL/P. These structural differences were present in the absence of overt oral clefts. These results support a role for IRF6 in brain morphometry and provide evidence for a potential genetic link to abnormal brain development in orofacial clefting. PMID:24357509

Aerts, Andrea; DeVolder, Ian; Weinberg, Seth M; Thedens, Dan; Dunnwald, Martine; Schutte, Brian C; Nopoulos, Peg

2014-03-01

185

Haploinsufficiency of Interferon Regulatory Factor 6 Alters Brain Morphology in the Mouse  

PubMed Central

Orofacial clefts are among the commonest birth defects. Among many genetic contributors to orofacial clefting, Interferon Regulatory Factor 6 (IRF6) is unique since mutations in this gene cause Van der Woude (VWS), the most common clefting syndrome. Furthermore, variants in IRF6 contribute to increased risk for non-syndromic cleft lip and/or palate (NSCL/P). Our previous work shows that individuals with either VWS or NSCL/P may have cerebral anomalies (larger anterior, smaller posterior regions), and a smaller cerebellum. The objective of this study was to test the hypothesis that disrupting Irf6 in the mouse will result in quantitative brain changes similar to those reported for humans with VWS and NSCL/P. Male mice heterozygous for Irf6 (Irf6gt1/+; n = 9) and wild type (Irf6+/+; n = 6) mice at comparable age underwent a 4.7T MRI scan to obtain quantitative measures of cortical and subcortical brain structures. There was no difference in total brain volume between groups. However, the frontal cortex was enlarged in the Irf6gt1/+ mice compared to that of wild types (p = 0.028) while the posterior cortex did not differ. In addition, the volume of the cerebellum of Irf6gt1/+ mice was decreased (p = 0.004). Mice that were heterozygous for Irf6 showed a similar pattern of brain anomalies previously reported in humans with VWS and NSCL/P. These structural differences were present in the absence of overt oral clefts. These results support a role for IRF6 in brain morphometry and provide evidence for a potential genetic link to abnormal brain development in orofacial clefting. PMID:24357509

Aerts, Andrea; DeVolder, Ian; Weinberg, Seth M.; Thedens, Dan; Dunnwald, Martine; Schutte, Brian C.; Nopoulos, Peg

2014-01-01

186

Cell lineage analysis in human brain using endogenous retroelements.  

PubMed

Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sublineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain. PMID:25569347

Evrony, Gilad D; Lee, Eunjung; Mehta, Bhaven K; Benjamini, Yuval; Johnson, Robert M; Cai, Xuyu; Yang, Lixing; Haseley, Psalm; Lehmann, Hillel S; Park, Peter J; Walsh, Christopher A

2015-01-01

187

Distribution of vesicular glutamate transporters in the human brain  

PubMed Central

Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3) are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe) while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains. PMID:25798091

Vigneault, Érika; Poirel, Odile; Riad, Mustapha; Prud'homme, Josée; Dumas, Sylvie; Turecki, Gustavo; Fasano, Caroline; Mechawar, Naguib; El Mestikawy, Salah

2015-01-01

188

Several methods to determine heavy metals in the human brain  

NASA Astrophysics Data System (ADS)

The determination of naturally occurring heavy metals in various parts of the human brain is discussed. The patients had no diseases in their central nervous systems (five individuals, mean age 70 years). Twenty brain parts were selected from both hemispheres. The analysis was carried out by graphite furnace atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis methods. Accuracy and precision of the applied techniques were tested by using standard reference materials. Two digestion methods were used to dissolve the brain samples for ICP-AES and GF-AAS. One was performed in a Parr-bomb and the second in a microwave oven. The present results show a non-homogeneous distribution of the essential elements (Cu, Fe, Mn, Zn) in normal human brain. Corresponding regions in both hemispheres showed an almost identical concentration of these elements. In the case of toxic elements (Pb, Cd) an average value in different brain regions can not be established because of the high variability of individual data. This study indicates that beside differences in Pb and Cd intake with foods or cigarette smoke inhalation, the main factors of the high inter-individual variability of these element concentrations in human brain parts may be a marked difference in individual elimination or accumulation capabilities.

Andrási, Erzsébet; Igaz, Sarolta; Szoboszlai, Norbert; Farkas, Éva; Ajtony, Zsolt

1999-05-01

189

Toward discovery science of human brain function.  

PubMed

Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/. PMID:20176931

Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

2010-03-01

190

A Bayesian approach to determining connectivity of the human brain.  

PubMed

Recent work regarding the analysis of brain imaging data has focused on examining functional and effective connectivity of the brain. We develop a novel descriptive and inferential method to analyze the connectivity of the human brain using functional MRI (fMRI). We assess the relationship between pairs of distinct brain regions by comparing expected joint and marginal probabilities of elevated activity of voxel pairs through a Bayesian paradigm, which allows for the incorporation of previously known anatomical and functional information. We define the relationship between two distinct brain regions by measures of functional connectivity and ascendancy. After assessing the relationship between all pairs of brain voxels, we are able to construct hierarchical functional networks from any given brain region and assess significant functional connectivity and ascendancy in these networks. We illustrate the use of our connectivity analysis using data from an fMRI study of social cooperation among women who played an iterated "Prisoner's Dilemma" game. Our analysis reveals a functional network that includes the amygdala, anterior insula cortex, and anterior cingulate cortex, and another network that includes the ventral striatum, orbitofrontal cortex, and anterior insula. Our method can be used to develop causal brain networks for use with structural equation modeling and dynamic causal models. PMID:16092131

Patel, Rajan S; Bowman, F Dubois; Rilling, James K

2006-03-01

191

Glucose transporter of the human brain and blood-brain barrier  

SciTech Connect

We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable (3H)cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific (3H)cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with (3H)cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species.

Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

1988-12-01

192

Expansion of Multipotent Stem Cells from the Adult Human Brain  

PubMed Central

The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

2013-01-01

193

Heterogeneity of oligodendrocyte progenitor cells in adult human brain  

PubMed Central

Objective Remyelination in multiple sclerosis has been attributed to the presence of oligodendrocyte progenitor cells (OPCs) in brain parenchyma. However, the precise identity of these progenitors is poorly defined. Here, we characterized populations of OPCs in the adult human brain and examined their myelination capacity and profile of miRNAs. Comparisons were made with fetal OPCs and mature oligodendrocytes. Methods We isolated human adult and fetal (early-to-mid second trimester) OPCs from surgically resected brain tissues using O4-, A2B5-, and MOG-directed fluorescence activated cell sorting and transplanted them into dysmyelinated shiverer slices to examine their myelination capacity. We used qRT-PCR to analyze expression of selective miRNAs implicated in OPC biology. Results Three subsets of putative OPCs were identified in adult brains: (1) A2B5(+), (2) O4low, and (3) A2B5(+)O4highMOG(+) progenitors. In comparison, fetal brains contained (1) A2B5(+), (2) O4(+), and (3) A2B5(+)O4(+) progenitors, but no MOG(+) cells. We demonstrate that like fetal OPCs, adult OPCs have the capacity to ensheathe cerebellar axons. However, adult OPCs exhibit low to undetectable expression of miRNAs that were highly expressed in O4-expressing fetal OPCs. Adult OPCs also express different miRNAs compared to mature oligodendrocytes. Interpretation We conclude that phenotypically distinct subsets of OPCs are present in adult human brain and these OPCs show differential miRNA expression compared to fetal OPCs and mature oligodendrocytes. These suggest that remyelination in adult brain may involve multiple populations of progenitors within the brain and that OPC differentiation in adulthood may be differentially regulated compared to development. PMID:25590039

Leong, Soo Yuen; Rao, Vijayaraghava T S; Bin, Jenea M; Gris, Pavel; Sangaralingam, Mugundhine; Kennedy, Timothy E; Antel, Jack P

2014-01-01

194

Measuring dopamine release in the human brain with PET  

SciTech Connect

The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

1995-12-01

195

The effects of an APOE promoter polymorphism on human cortical morphology during nondemented aging.  

PubMed

Apolipoprotein E (APOE) is the best-known susceptibility gene for AD. It has been well demonstrated that the ?4 allele of the APOE gene can affect brain structure/function in nondemented individuals; however, other polymorphisms in the APOE gene have been largely overlooked when assessing the effects of APOE on the neural system. Rs405509 is a newly recognized AD-related polymorphism located in the APOE promoter region that can regulate the transcriptional activity of the APOE gene. To date, it remains unknown whether and how this APOE promoter polymorphism affects the human brain in aging. Here, for the first time, we investigate the effects of the rs405509 genotype (T/T vs G-allele) on human cortical morphology using a large cohort of nondemented elderly subjects (120 subjects in total; aged 52- 81 years). High-resolution structural MRI was performed; cortical thickness and surface area were analyzed separately. Intriguingly, nondemented carriers of the rs405509 T/T genotype showed an accelerated age-related reduction of thickness in the left parahippocampal gyrus compared with the G-allele carriers. Furthermore, the cortical thickness covariance between the left parahippocampal gyrus and left medial cortex, including the left medial superior frontal gyrus, supplementary motor area, and paracentral lobule, was modulated by the interaction of the rs405509 genotype and age. These novel findings suggest an important role for the APOE promoter polymorphism in the human brain and also provide valuable insights into how the rs405509 genotype shapes the neural system to modulate the risk of developing AD. PMID:25632120

Chen, Yaojing; Li, Peng; Gu, Bin; Liu, Zhen; Li, Xin; Evans, Alan C; Gong, Gaolang; Zhang, Zhanjun

2015-01-28

196

Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells  

PubMed Central

Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and ?-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

2014-01-01

197

Spatial-temporal atlas of human fetal brain development during the early second trimester.  

PubMed

During the second trimester, the human fetal brain undergoes numerous changes that lead to substantial variation in the neonatal in terms of its morphology and tissue types. As fetal MRI is more and more widely used for studying the human brain development during this period, a spatiotemporal atlas becomes necessary for characterizing the dynamic structural changes. In this study, 34 postmortem human fetal brains with gestational ages ranging from 15 to 22 weeks were scanned using 7.0 T MR. We used automated morphometrics, tensor-based morphometry and surface modeling techniques to analyze the data. Spatiotemporal atlases of each week and the overall atlas covering the whole period with high resolution and contrast were created. These atlases were used for the analysis of age-specific shape changes during this period, including development of the cerebral wall, lateral ventricles, Sylvian fissure, and growth direction based on local surface measurements. Our findings indicate that growth of the subplate zone is especially striking and is the main cause for the lamination pattern changes. Changes in the cortex around Sylvian fissure demonstrate that cortical growth may be one of the mechanisms for gyration. Surface deformation mapping, revealed by local shape analysis, indicates that there is global anterior-posterior growth pattern, with frontal and temporal lobes developing relatively quickly during this period. Our results are valuable for understanding the normal brain development trajectories and anatomical characteristics. These week-by-week fetal brain atlases can be used as reference in in vivo studies, and may facilitate the quantification of fetal brain development across space and time. PMID:23727529

Zhan, Jinfeng; Dinov, Ivo D; Li, Junning; Zhang, Zhonghe; Hobel, Sam; Shi, Yonggang; Lin, Xiangtao; Zamanyan, Alen; Feng, Lei; Teng, Gaojun; Fang, Fang; Tang, Yuchun; Zang, Fengchao; Toga, Arthur W; Liu, Shuwei

2013-11-15

198

Human brain spots emotion in non humanoid robots.  

PubMed

The computation by which our brain elaborates fast responses to emotional expressions is currently an active field of brain studies. Previous studies have focused on stimuli taken from everyday life. Here, we investigated event-related potentials in response to happy vs neutral stimuli of human and non-humanoid robots. At the behavioural level, emotion shortened reaction times similarly for robotic and human stimuli. Early P1 wave was enhanced in response to happy compared to neutral expressions for robotic as well as for human stimuli, suggesting that emotion from robots is encoded as early as human emotion expression. Congruent with their lower faceness properties compared to human stimuli, robots elicited a later and lower N170 component than human stimuli. These findings challenge the claim that robots need to present an anthropomorphic aspect to interact with humans. Taken together, such results suggest that the early brain processing of emotional expressions is not bounded to human-like arrangements embodying emotion. PMID:20194513

Dubal, Stéphanie; Foucher, Aurélie; Jouvent, Roland; Nadel, Jacqueline

2011-01-01

199

Neurogenesis in the striatum of the adult human brain.  

PubMed

In most mammals, neurons are added throughout life in the hippocampus and olfactory bulb. One area where neuroblasts that give rise to adult-born neurons are generated is the lateral ventricle wall of the brain. We show, using histological and carbon-14 dating approaches, that in adult humans new neurons integrate in the striatum, which is adjacent to this neurogenic niche. The neuronal turnover in the striatum appears restricted to interneurons, and postnatally generated striatal neurons are preferentially depleted in patients with Huntington's disease. Our findings demonstrate a unique pattern of neurogenesis in the adult human brain. PMID:24561062

Ernst, Aurélie; Alkass, Kanar; Bernard, Samuel; Salehpour, Mehran; Perl, Shira; Tisdale, John; Possnert, Göran; Druid, Henrik; Frisén, Jonas

2014-02-27

200

Optical dosimetry in photodynamic therapy of human uterus and brain  

NASA Astrophysics Data System (ADS)

Optical 'dose' is one of the fundamental parameters required in the design of an efficacious regimen of photodynamic therapy (PDT). The issues involved in delivering a sufficient optical dose to the human uterus and brain during PDT will be discussed. Specifically, measurements of optical properties and fluence rates in excised human uteri are presented. Measured fluence rates are compared to the predictions of a simple diffusion model and the clinical utility of the treatment is discussed. The delivery of light to brain tissue via a surgically implanted balloon applicator will also be considered. The time required to deliver and adequate dose is calculated based on known optical properties and diffusion theory.

Madsen, Steen J.; Svaasand, Lars O.; Hirschberg, Henry; Tadir, Yona; Tromberg, Bruce J.

1999-06-01

201

Mu opioid receptor binding sites in human brain  

SciTech Connect

Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

1986-01-01

202

The Relationship between Brain Morphology and Polysomnography in Healthy Good Sleepers  

PubMed Central

Background Normal sleep continuity and architecture show remarkable inter-individual variability. Previous studies suggest that brain morphology may explain inter-individual differences in sleep variables. Method Thirty-eight healthy subjects spent two consecutive nights at the sleep laboratory with polysomnographic monitoring. Furthermore, high-resolution T1-weighted MRI datasets were acquired in all participants. EEG sleep recordings were analyzed using standard sleep staging criteria and power spectral analysis. Using the FreeSurfer software for automated segmentation, 174 variables were determined representing the volume and thickness of cortical segments and the volume of subcortical brain areas. Regression analyses were performed to examine the relationship with polysomnographic and spectral EEG power variables. Results The analysis did not provide any support for the a-priori formulated hypotheses of an association between brain morphology and polysomnographic variables. Exploratory analyses revealed that the thickness of the left caudal anterior cingulate cortex was positively associated with EEG beta2 power (24–32 Hz) during REM sleep. The volume of the left postcentral gyrus was positively associated with periodic leg movements during sleep (PLMS). Conclusions The function of the anterior cingulate cortex as well as EEG beta power during REM sleep have been related to dreaming and sleep-related memory consolidation, which may explain the observed correlation. Increased volumes of the postcentral gyrus may be the result of increased sensory input associated with PLMS. However, due to the exploratory nature of the corresponding analyses, these results have to be replicated before drawing firm conclusions. PMID:25275322

Reinhard, Matthias A.; Regen, Wolfram; Baglioni, Chiara; Nissen, Christoph; Feige, Bernd; Hennig, Jürgen; Riemann, Dieter; Spiegelhalder, Kai

2014-01-01

203

PET evaluation of the dopamine system of the human brain  

SciTech Connect

Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

Volkow, N.D.; Fowler, J.S.; Gatley, S. [Brookhaven National Laboratory, Upton, NY (United States)]|[SUNY-Stony Brook, NY (United States)] [and others

1996-07-01

204

DISCOVERY OF GENES THAT AFFECT HUMAN BRAIN CONNECTIVITY: A GENOME-WIDE ANALYSIS OF THE CONNECTOME  

E-print Network

DISCOVERY OF GENES THAT AFFECT HUMAN BRAIN CONNECTIVITY: A GENOME-WIDE ANALYSIS OF THE CONNECTOME, twin modeling, human connectome 1. INTRODUCTION The human brain is a complex network of structural, Australia ABSTRACT Human brain connectivity is disrupted in a wide range of disorders ­ from Alzheimer

Thompson, Paul

205

Improved technique for establishing short term human brain tumor cultures.  

PubMed

Culturing human central nervous system tumors has been difficult compared to other neoplasms. We report improved success rates for establishing short term human brain tumor cultures using a modified tissue processing technique. Eighty-seven brain tumor specimens (56 glioblastomas, 8 mid grade astrocytomas, 8 oligodendrogliomas, 15 other) were obtained from June 1988 to March 1997. The first twenty-three samples were processed by dissection, partial enzyme dissociation, and filtration through a tissue culture sieve. Subsequent samples were processed identically except tumor cells were centrifuged on a density gradient prior to plating. Successful cultures were defined as those surviving greater than three passages in tissue culture and growing to sufficient numbers (>10(6) cells) to allow freezing. Success rate was 42% (10/23) using standard processing methods and 86% (55/64) with the addition of density gradient centrifugation. Glial fibrillary acidic protein (GFAP) and vimentin staining, karyotypes, and growth curves were obtained for representative glioma cultures. All cultures tested were positive for vimentin (29/29) while 62% (18/29) were positive for GFAP. Of four cultures karyotyped (two glioblastomas, two oligodendrogliomas), all but one oligodendroglioma culture exhibited clonal cytogenetic abnormalities. These immunohistochemical and karyotypic results are consistent with the malignant glial origin of these cells. Of note, low passage human glioma cultures grew slower and exhibited more contact inhibition than immortalized human glioblastoma cell lines. Nevertheless, this simple method for establishing short term human brain tumor cultures should aid in further developing human brain tumor pre-clinical models as well as enhancing clinical applications dependent on in vitro human brain tumor cell growth adjust. PMID:10448865

Farr-Jones, M A; Parney, I F; Petruk, K C

1999-05-01

206

Energetics and the evolution of human brain size.  

PubMed

The human brain stands out among mammals by being unusually large. The expensive-tissue hypothesis explains its evolution by proposing a trade-off between the size of the brain and that of the digestive tract, which is smaller than expected for a primate of our body size. Although this hypothesis is widely accepted, empirical support so far has been equivocal. Here we test it in a sample of 100 mammalian species, including 23 primates, by analysing brain size and organ mass data. We found that, controlling for fat-free body mass, brain size is not negatively correlated with the mass of the digestive tract or any other expensive organ, thus refuting the expensive-tissue hypothesis. Nonetheless, consistent with the existence of energy trade-offs with brain size, we find that the size of brains and adipose depots are negatively correlated in mammals, indicating that encephalization and fat storage are compensatory strategies to buffer against starvation. However, these two strategies can be combined if fat storage does not unduly hamper locomotor efficiency. We propose that human encephalization was made possible by a combination of stabilization of energy inputs and a redirection of energy from locomotion, growth and reproduction. PMID:22080949

Navarrete, Ana; van Schaik, Carel P; Isler, Karin

2011-12-01

207

Common genetic variants influence human subcortical brain structures.  

PubMed

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08?×?10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy

2015-04-01

208

Human brain functional MRI and DTI visualization with virtual reality  

PubMed Central

Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed. PMID:23256049

Chen, Bin; Moreland, John; Zhang, Jingyu

2011-01-01

209

Hemodynamic effects of long-term morphological changes in the human carotid sinus.  

PubMed

Previous investigations of morphology for human carotid artery bifurcation from infancy to young adulthood found substantial growth of the internal carotid artery with advancing age, and the development of the carotid sinus at the root of the internal carotid artery during teenage years. Although the reasons for the appearance of the carotid sinus are not clearly understood yet, it has been hypothesized that the dilation of the carotid sinus serves to support pressure sensing, and slows the blood flow to reduce pulsatility to protect the brain. In order to understand this interesting evolvement at the carotid bifurcation in the aspects of fluid mechanics, we performed in vitro phase-contrast MR flow experiments using compliant silicone replicas of age-dependent carotid artery bifurcations. The silicone models in childhood, adolescence, and adulthood were fabricated using a rapid prototyping technique, and incorporated with a bench-top flow mock circulation loop using a computer-controlled piston pump. The results of the in vitro flow study showed highly complex flow characteristics at the bifurcation in all age-dependent models. However, the highest magnitude of kinetic energy was found at the internal carotid artery in the child model. The high kinetic energy in the internal carotid artery during childhood might be one of the local hemodynamic forces that initiate morphological long-term development of the carotid sinus in the human carotid bifurcation. PMID:25702250

Seong, Jaehoon; Jeong, Woowon; Smith, Nataliya; Towner, Rheal A

2015-04-13

210

Morphological variation in great ape and modern human mandibles  

PubMed Central

Adult mandibles of 317 modern humans and 91 great apes were selected that showed no pathology. Adult mandibles of Pan troglodytes troglodytes, Pongo pygmaeus pygmaeus and Gorilla gorilla gorilla and from 2 modern human populations (Zulu and Europeans from Spitalfields) were reliably sexed. Thirteen measurements were defined and included mandibular height, length and breadth in representative positions. Univariate statistical techniques and multivariate (principal component analysis and discriminant analysis) statistical techniques were used to investigate interspecific variability and sexual dimorphism in human and great ape mandibles, and intraspecific variability among the modern human mandibles. Analysis of interspecific differences revealed some pairs of variables with a tight linear relationship and others where Homo and the great apes pulled apart from one another due to shape differences. Homo and Pan are least sexually dimorphic in the mandible, Pan less so than Homo sapiens, but both the magnitude of sexual dimorphism and the distribution of sexually dimorphic measurements varied both among and between modern humans and great apes. Intraspecific variation among the 10 populations of modern humans was less than that generally reported in studies of crania (74.3% of mandibles were correctly classified into 1 of 10 populations using discriminant functions based on 13 variables as compared with 93% of crania from 17 populations based on 70 variables in one extensive study of crania). A subrecent European population (Poundbury) emerged as more different from a recent European population (Spitalfields) than other more diverse modern populations were from each other, suggesting considerable morphological plasticity in the mandible through time. This study forms a sound basis on which to explore mandibular variation in Neanderthals, early Homo sapiens and other more ancient fossil hominids. PMID:10634689

HUMPHREY, L. T.; DEAN, M. C.; STRINGER, C. B.

1999-01-01

211

A hierarchical model of the evolution of human brain specializations  

PubMed Central

The study of information-processing adaptations in the brain is controversial, in part because of disputes about the form such adaptations might take. Many psychologists assume that adaptations come in two kinds, specialized and general-purpose. Specialized mechanisms are typically thought of as innate, domain-specific, and isolated from other brain systems, whereas generalized mechanisms are developmentally plastic, domain-general, and interactive. However, if brain mechanisms evolve through processes of descent with modification, they are likely to be heterogeneous, rather than coming in just two kinds. They are likely to be hierarchically organized, with some design features widely shared across brain systems and others specific to particular processes. Also, they are likely to be largely developmentally plastic and interactive with other brain systems, rather than canalized and isolated. This article presents a hierarchical model of brain specialization, reviewing evidence for the model from evolutionary developmental biology, genetics, brain mapping, and comparative studies. Implications for the search for uniquely human traits are discussed, along with ways in which conventional views of modularity in psychology may need to be revised. PMID:22723350

Barrett, H. Clark

2012-01-01

212

Microtesla MRI of the human brain combined with MEG  

NASA Astrophysics Data System (ADS)

One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method—SQUID-based microtesla MRI—can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 ?T measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment—low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging—are practical.

Zotev, Vadim S.; Matlashov, Andrei N.; Volegov, Petr L.; Savukov, Igor M.; Espy, Michelle A.; Mosher, John C.; Gomez, John J.; Kraus, Robert H.

2008-09-01

213

Visual dictionaries as intermediate features in the human brain  

PubMed Central

The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW) model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2, and V3. However, BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain. PMID:25642183

Ramakrishnan, Kandan; Scholte, H. Steven; Groen, Iris I. A.; Smeulders, Arnold W. M.; Ghebreab, Sennay

2015-01-01

214

The Plasticity of Human Maternal Brain: Longitudinal Changes in Brain Anatomy During the Early Postpartum Period  

PubMed Central

Animal studies suggest that structural changes occur in the maternal brain during the early postpartum period in regions such as the hypothalamus, amygdala, parietal lobe, and prefrontal cortex and such changes are related to the expression of maternal behaviors. In an attempt to explore this in humans, we conducted a prospective longitudinal study to examine gray matter changes using voxel-based morphometry on high resolution magnetic resonance images of mothers’ brains at two time points: 2–4 weeks postpartum and 3–4 months postpartum. Comparing gray matter volumes across these two time points, we found increases in gray matter volume of the prefrontal cortex, parietal lobes, and midbrain areas. Increased gray matter volume in the midbrain including the hypothalamus, substantia nigra, and amygdala was associated with maternal positive perception of her baby. These results suggest that the first months of motherhood in humans are accompanied by structural changes in brain regions implicated in maternal motivation and behaviors. PMID:20939669

Kim, Pilyoung; Leckman, James F.; Mayes, Linda C.; Feldman, Ruth; Wang, Xin; Swain, James E.

2015-01-01

215

Simple instrument for biochemical studies of the living human brain  

SciTech Connect

A simple, relatively inexpensive radiation detection system was developed for measurement of positron-emitting receptor-binding drugs in the human brain. This high-efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of (/sup 11/C)-carfentanil, a high-affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist exemplifies the use of this system for estimating different degrees of receptor binding of drugs in the human brain. The instrument has also been used for measurement of the transport into the brain of other positron-emitting radiotracers, such as large neutral amino acids.

Bice, A.N.; Wagner, H.N. Jr.; Lee, M.C.; Frost, J.J.

1986-09-01

216

Wavelets and statistical analysis of functional magnetic resonance images of the human brain  

E-print Network

Wavelets and statistical analysis of functional magnetic resonance images of the human brain Ed. Wavelets are particularly well suited to analysis of biological signals and images, such as human brain Bullmore Brain Mapping Unit and Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke

Breakspear, Michael

217

Electric source imaging of human brain functions.  

PubMed

We review recent methodological advances in electromagnetic source imaging and present EEG data from our laboratory obtained by application of these methods. There are two principal steps in our analysis of multichannel electromagnetic recordings: (i) the determination of functionally relevant time periods in the ongoing electric activity and (ii) the localization of the sources in the brain that generate these activities recorded on the scalp. We propose a temporal segmentation of the time-varying activity, which is based on determination of changes in the topography of the electric fields, as an approach to the first step, and a distributed linear inverse solution based on realistic head models as an approach to the second step. Data from studies of visual motion perception, visuo-motor transfer, mental imagery, semantic decision, and cognitive interference illustrate that this analysis allows us to define the patterns of electric activity that are present at given time periods after stimulus presentation, as well as those time periods where significantly different patterns appear between different stimuli and tasks. The presented data show rapid and parallel activation of different areas within complex neuronal networks, including early activity of brain regions remote from the primary sensory areas. In addition, the data indicate information exchange between homologous areas of the two hemispheres in cases where unilateral stimulus presentation requires interhemispheric transfer. PMID:11690607

Michel, C M; Thut, G; Morand, S; Khateb, A; Pegna, A J; Grave de Peralta, R; Gonzalez, S; Seeck, M; Landis, T

2001-10-01

218

Morphological and molecular characterization of healthy human ascending aorta.  

PubMed

Knowledge of the characteristics of the normal human aorta has been constrained by lack of data on fresh aortic tissue, especially from healthy individuals. In this study, the gene expression and morphological characteristics of the thoracic ascending aorta (AA) of healthy organ donors have been evaluated, with the aim of providing reference data for the analysis of pathological AAs. We analysed by RT-PCR the differential expression of mRNAs coding for myocardin, smoothelin, alpha-smooth muscle actin (alpha-SMA) and the ED-A isoform of fibronectin (ED-A FN) in AA specimens from donors, integrating the results with immunohistochemical analysis of the same targets. Morphological and morphometric characteristics of the AAs were also evaluated. In order to account for possible regional variations in wall structure, the convexity of the aortic profile was compared to the concavity. No differences in gene expression occurred for any of the target genes between the concavity and the convexity of AAs. Immunohistochemistry revealed a different distribution of total FN and of its ED-A isoform in the media and in the intima. Smoothelin is expressed by the majority of cells in the media, with some positive cells also in the intima. Alpha-SMA is expressed in all the tunicae. Immunohistochemistry also revealed in the convexity of 50% of AAs the presence of discrete areas in the subadventital media with altered structure and cell morphology and with altered gene expression, resulting positive for ED-A FN and alpha-SMA, but not for smoothelin, indicating the occurrence of early lesions also in macroscopically healthy AAs. PMID:22127602

Forte, A; Della Corte, A; Grossi, M; Finicelli, M; Bancone, C; Provenzano, R; Pepino, P; Nappi, G A; De Feo, M; Galderisi, U; Cotrufo, M; Cipollaro, M

2012-01-01

219

Abstract representations of numbers in the animal and human brain  

Microsoft Academic Search

There is evidence to suggest that animals, young infants and adult humans possess a biologically determined, domain-specific representation of number and of elementary arithmetic operations. Behavioral studies in infants and animals reveal number perception, discrimination and elementary calculation abilities in non-verbal organisms. Lesion and brain-imaging studies in humans indicate that a specific neural substrate, located in the left and right

Stanislas Dehaene; Ghislaine Dehaene-Lambertz; Laurent Cohen

1998-01-01

220

Anandamide hydrolysis by human cells in culture and brain  

Microsoft Academic Search

Anandamide (arachidonylethanolamide; AnNH) has important neuromodulatory and immunomodulatory activities. This lipid is rapidly taken up and hydrolyzed to arachidonate and ethanolamine in many organisms. As yet, AnNH inactivation has not been studied in humans. Here, a human brain fatty-acid amide hydrolase (FAAH) has been characterized as a single protein of 67 kDa with a pI of 7.6, showing apparent Km

J. F. G. Vliegenthart; M. Maccarrone; M. van der Stelt; A. Rossi; G. A. Veldink; A. Finazzi Agrò

1998-01-01

221

The human brain and its neural stem cells postmortem: from dead brains to live therapy  

Microsoft Academic Search

Contrary to the traditional dogma of being a relatively invariable and quiescent organ lacking the capability to regenerate, there is now widespread evidence that the human brain harbors multipotent neural stem cells, possibly throughout senescence. These cells can divide and give rise to neuroectodermal progeny in vivo and are now regarded as powerful prospective candidates for repairing or enhancing the

Robert E. Feldmann Jr; Rainer Mattern

2006-01-01

222

Because the human brain does not change, technology must  

Microsoft Academic Search

My message is my title: Because the Human Brain Does Not Change, Technology Must. That is, technology must change, must improve, to accommodate billions more people and to lift the standard of living. Engineers, receiving feedback from the market and regulated wisely in the public interest, do much of the improving. Thus, the chance for improving Earth's environment hinges on

J. H. Ausubel

1999-01-01

223

Human and Monkey Fetal Brain Development of the Supramammillary-  

E-print Network

Human and Monkey Fetal Brain Development of the Supramammillary- Hippocampal Projections: A System GUNDELA MEYER,3 AND MARTIN CATALA4 1 INSERM U106, Ho^pital Salpe^trie`re, 75651 Paris cedex 13, France 2´ne´tique, UMR CNRS 7000, CHU Pitie´-Salpe^trie`re (AP-HP, Universite´ Paris 6), Paris, France ABSTRACT

Cossart, Rosa

224

Neural Correlates of Perceptual Rivalry in the Human Brain  

Microsoft Academic Search

When dissimilar images are presented to the two eyes, perception alternates spontane- ously between each monocular view, a phenomenon called binocular rivalry. Functional brain imaging in humans was used to study the neural basis of these subjective perceptual changes. Cortical regions whose activity reflected perceptual transitions included extra- striate areas of the ventral visual pathway, and parietal and frontal regions

Erik D. Lumer; Karl J. Friston; Geraint Rees

1998-01-01

225

Face Encoding and Recognition in the Human Brain  

Microsoft Academic Search

A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated

James V. Haxby; Leslie G. Ungerleider; Barry Horwitz; Jose Ma. Maisog; Stanley I. Rapoport; Cheryl L. Grady

1996-01-01

226

Widespread splicing changes in human brain development and aging  

PubMed Central

While splicing differences between tissues, sexes and species are well documented, little is known about the extent and the nature of splicing changes that take place during human or mammalian development and aging. Here, using high-throughput transcriptome sequencing, we have characterized splicing changes that take place during whole human lifespan in two brain regions: prefrontal cortex and cerebellum. Identified changes were confirmed using independent human and rhesus macaque RNA-seq data sets, exon arrays and PCR, and were detected at the protein level using mass spectrometry. Splicing changes across lifespan were abundant in both of the brain regions studied, affecting more than a third of the genes expressed in the human brain. Approximately 15% of these changes differed between the two brain regions. Across lifespan, splicing changes followed discrete patterns that could be linked to neural functions, and associated with the expression profiles of the corresponding splicing factors. More than 60% of all splicing changes represented a single splicing pattern reflecting preferential inclusion of gene segments potentially targeting transcripts for nonsense-mediated decay in infants and elderly. PMID:23340839

Mazin, Pavel; Xiong, Jieyi; Liu, Xiling; Yan, Zheng; Zhang, Xiaoyu; Li, Mingshuang; He, Liu; Somel, Mehmet; Yuan, Yuan; Phoebe Chen, Yi-Ping; Li, Na; Hu, Yuhui; Fu, Ning; Ning, Zhibin; Zeng, Rong; Yang, Hongyi; Chen, Wei; Gelfand, Mikhail; Khaitovich, Philipp

2013-01-01

227

Aerobic Fitness Reduces Brain Tissue Loss in Aging Humans  

Microsoft Academic Search

Background. The human brain gradually loses tissue from the third decade of life onward, with concomitant declines in cognitive performance. Given the projected rapid growth in aged populations, and the staggering costs associated with geriatric care, identifying mechanisms that may reduce or reverse cerebral deterioration is rapidly emerging as an important public health goal. Previous research has demonstrated that aerobic

Kirk I. Erickson; Naftali Raz; Andrew G. Webb; Neal J. Cohen; Edward McAuley; Arthur F. Kramer

2003-01-01

228

Human Brain: Left-Right Asymmetries in Temporal Speech Region  

Microsoft Academic Search

We have found marked anatomical asymmetries between the upper surfaces of the human right and left temporal lobes. The planum temporale (the area behind Heschl's gyrus) is larger on the left in 65 percent of brains; on the right it is larger in only 11 percent. The left planum is on the average one-third longer than the right planum. This

Norman Geschwind; Walter Levitsky

1968-01-01

229

Can the common brain parasite, Toxoplasma gondii, influence human culture?  

E-print Network

Can the common brain parasite, Toxoplasma gondii, influence human culture? Kevin D. Lafferty, Toxoplasma gondii, explains a statistically significant portion of the variance in aggregate neuroticism of the common protozoan parasite Toxoplasma gondii appear to experience a variety of long-term personality

Boudouresque, Charles F.

230

Thrombolytic Toxicity: Blood Brain Barrier Disruption in Human Ischemic Stroke  

Microsoft Academic Search

Background: In experimental models of cerebral ischemia, thrombolytic drugs have been demonstrated to have a number of neurovascular toxic effects including blood brain barrier disruption. Early barrier opening caused by focal cerebral ischemia in human stroke can be assessed by the presence of gadolinium enhancement of cerebrospinal fluid, termed ‘Hyperintense Acute Injury Marker’ (HARM). Methods: In a retrospective analysis, the

Chelsea S. Kidwell; Larry Latour; Jeffrey L. Saver; Jeffry R. Alger; Sidney Starkman; Gary Duckwiler; Reza Jahan; Fernando Vinuela; Dong-Wha Kang; Steven Warach

2008-01-01

231

Functional magnetic resonance imaging (FMRI) of the human brain  

Microsoft Academic Search

Functional magnetic resonance imaging (FMRI) can provide detailed images of human brain that reflect localized changes in cerebral blood flow and oxygenation induced by sensory, motor, or cognitive tasks. This review presents methods for gradient-recalled echo-planar functional magnetic resonance imaging (FMRI). Also included is a discussion of the hypothesized basis of FMRI, imaging hardware, a unique visual stimulation apparatus, image

Edgar A. DeYoe; Peter Bandettini; Jay Neitz; David Miller; Paula Winans

1994-01-01

232

Right-lateralized Brain Oscillations in Human Spatial Navigation  

Microsoft Academic Search

During spatial navigation, lesion and functional imaging studies suggest that the right hemisphere has a unique func- tional role. However, studies of direct human brain recordings have not reported interhemisphere differences in navigation- related oscillatory activity. We investigated this apparent dis- crepancy using intracranial electroencephalographic recordings from 24 neurosurgical patients playing a virtual taxi driver game. When patients were virtually

Joshua Jacobs; Igor O. Korolev; Jeremy B. Caplan; Arne D. Ekstrom; Brian Litt; Gordon Baltuch; Itzhak Fried; Andreas Schulze-Bonhage; Joseph R. Madsen; Michael J. Kahana

2010-01-01

233

A Toolbox for Human Brain Local Oscillation Analysis INTRODUCTION  

E-print Network

University, Chicago, IL, USA Flow diagram of normalized linkage-density analysis # Spatial distributionA Toolbox for Human Brain Local Oscillation Analysis 1937 OHBM 2013 INTRODUCTION For both resting-state and task-related functional MRI data, analysis of functional connectivity between all pairs of voxels, i

Apkarian, A. Vania

234

Robotic actions in the human brain Robotic movement preferentially engages the action observation network  

E-print Network

Robotic actions in the human brain 1 Robotic movement., Stadler, W. & Prinz, W. (in press / 2011). Robotic movement preferentially engages the action observation network. Human Brain Mapping. #12;Robotic

Hamilton, Antonia

235

Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general  

Microsoft Academic Search

Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain

Thorsten O. Zander; Christian Kothe

2011-01-01

236

Can Resonant Oscillations of the Earth Ionosphere Influence the Human Brain Biorhythm?  

E-print Network

Within the frames of Alfv\\'en sweep maser theory the description of morphological features of geomagnetic pulsations in the ionosphere with frequencies (0.1-10 Hz) in the vicinity of Schumann resonance (7.83 Hz) is obtained. It is shown that the related regular spectral shapes of geomagnetic pulsations in the ionosphere determined by "viscosity" and "elasticity" of magneto-plasma medium that control the nonlinear relaxation of energy and deviation of Alfv\\'en wave energy around its equilibrium value. Due to the fact that the frequency bands of Alfv\\'{e}n maser resonant structures practically coincide with the frequency band delta- and partially theta-rhythms of human brain, the problem of degree of possible impact of electromagnetic "pearl" type resonant structures (0.1-5 Hz) onto the brain bio-rhythms stability is discussed.

Rusov, V D; Zelentsova, T N; Linnik, E P; Beglaryan, M E; Smolyar, V P; Filippov, M; Vachev, B

2012-01-01

237

Can Resonant Oscillations of the Earth Ionosphere Influence the Human Brain Biorhythm?  

E-print Network

Within the frames of Alfv\\'en sweep maser theory the description of morphological features of geomagnetic pulsations in the ionosphere with frequencies (0.1-10 Hz) in the vicinity of Schumann resonance (7.83 Hz) is obtained. It is shown that the related regular spectral shapes of geomagnetic pulsations in the ionosphere determined by "viscosity" and "elasticity" of magneto-plasma medium that control the nonlinear relaxation of energy and deviation of Alfv\\'en wave energy around its equilibrium value. Due to the fact that the frequency bands of Alfv\\'{e}n maser resonant structures practically coincide with the frequency band delta- and partially theta-rhythms of human brain, the problem of degree of possible impact of electromagnetic "pearl" type resonant structures (0.1-5 Hz) onto the brain bio-rhythms stability is discussed.

V. D. Rusov; K. A. Lukin; T. N. Zelentsova; E. P. Linnik; M. E. Beglaryan; V. P. Smolyar; M. Filippov; B. Vachev

2012-08-23

238

Addiction circuitry in the human brain (*).  

SciTech Connect

A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

2011-09-27

239

Rock magnetism linked to human brain magnetite  

NASA Astrophysics Data System (ADS)

Magnetite has a long and distinguished career as one of the most important minerals in geophysics, as it is responsible for most of the remanent magnetization in marine sediments and the oceanic crust. It may come as a surprise to discover that it also ranks as the third or fourth most diverse mineral product formed biochemically by living organisms, and forms naturally in a variety of human tissues [Kirschvink et al., 1992].Magnetite was discovered in teeth of the Polyplacophora mollusks over 30 years ago, in magnetotactic bacteria nearly 20 years ago, in honey bees and homing pigeons nearly 15 years ago, but only recently in human tissue.

Kirschvink, Joseph L.

240

Common genetic variants influence human subcortical brain structures  

PubMed Central

The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10?33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.

2015-01-01

241

Morphological Texture Manipulation for The Evaluation of Human Visual Sensibility  

NASA Astrophysics Data System (ADS)

Since the surface texture of materials often affects human visual impressions as much as or more than the design, shape, or color properties, texture characteristics have been studied as features of object identification. We have been investigating the effect of texture on visual impression and objective identification using black fabrics that do not exhibit any effects of color. Our studies showed that visual impressions of texture correspond to complex micro-components and global structures of image features of those textures. Our results also showed that some important elements influence human visual impressions and identification of textures. Because of a variety of fibrous structures, it is not easy to provide a systematic analysis of clothing materials. Nevertheless, developing the method and collecting data on these elements and their effects using these image features will be important. To make this research applicable for wider use, we have been studying precisely what it is about an arbitrary texture that influences human visual impressions and sensibility. As a new step, in this paper, a texture is altered and transformed using the parameter estimation method of texture based on mathematical morphology, which is often used for extracting image components that are useful for representation and description. A texture is decomposed into a primitive and grain arrangement which correspond to local and global characteristics, respectively. Different textures are created by modifying the primitive and the arrangement to investigate the effects of modifications of local and global features. The relationship between the parameters and visual impressions of the modified textures were evaluated. This study shows that influence of both local and global structures of the texture along with their combinations and mutual interactions are important for identification of human visual impression.

Asano, Chie Muraki; Asano, Akira; Li, Liang; Fujimoto, Takako

242

Biochemical Development of the Human Brain  

Microsoft Academic Search

The development of the cholinergic system in the human forebrain, cerebral cortex and cerebellum was studied in post mortem material by estimating activity of choline acetyltransferase (CAT) and the binding capacity for quinuclidinyl benzilate (QNB) as markers for cholinergic nerve terminals and muscarinic receptors respectively; also the activity of acetylcholinesterase (AchE) was determined. The age periods were as follows (number

B. W. L. Brooksbank; Manuela Martinez; D. J. Atkinson; R. Balazs

1978-01-01

243

Predictability Modulates Human Brain Response to Reward  

Microsoft Academic Search

Certain classes of stimuli, such as food and drugs, are highly effective in activating reward regions. We show in humans that activity in these regions can be modulated by the predictability of the sequenced delivery of two mildly pleasurable stimuli, orally delivered fruit juice and water. Using functional magnetic resonance imaging, the activity for rewarding stimuli in both the nucleus

Gregory S. Berns; Samuel M. McClure; Giuseppe Pagnoni; P. Read Montague

2001-01-01

244

Autofluorescent chalcedony in human brains from elderly patients.  

PubMed

Chalcedony, a microcrystalline form of silica (SiO(2)), has been found in the human brains of elderly patients by using a standard optical petrographic microscope. We document here our visualization of chalcedony using a Leica TCS - SP2 confocal laser scanning microscope. Sections of human brain were collected after autopsy from elderly patients. The autofluorescent character of chalcedony allowed us to obtain three-dimensional images of the crystals and mature prismatic quartz (chalcedony) was observed. Chalcedony occurred as rhombohedral (trigonal) crystals approximately 30 microm in size distributed in patches or aggregates. A less mature silica polymorph of about 1- 2 microm in size was detected near the crystals. This is the first time that biogenically-produced crystalline mineral as autofluorescent crystal aggregates has been observed in the human central nervous system of elderly patients using confocal laser scanning microscopy. PMID:19742355

Prado Figueroa, M; Sánchez Lihón, J

2010-04-28

245

Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model  

SciTech Connect

In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brain regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references.

Altman, J.

1987-10-01

246

A Four-Dimensional Probabilistic Atlas of the Human Brain  

PubMed Central

The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype– phenotype–behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders. PMID:11522763

Mazziotta, John; Toga, Arthur; Evans, Alan; Fox, Peter; Lancaster, Jack; Zilles, Karl; Woods, Roger; Paus, Tomas; Simpson, Gregory; Pike, Bruce; Holmes, Colin; Collins, Louis; Thompson, Paul; MacDonald, David; Iacoboni, Marco; Schormann, Thorsten; Amunts, Katrin; Palomero-Gallagher, Nicola; Geyer, Stefan; Parsons, Larry; Narr, Katherine; Kabani, Noor; Le Goualher, Georges; Feidler, Jordan; Smith, Kenneth; Boomsma, Dorret; Pol, Hilleke Hulshoff; Cannon, Tyrone; Kawashima, Ryuta; Mazoyer, Bernard

2001-01-01

247

Driving and Driven Architectures of Directed Small-World Human Brain Functional Networks  

Microsoft Academic Search

Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions.

Chaogan Yan; Yong He

2011-01-01

248

Flagship -The Human Brain Collaborating scientists from Weizmann Institute of Science  

E-print Network

Flagship - The Human Brain Collaborating scientists from Weizmann Institute of Science The European Commission has officially announced the selection of the Human Brain Project (HBP) as one of its two Future one of the greatest challenges of modern science: understanding the human brain. Lab webpage

Pilpel, Yitzhak

249

Plasmodium falciparum Adhesion on Human Brain Microvascular Endothelial Cells Involves Transmigration-  

E-print Network

Plasmodium falciparum Adhesion on Human Brain Microvascular Endothelial Cells Involves and the impact of this adhesion on the EC are poorly understood. We analysed this interaction using human brain on Human Brain Microvascular Endothelial Cells Involves Transmigration-Like Cup Formation and Induces

Paris-Sud XI, Université de

250

Did brain-specific genes evolve faster in humans than in chimpanzees?  

E-print Network

Did brain-specific genes evolve faster in humans than in chimpanzees? Peng Shi* , Margaret A distinctive characteristics of humans among primates is the size, organization and function of the brain among the five sets of brain-specific genes, none of them supports human acceleration. On the contrary

Zhang, Jianzhi

251

Induced gene expression in human brain after the split from chimpanzee  

E-print Network

Induced gene expression in human brain after the split from chimpanzee Jianying Gu and Xun Gu Dept alterations in the expression of genes in the human brain since the split from chimpanzees, mainly caused by a set of genes with increased (rather than decreased) expression in the human brain. An unsolved mystery

Gu, Xun

252

hierarchy demonstrated a biologically sensible or-ganizational structure of the human brain.  

E-print Network

hierarchy demonstrated a biologically sensible or- ganizational structure of the human brain. We influences on cortical areal expan- sion. This system constitutes the first human brain atlas based solely both order and disorder in the human brain. References and Notes 1. H. Bergquist, B. Kallen, Acta Anat

Hall, Spencer

253

Parallel Computation in Simulating Di usion and Deformation in Human Brain  

E-print Network

Parallel Computation in Simulating Di#11;usion and Deformation in Human Brain #3; Ning Kang y Jun of parallel and high performance computation in simulating the di#11;usion process in the human brain and in modeling the deformation of the human brain. Computational neuroscience is a branch of biomedical science

Zhang, Jun

254

Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain  

E-print Network

Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain Paul M. Thompson variance of the human brain is qualitatively ob- servable in surface features of the cortex. Statistical of five sulci surveyed in each hemisphere of six postmortem human brains placed within the Talairach

Thompson, Paul

255

Mathematical\\/computational challenges in creating deformable and probabilistic atlases of the human brain  

Microsoft Academic Search

r r Abstract: Striking variations in brain structure, especially in the gyral patterns of the human cortex, present fundamental challenges in human brain mapping. Probabilistic brain atlases, which encode information on structural and functional variability in large human populations, are powerful research tools with broad applications. Knowledge-based imaging algorithms can also leverage atlased informa- tion on anatomic variation. Applications include

Paul M. Thompson; Roger P. Woods; Michael S. Mega; Arthur W. Toga

2000-01-01

256

New Approaches for Exploring Anatomical and Functional Connectivity in the Human Brain  

E-print Network

REVIEWS New Approaches for Exploring Anatomical and Functional Connectivity in the Human Brain architecture of networks in the living human brain with diffusion tensor imaging (DTI). We also highlight transmission across networks in the human brain (functional and effective connectivity). Key Words: Diffusion

Penny, Will

257

Morphological structure and variations of lumbar plexus in human fetuses.  

PubMed

The objective of this study is to study the anatomy of lumbar plexus on human fetuses and to establish its morphometric characteristics and differences compared with adults. Twenty lumbar plexus of 10 human fetal cadavers in different gestational ages and genders were dissected. Lumbar spinal nerves, ganglions, and peripheral nerves were exposed. Normal anatomical structure and variations of lumbar plexus were investigated and morphometric analyses were performed. The diameters of lumbar spinal nerves increased from L1 to L4. The thickest nerve forming the plexus was femoral nerve, the thinnest was ilioinguinal nerve, the longest nerve through posterior abdominal wall was iliohypogastric nerve, and the shortest nerve was femoral nerve. Each plexus had a single furcal nerve and this arose from L4 nerve in all fetuses. No prefix or postfix plexus variation was observed. In two plexuses, L1 nerve was in the form of a single branch. Also, in two plexuses, genitofemoral nerve arose only from L2 nerve. Accessory obturator nerve was observed in four plexuses. According to these findings, the morphological pattern of the lumbar plexus in the fetus was found to be very similar to the lumbar plexus in adults. PMID:22696243

Yasar, Soner; Kaya, Serdar; Temiz, Ca?lar; Tehli, Ozkan; Kural, Cahit; Izci, Yusuf

2014-04-01

258

Mathematical modeling of human brain physiological data  

NASA Astrophysics Data System (ADS)

Recently, a mathematical model of the basic physiological processes regulating the cerebral perfusion and oxygen supply was introduced [Jung , J. Math. Biol.JMBLAJ0303-681210.1007/s00285-005-0343-5 51, 491 (2005)]. Although this model correctly describes the interdependence of arterial blood pressure (ABP) and intracranial pressure (ICP), it fails badly when it comes to explaining certain abnormal correlations seen in about 80% of the recordings of ABP together with ICP and the partial oxygen pressure (TiPO2) of the neuronal tissue, taken at an intensive care unit during neuromonitoring of patients with a severe brain trauma. Such recordings occasionally show segments, where the mean arterial blood pressure is correlated with the partial oxygen pressure in tissue but anticorrelated with the intracranial pressure. The origin of such abnormal correlations has not been fully understood yet. Here, two extensions to the previous approach are proposed which can reproduce such abnormal correlations in simulations quantitatively. Furthermore, as the simulations are based on a mathematical model, additional insight into the physiological mechanisms from which such abnormal correlations originate can be gained.

Böhm, Matthias; Faltermeier, Rupert; Brawanski, Alexander; Lang, Elmar W.

2013-12-01

259

Induction of P-Glycoprotein by Antiretroviral Drugs in Human Brain Microvessel Endothelial Cells  

PubMed Central

The membrane-associated drug transporter P-glycoprotein (P-gp) plays an essential role in drug efflux from the brain. Induction of this protein at the blood-brain barrier (BBB) could further affect the ability of a drug to enter the brain. At present, P-gp induction mediated by antiretroviral drugs at the BBB has not been fully investigated. Since P-gp expression is regulated by ligand-activated nuclear receptors, i.e., human pregnane X receptor (hPXR) and human constitutive androstane receptor (hCAR), these receptors could represent potential pathways involved in P-gp induction by antiretroviral drugs. The aims of this study were (i) to determine whether antiretroviral drugs currently used in HIV pharmacotherapy are ligands for hPXR or hCAR and (ii) to examine P-gp function and expression in human brain microvessel endothelial cells treated with antiretroviral drugs identified as ligands of hPXR and/or hCAR. Luciferase reporter gene assays were performed to examine the activation of hPXR and hCAR by antiretroviral drugs. The hCMEC/D3 cell line, which is known to display several morphological and biochemical properties of the BBB in humans, was used to examine P-gp induction following 72 h of exposure to these agents. Amprenavir, atazanavir, darunavir, efavirenz, ritonavir, and lopinavir were found to activate hPXR, whereas abacavir, efavirenz, and nevirapine were found to activate hCAR. P-gp expression and function were significantly induced in hCMEC/D3 cells treated with these drugs at clinical concentrations in plasma. Together, our data suggest that P-gp induction could occur at the BBB during chronic treatment with antiretroviral drugs identified as ligands of hPXR and/or hCAR. PMID:23836171

Chan, Gary N. Y.; Patel, Rucha; Cummins, Carolyn L.

2013-01-01

260

Induction of P-glycoprotein by antiretroviral drugs in human brain microvessel endothelial cells.  

PubMed

The membrane-associated drug transporter P-glycoprotein (P-gp) plays an essential role in drug efflux from the brain. Induction of this protein at the blood-brain barrier (BBB) could further affect the ability of a drug to enter the brain. At present, P-gp induction mediated by antiretroviral drugs at the BBB has not been fully investigated. Since P-gp expression is regulated by ligand-activated nuclear receptors, i.e., human pregnane X receptor (hPXR) and human constitutive androstane receptor (hCAR), these receptors could represent potential pathways involved in P-gp induction by antiretroviral drugs. The aims of this study were (i) to determine whether antiretroviral drugs currently used in HIV pharmacotherapy are ligands for hPXR or hCAR and (ii) to examine P-gp function and expression in human brain microvessel endothelial cells treated with antiretroviral drugs identified as ligands of hPXR and/or hCAR. Luciferase reporter gene assays were performed to examine the activation of hPXR and hCAR by antiretroviral drugs. The hCMEC/D3 cell line, which is known to display several morphological and biochemical properties of the BBB in humans, was used to examine P-gp induction following 72 h of exposure to these agents. Amprenavir, atazanavir, darunavir, efavirenz, ritonavir, and lopinavir were found to activate hPXR, whereas abacavir, efavirenz, and nevirapine were found to activate hCAR. P-gp expression and function were significantly induced in hCMEC/D3 cells treated with these drugs at clinical concentrations in plasma. Together, our data suggest that P-gp induction could occur at the BBB during chronic treatment with antiretroviral drugs identified as ligands of hPXR and/or hCAR. PMID:23836171

Chan, Gary N Y; Patel, Rucha; Cummins, Carolyn L; Bendayan, Reina

2013-09-01

261

[Identification and characteristics of concanavalin A-binding neurospecific glycoproteins in human brain and brain tumors].  

PubMed

Soluble and membrane-bound neurospecific Con A-binding glycoproteins from human brain and tumours were identified and characterized, using a procedure which included stepwise extraction with low and high ionic strength buffers, buffered. Triton X-100 and sodium deoxycholate followed by ConA-Sepharose column chromatography, SDS-PAAG electrophoresis and immunoblotting. Adsorbed antisera against different types of neurospecific glycoproteins were used. The bulk of neurospecific glycoproteins (11 and 13) were revealed in protein fractions extracted with low ionic strength buffers and Triton X-100. In astrocytomas and glyoblastomas, some neurospecific glycoproteins were absent. Some glycoproteins were found in tumours, but were absent in brain tissue. Soluble, 77 kD glycoprotein, 11 and 16 kD glycoproteins solubilized with high ionic strength buffers and intrinsic membrane-bound 51, 57, 61, 74 and 77 kD glycoproteins can be viewed as stable neurospecific markers in malignant brain tumours. PMID:3233229

Berezin, V A; Shevchenko, G M; Ga?dar, L I; Zuban', T I; Azarkina, V V

1988-10-01

262

Local analysis of human cortex in MRI brain volume.  

PubMed

This paper describes a method for subcortical identification and labeling of 3D medical MRI images. Indeed, the ability to identify similarities between the most characteristic subcortical structures such as sulci and gyri is helpful for human brain mapping studies in general and medical diagnosis in particular. However, these structures vary greatly from one individual to another because they have different geometric properties. For this purpose, we have developed an efficient tool that allows a user to start with brain imaging, to segment the border gray/white matter, to simplify the obtained cortex surface, and to describe this shape locally in order to identify homogeneous features. In this paper, a segmentation procedure using geometric curvature properties that provide an efficient discrimination for local shape is implemented on the brain cortical surface. Experimental results demonstrate the effectiveness and the validity of our approach. PMID:24688452

Bourouis, Sami

2014-01-01

263

Human Induced Rotation and Reorganization of the Brain of Domestic Dogs  

PubMed Central

Domestic dogs exhibit an extraordinary degree of morphological diversity. Such breed-to-breed variability applies equally to the canine skull, however little is known about whether this translates to systematic differences in cerebral organization. By looking at the paramedian sagittal magnetic resonance image slice of canine brains across a range of animals with different skull shapes (N?=?13), we found that the relative reduction in skull length compared to width (measured by Cephalic Index) was significantly correlated to a progressive ventral pitching of the primary longitudinal brain axis (r?=?0.83), as well as with a ventral shift in the position of the olfactory lobe (r?=?0.81). Furthermore, these findings were independent of estimated brain size or body weight. Since brachycephaly has arisen from generations of highly selective breeding, this study suggests that the remarkable diversity in domesticated dogs' body shape and size appears to also have led to human-induced adaptations in the organization of the canine brain. PMID:20668685

Roberts, Taryn; McGreevy, Paul; Valenzuela, Michael

2010-01-01

264

Sigma and opioid receptors in human brain tumors  

SciTech Connect

Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. (St. Louis Univ. School of Medicine, MO (USA))

1990-01-01

265

Morphological evidence of marine adaptations in human kidneys.  

PubMed

Amongst primates, kidneys normally exhibiting lobulated, multipyramidal, medullas is a unique attribute of the human species. Although, kidneys naturally multipyramidal in their medullary morphology are rare in terrestrial mammals, kidneys with lobulated medullas do occur in: elephants, bears, rhinoceroses, bison, cattle, pigs, and the okapi. However, kidneys characterized with multipyramidal medullas are common in aquatic mammals and are nearly universal in marine mammals. To avoid the deleterious effects of saline water dehydration, marine mammals have adaptively thickened the medullas of their kidneys--which enhances their ability to concentrate excretory salts in the urine. However, the lobulation of the kidney's medullary region in marine mammals appears to be an adaptation to expand the surface area between the medulla and the enveloping outer cortex in order to increase the volume of marine dietary induced hypertonic plasma that can be immediately processed for the excretion of excess salts and nitrogenous waste. A phylogenetic review of freshwater aquatic mammals suggest that most, if not all, nonmarine aquatic mammals inherited the medullary pyramids of their kidneys from ancestors who originally inhabited, or frequented, marine environments. So this suggest that most, if not all, aquatic mammals exhibiting kidneys with lobulated medullas are either marine adapted--or are descended from marine antecedents. Additionally, a phylogenetic review of nonhuman terrestrial mammals possessing kidneys with multipyramidal medullas suggest that bears, elephants and possibly rhinoceroses, also, inherited their lobulated medullas from semiaquatic marine ancestors. The fact that several terrestrial mammalian species of semiaquatic marine ancestry exhibit kidneys with multipyramidal medullas, may suggest that humans could have, also, inherited the lobulated medullas of their kidneys from coastal marine ancestors. And a specialized marine diet in ancient human ancestry could, also, explain the reactivation and enumeration of corporeal eccrine sweat glands and the copious secretion of salt tears. The substantial loss of genetic variation in humans relative to other hominoid primates, combined with the apparent isolation of early Pliocene human ancestors from particular retroviruses that infected all other African primate species, may suggest that such a semiaquatic marine phase, during the emergence of Homo, may have occurred on an island off the coast of Africa during the early Pliocene. PMID:16263222

Williams, Marcel F

2006-01-01

266

Increased LIS1 expression affects human and mouse brain development  

PubMed Central

Deletions of the PAFAH1B1 gene (encoding LIS1) in 17p13.3 result in isolated lissencephaly sequence, and extended deletions including the YWHAE gene (encoding 14-3-3?) cause Miller-Dieker syndrome. We identified seven unrelated individuals with submicroscopic duplication in 17p13.3 involving the PAFAH1B1 and/or YWHAE genes, and using a ‘reverse genomics’ approach, characterized the clinical consequences of these duplications. Increased PAFAH1B1 dosage causes mild brain structural abnormalities, moderate to severe developmental delay and failure to thrive. Duplication of YWHAE and surrounding genes increases the risk for macrosomia, mild developmental delay and pervasive developmental disorder, and results in shared facial dysmorphologies. Transgenic mice conditionally overexpressing LIS1 in the developing brain showed a decrease in brain size, an increase in apoptotic cells and a distorted cellular organization in the ventricular zone, including reduced cellular polarity but preserved cortical cell layer identity. Collectively, our results show that an increase in LIS1 expression in the developing brain results in brain abnormalities in mice and humans. PMID:19136950

Bi, Weimin; Sapir, Tamar; Shchelochkov, Oleg A; Zhang, Feng; Withers, Marjorie A; Hunter, Jill V; Levy, Talia; Shinder, Vera; Peiffer, Daniel A; Gunderson, Kevin L; Nezarati, Marjan M; Shotts, Vern Ann; Amato, Stephen S; Savage, Sarah K; Harris, David J; Day-Salvatore, Debra-Lynn; Horner, Michele; Lu, Xin-Yan; Sahoo, Trilochan; Yanagawa, Yuchio; Beaudet, Arthur L; Cheung, Sau Wai; Martinez, Salvador

2015-01-01

267

Physiology of repetitive transcranial magnetic stimulation of the human brain.  

PubMed

During the last two decades, transcranial magnetic stimulation (TMS) has rapidly become a valuable method to investigate noninvasively the human brain. In addition, repetitive TMS (rTMS) is able to induce changes in brain activity that last after stimulation. Therefore, rTMS has therapeutic potential in patients with neurologic and psychiatric disorders. It is, however, unclear by which mechanism rTMS induces these lasting effects on the brain. The effects of rTMS are often described as LTD- or LTP-like, because the duration of these alterations seems to implicate changes in synaptic plasticity. In this review we therefore discuss, based on rTMS experiments and knowledge about synaptic plasticity, whether the physiologic basis of rTMS-effects relates to changes in synaptic plasticity. We present seven lines of evidence that strongly suggest a link between the aftereffects induced by rTMS and the induction of synaptic plasticity. It is, nevertheless, important to realize that at present it is impossible to demonstrate a direct link between rTMS on the one hand and synaptic plasticity on the other. Therefore, we provide suggestions for future, innovating research, aiming to investigate both the local effects of rTMS on the synapse and the effects of rTMS on other, more global levels of brain organization. Only in that way can the aftereffects of rTMS on the brain be completely understood. PMID:20633438

Hoogendam, Janna Marie; Ramakers, Geert M J; Di Lazzaro, Vincenzo

2010-04-01

268

Red and NIR light dosimetry in the human deep brain  

NASA Astrophysics Data System (ADS)

Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated ?eff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.

Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.

2015-04-01

269

Red and NIR light dosimetry in the human deep brain.  

PubMed

Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson's Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated ?eff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy. PMID:25789711

Pitzschke, A; Lovisa, B; Seydoux, O; Zellweger, M; Pfleiderer, M; Tardy, Y; Wagnières, G

2015-04-01

270

Segmentation of Skull in 3D Human MR Images Using Mathematical Morphology  

E-print Network

Segmentation of Skull in 3D Human MR Images Using Mathematical Morphology B. Dogdasa, D. Shattuckb, CA 90089-2564 ABSTRACT We present a new technique for segmentation of skull in human T1-weighted. Our method performs skull segmentation using a sequence of mathematical morphological operations

Leahy, Richard M.

271

Sex differences in the structural connectome of the human brain  

PubMed Central

Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8–22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes. PMID:24297904

Ingalhalikar, Madhura; Smith, Alex; Parker, Drew; Satterthwaite, Theodore D.; Elliott, Mark A.; Ruparel, Kosha; Hakonarson, Hakon; Gur, Raquel E.; Gur, Ruben C.; Verma, Ragini

2014-01-01

272

An anatomically comprehensive atlas of the adult human brain transcriptome  

PubMed Central

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553

Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.

2014-01-01

273

Neuron enriched nuclear proteome isolated from human brain.  

PubMed

The brain consists of diverse cell types including neurons, astrocytes, oligodendrocytes, and microglia. The isolation of nuclei from these distinct cell populations provides an opportunity to identify cell-type-specific nuclear proteins, histone modifications, and regulation networks that are altered with normal brain aging or neurodegenerative disease. In this study, we used a method by which intact neuronal and non-neuronal nuclei were purified from human post-mortem brain employing a modification of fluorescence activated cell sorting (FACS) termed fluorescence activated nuclei sorting (FANS). An antibody against NeuN, a neuron specific splicing factor, was used to isolate neuronal nuclei. Utilizing mass spectrometry (MS) based label-free quantitative proteomics, we identified 1755 proteins from sorted NeuN-positive and negative nuclear extracts. Approximately 20% of these proteins were significantly enriched or depleted in neuronal versus non-neuronal populations. Immunoblots of primary cultured rat neuron, astrocyte, and oligodendrocyte extracts confirmed that distinct members of the major nucleocytoplasmic structural linkage complex (LINC), nesprin-1 and nesprin-3, were differentially enriched in neurons and astrocytes, respectively. These comparative proteomic data sets also reveal a number of transcription and splicing factors that are selectively enriched in a cell-type-specific manner in human brain. PMID:23768213

Dammer, Eric B; Duong, Duc M; Diner, Ian; Gearing, Marla; Feng, Yue; Lah, James J; Levey, Allan I; Seyfried, Nicholas T

2013-07-01

274

Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction  

PubMed Central

Behavioral rhythms synchronize between humans for communication; however, the relationship of brain rhythm synchronization during speech rhythm synchronization between individuals remains unclear. Here, we conducted alternating speech tasks in which two subjects alternately pronounced letters of the alphabet during hyperscanning electroencephalography. Twenty pairs of subjects performed the task before and after each subject individually performed the task with a machine that pronounced letters at almost constant intervals. Speech rhythms were more likely to become synchronized in human–human tasks than human–machine tasks. Moreover, theta/alpha (6–12?Hz) amplitudes synchronized in the same temporal and lateral-parietal regions in each pair. Behavioral and inter-brain synchronizations were enhanced after human–machine tasks. These results indicate that inter-brain synchronizations are tightly linked to speech synchronizations between subjects. Furthermore, theta/alpha inter-brain synchronizations were also found in subjects while they observed human–machine tasks, which suggests that the inter-brain synchronization might reflect empathy for others' speech rhythms. PMID:23603749

Kawasaki, Masahiro; Yamada, Yohei; Ushiku, Yosuke; Miyauchi, Eri; Yamaguchi, Yoko

2013-01-01

275

Brain-derived neurotrophic factor in human platelets  

Microsoft Academic Search

A sensitive, capture enzyme-linked immunosorbent assay (CELISA) has been applied to the accurate and reproducible measurement of brain-derived neurotrophic factor (BDNF) protein in normal human blood platelets, a mean concentration of 1.03 ± 0.04 ng (SEM)\\/mg of platelet protein being observed. The method, which requires only 10 ml blood, is now suitable for the investigation of a variety of clinical

F. Bernardo Pliego-Rivero; Nadhim Bayatti; Xenophon Giannakoulopoulos; Vivette Glover; Henry F. Bradford; Gerald Stern; Merton Sandier

1997-01-01

276

Calpain activity in adult and aged human brain regions  

Microsoft Academic Search

We assayed calpain activity in 27 human brain regions from adult (43–65 years of age) and aged (66–83 years of age) postmortem tissue samples. Calpain I (µM Ca-requiring) activity was 10% or less of the total activity; it was below detectable levels in a number of areas, and so data are are expressed as total (µM+mM Ca-dependent) calpain activity. The

Miriam Banay-Schwartz; Teresita DeGuzman; Miklos Palkovits; Abel Lajtha

1994-01-01

277

Integrative regulation of human brain blood flow  

PubMed Central

Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1)?the effect of blood gases and neuronal metabolism on CBF; (2)?buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3)?the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1)?that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60–150?mmHg; (2)?that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3)?that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4)?that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

2014-01-01

278

Negative Association of Neuroticism with Brain Volume Ratio in Healthy Humans  

E-print Network

Negative Association of Neuroticism with Brain Volume Ratio in Healthy Humans Brian Knutson, Reza Momenan, Robert R. Rawlings, Grace W. Fong, and Daniel Hommer Background: Brain volume decreases reactivity (i.e., neuroti- cism) would also predict reductions in brain volume. Methods: Brain volume ratios

Knutson, Brian

279

Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings.  

PubMed

The combination of patch clamp recordings from two (or more) synaptically coupled neurons (paired recordings) in acute brain slice preparations with simultaneous intracellular biocytin filling allows a correlated analysis of their structural and functional properties. With this method it is possible to identify and characterize both pre- and postsynaptic neurons by their morphology and electrophysiological response pattern. Paired recordings allow studying the connectivity patterns between these neurons as well as the properties of both chemical and electrical synaptic transmission. Here, we give a step-by-step description of the procedures required to obtain reliable paired recordings together with an optimal recovery of the neuron morphology. We will describe how pairs of neurons connected via chemical synapses or gap junctions are identified in brain slice preparations. We will outline how neurons are reconstructed to obtain their 3D morphology of the dendritic and axonal domain and how synaptic contacts are identified and localized. We will also discuss the caveats and limitations of the paired recording technique, in particular those associated with dendritic and axonal truncations during the preparation of brain slices because these strongly affect connectivity estimates. However, because of the versatility of the paired recording approach it will remain a valuable tool in characterizing different aspects of synaptic transmission at identified neuronal microcircuits in the brain. PMID:25650985

Qi, Guanxiao; Radnikow, Gabriele; Feldmeyer, Dirk

2015-01-01

280

Neurodegenerative diseases target large-scale human brain networks  

PubMed Central

During development, the healthy human brain constructs a host of large-scale, distributed, function-critical neural networks. Neurodegenerative diseases have been thought to target these systems, but this hypothesis has not been systematically tested in living humans. We used network-sensitive neuroimaging methods to show that five different neurodegenerative syndromes cause circumscribed atrophy within five distinct healthy human intrinsic functional connectivity networks. We further discovered a direct link between intrinsic connectivity and gray matter structure. Across healthy individuals, nodes within each functional network exhibited tightly correlated gray matter volumes. The findings suggest that human neural networks can be defined by synchronous baseline activity, a unified corticotrophic fate, and selective vulnerability to neurodegenerative illness. Future studies may clarify how these complex systems are assembled during development and undermined by disease. PMID:19376066

Seeley, William W.; Crawford, Richard K.; Zhou, Juan; Miller, Bruce L.; Greicius, Michael D.

2009-01-01

281

The neuroinflammatory response in humans after traumatic brain injury  

PubMed Central

Aims Traumatic brain injury is a significant cause of morbidity and mortality worldwide. An epidemiological association between head injury and long-term cognitive decline has been described for many years and recent clinical studies have highlighted functional impairment within 12 months of a mild head injury. In addition chronic traumatic encephalopathy is a recently described condition in cases of repetitive head injury. There are shared mechanisms between traumatic brain injury and Alzheimer’s disease, and it has been hypothesised that neuroinflammation, in the form of microglial activation, may be a mechanism underlying chronic neurodegenerative processes after traumatic brain injury. Methods This study assessed the microglial reaction after head injury in a range of ages and survival periods, from <24 hours survival through to 47 years survival. Immunohistochemistry for reactive microglia (CD68 and CR3/43) was performed on human autopsy brain tissue and assessed “blind” by quantitative image analysis. Head injury cases were compared to age matched controls, and within the traumatic brain injury group cases with diffuse traumatic axonal injury were compared to cases without diffuse traumatic axonal injury. Results A major finding was a neuroinflammatory response which develops within the first week and persists for several months after TBI, but has returned to control levels after several years. In cases with diffuse traumatic axonal injury the microglial reaction is particularly pronounced in the white matter. Conclusions These results demonstrate that prolonged microglial activation is a feature of traumatic brain injury, but that the neuroinflammatory response returns to control levels after several years. PMID:23231074

Smith, Colin; Gentleman, Stephen M; Leclercq, Pascale D; Murray, Lilian S; Griffin, W Sue T; Graham, David I; Nicoll, James A R

2013-01-01

282

Functional specificity in the human brain: A window into the functional architecture of the mind  

E-print Network

Nancy Kanwisher1 McGovern Institute for Brain Research, Massachusetts Institute of Technology, CambridgeFunctional specificity in the human brain: A window into the functional architecture of the mind for review February 22, 2010) Is the human mind/brain composed of a set of highly specialized components

Kanwisher, Nancy

283

Computational Neuroimaging: Maps and Tracts in the Human Brain Brian A. Wandell and Robert F. Dougherty  

E-print Network

) technology make it possible to obtain a great deal of new information about human brain structure to reveal changes as the brain matures, learns a new skill or undergoes drug or behavioral therapyComputational Neuroimaging: Maps and Tracts in the Human Brain Brian A. Wandell and Robert F

Dougherty, Bob

284

A novel approach to the human connectome: Ultrahigh resolution mapping of fiber tracts in the brain  

Microsoft Academic Search

Signal transmission between different brain regions requires connecting fiber tracts, the structural basis of the human connectome. In contrast to animal brains, where a multitude of tract tracing methods can be used, magnetic resonance (MR)-based diffusion imaging is presently the only promising approach to study fiber tracts between specific human brain regions. However, this procedure has various inherent restrictions caused

Markus Axer; Katrin Amunts; David Grässel; Christoph Palm; Jürgen Dammers; Hubertus Axer; Uwe Pietrzyk; Karl Zilles

2011-01-01

285

Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI  

E-print Network

Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI Cui Lin1 , Shiyong datasets and show good performance in detecting anatomical connectivity patterns in the human brain. 1 neuroscience is to discover anatomical features that reflect the functional organization of the brain

Hua, Jing

286

Time-Invariant Person-Specific Frequency Templates in Human Brain Activity Itai Doron,1  

E-print Network

Time-Invariant Person-Specific Frequency Templates in Human Brain Activity Itai Doron,1 Eyal Hulata (Received 18 January 2006; published 26 June 2006) The various human brain tasks are performed at different) partitioning of the brain activity into personal state-specific frequency bands. For that, we perform temporal

Jacob, Eshel Ben

287

Differences between Males and Females in Rates of Serotonin Synthesis in Human Brain  

Microsoft Academic Search

Rates of serotonin synthesis were measured in the human brain using positron emission tomography. The sensitivity of the method is indicated by the fact that measurements are possible even after a substantial lowering of synthesis induced by acute tryptophan depletion. Unlike serotonin levels in human brain, which vary greatly in different brain areas, rates of synthesis of the indolamine are

S. Nishizawa; C. Benkelfat; S. N. Young; M. Leyton; S. Mzengeza; C. de Montigny; P. Blier; M. Diksic

1997-01-01

288

Corpora and Cognition: The Semantic Composition of Adjectives and Nouns in the Human Brain  

E-print Network

Corpora and Cognition: The Semantic Composition of Adjectives and Nouns in the Human Brain Abstract semantic composition in the human brain are not well understood. In this thesis,we explore semantics (word text corpus,and brain recordings of people reading adjective noun phrases. We show that these two very

289

Structural Abnormalities in the Brains of Human Subjects Who Use Methamphetamine  

Microsoft Academic Search

We visualize, for the first time, the profile of structural deficits in the human brain associated with chronic methamphetamine (MA) abuse. Studies of human subjects who have used MA chronically have revealed deficits in dopaminergic and serotonergic systems and cerebral metabolic abnormalities. Using magnetic resonance imaging (MRI) and new computational brain-mapping techniques, we determined the pattern of structural brain alterations

Paul M. Thompson; Kiralee M. Hayashi; Sara L. Simon; Jennifer A. Geaga; Michael S. Hong; Yihong Sui; Jessica Y. Lee; Arthur W. Toga; Walter Ling; Edythe D. London

2004-01-01

290

Multiple Views and Magic Mirrors fMRI Visualization of the Human Brain  

E-print Network

for the user to mentally reconstruct the three­dimensional structure of the patients brain. ThreeMultiple Views and Magic Mirrors ­ fMRI Visualization of the Human Brain Category: research Abstract Multimodal visualization of functional and anatomical data of the human brain is an important

291

Anandamide hydrolysis by human cells in culture and brain.  

PubMed

Anandamide (arachidonylethanolamide; AnNH) has important neuromodulatory and immunomodulatory activities. This lipid is rapidly taken up and hydrolyzed to arachidonate and ethanolamine in many organisms. As yet, AnNH inactivation has not been studied in humans. Here, a human brain fatty-acid amide hydrolase (FAAH) has been characterized as a single protein of 67 kDa with a pI of 7.6, showing apparent Km and Vmax values for AnNH of 2.0 +/- 0.2 microM and 800 +/- 75 pmol.min-1.mg of protein-1, respectively. The optimum pH and temperature for AnNH hydrolysis were 9.0 and 37 degreesC, respectively, and the activation energy of the reaction was 43.5 +/- 4.5 kJ.mol-1. Hydro(pero)xides derived from AnNH or its linoleoyl analogues by lipoxygenase action were competitive inhibitors of human brain FAAH, with apparent Ki values in the low micromolar range. One of these compounds, linoleoylethanolamide is the first natural inhibitor (Ki = 9.0 +/- 0.9 microM) of FAAH as yet discovered. An FAAH activity sharing several biochemical properties with the human brain enzyme was demonstrated in human neuroblastoma CHP100 and lymphoma U937 cells. Both cell lines have a high affinity transporter for AnNH, which had apparent Km and Vmax values for AnNH of 0.20 +/- 0.02 microM and 30 +/- 3 pmol.min-1.mg of protein-1 (CHP100 cells) and 0.13 +/- 0.01 microM and 140 +/- 15 pmol.min-1.mg of protein-1 (U937 cells), respectively. The AnNH carrier of both cell lines was activated up to 170% of the control by nitric oxide. PMID:9822713

Maccarrone, M; van der Stelt, M; Rossi, A; Veldink, G A; Vliegenthart, J F; Agrò, A F

1998-11-27

292

QUANTITATIVE RELAXATION TEMPLATES FOR THE HUMAN BRAIN AT 3T Fang Cao, Olivier Commowick, Camille Maumet, Christian Barillot  

E-print Network

QUANTITATIVE RELAXATION TEMPLATES FOR THE HUMAN BRAIN AT 3T Fang Cao, Olivier Commowick, Camille, T2, T 2 and maps from the human brain at 3T. The qMRI templates were built from a population of 20 of the human brain do not include quantitative features of the human brain such as those extracted from

Paris-Sud XI, Université de

293

MRI of the human brain at 130 microtesla  

PubMed Central

We present in vivo images of the human brain acquired with an ultralow field MRI (ULFMRI) system operating at a magnetic field B0 ? 130 ?T. The system features prepolarization of the proton spins at Bp ? 80 mT and detection of the NMR signals with a superconducting, second-derivative gradiometer inductively coupled to a superconducting quantum interference device (SQUID). We report measurements of the longitudinal relaxation time T1 of brain tissue, blood, and scalp fat at B0 and Bp, and cerebrospinal fluid at B0. We use these T1 values to construct inversion recovery sequences that we combine with Carr–Purcell–Meiboom–Gill echo trains to obtain images in which one species can be nulled and another species emphasized. In particular, we show an image in which only blood is visible. Such techniques greatly enhance the already high intrinsic T1 contrast obtainable at ULF. We further present 2D images of T1 and the transverse relaxation time T2 of the brain and show that, as expected at ULF, they exhibit similar contrast. Applications of brain ULFMRI include integration with systems for magnetoencephalography. More generally, these techniques may be applicable, for example, to the imaging of tumors without the need for a contrast agent and to modalities recently demonstrated with T1? contrast imaging (T1 in the rotating frame) at fields of 1.5 T and above. PMID:24255111

Inglis, Ben; Buckenmaier, Kai; SanGiorgio, Paul; Pedersen, Anders F.; Nichols, Matthew A.; Clarke, John

2013-01-01

294

Classifying Human Brain Tumors by Lipid Imaging with Mass Spectrometry  

PubMed Central

Brain tissue biopsies are required to histologically diagnose brain tumors, but current approaches are limited by tissue characterization at the time of surgery. Emerging technologies such as mass spectrometry imaging can enable a rapid direct analysis of cancerous tissue based on molecular composition. Here we illustrate how gliomas can be rapidly classified by desorption electrospray mass spectrometry (DESI-MS) imaging, multivariate statistical analysis, and machine learning. DESI-MS imaging was performed on thirty-six human glioma samples, including oligodendroglioma, astrocytoma and oligoastrocytoma, all of different histologic grades and varied tumor cell concentration. Grey and white matter from glial tumors were readily discriminated and detailed diagnostic information could be provided. Classifiers for subtype, grade and concentration features generated with lipidomic data showed high recognition capability with >97% cross-validation. Specimen classification in an independent validation set agreed with expert histopathology diagnosis for 81% of tested features. Together, our findings offer proof of concept that intra-operative examination and classification of brain tissue by mass spectrometry can provide surgeons, pathologists, and oncologists with critical and previously unavailable information to rapidly guide surgical resections that can improve management of patients with malignant brain tumors. PMID:22139378

Eberlin, Livia S.; Norton, Isaiah; Dill, Allison L.; Golby, Alexandra J.; Ligon, Keith L.; Santagata, Sandro; Cooks, R. Graham; Agar, Nathalie Y.R.

2011-01-01

295

Synchrony of high frequency oscillations in the human epileptic brain.  

PubMed

We have applied wavelet phase coherence (WPC) to human iEEG data to characterize the spatial and temporal interactions of high frequency oscillations (HFOs; >80 Hz). Quantitative analyses were performed on iEEG segments from four patients with extratemporal lobe epilepsy. Interelectrode synchrony was measured using WPC before, during and after seizure activity. The WPC profiles of HFOs were able to elucidate the seizure from non-seizure state in all four patients and for all seizures studied (n=10). HFO synchrony was consistently transient and of weak to moderate strength during non-seizure activity, while weak to very strong coherence, of prolonged duration, was observed during seizures. Several studies have suggested that HFOs may have a significant role in the process of epileptogenesis and seizure genesis. As epileptic seizures result from disturbances in the regular electrical activity present in given areas of the brain, studying the interactions between fast brain waves, recorded simultaneously and from many different brain regions, may provide more information of which brain areas are interacting during ictal and interictal activity. PMID:24111002

Cotic, Marija; Zalay, Osbert; Carlen, Peter L; Chinvarun, Yotin; Bardakjian, Berj L

2013-01-01

296

ENDOPHENOTYPES IN NORMAL BRAIN MORPHOLOGY AND ALZHEIMER’S DISEASE: A REVIEW  

PubMed Central

Late-onset Alzheimer’s disease is a common complex disorder of old age. Though these types of disorders can be highly heritable, they differ from single-gene (Mendelian) diseases in that their causes are often multifactorial with both genetic and environmental components. Genetic risk factors that have been firmly implicated in the cause are mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes, which are found in large multi-generational families with an autosomal dominant pattern of disease inheritance, the apolipoprotein E (APOE)?4 allele and the sortilin-related receptor (SORL1) gene. Environmental factors that have been associated with late-onset Alzheimer’s disease include depressive illness, various vascular risk factors, level of education, head trauma and estrogen replacement therapy. This complexity may help explain their high prevalence from an evolutionary perspective, but the etiologic complexity makes identification of disease-related genes much more difficult. The “endophenotype” approach is an alternative method for measuring phenotypic variation that may facilitate the identification of susceptibility genes for complexly inherited traits. The usefulness of endophenotypes in genetic analyses of normal brain morphology and, in particular for Alzheimer’s disease will be reviewed as will the implications of these findings for models of disease causation. Given that the pathways from genotypes to end-stage phenotypes are circuitous at best, identifying endophenotypes more proximal to the effects of genetic variation may expedite the attempts to link genetic variants to disorders. PMID:19362127

Reitz, C.; Mayeux, R.

2010-01-01

297

Neurochemical and morphological responses to acutely and chronically implanted brain microdialysis probes.  

PubMed

The purpose of this study was to compare, in rats, brain microdialysis results obtained using microdialysis probes implanted acutely for 2 h versus probes implanted chronically for 24 h in the caudate. Specific comparisons included: (1) dialysate purine and amino acid profiles during cerebral ischemia; (2) diffusional characteristics of the microdialysis probe; and (3) tissue morphology surrounding the probe. During ischemia, the increase in dialysate levels of adenosine, inosine, and hypoxanthine was less pronounced from probes implanted chronically, while dialysate xanthine levels increased to a greater extent. An increase in dialysate amino acid neurotransmitters during cerebral ischemia was observed in the acutely implanted probes within 10 min of the onset of cerebral ischemia; in the chronically implanted probes this increase did not occur until after 50 min of severe ischemia. Both in vitro and in vivo tests revealed a diffusional barrier in chronically implanted probes. Moreover, the tissue surrounding chronically implanted probes exhibited a high degree of inflammation, and fibrin deposits were substantial. In addition, uric acid levels (an indicator of tissue injury) sampled from chronically implanted probes were 7-fold greater than levels sampled from acutely implanted probes. These data raise concerns about the use of chronically implanted microdialysis probes for the measurement of purine and amino acid profiles during cerebral ischemia. PMID:10223512

Grabb, M C; Sciotti, V M; Gidday, J M; Cohen, S A; van Wylen, D G

1998-07-01

298

Rich-club organization of the newborn human brain  

PubMed Central

Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a “rich club”—a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical–subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants. PMID:24799693

Ball, Gareth; Aljabar, Paul; Zebari, Sally; Tusor, Nora; Arichi, Tomoki; Merchant, Nazakat; Robinson, Emma C.; Ogundipe, Enitan; Rueckert, Daniel; Edwards, A. David; Counsell, Serena J.

2014-01-01

299

Accuracy Test of Microsoft Kinect for Human Morphologic Measurements  

NASA Astrophysics Data System (ADS)

The Microsoft Kinect sensor, a popular gaming console, is widely used in a large number of applications, including close-range 3D measurements. This low-end device is rather inexpensive compared to similar active imaging systems. The Kinect sensors include an RGB camera, an IR projector, an IR camera and an audio unit. The human morphologic measurements require high accuracy with fast data acquisition rate. To achieve the highest accuracy, the depth sensor and the RGB camera should be calibrated and co-registered to achieve high-quality 3D point cloud as well as optical imagery. Since this is a low-end sensor, developed for different purpose, the accuracy could be critical for 3D measurement-based applications. Therefore, two types of accuracy test are performed: (1) for describing the absolute accuracy, the ranging accuracy of the device in the range of 0.4 to 15 m should be estimated, and (2) the relative accuracy of points depending on the range should be characterized. For the accuracy investigation, a test field was created with two spheres, while the relative accuracy is described by sphere fitting performance and the distance estimation between the sphere center points. Some other factors can be also considered, such as the angle of incidence or the material used in these tests. The non-ambiguity range of the sensor is from 0.3 to 4 m, but, based on our experiences, it can be extended up to 20 m. Obviously, this methodology raises some accuracy issues which make accuracy testing really important.

Molnár, B.; Toth, C. K.; Detrek?i, A.

2012-08-01

300

Methods to assess changes in human brain structure across the lifecourse   

E-print Network

Human brain structure can be measured across the lifecourse (“in vivo”) with magnetic resonance imaging (MRI). MRI data are often used to create “atlases” and statistical models of brain structure across the lifecourse. ...

Dickie, David Alexander

2014-11-28

301

Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors  

E-print Network

Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic ...

Liua, Hesheng

302

How Plasmodium falciparum malaria parasites bind to human brain endothelial cells   

E-print Network

Cerebral malaria is characterised by an accumulation of infected erythrocytes in the microvasculature of the brain. Plasmodium falciparum infected erythrocytes have been shown to bind to a Human Brain Endothelial Cell line (HBEC-5i) in vitro...

Claessens, Antoine

2011-01-01

303

Development of Spatial and Verbal Working Memory Capacity in the Human Brain  

E-print Network

A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between ...

Thomason, Moriah E.

304

Functional specificity for high-level linguistic processing in the human brain  

E-print Network

Neuroscientists have debated for centuries whether some regions of the human brain are selectively engaged in specific high-level mental functions or whether, instead, cognition is implemented in multifunctional brain ...

Fedorenko, Evelina G.

305

The Connectome Visualization Utility: Software for Visualization of Human Brain Networks  

E-print Network

In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, ...

LaPlante, Roan A.

306

The Functional Connectivity Landscape of the Human Brain  

PubMed Central

Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment. PMID:25350370

Fatima, Zainab; Jonides, John; McIntosh, Anthony R.

2014-01-01

307

Resilience of human brain functional coactivation networks under thresholding  

E-print Network

Recent studies have demonstrated the existence of community structure and rich club nodes, (i.e., highly interconnected, high degree hub nodes), in human brain functional networks. The cognitive relevance of the detected modules and hubs has also been demonstrated, for both task based and default mode networks, suggesting that the brain self-organizes into patterns of co-activated sets of regions for performing specific tasks or in resting state. In this paper, we report studies on the resilience or robustness of this modular structure: under systematic erosion of connectivity in the network under thresholding, how resilient is the modularity and hub structure? The results show that the network shows show strong resilience properties, with the modularity and hub structure maintaining itself over a large range of connection strengths. Then, at a certain critical threshold that falls very close to 0, the connectivity, the modularity, and hub structure suddenly break down, showing a phase transition like propert...

Sarkar, S; Weng, H

2014-01-01

308

Decoding human brain activity during real-world experiences.  

PubMed

The human brain evolved to function and survive in a highly stimulating, complex and fast-changing world. Attempting to ascertain the neural substrates of operating in naturalistic contexts represents a huge challenge. Recently, however, researchers have begun to use several innovative analysis methods to interrogate functional magnetic resonance imaging (fMRI) data collected during dynamic naturalistic tasks. Central to these new developments is the inventive approach taken to segregating neural activity linked to specific events within the overall continuous stream of complex stimulation. In this review, we discuss the recent literature, detailing the key studies and their methods. These analytical techniques can be applied in a wide range of cognitive domains and, thus, offer exciting new opportunities for gaining insights into the brain bases of thoughts and behaviours in the real-world setting where they normally occur. PMID:17618161

Spiers, Hugo J; Maguire, Eleanor A

2007-08-01

309

Memory-related brain lateralisation in birds and humans.  

PubMed

Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation. PMID:25036892

Moorman, Sanne; Nicol, Alister U

2015-03-01

310

Social Rewards and Social Networks in the Human Brain.  

PubMed

The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations. PMID:24561513

Fareri, Dominic S; Delgado, Mauricio R

2014-02-21

311

Dynamics of oligodendrocyte generation and myelination in the human brain.  

PubMed

The myelination of axons by oligodendrocytes has been suggested to be modulated by experience, which could mediate neural plasticity by optimizing the performance of the circuitry. We have assessed the dynamics of oligodendrocyte generation and myelination in the human brain. The number of oligodendrocytes in the corpus callosum is established in childhood and remains stable after that. Analysis of the integration of nuclear bomb test-derived (14)C revealed that myelin is exchanged at a high rate, whereas the oligodendrocyte population in white matter is remarkably stable in humans, with an annual exchange of 1/300 oligodendrocytes. We conclude that oligodendrocyte turnover contributes minimally to myelin modulation in human white matter and that this instead may be carried out by mature oligodendrocytes, which may facilitate rapid neural plasticity. PMID:25417154

Yeung, Maggie S Y; Zdunek, Sofia; Bergmann, Olaf; Bernard, Samuel; Salehpour, Mehran; Alkass, Kanar; Perl, Shira; Tisdale, John; Possnert, Göran; Brundin, Lou; Druid, Henrik; Frisén, Jonas

2014-11-01

312

Soluble Aggregates of the Amyloid-? Protein Selectively Stimulate Permeability in Human Brain Microvascular Endothelial Monolayers  

PubMed Central

Cerebral amyloid angiopathy associated with Alzheimer’s disease is characterized by cerebrovascular deposition of the amyloid-? protein (A?). A? elicits a number of morphological and biochemical alterations in the cerebral microvasculature, which culminate in hemorrhagic stroke. Among these changes, compromise of the blood-brain barrier has been described in Alzheimer’s disease brain, transgenic animal models of Alzheimer’s disease, and cell culture experiments. In the current study, presented data illustrates that isolated soluble A?1-40 aggregates, but not unaggregated monomer or mature fibril, enhance permeability in human brain microvascular endothelial monolayers. A?1-40-induced changes in permeability are paralleled by both a decrease in transendothelial electrical resistance and a re-localization of the tight junction associated protein zonula occludin-1 away from cell borders and into the cytoplasm. Small soluble A?1-40 aggregates are confirmed to be the most potent stimulators of endothelial monolayer permeability by establishing an inverse relationship between average aggregate size and stimulated changes in diffusional permeability coefficients. These results support previous findings demonstrating that small soluble A?1-40 aggregates are also primarily responsible for endothelial activation, suggesting that these same species may elicit other changes in the cerebrovasculature associated with cerebral amyloid angiopathy and Alzheimer’s disease. PMID:18702666

Gonzalez-Velasquez, Francisco J.; Kotarek, Joseph A.; Moss, Melissa A.

2014-01-01

313

Brain stem representation of thermal and psychogenic sweating in humans.  

PubMed

Functional MRI was used to identify regions in the human brain stem activated during thermal and psychogenic sweating. Two groups of healthy participants aged 34.4 ± 10.2 and 35.3 ± 11.8 years (both groups comprising 1 woman and 10 men) were either heated by a water-perfused tube suit or subjected to a Stroop test, while they lay supine with their head in a 3-T MRI scanner. Sweating events were recorded as electrodermal responses (increases in AC conductance) from the palmar surfaces of fingers. Each experimental session consisted of two 7.9-min runs, during which a mean of 7.3 ± 2.1 and 10.2 ± 2.5 irregular sweating events occurred during psychogenic (Stroop test) and thermal sweating, respectively. The electrodermal waveform was used as the regressor in each subject and run to identify brain stem clusters with significantly correlated blood oxygen level-dependent signals in the group mean data. Clusters of significant activation were found with both psychogenic and thermal sweating, but a voxelwise comparison revealed no brain stem cluster whose signal differed significantly between the two conditions. Bilaterally symmetric regions that were activated by both psychogenic and thermal sweating were identified in the rostral lateral midbrain and in the rostral lateral medulla. The latter site, between the facial nuclei and pyramidal tracts, corresponds to a neuron group found to drive sweating in animals. These studies have identified the brain stem regions that are activated with sweating in humans and indicate that common descending pathways may mediate both thermal and psychogenic sweating. PMID:23535458

Farrell, Michael J; Trevaks, David; Taylor, Nigel A S; McAllen, Robin M

2013-05-15

314

Signal transduction images in human brain by positron emission tomography  

SciTech Connect

Analysis of changes in intracellular signal transduction will provide clear images of the projected target neurons. We have recently developed a technique which allows second-messenger imaging of changes in intracellular signal transduction which is activated in parallel with phosphoinositide (PI) turnover. Using carbon-11-labeled 1,2-diacylglycerol (DAG), we have recently succeeded in making an image of intracellular signal transduction during the course of synaptic transmission in human brains. When five healthy volunteers were examined by this technique, they had high activity in the associate field, in particular the prefrontal area. In the absence of paradigm loading, the associate field was unilaterally active, and human subjects showed predominant activity in the right prefrontal area. Activation of the ipsilateral supraorbital region and the superior temporal area was also seen at the same time. In conclusion, no previous study has directly demonstrated the unilateral predominance of the activity in the associate fields (projected target area) and the accompanying areas. Unlike the conventional positron-labeled compounds which did not permit visualization of activation of the associate fields, our technique can measure the PI turnover, as a postsynaptic response, and thus provide clear images of the projected target nerve cells in relation to higher cortical function in human brain.

Imahori, Y.; Fujii, R.; Ueda, S. [Kyoto Prefectural Univ. of Medicine (Japan)] [and others

1994-05-01

315

Visualizing receptors for neurotransmitters in the human brain with autoradiography.  

PubMed

Receptors for neurotransmitters and drugs are now well characterized at the molecular level. Thanks to the development of numerous radiolabeled molecules and to the use of autoradiography it is possible to study the characteristics and distribution of these receptors with the anatomical resolution of the microscope. We have used quantitative receptor autoradiography to examine receptors in the human brain and to study receptor alterations in neurodegenerative diseases of the human brain. Alterations in the density and distribution of receptors have been found in diseases such as amyothrophic lateral sclerosis, Huntington's Chorea, Parkinson's disease and Alzheimer's disease. In these diseases different types of receptor alterations have been found. The most characteristic ones are selective receptor losses associated with neuronal losses. Alterations such as receptor hypersensitivity due to degeneration of target areas have also been observed. In some cases no correlations between alterations of the neurotransmitters and receptors have been found. These results indicate that different receptors are associated with specific neuronal systems and could be used as markers for these neuronal populations in different pathological studies. The possibility of visualizing receptors in the living human with non-invasive techniques such as PET could lead to the future use of receptor alterations as a diagnostic tool. PMID:2546100

Palacios, J M; Chinaglia, G; Probst, A

1989-01-01

316

Proteomic Temporal Profile of Human Brain Endothelium After Oxidative Stress  

PubMed Central

Background and Purpose Because brain endothelial cells exist at the neurovascular interface, they may serve as cellular reporters of brain dysfunction by releasing biomarkers into the circulation. Methods We used proteomic techniques to screen conditioned media from human brain endothelial cultures subjected to oxidative stress induced by nitric oxide over 24 hours. Plasma samples from human stroke patients were analyzed by enzyme-linked immunosorbent assay. Results In healthy endothelial cells, interaction mapping demonstrated cross-talk involving secreted factors, membrane receptors, and matrix components. In oxidatively challenged endothelial cells, networks of interacting proteins failed to emerge. Instead, inflammatory markers increased, secreted factors oscillated over time, and endothelial injury repair was manifested as changes in factors related to matrix integrity. Elevated inflammatory markers included heat shock protein, chemokine ligand-1, serum amyloid-A1, annexin-A5, and thrombospondin-1. Neurotrophic factors (prosaposin, nucleobindin-1, and tachykinin precursors) peaked at 12 hours, then rapidly decreased by 24 hours. Basement membrane components (fibronectin, desomoglein, profiling-1) were decreased. Cytoskeletal markers (actin, vimentin, nidogen, and filamin B) increased over time. From this initial analysis, the high-ranking candidate thrombospondin-1 was further explored in human plasma. Acute ischemic stroke patients had significantly higher thrombospondin-1 levels within 8 hours of symptom onset compared to controls with similar clinical risk factors (659±81 vs 1132±98 ng/mL; P<0.05; n=20). Conclusions Screening of simplified cell culture systems may aid the discovery of novel biomarkers in clinical neurovascular injury. Further collaborative efforts are warranted to discover and validate more candidates of interest. PMID:21164131

Ning, MingMing; Sarracino, David A.; Kho, Alvin T.; Guo, Shuzhen; Lee, Sun-Ryung; Krastins, Bryan; Buonanno, Ferdinando S.; Vizcaíno, Juan A.; Orchard, Sandra; McMullin, David; Wang, Xiaoying; Lo, Eng H.

2013-01-01

317

Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking  

E-print Network

Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking to be established. Here we develop a computational framework to address how the ankle joint actuation problem-tendon morphology and neural activations enable a metabolically optimal realization of biological ankle mechanics

Herr, Hugh

318

Glutamate receptor changes in brain synaptic membranes from human alcoholics  

Microsoft Academic Search

Brains from human alcoholics and non-alcoholics were obtained shortly after death. The hippocampus was dissected, homogenized, and processed for the isolation of a synaptic membraneenriched fraction and the study ofl-[3H]glutamic acid and 3-((±)-2-carboxypiperazin-4-yl)-[1,23H]propyl-l-phosphonic acid ([3H]CPP) binding sites. The pharmacological characteristics ofl-[3H]glutamic acid binding to synaptic membranes isolated from hippocampus corresponded to the labeling of a mixture of N-methyl-d-aspartate (NMDA), kainate

E. K. Michaelis; W. J. Freed; N. Galton; J. Foye; M. L. Michaelis; I. Phillips; J. E. Kleinman

1990-01-01

319

Improved Imaged-derived Input Function for Study of Human Brain FDG-PET  

E-print Network

Improved Imaged-derived Input Function for Study of Human Brain FDG-PET Hongbin Guo, Rosemary Improved Imaged-derived Input Function for Study of Human Brain FDG-PET I. INTRODUCTION Positron emission-invasive image-derived input function is validated for human [18 F]-fluoro deoxyglucose (FDG) positron emission

Renaut, Rosemary

320

Impact of Chemotherapy for Childhood Leukemia on Brain Morphology and Function  

PubMed Central

Objective Using multidisciplinary treatment modalities the majority of children with cancer can be cured but we are increasingly faced with therapy-related toxicities. We studied brain morphology and neurocognitive functions in adolescent and young adult survivors of childhood acute, low and standard risk lymphoblastic leukemia (ALL), which was successfully treated with chemotherapy. We expected that intravenous and intrathecal chemotherapy administered in childhood will affect grey matter structures, including hippocampus and olfactory bulbs, areas where postnatal neurogenesis is ongoing. Methods We examined 27 ALL-survivors and 27 age-matched healthy controls, ages 15–22 years. ALL-survivors developed disease prior to their 11th birthday without central nervous system involvement, were treated with intrathecal and systemic chemotherapy and received no radiation. Volumes of grey, white matter and olfactory bulbs were measured on T1 and T2 magnetic resonance images manually, using FIRST (FMRIB’s integrated Registration and Segmentation Tool) and voxel-based morphometry (VBM). Memory, executive functions, attention, intelligence and olfaction were assessed. Results Mean volumes of left hippocampus, amygdala, thalamus and nucleus accumbens were smaller in the ALL group. VBM analysis revealed significantly smaller volumes of the left calcarine gyrus, both lingual gyri and the left precuneus. DTI data analysis provided no evidence for white matter pathology. Lower scores in hippocampus-dependent memory were measured in ALL-subjects, while lower figural memory correlated with smaller hippocampal volumes. Interpretation Findings demonstrate that childhood ALL, treated with chemotherapy, is associated with smaller grey matter volumes of neocortical and subcortical grey matter and lower hippocampal memory performance in adolescence and adulthood. PMID:24265700

Abolmaali, Nasreddin; Krone, Franziska; Hoffmann, Andre; Holfeld, Elisabeth; Vorwerk, Peter; Kramm, Christof; Gruhn, Bernd; Koustenis, Elisabeth; Hernaiz-Driever, Pablo; Mandal, Rakesh; Suttorp, Meinolf; Hummel, Thomas; Ikonomidou, Chrysanthy; Kirschbaum, Clemens; Smolka, Michael N.

2013-01-01

321

Morphological investigations on axonal swellings and spheroids in various human diseases.  

PubMed

Axonal swellings and spheroids in various human diseases were studied by light and electron microscopy. 4 cases of infantile neuroaxonal dystrophy, 2 of degenerative diseases, 2 brain tumors and 3 of cerebrovascular disease were examined. Ultrastructurally most spheroids in infantile neuroaxonal dystrophy consisted of interconnected tubules, stacked membranotubular profiles, alternating layered membranes and accumulations of neurofilaments. Combinations of these four constituents were seen only in infantile neuroaxonal dystrophy. "Torpedos" (fusiform swelling of the axon of a Purkinje cell) consisted exclusively of neurofilaments. Spheroids in case 6 (mental retardation) and 7 (atypical teratoma) consisted of interwoven skeins of neurofilaments and grouped mitochondria. Spheroids in case 8 (demyelination) and 9 (cerebrovascular disease) consisted of packed complex bodies and mitochondria. Spheroids in cases 10 and 11 (cerebrovascular disease) consisted of degenerating organelles only. The morphological differences between cases 9, 10 and 11 probably depends on the severity and timing of the cerebral injury. Most spheroids show similar histological and histochemical properties, but ultrastructural study may give some clue to the origin of the bodies. PMID:150108

Yagishita, S

1978-06-15

322

The human brain—from cells to society  

PubMed Central

In December 2011, the European Science Foundation (ESF) brought together experts from a wide range of disciplines to discuss the issues that will influence the development of a healthier, more brain-aware European society. This perspective summarizes the main outcomes of that discussion and highlights important considerations to support improved mental health in Europe, including: The development of integrated neuropsychotherapeutic approaches to the treatment of psychiatric disorders.The development of more valid disease models for research into psychiatric disorders.An improved understanding of the relationship between biology and environment, particularly in relation to developmental plasticity and emerging pathology.More comparative studies to explore how scientific concepts relating to the human brain are received and understood in different sociocultural contexts.Research into the legal and ethical implications of recent developments in the brain sciences, including behavioral screening and manipulation, and emerging neurotechnologies. The broad geographical spread of the consulted experts across the whole of Europe, along with the wide range of disciplines they represent, gives these conclusions a strong scientific and pan-European endorsement. The next step will be to look closely into these five selected topics, in terms of research strategy, science policy, societal implications, and legal and ethical frameworks. PMID:23966920

Hoogland, Eva; Patten, Iain; Berghmans, Stephane

2013-01-01

323

Immunostaining of oxidized DJ-1 in human and mouse brains.  

PubMed

DJ-1, the product of a causative gene of a familial form of Parkinson disease, undergoes preferential oxidation of Cys106 (cysteine residue at position 106) under oxidative stress. Using specific monoclonal antibodies against Cys106 oxidized DJ-1 (oxDJ-1), we examined oxDJ-1 immunoreactivity in brain sections from DJ-1 knockout and wild-type mice and in human brain sections from cases classified into different Lewy body stages of Parkinson disease and Parkinson disease with dementia. Oxidized DJ-1 immunoreactivity was prominently observed in neuromelanin-containing neurons and neuron processes of the substantia nigra; Lewy bodies also showed oxDJ-1 immunoreactivity. Oxidized DJ-1 was also detected in astrocytes in the striatum, in neurons and glia in the red nucleus, and in the inferior olivary nucleus, all of which are related to regulation of movement. These observations suggest the relevance of DJ-1 oxidation to homeostasis in multiple brain regions, including neuromelanin-containing neurons of the substantia nigra, and raise the possibility that oxDJ-1 levels might change during the progression of Lewy body-associated neurodegenerative diseases. PMID:24918637

Saito, Yoshiro; Miyasaka, Tomohiro; Hatsuta, Hiroyuki; Takahashi-Niki, Kazuko; Hayashi, Kojiro; Mita, Yuichiro; Kusano-Arai, Osamu; Iwanari, Hiroko; Ariga, Hiroyoshi; Hamakubo, Takao; Yoshida, Yasukazu; Niki, Etsuo; Murayama, Shigeo; Ihara, Yasuo; Noguchi, Noriko

2014-07-01

324

The structure of creative cognition in the human brain  

PubMed Central

Creativity is a vast construct, seemingly intractable to scientific inquiry—perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR). Behaviorally, one can limit the “blind variation” component to idea generation tests as manifested by measures of divergent thinking. The “selective retention” component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (1H-MRS). We also review lesion studies, considered to be the “gold standard” of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981). We provide a perspective, involving aspects of the default mode network (DMN), which might provide a “first approximation” regarding how creative cognition might map on to the human brain. PMID:23847503

Jung, Rex E.; Mead, Brittany S.; Carrasco, Jessica; Flores, Ranee A.

2013-01-01

325

Heritability of human brain functioning as assessed by electroencephalography  

SciTech Connect

To study the genetic and environmental contributions to individual differences in CNS functioning, the electroencephalogram (EEG) was measured in 213 twin pairs age 16 years. EEG was measured in 91 MZ and 122 DZ twins. To quantify sex differences in the genetic architecture, EEG was measured in female and male same-sex twins and in opposite-sex twins. EEG was recorded on 14 scalp positions during quiet resting with eyes closed. Spectral powers were calculated for four frequency bands: delta, theta, alpha, and beta. Twin correlations pointed toward high genetic influences for all these powers and scalp locations. Model fitting confirmed these findings; the largest part of the variance of the EEG is explained by additive genetic factors. The averaged heritabilities for the delta, theta, alpha, and beta frequencies was 76%, 89%, 89%, and 86%, respectively. Multivariate analyses suggested that the same genes for EEG alpha rhythm were expressed in different brain areas in the left and right hemisphere. This study shows that brain functioning, as indexed by rhythmic brain-electrical activity, is one of the most heritable characteristics in humans. 44 refs., 5 figs., 4 tabs.

Beijsterveldt, C.E.M. van; Geus, E.J.C. de; Boomsma, D.I. [and others

1996-03-01

326

The representation of biological classes in the human brain.  

PubMed

Evidence of category specificity from neuroimaging in the human visual system is generally limited to a few relatively coarse categorical distinctions-e.g., faces versus bodies, or animals versus artifacts-leaving unknown the neural underpinnings of fine-grained category structure within these large domains. Here we use fMRI to explore brain activity for a set of categories within the animate domain, including six animal species-two each from three very different biological classes: primates, birds, and insects. Patterns of activity throughout ventral object vision cortex reflected the biological classes of the stimuli. Specifically, the abstract representational space-measured as dissimilarity matrices defined between species-specific multivariate patterns of brain activity-correlated strongly with behavioral judgments of biological similarity of the same stimuli. This biological class structure was uncorrelated with structure measured in retinotopic visual cortex, which correlated instead with a dissimilarity matrix defined by a model of V1 cortex for the same stimuli. Additionally, analysis of the shape of the similarity space in ventral regions provides evidence for a continuum in the abstract representational space-with primates at one end and insects at the other. Further investigation into the cortical topography of activity that contributes to this category structure reveals the partial engagement of brain systems active normally for inanimate objects in addition to animate regions. PMID:22357845

Connolly, Andrew C; Guntupalli, J Swaroop; Gors, Jason; Hanke, Michael; Halchenko, Yaroslav O; Wu, Yu-Chien; Abdi, Hervé; Haxby, James V

2012-02-22

327

Immunostaining of Oxidized DJ-1 in Human and Mouse Brains  

PubMed Central

Abstract DJ-1, the product of a causative gene of a familial form of Parkinson disease, undergoes preferential oxidation of Cys106 (cysteine residue at position 106) under oxidative stress. Using specific monoclonal antibodies against Cys106 oxidized DJ-1 (oxDJ-1), we examined oxDJ-1 immunoreactivity in brain sections from DJ-1 knockout and wild-type mice and in human brain sections from cases classified into different Lewy body stages of Parkinson disease and Parkinson disease with dementia. Oxidized DJ-1 immunoreactivity was prominently observed in neuromelanin-containing neurons and neuron processes of the substantia nigra; Lewy bodies also showed oxDJ-1 immunoreactivity. Oxidized DJ-1 was also detected in astrocytes in the striatum, in neurons and glia in the red nucleus, and in the inferior olivary nucleus, all of which are related to regulation of movement. These observations suggest the relevance of DJ-1 oxidation to homeostasis in multiple brain regions, including neuromelanin-containing neurons of the substantia nigra, and raise the possibility that oxDJ-1 levels might change during the progression of Lewy body–associated neurodegenerative diseases. PMID:24918637

Saito, Yoshiro; Miyasaka, Tomohiro; Hatsuta, Hiroyuki; Takahashi-Niki, Kazuko; Hayashi, Kojiro; Mita, Yuichiro; Kusano-Arai, Osamu; Iwanari, Hiroko; Ariga, Hiroyoshi; Hamakubo, Takao; Yoshida, Yasukazu; Niki, Etsuo; Murayama, Shigeo; Ihara, Yasuo; Noguchi, Noriko

2014-01-01

328

Middle Pleistocene human facial morphology in an evolutionary and developmental context.  

PubMed

Neanderthals and modern humans exhibit distinct facial architectures. The patterning of facial morphology of their predecessors, the Middle Pleistocene humans, is more mosaic showing a mix of archaic and modern morphologies. Significant changes in facial size and robusticity occurred throughout Pleistocene human evolution, resulting in temporal trends in both facial reduction and enlargement. However, the allometric patterning in facial morphology in archaic humans is not well understood. This study explores temporal trends in facial morphology in order to gain a clearer understanding of the polarity of features, and describes the allometric patterning of facial shape. The modern human sample comprises cross-sectional growth series of four morphologically distinct human populations. The fossil sample covers specimens from the Middle Pleistocene to the Upper Paleolithic. We digitized landmarks and semilandmarks on surface and computed tomography scans and analyzed the Procrustes shape coordinates. Principal component analyses were performed, and Procrustes distances were used to identify phenetic similarities between fossil hominins. In order to explore the influence of size on facial features, allometric trajectories were calculated for fossil and modern human groups, and developmental simulations were performed. We show that facial features can be used to separate Pleistocene humans into temporal clusters. The distinctly modern human pattern of facial morphology is already present around 170 ka. Species- and population-specific facial features develop before two years of age, and several of the large-scale facial differences between Neanderthals and Middle Pleistocene humans are due to scaling along a shared allometric trajectory. These features include aspects of the frontal bone, browridge morphology, nasal aperture size and facial prognathism. Infraorbital surface topography and orientation of the midface in the European Middle Pleistocene hominins is intermediate between the African Middle Pleistocene and Neanderthal condition. This could suggest that the European Middle Pleistocene hominins display incipient Neanderthal features. PMID:22981042

Freidline, Sarah E; Gunz, Philipp; Harvati, Katerina; Hublin, Jean-Jacques

2012-11-01

329

Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: an integrative study  

Microsoft Academic Search

Chromosome 22q11.2 deletion syndrome is a highly prevalent genetic disorder whose manifestations include developmental disability and sometimes mental retardation. The few studies that have examined brain morphology in different samples from this population have found similar general patterns, mostly using region of interest measures. We employed voxel-based techniques to concurrently examine specific morphologic changes in multiple brain tissue measures. Results

Tony J. Simon; Lijun Ding; Joel P. Bish; Donna M. McDonald-McGinn; Elaine H. Zackai; James Gee

2005-01-01

330

Neuronal avalanches in the resting MEG of the human brain.  

PubMed

What constitutes normal cortical dynamics in healthy human subjects is a major question in systems neuroscience. Numerous in vitro and in vivo animal studies have shown that ongoing or resting cortical dynamics are characterized by cascades of activity across many spatial scales, termed neuronal avalanches. In experiment and theory, avalanche dynamics are identified by two measures: (1) a power law in the size distribution of activity cascades with an exponent of -3/2 and (2) a branching parameter of the critical value of 1, reflecting balanced propagation of activity at the border of premature termination and potential blowup. Here we analyzed resting-state brain activity recorded using noninvasive magnetoencephalography (MEG) from 124 healthy human subjects and two different MEG facilities using different sensor technologies. We identified large deflections at single MEG sensors and combined them into spatiotemporal cascades on the sensor array using multiple timescales. Cascade size distributions obeyed power laws. For the timescale at which the branching parameter was close to 1, the power law exponent was -3/2. This relationship was robust to scaling and coarse graining of the sensor array. It was absent in phase-shuffled controls with the same power spectrum or empty scanner data. Our results demonstrate that normal cortical activity in healthy human subjects at rest organizes as neuronal avalanches and is well described by a critical branching process. Theory and experiment have shown that such critical, scale-free dynamics optimize information processing. Therefore, our findings imply that the human brain attains an optimal dynamical regime for information processing. PMID:23595765

Shriki, Oren; Alstott, Jeff; Carver, Frederick; Holroyd, Tom; Henson, Richard N A; Smith, Marie L; Coppola, Richard; Bullmore, Edward; Plenz, Dietmar

2013-04-17

331

Dynamic reconfiguration of human brain networks during learning  

E-print Network

Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.

Danielle S. Bassett; Nicholas F. Wymbs; Mason A. Porter; Peter J. Mucha; Jean M. Carlson; Scott T. Grafton

2011-10-24

332

Purification and characterization of human brain prolyl endopeptidase.  

PubMed Central

Prolyl endopeptidase (EC 3.4.21.26) was purified from human brain by a series of column-chromatographic steps using DEAE-cellulose DE-52, hydroxyapatite, phenyl-Sepharose, Sephacryl S-200 and f.p.l.c. (Mono Q). The enzyme was purified by a factor of 943 and was homogeneous in a SDS/polyacrylamide gel as judged by Coomassie Blue staining. The Mr estimated by SDS/PAGE is 79,600, and under native conditions on Sephacryl S-200 it is 85,600. Therefore the enzyme exists as a monomer. With benzyloxycarbonylglycylproline p-nitroanilide as substrate, the optimum pH of the enzyme is 6.8, and with the substrate concentration between 0.059 mM and 0.37 mM the Km is 9.0 x 10(-4) M. The pI of the enzyme is 4.75. The enzyme is classified as a serine proteinase, as it is strongly inhibited by di-isopropyl fluorophosphate. However, other serine proteinase inhibitors do not inhibit the enzyme significantly, suggesting that the active site of prolyl endopeptidase differs from that of classical serine proteinases such as trypsin. Polyclonal antibodies were raised against purified human brain prolyl endopeptidase in rabbits. Western-blot analysis, enzyme-inhibition assays, antibody binding and immunoprecipitation experiments indicated that the polyclonal antibodies are both specific and inhibitory to the enzyme activity. Images Fig. 2. Fig. 3. Fig. 6. Fig. 7. PMID:1645530

Kalwant, S; Porter, A G

1991-01-01

333

Somatic retrotransposition alters the genetic landscape of the human brain.  

PubMed

Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells, excluding early embryo development and some malignancies. Recent reports of L1 expression and copy number variation in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes. PMID:22037309

Baillie, J Kenneth; Barnett, Mark W; Upton, Kyle R; Gerhardt, Daniel J; Richmond, Todd A; De Sapio, Fioravante; Brennan, Paul M; Rizzu, Patrizia; Smith, Sarah; Fell, Mark; Talbot, Richard T; Gustincich, Stefano; Freeman, Thomas C; Mattick, John S; Hume, David A; Heutink, Peter; Carninci, Piero; Jeddeloh, Jeffrey A; Faulkner, Geoffrey J

2011-11-24

334

Mapping human brain networks with cortico-cortical evoked potentials.  

PubMed

The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

Keller, Corey J; Honey, Christopher J; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D

2014-10-01

335

Implicit false-belief processing in the human brain.  

PubMed

Eye-movement patterns in 'Sally-Anne' tasks reflect humans' ability to implicitly process the mental states of others, particularly false-beliefs - a key theory of mind (ToM) operation. It has recently been proposed that an efficient ToM system, which operates in the absence of awareness (implicit ToM, iToM), subserves the analysis of belief-like states. This contrasts to consciously available belief processing, performed by the explicit ToM system (eToM). The frontal, temporal and parietal cortices are engaged when humans explicitly 'mentalize' about others' beliefs. However, the neural underpinnings of implicit false-belief processing and the extent to which they draw on networks involved in explicit general-belief processing are unknown. Here, participants watched 'Sally-Anne' movies while fMRI and eye-tracking measures were acquired simultaneously. Participants displayed eye-movements consistent with implicit false-belief processing. After independently localizing the brain areas involved in explicit general-belief processing, only the left anterior superior temporal sulcus and precuneus revealed greater blood-oxygen-level-dependent activity for false- relative to true-belief trials in our iToM paradigm. No such difference was found for the right temporal-parietal junction despite significant activity in this area. These findings fractionate brain regions that are associated with explicit general ToM reasoning and false-belief processing in the absence of awareness. PMID:25042446

Schneider, Dana; Slaughter, Virginia P; Becker, Stefanie I; Dux, Paul E

2014-11-01

336

Knowledge-based localization of hippocampus in human brain MRI  

NASA Astrophysics Data System (ADS)

Hippocampus is an important structure of the human brain limbic system. The variations in the volume and architecture of this structure have been related to certain neurological diseases such as schizophrenia and epilepsy. This paper presents a two-stage method for localizing hippocampus in human brain MRI automatically. The first stage utilizes image processing techniques such as nonlinear filtering and histogram analysis to extract information from MRI. This stage generates binary images, locates lateral and third ventricles, and the inferior limit of Sylvian Fissure. The second stage uses a shell of expert system named VP-EXPERT to analyze the information extracted in the first stage. This stage utilizes absolute and relative spatial rules and spatial symmetry rules to locate the hippocampus. The system has been tested using MRI studies of six epilepsy patients. MRI data consisted of a total of 128 images. The system correctly identified all of the slices without hippocampus, and correctly localized hippocampus is about n 78% of the slices with hippocampus.

Soltanian-Zadeh, Hamid; Siadat, Mohammad-Reza

1999-05-01

337

Dynamic reconfiguration of human brain networks during learning  

PubMed Central

Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes—flexibility and selection—must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance. PMID:21502525

Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Carlson, Jean M.; Grafton, Scott T.

2011-01-01

338

Enzymatic formation of prostaglandin F2 alpha in human brain.  

PubMed

Prostaglandin (PG)E2 9-ketoreductase, which catalyzes the conversion of PGE2 to PGF2 alpha, was purified from human brain to apparent homogeneity. The molecular weight, isoelectric point, optimum pH, Km value for PGE2, and turnover number were 34,000, 8.2, 6.5-7.5, 1.0 mM, and 7.6 min-1, respectively. Among PGs tested, the enzyme also catalyzed the reduction of other PGs such as PGA2, PGE1, and 13,14-dihydro-15-keto PGF2 alpha, but not that of PGD2, 11 beta-PGE2, PGH2, PGJ2, or delta 12-PGJ2. The reaction product formed from PGE2 was identified as PGF2 alpha by TLC combined with HPLC. This enzyme, as is the case for carbonyl reductase, was NADPH-dependent, preferred carbonyl compounds such as 9,10-phenanthrenequinone and menadione as substrates, and was sensitive to indomethacin, ethacrynic acid, and Cibacron blue 3G-A. The reduction of PGE2 was competitively inhibited by 9,10-phenanthrenequinone, which is a good substrate of this enzyme, indicating that the enzyme catalyzed the reduction of both substrates at the same active site. These results suggest that PGE2 9-ketoreductase, which belongs to the family of carbonyl reductases, contributes to the enzymatic formation of PGF2 alpha in human brain. PMID:2388711

Hayashi, H; Fujii, Y; Watanabe, K; Hayaishi, O

1990-04-01

339

A neuronal morphologic type unique to humans and great apes  

Microsoft Academic Search

We report the existence and distribution of an unusual type of projection neuron, a large, spindle-shaped cell, in layer Vb of the anterior cingulate cortex of pongids and hominids. These spindle cells were not observed in any other primate species or any other mammalian taxa, and their volume was correlated with brain volume residuals, a measure of encephalization in higher

ESTHER A. NIMCHINSKY; E MMANUEL GILISSEN; OHN M. ALLMAN; ANIEL P. PERL; J OSEPH M. ERWIN; PATRICK R. HOF

1999-01-01

340

Microcirculation of the brain: morphological assessment in degenerative diseases and restoration processes.  

PubMed

Abstract Brain microcirculation plays an important role in the pathogenesis of various brain diseases. Several specific features of the circulation in the brain and its functions deserve special attention. The brain is extremely sensitive to hypoxia, and brain edema is more dangerous than edema in other tissues. Brain vessels are part of the blood-brain barrier, which prevents the penetration of some of the substances in the blood into the brain tissue. Herein, we review the processes of angiogenesis and the changes that occur in the brain microcirculation in the most prevalent neurodegenerative diseases. There are no uniform vascular changes in the neurodegenerative diseases. In some cases, the vascular changes are secondary consequences of the pathological process, but they could also be involved in the pathogenesis of the primary disease and contribute to the degeneration of neurons, based on their quantitative characteristics. Additionally, we described the stereological methods that are most commonly used for generating qualitative and quantitative data to assess changes in the microvascular bed of the brain. PMID:25337818

Kolinko, Yaroslav; Krakorova, Kristyna; Cendelin, Jan; Tonar, Zbynek; Kralickova, Milena

2015-01-01

341

Functional specificity for high-level linguistic processing in the human brain  

E-print Network

Govern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 ContributedFunctional specificity for high-level linguistic processing in the human brain Evelina Fedorenkoa,1 , Michael K. Behra , and Nancy Kanwishera,b,1 a Brain and Cognitive Sciences Department and b Mc

Kanwisher, Nancy

342

Early Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses  

E-print Network

changing the local environment. The relationship between the local environment and hominin brain expansionEarly Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses Susanne is less clear. The major step- wise expansion in brain size around 1.9 Ma when Homo appeared was coeval

Jones, Peter JS

343

Measurment of folding in surfaces of arbitrary size in human brain development  

E-print Network

Measurment of folding in surfaces of arbitrary size in human brain development C. Rodriguez a novel approach to in-vivo measure- ment of brain surface folding in clinically acquired neonatal MR they are derived. There- fore, applying them to whole brains or subregions of different sizes result in differences

Paris-Sud XI, Université de

344

Human Brain Imaging and Radiation Dosimetry of 11C-N-Desmethyl-Loperamide,  

E-print Network

- tion of radioactivity in the entire body to estimate radiation expo- sure. Methods: Brain PET scans- compartment model to estimate the rate of entry (K1) of radio- tracer into the brain. Whole-body PET scansHuman Brain Imaging and Radiation Dosimetry of 11C-N-Desmethyl-Loperamide, a PET Radiotracer

Shen, Jun

345

Comparative Analysis of Connection and Disconnection in the Human Brain Using  

E-print Network

to reconstruct the pathways which connect regions of the brain together. Proxy measures for the integrityComparative Analysis of Connection and Disconnection in the Human Brain Using Diffusion MRI: New to examine the diffusion characteristics of water in the living brain. A recently developed application

Clayden, Jonathan D.

346

J Neural Transm (2002) 109: 1533 Multi-chemical networking profile of the living human brain  

E-print Network

receptors and their pathways in the brain (Levitt et al., 1984; Rakic et al., 1986, 1988; Lidow et al., 1989J Neural Transm (2002) 109: 15­33 Multi-chemical networking profile of the living human brain: potential relevance to molecular studies of cognition and behavior in normal and diseased brain I. D

Apkarian, A. Vania

347

A Celebration of Neurons: An Educator's Guide to the Human Brain.  

ERIC Educational Resources Information Center

This book provides an introduction to the current scientific understanding of the human brain and its processes. Chapter 1, "At the Edge of a Major Transformation," is an introduction to the field. Chapter 2, "How Our Brain Organizes Itself on the Cellular and Systems Levels," covers what body/brain cellular systems do, how cells process units of…

Sylwester, Robert

348

Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner  

Microsoft Academic Search

Diffusion imaging of post mortem brains has great potential both as a reference for brain specimens that undergo sectioning, and as a link between in vivo diffusion studies and “gold standard” histology\\/dissection. While there is a relatively mature literature on post mortem diffusion imaging of animals, human brains have proven more challenging due to their incompatibility with high-performance scanners. This

Karla L. Miller; Charlotte J. Stagg; Gwenaëlle Douaud; Saad Jbabdi; Stephen M. Smith; Timothy E. J. Behrens; Mark Jenkinson; Steven A. Chance; Margaret M. Esiri; Natalie L. Voets; Ned Jenkinson; Tipu Z. Aziz; Martin R. Turner; Heidi Johansen-Berg; Jennifer A. McNab

2011-01-01

349

The Partition of Trace Amounts of Xenon Between Human Blood and Brain Tissues at 37°C  

Microsoft Academic Search

The relative solubilities of trace amounts of 133Xe at 37° C in human plasma, red blood cells, grey and white matter of the brain, and in homogenized whole brain have been determined. From these data the tissue\\/blood partition coefficients for cortex, white matter and whole brain have been calculated as a function of haematocrit. On the basis of the measured

N. Veall; B. L. Mallett

1965-01-01

350

Brain  

MedlinePLUS

... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

351

Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures  

Microsoft Academic Search

We have defined a signal responsible for the morphological differentiation of human umbilical vein and human dermal microvascular endothelial cells in vitro. We find that human umbilical vein endothelial cells deprived of growth factors undergo morphologi- cal differentiation with tube formation after 6-12 wk, and that human dermal microvascular endothelial cells differentiate after 1 wk of growth factor deprivation. Here,

Yasuo Kubota; Hynda K. Kleinman; George R. Martin; Thomas J. Lawley

1988-01-01

352

Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution.  

PubMed

Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. PMID:21228547

Herculano-Houzel, Suzana; Kaas, Jon H

2011-01-01

353

The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost  

PubMed Central

Neuroscientists have become used to a number of “facts” about the human brain: It has 100 billion neurons and 10- to 50-fold more glial cells; it is the largest-than-expected for its body among primates and mammals in general, and therefore the most cognitively able; it consumes an outstanding 20% of the total body energy budget despite representing only 2% of body mass because of an increased metabolic need of its neurons; and it is endowed with an overdeveloped cerebral cortex, the largest compared with brain size. These facts led to the widespread notion that the human brain is literally extraordinary: an outlier among mammalian brains, defying evolutionary rules that apply to other species, with a uniqueness seemingly necessary to justify the superior cognitive abilities of humans over mammals with even larger brains. These facts, with deep implications for neurophysiology and evolutionary biology, are not grounded on solid evidence or sound assumptions, however. Our recent development of a method that allows rapid and reliable quantification of the numbers of cells that compose the whole brain has provided a means to verify these facts. Here, I review this recent evidence and argue that, with 86 billion neurons and just as many nonneuronal cells, the human brain is a scaled-up primate brain in its cellular composition and metabolic cost, with a relatively enlarged cerebral cortex that does not have a relatively larger number of brain neurons yet is remarkable in its cognitive abilities and metabolism simply because of its extremely large number of neurons. PMID:22723358

Herculano-Houzel, Suzana

2012-01-01

354

Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.  

PubMed

Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine. PMID:23749308

Fins, Joseph J; Shapiro, Zachary E

2014-01-01

355

Morphological processing in a second language: behavioral and event-related brain potential evidence for storage and decomposition.  

PubMed

This study reports the results of two behavioral and two event-related brain potential experiments examining the processing of inflected words in second-language (L2) learners with Russian as their native language. Two different subsystems of German inflection were studied, participial inflection and noun plurals. For participial forms, L2 learners were found to widely generalize the -t suffixation rule in a nonce-word elicitation task, and in the event-related brain potential experiment, they showed an anterior negativity followed by a P600-both results resembling previous findings from native speakers of German on the same materials. For plural formation, the L2 learners displayed different preference patterns for regular and irregular forms in an off-line plural judgment task. Regular and irregular plural forms also differed clearly with regard to their brain responses. Whereas overapplications of the -s plural rule produced a P600 component, overapplications of irregular patterns elicited an N400. In contrast to native speakers of German, however, the L2 learners did not show an anterior negativity for -s plural overapplications. Taken together, the results show clear dissociations between regular and irregular inflection for both morphological subsystems. We argue that the two processing routes posited by dual-mechanism models of inflection (lexical storage and morphological decomposition) are also employed by L2 learners. PMID:16417688

Hahne, Anja; Mueller, Jutta L; Clahsen, Harald

2006-01-01

356

Human brain arteriovenous malformations express lymphatic-associated genes  

PubMed Central

Objective Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may have a role in AVM disease biology. Methods We examined 40 human brain AVMs by immunohistochemistry (IHC) and qRT-PCR for the expression of COUP-TFII as well as other genes involved in venous and lymphatic development, maintenance, and signaling. We also examined proliferation and EC tube formation with human umbilical ECs (HUVEC) following COUP-TFII overexpression. Results We report that AVMs expressed COUP-TFII, SOX18, PROX1, NFATC1, FOXC2, TBX1, LYVE1, Podoplanin, and vascular endothelial growth factor (VEGF)-C, contained Ki67-positive cells and heterogeneously expressed genes involved in Hedgehog, Notch, Wnt, and VEGF signaling pathways. Overexpression of COUP-TFII alone in vitro resulted in increased EC proliferation and dilated tubes in an EC tube formation assay in HUVEC. Interpretation This suggests AVM ECs are further losing their arterial/venous specificity and acquiring a partial lymphatic molecular phenotype. There was significant correlation of gene expression with presence of clinical edema and acute hemorrhage. While the precise role of these genes in the formation, stabilization, growth and risk of hemorrhage of AVMs remains unclear, these findings have potentially important implications for patient management and treatment choice, and opens new avenues for future work on AVM disease mechanisms. PMID:25574473

Shoemaker, Lorelei D; Fuentes, Laurel F; Santiago, Shauna M; Allen, Breanna M; Cook, Douglas J; Steinberg, Gary K; Chang, Steven D

2014-01-01

357

A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation.  

PubMed

Prenatal neuroimaging requires reference models that reflect the normal spectrum of fetal brain development, and summarize observations from a representative sample of individuals. Collecting a sufficiently large data set of manually annotated data to construct a comprehensive in vivo atlas of rapidly developing structures is challenging but necessary for large population studies and clinical application. We propose a method for the semi-supervised learning of a spatio-temporal latent atlas of fetal brain development, and corresponding segmentations of emerging cerebral structures, such as the ventricles or cortex. The atlas is based on the annotation of a few examples, and a large number of imaging data without annotation. It models the morphological and developmental variability across the population. Furthermore, it serves as basis for the estimation of a structures' morphological age, and its deviation from the nominal gestational age during the assessment of pathologies. Experimental results covering the gestational period of 20-30 gestational weeks demonstrate segmentation accuracy achievable with minimal annotation, and precision of morphological age estimation. Age estimation results on fetuses suffering from lissencephaly demonstrate that they detect significant differences in the age offset compared to a control group. PMID:24080527

Dittrich, Eva; Riklin Raviv, Tammy; Kasprian, Gregor; Donner, René; Brugger, Peter C; Prayer, Daniela; Langs, Georg

2014-01-01

358

The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation  

PubMed Central

Complex cognitive functions are widely recognized to be the result of a number of brain regions working together as large-scale networks. Recently, complex network analysis has been used to characterize various structural properties of the large-scale network organization of the brain. For example, the human brain has been found to have a modular architecture i.e., regions within the network form communities (modules) with more connections between regions within the community compared to regions outside it. The aim of this study was to examine the modular and overlapping modular architecture of the brain networks using complex network analysis. We also examined the association between neighborhood level deprivation and brain network structure—modularity and gray nodes. We compared network structure derived from anatomical MRI scans of 42 middle-aged neurologically healthy men from the least (LD) and the most deprived (MD) neighborhoods of Glasgow with their corresponding random networks. Cortical morphological covariance networks were constructed from the cortical thickness derived from the MRI scans of the brain. For a given modularity threshold, networks derived from the MD group showed similar number of modules compared to their corresponding random networks, while networks derived from the LD group had more modules compared to their corresponding random networks. The MD group also had fewer gray nodes—a measure of overlapping modular structure. These results suggest that apparent structural difference in brain networks may be driven by differences in cortical thicknesses between groups. This demonstrates a structural organization that is consistent with a system that is less robust and less efficient in information processing. These findings provide some evidence of the relationship between socioeconomic deprivation and brain network topology. PMID:24273501

Krishnadas, Rajeev; Kim, Jongrae; McLean, John; Batty, G. David; McLean, Jennifer S.; Millar, Keith; Packard, Chris J.; Cavanagh, Jonathan

2013-01-01

359

Characterization of Human Aspartoacylase: The Brain Enzyme Responsible for Canavan Disease  

E-print Network

Characterization of Human Aspartoacylase: The Brain Enzyme Responsible for Canavan Disease Johanne disorder. The low catalytic activity and inherent instability observed with the Escherichia coli be capable of producing a fully functional, mature enzyme. Human aspartoacylase has now been successfully

Viola, Ronald

360

Comparative Analysis of the Macroscale Structural Connectivity in the Macaque and Human Brain  

PubMed Central

The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity patterns, but also lack thereof, primarily involving cingulate regions. We unravel a common structural backbone in both species involving a highly overlapping set of regions. This structural backbone, important for mediating information across the brain, seems to constitute a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary aspects at the macroscale connectivity level and offer a quantitative translational bridge between macaque and human research. PMID:24676052

Bezgin, Gleb; Uylings, Harry B. M.; Roebroeck, Alard; Stiers, Peter

2014-01-01

361

The p53 gene and protein in human brain tumors  

SciTech Connect

Because p53 gene alterations are commonplace in human tumors and because p53 protein is involved in a number of important cellular pathways, p53 has become a topic of intensive investigation, both by basic scientists and clinicians. p53 was initially identified by two independent laboratories in 1979 as a 53 kilodalton (kD) protein that complexes with the large T antigen of SV40 virus. Shortly thereafter, it was shown that the E1B oncoprotein of adenovirus also binds p53. The binding of two different oncogenic viral tumor proteins to the same cellular protein suggested that p53 might be integral to tumorigenesis. The human p53 cDNA and gene were subsequently cloned in the mid-1980s, and analysis of p53 gene alterations in human tumors followed a few year later. During these 10 years, researchers grappling with the vagaries of p53 first characterized the gene as an oncogene, then as a tumor suppressor gene, and most recently as both a tumor suppressor gene and a so-called [open quotes]dominant negative[close quotes] oncogene. The last few years have seen an explosion in work on this single gene and its protein product. A review of a computerized medical database revealed approximately 650 articles on p53 in 1992 alone. p53 has assumed importance in neuro-oncology because p53 mutations and protein alterations are frequent in the common diffuse, fibrillary astrocytic tumors of adults. p53 mutations in astrocytomas were first described in 1989 and were followed by more extensive analyses of gene mutations and protein alterations in adult astrocytomas. The gene has also been studied in less common brain tumors. Elucidating the role of p53 in brain tumorigenesis will not only enhance understanding of brain tumor biology but may also contribute to improved diagnosis and therapy. This discussion reviews key aspects of the p53 gene and protein, and describe their emerging roles in central nervous system neoplasia. 102 refs., 6 figs., 1 tab.

Louis, D.N. (Massachusetts General Hospital, Boston, MA (United States))

1994-01-01

362

EXPERIMENTAL DETERMINATION of HEAT RISE and SAR OCCURRED by 900 MHz EM RADIATION ON HUMAN BRAIN by USING BRAIN PHANTOM MODEL  

Microsoft Academic Search

In this study, heat rise in brain tissue on 900 MHz radiation has been investigated by using phantom model of human brain. Brain equivalent tissue, by considering various exposure possibilities at 900 MHz has been exposed to RFR (Radio Frequency Radiation) at certain periods. When RFR were used, results of heat rise have been logged to computer. Eventually, for human

A. ?ükrü ONURAL

2004-01-01

363

Functional, Morphological, and Metabolic Abnormalities of the Cerebral Microcirculation after Concussive Brain Injury in Cats  

Microsoft Academic Search

SUMMARY We induced experimental concussive brain injury by a fluid percussion device in anes- thetized cats equipped with a cranial window for the observation of the pial microcirculation of the parietal cortex. Brain injury resulted in transient but pronounced increases in arterial blood pressure and in sustained arteriolar vasodilation associated with reduced or absent responsiveness to the vasoconstrictor effect of

ENOCH P. WEI; W. DALTON DIETRICH; JOHN T. POVLISHOCK; RUDOLPH M. NAVARI; HERMES A. KONTOS

364

Abstract representations of associated emotions in the human brain.  

PubMed

Emotions can be aroused by various kinds of stimulus modalities. Recent neuroimaging studies indicate that several brain regions represent emotions at an abstract level, i.e., independently from the sensory cues from which they are perceived (e.g., face, body, or voice stimuli). If emotions are indeed represented at such an abstract level, then these abstract representations should also be activated by the memory of an emotional event. We tested this hypothesis by asking human participants to learn associations between emotional stimuli (videos of faces or bodies) and non-emotional stimuli (fractals). After successful learning, fMRI signals were recorded during the presentations of emotional stimuli and emotion-associated fractals. We tested whether emotions could be decoded from fMRI signals evoked by the fractal stimuli using a classifier trained on the responses to the emotional stimuli (and vice versa). This was implemented as a whole-brain searchlight, multivoxel activation pattern analysis, which revealed successful emotion decoding in four brain regions: posterior cingulate cortex (PCC), precuneus, MPFC, and angular gyrus. The same analysis run only on responses to emotional stimuli revealed clusters in PCC, precuneus, and MPFC. Multidimensional scaling analysis of the activation patterns revealed clear clustering of responses by emotion across stimulus types. Our results suggest that PCC, precuneus, and MPFC contain representations of emotions that can be evoked by stimuli that carry emotional information themselves or by stimuli that evoke memories of emotional stimuli, while angular gyrus is more likely to take part in emotional memory retrieval. PMID:25855179

Kim, Junsuk; Schultz, Johannes; Rohe, Tim; Wallraven, Christian; Lee, Seong-Whan; Bülthoff, Heinrich H

2015-04-01

365

Variation in human brains may facilitate evolutionary change toward a limited range of phenotypes  

PubMed Central

Individual variation is the foundation for evolutionary change, but little is known about the nature of normal variation between brains. Phylogenetic variation across mammalian brains is characterized by high inter-correlations in brain region volumes, distinct allometric scaling for each brain region and the relative independence in olfactory and limbic structures volumes from the rest of the brain. Previous work examining brain variation in individuals of some domesticated species showed that these three features of phylogenetic variation were mirrored in individual variation. We extend this analysis to the human brain and 10 of its subdivisions (e.g., isocortex, hippocampus) by using magnetic resonance imaging scans of 90 human brains ranging between 16 to 25 years of age. Human brain variation resembles both the individual variation seen in other species, and variation observed across mammalian species. That is, the relative differences in the slopes of each brain region compared to medulla size within humans and between mammals are concordant, and limbic structures scale with relative independence from other brain regions. This non-random pattern of variation suggests that developmental programs channel the variation available for selection. PMID:23363667

Charvet, Christine J.; Darlington, Richard B.; Finlay, Barbara L.

2013-01-01

366

Early Modern Humans and Morphological Variation in Southeast Asia: Fossil Evidence from Tam Pa Ling, Laos  

PubMed Central

Little is known about the timing of modern human emergence and occupation in Eastern Eurasia. However a rapid migration out of Africa into Southeast Asia by at least 60 ka is supported by archaeological, paleogenetic and paleoanthropological data. Recent discoveries in Laos, a modern human cranium (TPL1) from Tam Pa Ling‘s cave, provided the first evidence for the presence of early modern humans in mainland Southeast Asia by 63-46 ka. In the current study, a complete human mandible representing a second individual, TPL 2, is described using discrete traits and geometric morphometrics with an emphasis on determining its population affinity. The TPL2 mandible has a chin and other discrete traits consistent with early modern humans, but it retains a robust lateral corpus and internal corporal morphology typical of archaic humans across the Old World. The mosaic morphology of TPL2 and the fully modern human morphology of TPL1 suggest that a large range of morphological variation was present in early modern human populations residing in the eastern Eurasia by MIS 3. PMID:25849125

Demeter, Fabrice; Shackelford, Laura; Westaway, Kira; Duringer, Philippe; Bacon, Anne-Marie; Ponche, Jean-Luc; Wu, Xiujie; Sayavongkhamdy, Thongsa; Zhao, Jian-Xin; Barnes, Lani; Boyon, Marc; Sichanthongtip, Phonephanh; Sénégas, Frank; Karpoff, Anne-Marie; Patole-Edoumba, Elise; Coppens, Yves; Braga, José

2015-01-01

367

A review of morphology–elasticity relationships in human trabecular bone: theories and experiments  

Microsoft Academic Search

In the perspective of predicting mechanical from morphological properties of human trabecular bone, the theoretical and experimental relationships between volume fraction, fabric and elastic properties were reviewed.Five data sets of human trabecular bone and two data sets of idealized cells were obtained from various investigators and analyzed statistically with one isotropic and four anisotropic models. For each model, multiple linear

Philippe K. Zysset

2003-01-01

368

How Humans Differ from Other Animals in Their Levels of Morphological Variation  

E-print Network

and Department of Biology, McGill University, Montreal, Canada Abstract Animal species come in many shapes how humans compare to other animals in terms of body size variation. We quantitatively compare levels of morphological variation within humans compare to those in other animal species. We use body size as our focal

Hendry, Andrew

369

Phenotypic evolution of human craniofacial morphology after admixture: A geometric morphometrics approach  

Microsoft Academic Search

An evolutionary, diachronic approach to the phenotypic craniofacial pattern arisen in a human population after high levels of admixture and gene flow was achieved by means of geometric morphometrics. Ad- mixture has long been studied after molecular data. Nevertheless, few efforts have been made to explain the morphological outcome in human craniofacial samples. The Spanish-Amerindian contact can be considered a

Neus Martínez-Abadías; Rolando González-José; Antonio González-Martín; Silvina Van der Molen; Arturo Talavera; Patricia Hernández; Miquel Hernández

2006-01-01

370

Morphologic, Phenotypic and Functional Characteristics of Endothelial Cells Derived from Human Hepatic Cavernous Hemangioma  

Microsoft Academic Search

Backgrounds\\/Aims: The pathogenesis of cavernous hemangiomas is largely unknown, and it is speculated that abnormal vasculogenesis and angiogenesis may be involved. In this study, the characteristics of cavernous hemangioma endothelial cells (CHECs) derived from the human liver were analyzed in terms of morphology, phenotype and function and compared with human liver sinusoidal endothelial cells (LSECs). Methods and Results: By transmission

Wen-jian Zhang; Li-ya Ye; Lian-qiu Wu; Yu-ling Xin; Feng Gu; Ji-xiao Niu; Zhi-hua Yang; Guang-jin Zhu; Georges E. Grau; Jin-ning Lou

2006-01-01

371

Human brain activity with near-infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Human brain activity was studied with a real time functional Near-InfraRed Imager (fNIRI). The imager has 16 measurement channels and covers 4 cm by 9 cm detection area. Brain activities in occipital, motor and prefrontal area were studied with the fNIRI. In prefrontal stimulation, language cognition, analogies, forming memory for new associations, emotional thinking, and mental arithmetic were carried out. Experimental results measured with fNIRI are demonstrated in this paper. It was shown that fNIRI technique is able to reveal the occipital activity during visual stimulation, and co-register well with results of fMRI in the motor cortex activity during finger tapping. In the studies of the effects of left prefrontal lobe on forming memory for new associations, it is shown that left prefrontal lobe activated more under deep conditions than that under shallow encoding, especially the dorsal part. In the studies of emotional thinking, it was shown that the responses were different between positive- negative emotional thinking and negative-positive emotional thinking. In mental arithmetic studies, higher activation was found in the first task than in the second, regardless of the difficulty, and higher activation was measured in subtraction of 17 than in subtraction of 3.

Luo, Qingming; Chance, Britton

1999-09-01

372

Giovanni Aldini: from animal electricity to human brain stimulation.  

PubMed

Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834. PMID:15595271

Parent, André

2004-11-01

373

Asymmetry of White Matter Pathways in Developing Human Brains.  

PubMed

Little is known about the emergence of structural asymmetry of white matter tracts during early brain development. We examined whether and when asymmetry in diffusion parameters of limbic and association white matter pathways emerged in humans in 23 brains ranging from 15 gestational weeks (GW) up to 3 years of age (11 ex vivo and 12 in vivo cases) using high-angular resolution diffusion imaging tractography. Age-related development of laterality was not observed in a limbic connectional pathway (cingulum bundle or fornix). Among the studied cortico-cortical association pathways (inferior longitudinal fasciculus [ILF], inferior fronto-occipital fasciculus, and arcuate fasciculus), only the ILF showed development of age-related laterality emerging as early as the second trimester. Comparisons of ages older and younger than 40 GW revealed a leftward asymmetry in the cingulum bundle volume and a rightward asymmetry in apparent diffusion coefficient and leftward asymmetry in fractional anisotropy in the ILF in ages older than 40 GW. These results suggest that morphometric asymmetry in cortical areas precedes the emergence of white matter pathway asymmetry. Future correlative studies will investigate whether such asymmetry is anatomically/genetically driven or associated with functional stimulation. PMID:24812082

Song, Jae W; Mitchell, Paul D; Kolasinski, James; Ellen Grant, P; Galaburda, Albert M; Takahashi, Emi

2014-05-01

374

Application and optimization of microarray technologies for human postmortem brain studies  

Microsoft Academic Search

A number of microarray investigations using human postmortem brain tissue have been published recently, exploring a multitude of human brain disorders with the aim of unraveling the underlying pathologies. Although the technology is still developing and lacks sufficient sensitivity with regard to detecting splice variants and low abundance transcripts, microarrays are becoming the prominent method for candidate gene screening in

Margaret M Ryan; Stephen J Huffaker; Maree J Webster; Matt Wayland; Tom Freeman; Sabine Bahn

2004-01-01

375

Video Article Monitoring Acupuncture Effects on Human Brain by fMRI  

E-print Network

Video Article Monitoring Acupuncture Effects on Human Brain by fMRI Kathleen K. S. Hui1, Vitaly). Monitoring Acupuncture Effects on Human Brain by fMRI. JoVE. 38. http://www.jove.com/index/Details.stp?ID=1190, doi: 10.3791/1190 Abstract Functional MRI is used to study the effects of acupuncture on the BOLD

Napadow, Vitaly

376

Getting it: human event-related brain response to jokes in good and poor comprehenders  

E-print Network

Getting it: human event-related brain response to jokes in good and poor comprehenders Seana event-related brain potentials (ERPs) from adults reading one-line jokes or non-joke controls The ability to appreciate humor is an intriguing aspect of human behavior, considered by many to be a defining

Coulson, Seana

377

Color of Scents: Chromatic Stimuli Modulate Odor Responses in the Human Brain  

E-print Network

Color of Scents: Chromatic Stimuli Modulate Odor Responses in the Human Brain Robert A. O, and Gemma A. Calvert. Color of scents: chromatic stimuli modulate odor responses in the human brain. J Neurophysiol 93: 3434­3441, 2005. First published February 2, 2005; doi:10.1152/jn.00555.2004. Color has

Hansen, Peter

378

Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size  

Microsoft Academic Search

The defining process in the evolution of primates and particularly humans is the dramatic expansion of the brain. While many types of genes could potentially contribute to this process, genes that specifically regulate brain size during development may be especially relevant. Here, we examine the evolution of the microcephalin gene, whose null mutation in humans causes primary microcephaly, a congenital

Patrick D. Evans; Jeffrey R. Anderson; Eric J. Vallender; Sun Shim Choi

2004-01-01

379

Functional Holography of Complex Networks Activity--From Cultures to the Human Brain  

E-print Network

Functional Holography of Complex Networks Activity--From Cultures to the Human Brain ITAY BARUCHI,1 activity was discovered from cultured networks to the human brain. These findings could be a consequence- ces and their corresponding connectivity diagrams. Exam- ples range from metabolic pathways, through

Jacob, Eshel Ben

380

Noninvasive quantification of human brain antioxidant concentrations after an intravenous bolus of vitamin C  

Technology Transfer Automated Retrieval System (TEKTRAN)

Background: Until now, antioxidant based initiatives for preventing dementia have lacked a means to detect deficiency or measure pharmacologic effect in the human brain in situ. Objective: Our objective was to apply a novel method to measure key human brain antioxidant concentrations throughout the ...

381

Videomicroscopy, Image Processing, and Analysis of Whole Histologic Sections of the Human Brain  

E-print Network

Videomicroscopy, Image Processing, and Analysis of Whole Histologic Sections of the Human Brain registration ABSTRACT Serial histologic sections of a whole human brain may have extensions of up to 130 Ã? 130 be applied to a systematic analysis of a larger sequence of serial histologic sections. The objective

Modersitzki, Jan

382

N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons.  

PubMed

Alterations in inhibitory and excitatory neurotransmission play a central role in the etiology of epilepsy, with overstimulation of glutamate receptors influencing epileptic activity and corresponding neuronal damage. N-methyl-D-aspartate (NMDA) receptors, which belong to a class of ionotropic glutamate receptors, play a primary role in this process. This study compared the anticonvulsant properties of two NMDA receptor channel blockers, memantine and 1-phenylcyclohexylamine (IEM-1921), in a pentylenetetrazole (PTZ) model of seizures in rats and investigated their potencies in preventing PTZ-induced morphological changes in the brain. The anticonvulsant properties of IEM-1921 (5 mg/kg) were more pronounced than those of memantine at the same dose. IEM-1921 and memantine decreased the duration of convulsions by 82% and 37%, respectively. Both compounds were relatively effective at preventing the tonic component of seizures but not myoclonic seizures. Memantine significantly reduced the lethality caused by PTZ-induced seizures from 42% to 11%, and all animals pretreated with IEM-1921 survived. Morphological examination of the rat brain 24 hr after administration of PTZ revealed alterations in the morphology of 20-25% of neurons in the neocortex and the hippocampus, potentially induced by excessive glutamate. The expression of the excitatory amino acid transporter 1 protein was increased in the hippocampus of the PTZ-treated rats. However, dark neurons did not express caspase-3 and were immunopositive for the neuronal nuclear antigen protein, indicating that these neurons were alive. Both NMDA antagonists prevented neuronal abnormalities in the brain. These results suggest that NMDA receptor channel blockers might be considered possible neuroprotective agents for prolonged seizures or status epilepticus leading to neuronal damage. PMID:25359451

Zaitsev, Aleksey V; Kim, Kira Kh; Vasilev, Dmitry S; Lukomskaya, Nera Ya; Lavrentyeva, Valeria V; Tumanova, Natalia L; Zhuravin, Igor A; Magazanik, Lev G

2015-03-01

383

Neural dynamics underlying target detection in the human brain.  

PubMed

Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944

Bansal, Arjun K; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R; Kreiman, Gabriel

2014-02-19

384

Face Encoding and Recognition in the Human Brain  

NASA Astrophysics Data System (ADS)

A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.

Haxby, James V.; Ungerleider, Leslie G.; Horwitz, Barry; Maisog, Jose Ma.; Rapoport, Stanley I.; Grady, Cheryl L.

1996-01-01

385

Migratory Pattern of Fetal Rat Brain Cells and Human Glioma Cells in the Adult Rat Brain1  

Microsoft Academic Search

The migratory behavior of two human glioma cell lines (D-54MG and (,.iM(.i and fetal rat brain cells grafted into the adult rat brain was studied. To trace the implanted cells, they were stained with the carbo- cyanine vital dye l,l'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate before injecting them into the white matter above the corpus calli IMI in. The animals were sacrificed 2 h

Paal-Henning Pedersen; Kirsten Marienhagen; Rolf Bjerkvig

1993-01-01

386

Space, time, and causality in the human brain.  

PubMed

The ability to perceive causality is a central human ability constructed from elemental spatial and temporal information present in the environment. Although the nature of causality has captivated philosophers and scientists since antiquity, the neural correlates of causality remain poorly understood. In the present study, we used functional magnetic resonance imaging (fMRI) to generate hypotheses for candidate brain regions related to component processes important for perceptual causality in the human brain: elemental space perception, elemental time perception, and decision-making (Experiment 1; n=16). We then used transcranial direct current stimulation (tDCS) to test neural hypotheses generated from the fMRI experiment (Experiment 2; n=16). In both experiments, participants judged causality in billiard-ball style launching events; a blue ball approaches and contacts a red ball. Spatial and temporal contributions to causal perception were assessed by parametrically varying the spatial linearity and the temporal delays of the movement of the balls. Experiment 1 demonstrated unique patterns of activation correlated with spatial, temporal, and decision-making components of causality perception. Using tDCS, we then tested hypotheses for the specific roles of the parietal and frontal cortices found in the fMRI experiment. Parietal stimulation only decreased participants' perception of causality based on spatial violations, while frontal stimulation made participants less likely to perceive causality based on violations of space and time. Converging results from fMRI and tDCS indicate that parietal cortices contribute to causal perception because of their specific role in processing spatial relations, while the frontal cortices contribute more generally, consistent with their role in decision-making. PMID:24561228

Woods, Adam J; Hamilton, Roy H; Kranjec, Alexander; Minhaus, Preet; Bikson, Marom; Yu, Jonathan; Chatterjee, Anjan

2014-05-15

387

A mouse model of human repetitive mild traumatic brain injury  

PubMed Central

A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

2011-01-01

388

COMPUTER MODEL OF HUMAN LUNG MORPHOLOGY TO COMPLEMENT SPECT ANALYSES  

EPA Science Inventory

Aerosol therapy protocols could be improved if inhaled pharmacologic drugs were selectively deposited within the human lung. he targeted delivery to specific sites, such as receptors and sensitive airway cells, would enhance the efficacies of airborne pharmaceuticals. he high res...

389

Morphometric analysis of the supraoptic nucleus in the human brain.  

PubMed Central

The supraoptic nucleus (SON) in the human hypothalamus is an elongated, densely packed collection of large neurosecretory cells. The size, shape and cellular morphology of the dorsolateral part of the SON was examined in relation to sex and age in adult subjects. In this region, the following parameters were measured: length of the rostrocaudal axis, maximum cross-sectional area, volume, numerical cell density, total cell number and the mean diameter of the cell nuclei. No sexual differences were observed in any of these parameters with the exception that males have a more elongated SON than females. In contrast to absolute size, sex-linked differences were found in the way the morphometric parameters are interrelated. Of the parameters investigated, only the number of cells in the SON showed significant changes with ageing. A striking increase in the total number of cells, by about 30%, was found between 40 and 65 years of age. A further increase in cell number was observed after the age of 65 years, as a result of which the nucleus contained, on average, 1.4 times as many cells in old subjects (65-90 years) as in young individuals (20-40 years). These findings suggest that a substantial proliferation of glial cells takes place in the human supraoptic nucleus with advancing age. Finally, the morphology of the SON was compared with that of other hypothalamic regions--the suprachiasmatic nucleus (SCN) and the paraventricular nucleus (PVN)--using the same material as that used in previous investigations in this series (Hofman et al. 1988; Hofman & Swaab, 1989). PMID:2272907

Hofman, M A; Goudsmit, E; Purba, J S; Swaab, D F

1990-01-01

390

Neanderthal brain size at birth provides insights into the evolution of human life history.  

PubMed

From birth to adulthood, the human brain expands by a factor of 3.3, compared with 2.5 in chimpanzees [DeSilva J and Lesnik J (2006) Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. J Hum Evol 51: 207-212]. How the required extra amount of human brain growth is achieved and what its implications are for human life history and cognitive development are still a matter of debate. Likewise, because comparative fossil evidence is scarce, when and how the modern human pattern of brain growth arose during evolution is largely unknown. Virtual reconstructions of a Neanderthal neonate from Mezmaiskaya Cave (Russia) and of two Neanderthal infant skeletons from Dederiyeh Cave (Syria) now provide new comparative insights: Neanderthal brain size at birth was similar to that in recent Homo sapiens and most likely subject to similar obstetric constraints. Neanderthal brain growth rates during early infancy were higher, however. This pattern of growth resulted in larger adult brain sizes but not in earlier completion of brain growth. Because large brains growing at high rates require large, late-maturing, mothers [Leigh SR and Blomquist GE (2007) in Campbell CJ et al. Primates in perspective; pp 396-407], it is likely that Neanderthal life history was similarly slow, or even slower-paced, than in recent H. sapiens. PMID:18779579

Ponce de León, Marcia S; Golovanova, Lubov; Doronichev, Vladimir; Romanova, Galina; Akazawa, Takeru; Kondo, Osamu; Ishida, Hajime; Zollikofer, Christoph P E

2008-09-16

391

Aerobic glycolysis in the human brain is associated with development and neotenous gene expression  

PubMed Central

SUMMARY Aerobic glycolysis (AG), i.e., non-oxidative metabolism of glucose despite the presence of abundant oxygen, accounts for 10–12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938

Goyal, Manu S.; Hawrylycz, Michael; Miller, Jeremy A.; Snyder, Abraham Z.; Raichle, Marcus E.

2015-01-01

392

Development of a high angular resolution diffusion imaging human brain template.  

PubMed

Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528

Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

2014-05-01

393

Fetal functional imaging portrays heterogeneous development of emerging human brain networks.  

PubMed

The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

2014-01-01

394

Fetal functional imaging portrays heterogeneous development of emerging human brain networks  

PubMed Central

The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

2014-01-01

395

Direct measurement of brain glucose concentrations in humans by sup 13 C NMR spectroscopy  

SciTech Connect

Glucose is the main fuel for energy metabolism in the normal human brain. It is generally assumed that glucose transport into the brain is not rate-limiting for metabolism. Since brain glucose concentrations cannot be determined directly by radiotracer techniques, the authors used {sup 13}C NMR spectroscopy after infusing enriched D-(1-{sup 13}C)glucose to measure brain glucose concentrations at euglycemia and at hyperglycemia in six healthy children. Brain glucose concentrations averaged 1.0 {plus minus} 0.1 {mu}mol/ml at euglycemia and 1.8-2.7 {mu}mol/ml at hyperglycemia. Michaelis-Menten parameters of transport were calculated from the relationship between plasma and brain glucose concentrations. The brain glucose concentrations and transport constants are consistent with transport not being rate-limiting for resting brain metabolism at plasma levels >3 mM.

Gruetter, R.; Novotny, E.J.; Boulware, S.D.; Rothman, D.L.; Mason, G.F.; Shulman, G.I.; Shulan, R.G.; Tamborlane, W.V. (Yale Univ., New Haven, CT (United States))

1992-02-01

396

Morphological Integration of the Modern Human Mandible during Ontogeny  

PubMed Central

Craniofacial integration is prevalent in anatomical modernity research. Little investigation has been done on mandibular integration. Integration patterns were quantified in a longitudinal modern human sample of mandibles. This integration pattern is one of modularization between the alveolar and muscle attachment regions, but with age-specific differences. The ascending ramus and nonalveolar portions of the corpus remain integrated throughout ontogeny. The alveolar region is dynamic, becoming modularized according to the needs of the mandible at a particular developmental stage. Early in ontogeny, this modularity reflects the need for space for the developing dentition; later, modularity is more reflective of mastication. The overall pattern of modern human mandibular integration follows the integration pattern seen in other mammals, including chimpanzees. Given the differences in craniofacial integration patterns between humans and chimpanzees, but the similarities in mandibular integration, it is likely that the mandible has played the more passive role in hominin skull evolution. PMID:21716741

Polanski, Joshua M.

2011-01-01

397

Morphological Integration of the Modern Human Mandible during Ontogeny.  

PubMed

Craniofacial integration is prevalent in anatomical modernity research. Little investigation has been done on mandibular integration. Integration patterns were quantified in a longitudinal modern human sample of mandibles. This integration pattern is one of modularization between the alveolar and muscle attachment regions, but with age-specific differences. The ascending ramus and nonalveolar portions of the corpus remain integrated throughout ontogeny. The alveolar region is dynamic, becoming modularized according to the needs of the mandible at a particular developmental stage. Early in ontogeny, this modularity reflects the need for space for the developing dentition; later, modularity is more reflective of mastication. The overall pattern of modern human mandibular integration follows the integration pattern seen in other mammals, including chimpanzees. Given the differences in craniofacial integration patterns between humans and chimpanzees, but the similarities in mandibular integration, it is likely that the mandible has played the more passive role in hominin skull evolution. PMID:21716741

Polanski, Joshua M

2011-01-01

398

Insulin Resistance Alters Islet Morphology in Nondiabetic Humans  

PubMed Central

Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects pancreatic ?-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of ?- and ?-cells that resulted in an altered ?-cell–to–?-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from duct cells and transdifferentiation of ?-cells are potential contributors to the ?-cell compensatory response to insulin resistance in the absence of overt diabetes. PMID:24215793

Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio; Clemente, Gennaro; Hu, Jiang; Pontecorvi, Alfredo; Holst, Jens J.; Giaccari, Andrea; Kulkarni, Rohit N.

2014-01-01

399

Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness  

PubMed Central

Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. PMID:24866127

Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Pieszek, Raik; Sherwood, Chet C.; Hof, Patrick R.; Ely, John J.; Steinhauser, Dirk; Willmitzer, Lothar; Bangsbo, Jens; Hansson, Ola; Call, Josep; Giavalisco, Patrick; Khaitovich, Philipp

2014-01-01

400

Interactions between cardiac, respiratory, and brain activity in humans  

NASA Astrophysics Data System (ADS)

The electrical activity of the heart (ECG), respiratory function and electric activity of the brain (EEG) were simultaneously recorded in conscious, healthy humans. Instantaneous frequencies of the heart beat, respiration and ?-waves were then determined from 30-minutes recordings. The instantaneous cardiac frequency was defined as the inverse value of the time interval between two consecutive R-peaks. The instantaneous respiratory frequency was obtained from recordings of the excursions of thorax by application of the Hilbert transform. To obtain the instantaneous frequency of ?-waves, the EEG signal recorded from the forehead was first analysed using the wavelet transform. Then the frequency band corresponding to ?-waves was extracted and the Hilbert transform applied. Synchronization analysis was performed and the direction of coupling was ascertained, using pairs of instantaneous frequencies in each case. It is shown that the systems are weakly bidirectionally coupled. It was confirmed that, in conscious healthy humans, respiration drives cardiac activity. We also demonstrate from these analyses that ?-activity drives both respiration and cardiac activity.

Musizza, Bojan; Stefanovska, Aneta

2005-05-01

401

Shape Analysis with Conformal Invariants for Multiply Connected Domains and its Application to Analyzing Brain Morphology  

E-print Network

in Alzheimer's disease (AD) and Williams syndrome (WS). Af- ter cutting along various landmark curves morphology in Alzheimer's disease and Williams syndrome. Our conformal invariants are based on the surface

402

Automated morphological analysis of magnetic resonance brain imaging using spectral analysis.  

PubMed

Analysis of structural neuroimaging studies often relies on volume or shape comparisons of labeled neuroanatomical structures in two or more clinical groups. Such studies have common elements involving segmentation, morphological feature extraction for comparison, and subject and group discrimination. We combine two state-of-the-art analysis approaches, namely automated segmentation using label fusion and classification via spectral analysis to explore the relationship between the morphology of neuroanatomical structures and clinical diagnosis in dementia. We apply this framework to a cohort of normal controls and patients with mild dementia where accurate diagnosis is notoriously difficult. We compare and contrast our ability to discriminate normal and abnormal groups on the basis of structural morphology with (supervised) and without (unsupervised) knowledge of each individual's diagnosis. We test the hypothesis that morphological features resulting from Alzheimer disease processes are the strongest discriminator between groups. PMID:18761093

Aljabar, P; Rueckert, D; Crum, W R

2008-11-01

403

Brain Organization into Resting State Networks Emerges at Criticality on a Model of the Human Connectome  

NASA Astrophysics Data System (ADS)

The relation between large-scale brain structure and function is an outstanding open problem in neuroscience. We approach this problem by studying the dynamical regime under which realistic spatiotemporal patterns of brain activity emerge from the empirically derived network of human brain neuroanatomical connections. The results show that critical dynamics unfolding on the structural connectivity of the human brain allow the recovery of many key experimental findings obtained from functional magnetic resonance imaging, such as divergence of the correlation length, the anomalous scaling of correlation fluctuations, and the emergence of large-scale resting state networks.

Haimovici, Ariel; Tagliazucchi, Enzo; Balenzuela, Pablo; Chialvo, Dante R.

2013-04-01

404

Liu A K, Belliveau J W, Dale A M 1998 Spatiotemporal imaging of human brain activity using functional MRI constrained  

E-print Network

Liu A K, Belliveau J W, Dale A M 1998 Spatiotemporal imaging of human brain activity using States of America 95: 765­72 Raichle M E 2000 A brief history of human functional brain mapping. In: Toga in human brain functional anatomy during nonmotor learning. Cerebral Cortex 4: 8­26 Raichle M E, Mac

Silverman, Bernard

405

ELECTRONIC REALIZATION OF HUMAN BRAIN'S NEO-CORTEX COLUMN A thesis (or dissertation) submitted to the faculty of  

E-print Network

i ELECTRONIC REALIZATION OF HUMAN BRAIN'S NEO-CORTEX COLUMN USING FPGA A thesis (or dissertation Realization of Human Brain's Neo-Cortex Column Using FPGA by Padmavalli Vadali, and that in my opinion Moffatt Professor of Biology #12;iii ELECTRONIC REALIZATION OF HUMAN BRAIN'S NEO-CORTEX COLUMN USING FPGA

Mahmoodi, Hamid

406

Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging  

Microsoft Academic Search

Magnetic resonance imaging (MRI) was used to evaluate sex differences in brain morphology by comparing measures of brain tissue volume, brain tissue composition (proportions of gray and white matter), and measures of cortical surface anatomy. A large and well-matched sample of healthy women (n=42) and healthy men (n=42) were evaluated. There was a significant gender effect on intracranial volume, males

Peg Nopoulos; Michael Flaum; Dan O’Leary; Nancy C Andreasen

2000-01-01

407

Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain  

PubMed Central

Background: The information of gene expression obtained from databases, have made possible the extraction and analysis of data related with several molecular processes involving not only in brain homeostasis but its disruption in some neuropathologies; principally in Down syndrome and the Alzheimer disease. Objective: To correlate the levels of transcription of 19 genes located in the Down Syndrome Critical Region (DSCR) with their expression in several substructures of normal human brain. Methods: There were obtained expression profiles of 19 DSCR genes in 42 brain substructures, from gene expression values available at the database of the human brain of the Brain Atlas of the Allen Institute for Brain Sciences", (http://human.brain-map.org/). The co-expression patterns of DSCR genes in brain were calculated by using multivariate statistical methods. Results: Highest levels of gene expression were registered at caudate nucleus, nucleus accumbens and putamen among central areas of cerebral cortex. Increased expression levels of RCAN1 that encode by a protein involved in signal transduction process of the CNS were recorded for PCP4 that participates in the binding to calmodulin and TTC3; a protein that is associated with differentiation of neurons. That previously identified brain structures play a crucial role in the learning process, in different class of memory and in motor skills. Conclusion: The precise regulation of DSCR gene expression is crucial to maintain the brain homeostasis, especially in those areas with high levels of gene expression associated with a remarkable process of learning and cognition.

Montoya, Julio Cesar; Fajardo, Dianora; Peña, Angela; Sánchez, Adalberto; Domínguez, Martha C; Satizábal, José María

2014-01-01

408

Coronal in vivo forward-imaging of rat brain morphology with an ultra-small optical coherence tomography fiber probe.  

PubMed

A well-established navigation method is one of the key conditions for successful brain surgery: it should be accurate, safe and online operable. Recent research shows that optical coherence tomography (OCT) is a potential solution for this application by providing a high resolution and small probe dimension. In this study a fiber-based spectral-domain OCT system utilizing a super-luminescent-diode with the center wavelength of 840 nm providing 14.5 ?m axial resolution was used. A composite 125 ?m diameter detecting probe with a gradient index (GRIN) fiber fused to a single mode fiber was employed. Signals were reconstructed into grayscale images by horizontally aligning A-scans from the same trajectory with different depths. The reconstructed images can display brain morphology along the entire trajectory. For scans of typical white matter, the signals showed a higher reflection of light intensity with lower penetration depth as well as a steeper attenuation rate compared to the scans typical for gray matter. Micro-structures such as axon bundles (70 ?m) in the caudate nucleus are visible in the reconstructed images. This study explores the potential of OCT to be a navigation modality in brain surgery. PMID:23318277

Xie, Yijing; Bonin, Tim; Löffler, Susanne; Hüttmann, Gereon; Tronnier, Volker; Hofmann, Ulrich G

2013-02-01

409

Real-time classification of activated brain areas for fMRI-based human-brain-interfaces  

NASA Astrophysics Data System (ADS)

Functional MR imaging (fMRI) enables to detect different activated brain areas according to the performed tasks. However, data are usually evaluated after the experiment, which prohibits intra-experiment optimization or more sophisticated applications such as biofeedback experiments. Using a human-brain-interface (HBI), subjects are able to communicate with external programs, e.g. to navigate through virtual scenes, or to experience and modify their own brain activation. These applications require the real-time analysis and classification of activated brain areas. Our paper presents first results of different strategies for real-time pattern analysis and classification realized within a flexible experiment control system that enables the volunteers to move through a 3D virtual scene in real-time using finger tapping tasks, and alternatively only thought-based tasks.

Moench, Tobias; Hollmann, Maurice; Grzeschik, Ramona; Mueller, Charles; Luetzkendorf, Ralf; Baecke, Sebastian; Luchtmann, Michael; Wagegg, Daniela; Bernarding, Johannes

2008-03-01

410

Brain morphological abnormalities in 49,XXXXY syndrome: A pediatric magnetic resonance imaging study???  

PubMed Central

As a group, people with the sex chromosome aneuploidy 49,XXXXY have characteristic physical and cognitive/behavioral tendencies, although there is high individual variation. In this study we use magnetic resonance imaging (MRI) to examine brain morphometry in 14 youth with 49,XXXXY compared to 42 age-matched healthy controls. Total brain size was significantly smaller (t = 9.0, p < .001), and rates of brain abnormalities such as colpocephaly, plagiocephaly, periventricular cysts, and minor craniofacial abnormalities were significantly increased. White matter lesions were identified in 50% of subjects, supporting the inclusion of 49,XXXXY in the differential diagnosis of small multifocal white matter lesions. Further evidence of abnormal development of white matter was provided by the smaller cross sectional area of the corpus callosum. These results suggest that increased dosage of genes on the X chromosome has adverse effects on white matter development. PMID:23667827

Blumenthal, Jonathan D.; Baker, Eva H.; Lee, Nancy Raitano; Wade, Benjamin; Clasen, Liv S.; Lenroot, Rhoshel K.; Giedd, Jay N.

2013-01-01

411

Influence of nanoparticles of platinum on chicken embryo development and brain morphology  

PubMed Central

Platinum nanoparticles (NP-Pt) are noble metal nanoparticles with unique physiochemical properties that have recently elicited much interest in medical research. However, we still know little about their toxicity and influence on general health. We investigated effects of NP-Pt on the growth and development of the chicken embryo model with emphasis on brain tissue micro- and ultrastructure. The embryos were administered solutions of NP-Pt injected in ovo at concentrations from 1 to 20 ?g/ml. The results demonstrate that NP-Pt did not affect the growth and development of the embryos; however, they induced apoptosis and decreased the number of proliferating cells in the brain tissue. These preliminary results indicate that properties of NP-Pt might be utilized in brain cancer therapy, but potential toxic side effects must be elucidated in extensive follow-up research. PMID:23705751

2013-01-01

412

Effects of heat on fragility and morphology of human and calf erythrocytes.  

PubMed

It is important to know the species differences when data from animal experiments are interpreted for human application. This in vitro study focused on the effects of heat, a major concern in mechanically actuated artificial heart development, on the physiology of human and calf erythrocytes (RBC). RBC from calves and healthy human donors were incubated at 25, 37, 46, 48, 50, or 52 degrees C for 1 h. Osmotic fragility was tested and morphological changes were then observed by scanning electron microscopy. The osmotic fragility of human and calf RBC increased at and above 50 degrees C. After incubation at 50 degrees C, 6% of human and 1% of calf RBC hemolyzed. Changes in surface morphology, which included spherocytic or echinocytic forms, were observed in 97% of human and 19% of calf RBC after incubation at 50 degrees C. In conclusion, human RBC showed greater changes in osmotic fragility and morphology at and above 50 degrees C. These changes, however, were not observed in either species after 1 h incubation at 46 degrees C. PMID:1472484

Utoh, J; Zajkowski-Brown, J E; Harasaki, H

1992-01-01

413

Antipsychotic Drug Effects on Brain Morphology in First-Episode Psychosis  

Microsoft Academic Search

Background: Pathomorphologic brain changes occur- ring as early as first-episode schizophrenia have been ex- tensively described. Longitudinal studies have demon- strated that these changes may be progressive and associated with clinical outcome. This raises the possi- bility that antipsychotics might alter such pathomorpho- logic progression in early-stage schizophrenia. Objective: To test a priori hypotheses that olanzapine- treated patients have less

Jeffrey A. Lieberman; Gary D. Tollefson; Cecil Charles; Robert Zipursky; Tonmoy Sharma; Rene S. Kahn; Richard S. E. Keefe; Alan I. Green; Raquel E. Gur; Joseph McEvoy; Diana Perkins; Robert M. Hamer; Hongbin Gu; Mauricio Tohen

2005-01-01

414

Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain  

Microsoft Academic Search

The anatomical distribution and density of cannabinoid receptors in the human brain was studied in one fetal (33weeks gestation), two neonatal (aged three to six months) and eight adult (aged 21–81years) human cases using quantitative receptor autoradiography following in vitro labelling of sections with the synthetic cannabinoid agonist [3H]CP55,940.Cannabinoid receptors were distributed in a heterogeneous fashion throughout the adult human

M Glass; R. L. M Faull; M Dragunow

1997-01-01

415

Intranasal Delivery of Human ?-Amyloid Peptide in Rats: Effective Brain Targeting  

Microsoft Academic Search

(1) Intranasal administration is a non-invasive and effective way for the delivery of drugs to brain that circumvents the\\u000a blood–brain barrier. The aims of the study were to test a nasal delivery system for human ?-amyloid (A?) peptides, to measure\\u000a the delivery of the peptides to brain regions, and to test their biological activity in rats. (2) A?1-42, in the

Eszter Sipos; Anita Kurunczi; András Fehér; Zsuzsa Penke; Lívia Fülöp; Ágnes Kasza; János Horváth; Sándor Horvát; Szilvia Veszelka; Gábor Balogh; Levente Kürti; István Er?s; Piroska Szabó-Révész; Árpád Párducz; Botond Penke; Mária A. Deli

2010-01-01

416

Morphological and cytogenetic analysis of human giant oocytes and giant embryos  

Microsoft Academic Search

BACKGROUND: Giant binuclear oocytes occur with considerable frequency in human ovaries, but their ultimate fate remains unknown. We report the morphology, cytogenetics and developmental potential of human giant oocytes from patients undergoing assisted reproductive technologies. METHODS AND RESULTS: A total of 44 giant oocytes was collected from patients aged 22-44 years old, with an overall frequency of 0.3% (44\\/14 272

Hanna Balakier; Derek Bouman; Agata Sojecki; Clifford Librach; Jeremy A. Squire

417

Brain computer interface to enhance episodic memory in human participants.  

PubMed

Recent research has revealed that neural oscillations in the theta (4-8 Hz) and alpha (9-14 Hz) bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI) to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG) in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of pre-stimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding. PMID:25653605

Burke, John F; Merkow, Maxwell B; Jacobs, Joshua; Kahana, Michael J; Zaghloul, Kareem A

2014-01-01

418

Human immunodeficiency virus type 1 infection of the brain.  

PubMed Central

Direct infection of the central nervous system by human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, was not appreciated in the early years of the AIDS epidemic. Neurological complications associated with AIDS were largely attributed to opportunistic infections that arose as a result of the immunocompromised state of the patient and to depression. In 1985, several groups succeeded in isolating HIV-1 directly from brain tissue. Also that year, the viral genome was completely sequenced, and HIV-1 was found to belong to a neurotropic subfamily of retrovirus known as the Lentivirinae. These findings clearly indicated that direct HIV-1 infection of the central nervous system played a role in the development of AIDS-related neurological disease. This review summarizes the clinical manifestations of HIV-1 infection of the central nervous system and the related neuropathology, the tropism of HIV-1 for specific cell types both within and outside of the nervous system, the possible mechanisms by which HIV-1 damages the nervous system, and the current strategies for diagnosis and treatment of HIV-1-associated neuropathology. Images PMID:8269391

Atwood, W J; Berger, J R; Kaderman, R; Tornatore, C S; Major, E O

1993-01-01

419

Can the common brain parasite, Toxoplasma gondii, influence human culture?  

PubMed Central

The latent prevalence of a long-lived and common brain parasite, Toxoplasma gondii, explains a statistically significant portion of the variance in aggregate neuroticism among populations, as well as in the ‘neurotic’ cultural dimensions of sex roles and uncertainty avoidance. Spurious or non-causal correlations between aggregate personality and aspects of climate and culture that influence T. gondii transmission could also drive these patterns. A link between culture and T. gondii hypothetically results from a behavioural manipulation that the parasite uses to increase its transmission to the next host in the life cycle: a cat. While latent toxoplasmosis is usually benign, the parasite's subtle effect on individual personality appears to alter the aggregate personality at the population level. Drivers of the geographical variation in the prevalence of this parasite include the effects of climate on the persistence of infectious stages in soil, the cultural practices of food preparation and cats as pets. Some variation in culture, therefore, may ultimately be related to how climate affects the distribution of T. gondii, though the results only explain a fraction of the variation in two of the four cultural dimensions, suggesting that if T. gondii does influence human culture, it is only one among many factors. PMID:17015323

Lafferty, Kevin D

2006-01-01

420

Brain computer interface to enhance episodic memory in human participants  

PubMed Central

Recent research has revealed that neural oscillations in the theta (4–8 Hz) and alpha (9–14 Hz) bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI) to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG) in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of pre-stimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding. PMID:25653605

Burke, John F.; Merkow, Maxwell B.; Jacobs, Joshua; Kahana, Michael J.

2015-01-01

421

The Human Brain Encodes Event Frequencies While Forming Subjective Beliefs  

PubMed Central

To make adaptive choices, humans need to estimate the probability of future events. Based on a Bayesian approach, it is assumed that probabilities are inferred by combining a priori, potentially subjective, knowledge with factual observations, but the precise neurobiological mechanism remains unknown. Here, we study whether neural encoding centers on subjective posterior probabilities, and data merely lead to updates of posteriors, or whether objective data are encoded separately alongside subjective knowledge. During fMRI, young adults acquired prior knowledge regarding uncertain events, repeatedly observed evidence in the form of stimuli, and estimated event probabilities. Participants combined prior knowledge with factual evidence using Bayesian principles. Expected reward inferred from prior knowledge was encoded in striatum. BOLD response in specific nodes of the default mode network (angular gyri, posterior cingulate, and medial prefrontal cortex) encoded the actual frequency of stimuli, unaffected by prior knowledge. In this network, activity increased with frequencies and thus reflected the accumulation of evidence. In contrast, Bayesian posterior probabilities, computed from prior knowledge and stimulus frequencies, were encoded in bilateral inferior frontal gyrus. Here activity increased for improbable events and thus signaled the violation of Bayesian predictions. Thus, subjective beliefs and stimulus frequencies were encoded in separate cortical regions. The advantage of such a separation is that objective evidence can be recombined with newly acquired knowledge when a reinterpretation of the evidence is called for. Overall this study reveals the coexistence in the brain of an experience-based system of inference and a knowledge-based system of inference. PMID:23804108

d’Acremont, Mathieu; Schultz, Wolfram; Bossaerts, Peter

2015-01-01

422

Figure 1 | Human brain variation by retrotransposition.These twins are genetically identical at conception, but at birth their brains differ because  

E-print Network

Figure 1 | Human brain variation by retrotransposition.These twins are genetically identical to occur by Coufal et al.1 will further diversify the genetic make-up of their brains in adulthood. Depending on the target genes and the neurons affected by L1 insertions, the twins may differ in brain

Miao, Jianwei "John"

423

Prediction of human papilloma virus antigen in cervical squamous epithelium by koilocyte nuclear morphology and \\  

Microsoft Academic Search

Koilocytes (balloon cells) in cervical squamous epithelium can be distinguished by their nuclear morphology as members of two populations A and B. The proposition that population A was infected with human papilloma virus (HPV) and population B was not, was examined immunohistologically. A peroxidase-antiperoxidase technique using polyclonal HPV antibody failed to support the hypothesis and showed small fractions of both

K McLeod

1987-01-01

424

Morphological and sedimentological responses of streams to human impact in the southern Blue Ridge Mountains, USA  

Microsoft Academic Search

Morphological and sedimentological responses of streams to basin-scale impact have been well documented for intensively agricultural or urban areas. Sensitivity thresholds of streams to modest levels of disturbance, however, are not well understood. This study addresses the influence of forest conversion on streams of the southern Blue Ridge Mountains, a region that has received little attention with respect to human

Katie Price; David S. Leigh

2006-01-01

425

Evidence for hubs in human functional brain networks  

PubMed Central

Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601

Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

2013-01-01

426

Brain-derived neurotrophic factor induces rapid morphological changes in dendritic spines of olfactory bulb granule cells in cultured slices through the modulation of glutamatergic signaling  

Microsoft Academic Search

While the acute physiological effects of brain-derived neurotrophic factor (BDNF) have been well demonstrated, little is known regarding possible morphological effects that occur within a short period of time. The acute effects of BDNF on dendritic spine morphology were examined in granule cells in cultured main olfactory bulb slices. Organotypic slices prepared from 7-day-old rats were cultured for 1 day,

S Matsutani; N Yamamoto

2004-01-01

427

Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals.  

PubMed

D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

2014-01-01

428

Anatomical structural network analysis of human brain using partial correlations of gray matter volumes  

Microsoft Academic Search

Structural connectivity in human brain has been studied by modeling the statistical dependence between features of cortical regions, such as gray matter thickness. Statistical correlations between gray matter thickness have been mainly used as a metric to study this dependence. In this paper, we propose the use of partial correlations instead of Pearson correlation for inferring the brain structural connectivity

Anand A. Joshi; Shantanu H. Joshi; Ivo D. Dinov; David W. Shattuck; Richard M. Leahy; Arthur W. Toga

2010-01-01

429

Discovery of genes that affect human brain connectivity: A genome-wide analysis of the connectome  

Microsoft Academic Search

Human brain connectivity is disrupted in a wide range of disorders — from Alzheimer's disease to autism — but little is known about which specific genes affect it. Here we conducted a genome-wide association for connectivity matrices that capture information on the density of fiber connections between 70 brain regions. We scanned a large twin cohort (N=366) with 4-Tesla high

Neda Jahanshad; Derrek P. Hibar; April Ryles; Arthur W. Toga; Katie L. McMahon; Greig I. de Zubicaray; Narelle K. Hansell; Grant W. Montgomery; Nicholas G. Martin; Margaret J. Wright; Paul M. Thompson

2012-01-01

430

Development of Spatial and Verbal Working Memory Capacity in the Human Brain  

ERIC Educational Resources Information Center

A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between children (ages 7-12 years) and adults (ages 20-29 years) performing tests of verbal and spatial WM with varying amounts (loads)…

Thomason, Moriah E.; Race, Elizabeth; Burrows, Brittany; Whitfield-Gabrieli, Susan; Glover, Gary H.; Gabrieli, John D. E.

2009-01-01