Sample records for human cell growth

  1. ITE inhibits growth of human pulmonary artery endothelial cells.

    PubMed

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  2. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  3. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    PubMed

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  4. Evodiamine Induces Cell Growth Arrest, Apoptosis and Suppresses Tumorigenesis in Human Urothelial Cell Carcinoma Cells.

    PubMed

    Shi, Chung-Sheng; Li, Jhy-Ming; Chin, Chih-Chien; Kuo, Yi-Hung; Lee, Ying-Ray; Huang, Yun-Ching

    2017-03-01

    Evodiamine, an indole alkaloid derived from Evodia rutaecarpa, exhibits pharmacological activities including vasodilatation, analgesia, anti-cardiovascular disease, anti-Alzheimer's disease, anti-inflammation, and anti-tumor activity. This study analyzes the anti-tumor effects of evodiamine on cellular growth, tumorigenesis, cell cycle and apoptosis induction of human urothelial cell carcinoma (UCC) cells. The present study showed that evodiamine significantly inhibited the proliferation of UCC cells in a dose- and time-dependent manner. Also, evodiamine suppressed the tumorigenesis of UCC cells in vitro. Moreover, evodiamine caused G 2 /M cell-cycle arrest and induced caspase-dependent apoptosis in UCC cells. Finally, we demonstrated that evodiamine exhibits better cytotoxic than 5-fluorouracil, a clinical chemotherapeutic drug, for UCC cells. Evodiamine induces growth inhibition, tumorigenesis suppression, cell-cycle arrest, and apoptosis induction in human UCC cells. Therefore, this agent displays a therapeutic potential for treating human UCC cells and is worthy for further investigation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  6. Assessment of Growth Factors Secreted by Human Breastmilk Mesenchymal Stem Cells.

    PubMed

    Kaingade, Pankaj Mahipatrao; Somasundaram, Indumathi; Nikam, Amar Babaso; Sarang, Shabari Amit; Patel, Jagdish Shantilal

    2016-01-01

    Human breastmilk is a dynamic, multifaceted biological fluid containing nutrients, bioactive substances, and growth factors. It is effective in supporting growth and development of an infant. As breastmilk has been found to possess mesenchymal stem cells, the importance of the components of breastmilk and their physiological roles is increasing day by day. The present study was intended to identify the secretions of growth factors, mainly vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), from human breastmilk mesenchymal stem cells under basal conditions of in vitro cell culture using synthetic media and human cord serum. The growth factors were analyzed with the enzyme-linked immunosorbent assay technique. The cultured mesenchymal stem cells of breastmilk without serum revealed significant differences in secretions of the VEGF and HGF growth factors (8.55 ± 2.26402 pg/mL and 230.8 ± 45.9861 pg/mL, respectively) compared with mesenchymal stem cells of breastmilk with serum (21.31 ± 4.69 pg/mL and 2,404.42 ± 481.593 pg/mL, respectively). Results obtained from our study demonstrate that both VEGF and HGF are secreted in vitro by human breastmilk mesenchymal stem cells. The roles of VEGF and HGF in surfactant secretion, pulmonary maturation, and neonatal maturity have been well established. Thus, we emphasize that breastmilk-derived MSCs could be a potent therapeutic source in treating neonatal diseases. Besides, due to its immense potency, the study also emphasizes the importance of breastfeeding, which is promoted by organizations like the World Heatlh Organization and UNICEF.

  7. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  8. Phenotypic conversion of human mammary carcinoma cells by autocrine human growth hormone

    PubMed Central

    Mukhina, Svetlana; Mertani, Hichem C.; Guo, Ke; Lee, Kok-Onn; Gluckman, Peter D.; Lobie, Peter E.

    2004-01-01

    We report here that autocrine production of human growth hormone (hGH) results in a phenotypic conversion of mammary carcinoma cells such that they exhibit the morphological and molecular characteristics of a mesenchymal cell, including expression of fibronectin and vimentin. Autocrine production of hGH resulted in reduced plakoglobin expression and relocalization of E-cadherin to the cytoplasm, leading to dissolution of cell-cell contacts and decreased cell height. These phenotypic changes were accompanied by an increase in cell motility, elevated activity of specific matrix metalloproteinases, and an acquired ability to invade a reconstituted basement membrane. Forced expression of plakoglobin significantly decreased mammary carcinoma cell migration and invasion stimulated by autocrine hGH. In vivo, autocrine hGH stimulated local invasion of mammary carcinoma cells concomitant with a prominent stromal reaction in comparison with well delineated and capsulated growth of mammary carcinoma cells lacking autocrine production of hGH. Thus, autocrine production of hGH by mammary carcinoma cells is sufficient for generation of an invasive phenotype. Therapeutic targeting of autocrine hGH may provide a mechanistic approach to prevent metastatic extension of human mammary carcinoma. PMID:15353581

  9. Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells

    NASA Astrophysics Data System (ADS)

    Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.

    1987-09-01

    Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.

  10. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  11. Characterization of the cell growth analysis for detection of immortal cellular impurities in human mesenchymal stem cells.

    PubMed

    Kono, Ken; Takada, Nozomi; Yasuda, Satoshi; Sawada, Rumi; Niimi, Shingo; Matsuyama, Akifumi; Sato, Yoji

    2015-03-01

    The analysis of in vitro cell senescence/growth after serial passaging can be one of ways to show the absence of immortalized cells, which are frequently tumorigenic, in human cell-processed therapeutic products (hCTPs). However, the performance of the cell growth analysis for detection of the immortalized cellular impurities has never been evaluated. In the present study, we examined the growth rates of human mesenchymal stem cells (hMSCs, passage 5 (P = 5)) contaminated with various doses of HeLa cells, and compared with that of hMSCs alone. The growth rates of the contaminated hMSCs were comparable to that of hMSCs alone at P = 5, but significantly increased at P = 6 (0.1% and 0.01% HeLa) or P = 7 (0.001% HeLa) within 30 days. These findings suggest that the cell growth analysis is a simple and sensitive method to detect immortalized cellular impurities in hCTPs derived from human somatic cells. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    PubMed

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  13. Implications of pleiotrophin in human PC3 prostate cancer cell growth in vivo.

    PubMed

    Tsirmoula, Sotiria; Dimas, Kostas; Hatziapostolou, Maria; Lamprou, Margarita; Ravazoula, Panagiota; Papadimitriou, Evangelia

    2012-10-01

    Pleiotrophin (PTN) is a heparin-binding growth factor with diverse functions related to tumor growth, angiogenesis, and metastasis. Pleiotrophin seems to have a significant role in prostate cancer cell growth and to mediate the stimulatory actions of other factors that affect prostate cancer cell functions. However, all studies carried out up to date are in vitro, using different types of human prostate cancer cell lines. The aim of the present work was to study the role of endogenous PTN in human prostate cancer growth in vivo. For this purpose, human prostate cancer PC3 cells were stably transfected with a plasmid vector, bearing the antisense PTN sequence, in order to inhibit PTN expression (AS-PC3). Migration, apoptosis, and adhesion on osteoblastic cells were measured in vitro. In vivo, PC3 cells were s.c. injected into male NOD/SCID mice, and tumor growth, survival rates, angiogenesis, apoptosis, and the number of metastasis were estimated. Pleiotrophin depletion resulted in a decreased migration capability of AS-PC3 cells compared with the corresponding mock-transfected or the non-transfected PC3 cells, as well as increased apoptosis and decreased adhesiveness to osteoblastic cells in vitro. In prostate cancer NOD/SCID mouse xenografts, PTN depletion significantly suppressed tumor growth and angiogenesis and induced apoptosis of cancer cells. In addition, PTN depletion decreased the number of metastases, providing a survival benefit for the animals bearing AS-PC3 xenografts. Our data suggest that PTN is implicated in human prostate cancer growth in vivo and could be considered a potential target for the development of new therapeutic approaches for prostate cancer. © 2012 Japanese Cancer Association.

  14. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kanayo; Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp; Tanaka, Satoshi

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDKmore » inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.« less

  15. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  16. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  17. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  18. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealedmore » the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.« less

  19. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth

    PubMed Central

    Ono, Masanori; Yin, Ping; Navarro, Antonia; Moravek, Molly B.; Coon, John S.; Druschitz, Stacy A.; Gottardi, Cara J.; Bulun, Serdar E.

    2014-01-01

    Objective Dysregulation of WNT signaling plays a central role in tumor cell growth and progression. Our goal was to assess the effect of three WNT/β-catenin pathway inhibitors, Inhibitor of β-Catenin And TCF4 (ICAT), niclosamide, and XAV939 on the proliferation of primary cultures of human uterine leiomyoma cells. Design Prospective study of human leiomyoma cells obtained from myomectomy or hysterectomy. Setting University research laboratory. Patient(s) Women (n=38) aged 27–53 years undergoing surgery. Intervention(s) Adenoviral ICAT overexpression or treatment with varying concentrations of niclosamide or XAV939. Main Outcome Measure(s) Cell proliferation, cell death, WNT/β-catenin target gene expression or reporter gene regulation, β-catenin levels and cellular localization. Result(s) ICAT, niclosamide, or XAV939 inhibit WNT/β-catenin pathway activation and exert anti-proliferative effects in primary cultures of human leiomyoma cells. Conclusion(s) Three WNT/β-catenin pathway inhibitors specifically block human leiomyoma growth and proliferation, suggesting that the canonical WNT pathway may be a potential therapeutic target for the treatment of uterine leiomyoma. Our findings provide rationale for further preclinical and clinical evaluation of ICAT, niclosamide, and XAV939 as candidate anti-tumor agents for uterine leiomyoma. PMID:24534281

  20. Deregulation of the CEACAM expression pattern causes undifferentiated cell growth in human lung adenocarcinoma cells.

    PubMed

    Singer, Bernhard B; Scheffrahn, Inka; Kammerer, Robert; Suttorp, Norbert; Ergun, Suleyman; Slevogt, Hortense

    2010-01-18

    CEACAM1, CEA/CEACAM5, and CEACAM6 are cell adhesion molecules (CAMs) of the carcinoembryonic antigen (CEA) family that have been shown to be deregulated in lung cancer and in up to 50% of all human cancers. However, little is known about the functional impact of these molecules on undifferentiated cell growth and tumor progression. Here we demonstrate that cell surface expression of CEACAM1 on confluent A549 human lung adenocarcinoma cells plays a critical role in differentiated, contact-inhibited cell growth. Interestingly, CEACAM1-L, but not CEACAM1-S, negatively regulates proliferation via its ITIM domain, while in proliferating cells no CEACAM expression is detectable. Furthermore, we show for the first time that CEACAM6 acts as an inducer of cellular proliferation in A549 cells, likely by interfering with the contact-inhibiting signal triggered by CEACAM1-4L, leading to undifferentiated anchorage-independent cell growth. We also found that A549 cells expressed significant amounts of non-membrane anchored variants of CEACAM5 and CEACAM6, representing a putative source for the increased CEACAM5/6 serum levels frequently found in lung cancer patients. Taken together, our data suggest that post-confluent contact inhibition is established and maintained by CEACAM1-4L, but disturbances of CEACAM1 signalling by CEACAM1-4S and other CEACAMs lead to undifferentiated cell growth and malignant transformation.

  1. Effect of soy saponin on the growth of human colon cancer cells

    PubMed Central

    Tsai, Cheng-Yu; Chen, Yue-Hwa; Chien, Yi-Wen; Huang, Wen-Hsuan; Lin, Shyh-Hsiang

    2010-01-01

    AIM: To investigate the effect of extracted soybean saponins on the growth of human colon cancer cells. METHODS: WiDr human colon cancer cells were treated with 150, 300, 600 or 1200 ppm of soy saponin to determine the effect on cell growth, cell morphology, alkaline phosphatase (AP) and protein kinase C (PKC) activities, and P53 protein, c-Fos and c-Jun gene expression. RESULTS: Soy saponin decreased the number of viable cells in a dose-dependent manner and suppressed 12-O-tetradecanol-phorbol-13-acetate-stimulated PKC activity (P < 0.05). Cells treated with saponins developed cytoplasmic vesicles and the cell membrane became rougher and more irregular in a dose-dependent manner, and eventually disassembled. At 600 and 1200 ppm, the activity of AP was increased (P < 0.05). However, the apoptosis markers such as c-Jun and c-Fos were not significantly affected by saponin. CONCLUSION: Soy saponin may be effective in preventing colon cancer by affecting cell morphology, cell proliferation enzymes, and cell growth. PMID:20632438

  2. Hexamethylenebisacetamide (HMBA) is a growth factor for human, ovine and porcine thyroid cells.

    PubMed

    Fayet, G; Amphoux-Fazekas, T; Aouani, A; Hovsépian, S

    1996-03-01

    Hexamethylenebisacetamide (HMBA) provokes in murine erythroleukemia cells (MELC) a commitment to terminal differentiation leading to the activation of the expression of hemoglobin. HMBA has been tested also in other cells from colon cancer, melanoma or lung cancer. However it has not yet been tested in the thyroid. We demonstrate in this paper that HMBA in kinetics and concentration-response experiments increases the proliferation of human thyroid cells isolated from Graves'-Basedow patients. It also acts like a growth factor for ovine and porcine thyroid cells, respectively, from the OVNIS line and the ATHOS line. This molecule which is a differentiating factor in the MELC system and a growth factor in human thyroid cell cultures represents a potential to get human thyroid cell lines expressing specialized functions.

  3. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  4. Danshen extract circumvents drug resistance and represses cell growth in human oral cancer cells.

    PubMed

    Yang, Cheng-Yu; Hsieh, Cheng-Chih; Lin, Chih-Kung; Lin, Chun-Shu; Peng, Bo; Lin, Gu-Jiun; Sytwu, Huey-Kang; Chang, Wen-Liang; Chen, Yuan-Wu

    2017-12-29

    Danshen is a common traditional Chinese medicine used to treat neoplastic and chronic inflammatory diseases in China. However, the effects of Danshen on human oral cancer cells remain relatively unknown. This study investigated the antiproliferative effects of a Danshen extract on human oral cancer SAS, SCC25, OEC-M1, and KB drug-resistant cell lines and elucidated the possible underlying mechanism. We investigated the anticancer potential of the Danshen extract in human oral cancer cell lines and an in vivo oral cancer xenograft mouse model. The expression of apoptosis-related molecules was evaluated through Western blotting, and the concentration of in vivo apoptotic markers was measured using immunohistochemical staining. The antitumor effects of 5-fluorouracil and the Danshen extract were compared. Cell proliferation assays revealed that the Danshen extract strongly inhibited oral cancer cell proliferation. Cell morphology studies revealed that the Danshen extract inhibited the growth of SAS, SCC25, and OEC-M1 cells by inducing apoptosis. The Flow cytometric analysis indicated that the Danshen extract induced cell cycle G0/G1 arrest. Immunoblotting analysis for the expression of active caspase-3 and X-linked inhibitor of apoptosis protein indicated that Danshen extract-induced apoptosis in human oral cancer SAS cells was mediated through the caspase pathway. Moreover, the Danshen extract significantly inhibited growth in the SAS xenograft mouse model. Furthermore, the Danshen extract circumvented drug resistance in KB drug-resistant oral cancer cells. The study results suggest that the Danshen extract could be a potential anticancer agent in oral cancer treatment.

  5. Epidermal growth factor-like growth factors prevent apoptosis of alcohol-exposed human placental cytotrophoblast cells.

    PubMed

    Wolff, Garen S; Chiang, Po Jen; Smith, Susan M; Romero, Roberto; Armant, D Randall

    2007-07-01

    Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0-100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1-2 h of exposure to 50 mM alcohol. Exposure to 25-50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism.

  6. Human adipose tissue-derived mesenchymal stem cells inhibit T-cell lymphoma growth in vitro and in vivo.

    PubMed

    Ahn, Jin-Ok; Chae, Ji-Sang; Coh, Ye-Rin; Jung, Woo-Sung; Lee, Hee-Woo; Shin, Il-Seob; Kang, Sung-Keun; Youn, Hwa-Young

    2014-09-01

    Human mesenchymal stem cells (hMSCs) are thought to be one of the most reliable stem cell sources for a variety of cell therapies. This study investigated the anti-tumor effect of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) on EL4 murine T-cell lymphoma in vitro and in vivo. The growth-inhibitory effect of hAT-MSCs on EL4 tumor cells was evaluated using a WST-1 cell proliferation assay. Cell-cycle arrest and apoptosis were investigated by flow cytometry and western blot. To evaluate an anti-tumor effect of hAT-MSCs on T-cell lymphoma in vivo, CM-DiI-labeled hAT-MSCs were circumtumorally injected in tumor-bearing nude mice, and tumor size was measured. hAT-MSCs inhibited T-cell lymphoma growth by altering cell-cycle progression and inducing apoptosis in vitro. hAT-MSCs inhibited tumor growth in tumor-bearing nude mice and prolonged survival time. Immunofluorescence analysis showed that hAT-MSCs migrated to tumor sites. hAT-MSCs suppress the growth of T-cell lymphoma, suggesting a therapeutic option for T-cell lymphoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Growth and differentiation of human lens epithelial cells in vitro on matrix

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.

    2000-01-01

    PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.

  8. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, H.; Seon, B.K.

    1987-05-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Asciticmore » and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment.« less

  9. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    PubMed Central

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  10. The growth of human fibroblasts and A431 epidermoid carcinoma cells on gamma-irradiated human amnion collagen substrata.

    PubMed

    Liu, B; Harrell, R; Lamb, D J; Dresden, M H; Spira, M

    1989-10-15

    Human fibroblasts and A431 human epidermoid carcinoma cells were cultured on gamma-irradiated human amnion collagen as well as on plastic dishes and non-irradiated collagen coated dishes. The morphology, attachment, growth and short-term cytotoxicity of these culture conditions have been determined. Both irradiated and non-irradiated amnion collagen enhanced the attachment and proliferation of fibroblasts as compared to the plastic dishes. No differences in these properties were observed for A431 cells cultured on irradiated collagen when compared with culture on non-irradiated collagen substrates. Cytotoxicity assays showed that irradiated and non-irradiated collagens were not cytotoxic for either fibroblasts or A431 cells. The results demonstrated that amnion collagen irradiated at doses of 0.25-2.0 Mrads is optimal for cell growth.

  11. Effect of HSP27 on Human Breast Tumor Cell Growth and Motility

    DTIC Science & Technology

    1999-08-01

    the small stress protein, HSP27 , on growth and motility characteristics of normal and tumor-derived human mammary cell lines. We hypothesized that...cells overexpressing HSP27 would show increased motility, altered chemotactic properties, increased resistance to heat killing and to certain drugs...Donna has prepared and studied 19 clonal MDA23 1 breast tumor cell lines that overexpress human HSP27 , and determined that, while heat resistance is

  12. Fibroblast growth factor-2 regulates the cell function of human dental pulp cells.

    PubMed

    Shimabukuro, Yoshio; Ueda, Maki; Ozasa, Masao; Anzai, Jun; Takedachi, Masahide; Yanagita, Manabu; Ito, Masako; Hashikawa, Tomoko; Yamada, Satoru; Murakami, Shinya

    2009-11-01

    Homeostasis and tissue repair of dentin-pulp complex are attributed to dental pulp tissue and several growth factors. Dental pulp cells play a pivotal role in homeostasis of dentin-pulp complex and tissue responses after tooth injury. Among these cytokines, fibroblast growth factor (FGF)-2 has multifunctional biologic activity and is known as a signaling molecule that induces tissue regeneration. In this study, we examined the effects of FGF-2 on growth, migration, and differentiation of human dental pulp cells (HDPC). HDPC were isolated from healthy dental pulp. Cellular response was investigated by [(3)H]-thymidine incorporation into DNA. Cytodifferentiation was examined by alkaline phosphatase (ALPase) assay and cytochemical staining of calcium by using alizarin red. Migratory activity was determined by counting the cells migrating into cleared area that had introduced with silicon block. FGF-2 activated HDPC growth and migration but suppressed ALPase activity and calcified nodule formation. Interestingly, HDPC, which had been pretreated with FGF-2, showed increased ALPase activity and calcified nodule formation when subsequently cultured without FGF-2. These results suggest that FGF-2 potentiates cell growth and accumulation of HDPC that notably did not disturb cytodifferentiation of the cells later. Thus, FGF-2 is a favorable candidate for pulp capping agent. These results provide new evidence for the possible involvement of FGF-2 not only in homeostasis but also in regeneration of dentin-pulp complex.

  13. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro.

    PubMed

    Chen, Huan-Huan; Zhou, Hui-Jun; Fang, Xin

    2003-09-01

    Artemisinin derivatives artesunate (ART) and dihydroartemisinin are remarkable anti-malarial drugs with low toxicity to humans. In the present investigation, we find they also inhibited tumor cell growth and suppressed angiogenesis in vitro. The anti-cancer activity was demonstrated by inhibition (IC(50)) of four human cancer cell lines: cervical cancer Hela, uterus chorion cancer JAR, embryo transversal cancer RD and ovarian cancer HO-8910 cell lines growth by the MTT assay. IC(50) values ranged from 15.4 to 49.7 microM or from 8.5 to 32.9 microM after treatment with ART or dihydroartemisinin for 48 h, indicating that dihydroartemisinin was more effective than ART in inhibiting cancer cell lines. The anti-angiogenic activities were tested on in vitro models of angiogenesis, namely, proliferation, migration and tube formation of human umbilical vein endothelial (HUVE) cells. We investigated the inhibitory effects of ART and dihydroartemisinin on HUVE cells proliferation by cell counting, migration into the scratch wounded area in HUVE cell monolayers and microvessel tube-like formation on collagen gel. The results showed ART and dihydroartemisinin significantly inhibited angiogenisis in a dose-dependent form in range of 12.5-50 microM and 2.5-50 microM, respectively. They indicated that dihydroartemisinin was more effective than ART in inhibiting angiogenesis either. These results and the known low toxicity are clues that ART and dihydroartemisinin may be promising novel candidates for cancer chemotherapy.

  14. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells.

    PubMed

    Fisher, P B; Prignoli, D R; Hermo, H; Weinstein, I B; Pestka, S

    1985-01-01

    We have analyzed the effects of various human interferons produced in bacteria and the antileukemic compound mezerein (MEZ) on growth and melanogenesis in human melanoma cells. In four human melanoma cell lines, recombinant human fibroblast interferon (IFN-beta) was more active than recombinant human leukocyte interferons (IFN-alpha A, IFN-alpha D, or IFN-alpha A/D (Bgl] in inhibiting cellular proliferation. When monolayer cultures were exposed to 1000 IU/ml IFN-beta for four days the degree of growth inhibition in the different melanoma cell lines varied between 94 and 26%. Similarly, four days growth in medium containing 10 ng/ml MEZ resulted in either no inhibition of growth or as much as 53% inhibition of growth, depending on the specific melanoma cell line tested. MEZ induced dendrite-like processes, cytoplasmic projections morphologically similar to those normally found in neurons and melanocytes, in all four melanoma cell lines, whereas none of the interferons tested had this effect. The combination of interferon and MEZ resulted in a dramatic inhibition in cellular proliferation in all four melanoma cell lines. When cell extracts were assayed for melanin content, a marker of melanoma cell differentiation, the combination of IFN-beta and MEZ resulted in higher levels of melanin than with either agent alone. Dendrite-like formation was also prominent in the cultures treated with this combination. These results indicate that the antiproliferative effect of interferon toward human melanoma dells can be enhanced by treatment with MEZ and that this effect is associated with an enhancement of terminal differentiation.

  15. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction.

    PubMed

    Ju, Guan-qun; Cheng, Jun; Zhong, Liang; Wu, Shuai; Zou, Xiang-yu; Zhang, Guang-yuan; Gu, Di; Miao, Shuai; Zhu, Ying-jian; Sun, Jie; Du, Tao

    2015-01-01

    During acute kidney injury (AKI), tubular cell dedifferentiation initiates cell regeneration; hepatocyte growth factor (HGF) is involved in modulating cell dedifferentiation. Mesenchymal stem cell (MSC)-derived microvesicles (MVs) deliver RNA into injured tubular cells and alter their gene expression, thus regenerating these cells. We boldly speculated that MVs might induce HGF synthesis via RNA transfer, thereby facilitating tubular cell dedifferentiation and regeneration. In a rat model of unilateral AKI, the administration of MVs promoted kidney recovery. One of the mechanisms of action is the acceleration of tubular cell dedifferentiation and growth. Both in vivo and in vitro, rat HGF expression in damaged rat tubular cells was greatly enhanced by MV treatment. In addition, human HGF mRNA present in MVs was delivered into rat tubular cells and translated into the HGF protein as another mechanism of HGF induction. RNase treatment abrogated all MV effects. In the in vitro experimental setting, the conditioned medium of MV-treated injured tubular cells, which contains a higher concentration of HGF, strongly stimulated cell dedifferentiation and growth, as well as Erk1/2 signaling activation. Intriguingly, these effects were completely abrogated by either c-Met inhibitor or MEK inhibitor, suggesting that HGF induction is a crucial contributor to the acceleration of cell dedifferentiation and growth. All these findings indicate that MV-induced HGF synthesis in damaged tubular cells via RNA transfer facilitates cell dedifferentiation and growth, which are important regenerative mechanisms.

  16. Enhanced growth medium and method for culturing human mammary epithelial cells

    DOEpatents

    Stampfer, Martha R.; Smith, Helene S.; Hackett, Adeline J.

    1983-01-01

    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  17. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.

    PubMed

    Sappino, André-Pascal; Buser, Raphaële; Lesne, Laurence; Gimelli, Stefania; Béna, Frédérique; Belin, Dominique; Mandriota, Stefano J

    2012-03-01

    Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Human osteoblast cells: isolation, characterization, and growth on polymers for musculoskeletal tissue engineering.

    PubMed

    El-Amin, Saadiq F; Botchwey, Edward; Tuli, Richard; Kofron, Michelle D; Mesfin, Addisu; Sethuraman, Swaminathan; Tuan, Rocky S; Laurencin, Cato T

    2006-03-01

    We performed a detailed examination of the isolation, characterization, and growth of human osteoblast cells derived from trabecular bone. We further examined the morphology, phenotypic gene expression, mineralization,and growth of these human osteoblasts on polyester polymers used for musculoskeletal tissue engineering. Polylactic-co-glycolic acid [PLAGA (85:15, 50:50, 75:25)], and poly-lactic acid (L-PLA, D,L-PLA) were examined. The osteoblastic expression of key phenotypic markers osteocalcin, alkaline phosphatase, collagen, and bone sialoprotein at 4 and 8 weeks was examined. Reverse transcription-polymerase chain reaction studies revealed that trabecular-derived osteoblasts were positive for all markers evaluated with higher levels expressed over long-term culture. These cells also revealed mineralization and maturation as evidenced by energy dispersive X-ray analysis and scanning electron microscopy. Growth studies on PLAGA at 50:50,75:25, and 85:15 ratios and PLA in the L and DL isoforms revealed that human osteoblasts actively grew, with significantly higher cell numbers attached to scaffolds composed of PLAGA 50:50 in the short term and PLAGA 85:15 in the long term compared with PLA (p < 0.05). We believe human cell adhesion among these polymeric materials may be dependent on differences in cellular integrin expression and extracellular matrix protein elaboration. (c) 2005 Wiley Periodicals, Inc.

  19. Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells.

    PubMed Central

    Tong, W. M.; Ellinger, A.; Sheinin, Y.; Cross, H. S.

    1998-01-01

    In situ hybridization on human colon tissue demonstrates that epidermal growth factor receptor (EGFR) mRNA expression is strongly increased during tumour progression. To obtain test systems to evaluate the relevance of growth factor action during carcinogenesis, primary cultures from human colorectal carcinomas were established. EGFR distribution was determined in 2 of the 27 primary cultures and was compared with that in well-defined subclones derived from the Caco-2 cell line, which has the unique property to differentiate spontaneously in vitro in a manner similar to normal enterocytes. The primary carcinoma-derived cells had up to three-fold higher total EGFR levels than the Caco-2 subclones and a basal mitotic rate at least fourfold higher. The EGFR affinity constant is 0.26 nmol l(-1), which is similar to that reported in Caco-2 cells. The proliferation rate of Caco-2 cells is mainly induced by EGF from the basolateral cell surface where the majority of receptors are located, whereas primary cultures are strongly stimulated from the apical side also. This corresponds to a three- to fivefold higher level of EGFR at the apical cell surface. This redistribution of EGFR to apical plasma membranes in advanced colon carcinoma cells suggests that autocrine growth factors in the colon lumen may play a significant role during tumour progression. Images Figure 1 Figure 2 PMID:9667648

  20. Transcription factor EGR-1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta 1.

    PubMed Central

    Liu, C; Adamson, E; Mercola, D

    1996-01-01

    The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1. Images Fig. 1 Fig. 5 PMID:8876223

  1. Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model.

    PubMed

    Koohestani, Faezeh; Qiang, Wenan; MacNeill, Amy L; Druschitz, Stacy A; Serna, Vanida A; Adur, Malavika; Kurita, Takeshi; Nowak, Romana A

    2016-07-01

    Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model? HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis. Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro. The mouse xenograft model reflects the characteristics of human leiomyomas. Primary leiomyoma smooth muscle cells from eight patients were xenografted under the renal capsule of adult, ovariectomized NOD-scid IL2Rγ(null) mice (NSG). Mice were treated with two different doses of HF or vehicle for 4 weeks with six to eight mice per group. Mouse body weight measurements and immunohistochemical analysis of body organs were carried out to assess the safety of HF treatment. Xenografted tumors were measured and analyzed for cellular and molecular changes induced by HF. Ovarian steroid hormone receptors were evaluated for possible modulation by HF. Treatment of mice carrying human UL xenografts with HF at 0.25 or 0.50 mg/kg body weight for 4 weeks resulted in a 35-40% (P < 0.05) reduction in tumor volume. The HF-induced volume reduction was accompanied by increased apoptosis and decreased cell proliferation. In contrast, there was no significant change in the collagen content either at the transcript or protein level between UL xenografts in control and HF groups. HF treatment did not change the expression level of ovarian steroid hormone receptors. No adverse pathological effects were observed in other tissues from mice undergoing treatment at these doses. While this study did test the effects of HF on human leiomyoma cells in an in vivo model, HF was administered to mice whose tolerance and metabolism of the drug may differ from that in humans. Also, the longer term effects of HF treatment are yet unclear. The results of this study showing the effectiveness of HF in

  2. Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors

    DTIC Science & Technology

    2009-05-01

    contaminating rat UGSE cells ; and regions of host mouse glands were either from circulating pluripotent stem cells or local epithelial cells which were...CONTRACT NUMBER Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors 5b. GRANT NUMBER 81WXH...NOTES 14. ABSTRACT The objective of this proposal was to isolate, grow, and characterize normal prostate stem cells and establish new prostate

  3. Laminin enhances the growth of human neural stem cells in defined culture media

    PubMed Central

    Hall, Peter E; Lathia, Justin D; Caldwell, Maeve A; ffrench-Constant, Charles

    2008-01-01

    Background Human neural stem cells (hNSC) have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. In vivo, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth. Results To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner. Conclusion The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production. PMID:18651950

  4. In vitro growth inhibition of human cancer cells by novel honokiol analogs.

    PubMed

    Lin, Jyh Ming; Prakasha Gowda, A S; Sharma, Arun K; Amin, Shantu

    2012-05-15

    Honokiol possesses many pharmacological activities including anti-cancer properties. Here in, we designed and synthesized honokiol analogs that block major honokiol metabolic pathway which may enhance their effectiveness. We studied their cytotoxicity in human cancer cells and evaluated possible mechanism of cell cycle arrest. Two analogs, namely 2 and 4, showed much higher growth inhibitory activity in A549 human lung cancer cells and significant increase of cell population in the G0-G1 phase. Further elucidation of the inhibition mechanism on cell cycle showed that analogs 2 and 4 inhibit both CDK1 and cyclin B1 protien levels in A549 cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo.

    PubMed

    Chu, Sheng-Hua; Feng, Dong-Fu; Ma, Yan-Bin; Li, Zhi-Qiang

    2012-01-01

    Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU).

  6. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    PubMed Central

    Chu, Sheng-Hua; Feng, Dong-Fu; Ma, Yan-Bin; Li, Zhi-Qiang

    2012-01-01

    Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). PMID:22888225

  7. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    PubMed

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  8. Utilization of Microgravity Bioreactor for Differentiation and Growth of Human Vascular Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Chen, Chu-Huang; Pellis, Neal R.

    1997-01-01

    The goal was to delineate mechanisms of genetic responses to angiogenic stimulation of human coronary arterial and dermal microvascular endothelial cells during exposure to microgravity. The NASA-designed rotating-wall vessel was used to create a three-dimensional culture environment with low shear-stress and microgravity simulating that in space. The primary specific aim was to determine whether simulated microgravity enhances endothelial cell growth and whether the growth enhancement is associated by augmented expression of Basic Fibroblast Growth Factor (BFGF) and c-fos, an immediate early gene and component of the transcription factor AP-1.

  9. Captopril inhibits tumour growth in a xenograft model of human renal cell carcinoma.

    PubMed Central

    Hii, S. I.; Nicol, D. L.; Gotley, D. C.; Thompson, L. C.; Green, M. K.; Jonsson, J. R.

    1998-01-01

    The effect of captopril on tumour growth was examined in a xenograft model of human renal cell carcinoma (RCC). Inoculation of the human RCC cell line SN12K-1 (10(6) cells) under the left kidney capsule of severe combined immunodeficient (SCID) mice resulted in the growth of large tumours, with an increase in weight of the inoculated kidney of 3.69+/-1.63-fold (mean+/-s.d.) when compared with the contralateral normal kidney. In mice treated with captopril (19 mg kg(-1) day(-1) or 94 mg kg(-1) day(-1) administered in the drinking water), there was a significant dose-related reduction in tumour development; the tumour bearing kidneys weighed 1.9+/-0.42 and 1.55+/-0.42 times the normal kidneys, respectively (P< 0.05 compared with untreated animals). In vitro, captopril at clinically achievable doses (0.1-10 microM) had no significant effect on the incorporation of [3H]thymidine into SN12K-1 cells. Thus, this highly significant attenuation by captopril of in vivo tumour growth does not appear to be due to a direct effect on the proliferation of the tumour cells. Further studies are required to determine the mechanism of inhibition of tumour growth by captopril, in particular to evaluate the role of angiotensin II in this process. Images Figure 1 PMID:9528828

  10. Production of platelet-derived endothelial cell growth factor by normal and transformed human cells in culture.

    PubMed Central

    Usuki, K; Heldin, N E; Miyazono, K; Ishikawa, F; Takaku, F; Westermark, B; Heldin, C H

    1989-01-01

    Platelet-derived endothelial cell growth factor (PD-ECGF) is a 45-kDa endothelial cell mitogen which has angiogenic properties in vivo. We report here that human foreskin fibroblasts, a human squamous cell carcinoma cell line, and 2 out of the 3 human thyroid carcinoma cell lines investigated produce PD-ECGF, whereas 21 other cell lines examined do not. The positive cell lines contained a 1.8-kilobase PD-ECGF mRNA, and a 45-kDa protein could be demonstrated in lysates of the cell lines by immunoblotting and immunoprecipitation using a specific antiserum against PD-ECGF. Furthermore, the cell lysates contained mitogenic activity for endothelial cells that was neutralized by the PD-ECGF antiserum. PD-ECGF was found to be secreted only slowly from the producer cells, consistent with the previous finding that the primary translation product lacks a signal sequence. The restricted expression and intracellular sequestration of PD-ECGF imply a strictly controlled function in endothelial cell proliferation and angiogenesis. Aberrant production of PD-ECGF may play a role in tumor angiogenesis. Images PMID:2678104

  11. Galangin inhibits human osteosarcoma cells growth by inducing transforming growth factor-β1-dependent osteogenic differentiation.

    PubMed

    Liu, Chunhong; Ma, Mingming; Zhang, Junde; Gui, Shaoliu; Zhang, Xiaohai; Xue, Shuangtao

    2017-05-01

    Osteosarcoma is the most common primary malignancy of the musculoskeletal system, and is associated with excessive proliferation and poor differentiation of osteoblasts. Currently, despite the use of traditional chemotherapy and radiotherapy, no satisfactory and effective agent has been developed to treat the disease. Herein, we found that a flavonoid natural product, galangin, could significantly attenuate human osteosarcoma cells proliferation, without causing obvious cell apoptosis. Moreover, galangin enhanced the expression of osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin and osteopontin) remarkably and elevated the alkaline phosphatase activity in human osteosarcoma cells. And galangin could also attenuated osteosarcoma growth in vivo. These bioactivities of galangin resulted from its selective activation of the transforming growth factor (TGF)-β1/Smad2/3 signaling pathway, which was demonstrated by pathway blocking experiments. These findings suggested that galangin could be a promising agent to treat osteosarcoma. In addition, targeting TGF-β1 to induce osteogenic differentiation might represent a novel therapeutic strategy to treat osteosarcoma with minimal side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds.

    PubMed

    Sokol, Ethan S; Miller, Daniel H; Breggia, Anne; Spencer, Kevin C; Arendt, Lisa M; Gupta, Piyush B

    2016-03-01

    Three-dimensional (3D) cultures have proven invaluable for expanding human tissues for basic research and clinical applications. In both contexts, 3D cultures are most useful when they (1) support the outgrowth of tissues from primary human cells that have not been immortalized through extensive culture or viral infection and (2) include defined, physiologically relevant components. Here we describe a 3D culture system with both of these properties that stimulates the outgrowth of morphologically complex and hormone-responsive mammary tissues from primary human breast epithelial cells. Primary human breast epithelial cells isolated from patient reduction mammoplasty tissues were seeded into 3D hydrogels. The hydrogel scaffolds were composed of extracellular proteins and carbohydrates present in human breast tissue and were cultured in serum-free medium containing only defined components. The physical properties of these hydrogels were determined using atomic force microscopy. Tissue growth was monitored over time using bright-field and fluorescence microscopy, and maturation was assessed using morphological metrics and by immunostaining for markers of stem cells and differentiated cell types. The hydrogel tissues were also studied by fabricating physical models from confocal images using a 3D printer. When seeded into these 3D hydrogels, primary human breast epithelial cells rapidly self-organized in the absence of stromal cells and within 2 weeks expanded to form mature mammary tissues. The mature tissues contained luminal, basal, and stem cells in the correct topological orientation and also exhibited the complex ductal and lobular morphologies observed in the human breast. The expanded tissues became hollow when treated with estrogen and progesterone, and with the further addition of prolactin produced lipid droplets, indicating that they were responding to hormones. Ductal branching was initiated by clusters of cells expressing putative mammary stem cell

  13. FANCA knockout in human embryonic stem cells causes a severe growth disadvantage.

    PubMed

    Vanuytsel, Kim; Cai, Qing; Nair, Nisha; Khurana, Satish; Shetty, Swati; Vermeesch, Joris R; Ordovas, Laura; Verfaillie, Catherine M

    2014-09-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood, aside from numerous congenital abnormalities. FA mouse models have been generated; however, they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero, a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology, we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential, disruption of the second allele causes a severe growth disadvantage. As a result, heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele, quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning, this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage. Copyright © 2014. Published by Elsevier B.V.

  14. EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth

    PubMed Central

    2013-01-01

    Introduction The Epithelial Cell Adhesion Molecule (EpCAM) has been shown to be strongly expressed in human breast cancer and cancer stem cells and its overexpression has been supposed to support tumor progression and metastasis. However, effects of EpCAM overexpression on normal breast epithelial cells have never been studied before. Therefore, we analyzed effects of transient adenoviral overexpression of EpCAM on proliferation, migration and differentiation of primary human mammary epithelial cells (HMECs). Methods HMECs were transfected by an adenoviral system for transient overexpression of EpCAM. Thereafter, changes in cell proliferation and migration were studied using a real time measurement system. Target gene expression was evaluated by transcriptome analysis in proliferating and polarized HMEC cultures. A Chicken Chorioallantoic Membrane (CAM) xenograft model was used to study effects on in vivo growth of HMECs. Results EpCAM overexpression in HMECs did not significantly alter gene expression profile of proliferating or growth arrested cells. Proliferating HMECs displayed predominantly glycosylated EpCAM isoforms and were inhibited in cell proliferation and migration by upregulation of p27KIP1 and p53. HMECs with overexpression of EpCAM showed a down regulation of E-cadherin. Moreover, cells were more resistant to TGF-β1 induced growth arrest and maintained longer capacities to proliferate in vitro. EpCAM overexpressing HMECs xenografts in chicken embryos showed hyperplastic growth, lack of lumen formation and increased infiltrates of the chicken leukocytes. Conclusions EpCAM revealed oncogenic features in normal human breast cells by inducing resistance to TGF-β1-mediated growth arrest and supporting a cell phenotype with longer proliferative capacities in vitro. EpCAM overexpression resulted in hyperplastic growth in vivo. Thus, we suggest that EpCAM acts as a prosurvival factor counteracting terminal differentiation processes in normal mammary glands

  15. Herpesvirus Saimiri Transforms Human T-Cell Clones to Stable Growth without Inducing Resistance to Apoptosis

    PubMed Central

    Kraft, Michael S.; Henning, Golo; Fickenscher, Helmut; Lengenfelder, Doris; Tschopp, Jürg; Fleckenstein, Bernhard; Meinl, Edgar

    1998-01-01

    Herpesvirus saimiri (HVS) transforms human T cells to stable growth in vitro. Since HVS codes for two different antiapoptotic proteins, growth transformation by HVS might be expected to confer resistance to apoptosis. We found that the expression of both viral antiapoptotic genes was restricted to cultures with viral replication and absent in growth-transformed human T cells. A comparative examination of HVS-transformed T-cell clones and their native parental clones revealed that the expression of Bcl-2, Bcl-XL, Bax, and members of the tumor necrosis factor receptor (TNF-R) superfamily with a death domain, namely, TNF-RI, CD95, and TRAMP, were not modulated by HVS. Expression of CD30 was induced in HVS-transformed T cells, and these cells also expressed the CD30 ligand. Uninfected and transformed T cells were sensitive to CD95 ligation but resistant to apoptosis mediated by TRAIL or soluble TNF-α. CD95 ligand was constitutively expressed on transformed but not uninfected parental T cells. Both cell types showed similar sensitivity to cell death induction or inhibition of T-cell activation mediated by irradiation, oxygen radicals, dexamethasone, cyclosporine, and prostaglandin E2. Altogether, this study strongly suggests that growth transformation by HVS is based not on resistance to apoptosis but, rather, on utilization of normal cellular activation pathways. PMID:9525639

  16. Diterpenes from Xylopia langsdorffiana inhibit cell growth and induce differentiation in human leukemia cells.

    PubMed

    Castello Branco, Marianna V S; Anazetti, Maristella C; Silva, Marcelo S; Tavares, Josean F; Diniz, Margareth F F Melo; Frungillo, Lucas; Haun, Marcela; Melo, Patrícia S

    2009-01-01

    Two new diterpenes were isolated from stems and leaves of Xylopia langsdorffiana, ent-atisane-7alpha,16alpha-diol (xylodiol) and ent-7alpha-acetoxytrachyloban-18-oic acid (trachylobane), along with the known 8(17),12E,14-labdatrien-18-oic acid (labdane). We investigated their antitumour effects on HL60, U937 and K562 human leukemia cell lines. We found that xylodiol was the most potent diterpene in inhibiting cell proliferation of HL60, U937 and K562 cells, with mean IC50 values of 90, 80 and 50 microM, respectively. Based on the nitroblue tetrazolium (NBT) reduction assay, all the diterpenes were found to induce terminal differentiation in HL60 and K562 cells, with xylodiol being the most effective. NBT reduction was increased by almost 120% after 12 h exposure of HL60 cells to xylodiol at a concentration lower than the IC50 (50 microM). Thus, xylodiol inhibited human leukemia cell growth in vitro partly by inducing cell differentiation, and merits further studies to examine its mechanism of action as a potential antitumoural agent.

  17. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation inmore » HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.« less

  18. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    PubMed Central

    Gao, Run-Ping; Brigstock, David R

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semi-quantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase. PMID:19673024

  19. The Nell-1 Growth Factor Stimulates Bone Formation by Purified Human Perivascular Cells

    PubMed Central

    Zhang, Xinli; Péault, Bruno; Chen, Weiwei; Li, Weiming; Corselli, Mirko; James, Aaron W.; Lee, Min; Siu, Ronald K.; Shen, Pang; Zheng, Zhong; Shen, Jia; Kwak, Jinny; Zara, Janette N.; Chen, Feng; Zhang, Hong; Yin, Zack; Wu, Ben; Ting, Kang

    2011-01-01

    The search for novel sources of stem cells other than bone marrow mesenchymal stem cells (MSCs) for bone regeneration and repair has been a critical endeavor. We previously established an effective protocol to homogeneously purify human pericytes from multiple fetal and adult tissues, including adipose, bone marrow, skeletal muscle, and pancreas, and identified pericytes as a primitive origin of human MSCs. In the present study, we further characterized the osteogenic potential of purified human pericytes combined with a novel osteoinductive growth factor, Nell-1. Purified pericytes grown on either standard culture ware or human cancellous bone chip (hCBC) scaffolds exhibited robust osteogenic differentiation in vitro. Using a nude mouse muscle pouch model, pericytes formed significant new bone in vivo as compared to scaffold alone (hCBC). Moreover, Nell-1 significantly increased pericyte osteogenic differentiation, both in vitro and in vivo. Interestingly, Nell-1 significantly induced pericyte proliferation and was observed to have pro-angiogenic effects, both in vitro and in vivo. These studies suggest that pericytes are a potential new cell source for future efforts in skeletal regenerative medicine, and that Nell-1 is a candidate growth factor able to induce pericyte osteogenic differentiation. PMID:21615216

  20. Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.

    PubMed

    Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír

    2007-09-01

    Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine.

  1. Effect of HSP27 on Human Breast Tumor Cell Growth and Motility.

    DTIC Science & Technology

    1997-09-01

    the small heat shock protein, Hsp27 , on growth and motility characteristics of human mammary tumor cell lines. Since Hsp27 regulates actin...microfilament dynamics, we hypothesize that cells expressing high levels of Hsp27 will show increased motility and altered chemotactic properties, in addition to...significantly elevated levels of Hsp27 has proven to be daunting. Down regulation of Hsp27 levels in MCF7 cells using antisense technology has also

  2. Inhibition of human mast cell growth and differentiation by interferon gamma-1b.

    PubMed

    Kirshenbaum, A S; Worobec, A S; Davis, T A; Goff, J P; Semere, T; Metcalfe, D D

    1998-03-01

    In an effort to identify cytokines that inhibit human mast cell growth, we cultured HMC-1 cells and recombinant human stem cell factor (rhSCF)-dependent human bone marrow-derived mast cells (HBMCs) in the presence of interferon gamma (IFNgamma)-1b and interferon alpha (IFNalpha)-2b. HMC-1 cell numbers decreased in the presence of 1000 U/mL IFNgamma-1b but were unaffected by 1000 U/mL of IFNalpha-2b. HBMCs were then cultured for 0 to 7 days with 100 ng/mL rhSCF and 10 ng/mL recombinant human IL-3 (rhIL-3), followed by culture in rhSCF and administration of either 1000 U/mL IFNalpha-2b or 1000 U/mL IFNgamma-1b. HBMCs appearing in cultures with rhSCF alone or in combination with IFNalpha-2b were virtually identical in number through 8 weeks of culture. In cultures supplemented with IFNgamma-1b, HBMCs significantly decreased in number and incidence of granular metachromasia by 4 to 5 weeks (p<0.001). Similar results were obtained when human marrow was cultured from day 0 with rhSCF and IFNgamma-1b. Mature rhSCF-dependent HBMCs were also cultured at 5 weeks with rhSCF alone or in combination with IFNgamma-1b. Compared with cells cultured in rhSCF, mature 5-week HBMC cultures treated with rhSCF plus IFNgamma-1b revealed a decrease in mast cells, and those mast cells that remained had fewer toluidine blue- and tryptase-positive granules after 5 to 8 weeks. FACS analysis of rhSCF plus IFNgamma-1b-treated mature HBMCs revealed increased c-kit and Fc(epsilon)RI expression. Mast cell releasibility was not increased. IFNgamma-lb was thus able to suppress mast cell growth from CD34+ cells, suggesting that this agent should be considered as a candidate cytokine for the treatment of disorders of mast cell proliferation.

  3. Isolation of a cDNA for a Growth Factor of Vascular Endothelial Cells from Human Lung Cancer Cells: Its Identity with Insulin‐like Growth Factor II

    PubMed Central

    Hagiwara, Koichi; Kobayashi, Tatsuo; Tobita, Masato; Kikyo, Nobuaki; Yazaki, Yoshio

    1995-01-01

    We have found growth‐promoting activity for vascular endothelial cells in the conditioned medium of a human lung cancer cell line, T3M‐11. Purification and characterization of the growth‐promoting activity have been carried out using ammonium sulfate precipitation and gel‐exclusion chromatography. The activity migrated as a single peak just after ribonuclease. It did not bind to a heparin affinity column. These results suggest that the activity is not a heparin‐binding growth factor (including fibroblast growth factors) or a vascular endothelial growth factor. To identify the molecule exhibiting the growth‐promoting activity, a cDNA encoding the growth factor was isolated through functional expression cloning in COS‐1 cells from a cDNA library prepared from T3M‐11 cells. The nucleotide sequence encoded by the cDNA proved to be identical with that of insulin‐like growth factor II. PMID:7730145

  4. Development of a Monitoring Method for Nonlabeled Human Pluripotent Stem Cell Growth by Time-Lapse Image Analysis.

    PubMed

    Suga, Mika; Kii, Hiroaki; Niikura, Keiichi; Kiyota, Yasujiro; Furue, Miho K

    2015-07-01

    : Cell growth is an important criterion for determining healthy cell conditions. When somatic cells or cancer cells are dissociated into single cells for passaging, the cell numbers can be counted at each passage, providing information on cell growth as an indicator of the health conditions of these cells. In the case of human pluripotent stem cells (hPSCs), because the cells are usually dissociated into cell clumps of ∼50-100 cells for passaging, cell counting is time-consuming. In the present study, using a time-lapse imaging system, we developed a method to determine the growth of hPSCs from nonlabeled live cell phase-contrast images without damaging these cells. Next, the hPSC colony areas and number of nuclei were determined and used to derive equations to calculate the cell number in hPSC colonies, which were assessed on time-lapse images acquired using a culture observation system. The relationships between the colony areas and nuclei numbers were linear, although the equation coefficients were dependent on the cell line used, colony size, colony morphology, and culture conditions. When the culture conditions became improper, the change in cell growth conditions could be detected by analysis of the phase-contrast images. This method provided real-time information on colony growth and cell growth rates without using treatments that can damage cells and could be useful for basic research on hPSCs and cell processing for hPSC-based therapy. This is the first study to use a noninvasive method using images to systemically determine the growth of human pluripotent stem cells (hPSCs) without damaging or wasting cells. This method would be useful for quality control during cell culture of clinical hPSCs. ©AlphaMed Press.

  5. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  6. Video bioinformatics analysis of human embryonic stem cell colony growth.

    PubMed

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-05-20

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion.

  7. Epidermal Growth Factor Increases LRF/Pokemon Expression in Human Prostate Cancer Cells

    PubMed Central

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K.

    2011-01-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  8. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest.

    PubMed

    Li, Long-Zhu; Deng, Hong-Xia; Lou, Wen-Zhu; Sun, Xue-Yan; Song, Meng-Wan; Tao, Jing; Xiao, Bing-Xiu; Guo, Jun-Ming

    2012-01-07

    To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G₀/G₁ phase, whereas cells treated with high concentrations of PBA were arrested at the G₂/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G₀/ G₁ phase, cells treated with high concentrations of PBA were arrested at the S phase. The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G₀ /G₁ and G₂/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G₀/G₁ and S phases.

  10. Human umbilical cord blood serum promotes growth, proliferation, as well as differentiation of human bone marrow-derived progenitor cells.

    PubMed

    Phadnis, Smruti M; Joglekar, Mugdha V; Venkateshan, Vijayalakshmi; Ghaskadbi, Surendra M; Hardikar, Anandwardhan A; Bhonde, Ramesh R

    2006-01-01

    Fetal calf serum (FCS) is conventionally used for animal cell cultures due to its inherent growth-promoting activities. However animal welfare issues and stringent requirements for human transplantation studies demand a suitable alternative for FCS. With this view, we studied the effect of FCS, human AB serum (ABS), and human umbilical cord blood serum (UCBS) on murine islets of Langerhans and human bone marrow-derived mesenchymal-like cells (hBMCs). We found that there was no difference in morphology and functionality of mouse islets cultured in any of these three different serum supplements as indicated by insulin immunostaining. A comparative analysis of hBMCs maintained in each of these three different serum supplements demonstrated that UCBS supplemented media better supported proliferation of hBMCs. Moreover, a modification of adipogenic differentiation protocol using UCBS indicates that it can be used as a supplement to support differentiation of hBMCs into adipocytes. Our results demonstrate that UCBS not only is suitable for maintenance of murine pancreatic islets, but also supports attachment, propagation, and differentiation of hBMCs in vitro. We conclude that UCBS can serve as a better serum supplement for growth, maintenance, and differentiation of hBMCs, making it a more suitable supplement in cell systems that have therapeutic potential in human transplantation programs.

  11. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  12. A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells

    PubMed Central

    Walko, Gernot; Woodhouse, Samuel; Pisco, Angela Oliveira; Rognoni, Emanuel; Liakath-Ali, Kifayathullah; Lichtenberger, Beate M.; Mishra, Ajay; Telerman, Stephanie B.; Viswanathan, Priyalakshmi; Logtenberg, Meike; Renz, Lisa M.; Donati, Giacomo; Quist, Sven R.; Watt, Fiona M.

    2017-01-01

    Individual human epidermal cells differ in their self-renewal ability. To uncover the molecular basis for this heterogeneity, we performed genome-wide pooled RNA interference screens and identified genes conferring a clonal growth advantage on normal and neoplastic (cutaneous squamous cell carcinoma, cSCC) human epidermal cells. The Hippo effector YAP was amongst the top positive growth regulators in both screens. By integrating the Hippo network interactome with our data sets, we identify WW-binding protein 2 (WBP2) as an important co-factor of YAP that enhances YAP/TEAD-mediated gene transcription. YAP and WPB2 are upregulated in actively proliferating cells of mouse and human epidermis and cSCC, and downregulated during terminal differentiation. WBP2 deletion in mouse skin results in reduced proliferation in neonatal and wounded adult epidermis. In reconstituted epidermis YAP/WBP2 activity is controlled by intercellular adhesion rather than canonical Hippo signalling. We propose that defective intercellular adhesion contributes to uncontrolled cSCC growth by preventing inhibition of YAP/WBP2. PMID:28332498

  13. Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells.

    PubMed Central

    Shamah, S M; Stiles, C D; Guha, A

    1993-01-01

    Malignant astrocytoma is the most common primary human brain tumor. Most astrocytomas express a combination of platelet-derived growth factor (PDGF) and PDGF receptor which could close an autocrine loop. It is not known whether these autocrine loops contribute to the transformed phenotype of astrocytoma cells or are incidental to that phenotype. Here we show that dominant-negative mutants of the PDGF ligand break the autocrine loop and revert the phenotype of BALB/c 3T3 cells transformed by the PDGF-A or PDGF-B (c-sis) gene. Then, we show that these mutants are selective in that they do not alter the phenotype of 3T3 cells transformed by an activated Ha-ras or v-src gene or by simian virus 40. Finally, we show that these mutants revert the transformed phenotype of two independent human astrocytoma cell lines. They have no effect on the growth of human medulloblastoma, bladder carcinoma, or colon carcinoma cell lines. These observations are consistent with the view that PDGF autocrine loops contribute to the transformed phenotype of at least some human astrocytomas. Images PMID:8246942

  14. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    PubMed

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  15. Activated Raf-1 causes growth arrest in human small cell lung cancer cells.

    PubMed Central

    Ravi, R K; Weber, E; McMahon, M; Williams, J R; Baylin, S; Mal, A; Harter, M L; Dillehay, L E; Claudio, P P; Giordano, A; Nelkin, B D; Mabry, M

    1998-01-01

    Small cell lung cancer (SCLC) accounts for 25% of all lung cancers, and is almost uniformly fatal. Unlike other lung cancers, ras mutations have not been reported in SCLC, suggesting that activation of ras-associated signal transduction pathways such as the raf-MEK mitogen-activated protein kinases (MAPK) are associated with biological consequences that are unique from other cancers. The biological effects of raf activation in small cell lung cancer cells was determined by transfecting NCI-H209 or NCI-H510 SCLC cells with a gene encoding a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the estrogen receptor (DeltaRaf-1:ER), which can be activated with estradiol. DeltaRaf-1:ER activation resulted in phosphorylation of MAPK. Activation of this pathway caused a dramatic loss of soft agar cloning ability, suppression of growth capacity, associated with cell accumulation in G1 and G2, and S phase depletion. Raf activation in these SCLC cells was accompanied by a marked induction of the cyclin-dependent kinase (cdk) inhibitor p27(kip1), and a decrease in cdk2 protein kinase activities. Each of these events can be inhibited by pretreatment with the MEK inhibitor PD098059. These data demonstrate that MAPK activation by DeltaRaf-1:ER can activate growth inhibitory pathways leading to cell cycle arrest. These data suggest that raf/MEK/ MAPK pathway activation, rather than inhibition, may be a therapeutic target in SCLC and other neuroendocrine tumors. PMID:9421477

  16. Effects of Titanium Surface Microtopography and Simvastatin on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells in Estrogen-Deprived Cell Culture.

    PubMed

    Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin

    This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin

  17. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Chen, Y.; Tjandrawinata, R. R.

    2001-01-01

    It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.

  18. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells.

    PubMed

    Hughes-Fulford, M; Chen, Y; Tjandrawinata, R R

    2001-05-01

    It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.

  19. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  20. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  1. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with

  2. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression ofmore » Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.« less

  3. [Inhibitory effects of 11 coumarin compounds against growth of human bladder carcinoma cell line E-J in vitro].

    PubMed

    Yang, Xiu-wei; Xu, Bo; Ran, Fu-xiang; Wang, Rui-qing; Wu, Jun; Cui, Jing-rong

    2007-01-01

    To screen antitumor active compounds, drug-like or leading compounds from Chinese traditional and herbal drugs. Eleven coumarin compounds isolated from the Chinese traditional and herbal drugs were studied for their antitumor activities in vitro by determining the inhibition rates against growth of human bladder carcinoma cell line E-J. It showed that umbelliferone, scoparone, demethylfuropinarine, isopimpinellin, forbesoside, columbianadin, decursin and glycycoumarin inhibited the growth of human bladder carcinoma cell line E-J in vitro and their activities showed a concentration-effect relationship. The inhibitory effects of forbesoside, columbianadin, decursin and umbelliferone, with IC50 values of 7.50x10(-7), 2.30x10(-6), 6.00x10(-6) and 1.30x10(-6) mol/L, respectively, were stronger than those of the other tested compounds. However, xanthotoxin, esculin and sphondin did not inhibit the growth of human bladder carcinoma cell line E-J in this assay condition. These findings indicate that forbesoside, columbianadin, esculin, decursin and umbelliferone would be effective or regarded as potent drug-like or leading compounds against human bladder carcinoma.

  4. 5-demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis.

    PubMed

    Charoensinphon, Noppawat; Qiu, Peiju; Dong, Ping; Zheng, Jinkai; Ngauv, Pearline; Cao, Yong; Li, Shiming; Ho, Chi-Tang; Xiao, Hang

    2013-12-01

    Tangeretin (TAN) and 5-demethyltangeretin (5DT) are two closely related polymethoxyflavones found in citrus fruits. We investigated growth inhibitory effects on three human nonsmall cell lung cancer (NSCLC) cells. Cell viability assay demonstrated that 5DT inhibited NSCLC cell growth in a time- and dose-dependent manner, and IC50 s of 5DT were 79-fold, 57-fold, and 56-fold lower than those of TAN in A549, H460, and H1299 cells, respectively. Flow cytometry analysis showed that 5DT induced extensive G2/M cell cycle arrest and apoptosis in NSCLC cells, while TAN at tenfold higher concentrations did not. The apoptosis induced by 5DT was further confirmed by activation of caspase-3 and cleavage of PARP. Moreover, 5DT dose-dependently upregulated p53 and p21(Cip1/Waf1), and downregulated Cdc-2 (Cdk-1) and cyclin B1. HPLC analysis revealed that the intracellular levels of 5DT in NSCLC cells were 2.7-4.9 fold higher than those of TAN after the cells were treated with 5DT or TAN at the same concentration. Our results demonstrated that 5DT inhibited NSCLC cell growth by inducing G2/M cell cycle arrest and apoptosis. These effects were much stronger than those produced by TAN, which is partially due to the higher intracellular uptake of 5DT than TAN. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects and mechanism of recombinant human erythropoietin on the growth of human breast cancer MDA-MB-231 cells in nude mice.

    PubMed

    Jin, Wen; Lin, Zhiwu; Zhang, Xiaorong; Kong, Lingying; Yang, Li

    2015-08-01

    This study aimed to explore the effects of recombinant human erythropoietin (rhEPO) on the growth of human breast cancer MDA-MB-231 cells in nude mice, and investigate its functions in regulating tumor growth, angiogenesis and apoptosis. A tumor-bearing nude mice model was established by subcutaneous injection of human breast cancer MDA-MB-231 cells. Two weeks later, the mice were randomly divided into four groups (n=6 for each group): negative control group, rhEPO group, EPO antibody group and EPO+EPO antibody group. Drugs were administered to the corresponding mice once every 3 days for five times. The size and weight of tumors were measured after the mice were sacrificed by cervical dislocation. The expression levels of EPO/EPOR, TNF-α, IL-10, and Bcl-2 in the tumor tissues were determined using RT-PCR and Western blot. The microvessel density (MVD) and expression of VEGF in the tumors were detected using immunohistochemistry. TUNEL assay was used to determine apoptosis in tumors. Results show that rhEPO significantly promoted the growth of MDA-MB-231 cells in nude mice (P<0.05). Compared with the negative control group, the expression levels of EPO, EPOR, TNF-α, IL-10, and VEGF, as well as the MVD values, were significantly elevated in the rhEPO group. However, the apoptotic index was significantly reduced (P<0.05). The ability of rhEPO to promote tumor growth may be associated with its functions in promoting microvessel formation and inhibiting tumor cell apoptosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Production of Multiple Growth Factors by a Newly Established Human Thyroid Carcinoma Cell Line

    PubMed Central

    Yoshida, Yataro; Ohashi, Kensaku; Sano, Emiko; Kobayashi, Hisataka; Endo, Keigo; Naruto, Masanobu; Nakamura, Toru

    1992-01-01

    A multiple growth factor‐producing tumor cell line (NIM‐1) was newly established from a patient with thyroid cancer and remarkable neutrophilia. NIM‐1 cells also caused severe neutrophilia in nude mice bearing tumors. NIM‐1‐conditioned medium (NIM‐1CM) contained activities that supported not only granulocyte, macrophage and eosinophil colony formation of human bone marrow cells but also the growth of colony‐stimulating factor (CSF)‐dependent cell lines, NFS60‐KX and TF‐1. Northern blot hybridization analysis revealed the constitutive expression of granulocyte‐CSF (G‐CSF), granulocyte/macrophage‐CSF (GM‐CSF) and interleukin(IL)‐6 mRNAs in NIM‐1 cells. Enzyme‐linked immunosorbent assays (ELISA) using NIM‐1CM also confirmed the production of IL‐la and a small amount of IL‐1β besides G‐CSF, GM‐CSF and IL‐6 in NIM‐1 cells. In addition, unexpected production of IL‐11 in NIM‐1 cells was detected by northern blot hybridization analysis and by bioassay using an IL‐11‐dependent cell line. Therefore, NIM‐1 cell line is shown to produce multiple cytokines including potentially megakaryopoietic growth factors such as GM‐CSF, IL‐6 and IL‐11. PMID:1372885

  7. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ.

    PubMed

    Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W

    2014-03-10

    In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our

  8. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    PubMed

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  9. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells.

    PubMed

    Chu, Chia-Yu; Sheen, Yi-Shuan; Cha, Shih-Ting; Hu, Yeh-Fang; Tan, Ching-Ting; Chiu, Hsien-Ching; Chang, Cheng-Chi; Chen, Min-Wei; Kuo, Min-Liang; Jee, Shiou-Hwa

    2013-11-01

    Higher CXCR4 expression enhances basal cell carcinoma (BCC) invasion and angiogenesis. The underlying mechanism of increased CXCR4 expression in invasive BCC is still not well understood. To investigate the mechanisms involved in the regulation of CXCR4 expression in invasive BCC. We used qRT-PCR, RT-PCR, Western blot, and flow cytometric analyses to examine different CXCR4 levels among the clinical samples, co-cultured BCC cells and BCC cells treated with recombinant transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Immunohistochemical studies were used to demonstrate the correlation between TGF-β1 and CXCR4 expressions. The signal transduction pathway and transcriptional regulation were confirmed by treatments with chemical inhibitors, neutralizing antibodies, or short interfering RNAs, as well as luciferase reporter activity. Invasive BCC has higher TGF-β1 and CTGF levels compared to non-invasive BCC. Non-contact dermal fibroblasts co-culture with human BCC cells also increases the expression of CXCR4 in BCC cells. Treatment with recombinant human TGF-β1, but not CTGF, enhanced the CXCR4 levels in time- and dose-dependent manners. The protein level and surface expression of CXCR4 in human BCC cells was increased by TGF-β1 treatment. TGF-β1 was intensely expressed in the surrounding fibroblasts of invasive BCC and was positively correlated with the CXCR4 expression of BCC cells. The transcriptional regulation of CXCR4 by TGF-β1 is mediated by its binding to the TGF-β receptor II and phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2)-ETS-1 pathway. TGF-β1 induces upregulation of CXCR4 in human BCC cells by phosphorylation of ERK1/2-ETS-1 pathway. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Mechanism of gemcitabine-induced suppression of human cholangiocellular carcinoma cell growth.

    PubMed

    Toyota, Yuka; Iwama, Hisakazu; Kato, Kiyohito; Tani, Joji; Katsura, Akiko; Miyata, Miwa; Fujiwara, Shintaro; Fujita, Koji; Sakamoto, Teppei; Fujimori, Takayuki; Okura, Ryoichi; Kobayashi, Kiyoyuki; Tadokoro, Tomoko; Mimura, Shima; Nomura, Takako; Miyoshi, Hisaaki; Morishita, Asahiro; Kamada, Hideki; Yoneyama, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2015-10-01

    Although gemcitabine (2',2'-difluorocytidine monohydrochloride) is a common anticancer agent of cholangiocellular carcinoma (CCC), its growth inhibitory effects and gemcitabine resistance in CCC cells are poorly understood. Our aims were to uncover the mechanism underlying the antitumor effect of gemcitabine and to analyze the mechanism regulating in vitro CCC cell gemcitabine resistance. In addition, we sought to identify miRNAs associated with the antitumor effects of gemcitabine in CCCs. Using a cell proliferation assay and flow cytometry, we examined the ability of gemcitabine to inhibit cell proliferation in three types of human CCC cell lines (HuCCT-1, Huh28, TKKK). We also employed western blotting to investigate the effects of gemcitabine on cell cycle-related molecules in CCC cells. In addition, we used array chips to assess gemcitabine-mediated changes in angiogenic molecules and activated tyrosine kinase receptors in CCC cells. We used miRNA array chips to comprehensively analyze gemcitabine-induced miRNAs and examined clusters of differentially expressed miRNAs in cells with and without gemcitabine treatment. Gemcitabine inhibited cell proliferation in a dose- and time-dependent manner in HuCCT-1 cells, whereas cell proliferation was unchanged in Huh28 and TKKK cells. Gemcitabine inhibited cell cycle progression in HuCCT-1 cells from G0/G1 to S phase, resulting in G1 cell cycle arrest due to the reduction of cyclin D1 expression. In addition, gemcitabine upregulated the angiogenic molecules IL-6, IL-8, ENA-78 and MCP-1. In TKKK cells, by contrast, gemcitabine did not arrest the cell cycle or modify angiogenic molecules. Furthermore, in gemcitabine-sensitive HuCCT-1 cells, gemcitabine markedly altered miRNA expression. The miRNAs and angiogenic molecules altered by gemcitabine contribute to the inhibition of tumor growth in vitro.

  11. Engineering of Surface Functionality onto Polystyrene Microcarriers for the Attachment and Growth of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Xiong, Gordon M.; Foord, John S.; Griffiths, Jon-Paul; Parker, Emily M.; Moloney, Mark G.; Choong, Cleo

    2014-08-01

    This work reports the effects of introducing diverse chemical functionalities onto the surface of polystyrene microcarrier beads on their ability to function as injectable cell carriers. Cellular adhesion and proliferation, as well as cellular outgrowths from microcarrier surfaces, using human umbilical vein endothelial cells (HUVECs), were examined in detail. It was observed that initial cell adhesion appeared to be most significantly decreased by hydrophobicity, whilst cell proliferation appeared to be improved in most chemical functional groups over unmodified polystyrene. Overall, our study highlights the importance of surface chemistry in directing the growth and function of human endothelial cells.

  12. Immunopotentiator from Pantoea agglomerans 1 (IP-PA1) Promotes Murine Hair Growth and Human Dermal Papilla Cell Gene Expression.

    PubMed

    Wakame, Koji; Okawa, Hiroshi; Komatsu, Ken-Ich; Nakata, Akifumi; Sato, Keisuke; Ingawa, Hiroyuki; Kohchi, Chie; Nishizawa, Takashi; Soma, Gen-Ichiro

    2016-07-01

    The lipopolysaccharide (LPS)-like compound derived from Pantoea agglomerans (immunopotentiator from Pantoea agglomerans 1 (IP-PA1)) has been used not only as dietary supplement or cosmetic for humans, but also by Japanese veterinarians as an anti-tumor, anti-allergy, "keep a fine coat of fur" and hair growth-promoting functional food for dogs and cats. In the present study, we focused on the hair growth-promoting effects of IP-PA1 on a hair-shaved animal model and its mechanism of action. We also investigated its potential on gene expression after stimulating human dermal papilla cells with IP-PA1. The hair on the back of a C3H/HeN mouse was shaved and IP-PA1 was orally administered or applied to the skin. The status of hair growth was observed and recorded for 14 days. Skin was collected and histological tissue examination was performed with respect to hair growth status using hematoxylin and eosin staining. After IP-PA1 administration (2 and 10 μg/ml) to human dermal papilla cell culture system for 24 h, fibroblast growth factor-7 (FGF-7) and vascular endothelial growth factor (VEGF) mRNA expression were measured using real-time polymerase chain reaction (PCR) analysis. IP-PA1, when given orally, showed a tendency to promote hair growth in mice. In addition, skin application also significantly promoted hair growth, while histopathological examinations further demonstrated hair elongation from dermal papilla cells. In the human dermal papilla cell culture system, significant FGF-7 and VEGF mRNA expressions were observed (p<0.05). An underlying mechanism of gene expression by which IP-PA1 promotes hair growth was suggested to be different from that of medicine and traditional hair tonics, such as minoxidil and adenosine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders.

    PubMed

    Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata

    2016-12-01

    Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.

  14. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells

    PubMed Central

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris

    2016-01-01

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  15. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    PubMed

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  16. Acanthamoeba castellanii : growth on human cell layers reactivates attenuated properties after prolonged axenic culture

    PubMed Central

    Koehsler, Martina; Leitsch, David; Duchêne, Michael; Nagl, Markus; Walochnik, Julia

    2009-01-01

    The free-living, but potentially pathogenic, bacteriovorous amoebae of the genus Acanthamoeba can be easily grown axenically in a laboratory culture. This, however, often leads to considerable losses in virulence, and encystment capacity, and to changes in drug susceptibility. We evaluated potential options for a reactivation of a number of physiological properties, attenuated by prolonged axenic laboratory culture, including encystment potential, protease activity, heat resistance, growth rates and drug susceptibility against N-chlorotaurine (NCT). Toward this end, a strain that had been grown axenically for 10 years was repeatedly passaged on human HEp-2 cell monolayers or treated with 5′-azacytidine (AzaC), a methyltransferase inhibitor, and trichostatin A (TSA), a histone deacetylase inhibitor, in order to uplift epigenetic gene regulation. Culture on human cell monolayers resulted in significantly enhanced encystment potentials and protease activities, and higher susceptibility against NCT, whereas the resistance against heat shock was not altered. Treatment with AzaC/TSA resulted in increased encystment rates and protease activities, indicating the participation of epigenetic mechanisms. However, lowered resistances against heat shock indicate that possible stress responses to AzaC/TSA have to be taken into account. Repeated growth on human cell monolayers appears to be a potential method to reactivate attenuated characteristics in Acanthamoeba. PMID:19732153

  17. Identification of a major 50-kDa molecular weight human B-cell growth factor with Tac antigen-inducing activity on B cells.

    PubMed

    Kawano, M; Matsushima, K; Oppenheim, J J

    1987-08-01

    A bioassay was developed using human small B cells adherent to anti-human IgM (anti-mu)-coated wells. These B cells were stimulated to proliferate by culture supernatants of concanavalin A (Con A)-activated human peripheral blood lymphocytes (Con A Sup) even in the presence of high concentrations of anti-mu coated on assay wells. Human B-cell growth factor (BCGF) activities were partially purified from Con A Sup. Preparative chromatography (Sephacryl S-200 and isoelectrofocusing) yielded a major peak of BCGF activity for B cells adherent to anti-mu-coated wells with a molecular weight of 50,000 (50 kDa) and a pI 7.6. The 50-kDa BCGF was further purified by sequential chromatography using DEAE-Sephacel, CM-Sepharose, Sephacryl S-200, CM-high performance liquid chromatography (HPLC), and hydroxyapatite (HA)-HPLC. The HA-HPLC-purified 50-kDa BCGF was free of interleukin-1 (IL-1), interleukin-2 (IL-2), and interferon activities, but could support growth of BCL1 cells, similar to BCGF-II. Neither IL-1 nor interferon-gamma had any growth-stimulating effect in our B-cell proliferation assay with or without BCGF in Iscove's synthetic assay medium. BCGF-induced proliferation of B cells adherent to anti-mu-coated wells could be markedly augmented by the simultaneous or sequential addition of recombinant human IL-2 (rIL-2). When cultured for 3 days with 50-kDa BCGF, about 40% of B cells adherent to anti-mu-coated wells expressed Tac antigen, and monoclonal anti-Tac antibody inhibited rIL-2 enhancement of proliferation of 50-kDa BCGF-preactivated B cells. In addition, 50-kDa BCGF could induce Tac antigen on an Epstein-Barr virus-transformed B-cell line (ORSON) in the presence of a suboptimal dose of phorbol myristate acetate (PMA) and also on a natural killer-like cell line (YT cells). We have therefore identified a major 50-kDa BCGF activity with Tac antigen-inducing activity that also has a synergistic effect with IL-2 on normal B-cell proliferation.

  18. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice.

    PubMed

    Boisvert, William A; Yu, Miri; Choi, Youngbin; Jeong, Gi Hee; Zhang, Yi-Lin; Cho, Sunghun; Choi, Changsun; Lee, Sanghyun; Lee, Bog-Hieu

    2017-02-13

    Geranium sibiricum L. has been used as a medicinal plant to treat diarrhea, bacterial infection, and cancer in Bulgaria, Peru, and Korea. However, its hair growth-promoting effect was not investigated so far. This study examined the effects of Geranium sibiricum L. extract (GSE) on hair growth, using in vitro and in vivo models. Antioxidant, proliferation and migration assay of GSE was performed with human dermal papilla cells (hDPCs). Hair-growth promoting effect was measured in animal model. Relative expression of interleukin-1, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta 1 was determined by real time RT-PCR. Expression of Ki-67 and stem cell factor were analyzed by immunohistochemistry. GSE treatment proliferated and migrated human dermal papilla cells (hDPCs) more than treatment of 10 μM minoxidil. GSE significantly stimulated the expression of Ki-67 protein and the mRNA levels of hepatocyte growth factor and vascular endothelial growth factor in hDPCs. Topical application of 1,000 ppm GSE for 3 weeks promoted more significant hair growth on shaved C57BL/6 mice than did 5% minoxidil. The histological morphology of hair follicles demonstrated an active anagen phase with the induction of stem cell factor. GSE treatment significantly reduced the number of mast cells and the expression of transforming growth factor beta 1 in mouse skin tissues. These results demonstrated that GSE promotes hair growth in vitro and in vivo by regulating growth factors and the cellular response.

  19. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice1

    PubMed Central

    Sasaki, Takamitsu; Kitadai, Yasuhiko; Nakamura, Toru; Kim, Jang-Seong; Tsan, Rachel Z; Kuwai, Toshio; Langley, Robert R; Fan, Dominic; Kim, Sun-Jin; Fidler, Isaiah J

    2007-01-01

    The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR). Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase) or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01); this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001). AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, and increased the level of apoptosis in both tumor-associated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer. PMID:18084614

  20. Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions

    PubMed Central

    Camphausen, Kevin; Purow, Benjamin; Sproull, Mary; Scott, Tamalee; Ozawa, Tomoko; Deen, Dennis F.; Tofilon, Philip J.

    2005-01-01

    Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy. PMID:15928080

  1. Postmitotic human dermal fibroblasts preserve intact feeder properties for epithelial cell growth after long-term cryopreservation.

    PubMed

    Limat, A; Hunziker, T; Boillat, C; Noser, F; Wiesmann, U

    1990-07-01

    In vitro, human dermal fibroblasts (HDF) differentiate through morphologically and biochemically identified compartments. In the course of this spontaneous differentiation through mitotic and postmitotic states, a tremendous increase in cellular and nuclear size occurs. Induction of postmitotic states can be accelerated by chemical (e.g., mitomycin C) or physical (e.g., x-ray) treatments. Such experimentally induced postmitotic HDF cells support very efficiently the growth of cutaneous epithelial cells, i.e. interfollicular keratinocytes and follicular outer root sheath cells, especially in primary cultures starting from very low cell seeding densities. The HDF feeder system provides more fundamental and also practical advantages, i.e. use of initially diploid human fibroblasts from known anatomic locations, easy handling and excellent reproducibility, and the possibility of long-term storage by incubation at 37 degrees C. Conditions for the cryogenic storage of postmitotic HDF cells in liquid nitrogen are presented and related to the feeder capacity for epithelial cell growth. Because postmitotic HDF cells preserve intact feeder properties after long-term storage, the immediate availability of feeder cells and the possibility to repeat experiments with identical materials further substantiate the usefulness of this feeder system.

  2. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival

    PubMed Central

    2009-01-01

    Introduction The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Methods Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. Results In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Conclusions Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation

  3. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    PubMed

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  4. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sustarsic, Elahu G.; Department of Biological Sciences, Ohio University, Athens, OH; Junnila, Riia K.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includesmore » 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation

  5. Nicotine promotes vascular endothelial growth factor secretion by human trophoblast cells under hypoxic conditions and improves the proliferation and tube formation capacity of human umbilical endothelial cells.

    PubMed

    Zhao, Hongbo; Wu, Lanxiang; Wang, Yahui; Zhou, Jiayi; Li, Ruixia; Zhou, Jiabing; Wang, Zehua; Xu, Congjian

    2017-04-01

    Pre-eclampsia, characterized as defective uteroplacental vascularization, remains the major cause of maternal and fetal mortality and morbidity. Previous epidemiological studies demonstrated that cigarette smoking reduced the risk of pre-eclampsia. However, the molecular mechanism remains elusive. In the present study, it is demonstrated that a low dose of nicotine decreased soluble vascular endothelial growth factor receptor 1 (sFlt1) secretion in human trophoblast cells under hypoxic conditions. Nicotine was then observed to promote vascular endothelial growth factor (VEGF) secretion by reducing sFlt1 secretion and increasing VEGF mRNA transcription. Further data showed that nicotine enhanced hypoxia-mediated hypoxia-inducible factor-1α (HIF-1α) expression and HIF-1α small interfering RNA abrogated nicotine-induced VEGF secretion, indicating that HIF-1α may be responsible for nicotine-mediated VEGF transcription under hypoxic conditions. Moreover, conditioned medium from human trophoblast cells treated with nicotine under hypoxic conditions promoted the proliferation and tube formation capacity of human umbilical endothelial cells (HUVEC) by promoting VEGF secretion. These findings indicate that nicotine may promote VEGF secretion in human trophoblast cells under hypoxic conditions by reducing sFlt1 secretion and up-regulating VEGF transcription and improve the proliferation and tube formation of HUVEC cells, which may contribute to elucidate the protective effect of cigarette smoking against pre-eclampsia. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Growth inhibitory and proapoptotic effects of l-asparaginase from Fusarium culmorum ASP-87 on human leukemia cells (Jurkat).

    PubMed

    Meghavarnam, Anil K; Salah, Maryam; Sreepriya, Meenakshisundaram; Janakiraman, Savitha

    2017-06-01

    The objective of this study was to evaluate the anticancer properties of l-asparaginase purified from fungal isolate Fusarium culmorum ASP-87 against human T-cell leukemia cell line (Jurkat). The growth inhibitory and proapoptotic effects of purified l-asparaginase on Jurkat cell lines were investigated by determining its influence on cell viability, colony formation, DNA fragmentation, and cell cycle progression. The results revealed that purified l-asparaginase showed significant decrease in cell survival with IC 50 value of 90 μg/mL (9 IU/mL). The enzyme inhibited colony formation and showed characteristic laddering pattern on agarose gel thereby confirming the induction of apoptosis. Further, cell cycle analysis revealed that the enzyme induced apoptotic cell death by arresting the growth of cells at G 2 -M phase. However, the enzyme did not elicit any toxic effects on human erythrocytes. l-asparaginase purified from F. culmorum ASP-87 showed significant and selective cytotoxic and apoptotic effects on human T-cell leukemic cells in dose-dependent manner. Results of the study give leads for the anticancer effects of fungal l-asparaginase and its potential usefulness in the chemotherapy of leukemia. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  7. Genetic and small molecule inhibition of arylamine N-acetyltransferase 1 reduces anchorage-independent growth in human breast cancer cell line MDA-MB-231.

    PubMed

    Stepp, Marcus W; Doll, Mark A; Carlisle, Samantha M; States, J Christopher; Hein, David W

    2018-04-01

    Arylamine N-acetyltransferase 1 (NAT1) expression is reported to affect proliferation, invasiveness, and growth of cancer cells. MDA-MB-231 breast cancer cells were engineered such that NAT1 expression was elevated or suppressed, or treated with a small molecule inhibitor of NAT1. The MDA-MB-231 human breast cancer cell lines were engineered with a scrambled shRNA, a NAT1 specific shRNA or a NAT1 overexpression cassette stably integrated into a single flippase recognition target (FRT) site facilitating incorporation of these different genetic elements into the same genomic location. NAT1-specific shRNA reduced NAT1 activity in vitro by 39%, increased endogenous acetyl coenzyme A levels by 35%, and reduced anchorage-independent growth (sevenfold) without significant effects on cell morphology, growth rates, anchorage-dependent colony formation, or invasiveness compared to the scrambled shRNA cell line. Despite 12-fold overexpression of NAT1 activity in the NAT1 overexpression cassette transfected MDA-MB-231 cell line, doubling time, anchorage-dependent cell growth, anchorage-independent cell growth, and relative invasiveness were not changed significantly when compared to the scrambled shRNA cell line. A small molecule (5E)-[5-(4-hydroxy-3,5-diiodobenzylidene)-2-thioxo-1,3-thiazolidin-4-one (5-HDST) was 25-fold more selective towards the inhibition of recombinant human NAT1 than N-acetyltransferase 2. Incubation of MDA-MB-231 cell line with 5-HDST resulted in 60% reduction in NAT1 activity and significant decreases in cell growth, anchorage-dependent growth, and anchorage-independent growth. In summary, inhibition of NAT1 activity by either shRNA or 5-HDST reduced anchorage-independent growth in the MDA-MB-231 human breast cancer cell line. These findings suggest that human NAT1 could serve as a target for the prevention and/or treatment of breast cancer. © 2018 Wiley Periodicals, Inc.

  8. p27 Nuclear localization and growth arrest caused by perlecan knockdown in human endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Katsuya; Oka, Kiyomasa; Matsumoto, Kunio

    2010-02-12

    Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and itsmore » expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.« less

  9. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction.

    PubMed

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia; Torrente, Yvan; Cetin, Irene

    2016-04-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. ©AlphaMed Press.

  10. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction

    PubMed Central

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia

    2016-01-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. Significance This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. PMID:26956210

  11. [Effects of Rhizoma kaempferiae volatile oil on tumor growth and cell cycle of MKN-45 human gastric cancer cells orthotopically transplanted in nude mice].

    PubMed

    Xiao, Yan; Wei, Pin-Kang; Li, Jun; Shi, Jun; Yu, Zhi-Hong; Lin, Hui-Ming

    2006-07-01

    To evaluate the effects of Rhizoma kaempferiae volatile oil on tumor growth and cell cycle of MKN-45 human gastric cancer cells orthotopically transplanted in nude mice. One hundred and five nude mice orthotopically transplanted with MKN-45 human gastric cancer cells were randomly divided into seven groups: untreated group, normal saline-treated group, dissolvant-treated group, cyclophosphamide (CTX)-treated group and high-, medium-, and low-dose Rhizoma kaempferiae volatile oil-treated groups. Corresponding interventions were implemented in each group except the untreated group. The antitumor effects in vivo were evaluated. Cell cycle distribution and apoptosis of MKN-45 human gastric cancer cells were determined by using flow cytometry (FCM). The ultrastructure of MKN-45 gastric cancer cells was observed by a transmission electron microscope. In the high-, medium-, and low-dose Rhizoma kaempferiae volatile oil-treated groups, the growth inhibition rates of gastric cancer were 57.2%, 28.0% and 5.0% respectively, and the gastric cancer cells were arrested at G(0)/G(1) phase. This antitumor effect was dose-dependent. The apoptotic cells occurred more frequently in the high-dose Rhizoma kaempferiae volatile oil-treated group and the CTX-treated group than those in the medium- and low-dose Rhizoma kaempferiae volatile oil-treated groups. The Rhizoma kaempferiae volatile oil is an effective composition for growth inhibition of gastric cancer, and its mechanism may be related to regulating the cell cycle and inducing apoptosis.

  12. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth.

    PubMed

    Jiao, Yang; Ge, Chun-min; Meng, Qing-hui; Cao, Jian-ping; Tong, Jian; Fan, Sai-jun

    2007-07-01

    To investigate the anticancer activity of dihydroartemisinin (DHA), a derivative of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cytotoxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  13. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.

    PubMed

    Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei

    2016-02-01

    Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we

  14. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    PubMed

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  15. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Human Adipose Tissue Stem Cells Promote the Growth of Acute Lymphoblastic Leukemia Cells in NOD/SCID Mice.

    PubMed

    Lee, Myoung Woo; Park, Yoo Jin; Kim, Dae Seong; Park, Hyun Jin; Jung, Hye Lim; Lee, Ji Won; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2018-06-01

    In this study, the effect of adipose tissue stem cells (ASCs) on the growth of acute lymphoblastic leukemia (ALL) cells was examined in an in vivo model. We established ALL cell lines expressing firefly luciferase (ALL/fLuc) by lentiviral infection that were injected intraperitoneally to NOD/SCID mice. The luciferase activities were significantly higher in mice co-injected with 10 5 ALL/fLuc cells and ASCs than in those injected with ALL/fLuc cells alone. Co-injection of 10 5 ALL/fLuc cells and ASCs in differing ratios into mice gradually increased the bioluminescence intensity in all groups, and mice co-injected with 1 or 2 × 10 6 ASCs showed higher bioluminescence intensity than those receiving lower numbers. Interestingly, in the mice injected with 10 5 or 10 7 ALL/fLuc cells alone, the formation of tumor masses was not observed for at least five weeks. Moreover, co-injection of 10 7 ALL/fLuc cells and 5 × 10 5 ASCs into mice increased the bioluminescence intensity in all groups, and showed significantly higher bioluminescence intensity compared to mice co-injected with human normal fibroblast HS68 cells. Overall, ASCs promote the growth of ALL cells in vivo, suggesting that ASCs negatively influence hematologic malignancy, which should be considered in developing cell therapy using ASCs.

  17. Human neuroblastoma growth inhibitory factor (h-NGIF), derived from human astrocytoma conditioned medium, has neurotrophic properties.

    PubMed

    Eksioglu, Y Z; Iida, J; Asai, K; Ueki, T; Nakanishi, K; Isobe, I; Yamagata, K; Kato, T

    1994-05-02

    Investigations on the general characteristics of human astrocytoma cell line NAC-1 revealed neuroblastoma growth inhibitory activity in conditioned medium. Neuroblastoma growth inhibitory factor (NGIF) was partially purified by Econo Q, Econo CM, and Superose 12 column chromatography. The protein is weakly basic with an estimated M(r) of 120,000, possibly having an M(r) 60,000 dimeric structure. NGIF inhibits the growth of human neuroblastoma cell lines but has no effect on morphology nor does it produce any change in the growth of human glioblastoma cell lines. Interestingly, NGIF appears to promote survival and neurite outgrowth of embryonal rat cortical neurons. These neurotrophic properties suggest a role for NGIF in the development of the nervous system.

  18. Induction of insulin-producing cells from human pancreatic progenitor cells.

    PubMed

    Noguchi, H; Naziruddin, B; Shimoda, M; Fujita, Y; Chujo, D; Takita, M; Peng, H; Sugimoto, K; Itoh, T; Tamura, Y; Olsen, G S; Kobayashi, N; Onaca, N; Hayashi, S; Levy, M F; Matsumoto, S

    2010-01-01

    We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we sought to identify and isolate human pancreatic stem/progenitor cells. We also tested whether growth factors and protein transduction of pancreatic and duodenal homeobox factor-1 (PDX-1) and BETA2/NeuroD into human pancreatic stem/progenitor cells induced insulin or pancreas-related gene expressions. Human pancreata from brain-dead donors were used for islet isolation with the standard Ricordi technique modified by the Edmonton protocol. The cells from a duct-rich population were cultured in several media, based on those designed for mouse pancreatic or for human embryonic stem cells. To induce cell differentiation, cells were cultured for 2 weeks with exendin-4, nicotinamide, keratinocyte growth factor, PDX-1 protein, or BETA2/NeuroD protein. The cells in serum-free media showed morphologies similar to a mouse pancreatic stem cell line, while the cells in the medium for human embryonic stem cells formed fibroblast-like morphologies. The nucleus/cytoplasm ratios of the cells in each culture medium decreased during the culture. The cells stopped dividing after 30 days, suggesting that they had entered senescence. The cells treated with induction medium differentiated into insulin-producing cells, expressing pancreas-related genes. Duplications of cells from a duct-rich population were limited. Induction therapy with several growth factors and transduction proteins might provide a potential new strategy for induction of transplantable insulin-producing cells. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development.

    PubMed

    Caviedes-Bucheli, J; Canales-Sánchez, P; Castrillón-Sarria, N; Jovel-Garcia, J; Alvarez-Vásquez, J; Rivero, C; Azuero-Holguín, M M; Diaz, E; Munoz, H R

    2009-08-01

    To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.

  20. Cytotoxicity and apoptotic inducibility of Vitex agnus-castus fruit extract in cultured human normal and cancer cells and effect on growth.

    PubMed

    Ohyama, Kunio; Akaike, Takenori; Hirobe, Chieko; Yamakawa, Toshio

    2003-01-01

    A crude extract was prepared with ethanol from dried ripened Vitex agnus-castus fruits growing in Israel (Vitex extract). Cytotoxicity of the extract against human uterine cervical canal fibroblast (HCF), human embryo fibroblast (HE-21), ovarian cancer (MCF-7), cervical carcinoma (SKG-3a), breast carcinoma (SKOV-3), gastric signet ring carcinoma (KATO-III), colon carcinoma (COLO 201), and small cell lung carcinoma (Lu-134-A-H) cells was examined. After culture for 24 h (logarithmic growth phase) or 72 h (stationary growth phase), the cells were treated with various concentrations of Vitex extract. In both growth phases, higher growth activity of cells and more cytotoxic activity of Vitex extract were seen. The cytotoxic activity against stationary growth-phase cells was less than that against logarithmic growth-phase cells. DNA fragmentation of Vitex extract-treated cells was seen in SKOV-3, KATO-III, COLO 201, and Lu-134-A-H cells. The DNA fragmentation in Vitex extract-treated KATO-III cells was inhibited by the presence of the antioxidative reagent pyrrolidine dithiocarbamate or N-acetyl-L-cysteine (NAC). Western blotting analysis showed that in Vitex extract-treated KATO-III cells, the presence of NAC also inhibited the expression of heme oxygenase-1 and the active forms of caspases-3, -8 and -9. It is concluded that the cytotoxic activity of Vitex extract may be attributed to the effect on cell growth, that cell death occurs through apoptosis, and that this apoptotic cell death may be attributed to increased intracellular oxidation by Vitex extract treatment.

  1. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay.

    PubMed

    Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C

    2010-09-01

    To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P < 0.05). Among patients with DE, TGF-beta bioactivity was highest in those with Sjögren syndrome. Approximately, 79.1% of TGF-beta in DE tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable

  2. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity

    PubMed Central

    Wang, Zeng; Hu, Wei; Zhang, Jia-Li; Wu, Xiu-Hua; Zhou, Hui-Jun

    2012-01-01

    Dihydroartemisinin (DHA), an active metabolite of artemisinin derivatives, is the most remarkable anti-malarial drug and has little toxicity to humans. Recent studies have shown that DHA effectively inhibits the growth of cancer cells. In the present study, we intended to elucidate the mechanisms underlying the inhibition of growth of iron-loaded human myeloid leukemia K562 cells by DHA. Mitochondria are important regulators of both autophagy and apoptosis, and one of the triggers for mitochondrial dysfunction is the generation of reactive oxygen species (ROS). We found that the DHA-induced autophagy of leukemia K562 cells, whose intracellular organelles are primarily mitochondria, was ROS dependent. The autophagy of these cells was followed by LC3-II protein expression and caspase-3 activation. In addition, we demonstrated that inhibition of the proliferation of leukemia K562 cells by DHA is also dependent upon iron. This inhibition includes the down-regulation of TfR expression and the induction of K562 cell growth arrest in the G2/M phase. PMID:23650588

  3. 7-Phloroeckol promotes hair growth on human follicles in vitro.

    PubMed

    Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon

    2014-08-01

    7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.

  4. A novel nitro-oxy substituted analogue of rofecoxib reduces human colon cancer cell growth.

    PubMed

    Bocca, Claudia; Bozzo, Francesca; Ievolella, Monica; Miglietta, Antonella

    2012-02-01

    Rofecoxib is a specific COX-2 inhibitor able to exert antiproliferative activity against colorectal cancer cells. It was withdrawn from the market after the demonstration of an increased risk of cardiovascular complications after prolonged use. Nevertheless, it remains an interesting compound for laboratory research as an experimental COX-2 inhibitor. In this study, the antiproliferative activity of a novel dinitro-oxy-substituted analogue of rofecoxib (NO-rofe), potentially less cardiotoxic, has been investigated in vitro on human colon cancer cells and compared with the action of the parent drug. Due to the fact that COX-2 inhibition is the main characteristic of coxibs, we performed all experiments in COX-2-overexpressing (HT-29) and COX-2-negative (SW-480) human colon cancer cells, to elucidate whether the observed effects were dependent on COX-2 inhibition. Moreover, experiments were performed in order to evaluate whether COX-2 pharmacological inhibition may affect beta-catenin/E-cadherin signaling pathway. NO-rofe exerted a significant antiproliferative activity on COX-2 positive HT-29 human colon cancer cells, being less effective on the COX-2 negative SW-480 human colon cancer cell line. In particular, the rofecoxib analogue retained similar potencies with respect to COX-2 inhibition but was much more active than rofecoxib in inhibiting the growth of human colon cancer cells in vitro. In addition, this novel compound resulted in the induction of membrane β-catenin/E-cadherin expression, a feature that may significantly contribute to its antiproliferative activity.

  5. Intratracheal Administration of Recombinant Human Keratinocyte Growth Factor Promotes Alveolar Epithelial Cell Proliferation during Compensatory Lung Growth in Rat

    PubMed Central

    Furukawa, Katsuro; Matsumoto, Keitaro; Nagayasu, Takeshi; Yamamoto-Fukuda, Tomomi; Tobinaga, Shuichi; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Kamohara, Ryotaro; Nanashima, Atsushi; Obatake, Masayuki; Koji, Takehiko

    2013-01-01

    Keratinocyte growth factor (KGF) is considered to be one of the most important mitogens for lung epithelial cells. The objectives of this study were to confirm the effectiveness of intratracheal injection of recombinant human KGF (rhKGF) during compensatory lung growth and to optimize the instillation protocol. Here, trilobectomy in adult rat was performed, followed by intratracheal rhKGF instillation with low (0.4 mg/kg) and high (4 mg/kg) doses at various time-points. The proliferation of alveolar cells was assessed by the immunostaining for proliferating cell nuclear antigen (PCNA) in the residual lung. We also investigated other immunohistochemical parameters such as KGF, KGF receptor and surfactant protein A as well as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Consequently, intratracheal single injection of rhKGF in high dose group significantly increased PCNA labeling index (LI) of alveolar cells in the remaining lung. Surprisingly, there was no difference in PCNA LI between low and high doses of rhKGF with daily injection, and PCNA LI reached a plateau level with 2 days-consecutive administration (about 60%). Our results indicate that even at low dose, daily intratracheal injection is effective to maintain high proliferative states during the early phase of compensatory lung growth. PMID:24610965

  6. Intratracheal Administration of Recombinant Human Keratinocyte Growth Factor Promotes Alveolar Epithelial Cell Proliferation during Compensatory Lung Growth in Rat.

    PubMed

    Furukawa, Katsuro; Matsumoto, Keitaro; Nagayasu, Takeshi; Yamamoto-Fukuda, Tomomi; Tobinaga, Shuichi; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Kamohara, Ryotaro; Nanashima, Atsushi; Obatake, Masayuki; Koji, Takehiko

    2013-12-28

    Keratinocyte growth factor (KGF) is considered to be one of the most important mitogens for lung epithelial cells. The objectives of this study were to confirm the effectiveness of intratracheal injection of recombinant human KGF (rhKGF) during compensatory lung growth and to optimize the instillation protocol. Here, trilobectomy in adult rat was performed, followed by intratracheal rhKGF instillation with low (0.4 mg/kg) and high (4 mg/kg) doses at various time-points. The proliferation of alveolar cells was assessed by the immunostaining for proliferating cell nuclear antigen (PCNA) in the residual lung. We also investigated other immunohistochemical parameters such as KGF, KGF receptor and surfactant protein A as well as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Consequently, intratracheal single injection of rhKGF in high dose group significantly increased PCNA labeling index (LI) of alveolar cells in the remaining lung. Surprisingly, there was no difference in PCNA LI between low and high doses of rhKGF with daily injection, and PCNA LI reached a plateau level with 2 days-consecutive administration (about 60%). Our results indicate that even at low dose, daily intratracheal injection is effective to maintain high proliferative states during the early phase of compensatory lung growth.

  7. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  8. Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues.

    PubMed

    Fazzina, R; Iudicone, P; Fioravanti, D; Bonanno, G; Totta, P; Zizzari, I G; Pierelli, L

    2016-08-25

    Mesenchymal stromal cells (MSCs) have been largely investigated, in the past decade, as potential therapeutic strategies for various acute and chronic pathological conditions. MSCs isolated from different sources, such as bone marrow (BM), umbilical cord tissue (UCT) and adipose tissue (AT), share many biological features, although they may show some differences on cumulative yield, proliferative ability and differentiation potential. The standardization of MSCs growth and their functional amplification is a mandatory objective of cell therapies. The aim of this study was to evaluate the cumulative yield and the ex vivo amplification potential of MSCs obtained from various sources and different subjects, using defined culture conditions with a standardized platelet lysate (PL) as growth stimulus. MSCs isolated from BM, UCT and AT and expanded in human PL were compared in terms of cumulative yield and growth potential per gram of starting tissue. MSCs morphology, phenotype, differentiation potential, and immunomodulatory properties were also investigated to evaluate their biological characteristics. The use of standardized PL-based culture conditions resulted in a very low variability of MSC growth. Our data showed that AT has the greater capacity to generate MSC per gram of initial tissue, compared to BM and UCT. However, UCT-MSCs replicated faster than AT-MSCs and BM-MSCs, revealing a greater proliferation capacity of this source irrespective of its lower MSC yield. All MSCs exhibited the typical MSC phenotype and the ability to differentiate into all mesodermal lineages, while BM-MSCs showed the most prominent immunosuppressive effect in vitro. The adoption of standardized culture conditions may help researchers and clinicians to reveal particular characteristics and inter-individual variability of MSCs sourced from different tissues. These data will be beneficial to set the standards for tissue collection and MSCs clinical-scale expansion both for cell banking

  9. Daidzein–Estrogen Interaction in the Rat Uterus and Its Effect on Human Breast Cancer Cell Growth

    PubMed Central

    Gaete, Leonardo; Bustamante, Rodrigo; Villena, Joan; Lemus, Igor; Gidekel, Manuel; Cabrera, Gustavo; Astorga, Paola

    2012-01-01

    Abstract Sex hormone replacement therapy provides several advantages in the quality of life for climacteric women. However, estrogen-induced cell proliferation in the uterus and mammary gland increases the risk of cancer development in these organs. The lower incidence of mammary cancer in Asian women as compared with Western women has been attributed to high intake of soy isoflavones, including genistein. We have previously shown that genistein induces an estradiol-like hypertrophy of uterine cells, but does not induce cell proliferation, uterine eosinophilia, or endometrial edema. It also inhibits estradiol-induced mitosis in uterine cells and hormone-induced uterine eosinophilia and endometrial edema. Nevertheless, genistein stimulates growth of human breast cancer cells in culture; therefore, it is not an ideal estrogen for use in hormone replacement therapy (HRD). The present study investigated the effect of another soy isoflavone, daidzein (subcutaneous, 0.066 mg/kg body weight), in the same animal model, and its effect on responses induced by subsequent treatment (1 h later) with estradiol-17β (E2; subcutaneous, 0.33 mg/kg body weight). In addition, we investigated the effects of daidzein (1 μg/mL) or E2 on the growth of human breast cancer cells in culture. Results indicate that daidzein stimulates growth of breast cancer cells and potentiates estrogen-induced cell proliferation in the uterus. We suggest caution for the use of daidzein or formulas containing this compound in HRD. Future research strategies should be addressed in the search for new phytoestrogens that selectively inhibit cell proliferation in the uterus and breast. PMID:23216111

  10. Synergistic growth inhibition by acyclic retinoid and vitamin K2 in human hepatocellular carcinoma cells.

    PubMed

    Kanamori, Toh; Shimizu, Masahito; Okuno, Masataka; Matsushima-Nishiwaki, Rie; Tsurumi, Hisashi; Kojima, Soichi; Moriwaki, Hisataka

    2007-03-01

    Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. However, effective chemopreventive and chemotherapeutic agents for this cancer have not yet been developed. In clinical trials acyclic retinoid (ACR) and vitamin K(2) (VK(2)) decreased the recurrence rate of HCC. In the present study we examined the possible combined effects of ACR or another retinoid 9-cis retinoic acid (9cRA) plus VK(2) in the HuH7 human HCC cell line. We found that the combination of 1.0 microM ACR or 1.0 microM 9cRA plus 10 microM VK(2) synergistically inhibited the growth of HuH7 cells without affecting the growth of Hc normal human hepatocytes. The combined treatment with ACR plus VK(2) also acted synergistically to induce apoptosis in HuH7 cells. Treatment with VK(2) alone inhibited phosphorylation of the retinoid X receptor (RXR)alpha protein, which is regarded as a critical factor for liver carcinogenesis, through inhibition of Ras activation and extracellular signal-regulated kinase phosphorylation. Moreover, the inhibition of RXRalpha phosphorylation by VK(2) was enhanced when the cells were cotreated with ACR. The combination of retinoids plus VK(2) markedly increased both the retinoic acid receptor responsive element and retinoid X receptor responsive element promoter activities in HuH7 cells. Our results suggest that retinoids (especially ACR) and VK(2) cooperatively inhibit activation of the Ras/MAPK signaling pathway, subsequently inhibiting the phosphorylation of RXRalpha and the growth of HCC cells. This combination might therefore be effective for the chemoprevention and chemotherapy of HCC.

  11. High-dose ascorbic acid induces carcinostatic effects through hydrogen peroxide and superoxide anion radical generation-induced cell death and growth arrest in human tongue carcinoma cells.

    PubMed

    Ohwada, Ryouhei; Ozeki, Yu; Saitoh, Yasukazu

    2017-01-01

    High-dose ascorbic acid (AsA) treatment, known as pharmacological AsA, has been shown to exert carcinostatic effects in many types of cancer cells and in vivo tumour models. Although pharmacological AsA has potential as a complementary and alternative medicine for anticancer treatment, its effects on human tongue carcinoma have not yet been elucidated. In this study, we investigated the effect of AsA treatment on human tongue carcinoma HSC-4 cells compared with non-tumourigenic tongue epithelial dysplastic oral keratinocyte (DOK) cells. Our results show that treatment with 1 and 3 mM of AsA for 60 min preferentially inhibits the growth of human tongue carcinoma HSC-4 over DOK cells. Furthermore, AsA-induced effects were accompanied by increased intracellular oxidative stress and were repressed by treatment with a hydrogen peroxide (H 2 O 2 ) scavenger catalase and a superoxide anion radical (O 2 - ) scavenger, tempol. Time-lapse observation and thymidine analog EdU incorporation revealed that AsA treatment induces not only cell death but also suppression of DNA synthesis and cell growth. Moreover, the growth arrest was accompanied by abnormal cellular morphologies whereby cells extended dendrite-like pseudopodia. Taken together, our results demonstrate that AsA treatment can induce carcinostatic effects through induction of cell death, growth arrest, and morphological changes mediated by H 2 O 2 and O 2 - generation. These findings suggest that high-dose AsA treatment represents an effective treatment for tongue cancer as well as for other types of cancer cells.

  12. Increased Insulin-like Growth Factor Binding Protein-1 Phosphorylation in Decidualized Stromal Mesenchymal Cells in Human Intrauterine Growth Restriction Placentas.

    PubMed

    Singal, Sahil S; Nygard, Karen; Gratton, Robert; Jansson, Thomas; Gupta, Madhulika B

    2018-05-01

    Intrauterine growth restriction (IUGR) is often caused by placental insufficiency, which is believed to be associated with decreased delivery of oxygen and nutrients to the placental barrier. We recently reported that hypoxia and/or leucine deprivation triggered hyperphosphorylation of insulin-like growth factor binding protein-1 (IGFBP-1) in decidualized human immortalized endometrial stromal cells (HIESCs), resulting in decreased insulin-like growth factor-1 (IGF-1) bioactivity. To test the hypothesis that human IUGR is associated with increased decidual IGFBP-1 phosphorylation at discrete sites, we used IUGR and gestational age matched appropriate for gestational age (AGA) placentas ( n=5 each). We performed dual immunofluorescence immunohistochemistry (IHC) using IGFBP-1 and vimentin as decidual and mesenchymal markers, respectively. Employing a unique strategy with imaging software, we extracted signal intensity of IGFBP-1 expressed specifically from truly decidualized cells of the placenta. Relative IGFBP-1 was increased (85%; p=0.0001) and using custom phospho-site-specific antibodies, we found that IGFBP-1 phosphorylation (pSer101; +40%, p=0.0677/pSer119; +60%, p=0.0064/pSer169; +100%, p=0.0021) was markedly enhanced in IUGR. Together, our data links for the first time, increased decidual IGFBP-1 phosphorylation at discrete sites with human IUGR. These novel findings suggest that hyperphosphorylation of IGFBP-1 in decidualized stromal mesenchymal decidua basalis contributes to potentially elevated levels of phosphorylated IGFBP-1 in maternal circulation in IUGR pregnancies.

  13. Control of growth and squamous differentiation in normal human bronchial epithelial cells by chemical and biological modifiers and transferred genes.

    PubMed Central

    Pfeifer, A M; Lechner, J F; Masui, T; Reddel, R R; Mark, G E; Harris, C C

    1989-01-01

    The majority of human lung cancers arise from bronchial epithelial cells. The normal pseudostratified bronchial epithelium is composed of basal, mucous, and ciliated cells. This multi-differentiated epithelium usually responds to xenobiotics and physical injury by undergoing basal cell hyperplasia, mucous cell hyperplasia, and squamous metaplasia. One step of the multistage process of carcinogenesis is thought to involve aberrations in control of the squamous metaplastic processes. Decreased responsiveness to regulators of terminal squamous differentiation may confer a selective clonal expansion advantage to an initiated cell. We studied the effects of endogenous [e.g., transforming growth factor beta 1 (TGF-beta 1) and serum] and exogenous [e.g., 12-O-tetradecanoyl-13-phorbol-acetate (TPA), tobacco smoke condensate, and aldehydes] modifiers of normal human bronchial epithelial (NHBE) cell in a serum-free culture system. NHBE cells are growth inhibited by all of these compounds and induced to undergo squamous differentiation by TGF-beta 1 or TPA. In contrast, lung carcinoma cell lines are relatively resistant to inducers of terminal squamous differentiation which may provide them with a selective growth advantage. Chemical agents and activated protooncogenes (ras,raf,myc) altered the response to endogenous and exogenous inducers of squamous differentiation and caused extended cellular lifespan, aneuploidy, and/or tumorigenicity. The data suggest a close relationship between dysregulation of terminal differentiation pathways and neoplastic transformation of human bronchial epithelial cells. PMID:2538323

  14. Taspine derivative TAS9 regulates cell growth and metastasis of human hepatocellular carcinoma.

    PubMed

    Liu, Rui; Wang, Wenjie; Dai, Bingling; Liu, Yanping; Zhang, Yanmin

    2015-11-01

    Taspine has been indicated to be a potential anti‑carcinogenic agent. The present study investigated the effects of TAS9, a modified taspine derivative, on the proliferation and migration of the SMMC‑7721 human liver cancer cell line. First, the effects of TAS9 on SMMC‑7721 cell growth were examined using MTT and colony formation assaya. In vivo Transwell and wound healing assays were then performed to assess the inhibitory effects of TAS9 on cell invasion and migration, respectively. The expression of cell proliferation‑ and migration‑associated signaling molecules was investigated by western blot analysis. The results indicated that TAS9 inhibited SMMC‑7721 cell growth by downregulating the signaling molecules protein kinase Cβ (PKCβ), Akt, mammalian target of rapamycin, mitogen‑activated protein kinase kinase 2, RAF and c‑Jun N‑terminal kinase‑1, and inhibiting SMMC‑7721 cell migration by suppressing the expression of matrix metalloproteinase (MMP)‑2, MMP‑9, chemokine (C‑X‑C motif) receptor 4, nuclear factor κB, p38 and p53. Small interfering RNA‑mediated knockdown of PKCβ in the SMMC‑7721 cells significantly attenuated the tumor inhibitory effects of TAS9. In conclusion, the results of the present study suggested that TAS9 may have inhibitory effects on the proliferation and migration of SMMC‑7721 cells, and may serve as a potential candidate for cancer treatment.

  15. Xanthorrhizol, a natural sesquiterpenoid, induces apoptosis and growth arrest in HCT116 human colon cancer cells.

    PubMed

    Kang, You-Jin; Park, Kwang-Kyun; Chung, Won-Yoon; Hwang, Jae-Kwan; Lee, Sang Kook

    2009-11-01

    Xanthorrhizol is a sesquiterpenoid from the rhizome of Curcuma xanthorrhiza. In our previous studies, xanthorrhizol suppressed cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, inhibited cancer cell growth, and exerted an anti-metastatic effect in an animal model. However, the exact mechanisms for its inhibitory effects against cancer cell growth have not yet been fully elucidated. In the present study, we investigated the growth inhibitory effect of xanthorrhizol on cancer cells. Xanthorrhizol dose-dependently exerted antiproliferative effects against HCT116 human colon cancer cells. Xanthorrhizol also arrested cell cycle progression in the G0/G1 and G2/M phase and induced the increase of sub-G1 peaks. Cell cycle arrest was highly correlated with the downregulation of cyclin A, cyclin B1, and cyclin D1; cyclin-dependent kinase 1 (CDK1), CDK2, and CDK4; proliferating cell nuclear antigen; and inductions of p21 and p27, cyclin-dependent kinase inhibitors. The apoptosis by xanthorrhizol was markedly evidenced by induction of DNA fragmentation, release of cytochrome c, activation of caspases, and cleavage of poly-(ADP-ribose) polymerase. In addition, xanthorrhizol increased the expression and promoter activity of pro-apoptotic non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1). These findings provide one plausible mechanism for the growth inhibitory activity of xanthorrhizol against cancer cells.

  16. Exogenous regucalcin suppresses the growth of human liver cancer HepG2 cells in vitro.

    PubMed

    Yamaguchi, Masayoshi; Murata, Tomiyasu

    2018-04-05

    Regucalcin, which its gene is localized on the X chromosome, plays a pivotal role as a suppressor protein in signal transduction in various types of cells and tissues. Regucalcin gene expression has been demonstrated to be suppressed in various tumor tissues of animal and human subjects, suggesting a potential role of regucalcin in carcinogenesis. Regucalcin, which is produced from the tissues including liver, is found to be present in the serum of human subjects and animals. This study was undertaken to determine the effects of exogenous regucalcin on the proliferation in cloned human hepatoma HepG2 cells in vitro. Proliferation of HepG2 cells was suppressed after culture with addition of regucalcin (0.01 – 10 nM) into culture medium. Exogenous regucalcin did not reveal apoptotic cell death in HepG2 cells in vitro. Suppressive effects of regucalcin on cell proliferation were not enhanced in the presence of various signaling inhibitors including tumor necrosis factor-α (TNF-α), Bay K 8644, PD98059, staurosporine, worthomannin, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) or gemcitabine, which were found to suppress the proliferation. In addition, exogenous regucalcin suppressed the formation of colonies of cultured hepatoma cells in vitro. These findings demonstrated that exogenous regucalcin exhibits a suppressive effect on the growth of human hepatoma HepG2 cells, proposing a strategy with the gene therapy for cancer treatment.

  17. Growth Inhibitory Effect of Palatine Tonsil-derived Mesenchymal Stem Cells on Head and Neck Squamous Cell Carcinoma Cells

    PubMed Central

    Lim, Yun-Sung; Lee, Jin-Choon; Lee, Yoon Se; Wang, Soo-Geun

    2012-01-01

    Objectives Mesenchymal stem cells (MSCs) play an important role in the development and growth of tumor cells. However, the effect of human MSCs on the growth of human tumors is not well understood. The purpose of this study is to confirm the growth effect of palatine tonsil-derived MSCs (TD-MSCs) on head and neck squamous cell carcinoma (HNSCC) cell lines and to elucidate the mechanism of their action. Methods TD-MSCs were isolated from patient with chronic tonsillitis and tonsillar hypertrophy. Two human HNSCC cell lines (PNUH-12 and SNU-899) were studied and cocultured with isolated palatine tonsil-derived MSC. The growth inhibitory effect of MSCs on HNSCC cell lines was tested through methylthiazolyldiphenyl-tetrazolium (MTT) assay. The apoptosis induction effect of MSCs on cell lines was assessed with flow cytometry and reverse transcriptase (RT)-PCR. Results Palatine tonsil-derived MSCs exhibited a growth inhibitory effect on both cell lines. Cell cycle analysis showed an accumulation of tumor cells predominantly in G0/G1 phase with an increase in concentration of TD-MSCs, which was confirmed by increased mRNA expression of cell cycle negative regulator p21. Apoptosis of tumor cells increased significantly as concentration of cocultured TD-MSCs increased. Additionally, mRNA expression of caspase 3 was upregulated with increased concentration of TD-MSCs. Conclusion TD-MSCs have a potential growth inhibitory effect on HNSCC cell lines in vitro by inducing apoptotic cell death and G1 phase arrest of cell lines. PMID:22737289

  18. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth

    PubMed Central

    Higgins, Claire A.; Chen, James C.; Cerise, Jane E.; Jahoda, Colin A. B.; Christiano, Angela M.

    2013-01-01

    De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture. Here, we performed global gene expression analysis of human dermal papilla cells in culture and discovered very rapid and profound molecular signature changes linking their transition from a 3D to a 2D environment with early loss of their hair-inducing capacity. We demonstrate that the intact dermal papilla transcriptional signature can be partially restored by growth of papilla cells in 3D spheroid cultures. This signature change translates to a partial restoration of inductive capability, and we show that human dermal papilla cells, when grown as spheroids, are capable of inducing de novo hair follicles in human skin. PMID:24145441

  19. Expression of the transforming growth factor alpha protooncogene in differentiating human promyelocytic leukemia (HL-60) cells.

    PubMed

    Walz, T M; Malm, C; Wasteson, A

    1993-01-01

    The process of myeloid differentiation in human promyelocytic leukemia cells (HL-60) is accompanied by the coordinate expression of numerous protooncogenes. To investigate the expression of transforming growth factor alpha (TGF-alpha) in myeloid differentiation, HL-60 cells were induced to differentiate into granulocytes with 1.25% dimethyl sulfoxide, 0.2 microM all-trans retinoic acid, or 500 microM N6,O2-dibutyryladenosine-3'5'-cyclic monophosphate or differentiated along the monocyte/macrophage pathway with 0.1 microM phorbol-12-myristate-13-acetate. Using Northern blot analyses, TGF-alpha transcripts were detected within 24 h of treatment in cells differentiating toward granulocytes; maximal levels of gene expression were reached after 3 days or later and remained essentially constant throughout the observation period. These cells released TGF-alpha protein, as demonstrated by analysis of the incubation medium. In contrast, no TGF-alpha RNA or protein was detectable in HL-60 cell cultures when induced with phorbol-12-myristate-13-acetate. Epidermal growth factor receptor transcripts could not be detected either in undifferentiated or in differentiated HL-60 cells; therefore it appears as if an autocrine loop involving TGF-alpha in HL-60 cells is unlikely. In conclusion, the results demonstrate, for the first time, the expression of TGF-alpha in human granulocyte precursor cells. Our findings may indicate novel regulatory pathways in hematopoiesis.

  20. Diminished survival of human cytotrophoblast cells exposed to hypoxia/reoxygenation injury and associated reduction of heparin-binding epidermal growth factor-like growth factor.

    PubMed

    Leach, Richard E; Kilburn, Brian A; Petkova, Anelia; Romero, Roberto; Armant, D Randall

    2008-04-01

    The antiapoptotic action of heparin-binding epidermal growth factor (HBEGF)-like growth factor and its regulation by O(2) constitutes a key factor for trophoblast survival. The hypothesis that cytotrophoblast survival is compromised by exposure to hypoxia-reoxygenation (H/R) injury, which may contribute to preeclampsia and some missed abortions, prompted us to investigate HBEGF regulation and its role as a survival factor during H/R in cytotrophoblast cells. A transformed human first-trimester cytotrophoblast cell line HTR-8/SVneo was exposed to H/R (2% O(2) followed by 20% O(2)) and assessed for HBEGF expression and cell death. Cellular HBEGF declined significantly within 30 minutes of reoxygenation after culture at 2% O(2). H/R significantly reduced proliferation and increased cell death when compared with trophoblast cells cultured continuously at 2% or 20% O(2). Restoration of cell survival also was achieved by adding recombinant HBEGF during reoxygenation. HBEGF inhibited apoptosis through its binding to either human epidermal receptor (HER)-1 or HER4, its cognate receptors. These results provide evidence that cytotrophoblast exposure to H/R induces apoptosis and decreased cell proliferation. HBEGF accumulation is diminished under these conditions, whereas restoration of HBEGF signaling improves trophoblast survival.

  1. Inhibition of Human MCF-7 Breast Cancer Cells and HT-29 Colon Cancer Cells by Rice-Produced Recombinant Human Insulin-Like Growth Binding Protein-3 (rhIGFBP-3)

    PubMed Central

    Liu, Lizhong; Liu, Qiaoquan; Lan, Linlin; Tong, Peter C. Y.; Sun, Samuel S. M.

    2013-01-01

    Background Insulin-like growth factor binding protein-3 (IGFBP-3) is a multifunctional molecule which is closely related to cell growth, apoptosis, angiogenesis, metabolism and senescence. It combines with insulin-like growth factor-I (IGF-I) to form a complex (IGF-I/IGFBP-3) that can treat growth hormone insensitivity syndrome (GHIS) and reduce insulin requirement in patients with diabetes. IGFBP-3 alone has been shown to have anti-proliferation effect on numerous cancer cells. Methodology/Principal Findings We reported here an expression method to produce functional recombinant human IGFBP-3 (rhIGFBP-3) in transgenic rice grains. Protein sorting sequences, signal peptide and endoplasmic reticulum retention tetrapeptide (KDEL) were included in constructs for enhancing rhIGFBP-3 expression. Western blot analysis showed that only the constructs with signal peptide were successfully expressed in transgenic rice grains. Both rhIGFBP-3 proteins, with or without KDEL sorting sequence inhibited the growth of MCF-7 human breast cancer cells (65.76 ± 1.72% vs 45.00 ± 0.86%, p < 0.05; 50.84 ± 1.97% vs 45.00 ± 0.86%, p < 0.01 respectively) and HT-29 colon cancer cells (65.14 ±3.84% vs 18.01 ± 13.81%, p < 0.05 and 54.7 ± 9.44% vs 18.01 ± 13.81%, p < 0.05 respectively) when compared with wild type rice. Conclusion/Significance These findings demonstrated the feasibility of producing biological active rhIGFBP-3 in rice using a transgenic approach, which will definitely encourage more research on the therapeutic use of hIGFBP-3 in future. PMID:24143239

  2. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soyeon; Innovative Research Institute for Cell Therapy, Seoul National University College of Medicine and Hospital, Seoul; Lee, Jae-Jung

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effectmore » of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR

  3. Human Wharton's jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice.

    PubMed

    Gauthaman, Kalamegam; Fong, Chui-Yee; Arularasu, Suganya; Subramanian, Arjunan; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff

    2013-02-01

    Human Wharton's jelly stem cells (hWJSCs) were shown to inhibit the growth of human mammary carcinomas. It is not known whether cell-free secretions or lysates of hWJSCs do the same on different cancers. They may be less controversial than cells to regulatory bodies for clinical application. We examined the influence of hWJSC conditioned medium (hWJSC-CM) and cell-free lysate (hWJSC-CL) on two osteosarcoma cell lines (MG-63, SKES-1) in vitro and on human mammary carcinomas in immunodeficient mice. When exposed to hWJSC-CL, increased vacuolations in MG-63 and increased membrane fragmentation in SKES-1 cells were observed, with greater cell death in SKES-1. Exposure of SKES-1 and MG-63 cells to hWJSC-CL showed significant decreases in cell proliferation of 46.48 ± 6.66% and 24.32 ± 5.67% respectively compared to controls. MG-63 and SKES-1 cells were annexin V-FITC positive and SKES-1 TUNEL positive following treatment with hWJSC-CM and hWJSC-CL. MG-63 cells were positive and SKES-1 cells negative for anti-BECLIN-1 and anti-LC3B following treatment with hWJSC-CM and hWJSC-CL. RT-PCR showed that the pro-apoptotic BAX gene and the autophagy-related ATG-5 and BECLIN-1 genes were up-regulated while the anti-apoptotic BCL2 and SURVIVIN genes were down-regulated in MG-63 and SKES-1 cells treated with hWJSC-CM and hWJSC-CL. Injections of hWJSCs and hWJSC-CM into mammary carcinomas in immunodeficient mice resulted in decreased tumor sizes and weights of 24.86 ± 6.05% to 37.03 ± 5.91% and 47.14 ± 7.36% to 55.09 ± 5.87% respectively at 6 weeks compared to controls. hWJSC-CM and hWJSC-CL inhibit mammary carcinoma and osteosarcoma cells via apoptosis and autophagy. Copyright © 2012 Wiley Periodicals, Inc.

  4. Hedgehog signal inhibitor forskolin suppresses cell proliferation and tumor growth of human rhabdomyosarcoma xenograft.

    PubMed

    Yamanaka, Hiroaki; Oue, Takaharu; Uehara, Shuichiro; Fukuzawa, Masahiro

    2011-02-01

    We have previously reported that the Hedgehog (Hh) signaling pathway is activated in pediatric malignancies. In this study, we examined the effect of the Hh signal inhibitor forskolin on the growth of rhabdomyosarcoma (RMS) in vivo and in vitro and thereby elucidated the possibility of considering Hh signaling pathway as a therapeutic target for RMS. We evaluated the messenger RNA expressions of Hh signal mediators in 3 human RMS cell lines using reverse transcriptase-polymerase chain reaction method. The effect of forskolin on the tumor cell proliferation was investigated using WST-1 assay (Dojindo Co, Kumamoto, Japan). We inoculated 10(7) tumor cells into the back of nude mice to create RMS xenograft tumor models. Forskolin was subcutaneously administered in the region around the tumor, and the effect on the tumor growth was evaluated. The messenger RNA expression of glioma-associated oncogene homolog 1, the marker of Hh signaling activation, was expressed at various levels in RMS cell lines. The proliferation of RMS cells was inhibited in a dose-dependent fashion by forskolin. Similarly, in the xenograft model, tumor growth was also significantly reduced by forskolin treatment. Our findings suggest that the Hh signaling pathway plays an important role in the tumorigenesis of RMS and that this pathway can be considered to be a potential molecular target of new treatment strategies for RMS. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    PubMed

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Essiac? and Flor-Essence? herbal tonics stimulate the in vitro growth of human breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulp, K S; Montgomery, J L; McLimans, B

    People diagnosed with cancer often self-administer complementary and alternative medicines (CAMs) to supplement their conventional treatments, improve health, or prevent recurrence. Flor-Essence{reg_sign} and Essiac{reg_sign} Herbal Tonics are commercially available complex mixtures of herbal extracts sold as dietary supplements and used by cancer patients based on anecdotal evidence that they can treat or prevent disease. In this study, we evaluated Flor-Essence{reg_sign} and Essiac{reg_sign} for their effects on the growth of human tumor cells in culture. The effect of Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics on cell proliferation was tested in MCF-7, MDA-MB-436, MDA-MB-231, and T47D cancer cells isolated from human breast tumors.more » Estrogen receptor (ER) dependent activation of a luciferase reporter construct was tested in MCF-7 cells. Specific binding to the ER was tested using an ICI 182,780 competition assay. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics at 1%, 2%, 4% and 8% stimulated cell proliferation relative to untreated controls and activated ER dependent luciferase activity in MCF-7 cells. A 10{sup -7} M concentration of ICI 870,780 inhibited the induction of ER dependent luciferase activity by Flor-Essence{reg_sign} and Essiac{reg_sign}, but did not affect cell proliferation. Flor-Essence{reg_sign} and Essiac{reg_sign} Herbal Tonics can stimulate the growth of human breast cancer cells through ER mediated as well as ER independent mechanisms of action. Cancer patients and health care providers can use this information to make informed decisions about the use of these CAMs.« less

  7. Effect of Antibiotics against Mycoplasma sp. on Human Embryonic Stem Cells Undifferentiated Status, Pluripotency, Cell Viability and Growth

    PubMed Central

    Romorini, Leonardo; Riva, Diego Ariel; Blüguermann, Carolina; Videla Richardson, Guillermo Agustin; Scassa, Maria Elida; Sevlever, Gustavo Emilio; Miriuka, Santiago Gabriel

    2013-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of PlasmocinTM and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days PlasmocinTM 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with PlasmocinTM 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that PlasmocinTM and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal. PMID:23936178

  8. Suppression of human fibrosarcoma cell growth by transcription factor, Egr-1, involves down-regulation of Bcl-2.

    PubMed

    Huang, R P; Fan, Y; Peng, A; Zeng, Z L; Reed, J C; Adamson, E D; Boynton, A L

    1998-09-11

    Previously, we showed that the transcription factor Egr-1 suppressed the proliferation of v-sis transformed NIH3T3 cells and also a number of human tumor cells. Here, we investigate the possible mechanisms responsible for this function. We show that transfected Egr-1 in human fibrosarcoma cells HT1080 leads to down-regulation of Bcl-2. Transient CAT transfection assays reveal that expression of Egr-1 suppresses Bcl-2 promoter activity in a dose-dependent manner. Furthermore, overexpression of Bcl-2 in Egr-1-expressing HT1080 cells enhanced cell proliferation in monolayer culture and increased anchorage-independent growth. Our results suggest that suppression of tumor cell proliferation by Egr-1 may be at least partially mediated through the down-regulation of Bcl-2.

  9. Metabolic effects of growth factors and polycyclic aromatic hydrocarbons on cultured human placental cells of early and late gestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guyda, H.J.

    1991-03-01

    The metabolic effects of epidermal growth factor (EGF), insulin, insulin-like growth factor-I (IGF-I), and IGF-II were determined on human placental cells in monolayer culture obtained from early gestation (less than 20 weeks) and late gestation (38-42 weeks). Parameters studied were uptake of aminoisobutyric acid (AIB), uptake of 3-O-methylglucose and (3H)thymidine incorporation into cell protein. Since benzo(alpha)pyrene (BP) inhibits EGF binding and autophosphorylation in cultured human placental cells, particularly in early gestation, we also studied the effect of benzo(alpha)pyrene and other polycyclic aromatic hydrocarbons (PAHs) on EGF-mediated AIB uptake. The metabolic effects of EGF, insulin, and the IGFs in cultured humanmore » placental cells varied with gestational age and the growth factor studied. All three classes of growth factors stimulated AIB uptake in both early and late gestation at concentrations from 10-100 micrograms/L, well within a physiological range. However, insulin stimulation of AIB uptake was maximal at a high concentration in both early and late gestation cells, suggesting an action via type 1 IGF receptors rather than via insulin receptors. EGF stimulated 3-O-methylglucose uptake only in term placental cells. No significant stimulation of (3H)thymidine incorporation by any of the growth factors tested was seen with either early or late gestation cells. The effect of PAHs on AIB uptake by cultured placental cells was variable. BP alone stimulated AIB uptake by both very early and late gestation cells and enhanced EGF-stimulated AIB uptake. alpha-naphthoflavone alone inhibited AIB uptake at all gestational ages and inhibited EGF-stimulated AIB uptake. beta-Naphthoflavone and 3-methylcholanthrene minimally inhibited AIB uptake by early gestation cells and did not modify EGF-stimulated uptake at any gestational period.« less

  10. Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes.

    PubMed

    Limat, A; Hunziker, T; Boillat, C; Bayreuther, K; Noser, F

    1989-05-01

    For growth at low seeding densities, keratinocytes isolated from human tissues like epidermis or hair follicles are dependent on mesenchyme-derived feeder cells such as the 3T3-cell employed so far. As an alternative method, the present study describes the use of post-mitotic human dermal fibroblasts sublethally irradiated or mitomycin C-treated. Special emphasis was put on efficient growth of primary keratinocyte cultures plated at very low seeding densities. Thus, outer root sheath cells isolated from two anagen human hair follicles and plated in a 35-mm culture dish (3 - 6 X 10(2) attached cells) grew to confluence within 3 weeks (6 - 8 X 10(5) cells). Similar results were obtained for interfollicular keratinocytes. A crucial point for the function of these fibroblast feeder cells is plating at appropriate densities, considering their tremendous increase in cell size at the post-mitotic state. Plating densities of 4 - 5 X 10(3/cm2 allow full spreading of the feeder cells and do not impede the settling and expansion of the keratinocytes. Major advantages of this system include easier handling and better reproducibility than using 3T3-cells. Moreover, homologous fibroblast feeders mimic more closely the physiologic situation and therefore might provide a valuable tool for studying interactions between human mesenchymal and epithelial cells. Finally, potential hazards of using transformed feeder cells from a different species in keratinocyte cultures raised for wound covering in humans could be thus avoided.

  11. Pituitary adenylate cyclase-activating polypeptide is a potent inhibitor of the growth of light chain-secreting human multiple myeloma cells.

    PubMed

    Li, Min; Cortez, Shirley; Nakamachi, Tomoya; Batuman, Vecihi; Arimura, Akira

    2006-09-01

    Multiple myeloma represents a malignant proliferation of plasma cells in the bone marrow, which often overproduces immunoglobulin light chains. We have shown previously that pituitary adenylate cyclase-activating polypeptide (PACAP) markedly suppresses the release of proinflammatory cytokines from light chain-stimulated human renal proximal tubule epithelial cells and prevents the resulting tubule cell injury. In this study, we have shown that PACAP suppresses the proliferation of human kappa and lambda light chain-secreting multiple myeloma-derived cells. The addition of PACAP suppressed light chain-producing myeloma cell-stimulated interleukin 6 (IL-6) secretion by the bone marrow stromal cells (BMSCs). A specific antagonist to either the human PACAP-specific receptor or the vasoactive intestinal peptide receptor attenuated the suppressive effect of PACAP on IL-6 production in the adhesion of human multiple myeloma cells to BMSCs. The secretion of IL-6 by BMSCs was completely inhibited by 10(-9) mol/L PACAP, which also attenuated the phosphorylation of both p42/44 and p38 mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappaB (NF-kappaB) activation in response to the adhesion of multiple myeloma cells to BMSCs, whereas the inhibition of p42/44 MAPK signaling attenuated PACAP action. The signaling cascades involved in the inhibitory effect of PACAP on IL-6-mediated paracrine stimulation of light chain-secreting myeloma cell growth was mediated through the suppression of p38 MAPK as well as modulation of activation of transcription factor NF-kappaB. These findings suggest that PACAP may be a new antitumor agent that directly suppresses light chain-secreting myeloma cell growth and indirectly affects tumor cell growth by modifying the bone marrow milieu of the multiple myeloma.

  12. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin.

    PubMed

    Einbond, Linda Saxe; Wu, Hsan-Au; Kashiwazaki, Ryota; He, Kan; Roller, Marc; Su, Tao; Wang, Xiaomei; Goldsberry, Sarah

    2012-10-01

    Studies indicate that extracts and purified components, including carnosic acid, from the herb rosemary display significant growth inhibitory activity on a variety of cancers. This paper examines the ability of rosemary/carnosic acid to inhibit the growth of human breast cancer cells and to synergize with curcumin. To do this, we treated human breast cancer cells with rosemary/carnosic acid and assessed effects on cell proliferation, cell cycle distribution, gene expression patterns, activity of the purified Na/K ATPase and combinations with curcumin. Rosemary/carnosic acid potently inhibits proliferation of ER-negative human breast cancer cells and induces G1 cell cycle arrest. Further, carnosic acid is selective for MCF7 cells transfected for Her2, indicating that Her2 may function in its action. To reveal primary effects, we treated ER-negative breast cancer cells with carnosic acid for 6h. At a low dose, 5 μg/ml (15 μM), carnosic acid activated the expression of 3 genes, induced through the presence of antioxidant response elements, including genes involved in glutathione biosynthesis (CYP4F3, GCLC) and transport (SLC7A11). At a higher dose, 20 μg/ml, carnosic acid activated the expression of antioxidant (AKR1C2, TNXRD1, HMOX1) and apoptosis (GDF15, PHLDA1, DDIT3) genes and suppressed the expression of inhibitor of transcription (ID3) and cell cycle (CDKN2C) genes. Carnosic acid exhibits synergy with turmeric/curcumin. These compounds inhibited the activity of the purified Na-K-ATPase which may contribute to this synergy. Rosemary/carnosic acid, alone or combined with curcumin, may be useful to prevent and treat ER-negative breast cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Connective tissue growth factor is overexpressed in human hepatocellular carcinoma and promotes cell invasion and growth.

    PubMed

    Xiu, Ming; Liu, Ya-Hui; Brigstock, David R; He, Fang-Hui; Zhang, Rui-Juan; Gao, Run-Ping

    2012-12-21

    To determine the expression characteristics of connective tissue growth factor (CTGF/CCN2) in human hepatocellular carcinoma (HCC) in histology and to elucidate the roles of CCN2 on hepatoma cell cycle progression and metastasis in vitro. Liver samples from 36 patients (who underwent hepatic resection for the first HCC between 2006 and 2011) and 6 normal individuals were examined for transforming growth factor β1 (TGF-β1) or CCN2 mRNA by in situ hybridization. Computer image analysis was performed to measure integrated optimal density of CCN2 mRNA-positive cells in carcinoma foci and the surrounding stroma. Fibroblast-specific protein-1 (FSP-1) and E-cadherin were examined to evaluate the process of epithelial to mesenchymal transition, α-smooth muscle actin and FSP-1 were detected to identify hepatic stellate cells, and CD34 was measured to evaluate the extent of vascularization in liver tissues by immunohistochemical staining. CCN2 was assessed for its stimulation of HepG2 cell migration and invasion using commercial kits while flow cytometry was used to determine CCN2 effects on HepG2 cell-cycle. In situ hybridization analysis showed that TGF-β1 mRNA was mainly detected in connective tissues and vasculature around carcinoma foci. In comparison to normal controls, CCN2 mRNA was enhanced 1.9-fold in carcinoma foci (12.36 ± 6.08 vs 6.42 ± 2.35) or 9.4-fold in the surrounding stroma (60.27 ± 28.71 vs 6.42 ± 2.35), with concomitant expression of CCN2 and TGF-β1 mRNA in those areas. Epithelial-mesenchymal transition phenotype related with CCN2 was detected in 12/36 (33.3%) of HCC liver samples at the edges between carcinoma foci and vasculature. Incubation of HepG2 cells with CCN2 (100 ng/mL) resulted in more of the cells transitioning into S phase (23.85 ± 2.35 vs 10.94 ± 0.23), and induced a significant migratory (4.0-fold) and invasive (5.7-fold) effect. TGF-β1-induced cell invasion was abrogated by a neutralizing CCN2 antibody showing that CCN2 is a

  14. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis.

    PubMed

    Goldie, Stephen J; Mulder, Klaas W; Tan, David Wei-Min; Lyons, Scott K; Sims, Andrew H; Watt, Fiona M

    2012-07-01

    New therapeutic strategies are needed to improve treatment of head and neck squamous cell carcinoma (HNSCC), an aggressive tumor with poor survival rates. FRMD4A is a human epidermal stem cell marker implicated previously in epithelial polarity that is upregulated in SCC cells. Here, we report that FRMD4A upregulation occurs in primary human HNSCCs where high expression levels correlate with increased risks of relapse. FRMD4A silencing decreased growth and metastasis of human SCC xenografts in skin and tongue, reduced SCC proliferation and intercellular adhesion, and stimulated caspase-3 activity and expression of terminal differentiation markers. Notably, FRMD4A attenuation caused nuclear accumulation of YAP, suggesting a potential role for FRMD4A in Hippo signaling. Treatment with the HSP90 inhibitor 17-DMAG or ligation of CD44 with hyaluronan caused nuclear depletion of FRMD4A, nuclear accumulation of YAP and reduced SCC growth and metastasis. Together, our findings suggest FRMD4A as a novel candidate therapeutic target in HNSCC based on the key role in metastatic growth we have identified. ©2012 AACR.

  15. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines

    PubMed Central

    Girroir, Elizabeth E.; Hollingshead, Holly E.; Billin, Andrew N.; Willson, Timothy M.; Robertson, Gavin P.; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    The development of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARβ/δ promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARβ/δ ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines, or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARβ/δ on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARβ/δ ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARβ/δ target gene angiopoetin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARβ/δ inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARβ/δ ligands are not mitogenic in human cancer cell lines. PMID:18054822

  16. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    PubMed

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  17. [Anti-sense miRNA-21 oligonucleotide inhibits Tb 3.1 human tongue squamous cell carcinoma growth in vitro].

    PubMed

    Tao, Ying-jie; Ren, Yu; Dong, Jia-bin; Zhang, Lun; Cheng, Jun-ping; Zhou, Xuan

    2011-02-01

    To investigate the effect of micro RNA-21 (miRNA-21) knocking on the Tb3.1 human tongue squamous cell carcinoma growth. Anti-sense miRNA-21 oligonucleotide was delivered with oligofectamine to suppress Tb 3.1 tongue cancer cell growth in vitro. Real-time polymerase chain reaction (PCR) was conducted to detect the miRNA-21 expression after transfection. Methyl thiazolyl tetrazolium (MTT) assay was used to determine Tb 3.1 cell survival rate. Apoptosis were examined by flow-cytometry. Matrigel matrix and transwell assay were used to determine Tb 3.1 cell colony formation and migration ability. Antigen KI-67 (Ki67), B cell lymphoma (Bcl-2), phosphatase and tensin homolog (PTEN), matrirx metalloproteinase 2 (MMP-2, MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) protein expression in Tb 3.1 cell were measured by Western blotting. miRNA-21 expression was decreased in miRNA-21 antisense oligonucleotide (ASODN) group. The survival rate of Tb 3.1 cells with AS-miRNA-21 transfection was significantly suppressed (F = 27.02, P = 0.00) and early phase apoptosis (F = 26.641, P = 0.001) induced in Tb 3.1 cell. Ki67, Bcl-2, MMP-2 and MMP-9 protein were down regulated while PTEN and TIMP-1 protein expression was increased. Blocking miRNA-21 expression in Tb3.1 cell could suppress cancer cell growth in vitro and miRNA-21 can serve as a novel target candidate for human tongue cancer gene therapy.

  18. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells.

    PubMed

    Zhang, Yafei; Zhang, Bicheng; Zhang, Anran; Zhao, Yong; Zhao, Jie; Liu, Jian; Gao, Jianfei; Fang, Dianchun; Rao, Zhiguo

    2012-09-01

    Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects. Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice. Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new therapy against hepatocellular carcinoma, especially for patients

  19. Development of human epithelial cell systems for radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Craise, L. M.

    1994-10-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  20. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model

    PubMed Central

    d'Angelo, Michele; Cristiano, Loredana; Galzio, Renato; Destouches, Damien; Florio, Tiziana Marilena; Dhez, Anne Chloé; Astarita, Carlo; Cinque, Benedetta; Fidoamore, Alessia; Rosati, Floriana; Cifone, Maria Grazia; Ippoliti, Rodolfo; Giordano, Antonio; Courty, José; Cimini, Annamaria

    2015-01-01

    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma. PMID:26540346

  1. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner.

    PubMed

    Vasilopoulou, E; Loubière, L S; Lash, G E; Ohizua, O; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S Y

    2014-06-01

    Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. This laboratory-based study used human decidua from first (8-11 weeks; n = 18) and second (12-16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10-) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel(®) was evaluated. Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different

  2. Novel ent-Kaurane Diterpenoid from Rubus corchorifolius L. f. Inhibits Human Colon Cancer Cell Growth via Inducing Cell Cycle Arrest and Apoptosis.

    PubMed

    Chen, Xuexiang; Wu, Xian; Ouyang, Wen; Gu, Min; Gao, Zili; Song, Mingyue; Chen, Yunjiao; Lin, Yanyin; Cao, Yong; Xiao, Hang

    2017-03-01

    The tender leaves of Rubus corchorifolius L. f. have been consumed as tea for drinking in China since ancient times. In this study, a novel ent-kaurane diterpenoid was isolated and identified from R. corchorifolius L. f. leaves as ent-kaur-2-one-16β,17-dihydroxy-acetone-ketal (DEK). DEK suppressed the growth of HCT116 human colon cancer cells with an IC 50 value of 40 ± 0.21 μM, while it did not cause significant growth inhibition on CCD-18Co human colonic myofibroblasts at up to100 μM. Moreover, DEK induced extensive apoptosis and S phase cell cycle arrest in the colon cancer cells. Accordingly, DEK caused profound effects on multiple signaling proteins associated with cell proliferation, cell death, and inflammation. DEK significantly upregulated the expression levels of pro-apoptotic proteins such as cleaved caspase-3, cleaved caspase-9, cleaved PARP, p53, Bax, and tumor suppressor p21 Cip1/Waf1 , downregulated the levels of cell cycle regulating proteins such as cyclinD1, CDK2, and CDK4 and carcinogenic proteins such as EGFR and COX-2, and suppressed the activation of Akt. Overall, our results provide a basis for using DEK as a potential chemopreventive agent against colon carcinogenesis.

  3. Effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro.

    PubMed

    Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H

    2009-02-01

    A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the

  4. Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma.

    PubMed

    Agol, V I; Drozdov, S G; Ivannikova, T A; Kolesnikova, M S; Korolev, M B; Tolskaya, E A

    1989-09-01

    Cultured cells of a human neuroblastoma, SK-N-MC, were found to be highly resistant to Sabin attenuated poliovirus types 1 and 2 strains; no appreciable cytopathic effect was observed, and the total harvest was generally in the order of 1 PFU per cell or less. On the other hand, related neurovirulent strains of these antigenic types produced a relatively good (2 orders of magnitude higher) yield in a markedly protracted infectious cycle. The limited growth of the attenuated virus in the neuroblastoma cells appeared to be confined to a minor cell subpopulation. Experiments with intratypic (type 1) poliovirus recombinants suggested that the major genetic determinants limiting reproduction of the attenuated polioviruses in the neuroblastoma cells are located in the 5' half of the viral RNA, although the 3' half also appears to contribute somewhat to this phenotype. The possibility that neuroblastoma cells may represent an in vitro model for studying poliovirus neurovirulence is briefly discussed.

  5. Human SUV3 helicase regulates growth rate of the HeLa cells and can localize in the nucleoli.

    PubMed

    Szewczyk, Maciej; Fedoryszak-Kuśka, Natalia; Tkaczuk, Katarzyna; Dobrucki, Jurek; Waligórska, Agnieszka; Stępień, Piotr P

    2017-01-01

    The human SUV3 helicase (SUV3, hSUV3, SUPV3L1) is a DNA/RNA unwinding enzyme belonging to the class of DexH-box helicases. It localizes predominantly in the mitochondria, where it forms an RNA-degrading complex called mitochondrial degradosome with exonuclease PNP (polynucleotide phosphorylase). Association of this complex with the polyA polymerase can modulate mitochondrial polyA tails. Silencing of the SUV3 gene was shown to inhibit the cell cycle and to induce apoptosis in human cell lines. However, since small amounts of the SUV3 helicase were found in the cell nuclei, it was not clear whether the observed phenotypes of SUV3 depletion were of mitochondrial or nuclear origin. In order to answer this question we have designed gene constructs able to inhibit the SUV3 activity exclusively in the cell nuclei. The results indicate that the observed growth rate impairment upon SUV3 depletion is due to its nuclear function(s). Unexpectedly, overexpression of the nuclear-targeted wild-type copies of the SUV3 gene resulted in a higher growth rate. In addition, we demonstrate that the SUV3 helicase can be found in the HeLa cell nucleoli, but it is not detectable in the DNA-repair foci. Our results indicate that the nucleolar-associated human SUV3 protein is an important factor in regulation of the cell cycle.

  6. The effect of desferrioxamine on transferrin receptors, the cell cycle and growth rates of human leukaemic cells.

    PubMed Central

    Bomford, A; Isaac, J; Roberts, S; Edwards, A; Young, S; Williams, R

    1986-01-01

    The effect of the iron chelator, desferrioxamine, on transferrin binding, growth rates and the cell cycle was investigated in the human leukaemic cell line, K562. At all concentrations of the chelator (2-50 microM) binding of 125I-transferrin was increased by 24 h and reached a maximum at 72-96 h. Maximum binding (6-8-fold increased) occurred in cells treated with 20 microM-desferrioxamine, in contrast with control cells which, at 96 h, showed a 50% decrease over initial binding. Scatchard analysis at 4 degrees C showed that this increased binding was due to an increase in the number of receptors, as the Kd was similar in induced (1.8 nM) and control (1.5 nM) cells. After 96 h cells, cultured with 20 and 50 microM-desferrioxamine accumulated 59Fe from bovine transferrin at over twice the rate found with control cells, reflecting the increase in transferrin receptors. Although iron uptake was unimpaired by the chelator there was a dose-dependent inhibition of cell growth, with control cells completing three divisions in 96 h and those in 10 microM-desferrioxamine only two divisions. At the highest concentration (50 microM), cell division was abrogated although cell viability was maintained (85%). In contrast, DNA synthesis was not markedly affected, except at 50 microM-desferrioxamine when incorporation of [3H]thymidine was 52% of that in control cells. Flow cytometry revealed that there was a progressive accumulation of the cells in the active phases of their cycle (S, G2 + M). Desferrioxamine may increase transferrin receptors in two ways: by chelating a regulatory pool of iron within the cell, and by arresting cells in S phase when receptors are maximally expressed. PMID:3790074

  7. Valproic acid promotes human hair growth in in vitro culture model.

    PubMed

    Jo, Seong Jin; Choi, Soon-Jin; Yoon, Sun-Young; Lee, Ji Yeon; Park, Won-Seok; Park, Phil-June; Kim, Kyu Han; Eun, Hee Chul; Kwon, Ohsang

    2013-10-01

    β-Catenin, the transducer of Wnt signaling, is critical for the development and growth of hair follicles. In the absence of Wnt signals, cytoplasmic β-catenin is phosphorylated by glycogen synthase kinase (GSK)-3 and then degraded. Therefore, inhibition of GSK-3 may enhance hair growth via β-catenin stabilization. Valproic acid is an anticonvulsant and a mood-stabilizing drug that has been used for decades. Recently, valproic acid was reported to inhibit GSK-3β in neuronal cells, but its effect on human hair follicles remains unknown. To determine the effect of VPA on human hair growth. We investigated the effect of VPA on cultured human dermal papilla cells and outer root sheath cells and on an in vitro culture of human hair follicles, which were obtained from scalp skin samples of healthy volunteers. Anagen induction by valproic acid was evaluated using C57BL/6 mice model. Valproic acid not only enhanced the viability of human dermal papilla cells and outer root sheath cells but also promoted elongation of the hair shaft and reduced catagen transition of human hair follicles in organ culture model. Valproic acid treatment of human dermal papilla cells led to increased β-catenin levels and nuclear accumulation and inhibition of GSK-3β by phosphorylation. In addition, valproic acid treatment accelerated the induction of anagen hair in 7-week-old female C57BL/6 mice. Valproic acid enhanced human hair growth by increasing β-catenin and therefore may serve as an alternative therapeutic option for alopecia. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    PubMed

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  9. Overexpression of interleukin-6 and -8, cell growth inhibition and morphological changes in 2-hydroxyethyl methacrylate-treated human dental pulp mesenchymal stem cells.

    PubMed

    Trubiani, O; Cataldi, A; De Angelis, F; D'Arcangelo, C; Caputi, S

    2012-01-01

    To evaluate morphological features, cell growth and interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion in expanded ex vivo human dental pulp mesenchymal stem cells (DP-MSCs) after exposure to 2-hydroxyethyl methacrylate (HEMA).   Dental pulp mesenchymal stem cells were derived from the dental pulps of 10 young donors. After in vitro isolation, DP-MSCs were treated with 3 and 5 mmol L(-1) HEMA, and after 24, 48 and 72 h of incubation, their morphological features, cell growth, IL-6 and IL-8 secretion were analysed. Differences in the cell growth and in the interleukin secretion were analysed for statistical significance with two-way anova tests and the Holm-Sidak method for multiple comparisons.   Dental pulp mesenchymal stem cells revealed a decrease in cell growth with both treatments (P < 0.05), more evident at 5 mmol L(-1) . Microscopic analysis displayed extensive cytotoxic effects in treated cells, which lost their fibroblastoid features and became retracted, even roundish, with a large number of granules. An up-regulation of IL-6 and IL-8 in treated cells cytokines was evident (P < 0.05).   2-Hydroxyethyl methacrylate exhibited cytotoxicity, inhibited cell growth and induced morphological changes in cultured DP-MSCs. Moreover, in treated samples, an up-regulation of soluble mediators of inflammation such as IL-6 and IL-8 cytokines was found. The direct application of HEMA potentially induces an inflammation process that could be the starting point for toxic response and cell damage in DP-MSCs. © 2011 International Endodontic Journal.

  10. Inhibition of human cervical carcinoma growth by cytokine-induced killer cells in nude mouse xenograft model.

    PubMed

    Kim, Hwan Mook; Lim, Jaeseung; Kang, Jong Soon; Park, Song-Kyu; Lee, Kiho; Kim, Jee Youn; Kim, Yeon Jin; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2009-03-01

    Cervical cancer is a major cause of cancer mortality in women worldwide and is an important public health problem for adult women in developing countries. Despite aggressive treatment with surgery and chemoradiation, the outcomes for cervical cancer patients remain poor. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against human cervical cancer was evaluated in vitro and in vivo. Human peripheral blood mononuclear cells were cultured with IL-2-containing medium in anti-CD3 antibody-coated flasks for 5 days, followed by incubation in IL-2-containing medium for 9 days. The resulting populations of CIK cells comprised 95% CD3(+), 3% CD3(-)CD56(+), 35% CD3(+)CD56(+), 11% CD4(+), <1% CD4(+)CD56(+), 80% CD8(+), and 25% CD8(+)CD56(+). At an effector-target cell ratio of 100:1, CIK cells destroyed 56% of KB-3-1 human cervical cancer cells, as measured by the (51)Cr-release assay. In addition, CIK cells at doses of 3 and 10 million cells per mouse inhibited 34% and 57% of KB-3-1 tumor growth in nude mouse xenograft assays, respectively. This study suggests that CIK cells may be used as an adoptive immunotherapy for cervical cancer patients.

  11. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  12. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated themore » effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.« less

  13. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    PubMed

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  14. Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo.

    PubMed

    Lin, Ping-Yi; Tsai, Ching-Tsan; Chuang, Wan-Ling; Chao, Ya-Hsuan; Pan, I-Horng; Chen, Yu-Kuo; Lin, Chi-Chen; Wang, Bing-Yen

    2017-02-01

    Lung cancer is one of the leading causes of cancer related deaths worldwide. Marine microalgae are a source of biologically active compounds and are widely consumed as a nutritional supplement in East Asian countries. It has been reported that Chlorella or Chlorella extracts have various beneficial pharmacological compounds that modulate immune responses; however, no studies have investigated the anti-cancer effects of Chlorella sorokiniana (CS) on non-small cell lung cancer (NSCLC). In this study, we evaluated the anti-cancer effects of CS in two human NSCLC cell lines (A549 and CL1-5 human lung adenocarcinoma cells), and its effects on tumor growth in a subcutaneous xenograft tumor model. We also investigated the possible molecular mechanisms governing the pharmacological function of CS. Our results showed that exposure of the two cell lines to CS resulted in a concentration-dependent reduction in cell viability. In addition, the percentage of apoptotic cells increased in a dose-dependent manner, suggesting that CS might induce apoptosis in human NSCLC cells. Western blot analysis revealed that exposure to CS resulted in increased protein expression of the cleaved/activated forms of caspase-3, caspase-9, and PARP, except caspase-8. ZDEVD (caspase-3 inhibitor) and Z-LEHD (caspase-9 inhibitor) were sufficient at preventing apoptosis in both A549 and CL1-5 cells, proving that CS induced cell death via the mitochondria-mediated apoptotic pathway. Exposure of A549 and CL1-5 cells to CS for 24 h resulted in decreased expression of Bcl-2 protein and increased expression of Bax protein as well as decreased expression of two IAP family proteins, survivin and XIAP. We demonstrated that CS induces mitochondrial-mediated apoptosis in NSCLC cells via downregulation of Bcl-2, XIAP and survivin. In addition, we also found that the tumors growth of subcutaneous xenograft in vivo was markedly inhibited after oral intake of CS.

  15. Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells.

    PubMed

    Mvula, B; Moore, T J; Abrahamse, H

    2010-01-01

    The study investigated the effects of low-level laser radiation and epidermal growth factor (EGF) on adult adipose-derived stem cells (ADSCs) isolated from human adipose tissue. Isolated cells were cultured to semi-confluence, and the monolayers of ADSCs were exposed to low-level laser at 5 J/cm(2) using 636 nm diode laser. Cell viability and proliferation were monitored using adenosine triphosphate (ATP) luminescence and optical density at 0 h, 24 h and 48 h after irradiation. Application of low-level laser irradiation at 5 J/cm(2) on human ADSCs cultured with EGF increased the viability and proliferation of these cells. The results indicate that low-level laser irradiation in combination with EGF enhances the proliferation and maintenance of ADSCs in vitro.

  16. Identification of cells initiating human melanomas.

    PubMed

    Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H

    2008-01-17

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.

  17. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  18. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human renal cell carcinoma cell growth.

    PubMed

    Su, Ying; Zhao, An; Cheng, Guoping; Xu, Jingjing; Ji, Enming; Sun, Wenyong

    2017-07-04

    Renal cell carcinoma (RCC) is the highest mortality rate of the genitourinary cancers, and the treatment options are very limited. Thus, identification of molecular mechanisms underlying RCC tumorigenesis, is critical for identifying biomarkers for RCC diagnosis and prognosis. To validate whether the IGF-I/JAK2-STAT3/miR-21 signaling pathway is associated with human RCC cell growth. qRT-PCR and Western blotting were used to detect the mRNA and protein expression levels, respectively. The MTT assay was performed to determine cell survival rate. The Annexin V-FITC/PI apoptosis detection kit was used to detect cell apoptosis. We employed RCC tissues and cell lines (A498; ACHN; Caki-1; Caki-2 and 786-O) in the study. IGF-I, and its inhibitor (NT-157) were administrated to detect the effects of IGF-I on the expression of miR-21 and p-JAK2. JAK2 inhibitor (AG490), and si-STAT3 were used to detect the effects of JAK2/STAT3 signaling pathway on the expression of miR-21. In our study, we firstly showed that the expression levels of IGF-I and miR-21 were up-regulated in RCC tissues and cell lines. After exogenous IGF-I treatment, the expression levels of miR-21, p-IGF-IR and p-JAK2 were significantly increased, whereas NT-157 treatment showed the reversed results. Further study indicated that JAK2 inhibitor or si-STAT3 significantly reversed the IGF-I-induced miR-21 expression level. Finally, we found that IGF-I treatment significantly prompted human RCC cell survival and inhibited cell apoptosis, and NT-157 treatment showed the reversed results. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human RCC cell growth.

  19. Fibroblast growth factor 2 regulates bone sialoprotein gene transcription in human breast cancer cells.

    PubMed

    Li, Zhengyang; Wang, Zhitao; Yang, Li; Li, Xinyue; Sasaki, Yoko; Wang, Shuang; Araki, Shouta; Mezawa, Masaru; Takai, Hideki; Nakayama, Youhei; Ogata, Yorimasa

    2010-03-01

    Bone sialoprotein (BSP) is a major non-collagenous, extracellular matrix glycoprotein associated with mineralized tissues. Fibroblast growth factor 2 (FGF2) is recognized as a potent mitogen for a variety of mesenchymal cells. FGF2 produced by osteoblasts accumulates in the bone matrix and acts as an autocrine/paracrine regulator of osteoblasts. We previously reported that FGF2 regulates BSP gene transcription through the FGF2 response element (FRE) and activator protein 1 (AP1) binding site overlapping with the glucocorticoid response element in the rat BSP gene promoter. In the present study, FGF2 (10 ng/ml) increased BSP and Runx2 mRNA levels at 6 h in MCF7 human breast cancer cells. Transient transfection analyses were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of MCF7 cells with FGF2 (10 ng/ml) increased the luciferase activity of the constructs between -84LUC and -927LUC. Gel mobility shift analyses showed that FGF2 increased the binding of AP1 and CRE2. The CRE2- and AP1-protein complexes were disrupted by antibodies against CREB1, c-Fos, c-Jun, Fra2, p300 and Runx2. These studies demonstrate that FGF2 stimulates BSP transcription in MCF7 human breast cancer cells by targeting the AP1 and CRE2 elements in the human BSP gene promoter.

  20. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors.

    PubMed

    Chang, Hsun-Ming; Qiao, Jie; Leung, Peter C K

    2016-12-01

    Initially identified for their capability to induce heterotopic bone formation, bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor β superfamily. Using cellular and molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as potent regulators of ovarian follicular function. The bi-directional communication of oocytes and the surrounding somatic cells is mandatory for normal follicle development and oocyte maturation. This review summarizes the current knowledge on the physiological role and molecular determinants of these ovarian regulatory factors within the human germline-somatic regulatory loop. The regulation of ovarian function remains poorly characterized in humans because, while the fundamental process of follicular development and oocyte maturation is highly similar across species, most information on the regulation of ovarian function is obtained from studies using rodent models. Thus, this review focuses on the studies that used human biological materials to gain knowledge about human ovarian biology and disorders and to develop strategies for preventing, diagnosing and treating these abnormalities. Relevant English-language publications describing the roles of BMPs or growth differentiation factors (GDFs) in human ovarian biology and phenotypes were comprehensively searched using PubMed and the Google Scholar database. The publications included those published since the initial identification of BMPs in the mammalian ovary in 1999 through July 2016. Studies using human biological materials have revealed the expression of BMPs, GDFs and their putative receptors as well as their molecular signaling in the fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells) of the ovarian follicles throughout follicle development. With the availability of recombinant human BMPs/GDFs and the development of immortalized human cell lines, functional studies

  1. Effects of curcumin analogues for inhibiting human prostate cancer cells and the growth of human PC-3 prostate xenografts in immunodeficient mice.

    PubMed

    Zhou, Dai-Ying; Ding, Ning; Van Doren, Jeremiah; Wei, Xing-Chuan; Du, Zhi-Yun; Conney, Allan H; Zhang, Kun; Zheng, Xi

    2014-01-01

    Four curcumin analogues ((2E,6E)-2,6-bis(thiophen-3-methylene) cyclohexanone (AS), (2E,5E)-2,5-bis(thiophen-3-methylene) cyclopentanone (BS), (3E,5E)-3,5-bis(thiophen-3-methylene)-tetrahydropyran-4-one (ES) and (3E,5E)-3,5-bis(thiophen-3-methylene)-tetrahydrothiopyran-4-one (FS) as shown in Fig. 1) with different linker groups were investigated for their effects in human prostate cancer CWR-22Rv1 and PC-3 cells. Compounds FS and ES had stronger inhibitory effects than curcumin, AS and BS on the growth of cultured CWR-22Rv1 and PC-3 cells, as well as on the androgen receptor (AR) and nuclear factor kappa B (NF-κB) activity. The strong activities of ES and FS may be correlated with a heteroatom linker. In animal studies, severe combined immunodeficient (SCID) mice were injected subcutaneously (s.c.) with PC-3 cells in Matrigel. After 4 to 6 weeks, mice with PC-3 tumors (about 0.6 cm wide and 0.6 cm long) received daily intraperitoneal (i.p.) injections of vehicle, ES and FS (10 µg/g body weight) for 31 d. FS had a potent effect in inhibiting the growth and progression of PC-3 tumors. Our results indicate that FS may be useful for inhibiting human prostate tumors growth.

  2. Progesterone induces the growth and infiltration of human astrocytoma cells implanted in the cerebral cortex of the rat.

    PubMed

    Germán-Castelán, Liliana; Manjarrez-Marmolejo, Joaquín; González-Arenas, Aliesha; González-Morán, María Genoveva; Camacho-Arroyo, Ignacio

    2014-01-01

    Progesterone (P4) promotes cell proliferation in several types of cancer, including brain tumors such as astrocytomas, the most common and aggressive primary intracerebral neoplasm in humans. In this work, we studied the effects of P4 and its intracellular receptor antagonist, RU486, on growth and infiltration of U373 cells derived from a human astrocytoma grade III, implanted in the motor cortex of adult male rats, using two treatment schemes. In the first one, fifteen days after cells implantation, rats were daily subcutaneously treated with vehicle (propylene glycol, 160  μ L), P4 (1 mg), RU486 (5 mg), or P4 + RU486 (1 mg and 5 mg, resp.) for 21 days. In the second one, treatments started 8 weeks after cells implantation and lasted for 14 days. In both schemes we found that P4 significantly increased the tumor area as compared with the rest of the treatments, whereas RU486 blocked P4 effects. All rats treated with P4 showed tumor infiltration, while 28.6% and 42.9% of the animals treated with RU486 and P4 + RU486, respectively, presented it. Our data suggest that P4 promotes growth and migration of human astrocytoma cells implanted in the motor cortex of the rat through the interaction with its intracellular receptor.

  3. Progesterone Induces the Growth and Infiltration of Human Astrocytoma Cells Implanted in the Cerebral Cortex of the Rat

    PubMed Central

    Germán-Castelán, Liliana; Manjarrez-Marmolejo, Joaquín; González-Arenas, Aliesha; González-Morán, María Genoveva; Camacho-Arroyo, Ignacio

    2014-01-01

    Progesterone (P4) promotes cell proliferation in several types of cancer, including brain tumors such as astrocytomas, the most common and aggressive primary intracerebral neoplasm in humans. In this work, we studied the effects of P4 and its intracellular receptor antagonist, RU486, on growth and infiltration of U373 cells derived from a human astrocytoma grade III, implanted in the motor cortex of adult male rats, using two treatment schemes. In the first one, fifteen days after cells implantation, rats were daily subcutaneously treated with vehicle (propylene glycol, 160 μL), P4 (1 mg), RU486 (5 mg), or P4 + RU486 (1 mg and 5 mg, resp.) for 21 days. In the second one, treatments started 8 weeks after cells implantation and lasted for 14 days. In both schemes we found that P4 significantly increased the tumor area as compared with the rest of the treatments, whereas RU486 blocked P4 effects. All rats treated with P4 showed tumor infiltration, while 28.6% and 42.9% of the animals treated with RU486 and P4 + RU486, respectively, presented it. Our data suggest that P4 promotes growth and migration of human astrocytoma cells implanted in the motor cortex of the rat through the interaction with its intracellular receptor. PMID:24982875

  4. Ginsenoside Rg3 up-regulates the expression of vascular endothelial growth factor in human dermal papilla cells and mouse hair follicles.

    PubMed

    Shin, Dae Hyun; Cha, Youn Jeong; Yang, Kyeong Eun; Jang, Ik-Soon; Son, Chang-Gue; Kim, Bo Hyeon; Kim, Jung Min

    2014-07-01

    Crude Panax ginseng has been documented to possess hair growth activity and is widely used to treat alopecia, but the effects of ginsenoside Rg3 on hair growth have not to our knowledge been determined. The aim of the current study was to identify the molecules through which Rg3 stimulates hair growth. The thymidine incorporation for measuring cell proliferation was determined. We used DNA microarray analysis to measure gene expression levels in dermal papilla (DP) cells upon treatment with Rg3. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in human DP cells were measured by real-time polymerase chain reaction and immunohistochemistry, respectively. We also used immunohistochemistry assays to detect in vivo changes in VEGF and 3-stemness marker expressions in mouse hair follicles. Reverse transcription polymerase chain reaction showed dose-dependent increases in VEGF mRNA levels on treatment with Rg3. Immunohistochemical analysis showed that expression of VEGF was significantly up-regulated by Rg3 in a dose-dependent manner in human DP cells and in mouse hair follicles. In addition, the CD8 and CD34 were also up-regulated by Rg3 in the mouse hair follicles. It may be concluded that Rg3 might increase hair growth through stimulation of hair follicle stem cells and it has the potential to be used in hair growth products. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors.

    PubMed

    Kimber, S J; Sneddon, S F; Bloor, D J; El-Bareg, A M; Hawkhead, J A; Metcalfe, A D; Houghton, F D; Leese, H J; Rutherford, A; Lieberman, B A; Brison, D R

    2008-05-01

    Little is understood about the regulation of gene expression in human preimplantation embryos. We set out to examine the expression in human preimplantation embryos of a number of genes known to be critical for early development of the murine embryo. The expression profile of these genes was analysed throughout preimplantation development and in response to growth factor (GF) stimulation. Developmental expression of a number of genes was similar to that seen in murine embryos (OCT3B/4, CDX2, NANOG). However, GATA6 is expressed throughout preimplantation development in the human. Embryos were cultured in IGF-I, leukaemia inhibitory factor (LIF) or heparin-binding EGF-like growth factor (HBEGF), all of which are known to stimulate the development of human embryos. Our data show that culture in HBEGF and LIF appears to facilitate human embryo expression of a number of genes: ERBB4 (LIF) and LIFR and DSC2 (HBEGF) while in the presence of HBEGF no blastocysts expressed EOMES and when cultured with LIF only two out of nine blastocysts expressed TBN. These data improve our knowledge of the similarities between human and murine embryos and the influence of GFs on human embryo gene expression. Results from this study will improve the understanding of cell fate decisions in early human embryos, which has important implications for both IVF treatment and the derivation of human embryonic stem cells.

  6. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene

    PubMed Central

    Hsu, Cary; Jones, Stephanie A.; Cohen, Cyrille J.; Zheng, Zhili; Kerstann, Keith; Zhou, Juhua; Robbins, Paul F.; Peng, Peter D.; Shen, Xinglei; Gomes, Theotonius J.; Dunbar, Cynthia E.; Munroe, David J.; Stewart, Claudia; Cornetta, Kenneth; Wangsa, Danny; Ried, Thomas; Rosenberg, Steven A.

    2007-01-01

    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8+ T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus–based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28−, CD45RA−, CD45RO+, and CD62L−, a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen–specific T-cell receptors, the clone secreted IFN-γ upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15Rα expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation. PMID:17353346

  7. Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells.

    PubMed

    Yamanegi, Koji; Kawabe, Mutsuki; Futani, Hiroyuki; Nishiura, Hiroshi; Yamada, Naoko; Kato-Kogoe, Nahoko; Kishimoto, Hiromitsu; Yoshiya, Shinichi; Nakasho, Keiji

    2015-05-01

    The level of vascular endothelial growth inhibitor (VEGI) has been reported to be negatively associated with neovascularization in malignant tumors. The soluble form of VEGI is a potent anti-angiogenic factor due to its effects in inhibiting endothelial cell proliferation. This inhibition is mediated by death receptor 3 (DR3), which contains a death domain in its cytoplasmic tail capable of inducing apoptosis that can be subsequently blocked by decoy receptor 3 (DcR3). We investigated the effects of sodium valproate (VPA) and trichostatin A (TSA), histone deacetylase inhibitors, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Consequently, treatment with VPA and TSA increased the VEGI and DR3 expression levels without inducing DcR3 production in the OS cell lines. In contrast, the effect on the HMVE cells was limited, with no evidence of growth inhibition or an increase in the DR3 and DcR3 expression. However, VPA-induced soluble VEGI in the OS cell culture medium markedly inhibited the vascular tube formation of HMVE cells, while VEGI overexpression resulted in enhanced OS cell death. Taken together, the HDAC inhibitor has anti-angiogenesis and antitumor activities that mediate soluble VEGI/DR3-induced apoptosis via both autocrine and paracrine pathways. This study indicates that the HDAC inhibitor may be exploited as a therapeutic strategy modulating the soluble VEGI/DR3 pathway in osteosarcoma patients.

  8. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  9. Filamin A Modulates Kinase Activation and Intracellular Trafficking of Epidermal Growth Factor Receptors in Human Melanoma Cells

    PubMed Central

    Fiori, Jennifer L.; Zhu, Tie-Nian; O'Connell, Michael P.; Hoek, Keith S.; Indig, Fred E.; Frank, Brittany P.; Morris, Christa; Kole, Sutapa; Hasskamp, Joanne; Elias, George; Weeraratna, Ashani T.; Bernier, Michel

    2009-01-01

    The actin-binding protein filamin A (FLNa) affects the intracellular trafficking of various classes of receptors and has a potential role in oncogenesis. However, it is unclear whether FLNa regulates the signaling capacity and/or down-regulation of the activated epidermal growth factor receptor (EGFR). Here it is shown that partial knockdown of FLNa gene expression blocked ligand-induced EGFR responses in metastatic human melanomas. To gain greater insights into the role of FLNa in EGFR activation and intracellular sorting, we used M2 melanoma cells that lack endogenous FLNa and a subclone in which human FLNa cDNA has been stably reintroduced (M2A7 cells). Both tyrosine phosphorylation and ubiquitination of EGFR were significantly lower in epidermal growth factor (EGF)-stimulated M2 cells when compared with M2A7 cells. Moreover, the lack of FLNa interfered with EGFR interaction with the ubiquitin ligase c-Cbl. M2 cells exhibited marked resistance to EGF-induced receptor degradation, which was very active in M2A7 cells. Despite comparable rates of EGF-mediated receptor endocytosis, internalized EGFR colocalized with the lysosomal marker lysosome-associated membrane protein-1 in M2A7 cells but not M2 cells, in which EGFR was found to be sequestered in large vesicles and subsequently accumulated in punctated perinuclear structures after EGF stimulation. These results suggest the requirement of FLNa for efficient EGFR kinase activation and the sorting of endocytosed receptors into the degradation pathway. PMID:19213840

  10. Heparin affin regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells.

    PubMed

    Hatziapostolou, Maria; Polytarchou, Christos; Katsoris, Panagiotis; Courty, Jose; Papadimitriou, Evangelia

    2006-10-27

    Fibroblast growth factor 2 (FGF2) is a pleiotropic growth factor that has been implicated in prostate cancer formation and progression. In the present study we found that exogenous FGF2 significantly increased human prostate cancer LNCaP cell proliferation and migration. Heparin affin regulatory peptide (HARP) or pleiotrophin seems to be an important mediator of FGF2 stimulatory effects, since the latter had no effect on stably transfected LNCaP cells that did not express HARP. Moreover, FGF2, through FGF receptors (FGFRs), significantly induced HARP expression and secretion by LNCaP cells and increased luciferase activity of a reporter gene vector carrying the full-length promoter of HARP gene. Using a combination of Western blot analyses, as well as genetic and pharmacological inhibitors, we found that activation of FGFR by FGF2 in LNCaP cells leads to NAD(P)H oxidase-dependent hydrogen peroxide production, phosphorylation of ERK1/2 and p38, activation of AP-1, increased expression and secretion of HARP, and, finally, increased cell proliferation and migration. These results establish the role and the mode of activity of FGF2 in LNCaP cells and support an interventional role of HARP in FGF2 effects, providing new insights on the interplay among growth factor pathways within prostate cancer cells.

  11. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells.

    PubMed

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-10-12

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24-36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection.

  12. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    PubMed Central

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  13. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair.

    PubMed

    Jackson, Robyn; Tilokee, Everad L; Latham, Nicholas; Mount, Seth; Rafatian, Ghazaleh; Strydhorst, Jared; Ye, Bin; Boodhwani, Munir; Chan, Vincent; Ruel, Marc; Ruddy, Terrence D; Suuronen, Erik J; Stewart, Duncan J; Davis, Darryl R

    2015-09-11

    Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. Receptor profiling demonstrated that IGF-1 receptor expression was increased in the infarct border zones of experimentally infarcted mice by 1 week after myocardial infarction. Human explant-derived cells underwent somatic gene transfer to overexpress human IGF-1 or the green fluorescent protein reporter alone. After culture in hypoxic reduced-serum media, overexpression of IGF-1 enhanced proliferation and expression of prosurvival transcripts and prosurvival proteins and decreased expression of apoptotic markers in both explant-derived cells and cocultured neonatal rat ventricular cardiomyocytes. Transplant of explant-derived cells genetically engineered to overexpress IGF-1 into immunodeficient mice 1 week after infarction boosted IGF-1 content within infarcted tissue and long-term engraftment of transplanted cells while reducing apoptosis and long-term myocardial scarring. Paracrine engineering of explant-derived cells to overexpress IGF-1 provided a targeted means of improving cardiac stem cell-mediated repair by enhancing the long-term survival of transplanted cells and surrounding myocardium. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  14. Lysophosphatidic acid-induced ADAM12 expression mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth.

    PubMed

    Do, Eun Kyoung; Kim, Young Mi; Heo, Soon Chul; Kwon, Yang Woo; Shin, Sang Hun; Suh, Dong-Soo; Kim, Ki-Hyung; Yoon, Man-Soo; Kim, Jae Ho

    2012-11-01

    Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells

    PubMed Central

    Veeramani, S; Yuan, T-C; Lin, F-F; Lin, M-F

    2009-01-01

    p66Shc is shown to negatively regulate the life span in mice through reactive oxygen species (ROS) production. Recent reports, however, revealed that p66Shc protein level is significantly elevated in several human cancer tissues and growth-stimulated carcinoma cells, suggesting a mitogenic and carcinogenic role for p66Shc. In this communication, we demonstrate for the first time that p66Shc mediates androgenic growth signals in androgen-sensitive human prostate cancer cells through mitochondrial ROS production. Growth stimulation of prostate cancer cells with 5α-dihydrotestosterone (DHT) is accompanied by increased p66Shc level and ROS production, which is abolished by antioxidant treatments. However, antioxidant treatments do not affect the transcriptional activity of androgen receptor (AR) as observed by its inability to block DHT-induced prostate-specific antigen expression, an AR-dependent correlate of prostate cancer progression. Elevated expression of p66Shc by cDNA transfection increases the basal cell proliferation and, thus, reduces additional DHT-induced cell proliferation. Furthermore, DHT increases the translocation of p66Shc into mitochondria and its interaction with cytochrome c. Conversely, both redox-negative p66Shc mutant (W134F), which is deficient in cytochrome c interaction, and p66Shc small interfering RNA decrease DHT-induced cell proliferation. These results collectively reveal a novel role for p66Shc–ROS pathway in androgen-induced prostate cancer cell proliferation and, thus, may play a role in early prostate carcinogenesis. PMID:18504439

  16. Selective growth inhibition of human breast cancer cells by graviola fruit extract in vitro and in vivo involving downregulation of EGFR expression.

    PubMed

    Dai, Yumin; Hogan, Shelly; Schmelz, Eva M; Ju, Young H; Canning, Corene; Zhou, Kequan

    2011-01-01

    The epidermal growth factor receptor (EGFR) is an oncogene frequently overexpressed in breast cancer (BC), and its overexpression has been associated with poor prognosis and drug resistance. EGFR is therefore a rational target for BC therapy development. This study demonstrated that a graviola fruit extract (GFE) significantly downregulated EGFR gene expression and inhibited the growth of BC cells and xenografts. GFE selectively inhibited the growth of EGFR-overexpressing human BC (MDA-MB-468) cells (IC(50) = 4.8 μg/ml) but had no effect on nontumorigenic human breast epithelial cells (MCF-10A). GFE significantly downregulated EGFR mRNA expression, arrested cell cycle in the G0/G1 phase, and induced apoptosis in MDA-MB-468 cells. In the mouse xenograft model, a 5-wk dietary treatment of GFE (200 mg/kg diet) significantly reduced the protein expression of EGFR, p-EGFR, and p-ERK in MDA-MB-468 tumors by 56%, 54%, and 32.5%, respectively. Overall, dietary GFE inhibited tumor growth, as measured by wet weight, by 32% (P < 0.01). These data showed that dietary GFE induced significant growth inhibition of MDA-MB-468 cells in vitro and in vivo through a mechanism involving the EGFR/ERK signaling pathway, suggesting that GFE may have a protective effect for women against EGFR-overexpressing BC.

  17. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner

    PubMed Central

    Vasilopoulou, E.; Loubière, L.S.; Lash, G.E.; Ohizua, O.; McCabe, C.J.; Franklyn, J.A.; Kilby, M.D.; Chan, S.Y.

    2014-01-01

    STUDY QUESTION Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? SUMMARY ANSWER T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. WHAT IS KNOWN ALREADY Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. STUDY DESIGN, SIZE, DURATION This laboratory-based study used human decidua from first (8–11 weeks; n = 18) and second (12–16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10−) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel® was evaluated. MAIN RESULTS AND THE ROLE OF CHANCE Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1

  18. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.

    PubMed

    Barrow, Alexander D; Edeling, Melissa A; Trifonov, Vladimir; Luo, Jingqin; Goyal, Piyush; Bohl, Benjamin; Bando, Jennifer K; Kim, Albert H; Walker, John; Andahazy, Mary; Bugatti, Mattia; Melocchi, Laura; Vermi, William; Fremont, Daved H; Cox, Sarah; Cella, Marina; Schmedt, Christian; Colonna, Marco

    2018-01-25

    Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Development of an efficient, non-viral transfection method for studying gene function and bone growth in human primary cranial suture mesenchymal cells reveals that the cells respond to BMP2 and BMP3.

    PubMed

    Dwivedi, Prem P; Anderson, Peter J; Powell, Barry C

    2012-08-03

    Achieving efficient introduction of plasmid DNA into primary cultures of mammalian cells is a common problem in biomedical research. Human primary cranial suture cells are derived from the connective mesenchymal tissue between the bone forming regions at the edges of the calvarial plates of the skull. Typically they are referred to as suture mesenchymal cells and are a heterogeneous population responsible for driving the rapid skull growth that occurs in utero and postnatally. To better understand the molecular mechanisms involved in skull growth, and in abnormal growth conditions, such as craniosynostosis, caused by premature bony fusion, it is essential to be able to easily introduce genes into primary bone forming cells to study their function. A comparison of several lipid-based techniques with two electroporation-based techniques demonstrated that the electroporation method known as nucleofection produced the best transfection efficiency. The parameters of nucleofection, including cell number, amount of DNA and nucleofection program, were optimized for transfection efficiency and cell survival. Two different genes and two promoter reporter vectors were used to validate the nucleofection method and the responses of human primary suture mesenchymal cells by fluorescence microscopy, RT-PCR and the dual luciferase assay. Quantification of bone morphogenetic protein (BMP) signalling using luciferase reporters demonstrated robust responses of the cells to both osteogenic BMP2 and to the anti-osteogenic BMP3. A nucleofection protocol has been developed that provides a simple and efficient, non-viral alternative method for in vitro studies of gene and protein function in human skull growth. Human primary suture mesenchymal cells exhibit robust responses to BMP2 and BMP3, and thus nucleofection can be a valuable method for studying the potential competing action of these two bone growth factors in a model system of cranial bone growth.

  20. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro.

    PubMed

    Seebach, Caroline; Schultheiss, Judith; Wilhelm, Kerstin; Frank, Johannes; Henrich, Dirk

    2010-07-01

    Various synthetic bone-graft substitutes are used commercially as osteoconductive scaffolds in the treatment of bone defects and fractures. The role of bone-graft substitutes is changing from osteoconductive conduits for growth to an delivery system for biologic fracture treatments. Achieving optimal bone regeneration requires biologics (e.g. MSC) and using the correct scaffold incorporated into a local environment for bone regeneration. The need for an unlimited supply with high quality bone-graft substitutes continue to find alternatives for bone replacement surgery. This in vitro study investigates cell seeding efficiency, metabolism, gene expression and growth behaviour of MSC sown on six commercially clinical available bone-graft substitutes in order to define their biological properties: synthetic silicate-substituted porous hydroxyapatite (Actifuse ABX), synthetic alpha-TCP (Biobase), synthetic beta-TCP (Vitoss), synthetic beta-TCP (Chronos), processed human cancellous allograft (Tutoplast) and processed bovines hydroxyapatite ceramic (Cerabone). 250,000 MSC derived from human bone marrow (n=4) were seeded onto the scaffolds, respectively. On days 2, 6 and 10 the adherence of MSC (fluorescence microscopy) and cellular activity (MTT assay) were analysed. Osteogenic gene expression (cbfa-1) was analysed by RT-PCR and scanning electron microscopy was performed. The highest number of adhering cells was found on Tutoplast (e.g. day 6: 110.0+/-24.0 cells/microscopic field; p<0.05) followed by Chronos (47.5+/-19.5, p<0.05), Actifuse ABX (19.1+/-4.4), Biobase (15.7+/-9.9), Vitoss (8.8+/-8.7) and Cerabone (8.1+/-2.2). MSC seeded onto Tutoplast showed highest metabolic activity and gene expression of cbfa-1. These data are confirmed by scanning electron microscopy. The cell shapes varied from round-shaped cells to wide spread cells and cell clusters, depending on the bone-graft substitutes. Processed human cancellous allograft is a well-structured and biocompatible

  1. Conditioned media from a renal cell carcinoma cell line demonstrates the presence of basic fibroblast growth factor.

    PubMed

    Mydlo, J H; Zajac, J; Macchia, R J

    1993-09-01

    In a previous report, we demonstrated the isolation and purification of a heparin binding growth factor from human renal carcinoma, and suggested that this growth factor may play a role in the neovascularity and growth of the tumor. In this report, we demonstrate that the growth of the renal cell carcinoma cell line RC29 is stimulated by the addition of exogenous fibroblast growth factor (FGF), epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha). Also, media conditioned by this cell line was able to stimulate growth of the A431 vulvar tumor cell line, known for its high concentration of EGF receptors, 3T3 fibroblasts, human umbilical vein (HUV) cells and RC29 cells. Using heparin-sepharose chromatography and then SDS polyacrylamide gel electrophoresis (PAGE), we were able to demonstrate several proteins in the conditioned media of the RC29 cell line. Using Western blot analysis, we detected that at least one of the proteins expressed in this conditioned media was FGF and that it belongs to the basic, not acidic, family of fibroblast growth factors. These findings suggest that renal tumors may express growth factors that may play a direct role in maintaining their unrestricted proliferation.

  2. A novel mechanism of vascular endothelial growth factor, leptin and transforming growth factor-beta2 sequestration in a subpopulation of human ovarian follicle cells.

    PubMed

    Antczak, M; Van Blerkom, J; Clark, A

    1997-10-01

    This study describes the occurrence of a highly specialized subpopulation of granulosa and cumulus oophorus cells that accumulate and sequester specific growth factors by a novel mechanism. These cells are characterized by multiple balloon-like processes tethered to the cell by means of a slender stalk of plasma membrane. Time-lapse analyses demonstrate that these tethered structures (TS) form in minutes and frequently detach from the cell with the bulbous portion remaining motile on the cell surface. Serial section reconstruction of transmission electron microscopic images shows a specific and stable intracellular organization in which an apparent secretory compartment composed of densely packed vacuoles, vesicles, and cisternae is separated by a thick filamentous network from a nuclear compartment containing mitochondria, polyribosomes, lipid inclusions, and rough-surfaced endoplasmic reticulum. Immunofluorescent analysis performed during the formation of these structures showed a progressive accumulation of vascular endothelial growth factor, leptin, and transforming growth factor-beta2 in the bulbous region. TS were identified in newly aspirated masses of granulosa and cumulus oophorus, and their production persists for months in culture. Observations of TS-forming cells made over several days of culture indicates that their production is episodic and factor release from these cells may be pulsatile. The findings suggest that a novel method of growth factor storage and release by an apparent apocrine-like mechanism occurs in the human ovarian follicle. The results are discussed with respect to possible roles in pre- and post-ovulatory follicular development.

  3. NADE (p75NTR-associated cell death executor) suppresses cellular growth in vivo.

    PubMed

    Tong, Xiangjun; Xie, Dong; Roth, Wilfried; Reed, John; Koeffler, H Phillip

    2003-06-01

    NADE, a p75NTR (low-affinity neurotrophin receptor p75) -associated cell death executor, was initially cloned from a human ovarian granulosa cell cDNA library, as an unknown protein with the name, pHGR74. It was reported to mediate nerve growth factor-induced apoptosis. We independently isolated human NADE (pHGR74) from breast cancer cell lines. Expression of NADE in various human cancer cell lines, and human and murine tissues was examined. NADE was highly expressed in human endocrine-related organs and embryotic murine tissues. Forced expression of NADE in CHO (Chinese hamster ovary) cells and MDA-MB-231 human breast cancer cells had little effect on the growth of the cells in vitro, while it dramatically suppressed cellular growth in vivo. We used the yeast two-hybrid system to search for NADE binding protein. Dynactin was identified as a candidate. The p75NTR was not found in this assay and did not co-immunoprecipitate with human NADE. Furthermore, the cells stably transfected with NADE did not respond to NGF or TNF. Thus, human and murine NADE appear to have different functions.

  4. Mutations to PB2 and NP proteins of an avian influenza virus combine to confer efficient growth in primary human respiratory cells.

    PubMed

    Danzy, Shamika; Studdard, Lydia R; Manicassamy, Balaji; Solorzano, Alicia; Marshall, Nicolle; García-Sastre, Adolfo; Steel, John; Lowen, Anice C

    2014-11-01

    Influenza pandemics occur when influenza A viruses (IAV) adapted to other host species enter humans and spread through the population. Pandemics are relatively rare due to host restriction of IAV: strains adapted to nonhuman species do not readily infect, replicate in, or transmit among humans. IAV can overcome host restriction through reassortment or adaptive evolution, and these are mechanisms by which pandemic strains arise in nature. To identify mutations that facilitate growth of avian IAV in humans, we have adapted influenza A/duck/Alberta/35/1976 (H1N1) (dk/AB/76) virus to a high-growth phenotype in differentiated human tracheo-bronchial epithelial (HTBE) cells. Following 10 serial passages of three independent lineages, the bulk populations showed similar growth in HTBE cells to that of a human seasonal virus. The coding changes present in six clonal isolates were determined. The majority of changes were located in the polymerase complex and nucleoprotein (NP), and all isolates carried mutations in the PB2 627 domain and regions of NP thought to interact with PB2. Using reverse genetics, the impact on growth and polymerase activity of individual and paired mutations in PB2 and NP was evaluated. The results indicate that coupling of the mammalian-adaptive mutation PB2 E627K or Q591K to selected mutations in NP further augments the growth of the corresponding viruses. In addition, minimal combinations of three (PB2 Q236H, E627K, and NP N309K) or two (PB2 Q591K and NP S50G) mutations were sufficient to recapitulate the efficient growth in HTBE cells of dk/AB/76 viruses isolated after 10 passages in this substrate. Influenza A viruses adapted to birds do not typically grow well in humans. However, as has been seen recently with H5N1 and H7N9 subtype viruses, productive and virulent infection of humans with avian influenza viruses can occur. The ability of avian influenza viruses to adapt to new host species is a consequence of their high mutation rate that

  5. Mutations to PB2 and NP Proteins of an Avian Influenza Virus Combine To Confer Efficient Growth in Primary Human Respiratory Cells

    PubMed Central

    Danzy, Shamika; Studdard, Lydia R.; Manicassamy, Balaji; Solorzano, Alicia; Marshall, Nicolle; García-Sastre, Adolfo; Steel, John

    2014-01-01

    ABSTRACT Influenza pandemics occur when influenza A viruses (IAV) adapted to other host species enter humans and spread through the population. Pandemics are relatively rare due to host restriction of IAV: strains adapted to nonhuman species do not readily infect, replicate in, or transmit among humans. IAV can overcome host restriction through reassortment or adaptive evolution, and these are mechanisms by which pandemic strains arise in nature. To identify mutations that facilitate growth of avian IAV in humans, we have adapted influenza A/duck/Alberta/35/1976 (H1N1) (dk/AB/76) virus to a high-growth phenotype in differentiated human tracheo-bronchial epithelial (HTBE) cells. Following 10 serial passages of three independent lineages, the bulk populations showed similar growth in HTBE cells to that of a human seasonal virus. The coding changes present in six clonal isolates were determined. The majority of changes were located in the polymerase complex and nucleoprotein (NP), and all isolates carried mutations in the PB2 627 domain and regions of NP thought to interact with PB2. Using reverse genetics, the impact on growth and polymerase activity of individual and paired mutations in PB2 and NP was evaluated. The results indicate that coupling of the mammalian-adaptive mutation PB2 E627K or Q591K to selected mutations in NP further augments the growth of the corresponding viruses. In addition, minimal combinations of three (PB2 Q236H, E627K, and NP N309K) or two (PB2 Q591K and NP S50G) mutations were sufficient to recapitulate the efficient growth in HTBE cells of dk/AB/76 viruses isolated after 10 passages in this substrate. IMPORTANCE Influenza A viruses adapted to birds do not typically grow well in humans. However, as has been seen recently with H5N1 and H7N9 subtype viruses, productive and virulent infection of humans with avian influenza viruses can occur. The ability of avian influenza viruses to adapt to new host species is a consequence of their high

  6. MUC1-C ONCOPROTEIN CONFERS ANDROGEN-INDEPENDENT GROWTH OF HUMAN PROSTATE CANCER CELLS

    PubMed Central

    Rajabi, Hasan; Ahmad, Rehan; Jin, Caining; Joshi, Maya Datt; Guha, Minakshi; Alam, Maroof; Kharbanda, Surender; Kufe, Donald

    2012-01-01

    Background The mucin 1 (MUC1) heterodimeric oncoprotein is overexpressed in human prostate cancers with aggressive pathologic and clinical features. However, few insights are available regarding the functional role of MUC1 in prostate cancer. Methods Effects of MUC1-C on AR expression were determined by RT-PCR, immunoblotting and AR promoter activation. Coimmunoprecipitations, direct binding assays and chromatin immunoprecipitation (ChIP) studies were performed to assess the interaction between MUC1-C and AR. Cells were analyzed for invasion, growth in androgen-depleted medium and sensitivity to MUC1-C inhibitors. Results The present studies in androgen-dependent LNCaP and LAPC4 prostate cancer cells demonstrate that the oncogenic MUC1-C subunit suppresses AR expression. The results show that MUC1-C activates a posttranscriptional mechanism involving miR-135b-mediated downregulation of AR mRNA levels. The results further demonstrate that MUC1-C forms a complex with AR through a direct interaction between the MUC1-C cytoplasmic domain and the AR DNA-binding domain. In addition, MUC1-C associates with AR in a complex that occupies the PSA promoter. The interaction between MUC1-C and AR is associated with induction of the epithelial-mesenchymal transition (EMT) and increased invasion. MUC1-C also conferred growth in androgen-depleted medium and resistance to bicalutamide treatment. Moreover, expression of MUC1-C resulted in sensitivity to the MUC1-C inhibitor GO-203 with inhibition of growth in vitro. GO-203 treatment also inhibited growth of established tumor xenografts in nude mice. Conclusions These findings indicate that MUC1-C suppresses AR expression in prostate cancer cells and confers a more aggressive androgen-independent phenotype that is sensitive to MUC1-C inhibition. PMID:22473899

  7. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  8. Glycyrrhizic acid attenuates stem cell-like phenotypes of human dermal papilla cells.

    PubMed

    Kiratipaiboon, Chayanin; Tengamnuay, Parkpoom; Chanvorachote, Pithi

    2015-12-15

    Although the growth of unwanted hair or hirsutism is a harmless condition, many people find it bothersome and embarrassing. Maintaining stem cell features of dermal papilla cells is a critical biological process that keeps the high rate of hair growth. Glycyrrhizic acid has been reported to impair hair growth in some studies; however, its underlying mechanism has not yet been investigated. This study aimed to explore the effect and underlying mechanism of glycyrrhizic acid on stemness of human dermal papilla cells. The stem cell molecular markers, epithelial to mesenchymal markers and Wnt/β-catenin-associated proteins of human dermal papilla cell line and primary human dermal papilla cells were analysed by western blot analysis and immunocytochemistry. The present study demonstrated that glycyrrhizic acid significantly depressed the stemness of dermal papilla cells in dose- and time-dependent manners. Clonogenicity and stem cell markers in the glycyrrhizic acid-treated cells were found to gradually decrease in the culture in a time-dependent manner. Our results demonstrated that glycyrrhizic acid exerted the stem cell suppressing effects through the interruption of ATP-dependent tyrosine kinase/glycogen synthase kinase3β-dependent mechanism which in turn down-regulated the β-catenin signalling pathway, coupled with decreased its down-stream epithelial-mesenchymal transition and self-renewal transcription factors, namely, Oct-4, Nanog, Sox2, ZEB1 and Snail. The effect of glycyrrhizic acid on the reduction of stem cell features was also observed in the primary dermal papilla cells directly obtained from human hair follicles. These results revealed a novel molecular mechanism of glycyrrhizic acid in regulation of dermal papilla cells and provided the evidence supporting the use of this compound in suppressing the growth of unwanted hair. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Combining metformin and nelfinavir exhibits synergistic effects against the growth of human cervical cancer cells and xenograft in nude mice

    PubMed Central

    Xia, Chenglai; Chen, Ruihong; Chen, Jinman; Qi, Qianqian; Pan, Yanbin; Du, Lanying; Xiao, Guohong; Jiang, Shibo

    2017-01-01

    Human cervical cancer is the fourth most common carcinoma in women worldwide. However, the emergence of drug resistance calls for continuously developing new anticancer drugs and combination chemotherapy regimens. The present study aimed to investigate the anti-cervical cancer effects of metformin, a first-line therapeutic drug for type 2 diabetes mellitus, and nelfinavir, an HIV protease inhibitor, when used alone or in combination. We found that both metformin and nelfinavir, when used alone, were moderately effective in inhibiting proliferation, inducing apoptosis and suppressing migration and invasion of human cervical cell lines HeLa, SiHa and CaSki. When used in combination, these two drugs acted synergistically to inhibit the growth of human cervical cancer cells in vitro and cervical cancer cell xenograft in vivo in nude mice, and suppress cervical cancer cell migration and invasion. The protein expression of phosphoinositide 3-kinase catalytic subunit PI3K(p110α), which can promote tumor growth, was remarkably downregulated, while the tumor suppressor proteins p53 and p21 were substantially upregulated following the combinational treatment in vitro and in vivo. These results suggest that clinical use of metformin and nelfinavir in combination is expected to have synergistic antitumor efficacy and significant potential for the treatment of human cervical cancer. PMID:28252027

  10. Combining metformin and nelfinavir exhibits synergistic effects against the growth of human cervical cancer cells and xenograft in nude mice.

    PubMed

    Xia, Chenglai; Chen, Ruihong; Chen, Jinman; Qi, Qianqian; Pan, Yanbin; Du, Lanying; Xiao, Guohong; Jiang, Shibo

    2017-03-02

    Human cervical cancer is the fourth most common carcinoma in women worldwide. However, the emergence of drug resistance calls for continuously developing new anticancer drugs and combination chemotherapy regimens. The present study aimed to investigate the anti-cervical cancer effects of metformin, a first-line therapeutic drug for type 2 diabetes mellitus, and nelfinavir, an HIV protease inhibitor, when used alone or in combination. We found that both metformin and nelfinavir, when used alone, were moderately effective in inhibiting proliferation, inducing apoptosis and suppressing migration and invasion of human cervical cell lines HeLa, SiHa and CaSki. When used in combination, these two drugs acted synergistically to inhibit the growth of human cervical cancer cells in vitro and cervical cancer cell xenograft in vivo in nude mice, and suppress cervical cancer cell migration and invasion. The protein expression of phosphoinositide 3-kinase catalytic subunit PI3K(p110α), which can promote tumor growth, was remarkably downregulated, while the tumor suppressor proteins p53 and p21 were substantially upregulated following the combinational treatment in vitro and in vivo. These results suggest that clinical use of metformin and nelfinavir in combination is expected to have synergistic antitumor efficacy and significant potential for the treatment of human cervical cancer.

  11. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Effect of sinapic acid on hair growth promoting in human hair follicle dermal papilla cells via Akt activation.

    PubMed

    Woo, Hyunju; Lee, Seungjun; Kim, Seungbeom; Park, Deokhoon; Jung, Eunsun

    2017-07-01

    Hair loss known as alopecia is caused by abnormal hair follicle cycling including shortening of the anagen (growth) phase and changing of hair follicle morphology with miniaturization. In accordance with the life extension, the quality of life is considered to be a most important thing. The yearning for healthy and beautiful hair and low self esteem due to hair loss had negative influence on the quality of life with psychosocial maladjustment. The objective of this research was to identify new compound that can be used as a drug to promote hair growth. We investigated whether the function of sinapic acid (SA) is able to promote hair growth in human hair follicle dermal papilla cells (hHFDPC). We showed that treatment of SA in hHFDPC could induce proliferation and the activation of Akt signaling in HFDPC. In addition, SA could stimulate the expressions of the several growth factors, insulin-like growth factor 1, and vascular endothelial growth factor for hair growth. We showed that SA led to an increased level of phospho-GSK-3β and β-catenin accumulation in HFDPC. Finally, the promoting effect of SA in hHFDPC cell growth occurred by the induction of cell cycle progression. These results suggest that SA could be one of the potential candidate compounds for the treatment of alopecia by inducing hair growth through triggering the expressions of growth factors via activation of Akt and subsequent inactivation of GSK-3β /β-catenin pathway.

  13. Interactions between insulin-like growth factor-I, estrogen receptor-α (ERα) and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells

    PubMed Central

    Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640

  14. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    PubMed

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  15. Cationic Surface Charge Combined with Either Vitronectin or Laminin Dictates the Evolution of Human Embryonic Stem Cells/Microcarrier Aggregates and Cell Growth in Agitated Cultures

    PubMed Central

    Lam, Alan Tin-Lun; Li, Jian; Chen, Allen Kuan-Liang; Reuveny, Shaul

    2014-01-01

    The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment. However, they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology, consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein, cell attachment efficiency and cell spreading are improved, thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates, which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 μm during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 μm indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation, whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines, thus confirming the robustness of this scalable expansion process in a defined environment. PMID:24641164

  16. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells.

    PubMed

    Jiang, Guosong; Huang, Chao; Li, Jingxia; Huang, Haishan; Wang, Jingjing; Li, Yawei; Xie, Fei; Jin, Honglei; Zhu, Junlan; Huang, Chuanshu

    2018-03-08

    There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.

  17. Cryopreserved mouse fetal liver stromal cells treated with mitomycin C are able to support the growth of human embryonic stem cells.

    PubMed

    Zhang, Wei; Hu, Jiabo; Ma, Quanhui; Hu, Sanqiang; Wang, Yanyan; Wen, Xiangmei; Ma, Yongbin; Xu, Hong; Qian, Hui; Xu, Wenrong

    2014-09-01

    An immortalized mouse fetal liver stromal cell line, named KM3, has demonstrated the potential to support the growth and maintenance of human embryonic stem cells (hESCs). In this study, the characteristics of KM3 cells were examined following cryopreservation at -70°C and in liquid nitrogen for 15, 30 and 60 days following treatment with 10 μg/ml mitomycin C. In addition, whether the KM3 cells were suitable for use as feeder cells to support the growth of hESCs was evaluated. The inhibition of mitosis without cell death was observed when the KM3 cells were treated with 10 μg/ml mitomycin C for 2 h. The morphology of the KM3 cells cryopreserved in liquid nitrogen for 60 days was not markedly changed, and the cell survival rate was 84.60±1.14%. By contrast, the survival rate of the KM3 cells was 66.40±2.88% following cryopreservation at -70°C for 60 days; the cells readily detached, were maintained for a shorter time, and had a reduced expression level of basic fibroblast growth factor. hESCs cultured on KM3 cells cryopreserved in liquid nitrogen for 60 days showed the typical bird's nest structure, with clear boundaries and a differentiation rate of 16.33±2.08%. The differentiation rate of hESCs cultured on KM3 cells cryopreserved at -70°C for 60 days was 37.67±3.51%. These results indicate that the cryopreserved KM3 cells treated with mitomycin C may be directly used in the subculture of hESCs, and the effect is relatively good with -70°C short-term or liquid nitrogen cryopreservation.

  18. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells

    PubMed Central

    Chen, Yu-Ching; Chang, Hsun-Ming; Cheng, Jung-Chien; Tsai, Horng-Der; Wu, Cheng-Hsuan; Leung, Peter C.K.

    2015-01-01

    STUDY QUESTION Does transforming growth factor-β1 (TGF-β1) up-regulate connexin43 (Cx43) to promote cell–cell communication in human granulosa cells? SUMMARY ANSWER TGF-β1 up-regulates Cx43 and increases gap junction intercellular communication activities (GJIC) in human granulosa cells, and this effect occurs via the activin receptor-like kinase (ALK)5-mediated Sma- and Mad-related protein (SMAD)2/3-SMAD4-dependent pathway. WHAT IS KNOWN ALREADY TGF-β1 and its receptors are expressed in human granulosa cells, and follicular fluid contains TGF-β1 protein. In human granulosa cells, Cx43 gap junctions play an important role in the development of follicles and oocytes. STUDY DESIGN, SIZE, DURATION This is an experimental study which was performed over a 1-year period. PARTICIPANTS/MATERIALS, SETTING, METHODS Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing IVF in an academic research center were used as the study models. Cx43 mRNA and protein expression levels were examined after exposure of SVOG cells to recombinant human TGF-β1. An activin/TGF-β type I receptor inhibitor, SB431542, and small interfering RNAs targeting ALK4, ALK5, SMAD2, SMAD3 and SMAD4 were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. MAIN RESULTS AND THE ROLE OF CHANCE TGF-β1 treatment increased phosphorylation of SMAD2/3 (P < 0.0001) and up-regulated Cx43 mRNA and protein levels (P < 0.001) in SVOG cells and these stimulatory effects were abolished by the TGF-β type I receptor inhibitor SB431542. In addition, the up-regulatory effect of TGF-β1 on Cx43 expression (mRNA and protein) was confirmed in primary

  19. Genetic stability of RSV-F expression and the restricted growth phenotype of a live attenuated PIV3 vectored RSV vaccine candidate (MEDI-534) following restrictive growth in human lung cells.

    PubMed

    Nelson, Christine L; Tang, Roderick S; Stillman, Elizabeth A

    2013-08-12

    MEDI-534 is the first live, attenuated and vectored respiratory syncytial virus (RSV) vaccine to be evaluated in seronegative children. It consists of a bovine/human parainfluenza virus type 3 (PIV3) backbone with the RSV fusion glycoprotein (RSV-F) expressed from the second position. The PIV3 fusion and hemaglutinin-neuraminidase proteins are human-derived. No small animal appropriately replicates the restrictive growth of bovine PIV3 (bPIV3) based viruses relative to human PIV3 (hPIV3) observed in the respiratory tract of rhesus monkeys and humans, making analysis of the genetic stability of the attenuation phenotype and maintenance of RSV-F expression difficult. Screening of multiple cell-lines identified MRC-5 cells as supporting permissive growth of hPIV3 while restricting bPIV3 and MEDI-534 growth. In MRC-5 cells, the peak titers of MEDI-534 were more than 20-fold lower compared to hPIV3 peak titers. After more than 10 multicycle passages in MRC-5 cells, genetic alterations were detected in MEDI-534 that contributed to a partial loss in restricted growth in MRC-5 cells and a decrease in RSV-F expression. These adaptive mutations did not occur in the RSV-F gene but were found in the polyA sequence upstream of the transgene. MRC-5 adapted MEDI-534 viruses (1) lost some attenuation but did not replicate to the level of hPIV3 in this cell line, (2) did not completely lose RSV-F expression and (3) were able to elicit a protective anti-RSV immune response in hamsters despite lower levels of RSV-F expression. Interestingly analysis of shed MEDI-534 from a recent clinical trial indicates that in some recipients similar mutations arise by day 7 or day 12 post immunization (in press) suggesting that these mutations can arise rapidly in the human host. The utility and limits of MRC-5 cells for characterizing the attenuation and RSV-F expression of MEDI-534 is discussed. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Genetic analysis of indefinite division in human cells: Evidence for a cell senescence-related gene(s) on human chromosome 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Ning; Ledbetter, D.H.; Smith, J.R.

    1991-07-01

    Earlier studies had demonstrated that fusion of normal with immortal human cells yielded hybrids having limited division potential. This indicated that the phenotype of limited proliferation (cellular senescence) is dominant and that immortal cells result from recessive changes in normal growth-regulatory genes. In additional studies, the authors exploited the fact that the immortal phenotype is recessive and, by fusing various immortal human cell lines with each other, identified four complementation groups for indefinite division. Assignment of cell lines to specific groups allowed us to take a focused approach to identify the chromosomes and genes involved in growth regulation that havemore » been modified in immortal cells. They report here that introduction of a normal human chromosome 4 into three immortal cell lines (HeLa, J82, T98G) assigned to complementation group B resulted in loss of proliferation and reversal of the immortal phenotype. No effect on the proliferation potential of cell lines representative of the other complementation groups was observed. This result suggests that a gene(s) involved in cellular senescence and normal growth regulation resides on chromosome 4.« less

  1. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis.

    PubMed

    Pereira, Joana M; Peixoto, Vanessa; Teixeira, Alexandra; Sousa, Diana; Barros, Lillian; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2018-06-05

    The cell growth inhibitory activity of the hydroethanolic extract of Achillea millefolium was studied in human tumor cell lines (NCI-H460 and HCT-15) and its mechanism of action was investigated. The GI 50 concentration was determined with the sulforhodamine B assay and cell cycle and apoptosis were analyzed by flow cytometry following incubation with PI or Annexin V FITC/PI, respectively. The expression levels of proteins involved in cell cycle and apoptosis were analyzed by Western blot. The extracts were characterized regarding their phenolic composition by LC-DAD-ESI/MS. 3,5-O-Dicaffeoylquinic acid, followed by 5-O-caffeoylquinic acid, were the main phenolic acids, while, luteolin-O-acetylhexoside and apigenin-O-acetylhexoside were the main flavonoids. This extract decreased the growth of the tested cell lines, being more potent in HCT-15 and then in NCI-H460 cells. Two different concentrations of the extract (75 and 100 μg/mL) caused alterations in cell cycle profile and increased apoptosis levels in HCT-15 and NCI-H460 cells. Moreover, the extract caused an increase in p53 and p21 expression in NCI-H460 cells (which have wt p53), and reduced XIAP levels in HCT-15 cells (with mutant p53). This work enhances the importance of A. millefolium as source of bioactive phenolic compounds, particularly of XIAP inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Growth Inhibition of Human Gynecologic and Colon Cancer Cells by Phyllanthus watsonii through Apoptosis Induction

    PubMed Central

    Ramasamy, Sujatha; Abdul Wahab, Norhanom; Zainal Abidin, Nurhayati; Manickam, Sugumaran; Zakaria, Zubaidah

    2012-01-01

    Phyllanthus watsonii Airy Shaw is an endemic plant found in Peninsular Malaysia. Although there are numerous reports on the anti cancer properties of other Phyllanthus species, published information on the cytotoxicity of P. watsonii are very limited. The present study was carried out with bioassay-guided fractionation approach to evaluate the cytotoxicity and apoptosis induction capability of the P. watsonii extracts and fractions on human gynecologic (SKOV-3 and Ca Ski) and colon (HT-29) cancer cells. P. watsonii extracts exhibited strong cytotoxicity on all the cancer cells studied with IC50 values of ≤ 20.0 µg/mL. Hexane extract of P. watsonii was further subjected to bioassay-guided fractionation and yielded 10 fractions (PW-1→PW-10). PW-4→PW-8 portrayed stronger cytotoxic activity and was further subjected to bioassay-guided fractionation and resulted with 8 sub-fractions (PPWH-1→PPWH-8). PPWH-7 possessed greatest cytotoxicity (IC50 values ranged from 0.66 – 0.83 µg/mL) and was selective on the cancer cells studied. LC-MS/MS analysis of PPWH-7 revealed the presence of ellagic acid, geranic acid, glochidone, betulin, phyllanthin and sterol glucoside. Marked morphological changes, ladder-like appearance of DNA and increment in caspase-3 activity indicating apoptosis were clearly observed in both human gynecologic and colon cancer cells treated with P. watsonii especially with PPWH-7. The study also indicated that P. watsonii extracts arrested cell cycle at different growth phases in SKOV-3, Ca Ski and HT-29 cells. Cytotoxic and apoptotic potential of the endemic P. watsonii was investigated for the first time by bioassay-guided approach. These results demonstrated that P. watsonii selectively inhibits the growth of SKOV-3, Ca Ski and HT-29 cells through apoptosis induction and cell cycle modulation. Hence, P. watsonii has the potential to be further exploited for the discovery and development of new anti cancer drugs. PMID:22536331

  3. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4.

    PubMed

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-10-11

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The CD133(+) cells grow in vitro as undifferentiated tumor spheroids, and they are both necessary and sufficient to initiate tumor growth in immunodeficient mice. Xenografts resemble the original human tumor maintaining the rare subpopulation of tumorigenic CD133(+) cells. Further analysis revealed that the CD133(+) cells produce and utilize IL-4 to protect themselves from apoptosis. Consistently, treatment with IL-4Ralpha antagonist or anti-IL-4 neutralizing antibody strongly enhances the antitumor efficacy of standard chemotherapeutic drugs through selective sensitization of CD133(+) cells. Our data suggest that colon tumor growth is dictated by stem-like cells that are treatment resistant due to the autocrine production of IL-4.

  4. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn; Zhang, Xianqi; Qiu, Shuifeng

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) weremore » sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.« less

  5. Synchrony in human, mouse and bacterial cell cultures--a comparison

    NASA Technical Reports Server (NTRS)

    Helmstetter, Charles E.; Thornton, Maureen; Romero, Ana; Eward, K. Leigh

    2003-01-01

    Growth characteristics of synchronous human MOLT-4, human U-937 and mouse L1210 cultures produced with a new minimally-disturbing technology were compared to each other and to synchronous Escherichia coli B/r. Based on measurements of cell concentrations during synchronous growth, synchrony persisted in similar fashion for all cells. Cell size and DNA distributions in the mammalian cultures also progressed synchronously and reproducibly for multiple cell cycles. The results demonstrate that unambiguous multi-cycle synchrony, critical for verifying the absence of significant growth imbalances induced by the synchronization procedure, is feasible with these cell lines, and possibly others.

  6. A virally inactivated functional growth factor preparation from human platelet concentrates.

    PubMed

    Su, C-Y; Kuo, Y P; Lin, Y C; Huang, C-T; Tseng, Y H; Burnouf, T

    2009-08-01

    Human platelet growth factors (HPGF) are essential for tissue regeneration and may replace fetal bovine serum (FBS) in cell therapy. No method for the manufacture of standardized virally inactivated HPGF has been developed yet. Platelet concentrates (PC) were subjected to solvent/detergent (S/D) treatment (1% TnBP/1% Triton X-45), oil extraction, hydrophobic interaction chromatography and sterile filtration. Platelet-derived growth factor (PDGF)-AB, -BB and -AA, transforming growth factor-beta1 (TGF-beta1), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and vascular endothelium growth factor (VEGF) were measured by ELISA. Composition in proteins and lipids was determined, protein profiles were obtained by SDS-PAGE, and TnBP and Triton X-45 were assessed by gas chromatography and high-performance liquid chromatography, respectively. Cell growth promoting activity of HPGF was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay using human embryonic kidney (HEK293A) fibroblast and Statens Seruminstitute rabbit corneal (SIRC) epithelial cell lines. The GF preparation contained a mean of 16.66, 2.04, 1.53, 72.19, 0.33, 48.59 and 0.44 ng/ml of PDGF-AB, -BB, -AA, TGF-beta1, EGF, IGF-1 and VEGF, respectively. The protein profile was typical of platelet releasates and had less than 2 p.p.m. of residual S/D agents. MTS assay of HEK293A and SIRC cultures showed that the GF preparation at 10% and 0.1% (v/v), respectively, could successfully replace 10% FBS for cell proliferation. Cell-stimulating activity of HPGF on HEK293A was over twice that of PC releasates. STANDARDIZED and functional virally inactivated HPGF can be prepared from human PC for possible applications in cell therapy and regenerative medicine.

  7. RUNX1 promotes cell growth in human T-cell acute lymphoblastic leukemia by transcriptional regulation of key target genes.

    PubMed

    Jenkins, Catherine E; Gusscott, Samuel; Wong, Rachel J; Shevchuk, Olena O; Rana, Gurneet; Giambra, Vincenzo; Tyshchenko, Kateryna; Islam, Rashedul; Hirst, Martin; Weng, Andrew P

    2018-05-04

    RUNX1 is frequently mutated in T-cell acute lymphoblastic leukemia (T-ALL). The spectrum of RUNX1 mutations has led to the notion that it acts as a tumor suppressor in this context; however, other studies have placed RUNX1 along with transcription factors TAL1 and NOTCH1 as core drivers of an oncogenic transcriptional program. To reconcile these divergent roles, we knocked down RUNX1 in human T-ALL cell lines and deleted Runx1 or Cbfb in primary mouse T-cell leukemias. RUNX1 depletion consistently resulted in reduced cell proliferation and increased apoptosis. RUNX1 upregulated variable sets of target genes in each cell line, but consistently included a core set of oncogenic effectors including IGF1R and NRAS. Our results support the conclusion that RUNX1 has a net positive effect on cell growth in the context of established T-ALL. Copyright © 2018. Published by Elsevier Inc.

  8. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    PubMed Central

    Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E

    2006-01-01

    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275

  9. Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate.

    PubMed

    Nath, Suman C; Horie, Masanobu; Nagamori, Eiji; Kino-Oka, Masahiro

    2017-10-01

    Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 10 1 -(2.8 ± 0.5) × 10 1 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 10 1 -(6.8 ± 1.1) × 10 2 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 10 3 -(3.5 ± 1.1) × 10 3 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Interactive effects of polymethoxy flavones from Citrus on cell growth inhibition in human neuroblastoma SH-SY5Y cells.

    PubMed

    Akao, Yukihiro; Itoh, Tomohiro; Ohguchi, Kenji; Iinuma, Munekazu; Nozawa, Yoshinori

    2008-03-15

    Much evidence indicates that typical phytochemicals such as resveratrol, epigallocatechin gallate, and curcumin have a growth inhibitory effect against cancer cells when each is tested separately. However, when fruits and vegetables including a mixture of phytochemicals are consumed, it is unclear whether this anti-proliferative activity is elicited in the body. Initially, we found that nobiletin, a typical polymethoxy flavone from Citrus, had a preventive effect on H(2)O(2)-induced apoptosis at 20-30 microM in human neuroblastoma SH-SY5Y cells. Nobiletin acted as a signal modulator to attenuate the activation of the intrinsic pathway of the apoptosis induced by H(2)O(2) exposure. On the other hand, tangeretin and 5-demethyl nobiletin, which are also polymethoxy flavones from Citrus, were shown to have a growth inhibitory effect by us and others. These results led us to investigate the interactive effects of these polymethoxy flavones on cell growth. In the present study, we found that tangeretin, nobiletin, and 5-demethyl nobiletin exhibited a cancelling, synergistic, or additive effect when combinations of two of these three compounds were tested. As to the structure-activity relationship, the methyl group at C-5 in nobiletin was shown to contribute to the anti-proliferative effect. By the combined treatment with tangeretin and 5-demethyl nobiletin, the apoptotic cell population and the activity of caspase-3 were synergistically elevated. The finding that tangeretin and 5-demethyl nobiletin induced apoptosis by reducing the mitochondrial membrane potential suggested that an intrinsic pathway of apoptosis was synergistically activated by the combination treatment with tangeretin and 5-demethyl nobiletin. On the other hand, in the combined treatment including nobiletin, the growth inhibitory activity of tangeretin was reduced. These results indicate the relevance of the combination of phytochemicals for the enhancement of the anticancer effect.

  11. Vitamin D inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1

    PubMed Central

    Damera, G; Fogle, HW; Lim, P; Goncharova, EA; Zhao, H; Banerjee, A; Tliba, O; Krymskaya, VP; Panettieri, RA

    2009-01-01

    Background and purpose: Airway remodelling in asthma is manifested, in part, as increased airway smooth muscle (ASM) mass, reflecting myocyte proliferation. We hypothesized that calcitriol, a secosteroidal vitamin D receptor (VDR) modulator, would inhibit growth factor-induced myocyte proliferation. Experimental approach: Human ASM cell cultures were derived from bronchial samples taken during surgery. ASM cells were treated with platelet-derived growth factor (PDGF) (10 ng·mL−1) for 24 h in the presence of calcitriol, dexamethasone or a checkpoint kinase 1 (Chk1) inhibitor (SB218078). The effects of calcitriol on PDGF-mediated cell proliferation were assessed by thymidine incorporation assay, propidium iodide-based cell cycle analysis, caspase-3 assay and immunoblotting for specific cell cycle modulators. Key results: Calcitriol, but not dexamethasone, inhibited PDGF-induced ASM DNA synthesis concentration dependently (IC50= 520 ± 52 nM). These effects were associated with VDR-mediated expression of cytochrome CYP24A1 with no effects on ASM apoptosis. Calcitriol substantially inhibited (P < 0.01) PDGF-stimulated cell growth in ASM derived from both normal (59 ± 8%) and asthmatic subjects (57 ± 9%). Calcitriol inhibited PDGF-induced phosphorylation of retinoblastoma protein (Rb) and Chk1, with no effects on PDGF-mediated activation of extracellular signal-regulated kinases 1/2, PI3-kinase and S6 kinase, or expression of p21Waf/Cip-1, p27Kip1, cyclin D and E2F-1. Consistent with these observations, SB218078 also inhibited (IC50= 450 ± 100 pM) PDGF-induced cell cycle progression. Conclusions and implications: Calcitriol decreased PDGF-induced ASM cell growth by inhibiting Rb and Chk1 phosphorylation. This Research Paper is the subject of a Commentary in this issue by Clifford and Knox (pp. 1426–1428). To view this article visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19814732

  12. [Inhibitive effect of matrine modification X on the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice].

    PubMed

    Shi, Shujing; Tang, Anzhou; Yin, Shaolin; Wang, Lisheng; Xie, Mao; Yi, Xiang

    2014-11-01

    To evaluate the inhibitive effect of matrine modification X on the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice. Tumor model was established by subcutaneous inoculation of nasopharyngeal carcinoma cell CNE2 into nude mice, which was used to evaluate the antitumor effect of matrine modification X in vivo. The expression levels of Bax, Bcl-2, Caspase3 were detected by real-time PCR and western blot. The growth of xenografts in nude mice was significantly suppressed after application of matrine modification X in a dose-dependent manner. The inhibition rates were 32.55% and 44.89% when treated at medium and high dose respectively. Real-time fluorescence quantitative-PCR and Western Blot results showed that the expression of Bax and Caspase3 increased, while the expression of Bcl-2 decreased in a dose-dependent manner. The change of high dose group was obvious, and the difference was statistically significant (P < 0.05). Matrine modification X could significantly inhibit the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice, probably by inducing the apoptosis of nasopharyngeal carcinoma cells, and the possible mechanism is related to regulating the expression level of Bax/Bcl-2 and Casepase3.

  13. Effect of benzo[a]pyrene on the production of vascular endothelial growth factor by human eosinophilic leukemia EoL-1 cells.

    PubMed

    Gu, Jie; Chan, Lai-Sheung; Wong, Chris Kong-Chu; Wong, Ngok-Shun; Wong, Chun-Kwok; Leung, Kok-Nam; Mak, Naiki K

    2011-01-01

    Benzo[a]pyrene (BaP) has been shown to affect both the development and response of T and B cells in the immune system. However, the effect of BaP on other immune cells, such as eosionophils, is unknown. In this study, we investigated the effect of BaP on the production of vascular endothelial growth factor (VEGF) using an in vitro eosinophilic EoL-1 cell and human umbilical vein endothelial cell (HUVEC) co-culture system. EoL-1-conditioned medium was found to promote the growth of HUVEC in a time-dependent manner. The growth stimulating activity was due to the production of VEGF by the EoL-1 cells. The production of VEGF was correlated with the enhanced expression of the phosphorylated form of extracellular signal-regulated kinases (p-ERKs) and the upregulated expression of VEGF mRNA. Furthermore, BaP-induced expression of VEGF mRNA was reduced by the ERK inhibitor PD98059. Results from this study suggested that BaP might affect the growth of endothelial cells through the modulation of VEGF production by eosinophils.

  14. Lysophosphatidic Acid Acyltransferase β (LPAATβ) Promotes the Tumor Growth of Human Osteosarcoma

    PubMed Central

    Rastegar, Farbod; Gao, Jian-Li; Shenaq, Deana; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Jiang, Wei; Wagner, Eric R.; Huang, Enyi; Gao, Yanhong; Shen, Jikun; Yang, Ke; He, Bai-Cheng; Chen, Liang; Zuo, Guo-Wei; Luo, Jinyong; Luo, Xiaoji; Bi, Yang; Liu, Xing; Li, Mi; Hu, Ning; Wang, Linyuan; Luther, Gaurav; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan

    2010-01-01

    Background Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. Methodology/Principal Findings Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. Conclusions/Significance Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially

  15. Downregulation of Bit1 expression promotes growth, anoikis resistance, and transformation of immortalized human bronchial epithelial cells via Erk activation-dependent suppression of E-cadherin.

    PubMed

    Yao, Xin; Gray, Selena; Pham, Tri; Delgardo, Mychael; Nguyen, An; Do, Stephen; Ireland, Shubha Kale; Chen, Renwei; Abdel-Mageed, Asim B; Biliran, Hector

    2018-01-01

    The mitochondrial Bit1 protein exerts tumor-suppressive function in NSCLC through induction of anoikis and inhibition of EMT. Having this dual tumor suppressive effect, its downregulation in the established human lung adenocarcinoma A549 cell line resulted in potentiation of tumorigenicity and metastasis in vivo. However, the exact role of Bit1 in regulating malignant growth and transformation of human lung epithelial cells, which are origin of most forms of human lung cancers, has not been examined. To this end, we have downregulated the endogenous Bit1 expression in the immortalized non-tumorigenic human bronchial epithelial BEAS-2B cells. Knockdown of Bit1 enhanced the growth and anoikis insensitivity of BEAS-2B cells. In line with their acquired anoikis resistance, the Bit1 knockdown BEAS-2B cells exhibited enhanced anchorage-independent growth in vitro but failed to form tumors in vivo. The loss of Bit1-induced transformed phenotypes was in part attributable to the repression of E-cadherin expression since forced exogenous E-cadherin expression attenuated the malignant phenotypes of the Bit1 knockdown cells. Importantly, we show that the loss of Bit1 expression in BEAS-2B cells resulted in increased Erk activation, which functions upstream to promote TLE1-mediated transcriptional repression of E-cadherin. These collective findings indicate that loss of Bit1 expression contributes to the acquisition of malignant phenotype of human lung epithelial cells via Erk activation-induced suppression of E-cadherin expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  17. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

    PubMed

    Díez, José M; Bauman, Ewa; Gajardo, Rodrigo; Jorquera, Juan I

    2015-03-13

    Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.

  18. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    PubMed

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  19. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line.

    PubMed

    Vassbotn, F S; Ostman, A; Langeland, N; Holmsen, H; Westermark, B; Heldin, C H; Nistér, M

    1994-02-01

    Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF beta-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U-343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transformed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists.

  20. Cytotoxic effects of cuphiin D1 on the growth of human cervical carcinoma and normal cells.

    PubMed

    Wang, Ching-Chiung; Chen, Lih-Geeng; Yang, Ling-Ling

    2002-01-01

    Cuphiin D1 (CD1), macrocyclic hydrolyzable tannin isolated from Cuphea hyssopifolia, has been shown to exert an antitumor effect both in vitro and in vivo. Furthermore, CD1 significantly inhibited the growth of the human cervical carcinoma, i.e. HeLa, cells and showed less cytotoxicity to normal primary-cultured cervical fibroblasts. In this study, we explored the cytotoxic mechanism of CD1 on HeLa cells. The cytotoxic effects of CD1 showed dose-dependency at 3.15-100 micrograms/ml on HeLa for 12, 24, 48 and 72 hours and with an IC50 value at 14.2 micrograms/ml for 48 hours. However, the IC50 value of CD1 in primary-cultured normal cervical fibroblasts was 74.5 micrograms/ml. Therefore, the selectivity shown by CD1 is ascribed to differences in growth speeds between normal and tumor cells. HeLa cells treated with 50 micrograms/ml CD1 for 24 hours exhibited chromatin condensation, indicating the occurrence of apoptosis. Flow cytometric analysis demonstrated the presence of apoptotic cells with low DNA content among HeLa cells. CD1 also caused DNA fragmentation and inhibited Bcl-2, pro-caspase 3, and inactived PARP expression in HeLa cells. These results suggest that the inhibition of Bcl-2 expression in HeLa cells might account for the mechanism of CD1-induced apoptosis.

  1. 9-AAA inhibits growth and induces apoptosis in human melanoma A375 and rat prostate adenocarcinoma AT-2 and Mat-LyLu cell lines but does not affect the growth and viability of normal fibroblasts.

    PubMed

    Korohoda, Włodzimierz; Hapek, Anna; Pietrzak, Monika; Ryszawy, Damian; Madeja, Zbigniew

    2016-11-01

    The present study found that, similarly to 5-fluorouracil, low concentrations (1-10 µM) of 9-aminoacridine (9-AAA) inhibited the growth of the two rat prostate cancer AT-2 and Mat-LyLu cell lines and the human melanoma A375 cell line. However, at the same concentrations, 9-AAA had no effect on the growth and apoptosis of normal human skin fibroblasts (HSFs). The differences between the cellular responses of the AT-2 and Mat-LyLu cell lines, which differ in malignancy, were found to be relatively small compared with the differences between normal HSFs and the cancer cell lines. Visible effects on the cell growth and survival of tumor cell lines were observed after 24-48 h of treatment with 9-AAA, and increased over time. The inhibition of cancer cell growth was found to be due to the gradually increasing number of cells dying by apoptosis, which was observed using two methods, direct counting and FlowSight analysis. Simultaneously, cell motile activity decreased to the same degree in cancer and normal cells within the first 8 h of incubation in the presence of 9-AAA. The results presented in the current study suggest that short-lasting tests for potential anticancer substances can be insufficient; which may result in cell type-dependent differences in the responses of cells to tested compounds that act with a delay being overlooked. The observed differences in responses between normal human fibroblasts and cancer cells to 9-AAA show the requirement for additional studies to be performed simultaneously on differently reacting cancer and normal cells, to determine the molecular mechanisms responsible for these differences.

  2. Multiple Mechanisms Are Involved in 6-Gingerol-Induced Cell Growth Arrest and Apoptosis in Human Colorectal Cancer Cells

    PubMed Central

    Lee, Seong-Ho; Cekanova, Maria; Baek, Seung Joon

    2008-01-01

    6-Gingerol, a natural product of ginger, has been known to possess anti-tumorigenic and pro-apoptotic activities. However, the mechanisms by which it prevents cancer are not well understood in human colorectal cancer. Cyclin D1 is a proto-oncogene that is overexpressed in many cancers and plays a role in cell proliferation through activation by β-catenin signaling. Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and anti-tumorigenic properties. In the present study, we examined whether 6-gingerol influences cyclin D1 and NAG-1 expression and determined the mechanisms by which 6-gingerol affects the growth of human colorectal cancer cells in vitro. 6-Gingerol treatment suppressed cell proliferation and induced apoptosis and G1 cell cycle arrest. Subsequently, 6-gingerol suppressed cyclin D1 expression and induced NAG-1 expression. Cyclin D1 suppression was related to inhibition of β-catenin translocation and cyclin D1 proteolysis. Furthermore, experiments using inhibitors and siRNA transfection confirm the involvement of the PKCε and glycogen synthase kinase (GSK)-3β pathways in 6-gingerol-induced NAG-1 expression. The results suggest that 6-gingerol stimulates apoptosis through upregulation of NAG-1 and G1 cell cycle arrest through downregulation of cyclin D1. Multiple mechanisms appear to be involved in 6-gingerol action, including protein degradation as well as β-catenin, PKCε, and GSK-3β pathways. PMID:18058799

  3. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions.

    PubMed

    Fukuda, Takayuki; Takayama, Kazuo; Hirata, Mitsuhi; Liu, Yu-Jung; Yanagihara, Kana; Suga, Mika; Mizuguchi, Hiroyuki; Furue, Miho K

    2017-03-15

    Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Differential responsiveness of luteinized human granulosa cells to gonadotropins and insulin-like growth factor I for induction of aromatase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christman, G.M.; Randolph, J.F. Jr.; Peegel, H.

    1991-06-01

    The objective of this study was to examine the in vitro responsiveness of cultured luteinized human granulosa cells over time to insulin-like growth factor 1 (IGF-1), human follicle-stimulating hormone (FSH), and human chorionic gonadotropin (hCG) for the induction of aromatase activity. Granulosa cells were retrieved from preovulatory follicles in patients undergoing in vitro fertilization. Cells were cultured for a period of 72 hours or 10 days. The ability of hCG, human FSH, and/or IGF-I to induce aromatase activity was assayed by the stereospecific release of tritium from (1B-3H)androstenedione. Short-term cultures (72 hours) demonstrated a marked rise in aromatase activity inmore » response to human FSH and IGF-I, whereas a smaller response to hCG was observed. In contrast, 10-day cultures demonstrated responsiveness predominantly to hCG rather than human FSH for the induction of aromatase activity with no remarkable effect of IGF-I. Luteinized human granulosa cells undergo a transformation from an initial human FSH and IGF-I responsive state to an hCG responsive state in long-term cultures.« less

  5. Human Adipose-Derived Mesenchymal Stem Cell-Secreted CXCL1 and CXCL8 Facilitate Breast Tumor Growth By Promoting Angiogenesis.

    PubMed

    Wang, Yuan; Liu, Junli; Jiang, Qingyuan; Deng, Jie; Xu, Fen; Chen, Xiaolei; Cheng, Fuyi; Zhang, Yujing; Yao, Yunqi; Xia, Zhemin; Xu, Xia; Su, Xiaolan; Huang, Meijuan; Dai, Lei; Yang, Yang; Zhang, Shuang; Yu, Dechao; Zhao, Robert Chunhua; Wei, Yuquan; Deng, Hongxin

    2017-09-01

    Autologous adipose tissue or adipose tissue with additive adipose-derived mesenchymal stem cells (ADSCs) is used in the breast reconstruction of breast cancer patients who undergo mastectomy. ADSCs play an important role in the angiogenesis and adipogenesis, which make it much better than other materials. However, ADSCs may promote residual tumor cells to proliferate or metastasize, and the mechanism is still not fully understood. In this study, we demonstrated that human ADSCs (hADSCs) could facilitate tumor cells growth after co-injection with MCF7 and ZR-75-30 breast cancer cells (BCCs) by promoting angiogenesis, but hADSCs showed limited effect on the growth of MDA-MB-231 BCCs. Intriguingly, compared with ZR-75-30 tumor cells, MCF7 tumor cells were more potentially promoted by hADSCs in the aspects of angiogenesis and proliferation. Consistent with this, cytokine and angiogenesis array analyses showed that after co-injection with hADSCs, the CXCL1 and CXCL8 concentration were significantly increased in MCF7 tumor, but only moderately increased in ZR-75-30 tumor and did not increase in MDA-MB-231 tumor. Furthermore, we found that CXCL1/8 were mainly derived from hADSCs and could increase the migration and tube formation of human umbilical vein endothelial cells (HUVECs) by signaling via their receptors CXCR1 and CXCR2. A CXCR1/2-specific antagonist (SCH527123) attenuated the angiogenesis and tumor growth in vivo. Our findings suggest that CXCL1/8 secreted by hADSCs could promote breast cancer angiogenesis and therefore provide better understanding of safety concerns regarding the clinical application of hADSCs and suggestion in further novel therapeutic options. Stem Cells 2017;35:2060-2070. © 2017 AlphaMed Press.

  6. Inhibition effects of scorpion venom extracts (Buthus matensii Karsch) on the growth of human breast cancer MCF-7 cells.

    PubMed

    Li, Weiling; Li, Ye; Zhao, Yuwan; Yuan, Jieli; Mao, Weifeng

    2014-01-01

    To observe the inhibition effects of the Buthus matensii Karsch (BmK) scorpion venom extracts on the growth of human breast cancer MCF-7 cells, and to explore its mechanisms. Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell cycle-related protein Cyclin D1 was shown by Western blotting. Our data indicated that MCF-7 was the more sensitive cell line to scorpion venom. The extracts of scorpion venom could inhibit the growth and proliferation of MCF-7 cells. Furthermore, the extract of scorpion venom induced apoptosis through Caspase-3 up-regulation while Bcl-2 down-regulation in MCF-7 cells. In addition, the extracts of scorpion venom blocked the cells from G0/G1 phase to S phase and decreased cell cycle-related protein Cyclin D1 level after drug intervention compared with the negative control group. These results showed that the BmK scorpion venom extracts could inhibit the growth of MCF-7 cells by inducing apoptosis and blocking cell cycle in G0/G1 phase. The BmK scorpion venom extracts will be very valuable for the treatment of breast cancer.

  7. MTA-enriched nanocomposite TiO(2)-polymeric powder coatings support human mesenchymal cell attachment and growth.

    PubMed

    Shi, Wen; Mozumder, Mohammad Sayem; Zhang, Hui; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    The objective of the study described in this paper was the development of novel polymer/ceramic nanocomposite coatings for implants through the application of ultrafine powder coating technology. Polyester resins were combined with µm-sized TiO(2) (25%) as the biocompatibility agent, nTiO(2) (0.5%) as the flow additive and mineral trioxide aggregates (ProRoot® MTA, 5%) as bioactive ceramics. Ultrafine powders were prepared and applied to titanium to create continuous polymeric powder coatings (PPCs) through the application of electrostatic ultrafine powder coating technology. Energy dispersive x-ray analysis confirmed that MTA had been incorporated into the PPCs, and elemental mapping showed that it had formed small clusters that were evenly distributed across the surface. Scanning electron microscopy (SEM) revealed continuous and smooth, but highly textured surface coatings that contrasted with the scalloped appearance of commercially pure titanium (cpTi) controls. Atomic force microscopy revealed intricate nano-topographies with an abundance of submicron-sized pits and nano-projections, evenly dispersed across their surfaces. Inverted fluorescence microscopy, SEM and cell counts showed that human embryonic palatal mesenchymal cells attached and spread out onto PPC and MTA-enriched PPCs within 24 h. Mitochondrial enzyme activity measured viable and metabolically active cells on all of the surfaces. After 72 h of growth, cell counts and metabolic activity were significantly higher (P < 0.05) on the grey-MTA enriched PPC surfaces, than on unmodified PPC and cpTi. The novel polymer/ceramic nanocomposites that were created with ultrafine powder coating technology were continuous, homogenous and nano-rough coatings that enhanced human mesenchymal cell attachment and growth.

  8. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model

    PubMed Central

    HOSSAIN, MOHAMMAD AKBAR; KIM, DONG HWAN; JANG, JUNG YOON; KANG, YONG JUNG; YOON, JEONG-HYUN; MOON, JEON-OK; CHUNG, HAE YOUNG; KIM, GI-YOUNG; CHOI, YUNG HYUN; COPPLE, BRYAN L.; KIM, NAM DEUK

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer. PMID:22179060

  9. Effect of transforming growth factor-beta and growth differentiation factor-5 on proliferation and matrix production by human bone marrow stromal cells cultured on braided poly lactic-co-glycolic acid scaffolds for ligament tissue engineering.

    PubMed

    Jenner, J M G Th; van Eijk, F; Saris, D B F; Willems, W J; Dhert, W J A; Creemers, Laura B

    2007-07-01

    Tissue engineering of ligaments based on biomechanically suitable biomaterials combined with autologous cells may provide a solution for the drawbacks associated with conventional graft material. The aim of the present study was to investigate the contribution of recombinant human transforming growth factor beta 1 (rhTGF-beta1) and growth differentiation factor (GDF)-5, known for their role in connective tissue regeneration, to proliferation and matrix production by human bone marrow stromal cells (BMSCs) cultured onto woven, bioabsorbable, 3-dimensional (3D) poly(lactic-co-glycolic acid) scaffolds. Cells were cultured for 12 days in the presence or absence of these growth factors at different concentrations. Human BMSCs attached to the suture material, proliferated, and synthesized extracellular matrix rich in collagen type I and collagen III. No differentiation was demonstrated toward cartilage or bone tissue. The addition of rhTGF-beta1 (1-10 ng/mL) and GDF-5 (10-100 ng/mL) increased cell content (p < 0.05), but only TGF-beta1 also increased total collagen production (p < 0.05) and collagen production per cell, which is a parameter indicating differentiation. In conclusion, stimulation with rhTGF-beta1, and to a lesser extent with GDF-5, can modulate human BMSCs toward collagenous soft tissue when applied to a 3D hybrid construct. The use of growth factors could play an important role in the improvement of ligament tissue engineering.

  10. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C.

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation withmore » large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.« less

  11. Neuropeptide Y inhibits cholangiocarcinoma cell growth and invasion

    PubMed Central

    DeMorrow, Sharon; Onori, Paolo; Venter, Julie; Invernizzi, Pietro; Frampton, Gabriel; White, Mellanie; Franchitto, Antonio; Kopriva, Shelley; Bernuzzi, Francesca; Francis, Heather; Coufal, Monique; Glaser, Shannon; Fava, Giammarco; Meng, Fanyin; Alvaro, Domenico; Carpino, Guido; Gaudio, Eugenio

    2011-01-01

    No information exists on the role of neuropeptide Y (NPY) in cholangiocarcinoma growth. Therefore, we evaluated the expression and secretion of NPY and its subsequent effects on cholangiocarcinoma growth and invasion. Cholangiocarcinoma cell lines and nonmalignant cholangiocytes were used to assess NPY mRNA expression and protein secretion. NPY expression was assessed by immunohistochemistry in human liver biopsies. Cell proliferation and migration were evaluated in vitro by MTS assays and matrigel invasion chambers, respectively, after treatment with NPY or a neutralizing NPY antibody. The effect of NPY or NPY depletion on tumor growth was assessed in vivo after treatment with NPY or the neutralizing NPY antibody in a xenograft model of cholangiocarcinoma. NPY secretion was upregulated in cholangiocarcinoma compared with normal cholangiocytes. Administration of exogenous NPY decreased proliferation and cell invasion in all cholangiocarcinoma cell lines studied and reduced tumor cell growth in vivo. In vitro, the effects of NPY on proliferation were blocked by specific inhibitors for NPY receptor Y2, but not Y1 or Y5, and were associated with an increase in intracellular d-myo-inositol 1,4,5-trisphosphate and PKCα activation. Blocking of NPY activity using a neutralizing antibody promoted cholangiocarcinoma growth in vitro and in vivo and increased the invasiveness of cholangiocarcinoma in vitro. Increased NPY immunoreactivity in human tumor tissue occurred predominantly in the center of the tumor, with less expression toward the invasion front of the tumor. We demonstrated that NPY expression is upregulated in cholangiocarcinoma, which exerts local control on tumor cell proliferation and invasion. Modulation of NPY secretion may be important for the management of cholangiocarcinoma. PMID:21270292

  12. Evaluation of Fetal Intestinal Cell Growth and Antimicrobial Biofunctionalities of Donor Human Milk After Preparative Processes.

    PubMed

    Kanaprach, Pasinee; Pongsakul, Nutkridta; Apiwattanakul, Nopporn; Muanprasat, Chatchai; Supapannachart, Sarayut; Nuntnarumit, Pracha; Chutipongtanate, Somchai

    2018-04-01

    Donor human milk is considered the next best nutrition following mother's own milk to prevent neonatal infection and necrotizing enterocolitis in preterm infants who are admitted at neonatal intensive care unit. However, donor milk biofunctionalities after preparative processes have rarely been documented. To evaluate biofunctionalities preserved in donor milk after preparative processes by cell-based assays. Ten pools of donor milk were produced from 40 independent specimens. After preparative processes, including bacterial elimination methods (holder pasteurization and cold-sterilization microfiltration) and storage conditions (-20°C freezing storage and lyophilization) with varied duration of storage (0, 3, and 6, months), donor milk biofunctionalities were examined by fetal intestinal cell growth and antimicrobial assays. At baseline, raw donor milk exhibited 193.1% ± 12.3% of fetal intestinal cell growth and 42.4% ± 11.8% of antimicrobial activities against Escherichia coli. After bacteria eliminating processes, growth promoting activity was better preserved in pasteurized donor milk than microfiltrated donor milk (169.5% ± 14.3% versus 146.0% ± 11.8%, respectively; p < 0.005), whereas antimicrobial activity showed no difference between groups (38.3% ± 14.1% versus 53.7% ± 17.3%, respectively; p = 0.499). The pasteurized donor milk was further examined for the effects of storage conditions at 3 and 6 months. Freezing storage, but not lyophilization, could preserve higher growth-promoting activity during 6 months of storage (163.0% ± 9.4% versus 72.8% ± 6.2%, respectively; p < 0.005). Nonetheless, antimicrobial activity was lost at 6 months, regardless of the storage methods. This study revealed that fetal intestinal cell growth and antimicrobial assays could be applied to measure donor milk biofunctionalities and support the utilization of donor milk within 3 months after preparative processes.

  13. Induction of Three-Dimensional Growth of Human Liver Cells in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Khaoustov, V. I.; Yoffe, B.; Murry, D. J.; Soriano, H. E.; Risin, D.; Dawson, David L. (Technical Monitor)

    1999-01-01

    We previously reported that a NASA-developed bioreactor that simulates microgravity environment and creates the unique environment of low shear force and high-mass transfer is conducive for maintaining long term 3-D cell cultures of functional hepatocytes (60 days). However, significant further expansion of liver mass, or the remodeling of liver in vitro was jeopardized by the appearance of apoptotic zones in the center of large cell aggregates. To optimize oxygenation and nutritional uptake within growing cellular aggregates we cultured primary human liver cells (HLC) in a bioreactor in the presence or absence of microcarriers and biodegradable scaffolds. Also, to promote angiogenesis, HLC were cultured with or without microvascular endothelial cells. HLC were harvested from human livers by collagenase perfusion. While microcarriers did not affect cell growth, HLC cultured with biodegradable scaffolds made from polyglycolic acid (PGA) formed aggregates up to 3 cm in length. Culturing cells with PGA scaffolds increased the efficiency of cell self-assembly and the formation of larger cell aggregates. Based on histological evaluation it appears that the degree of apoptotic cells was diminished as compared to cultures without scaffolds. Histology of HLC with PGA-scaffolds revealed cell distribution between the fibers of the scaffolds, and cell-cell and cell-fiber interactions. Analyses of HLC spheroids revealed tissue-like structures comprised of hepatocytes, biliary epithelial cells and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes and bile canaliculi with multiple microvilli and tight cellular junctions. Hepatocytes were further organized into tight clusters surrounded by complex stromal structures and reticulin fibers. Also, we observed higher levels of albumin mRNA expression when hepatocytes were co-cultured with endothelial cells. To evaluate

  14. In vitro 3D regeneration-like growth of human patient brain tissue.

    PubMed

    Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J

    2018-05-01

    In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus.

    PubMed

    Deschamps, Thibaut; Kalamvoki, Maria

    2017-05-01

    Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2'3'-cyclic GAMP (2'3'-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this process as it targets

  16. Impaired STING Pathway in Human Osteosarcoma U2OS Cells Contributes to the Growth of ICP0-Null Mutant Herpes Simplex Virus

    PubMed Central

    Deschamps, Thibaut

    2017-01-01

    ABSTRACT Human herpes simplex virus 1 (HSV-1) is a widespread pathogen, with 80% of the population being latently infected. To successfully evade the host, the virus has evolved strategies to counteract antiviral responses, including the gene-silencing and innate immunity machineries. The immediately early protein of the virus, infected cell protein 0 (ICP0), plays a central role in these processes. ICP0 blocks innate immunity, and one mechanism is by degrading hostile factors with its intrinsic E3 ligase activity. ICP0 also functions as a promiscuous transactivator, and it blocks repressor complexes to enable viral gene transcription. For these reasons, the growth of a ΔICP0 virus is impaired in most cells, except cells of the human osteosarcoma cell line U2OS, and it is only partially impaired in cells of the human osteosarcoma cell line Saos-2. We found that the two human osteosarcoma cell lines that supported the growth of the ΔICP0 virus failed to activate innate immune responses upon treatment with 2′3′-cyclic GAMP (2′3′-cGAMP), the natural agonist of STING (i.e., stimulator of interferon genes) or after infection with the ΔICP0 mutant virus. Innate immune responses were restored in these cells by transient expression of the STING protein but not after overexpression of interferon-inducible protein 16 (IFI16). Restoration of STING expression resulted in suppression of ΔICP0 virus gene expression and a decrease in viral yields. Overexpression of IFI16 also suppressed ΔICP0 virus gene expression, albeit to a lesser extent than STING. These data suggest that the susceptibility of U2OS and Saos-2 cells to the ΔICP0 HSV-1 is in part due to an impaired STING pathway. IMPORTANCE The DNA sensor STING plays pivotal role in controlling HSV-1 infection both in cell culture and in mice. The HSV-1 genome encodes numerous proteins that are dedicated to combat host antiviral responses. The immediate early protein of the virus ICP0 plays major role in this

  17. Cinematographic observations of growth cycles of Chlamydia trachomatis in primary cultures of human amniotic cells.

    PubMed Central

    Neeper, I D; Patton, D L; Kuo, C C

    1990-01-01

    Time-lapse cinematography was used to study the growth cycle of Chlamydia trachomatis in primary cell cultures of human amnion. Twelve preterm and twelve term placentas were obtained within 8 h of delivery, and epithelial cells were dissociated from the amniotic membranes by trypsinization and grown in Rose chambers. The epithelial nature of the cultured cells was documented by morphology and by immunofluorescence staining for cytoskeletal proteins, which matched the staining of intact amnion. With regular feedings, uninfected cultures remained healthy for up to 30 days. Confluent cultures (7 to 10 days) were infected with a genital strain (E/UW-5/CX) of C. trachomatis at 10(5) infectious units per chamber. Infections were done in culture medium without cycloheximide, which is often used to induce susceptibility of the cells. Between 66 and 90% of the cells were infected. Intracytoplasmic inclusions were visible by 18 h post infection (p.i.) and grew larger as the organisms inside multiplied. By 72 h p.i., the inclusions occupied the entire cytoplasm of the host cells. Further growth of the inclusions overdistended and ruptured the host cells on days 3 to 7. Cells not infected by the original inoculum became infected on day 5 or 6 p.i. by the chlamydial particles released from the ruptured cells. No amniotic cell was ever observed to survive the infection. The data presented support the hypothesis that amniotic epithelium is susceptible to infection and damage by C. trachomatis. This culture system provided detailed and dynamic observations of chlamydial infection under conditions more nearly physiologic than previously reported. Images PMID:2365450

  18. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    PubMed

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor

  19. Antibody to human α-fetoprotein inhibits cell growth of human hepatocellular carcinoma cells by resuscitating the PTEN molecule: in vitro experiments.

    PubMed

    Ohkawa, Kiyoshi; Asakura, Tadashi; Tsukada, Yutaka; Matsuura, Tomokazu

    2017-06-01

    It has been proposed that α-fetoprotein (AFP) is a new member of the intracellular signaling molecule family of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway via interaction with the phosphatase and tensin homolog (PTEN). In this study, the effects of anti-human AFP antibody on the functions of PTEN were examined using an AFP-producing human hepatoma cell line. The antibody caused significant inhibition of cell growth, compared to a normal IgG control, with the accumulation of intracellular immune complexes followed by significant reduction of cytosolic functional AFP. Decrease in the amount of AKT phosphorylated on serine (S) 473 indicated that PI3K/AKT signaling was suppressed in the cells. S380-phosphorylated PTEN increased markedly by the second day after antibody treatment, with slight but significant increase in the PTEN protein level. Since phosphorylation at S380 is critical for PTEN stability, the increase in S380-phosphorylated PTEN indicated maintenance of the number of PTEN molecules and the related potential to control PI3K/AKT signaling. p53 protein (P53) significantly, but slightly increased during antibody treatment, because PTEN expression increased the stability and function of P53 via both molecular interactions. P53 phosphorylated at S20 or at S392 dramatically increased, suggesting an increase in the stability, accumulation and activation of P53. Glucose transporter 1 (GLUT1) increased immediately after antibody treatment, pointing to a deficiency of glucose in the cells. Immunofluorescence cytology revealed that antibody-treatment re-distributed GLUT1 molecules throughout the cytoplasm with a reduction of their patchy localization on the cell surface. This suggested that translocation of GLUT1 depends on the PI3K/AKT pathway, in particular on PTEN expression. Antibody therapy targeted at AFP-producing tumor cells showed an inhibitory effect on the PI3K/AKT pathway via the liberation, restoration and functional stabilization of

  20. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo.

    PubMed

    Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping

    2011-11-01

    We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  1. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  2. Antitumor and antiangiogenic activities of anti-vascular endothelial growth factor hairpin ribozyme in human hepatocellular carcinoma cell cultures and xenografts.

    PubMed

    Li, Li-Hua; Guo, Zi-Jian; Yan, Ling-Ling; Yang, Ji-Cheng; Xie, Yu-Feng; Sheng, Wei-Hua; Huang, Zhao-Hui; Wang, Xue-Hao

    2007-12-21

    To study the effectiveness and mechanisms of anti- human vascular endothelial growth factor (hVEGF) hairpin ribozyme on angiogenesis, oncogenicity and tumor growth in a hepatocarcinoma cell line and a xenografted model. The artificial anti-hVEGF hairpin ribozyme was transfected into hepatocarcinoma cell line SMMC-7,721 and, subsequently, polymerase chain reaction (PCR) and reverse transcription polymerase chain reaction (RT-PCR) were performed to confirm the ribozyme gene integration and transcription. To determine the effects of ribozyme ,VEGF expression was detected by semiquantitative RT-PCR and enzyme liked immunosorbent assay (ELISA). MTT assay was carried out to measure the cell proliferation. Furthermore,the transfected and control cells were inoculated into nude mice respectively, the growth of cells in nude mice and angiogenesis were observed. VEGF expression was down-regulated sharply by ribozyme in transfected SMMC-7,721 cells and xenografted tumor. Compared to the control group, the transfected cells grew slower in cell cultures and xenografts, and the xenograft formation was delayed as well. In addition, the microvessel density of the xenografted tumor was obviously declined in the transfected group. As demonstrated by microscopy,reduction of VEGF production induced by ribozyme resulted in a significantly higher cell differentiation and less proliferation vigor in xenografted tumor. Anti-hVEGF hairpin ribozyme can effectively inhibit VEGF expression and growth of hepatocarcinoma in vitro and in vivo. VEGF is functionally related to cell proliferation, differentiation and tumori-genesis in hepatocarcinoma.

  3. 1082-39, an analogue of sorafenib, inhibited human cancer cell growth more potently than sorafenib.

    PubMed

    Chu, Jia-Hui; Zhao, Cui-Rong; Song, Zhi-Yu; Wang, Rui-Qi; Qin, Yi-Zhuo; Li, Wen-Bao; Qu, Xian-Jun

    2014-04-01

    1082-39, an analogue of sorafenib, is a derivative of indazole diarylurea. We evaluated the activity of 1082-39 against human cancer cell growth. Its effects and mechanisms of action were then compared with those of sorafenib. The experiments were performed in human melanoma M21 cells. Cell viability was estimated by using the colorimetric assay. Annexin V-FITC/PI staining assay was used to recognize the apoptotic cells. Further analysis of the mitochondria membrane potential (MMP) was performed by the JC-1 fluorescence probe staining. The levels of apoptotic proteins and kinases related to cancer proliferation were determined by western blotting assay. 1082-39 possessed the activity against cancer cell proliferation with time- and dose-dependent manner. 1082-39 induced M21 cell to apoptosis, showing the increase of annexin V-FITC/PI staining cells, the MMP collapse and releasing cytochrome c from mitochondria. Western blotting analysis showed the activation of the mitochondria-mediated intrinsic pathway, showing the increase of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. Statistical analysis suggested that 1082-39 possessed greater activities than sorafenib in the inhibition of M21 proliferation and induction of apoptosis. These effects of 1082-39 might arise from its activity of regulation the PI3K/Akt and Wnt/β-catenin signaling pathways. 1082-39 is a promising candidate compound which could develop as a potent anticancer agent. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    NASA Astrophysics Data System (ADS)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  5. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.

    2012-03-30

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expressionmore » of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone.« less

  6. Enterovirus strain and type-specific differences in growth kinetics and virus-induced cell destruction in human pancreatic duct epithelial HPDE cells.

    PubMed

    Smura, Teemu; Natri, Olli; Ylipaasto, Petri; Hellman, Marika; Al-Hello, Haider; Piemonti, Lorenzo; Roivainen, Merja

    2015-12-02

    Enterovirus infections have been suspected to be involved in the development of type 1 diabetes. However, the pathogenetic mechanism of enterovirus-induced type 1 diabetes is not known. Pancreatic ductal cells are closely associated with pancreatic islets. Therefore, enterovirus infections in ductal cells may also affect beta-cells and be involved in the induction of type 1 diabetes. The aim of this study was to assess the ability of different enterovirus strains to infect, replicate and produce cytopathic effect in human pancreatic ductal cells. Furthermore, the viral factors that affect these capabilities were studied. The pancreatic ductal cells were highly susceptible to enterovirus infections. Both viral growth and cytolysis were detected for several enterovirus serotypes. However, the viral growth and capability to induce cytopathic effect (cpe) did not correlate completely. Some of the virus strains replicated in ductal cells without apparent cpe. Furthermore, there were strain-specific differences in the growth kinetics and the ability to cause cpe within some serotypes. Viral adaptation experiments were carried out to study the potential genetic determinants behind these phenotypic differences. The blind-passage of non-lytic CV-B6-Schmitt strain in HPDE-cells resulted in lytic phenotype and increased progeny production. This was associated with the substitution of a single amino acid (K257E) in the virus capsid protein VP1 and the viral ability to use decay accelerating factor (DAF) as a receptor. This study demonstrates considerable plasticity in the cell tropism, receptor usage and cytolytic properties of enteroviruses and underlines the strong effect of single or few amino acid substitutions in cell tropism and lytic capabilities of a given enterovirus. Since ductal cells are anatomically close to pancreatic islets, the capability of enteroviruses to infect and destroy pancreatic ductal cells may also implicate in respect to enterovirus induced type 1

  7. Apoptosis-inducing effects and growth inhibitory of a novel chalcone, in human hepatic cancer cells and lung cancer cells.

    PubMed

    Dong, Naiwei; Liu, Xin; Zhao, Tong; Wang, Lei; Li, Huimin; Zhang, Shuqian; Li, Xia; Bai, Xue; Zhang, Yong; Yang, Baofeng

    2018-05-29

    Apoptosis is an important biological phenomenon, which affects many diseases, such as cancer and Alzheimer's disease. In the present study, we observed that chalcone 9X, an aromatic ketone, induced apoptosis of human hepatic and lung cancer cells and inhibited cancer cell migration and invasion. This compound strongly suppressed the growth of tumor in a mouse model of xenograft tumors. The anticancer activity of chalcone 9X was equivalent to 5-fluorouracil (5-FU) as a positive control agent, whereas the toxic effect of chalcone 9X in non-cancer cells was weaker than 5-FU. Molecular docking results showed that chalcone 9X could act on the active sites of pro-apoptotic proteins capspases-3 and -8 to induce apoptotic death of cancer cells. Our findings suggest that chalcone 9X might be considered a candidate compound of novel anticancer drug in the future. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Postnatal growth of the human pons: a morphometric and immunohistochemical analysis.

    PubMed

    Tate, Matthew C; Lindquist, Robert A; Nguyen, Thuhien; Sanai, Nader; Barkovich, A James; Huang, Eric J; Rowitch, David H; Alvarez-Buylla, Arturo

    2015-02-15

    Despite its critical importance to global brain function, the postnatal development of the human pons remains poorly understood. In the present study, we first performed magnetic resonance imaging (MRI)-based morphometric analyses of the postnatal human pons (0-18 years; n = 6-14/timepoint). Pons volume increased 6-fold from birth to 5 years, followed by continued slower growth throughout childhood. The observed growth was primarily due to expansion of the basis pontis. T2-based MRI analysis suggests that this growth is linked to increased myelination, and histological analysis of myelin basic protein in human postmortem specimens confirmed a dramatic increase in myelination during infancy. Analysis of cellular proliferation revealed many Ki67(+) cells during the first 7 months of life, particularly during the first month, where proliferation was increased in the basis relative to tegmentum. The majority of proliferative cells in the postnatal pons expressed the transcription factor Olig2, suggesting an oligodendrocyte lineage. The proportion of proliferating cells that were Olig2(+) was similar through the first 7 months of life and between basis and tegmentum. The number of Ki67(+) cells declined dramatically from birth to 7 months and further decreased by 3 years, with a small number of Ki67(+) cells observed throughout childhood. In addition, two populations of vimentin/nestin-expressing cells were identified: a dorsal group near the ventricular surface, which persists throughout childhood, and a parenchymal population that diminishes by 7 months and was not evident later in childhood. Together, our data reveal remarkable postnatal growth in the ventral pons, particularly during infancy when cells are most proliferative and myelination increases. © 2014 Wiley Periodicals, Inc.

  9. Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death

    PubMed Central

    Schmukler, Eran; Wolfson, Eya; Haklai, Roni; Elad-Sfadia, Galit; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2014-01-01

    The Ras family of small GTPases transmits extracellular signals that regulate cell growth, differentiation, motility and death. Ras signaling is constitutively active in a large number of human cancers. Ras can also regulate autophagy by affecting several signaling pathways including the mTOR pathway. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. It is important for normal growth control, but may be defective in diseases. Previously, we have shown that Ras inhibition by FTS induces autophagy, which partially protects cancer cells and may limit the use of FTS as an anti-cancer drug. Since FTS is a non toxic drug we hypothesized that FTS and chloroquine (an autophagy inhibitor) will synergize in cell growth inhibition and cell death. Thus, in the present study, we explored the mechanism of each individual drug and their combined action. Our results demonstrate that in HCT-116 and in Panc-1 cells, FTS induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment enhanced apoptotic cell death as indicated by increased sub-G1 cell population, increased Hoechst staining, activation of caspase 3, decrease in survivin expression and release of cytochrome c. Thus, chloroquine treatment may promote FTS-mediated inhibition of tumor cell growth and may stimulate apoptotic cell death. PMID:24368422

  10. Neoplastic transformation of human cells

    NASA Technical Reports Server (NTRS)

    Goth-Goldstein, Regine

    1995-01-01

    The goal of this project was to gain a better understanding of the cellular mechanisms of cancer induction by ionizing radiation as a risk assessment for workers subjected to high LET irradiation such as that found in space. The following ions were used for irradiation: Iron, Argon, Neon, and Lanthanum. Two tests were performed: growth in low serum and growth in agar were used as indicators of cell transformation. The specific aims of this project were to: (1) compare the effectiveness of various ions on degree of transformation of a single dose of the same RBE; (2) determine if successive irradiations with the same ion (Ge 600 MeV/u) increases the degree of transformation; (3) test if clones with the greatest degree of transformation produce tumors in nude mice; and (4) construct a cell hybrid of a transformed and control (non-transformed) clone. The cells used for this work are human mammary epithelial cells with an extended lifespan and selected for growth in MEM + 10% serum.

  11. Red blood cells release factors with growth and survival bioactivities for normal and leukemic T cells.

    PubMed

    Antunes, Ricardo F; Brandão, Cláudia; Maia, Margarida; Arosa, Fernando A

    2011-01-01

    Human red blood cells are emerging as a cell type capable to regulate biological processes of neighboring cells. Hereby, we show that human red blood cell conditioned media contains bioactive factors that favor proliferation of normal activated T cells and leukemic Jurkat T cells, and therefore called erythrocyte-derived growth and survival factors. Flow cytometry and electron microscopy in parallel with bioactivity assays revealed that the erythrocyte factors are present in the vesicle-free supernatant, which contains up to 20 different proteins. The erythrocyte factors are thermosensitive and do not contain lipids. Native polyacrylamide gel electrophoresis followed by passive elution and mass spectrometry identification reduced the potential erythrocyte factors to hemoglobin and peroxiredoxin II. Two-dimensional differential gel electrophoresis of the erythrocyte factors revealed the presence of multiple hemoglobin oxy-deoxy states and peroxiredoxin II isoforms differing in their isoelectric point akin to the presence of β-globin chains. Our results show that red blood cells release protein factors with the capacity to sustain T-cell growth and survival. These factors may have an unforeseen role in sustaining malignant cell growth and survival in vivo.

  12. Elevated GnRH receptor expression plus GnRH agonist treatment inhibits the growth of a subset of papillomavirus 18-immortalized human prostate cells.

    PubMed

    Morgan, Kevin; Stavrou, Emmanouil; Leighton, Samuel P; Miller, Nicola; Sellar, Robin; Millar, Robert P

    2011-06-15

    Human metastatic prostate cancer cell growth can be inhibited by GnRH analogs but effects on virus-immortalized prostate cells have not been investigated. Virus-immortalized prostate cells were stably transfected with rat GnRH receptor cDNA and levels of GnRH binding were correlated with GnRH effects on signaling, cell cycle, growth, exosome production, and apoptosis. High levels of cell surface GnRH receptor occurred in transfected papillomavirus-immortalized WPE-1-NB26 epithelial cells but not in non-tumourigenic RWPE-1, myoepithelial WPMY-1 cells, or SV40-immortalized PNT1A. Endogenous cell surface GnRH receptor was undetectable in non-transfected cells or cancer cell lines LNCaP, PC3, and DU145. GnRH receptor levels correlated with induction of inositol phosphates, elevation of intracellular Ca(2+) , cytoskeletal actin reorganization, modulation of ERK activation and cell growth-inhibition with GnRH agonists. Hoechst 33342 DNA staining-cell sorting indicated accumulation of cells in G2 following agonist treatment. Release of exosomes from transfected WPE-1-NB26 was unaffected by agonists, unlike induction observed in HEK293([SCL60]) cells. Increased PARP cleavage and apoptotic body production were undetectable during growth-inhibition in WPE-1-NB26 cells, contrasting with HEK293([SCL60]) . EGF receptor activation inhibited GnRH-induced ERK activation in WPE-1-NB26 but growth-inhibition was not rescued by EGF or PKC inhibitor Ro320432. Growth of cells expressing low levels of GnRH receptor was not affected by agonists. Engineered high-level GnRH receptor activation inhibits growth of a subset of papillomavirus-immortalized prostate cells. Elucidating mechanisms leading to clone-specific differences in cell surface GnRH receptor levels is a valuable next step in developing strategies to exploit prostate cell anti-proliferation using GnRH agonists. Copyright © 2010 Wiley-Liss, Inc.

  13. Growth inhibition of squamous cell carcinoma xenografts with the polyamine analogue BE 4444.

    PubMed

    Auchter, R M; Pickart, M A; Nash, G A; Qu, R P; Harari, P M

    1996-09-01

    The capacity of radiation to cure advanced head and neck squamous cell carcinoma is compromised by the proliferation of surviving tumor cells during the course of therapy (overall duration, often 7-9 weeks). Antiproliferative agents that inhibit tumor proliferation, even in the absence of direct cytotoxicity, may be useful adjuncts for concurrent use with radiation. Modulation of endogenous polyamine (PA) metabolism has the potential to inhibit cell growth. The PA analogue 1,19-bis(ethylamino)-5,10,15-triazanonadecane (BE 4444) is a synthetic compound that demonstrates antiproliferative effects in human tumor cells. To evaluate the PA analogue BE 4444 for its inhibitory effect on the growth of human squamous cell carcinoma xenografts in nude mice. Xenografts of human squamous cell carcinomas were grown in nude mice; then, BE 4444 was injected intraperitoneally (5 mg/kg) on a twice-daily schedule for 8 days. Tumor growth measurements were performed twice weekly for 8 weeks and compared with those of control mice that were injected with sterile saline solution on the same schedule. The PA levels in the tumor and normal tissue samples were assayed at the completion of treatment. Tumor volume in the BE 4444-treated mice was reduced by 62% compared with tumor volumes in control mice, and the tumor growth rate was reduced by 64%. This growth inhibition was maintained through completion of the experiment. Levels of endogenous PAs were not significantly different from control levels, suggesting that the mechanism of action for BE 4444 is not simply PA biosynthesis inhibition. The PA analogue BE 4444 is an inhibitor of human squamous cell cancer growth. Further studies are in progress to characterize the potential value of PA analogues as adjuncts to radiation therapy for rapidly proliferating squamous cell carcinoma of the head and neck.

  14. The Stilbenoid Tyrosine Kinase Inhibitor, G6, Suppresses Jak2-V617F-mediated Human Pathological Cell Growth in Vitro and in Vivo*

    PubMed Central

    Kirabo, Annet; Embury, Jennifer; Kiss, Róbert; Polgár, Tímea; Gali, Meghanath; Majumder, Anurima; Bisht, Kirpal S.; Cogle, Christopher R.; Keserű, György M.; Sayeski, Peter P.

    2011-01-01

    Using structure-based virtual screening, we previously identified a novel stilbenoid inhibitor of Jak2 tyrosine kinase named G6. Here, we hypothesized that G6 suppresses Jak2-V617F-mediated human pathological cell growth in vitro and in vivo. We found that G6 inhibited proliferation of the Jak2-V617F expressing human erythroleukemia (HEL) cell line by promoting marked cell cycle arrest and inducing apoptosis. The G6-dependent increase in apoptosis levels was concomitant with increased caspase 3/7 activity and cleavage of PARP. G6 also selectively inhibited phosphorylation of STAT5, a downstream signaling target of Jak2. Using a mouse model of Jak2-V617F-mediated hyperplasia, we found that G6 significantly decreased the percentage of blast cells in the peripheral blood, reduced splenomegaly, and corrected a pathologically low myeloid to erythroid ratio in the bone marrow by eliminating HEL cell engraftment in this tissue. In addition, drug efficacy correlated with the presence of G6 in the plasma, marrow, and spleen. Collectively, these data demonstrate that the stilbenoid compound, G6, suppresses Jak2-V617F-mediated aberrant cell growth. As such, G6 may be a potential therapeutic lead candidate against Jak2-mediated, human disease. PMID:21127060

  15. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T

    2007-12-01

    Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.

  16. Methoxyacetic acid suppresses prostate cancer cell growth by inducing growth arrest and apoptosis

    PubMed Central

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; Patel, Neil K; Lu, Hua; Zeng, Shelya X; Wang, Guangdi; Zhang, Changde; You, Zongbing

    2014-01-01

    Methoxyacetic acid (MAA) is a primary metabolite of ester phthalates that are used in production of consumer products and pharmaceutical products. MAA causes embryo malformation and spermatocyte death through inhibition of histone deacetylases (HDACs). Little is known about MAA’s effects on cancer cells. In this study, two immortalized human normal prostatic epithelial cell lines (RWPE-1 and pRNS-1-1) and four human prostate cancer cell lines (LNCaP, C4-2B, PC-3, and DU-145) were treated with MAA at different doses and for different time periods. Cell viability, apoptosis, and cell cycle analysis were performed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR, Western blot, and chromatin immunoprecipitation analyses. We found that MAA dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. MAA-induced apoptosis was due to down-regulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, also named cIAP1), leading to activation of caspases 7 and 3 and turning on the downstream apoptotic events. MAA-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and CDK2 expression at the late time. MAA up-regulated p21 expression through inhibition of HDAC activities, independently of p53/p63/p73. These findings demonstrate that MAA suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which suggests that MAA could be used as a potential therapeutic drug for prostate cancer. PMID:25606576

  17. Effect of β,β-dimethylacrylshikonin on inhibition of human colorectal cancer cell growth in vitro and in vivo.

    PubMed

    Fan, Yingying; Jin, Shaoju; He, Jun; Shao, Zhenjun; Yan, Jiao; Feng, Ting; Li, Hong

    2012-01-01

    In traditional Chinese medicine, shikonin and its derivatives, has been used in East Asia for several years for the prevention and treatment of several diseases, including cancer. We previously identified that β,β-dimethylacrylshikonin (DA) could inhibit hepatocellular carcinoma growth. In the present study, we investigated the inhibitory effects of DA on human colorectal cancer (CRC) cell line HCT-116 in vitro and in vivo. A viability assay showed that DA could inhibit tumor cell growth in a time- and dose-dependent manner. Flow cytometry showed that DA blocks the cell cycle at G(0)/G(1) phase. Western blotting results demonstrated that the induction of apoptosis by DA correlated with the induction of pro-apoptotic proteins Bax, and Bid, and a decrease in the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. Furthermore, treatment of HCT-116 bearing nude mice with DA significantly retarded the growth of xenografts. Consistent with the results in vitro, the DA-mediated suppression of HCT-116 xenografts correlated with Bax and Bcl-2. Taken together, these results suggest that DA could be a novel and promising approach to the treatment of CRC.

  18. Expression of a suicidal gene under control of the human secreted protein acidic and rich in cysteine (SPARC) promoter in tumor or stromal cells led to the inhibition of tumor cell growth

    PubMed Central

    Lopez, María V.; Blanco, Patricia; Viale, Diego L.; Cafferata, Eduardo G.; Carbone, Cecilia; Gould, David; Chernajovsky, Yuti; Podhajcer, Osvaldo L.

    2009-01-01

    The successful use of transcriptional targeting for cancer therapy depends on the activity of a given promoter inside the malignant cell. Because solid human tumors evolve as a “cross-talk” between the different cell types within the tumor, we hypothesized that targeting the entire tumor mass might have better therapeutic effect. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein overexpressed in different human cancers malignant melanomas both in the malignant cells compartment as in the stromal one (fibroblasts and endothelial cells). We have shown that expression of the herpes simplex virus-thymidine kinase (TK) gene driven by the SPARC promoter in combination with ganciclovir inhibited human melanoma cell growth in monolayer as well as in multicellular spheroids. This inhibitory effect was observed both in homotypic spheroids composed of melanoma cells alone as well as in spheroids made of melanoma cells and stromal cells. Expression of the TK gene was also efficient to inhibit the in vivo tumor growth of established melanomas when TK was expressed either by the malignant cells themselves or by coadministered endothelial cells. Our data suggest that the use of therapeutic genes driven by SPARC promoter could be a valuable strategy for cancer therapy aiming to target all the cellular components of the tumor mass. PMID:17041094

  19. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  20. Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone.

    PubMed

    Benson, S; Wu, J; Padmanabhan, S; Kurtz, T W; Pershadsingh, H A

    2000-01-01

    This study was conducted to determine whether cultured human coronary artery and aorta vascular smooth muscle (VSM) cells express the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma); whether the thiazolidinedione troglitazone, a ligand for PPARgamma, would inhibit c-fos expression by these cells; and whether troglitazone would inhibit proliferation and migration induced in these cells by mitogenic growth factors. Using immunoblotting and reverse-transcriptase polymerase chain reaction (RT-PCR) techniques, we show that both human aorta and coronary artery VSM cell lines expressed PPARgamma protein and mRNA for both PPARgamma isoforms, PPARgamma1 and PPARgamma2. Immunocytochemical staining localized the PPARgamma protein primarily within the nucleus. Troglitazone inhibited basic fibroblast growth factor and platelet-derived growth factor-BB induced DNA synthesis in a dose-dependent manner and downregulated the growth-factor-induced expression of c-fos. Troglitazone also inhibited the migration of coronary artery VSM cells along a platelet-derived growth factor-BB concentration gradient. These findings demonstrate for the first time the expression and nuclear localization of PPARgamma in human coronary artery and aorta VSM cells. The data also suggest that the downregulation of c-fos expression, growth-factor-induced proliferation, and migration by VSM may, in part, be mediated by activation of the PPARgamma receptor.

  1. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth.

    PubMed

    Gloux, Karine; Leclerc, Marion; Iliozer, Harout; L'Haridon, René; Manichanh, Chaysavanh; Corthier, Gérard; Nalin, Renaud; Blottière, Hervé M; Doré, Joël

    2007-06-01

    Metagenomic libraries derived from human intestinal microbiota (20,725 clones) were screened for epithelial cell growth modulation. Modulatory clones belonging to the four phyla represented among the metagenomic libraries were identified (hit rate, 0.04 to 8.7% depending on the screening cutoff). Several candidate loci were identified by transposon mutagenesis and subcloning.

  2. On the role of transforming growth factor-beta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells.

    PubMed

    Singh, Brahmchetna; Murphy, Richard F; Ding, Xian-Zhong; Roginsky, Alexandra B; Bell, Richard H; Adrian, Thomas E

    2007-12-24

    Retinoids are potent growth inhibitory and differentiating agents in a variety of cancer cell types. We have shown that retinoids induce growth arrest in all pancreatic cancer cell lines studied, regardless of their p53 and differentiation status. However, the mechanism of growth inhibition is not known. Since TGF-beta2 is markedly induced by retinoids in other cancers and mediates MUC4 expression in pancreatic cancer cells, we investigated the role of TGF-beta in retinoic acid-mediated growth inhibition in pancreatic cancer cells. Retinoic acid markedly inhibited proliferation of two cell lines (Capan-2 and Hs766T) in a concentration and time-dependent manner. Retinoic acid increased TGF-beta2 mRNA content and secretion of the active and latent forms of TGF-beta2 (measured by ELISA and bioassay). The concentrations of active and TGF-beta2 secreted in response to 0.1 - 10 muM retinoic acid were between 1-5 pM. TGF-beta2 concentrations within this range also inhibited proliferation. A TGF-beta neutralizing antibody blocked the growth inhibitory effects of retinoic acid in Capan-2 cells and partially inhibitory the effects in Hs766T cells. These findings indicate that TGF-beta can cause growth inhibition of pancreatic cancer cells, in a p53-independent manner. Furthermore, it demonstrates the fundamental role of TGF-beta in growth inhibition in response to retinoic acid treatment is preserved in vitro.

  3. Effects of cyclic-nucleotide derivatives on the growth of human colonic carcinoma xenografts and on cell production in the rat colonic crypt epithelium.

    PubMed Central

    Tutton, P. J.; Barkla, D. H.

    1981-01-01

    Previous studies have shown that various amine hormones are able to influence the growth rate of human colorectal carcinomas propagated as xenografts in immune-deprived mice, and it is now well known that the effects of many amine and other hormones are mediated by cyclic nucleotides, acting as second messengers within cells. In the present study the influence of various derivatives of cyclic adenosine monophosphate and cyclic guanosine monophosphate on the growth of two different lines of colorectal cancer growing in immune-deprived mice, and on the cell production rate in the colonic crypt epithelium of the rat, was assessed. Growth of each tumour line, as well as crypt-cell production, was suppressed by treatment wit N6O2' dibutyryl and N6 monobutyryl derivatives of cyclic adenosine monophosphate. Dibutyryl cyclic guanosine monophosphate, on the other hand, was found to promote the growth of Tumour HXK4 and to promote crypt cell production, but to have no significant effect on Tumour HXM2. PMID:6268136

  4. Effects of cyclic-nucleotide derivatives on the growth of human colonic carcinoma xenografts and on cell production in the rat colonic crypt epithelium.

    PubMed

    Tutton, P J; Barkla, D H

    1981-08-01

    Previous studies have shown that various amine hormones are able to influence the growth rate of human colorectal carcinomas propagated as xenografts in immune-deprived mice, and it is now well known that the effects of many amine and other hormones are mediated by cyclic nucleotides, acting as second messengers within cells. In the present study the influence of various derivatives of cyclic adenosine monophosphate and cyclic guanosine monophosphate on the growth of two different lines of colorectal cancer growing in immune-deprived mice, and on the cell production rate in the colonic crypt epithelium of the rat, was assessed. Growth of each tumour line, as well as crypt-cell production, was suppressed by treatment wit N6O2' dibutyryl and N6 monobutyryl derivatives of cyclic adenosine monophosphate. Dibutyryl cyclic guanosine monophosphate, on the other hand, was found to promote the growth of Tumour HXK4 and to promote crypt cell production, but to have no significant effect on Tumour HXM2.

  5. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    PubMed

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  6. Intermittent hydrostatic pressure enhances growth factor-induced chondroinduction of human adipose-derived mesenchymal stem cells.

    PubMed

    Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Mahdian, Reza; Hemmati, Alireza

    2012-12-01

    Hydrostatic pressure (HP) plays an essential role in regulating function of chondrocytes and chondrogenic differentiation. The objective of this study was to examine effects of intermittent HP on chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hASCs) in the presence or absence of chemical chondrogenic medium. Cells were isolated from abdominal fat tissue and confirmed for expression of ASC surface proteins and differentiation potential. Passage 3 pellets were treated with chemical (growth factor), mechanical (HP of 5 MPa and 0.5 Hz with duration of 4 h/day for 7 consecutive days), and combined chemical-mechanical stimuli. Using real-time polymerase chain reaction, the expression of Sox9, collagen II, and aggrecan as three major chondrogenic markers were quantified among three experimental groups and compared to those of stem cells and human cartilage tissue. In comparison to the chemical and mechanical groups, the chemical-mechanical group showed the highest expression for all three chondrogenic genes close to that of cartilage tissue. Results show the beneficial role of intermittent HP on chondrogenic differentiation of hASCs, and that this loading regime in combination with chondrogenic medium can be used in cartilage tissue engineering. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Adaptation to statins restricts human tumour growth in Nude mice

    PubMed Central

    2011-01-01

    Background Statins have long been used as anti-hypercholesterolemia drugs, but numerous lines of evidence suggest that they may also bear anti-tumour potential. We have recently demonstrated that it was possible to isolate cancer cells adapted to growth in the continuous presence of lovastatin. These cells grew more slowly than the statin-sensitive cells of origin. In the present study, we compared the ability of both statin-sensitive and statin-resistant cells to give rise to tumours in Nude mice. Methods HGT-1 human gastric cancer cells and L50 statin-resistant derivatives were injected subcutaneously into Nude mice and tumour growth was recorded. At the end of the experiment, tumours were recovered and marker proteins were analyzed by western blotting, RT-PCR and immunohistochemistry. Results L50 tumours grew more slowly, showed a strong decrease in cyclin B1, over-expressed collagen IV, and had reduced laminin 332, VEGF and CD34 levels, which, collectively, may have restricted cell division, cell adhesion and neoangiogenesis. Conclusions Taken together, these results showed that statin-resistant cells developed into smaller tumours than statin-sensitive cells. This may be reflective of the cancer restricting activity of statins in humans, as suggested from several retrospective studies with subjects undergoing statin therapy for several years. PMID:22107808

  8. Human umbilical cord mesenchymal stromal cells in regenerative medicine.

    PubMed

    Detamore, Michael S

    2013-11-25

    Cells of the human umbilical cord offer tremendous potential for improving human health. Cells from the Wharton’s jelly (umbilical cord stroma) in particular, referred to as human umbilical cord mesenchymal stromal cells (HUCMSCs), hold several advantages that make them appealing for translational research. In the previous issue of Stem Cell Research & Therapy, Chon and colleagues made an important contribution to the HUCMSC literature not only by presenting HUCMSCs as an emerging cell source for intervertebral disc regeneration in general and the nucleus pulposus in particular, but also by demonstrating that an extracellular matrix-based strategy might be preferred over the use of growth factors. By culturing HUCMSCs under hypoxia in serum-free conditions in the presence of Matrigel with laminin-111, they were able to achieve intense collagen II staining by 21 days without the addition of exogenous growth factors. There is tremendous translational significance here in that such raw materials may alleviate the need for the use of growth factors in some instances, and this may have important ramifications in reducing product cost and streamlining regulatory approval. Chon and colleagues provide a promising example of the potential of HUCMSCs, demonstrating the ability to guide HUCMSC differentiation even in the absence of serum and growth factors and supporting the use of HUCMSCs as a viable alternative in intervertebral disc regeneration.

  9. Eupatilin, a dietary flavonoid, induces G2/M cell cycle arrest in human endometrial cancer cells.

    PubMed

    Cho, Jung-Hoon; Lee, Jong-Gyu; Yang, Yeong-In; Kim, Ji-Hyun; Ahn, Ji-Hye; Baek, Nam-In; Lee, Kyung-Tae; Choi, Jung-Hye

    2011-08-01

    This study is the first to investigate the antiproliferative effect of eupatilin in human endometrial cancer cells. Eupatilin, a naturally occurring flavonoid isolated from Artemisia princeps, has anti-inflammatory, anti-oxidative, and anti-tumor activities. In the present study, we investigated the potential effect of eupatilin on cell growth and its molecular mechanism of action in human endometrial cancer cells. Eupatilin was more potent than cisplatin in inhibiting cell viability in the human endometrial cancer cell lines Hec1A and KLE. Eupatilin showed relatively low cytotoxicity in normal human endometrial cells HES and HESC cells when compared to cisplatin. Eupatilin induced G2/M phase cell cycle arrest in a time- and dose-dependent manner, as indicated by flow cytometry analysis. In addition, treatment of Hec1A cells with eupatilin resulted in a significant increase in the expression of p21(WAF1/CIP1) and in the phosphorylation of Cdc25C and Cdc2. Knockdown of p21 using specific siRNAs significantly compromised eupatilin-induced cell growth inhibition. Interestingly, levels of mutant p53 in Hec1A cells decreased markedly upon treatment with eupatilin, and p53 siRNA significantly increased p21 expression. Moreover, eupatilin modulated the phosphorylation of protein kinases ERK1/2, Akt, ATM, and Chk2. These results suggest that eupatilin inhibits the growth of human endometrial cancer cells via G2/M phase cell cycle arrest through the up-regulation of p21 by the inhibition of mutant p53 and the activation of the ATM/Chk2/Cdc25C/Cdc2 checkpoint pathway. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. [Recombinant adeno-associated virus mediated RNA interference of angiogenin expression inhibits cell growth of human lung adenocarcinoma].

    PubMed

    Li, Bai-Ling; Zhang, Guan-Xin; Hou, Xiao-Lei; Tan, Meng-Wei; Yuan, Yang; Liu, Xiao-Hong; Gong, De-Jun; Huang, Sheng-Dong

    2009-03-01

    To study the inhibition of angiogenin (ANG) expression in human lung squamous cancer cell strain-A549 through adeno-associated virus (AAV)-mediated RNA-interference, and therefore to observe its effect on the growth of cancer cells and tumor formation. Recombinant AAV expressing H1-promoter-induced small-interference- RNA (siRNA) targeting ANG (AAV-shANG) was constructed, and then transfected into A549 cells. A549 cells and cells transfected with AAV-Null were used as the control groups. The effects of the reduced expression of ANG by RNAi from AAV-shANG on the growth, formation, reproduction, apoptosis, and microvessel-density of the carcinoma were observed. In vitro experiment showed that AAV-shANG was constructed successfully, There was an significant decrease in the expression of ANG protein 72 h after transfection, compared with the normal A459 cells and AAV-Null cells (P < 0.01). Cell cycle analysis showed that the proliferation index (PI) of normal A549 cells, AAV-Null cells and AAVshANG cells were 0.32 +/- 0.29, 0.35 +/- 0.38 and 0.31 +/- 0.43, respectively. There was no statistic difference in the PIs among the 3 groups (P > 0.05). In vivo experiment using thymus-defect mice showed that, there was an remarkable reduction in the mass and volume of tumors in AAV-shANG transfected group, compared to the control groups. Microvessel-density was 9.4 +/- 1.5, 9.8 +/- 2.1 and 5.7 +/- 1.9, respectively in the 3 groups, a statistic difference among the AAV-shANG-transfected group, the normal A549 group and the AAV-Null transfected group. The percentages of apoptotic cells in each group were (7.7 +/- 3.1)%, (8.5 +/- 5.4)%, (17.1 +/- 8.6)%, respectively, the experimental group being higher than those of the control groups. Positive rates of PCNA were (84.8 +/- 9.7)%, (85.8 +/- 9.8)%, and (70.4 +/- 10.1)%, respectively, the AAV-shANG transfected cancer cells showing a lower PCNA index than the control groups. AAV-mediated expression of siRNA could reduce the expression

  11. Heparin-binding growth factor isolated from human prostatic extracts.

    PubMed

    Mydlo, J H; Bulbul, M A; Richon, V M; Heston, W D; Fair, W R

    1988-01-01

    Prostatic tissue extracts from patients with benign prostatic hyperplasia (BPH) and prostatic carcinoma were fractionated using heparin-Sepharose chromatography. The mitogenic activity of eluted fractions on quiescent subconfluent Swiss Albino 3T3 fibroblasts was tested employing a tritiated-thymidine-incorporation assay. Two peaks of activity were consistently noted--one in the void volume and a second fraction which eluted with 1.3-1.6 M NaCl and contained the majority of the mitogenic activity. Both non-heparin- and heparin-binding fractions increased tritiated incorporation into a mouse osteoblast cell line (MC3T3), while only the heparin-binding fractions stimulated a human umbilical vein endothelial cell line (HUV). No increased uptake of thymidine was seen using a human prostatic carcinoma cell line (PC-3). Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of lyophilized active fractions showed a persistent band at 17,500 daltons. The purified protein demonstrated angiogenic properties using the chick embryo chorioallantoic membrane (CAM) assay. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) or acidic FGF (aFGF) demonstrated that the former, but not the latter, bound to prostatic growth factor (PrGF), and inhibited its mitogenic activity as well. It appears that PrGF shares homology with basic fibroblast growth factors.

  12. Hepatocyte Growth Factor Improves the Therapeutic Efficacy of Human Bone Marrow Mesenchymal Stem Cells via RAD51.

    PubMed

    Lee, Eun Ju; Hwang, Injoo; Lee, Ji Yeon; Park, Jong Nam; Kim, Keun Cheon; Kim, Gi-Hwan; Kang, Chang-Mo; Kim, Irene; Lee, Seo-Yeon; Kim, Hyo-Soo

    2018-03-07

    Human embryonic stem cell-derived mesenchymal stem cells (hE-MSCs) have greater proliferative capacity than other human mesenchymal stem cells (hMSCs), suggesting that they may have wider applications in regenerative cellular therapy. In this study, to uncover the anti-senescence mechanism in hE-MSCs, we compared hE-MSCs with adult bone marrow (hBM-MSCs) and found that hepatocyte growth factor (HGF) was more abundantly expressed in hE-MSCs than in hBM-MSCs and that it induced the transcription of RAD51 and facilitated its SUMOylation at K70. RAD51 induction/modification by HGF not only increased telomere length but also increased mtDNA replication, leading to increased ATP generation. Moreover, HGF-treated hBM-MSCs showed significantly better therapeutic efficacy than naive hBM-MSCs. Together, the data suggest that the RAD51-mediated effects of HGF prevent hMSC senescence by promoting telomere lengthening and inducing mtDNA replication and function, which opens the prospect of developing novel therapies for liver disease. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  13. Genes involved in immortalization of human mammary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stampfer, Martha R.; Yaswen, Paul

    2001-09-27

    Breast cancer progression is characterized by inappropriate cell growth. Normal cells cease growth after a limited number of cell divisions--a process called cellular senescence-while tumor cells may acquire the ability to proliferate indefinitely (immortality). Inappropriate expression of specific oncogenes in a key cellular signaling pathway (Ras, Raf) can promote tumorigenicity in immortal cells, while causing finite lifespan cells to undergo a rapid senescence-like arrest. We have studied when in the course of transformation of cultured human mammary epithelial cells (HMEC), the response to overexpressed oncogenic Raf changes from being tumor-suppressive to tumor enhancing, and what are the molecular underpinnings ofmore » this response. Our data indicate: (1) HMEC acquire the ability to maintain growth in the presence of oncogenic Raf not simply as a consequence of overcoming senescence, but as a result of a newly discovered step in the process of immortal transformation uncovered by our lab, termed conversion. Immortal cells that have not undergone conversion (e.g., cells immortalized by exogenous introduction of the immortalizing enzyme, telomerase) remain growth inhibited. (2) Finite lifespan HMEC growth arrest in response to oncogenic Raf using mediators of growth inhibition that are very different from those used in response to oncogenic Raf by rodent cells and certain other human cell types, including the connective tissue cells from the same breast tissue. While many diverse cell types appear to have in common a tumor-suppressive response to this oncogenic signal, they also have developed multiple mechanisms to elicit this response. Understanding how cancer cells acquire the crucial capacity to be immortal and to abrogate normal tumor-suppressive mechanisms may serve both to increase our understanding of breast cancer progression, and to provide new targets for therapeutic intervention. Our results indicate that normal HMEC have novel means of

  14. Flurbiprofen benzyl nitrate (NBS-242) inhibits the growth of A-431 human epidermoid carcinoma cells and targets β-catenin.

    PubMed

    Nath, Niharika; Liu, Xiaoping; Jacobs, Lloydine; Kashfi, Khosrow

    2013-01-01

    The Wnt/β-catenin/T cell factor (TCF) signaling pathway is important in the development of nonmelanoma skin cancers (NMSCs). Nitric-oxide-releasing nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are chemopreventive agents consisting of a traditional NSAID attached to an NO-releasing moiety through a chemical spacer. Previously we showed that an aromatic spacer enhanced the potency of a particular NO-NSAID compared to an aliphatic spacer. We synthesized an NO-releasing NSAID with an aromatic spacer (flurbiprofen benzyl nitrate, NBS-242), and using the human skin cancer cell line A-431, we evaluated its effects on cell kinetics, Wnt/β-catenin, cyclin D1, and caspase-3. NBS-242 inhibited the growth of A-431 cancer cells, being ~15-fold more potent than flurbiprofen and up to 5-fold more potent than NO-flurbiprofen with an aliphatic spacer, the half maximal inhibitory concentrations (IC50) for growth inhibition being 60 ± 4 μM, 320 ± 20 μM, and 880 ± 65 μM for NBS-242, NO-flurbiprofen, and flurbiprofen, respectively. This effect was associated with inhibition of proliferation, accumulation of cells in the G0/G1 phase of the cell cycle, and an increase in apoptotic cell population. NBS-242 cleaved β-catenin both in the cytoplasm and the nucleus of A-431 cells. NBS-242 activated caspase-3 whose activation was reflected in the cleavage of procaspase-3. To test the functional consequence of β-catenin cleavage, we determined the expression of cyclin D1, a Wnt-response gene. NBS-242 reduced cyclin D1 levels in a concentration dependent manner. These findings establish a strong inhibitory effect of NBS-242 in A-431 human epidermoid carcinoma cells. NBS-242 modulates parameters that are important in determining cellular mass.

  15. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state.

    PubMed

    Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong

    2011-08-01

    Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.

  16. Identification of interleukin-6 as an autocrine growth factor for Epstein-Barr virus-immortalized B cells.

    PubMed Central

    Tosato, G; Tanner, J; Jones, K D; Revel, M; Pike, S E

    1990-01-01

    Autocrine growth factors are believed to be important for maintenance of an immortalized state by Epstein-Barr virus (EBV), because cell-free supernatants of EBV-immortalized cell lines promote the proliferation of autologous cells and permit their growth at low cell density. In this study, we provide evidence for the existence of two autocrine growth factor activities produced by EBV-immortalized lines distinguished by size and biological activities. Much of the autocrine growth factor activity in lymphoblastoid cell line supernatants resided in a low-molecular-weight (less than 5,000) fraction. However, up to 20 to 30% of the autocrine growth factor activity resided in the high-molecular-weight (greater than 5,000) fraction. While the nature of the low-molecular-weight growth factor activity remains undefined, the high-molecular-weight growth factor activity was identified as interleukin-6 (IL-6). Culture supernatants from six EBV-induced lymphoblastoid cell lines tested contained IL-6 activity, because they promoted proliferation in the IL-6-dependent hybridoma cell line B9. In addition, a rabbit antibody to human IL-6 neutralized the capacity of the high-molecular-weight (greater than 5,000) fraction of a lymphoblastoid cell line supernatant to promote growth both in autologous EBV-immortalized cells and in B9 cells. Similarly, this high-molecular-weight autocrine growth factor activity was neutralized by a monoclonal antibody to human IL-6. Furthermore, characteristic bands, attributable to IL-6, were visualized in supernatants of each of four EBV-induced lymphoblastoid cell lines after immunoprecipitation with a rabbit antiserum to human IL-6. Thus, in addition to its previously reported properties, IL-6 is an autocrine growth factor for EBV-immortalized B cells cultured under serum-free conditions. Images PMID:2159561

  17. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo.

    PubMed

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-03-23

    A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-α and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-α and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-κB-dependent inflammatory responses by directly blocking the phosphorylation and degradation of IκBα and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-κB. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.

    PubMed

    Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu

    2012-03-01

    Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.

  19. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor.

    PubMed

    Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F

    1997-06-01

    Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.

  20. A Paracrine Mechanism Accelerating Expansion of Human Induced Pluripotent Stem Cell-Derived Hepatic Progenitor-Like Cells

    PubMed Central

    Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya

    2015-01-01

    Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13+CD133+ cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13+CD133+ cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation. PMID:25808356

  1. A Paracrine Mechanism Accelerating Expansion of Human Induced Pluripotent Stem Cell-Derived Hepatic Progenitor-Like Cells.

    PubMed

    Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya; Kamiya, Akihide

    2015-07-15

    Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.

  2. Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer

    PubMed Central

    Fang, Yifeng; Yu, Hong; Liang, Xiao; Xu, Junfen; Cai, Xiujun

    2014-01-01

    The high morbidity and mortality of colorectal cancer pose a significant public health problem worldwide. Here we assessed the pro-cancer efficacy and mechanism of action of CCNB1 in different colorectal cancer cells. We provided evidence that CCNB1 mRNA and protein level were upregulated in a subset of human colorectal tumors, and positively correlated with Chk1 expression. Repression of Chk1 caused a significant decrease in cell proliferation and CCNB1 protein expression in colorectal cancer cells. Furthermore, downregulation of CCNB1 impaired colorectal cancer proliferation in vitro and tumor growth in vivo. Specifically, suppression of CCNB1 caused a strong G2/M phase arrest in both HCT116 and SW480 cells, interfering with the expression of cdc25c and CDK1. Additionally, CCNB1 inhibition induced apoptotic death in certain colorectal cancer cells. Together, these results suggest that CCNB1 is activated by Chk1, exerts its oncogenic role in colorectal cancer cells, and may play a key role in the development of a novel therapeutic approach against colorectal cancer. PMID:24971465

  3. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    PubMed

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Trimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice

    PubMed Central

    Kuznetsova, Alexandra; Yu, Yue; Hollister-Lock, Jennifer; Opare-Addo, Lynn; Rozzo, Aldo; Sadagurski, Marianna; Norquay, Lisa; Reed, Jessica E.; El Khattabi, Ilham; Bonner-Weir, Susan; Weir, Gordon C.; Sharma, Arun

    2016-01-01

    The capacity of pancreatic β cells to maintain glucose homeostasis during chronic physiologic and immunologic stress is important for cellular and metabolic homeostasis. Insulin receptor substrate 2 (IRS2) is a regulated adapter protein that links the insulin and IGF1 receptors to downstream signaling cascades. Since strategies to maintain or increase IRS2 expression can promote β cell growth, function, and survival, we conducted a screen to find small molecules that can increase IRS2 mRNA in isolated human pancreatic islets. We identified 77 compounds, including 15 that contained a tricyclic core. To establish the efficacy of our approach, one of the tricyclic compounds, trimeprazine tartrate, was investigated in isolated human islets and in mouse models. Trimeprazine is a first-generation antihistamine that acts as a partial agonist against the histamine H1 receptor (H1R) and other GPCRs, some of which are expressed on human islets. Trimeprazine promoted CREB phosphorylation and increased the concentration of IRS2 in islets. IRS2 was required for trimeprazine to increase nuclear Pdx1, islet mass, β cell replication and function, and glucose tolerance in mice. Moreover, trimeprazine synergized with anti-CD3 Abs to reduce the progression of diabetes in NOD mice. Finally, it increased the function of human islet transplants in streptozotocin-induced (STZ-induced) diabetic mice. Thus, trimeprazine, its analogs, or possibly other compounds that increase IRS2 in islets and β cells without adverse systemic effects might provide mechanism-based strategies to prevent the progression of diabetes. PMID:27152363

  5. Human myostatin negatively regulates human myoblast growth and differentiation

    PubMed Central

    McFarlane, Craig; Hui, Gu Zi; Amanda, Wong Zhi Wei; Lau, Hiu Yeung; Lokireddy, Sudarsanareddy; XiaoJia, Ge; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D.; Sharma, Mridula

    2011-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway. PMID:21508334

  6. Human myostatin negatively regulates human myoblast growth and differentiation.

    PubMed

    McFarlane, Craig; Hui, Gu Zi; Amanda, Wong Zhi Wei; Lau, Hiu Yeung; Lokireddy, Sudarsanareddy; Xiaojia, Ge; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi

    2011-07-01

    Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway.

  7. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  8. A Novel Function for the nm23-Hl Gene: Overexpression in Human Breast Carcinoma Cells Leads to the Formation of Basement Membrane and Growth Arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S

    1994-01-01

    We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasismore » suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23

  9. Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways.

    PubMed

    Lv, Taohong; Wu, Yongzheng; Mu, Chao; Liu, Genxia; Yan, Ming; Xu, Xiangqin; Wu, Huayin; Du, Jinyin; Yu, Jinhua; Mu, Jinquan

    2016-12-01

    Insulin-like growth factor 1 (IGF-1) is a broad-spectrum growth-promoting factor that plays a key role in natural tooth development. Human dental pulp stem cells (hDPSCs) are multipotent and can influence the reparative regeneration of dental pulp and dentin. This study was designed to evaluate the effects of IGF-1 on the proliferation and differentiation of human dental pulp stem cells. HDPSCs were isolated and purified from human dental pulps. The proliferation and osteo/odontogenic differentiation of hDPSCs treated with 100ng/ml exogenous IGF-1 were subsequently investigated. MTT assays revealed that IGF-1 enhanced the proliferation of hDPSCs. ALP activity in IGF-1-treated group was obviously enhanced compared to the control group from days 3 to 9. Alizarin red staining revealed that the IGF-1-treated cells contained a greater number of mineralization nodules and had higher calcium concentrations. Moreover, western blot and qRT-PCR analyses demonstrated that the expression levels of several osteogenic genes (e.g., RUNX2, OSX, and OCN) and an odontoblast-specific marker (DSPP) were significantly up-regulated in IGF-1-treated hDPSCs as compared with untreated cells (P<0.01). Interestingly, the expression of phospho-ERK and phospho-p38 were also up-regulated, indicating that the MAPK signaling pathway is activated during the differentiation of hDPSCs. IGF-1 can promote the proliferation and osteo/odontogenic differentiation of hDPSCs by activating MAPK pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Human Hrs, a tyrosine kinase substrate in growth factor-stimulated cells: cDNA cloning and mapping of the gene to chromosome 17.

    PubMed

    Lu, L; Komada, M; Kitamura, N

    1998-06-15

    Hrs is a 115kDa zinc finger protein which is rapidly tyrosine phosphorylated in cells stimulated with various growth factors. We previously purified the protein from a mouse cell line and cloned its cDNA. In the present study, we cloned a human Hrs cDNA from a human placenta cDNA library by cross-hybridization, using the mouse cDNA as a probe, and determined its nucleotide sequence. The human Hrs cDNA encoded a 777-amino-acid protein whose sequence was 93% identical to that of mouse Hrs. Northern blot analysis showed that the Hrs mRNA was about 3.0kb long and was expressed in all the human adult and fetal tissues tested. In addition, we showed by genomic Southern blot analysis that the human Hrs gene was a single-copy gene with a size of about 20kb. Furthermore, the human Hrs gene was mapped to chromosome 17 by Southern blotting of genomic DNAs from human/rodent somatic cell hybrids. Copyright 1998 Elsevier Science B.V. All rights reserved.

  11. Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy.

    PubMed

    Mosieniak, Grazyna; Adamowicz, Marek; Alster, Olga; Jaskowiak, Hubert; Szczepankiewicz, Andrzej A; Wilczynski, Grzegorz M; Ciechomska, Iwona A; Sikora, Ewa

    2012-06-01

    Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, is a potent anticancer agent, which restricts tumor cell growth both in vitro and in vivo. Thus far curcumin was shown to induce death of cancer cells. This study reports the induction of cellular senescence of human colon cancer cells HCT116 upon curcumin treatment. The SA-β-galactosidase activation was observed both in p53+/+ and p53-/- cells, however the latter ones were less sensitive to the prosenescent activity of curcumin. Upregulation of p53 and p21 proteins was observed in p53+/+ HCT116, while p53-independent induction of p21 was noticed in p53-/- HCT116. Moreover, the senescence of HCT116 cells was accompanied by autophagy, that was confirmed by electron microscopy observations of autophagosomes in the curcumin-treated cells as well as LC3-II expression, punctue staining of LC3 and increased content of acidic vacuoles. Inhibition of autophagy, due to the diminished expression of ATG5 by RNAi decreased the number of senescent cells induced by curcumin, but did not lead to increased cell death. Altogether, we demonstrated a new antitumor activity of curcumin leading to cancer cell senescence and revealed the presence of a functional link between senescence and autophagy in curcumin-treated cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines.

    PubMed

    Abdi-Ali, A; Worobec, E A; Deezagi, A; Malekzadeh, F

    2004-05-01

    Pyocin typing of 82 Pseudomonas aeruginosa strains, collected from different Iranian clinical sources, revealed that one isolate, P. aeruginosa 42A, produced pyocin S2, a protease-sensitive bacteriocin. Pyocin S2 production was induced by mitomycin C (2 micro g/mL) in the pyocin S2 producer P. aeruginosa 42A. Pyocin S2 was purified using ion exchange chromatography with CM-Sepharose CL-6B and sodium phosphate buffer (pH 8) from an 80% ammonium sulfate precipitate of whole-cell lysates. Pyocin activity of the fractions was detected using the Govan spot testing method. The purity of the active fraction was confirmed by SDS-PAGE, where a single band with a molecular mass of 74 kDa was detected. Cytotoxic effects of purified pyocin S2 and partially purified pyocin from P. aeruginosa 42A on the human tumor cell lines HepG2 and Im9 and the normal human cell line HFFF (Human Foetal Foreskin Fibroblast) were studied by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results demonstrated that partially purified pyocin and pyocin S2 exhibited substantial inhibitory effects on the growth of the tumor cell lines HepG2 and Im9, while no inhibitory effects were observed on the normal cell line HFFF. Pure lipopolysaccharide was used as a control and was found to have no inhibitory effect on any of the cell lines tested.

  13. The transcription of the human fructose-bisphosphate aldolase C gene is activated by nerve-growth-factor-induced B factor in human neuroblastoma cells.

    PubMed Central

    Buono, P; Conciliis, L D; Izzo, P; Salvatore, F

    1997-01-01

    A DNA region located at around -200 bp in the 5' flanking region (region D) of the human brain-type fructose-bisphosphate aldolase (aldolase C) gene has been analysed. We show by transient transfection assay and electrophoretic-mobility-shift assay (EMSA) that the binding of transcriptional activators to region D is much more efficient (80% versus 30%) in human neuroblastoma cells (SKNBE) than in the non-neuronal cell line A1251, which contains low levels of aldolase C mRNA. The sequence of region D, CAAGGTCA, is very similar to the AAAGGTCA motif present in the mouse steroid 21-hydroxylase gene; the latter motif binds nerve-growth-factor-induced B factor (NGFI-B), which is a member of the thyroid/steroid/retinoid nuclear receptor gene family. Competition experiments in EMSA and antibody-directed supershift experiments showed that NGFI-B is involved in the binding to region D of the human aldolase C gene. Furthermore, the regulation of the aldolase C gene (which is the second known target of NGFI-B) expression during development parallels that of NGFI-B. PMID:9173889

  14. Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression.

    PubMed

    Bao, Tianhao; Ke, Yang; Wang, Yifan; Wang, Weiwei; Li, Yuehua; Wang, Yan; Kui, Xiang; Zhou, Qixin; Zhou, Han; Zhang, Cheng; Zhou, Dongming; Wang, Lin; Xiao, Chunjie

    2018-07-01

    Taraxasterol has potent anti-inflammatory and anti-tumor activity. However, the effect and potential mechanisms of Taraxasterol on the growth of human liver cancer have not been clarified. Histidine triad nucleotide-binding protein 1 (Hint1) is a tumor suppressor and its downregulated expression is associated with the development of cancer. Here, we report that Taraxasterol treatment significantly suppressed cell proliferation and induced cell cycle arrest at G0/G1 phase and apoptosis in liver cancer cells, but not in non-tumor hepatocytes. Furthermore, Taraxasterol upregulated Hint1 and Bax, but downregulated Bcl2 and cyclin D1 expression, accompanied by promoting the demethylation in the Hint1 promoter region in liver cancer cells. The effects of Taraxasterol were abrogated by Hint1 silencing and partially mitigated by Bax silencing, Bcl2 or cyclin D1 over-expression in HepG2 cells. Moreover, oral administration with Taraxasterol did not affect body weight, urinary protein levels, and the heart, liver, and kidney morphology in BALB/c mice but effectively inhibited the growth of implanted SK-Hep1 tumor in vivo. Collectively, we demonstrate that Taraxasterol inhibits the growth of liver cancer at least partially by enhancing Hint1 expression to regulate Bax, Bcl2, and cyclin D1 expression. Taraxasterol may be a drug candidate for the treatment of human liver cancer. Taraxasterol inhibits growth and induces apoptosis in human liver cancer cells. Taraxasterol enhances Hint1 expression by promoting demethylation in Hint1 promoter. Taraxasterol increases Hint1 levels to regulate Bax, Bcl2, and cyclinD1 expression. The effects of Taraxasterol are abrogated by Hint1 silencing in liver cancer cells. Taraxasterol inhibits the growth of subcutaneously implanted liver cancers in mice.

  15. Leptin expression in human mammary epithelial cells and breast milk.

    PubMed

    Smith-Kirwin, S M; O'Connor, D M; De Johnston, J; Lancey, E D; Hassink, S G; Funanage, V L

    1998-05-01

    Leptin has recently been shown to be produced by the human placenta and potentially plays a role in fetal and neonatal growth. Many functions of the placenta are replaced by the mammary gland in terms of providing critical growth factors for the newborn. In this study, we show that leptin is produced by human mammary epithelial cells as revealed by RT/PCR analysis of total RNA from mammary gland and immunohistochemical staining of breast tissue, cultured mammary epithelial cells, and secretory epithelial cells present in human milk. We also verify that immunoreactive leptin is present in whole milk at 30- to 150-fold higher concentrations than skim milk. We propose that leptin is secreted by mammary epithelial cells in milk fat globules, which partition into the lipid portion of breast milk.

  16. Attachment and growth of human keratinocytes in a serum-free environment.

    PubMed

    Gilchrest, B A; Calhoun, J K; Maciag, T

    1982-08-01

    Using a serum-free system, we have investigated the influence of human fibronectin (HFN) and selected growth factors (GF) on the attachment and growth of normal human keratinocytes in vitro. Single-cell suspensions of keratinocytes from near-confluent primary plates, plated on 5-10 microgram/cm2 HFN, showed approximately 30-40% attachment after 2-24 hours of incubation at 37 degrees C, compared with 4-6% attachment on uncoated platic plates. Percentage of attached cells was independent of seed density, tissue donor age, in vitro culture age, or medium composition, while subsequent cellular proliferation was strongly dependent on these factors. Keratinocytes grown on an adequate HFN matrix in a previously described hormone-supplemented medium (Maciag et al., 1981a) achieved four to eight population doubling over 7-12 days at densities greater than or equal to 104 cell/cm2. Removal of most GF individually from the medium had little or no effect on growth, while removal of epidermal growth factor (EGF) alone reduced growth by 30-35% and removal of bovine brain extract (BE) alone reduced growth by approximately 90%. Conversely, EGF alone in basal medium supported approximately 10% control growth, BE alone supported 30-40% control growth, and the combination of EGF and BE approximately 70%. In addition to its major effect on proliferation in this system, BE was necessary to preserve normal keratinocyte morphology and protein production. These findings expand earlier observations that HFN facilitates keratinocyte attachment in vitro and that a brain-derived extract can exert a major positive influence on cultured keratinocytes.

  17. Cyclin-dependent kinase 11p110 (CDK11p110) is crucial for human breast cancer cell proliferation and growth

    PubMed Central

    Zhou, Yubing; Han, Chao; Li, Duolu; Yu, Zujiang; Li, Fengmei; Li, Feng; An, Qi; Bai, Huili; Zhang, Xiaojian; Duan, Zhenfeng; Kan, Quancheng

    2015-01-01

    Cyclin-dependent kinases (CDKs) play important roles in the development of many types of cancers by binding with their paired cyclins. However, the function of CDK11 larger protein isomer, CDK11p110, in the tumorigenesis of human breast cancer remains unclear. In the present study, we explored the effects and molecular mechanisms of CDK11p110 in the proliferation and growth of breast cancer cells by determining the expression of CDK11p110 in breast tumor tissues and examining the phenotypic changes of breast cancer cells after CDK11p110 knockdown. We found that CDK11p110 was highly expressed in breast tumor tissues and cell lines. Tissue microarray analysis showed that elevated CDK11p110 expression in breast cancer tissues significantly correlated with poor differentiation, and was also associated with advanced TNM stage and poor clinical prognosis for breast cancer patients. In vitro knockdown of CDK11p110 by siRNA significantly inhibited cell growth and migration, and dramatically induced apoptosis in breast cancer cells. Flow cytometry demonstrated that cells were markedly arrested in G1 phase of the cell cycle after CDK11p110 downregulation. These findings suggest that CDK11p110 is critical for the proliferation and growth of breast cancer cells, which highlights CDK11p110 may be a promising therapeutic target for the treatment of breast cancer. PMID:25990212

  18. RNA interference of pax2 inhibits growth of transplanted human endometrial cancer cells in nude mice

    PubMed Central

    Zhang, Li-Ping; Shi, Xiao-Yan; Zhao, Chang-Yin; Liu, Yong-Zhen; Cheng, Ping

    2011-01-01

    The development of human endometrial carcinoma (HEC) is a complex pathologic process involves several oncogenes and tumor suppressor genes. The full-length paired-box gene 2 (pax2), a recently discovered Oncogene, promotes cell proliferation and growth and inhibits apoptosis of HEC cells. Here, we examined the effect of pax2 small interfering RNA (siRNA) on the growth of transplanted HEC cells in nude mice. The expression of Pax2 in 21 cases of normal endometrium and 38 cases of HEC was examined by immohistochemistry (IHC). HEC models were developed by subcutaneously transferring HEC cells into nude mice, followed by treatment with empty lentivirus vector, lentivirus vector-based pax2 siRNA, and phosphate buffered saline, respectively. Four weeks later, tumor size was measured, tumor inhibition rate was calculated, and histological analyses were conducted after staining with hematoxylin and eosin. The expression of Pax2 and Bcl-2 was detected by Western blot; proliferating cell nuclear antigen (PCNA) was detected by IHC. Significant differences were observed in the positive rate of Pax2 between normal endometrium and HEC (14.2% vs. 60.5%, P < 0.01). The expression index of Pax2 in well differentiated tumors was 1.88 ± 1.68, much lower than that in tumors of moderate (3.07 ± 1.96, P < 0.05) or poor differentiation (5.45 ± 2.76, P < 0.01). Tumor necrosis increased, nuclear basophilia stain decreased, tumor growth was inhibited, and PCNA, Pax2, and Bcl-2 expression was reduced in HEC models treated with pax2 siRNA. These results indicate that Pax2 expression is related to HEC tumor biology with the increased expression of Pax2 correlated to malignancy. pax2 siRNA down-regulates Pax2 expression and inhibits tumorigenesis of HEC in nude mice, possibly due to cell apoptosis and the inhibition of tumor proliferation induced by down-regulation of Bcl-2. PMID:21627862

  19. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  20. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  1. Role of ERRF, a Novel ER-Related Nuclear Factor, in the Growth Control of ER-Positive Human Breast Cancer Cells

    PubMed Central

    Su, Dan; Fu, Xiaoying; Fan, Songqing; Wu, Xiao; Wang, Xin-Xin; Fu, Liya; Dong, Xue-Yuan; Ni, Jianping Jenny; Fu, Li; Zhu, Zhengmao; Dong, Jin-Tang

    2012-01-01

    Whereas estrogen–estrogen receptor α (ER) signaling plays an important role in breast cancer growth, it is also necessary for the differentiation of normal breast epithelial cells. How this functional conversion occurs, however, remains unknown. Based on a genome-wide sequencing study that identified mutations in several breast cancer genes, we examined some of the genes for mutations, expression levels, and functional effects on cell proliferation and tumorigenesis. We present the data for C1orf64 or ER-related factor (ERRF) from 31 cell lines and 367 primary breast cancer tumors. Whereas mutation of ERRF was infrequent (1 of 79 or 1.3%), its expression was up-regulated in breast cancer, and the up-regulation was more common in lower-stage tumors. In addition, increased ERRF expression was significantly associated with ER and/or progesterone receptor (PR) positivity, which was still valid in human epidermal growth factor receptor 2 (HER2)–negative tumors. In ER-positive tumors, ERRF expression was inversely correlated with HER2 status. Furthermore, higher ERRF protein expression was significantly associated with better disease-free survival and overall survival, particularly in ER- and/or PR-positive and HER2-negative tumors (luminal A subtype). Functionally, knockdown of ERRF in two ER-positive breast cancer cell lines, T-47D and MDA-MB-361, suppressed cell growth in vitro and tumorigenesis in xenograft models. These results suggest that ERRF plays a role in estrogen-ER–mediated growth of breast cancer cells and could, thus, be a potential therapeutic target. PMID:22341523

  2. Up-regulation of the fibroblast growth factor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis.

    PubMed

    Gauglhofer, Christine; Sagmeister, Sandra; Schrottmaier, Waltraud; Fischer, Carina; Rodgarkia-Dara, Chantal; Mohr, Thomas; Stättner, Stefan; Bichler, Christoph; Kandioler, Daniela; Wrba, Fritz; Schulte-Hermann, Rolf; Holzmann, Klaus; Grusch, Michael; Marian, Brigitte; Berger, Walter; Grasl-Kraupp, Bettina

    2011-03-01

    Fibroblast growth factors (FGFs) and their high-affinity receptors [fibroblast growth factor receptors (FGFRs)] contribute to autocrine and paracrine growth stimulation in several non-liver cancer entities. Here we report that at least one member of the FGF8 subfamily (FGF8, FGF17, and FGF18) was up-regulated in 59% of 34 human hepatocellular carcinoma (HCC) samples that we investigated. The levels of the corresponding receptors (FGFR2, FGFR3, and FGFR4) were also elevated in the great majority of the HCC cases. Overall, 82% of the HCC cases showed overexpression of at least one FGF and/or FGFR. The functional implications of the deregulated FGF/FGFR system were investigated by the simulation of an insufficient blood supply. When HCC-1.2, HepG2, or Hep3B cells were subjected to serum withdrawal or the hypoxia-mimetic drug deferoxamine mesylate, the expression of FGF8 subfamily members increased dramatically. In the serum-starved cells, the incidence of apoptosis was elevated, whereas the addition of FGF8, FGF17, or FGF18 impaired apoptosis, which was associated with phosphorylation of extracellular signal-regulated kinase 1/2 and ribosomal protein S6. In contrast, down-modulation of FGF18 by small interfering RNA (siRNA) significantly reduced the viability of the hepatocarcinoma cells. siRNA targeting FGF18 also impaired the cells' potential to form clones at a low cell density or in soft agar. With respect to the tumor microenvironment, FGF17 and FGF18 stimulated the growth of HCC-derived myofibroblasts, and FGF8, FGF17, and FGF18 induced the proliferation and tube formation of hepatic endothelial cells. FGF8, FGF17, and FGF18 are involved in autocrine and paracrine signaling in HCC and enhance the survival of tumor cells under stress conditions, malignant behavior, and neoangiogenesis. Thus, the FGF8 subfamily supports the development and progression of hepatocellular malignancy. Copyright © 2010 American Association for the Study of Liver Diseases.

  3. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    PubMed Central

    Mellado-López, Maravillas; Griffeth, Richard J.; Meseguer-Ripolles, Jose; García, Montserrat

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death. PMID:29270200

  4. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells.

    PubMed

    Mellado-López, Maravillas; Griffeth, Richard J; Meseguer-Ripolles, Jose; Cugat, Ramón; García, Montserrat; Moreno-Manzano, Victoria

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100  μ M of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  5. Smooth muscle contraction and growth of stromal cells in the human prostate are both inhibited by the Src family kinase inhibitors, AZM475271 and PP2.

    PubMed

    Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Rutz, Beata; Ciotkowska, Anna; Strittmatter, Frank; Herlemann, Annika; Janich, Sophie; Waidelich, Raphaela; Liu, Chunxiao; Stief, Christian G; Hennenberg, Martin

    2016-12-01

    In benign prostatic hyperplasia, increased prostate smooth muscle tone and prostate volume may contribute alone or together to urethral obstruction and voiding symptoms. Consequently, it is assumed there is a connection between smooth muscle tone and growth in the prostate, but any molecular basis for this is poorly understood. Here, we examined effects of Src family kinase (SFK) inhibitors on prostate contraction and growth of stromal cells. SFK inhibitors, AZM475271 and PP2, were applied to human prostate tissues to assess effects on smooth muscle contraction, and to cultured stromal (WPMY-1) and c-Src-deficient cells to examine effects on proliferation, actin organization and viability. SFKs were detected by real time PCR, western blot and immunofluorescence in human prostate tissues, some being located to smooth muscle cells. AZM475271 (10 μM) and PP2 (10 μM) inhibited SFK in prostate tissues and WPMY-1 cells. Both inhibitors reduced α 1 -adrenoceptor-mediated and neurogenic contraction of prostate strips. This may result from cytoskeletal deorganization, which was observed in response to AZM475271 and PP2 in WPMY-1 cells by staining of actin filaments with phalloidin. This was paralleled by reduced proliferation of wildtype but not of c-Src-deficient cells; cytotoxicity was mainly observed at higher concentrations (>50 μM). In human prostate, smooth muscle tone and growth are both controlled by an SFK-dependent process, which may explain their common role in bladder outlet obstruction. Targeting prostate smooth muscle tone and prostate growth simultaneously by a single compound may, in principal, be possible. © 2016 The British Pharmacological Society.

  6. Smooth muscle contraction and growth of stromal cells in the human prostate are both inhibited by the Src family kinase inhibitors, AZM475271 and PP2

    PubMed Central

    Wang, Yiming; Tamalunas, Alexander; Rutz, Beata; Ciotkowska, Anna; Strittmatter, Frank; Herlemann, Annika; Janich, Sophie; Waidelich, Raphaela; Liu, Chunxiao; Stief, Christian G; Hennenberg, Martin

    2016-01-01

    Background and Purpose In benign prostatic hyperplasia, increased prostate smooth muscle tone and prostate volume may contribute alone or together to urethral obstruction and voiding symptoms. Consequently, it is assumed there is a connection between smooth muscle tone and growth in the prostate, but any molecular basis for this is poorly understood. Here, we examined effects of Src family kinase (SFK) inhibitors on prostate contraction and growth of stromal cells. Experimental Approach SFK inhibitors, AZM475271 and PP2, were applied to human prostate tissues to assess effects on smooth muscle contraction, and to cultured stromal (WPMY‐1) and c‐Src‐deficient cells to examine effects on proliferation, actin organization and viability. Key Results SFKs were detected by real time PCR, western blot and immunofluorescence in human prostate tissues, some being located to smooth muscle cells. AZM475271 (10 μM) and PP2 (10 μM) inhibited SFK in prostate tissues and WPMY‐1 cells. Both inhibitors reduced α1‐adrenoceptor‐mediated and neurogenic contraction of prostate strips. This may result from cytoskeletal deorganization, which was observed in response to AZM475271 and PP2 in WPMY‐1 cells by staining of actin filaments with phalloidin. This was paralleled by reduced proliferation of wildtype but not of c‐Src‐deficient cells; cytotoxicity was mainly observed at higher concentrations (>50 μM). Conclusions and Implications In human prostate, smooth muscle tone and growth are both controlled by an SFK‐dependent process, which may explain their common role in bladder outlet obstruction. Targeting prostate smooth muscle tone and prostate growth simultaneously by a single compound may, in principal, be possible. PMID:27638545

  7. Regulation of rat mesangial cell growth by diadenosine phosphates.

    PubMed Central

    Heidenreich, S; Tepel, M; Schlüter, H; Harrach, B; Zidek, W

    1995-01-01

    The newly recognized human endogenous vasoconstrictive dinucleotides, diadenosine pentaphosphate (AP5A) and diadenosine hexaphosphate (AP6A), were tested for growth stimulatory effects in rat mesangial cells (MC). Both AP5A and AP6A stimulated growth in micromolar concentrations. The growth stimulatory effect exceeded that of ATP, alpha,beta-methylene ATP, adenosine 5'-O-(3-thio)triphosphate and UTP. Both diadenosine phosphates potentiated the growth response to platelet-derived growth factor, but not to insulin-like growth factor-1. To further elucidate the site of action in the cell cycle, RNA and protein synthesis were assessed. AP5 and AP6A stimulated protein synthesis, but not RNA formation. Furthermore, both agents increased cytosolic free Ca2+ concentration. It is concluded that AP5A and AP6A may play a regulatory role in MC growth as progression factors and possibly modify MC proliferation in glomerular disease. PMID:7769127

  8. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro.

    PubMed

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-05-01

    Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS: Phosphate buffered saline, DMEM: Dulbecco's modified Eagle medium.

  9. Humanization of the mouse mammary gland by replacement of the luminal layer with genetically engineered preneoplastic human cells.

    PubMed

    Verbeke, Stephanie; Richard, Elodie; Monceau, Elodie; Schmidt, Xenia; Rousseau, Benoit; Velasco, Valerie; Bernard, David; Bonnefoi, Herve; MacGrogan, Gaetan; Iggo, Richard D

    2014-12-20

    The cell of origin for estrogen receptor α-positive (ERα+) breast cancer is probably a luminal stem cell in the terminal duct lobular units. To model these cells, we have used the murine myoepithelial layer in the mouse mammary ducts as a scaffold upon which to build a human luminal layer. To prevent squamous metaplasia, a common artifact in genetically-engineered breast cancer models, we sought to limit activation of the epidermal growth factor receptor (EGFR) during in vitro cell culture before grafting the cells. Human reduction mammoplasty cells were grown in vitro in WIT medium. Epidermal growth factor in the medium was replaced with amphiregulin and neuregulin to decrease activation of EGFR and increase activation of EGFR homologs 3 and 4 (ERBB3 and ERBB4). Lentiviral vectors were used to express oncogenic transgenes and fluorescent proteins. Human mammary epithelial cells were mixed with irradiated mouse fibroblasts and Matrigel, then injected through the nipple into the mammary ducts of immunodeficient mice. Engrafted cells were visualized by stereomicroscopy for fluorescent proteins and characterized by histology and immunohistochemistry. Growth of normal mammary epithelial cells in conditions favoring ERBB3/4 signaling prevented squamous metaplasia in vitro. Normal human cells were quickly lost after intraductal injection, but cells infected with lentiviruses expressing CCND1, MYC, TERT, BMI1 and a short-hairpin RNA targeting TP53 were able to engraft and progressively replace the luminal layer in the mouse mammary ducts, resulting in the formation of an extensive network of humanized ducts. Despite expressing multiple oncogenes, the human cells formed a morphologically normal luminal layer. Expression of a single additional oncogene, PIK3CA-H1047R, converted the cells into invasive cancer cells. The resulting tumors were ERα+, Ki67+ luminal B adenocarcinomas that were resistant to treatment with fulvestrant. Injection of preneoplastic human mammary

  10. A Novel Class of Human Cardiac Stem Cells

    PubMed Central

    Moccetti, Tiziano; Leri, Annarosa; Goichberg, Polina; Rota, Marcello; Anversa, Piero

    2015-01-01

    Following the recognition that hematopoietic stem cells improve the outcome of myocardial infarction in animal models, bone marrow mononuclear cells, CD34-positive cells and mesenchymal stromal cells have been introduced clinically. The intracoronary or intramyocardial injection of these cell classes has been shown to be safe and to produce a modest but significant enhancement in systolic function. However, the identification of resident cardiac stem cells in the human heart (hCSCs) has created great expectation concerning the potential implementation of this category of autologous cells for the management of the human disease. Although phase 1 clinical trials have been conducted with encouraging results, the search for the most powerful hCSC for myocardial regeneration is in its infancy. This manuscript discusses the efforts performed in our laboratory to characterize the critical biological variables that define the growth reserve of hCSCs. Based on the theory of the immortal DNA template, we propose that stem cells retaining the old DNA represent one of the most powerful cells for myocardial regeneration. Similarly, the expression of insulin-like growth factor-1 receptors in hCSCs recognizes a cell phenotype with superior replicating reserve. However, the impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the “mother” DNA underscores the clinical relevance of this hCSC class for the treatment of human heart failure. PMID:25807105

  11. Resveratrol inhibits proteinase-activated receptor-2-induced release of soluble vascular endothelial growth factor receptor-1 from human endothelial cells

    PubMed Central

    Al-Ani, Bahjat

    2013-01-01

    We recently reported that (i) activation of the proinflammatory receptor, proteinase-activated receptor-2 (PAR-2) caused the release of an important biomarker in preeclampsia, soluble vascular endothelial growth factor receptor-1 (sVEGFR-1, also known as sFlt-1) from human umbilical vein endothelial cells (HUVECs), and (ii) that the anti-oxidant and anti-inflammatory agent, resveratrol, is capable of inhibiting the proinflammatory cytokine-induced sVEGFR-1 release from human placenta. Based on these findings and because PAR-2 is upregulated by proinflammatory cytokines, we sought to determine whether resveratrol can inhibit PAR-2-induced sVEGFR-1 release. PAR-2 expressing cells, HUVECs and human embryonic kidney cells (HEK-293) transfected with a human VEGFR-1 promoter-luciferase reporter construct were incubated with PAR-2-activating peptide and/or resveratrol. Cell supernatants were assayed for sVEGFR-1 by enzyme-linked immunosorbent assay (ELISA), and VEGFR-1 promoter-luciferase assay was performed on the harvested cell lysates. Preincubation of HEK-293 cells with resveratrol significantly inhibited PAR-2-induced VEGFR-1 promoter activity without affecting cell viability as assessed by MTT assay. The addition of resveratrol also blocked PAR-2-mediated sVEGFR-1 release from HUVECs. The present study demonstrates that resveratrol suppressed both VEGFR-1 promoter activity and sVEGFR-1 protein release induced by PAR-2 activation, which further endorses our recent findings of a potential therapeutic role for resveratrol in preeclampsia. PMID:26933402

  12. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less

  13. In vivo delivery of recombinant human growth hormone from genetically engineered human fibroblasts implanted within Baxter immunoisolation devices.

    PubMed

    Josephs, S F; Loudovaris, T; Dixit, A; Young, S K; Johnson, R C

    1999-01-01

    Continuous delivery of therapeutic peptide to the systemic circulation would be the optimal treatment for a variety of diseases. The Baxter TheraCyte system is a membrane encapsulation system developed for implantation of tissues, cells such as endocrine cells or cell lines genetically engineered for therapeutic peptide delivery in vivo. To demonstrate the utility of this system, cell lines were developed which expressed human growth hormone (hGH) at levels exceeding 1 microgram per million cells per day. These were loaded into devices which were then implanted into juvenile nude rats. Significant levels of hGH of up to 2.5 ng/ml were detected in plasma throughout the six month duration of the study. In contrast, animals implanted with free cells showed peak plasma levels of 0.5 to 1.2 ng four days after implantation with no detectable hGH beyond 10 days. Histological examination of explanted devices showed they were vascularized and contained cells that were viable and morphologically healthy. After removal of the implants, no hGH could be detected which confirmed that the source of hGH was from cells contained within the device. The long term expression of human growth hormone as a model peptide has implications for the peptide therapies for a variety of human diseases using membrane encapsulated cells.

  14. Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors

    DTIC Science & Technology

    2008-05-01

    cells. J Mol Med, 2008. 20. Collins, A. T., Habib , F. K., Maitland, N. J., and Neal, D. E. Identification and isolation of human prostate...The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med 2008;86:1025–32. 20. Collins AT, Habib FK...cells. J Cell Sci 2004;117: 3539–45. 23. Litvinov IV, Vander Griend DJ, Xu Y, Antony L, Dalrymple SL , Isaacs JT. Low-calcium serum-free defined

  15. Novel Midkine Inhibitor iMDK Inhibits Tumor Growth and Angiogenesis in Oral Squamous Cell Carcinoma.

    PubMed

    Masui, Masanori; Okui, Tatsuo; Shimo, Tsuyoshi; Takabatake, Kiyofumi; Fukazawa, Takuya; Matsumoto, Kenichi; Kurio, Naito; Ibaragi, Soichiro; Naomoto, Yoshio; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-06-01

    Midkine is a heparin-binding growth factor highly expressed in various human malignant tumors. However, its role in the growth of oral squamous cell carcinoma is not well understood. In this study, we analyzed the antitumor effect of a novel midkine inhibitor (iMDK) against oral squamous cell carcinoma. Administration of iMDK induced a robust antitumor response and suppressed cluster of differentiation 31 (CD31) expression in oral squamous cell carcinoma HSC-2 cells and SAS cells xenograft models. iMDK inhibited the proliferation of these cells dose-dependently, as well as the expression of midkine and phospho-extracellular signal-regulated kinase in HSC-2 and SAS cells. Moreover, iMDK significantly inhibited vascular endothelial growth factor and induced tube growth of human umbilical vein endothelial cells in a dose-dependent fashion. These findings suggest that midkine is critically involved in oral squamous cell carcinoma and iMDK can be effectively used for the treatment of oral squamous cell carcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Computational modeling of hypertensive growth in the human carotid artery

    NASA Astrophysics Data System (ADS)

    Sáez, Pablo; Peña, Estefania; Martínez, Miguel Angel; Kuhl, Ellen

    2014-06-01

    Arterial hypertension is a chronic medical condition associated with an elevated blood pressure. Chronic arterial hypertension initiates a series of events, which are known to collectively initiate arterial wall thickening. However, the correlation between macrostructural mechanical loading, microstructural cellular changes, and macrostructural adaptation remains unclear. Here, we present a microstructurally motivated computational model for chronic arterial hypertension through smooth muscle cell growth. To model growth, we adopt a classical concept based on the multiplicative decomposition of the deformation gradient into an elastic part and a growth part. Motivated by clinical observations, we assume that the driving force for growth is the stretch sensed by the smooth muscle cells. We embed our model into a finite element framework, where growth is stored locally as an internal variable. First, to demonstrate the features of our model, we investigate the effects of hypertensive growth in a real human carotid artery. Our results agree nicely with experimental data reported in the literature both qualitatively and quantitatively.

  17. Adenovirus E1A and E1B-19K Proteins Protect Human Hepatoma Cells from Transforming Growth Factor β1-induced Apoptosis

    PubMed Central

    Tarakanova, Vera L.; Wold, William S. M.

    2009-01-01

    Primary and some transformed hepatocytes undergo apoptosis in response to transforming growth factor β1 (TGFβ). We report that infection with species C human adenovirus conferred resistance to TGFβ-induced apoptosis in human hepatocellular carcinoma cells (Huh-7). Protection against TGFβ-mediated cell death in adenovirus-infected cells correlated with the maintenance of normal nuclear morphology, lack of pro-caspases 8 and 3 processing, maintenance of the mitochondrial membrane potential, and lack of cellular DNA degradation. The TGFβ pro-apoptotic signaling pathway was blocked upstream of mitochondria in adenovirus-infected cells. Both the N-terminal sequences of the E1A proteins and the E1B-19K protein were necessary to protect infected cells against TGFβ-induced apoptosis. PMID:19854227

  18. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Li, Yi; Zhen, Yong-Su

    2017-05-01

    CD13 is a marker of angiogenic endothelial cells, and recently it is proved to be a biomarker of human liver cancer stem cells (CSCs). Herein, the therapeutic effects of NGR-LDP-AE, a fusion protein composed of CD13-targeting peptide NGR and antitumor antibiotic lidamycin, on human liver cancer and its mechanism were studied. Western blot and immunofluorescence assay demonstrated that CD13 (WM15 epitope) was expressed in both human liver cancer cell lines and vascular endothelial cells, while absent in normal liver cells. MTT assay showed that NGR-LDP-AE displayed potent cytotoxicity to cultured tumor cell lines with IC 50 values at low nanomolar level. NGR-LDP-AE inhibited tumorsphere formation of liver cancer cells, and the IC 50 values were much lower than that in MTT assay, indicating selectively killing of CSCs. In endothelial tube formation assay, NGR-LDP-AE at low cytotoxic dose significantly inhibited the formation of intact tube networks. Animal experiment demonstrated that NGR-LDP-AE inhibited the growth of human liver cancer xenograft. Immunohistochemical analysis showed that NGR-LDP-AE induced the down-regulation of CD13. In vitro experiment using cultured tumor cells also confirmed this result. NGR-LDP-AE activated both apoptotic and autophagic pathways in cultured tumor cells, while the induced autophagy protected cells from death. Conclusively, NGR-LDP-AE exerts its antitumor activity via killing liver CSCs and inhibiting angiogenesis. With one targeting motif, NGR-LDP-AE acts on both liver CSCs and angiogenic endothelial cells. It is a promising dual targeting fusion protein for liver cancer therapy, especially for advanced or relapsed cancers. © 2017 Wiley Periodicals, Inc.

  19. Pigment epithelium derived factor inhibits the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro.

    PubMed

    Sun, Yanmei; Che, Xuan; Zhu, Libo; Zhao, Mengdan; Fu, Guofang; Huang, Xiufeng; Xu, Hong; Hu, Fuqiang; Zhang, Xinmei

    2012-01-01

    Angiogenesis is a prerequisite for the formation and development of endometriosis. Pigment epithelium derived factor (PEDF) is a natural inhibitor of angiogenesis. We previously demonstrated a reduction of PEDF in the peritoneal fluid, serum and endometriotic lesions from women with endometriosis compared with women without endometriosis. Here, we aim to investigate the inhibitory effect of PEDF on human endometriotic cells in vivo and in vitro. We found that PEDF markedly inhibited the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro by up-regulating PEDF expression and down-regulating vascular endothelial growth factor (VEGF) expression. Moreover, apoptotic index was significantly increased in endometriotic lesions in vivo and endometriotic stromal cells in vitro when treated with PEDF. In mice treated with PEDF, decreased microvessel density labeled by Von Willebrand factor but not by α-Smooth Muscle Actin was observed in endometriotic lesions. And it showed no increase in PEDF expression of the ovary and uterus tissues. These findings suggest that PEDF gene therapy may be a new treatment for endometriosis.

  20. Pigment Epithelium Derived Factor Inhibits the Growth of Human Endometrial Implants in Nude Mice and of Ovarian Endometriotic Stromal Cells In Vitro

    PubMed Central

    Sun, Yanmei; Che, Xuan; Zhu, Libo; Zhao, Mengdan; Fu, Guofang; Huang, Xiufeng; Xu, Hong; Hu, Fuqiang; Zhang, Xinmei

    2012-01-01

    Angiogenesis is a prerequisite for the formation and development of endometriosis. Pigment epithelium derived factor (PEDF) is a natural inhibitor of angiogenesis. We previously demonstrated a reduction of PEDF in the peritoneal fluid, serum and endometriotic lesions from women with endometriosis compared with women without endometriosis. Here, we aim to investigate the inhibitory effect of PEDF on human endometriotic cells in vivo and in vitro. We found that PEDF markedly inhibited the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro by up-regulating PEDF expression and down-regulating vascular endothelial growth factor (VEGF) expression. Moreover, apoptotic index was significantly increased in endometriotic lesions in vivo and endometriotic stromal cells in vitro when treated with PEDF. In mice treated with PEDF, decreased microvessel density labeled by Von Willebrand factor but not by α-Smooth Muscle Actin was observed in endometriotic lesions. And it showed no increase in PEDF expression of the ovary and uterus tissues. These findings suggest that PEDF gene therapy may be a new treatment for endometriosis. PMID:23028859

  1. [Use of recombinant Human Growth Hormone (rHGH)].

    PubMed

    Calzada-León, Raúl

    2017-01-01

    Recombinant human growth hormone, synthesized in E.coli or mammalian cells cultures, is since 1985, a useful therapeutic resource to increase growth velocity and final height. In this paper are discussed the four phases (aims, security and efficacy, utility and efficiency) indispensables to define the start of treatment, as well as the absolute, relative and metabolic indications and the transitory and permanent conditions that contraindicate its use. It is commented the way to optimize the results (simple but indispensables indications for the physician, the patients and their family). Finally it is analyzed the results of treatment in patients with growth hormone deficiency, Turner syndrome, chronic renal failure, Prader-Willi syndrome, Noonan syndrome, SHOX deficiency, intrauterine growth retardation and idiopathic short stature.

  2. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  3. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo.

    PubMed

    Li, Ben Hui; Xu, Shuang Bing; Li, Feng; Zou, Xiao Guang; Saimaiti, Abudukeyoumu; Simayi, Dilixia; Wang, Ying Hong; Zhang, Yan; Yuan, Jia; Zhang, Wen Jie

    2012-03-01

    Signal transducer and activator of transcription 6 (Stat6) is critical in Th2 polarization of immune cells and active Stat6 activity has been suggested in anti-tumor immunity in animal models. The present study aims at investigating the impact of natural Stat6 activity on tumor microenvironment in human colorectal cancer cells in vitro and in vivo. Using colorectal cancer cell lines HT-29 and Caco-2 whose IL-4/Stat6 activities were known and nude mice as a model, we examined correlative relationships between Stat6 activities and gene expression profiles together with cellular behaviors in vitro and in vivo. HT-29 cells carrying active Stat6 signaling displayed spontaneous expression profiles favoring Th2 cytokines, cell cycle promotion, anti-apoptosis and pro-metastasis with increased mRNA levels of IL-4, IL-13, GATA-3, CDK4, CD44v6 and S100A4 using RT-PCR. In contrast, Caco-2 cells carrying defective Stat6 signaling exhibited spontaneous expression profiles favoring Th1 and Th17 cytokines, cell cycle inhibition, pro-apoptosis and anti-metastasis with elevated mRNA expression of IFNγ, TNFα, IL-12A, IL-17, IL-23, T-bet, CDKN1A, CDKNIB, CDKN2A and NM23-H1. Xenograft tumors of Stat6-active HT-29 cells showed a growth advantage over those of Stat6-defective Caco-2 cells. Furthermore, mice bearing HT-29 tumors expressed increased levels of Th2 cytokines IL-4 and IL-5 in the blood and pro-growth and/or pro-metastasis proteins CDK4 and CD44v6 in the tumor. To the contrary, mice bearing Caco-2 tumors expressed heightened levels of Th1 cytokines IFNγ and TNF in the blood and pro-apoptosis and anti-metastatic proteins p53 and p27(kip1) in the tumor. Colorectal cancer cells carrying active Stat6 signaling may create a microenvironment favoring Th2 cytokines and promoting expression of genes related to pro-growth, pro-metastasis and anti-apoptosis, which leads to a tumor growth advantage in vivo. These findings may imply why Stat6 pathway is constitutively activated in a

  4. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    PubMed

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  5. Magnetic field direction differentially impacts the growth of different cell types.

    PubMed

    Tian, Xiaofei; Wang, Dongmei; Zha, Meng; Yang, Xingxing; Ji, Xinmiao; Zhang, Lei; Zhang, Xin

    2018-04-05

    Magnetic resonance imaging (MRI) machines have horizontal or upright static magnetic field (SMF) of 0.1-3 T (Tesla) at sites of patients and operators, but the biological effects of these SMFs still remain elusive. We examined 12 different cell lines, including 5 human solid tumor cell lines, 2 human leukemia cell lines and 4 human non-cancer cell lines, as well as the Chinese hamster ovary cell line. Permanent magnets were used to provide 0.2-1 T SMFs with different magnetic field directions. We found that an upward magnetic field of 0.2-1 T could effectively reduce the cell numbers of all human solid tumor cell lines we tested, but a downward magnetic field mostly had no statistically significant effect. However, the leukemia cells in suspension, which do not have shape-induced anisotropy, were inhibited by both upward and downward magnetic fields. In contrast, the cell numbers of most non-cancer cells were not affected by magnetic fields of all directions. Moreover, the upward magnetic field inhibited GIST-T1 tumor growth in nude mice by 19.3% (p < 0.05) while the downward magnetic field did not produce significant effect. In conclusion, although still lack of mechanistical insights, our results show that different magnetic field directions produce divergent effects on cancer cell numbers as well as tumor growth in mice. This not only verified the safety of SMF exposure related to current MRI machines but also revealed the possible antitumor potential of magnetic field with an upward direction.

  6. Effects of a restricted fetal growth environment on human kidney morphology, cell apoptosis and gene expression.

    PubMed

    Wang, Yan-Ping; Chen, Xu; Zhang, Zhi-Kun; Cui, Hong-Yan; Wang, Peng; Wang, Yue

    2015-12-01

    Kidney development is key to the onset of hypertension and cardiovascular diseases in adults, and in the fetal stage will be impaired by a lack of nutrients in utero in animal models. However, few human studies have been performed. Kidney samples from fetuses in a fetal growth restriction (FGR) environment were collected and the morphological characteristics were observed. Potentially molecular mechanisms were explored by analyzing apoptosis and kidney-development related gene expression. The results indicated that no malformations were observed in the kidney samples of the FGR group, but the mean kidney weight and volume were significantly decreased. Moreover, the ratio of apoptotic cells and Bax-positive cells was increased and the ratio of Bcl-2-positive cells was decreased in the FGR group, indicating potential apoptosis induction under an in utero FGR environment. Finally, aberrant expression of renin and angiotensinogen indicated potential kidney functional abnormalities in the FGR group. Our study suggested increased apoptosis and decreased renin and angiotensinogen expression during human kidney development in an FGR environment. The current results will be helpful to further explore the molecular mechanism of FGR and facilitate future studies of hypertension and cardiovascular diseases and the establishment of preventive methods. © The Author(s) 2014.

  7. The antiretroviral nucleoside analogue Abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells

    PubMed Central

    Rossi, Alessandra; Russo, Giuseppe; Puca, Andrew; La Montagna, Raffaele; Caputo, Mariella; Mattioli, Eliseo; Lopez, Massimo; Giordano, Antonio; Pentimalli, Francesca

    2009-01-01

    Abacavir is one of the most efficacious nucleoside analogues, with a well-characterized inhibitory activity on reverse transcriptase enzymes of retroviral origin, and has been clinically approved for the treatment of AIDS. Recently, Abacavir has been shown to inhibit also the human telomerase activity. Telomerase activity seems to be required in essentially all tumours for the immortalization of a subset of cells, including cancer stem cells. In fact, many cancer cells are dependent on telomerase for their continued replication and therefore telomerase is an attractive target for cancer therapy. Telomerase expression is upregulated in primary primitive neuroectodermal tumours and in the majority of medulloblastomas suggesting that its activation is associated with the development of these diseases. Therefore, we decided to test Abacavir activity on human medulloblastoma cell lines with high telomerase activity. We report that exposure to Abacavir induces a dose-dependent decrease in the proliferation rate of medulloblastoma cells. This is associated with a cell accumulation in the G2/M phase of the cell cycle in the Daoy cell line, and with increased cell death in the D283-MED cell line, and is likely to be dependent on the inhibition of telomerase activity. Interestingly, both cell lines showed features of senescence after Abacavir treatment. Moreover, following Abacavir exposure we detected, by immunofluorescence staining, increased protein expression of the glial marker glial fibrillary acidic protein (GFAP) and the neuronal marker synaptophysin (SYN) in both medulloblastoma cell lines. In conclusion, our results suggest that Abacavir reduces proliferation and induces differentiation of human medulloblastoma cells through the downregulation of telomerase activity. Thus, using Abacavir, alone or in combination with current therapies, might be an effective therapeutic strategy for the treatment of medulloblastoma. PMID:19358275

  8. Salen-Mn compounds induces cell apoptosis in human prostate cancer cells through promoting AMPK activity and cell autophagy

    PubMed Central

    Tang, Xiaoshuang; Jia, Jing; Li, Feng; Liu, Wei; Yang, Chao; Jin, Bin; Shi, Qi; Wang, Xinyang; He, Dalin; Guo, Peng

    2017-01-01

    Currently only docetaxel has been approved to be used in the chemotherapy of prostate cancer and new drugs are urgent need. Salen-Mn is a novel type of synthetic reagent bionic and exerts remarkable anticancer activities. However, the effect of Salen-Mn on human prostate cancer has not been elucidated yet. In this study, we found that treatment of PC-3 and DU145 human prostate cancer cells with Salen-Mn inhibited cell growth in dose and time dependent manner. Moreover, Salen-Mn induced cell apoptosis, and increased the expression of apoptotic proteins, such as cleaved caspase-3, cleaved PARP, and Bax, in PC-3 and DU145 prostate cancer cells. Furthermore, we found that Salen-Mn induced expression of LC3-I/II, which is protein marker of cell autophagy, in both dose and time dependent manners; in addition, Salen-Mn increased the phosphorylation of AMPK, suggesting that Salen-Mn increase cell autophagy through activating AMPK pathway. On the other hand, when PC-3 and DU145 cells were treated with Salen-Mn and 3-MA, an inhibitor of cell autophagy, the inhibitory effect of Salen-Mn on cell growth and the induction of apoptotic proteins were decreased. In addition, we found that Salen-Mn inhibited the growth of PC-3 cell xenografts in nude mice. In summary, our results indicate that Salen-Mn suppresses cell growth through inducing AMPK activity and autophagic cell death related cell apoptosis in prostate cancer cells and suggest that Salen-Mn and its derivatives could be new options for the chemical therapeutics in the treatment of prostate cancer. PMID:29156794

  9. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.

  10. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emittedmore » filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.« less

  11. Cloning of a human hepatocyte growth factor/scatter factor transcription variant from a gastric cancer cell line HSC-39.

    PubMed

    Yokozaki, H; Tahara, H; Oue, N; Tahara, E

    2000-01-01

    A new transcription variant of hepatocyte growth factor/scatter factor (HGF/SF) was cloned from human gastric cancer cell line HSC-39. Northern blot analysis of eight human gastric cancer cell lines (TMK-1, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, KATO-III and HSC-39) demonstrated that HSC-39 cells expressed a 1.3 kb abnormal HGF/SF transcript. Screening of 1 x 10(6) colonies of cDNA library from HSC-39 constructed in pAP3neo mammalian expression vector selected four positive clones containing HGF/SF transcript. Among them, two contained a 1.3 kbp insert detecting the identical transcript to that obtained with HGF/SF probe by Northern blotting. Deoxynucleotide sequencing of the 1.3 kbp insert revealed that it was composed of a part of HGF/SF cDNA from exon 14 to exon 18, corresponding to the whole sequence of HGF/SF light chain, with 5' 75 nucleotides unrelated to any sequence involved in HGF/SF.

  12. Fluoxetine regulates cell growth inhibition of interferon-α.

    PubMed

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  13. Mastic oil from Pistacia lentiscus var. chia inhibits growth and survival of human K562 leukemia cells and attenuates angiogenesis.

    PubMed

    Loutrari, Heleni; Magkouta, Sophia; Pyriochou, Anastasia; Koika, Vasiliki; Kolisis, Fragiskos N; Papapetropoulos, Andreas; Roussos, Charis

    2006-01-01

    Mastic oil from Pistacia lentiscus var. chia, a natural plant extract traditionally used as a food additive, has been extensively studied for its antimicrobial activity attributed to the combination of its bioactive components. One of them, perillyl alcohol (POH), displays tumor chemopreventive, chemotherapeutic, and antiangiogenic properties. We investigated whether mastic oil would also suppress tumor cell growth and angiogenesis. We observed that mastic oil concentration and time dependently exerted an antiproliferative and proapoptotic effect on K562 human leukemia cells and inhibited the release of vascular endothelial growth factor (VEGF) from K562 and B16 mouse melanoma cells. Moreover, mastic oil caused a concentration-dependent inhibition of endothelial cell (EC) proliferation without affecting cell survival and a significant decrease of microvessel formation both in vitro and in vivo. Investigation of underlying mechanism(s) demonstrated that mastic oil reduced 1) in K562 cells the activation of extracellular signal-regulated kinases 1/2 (Erk1/2) known to control leukemia cell proliferation, survival, and VEGF secretion and 2) in EC the activation of RhoA, an essential regulator of neovessel organization. Overall, our results underscore that mastic oil, through its multiple effects on malignant cells and ECs, may be a useful natural dietary supplement for cancer prevention.

  14. How long bones grow children: Mechanistic paths to variation in human height growth.

    PubMed

    Lampl, Michelle; Schoen, Meriah

    2017-03-01

    Eveleth and Tanner's descriptive documentation of worldwide variability in human growth provided evidence of the interaction between genetics and environment during development that has been foundational to the science of human growth. There remains a need, however, to describe the mechanistic foundations of variability in human height growth patterns. A review of research documenting cellular activities at the endochondral growth plate aims to show how the unique microenvironment and cell functions during the sequential phases of the chondrocyte lifecycle affect long bone elongation, a fundamental source of height growth. There are critical junctures within the chondrocytic differentiation cascade at which environmental influences are integrated and have the ability to influence progression to the hypertrophic chondrocyte phase, the primary driver of long bone elongation. Phenotypic differences in height growth patterns reflect variability in amplitude and frequency of discretely timed hypertrophic cellular expansion events, the cellular basis of saltation and stasis growth biology. Final height is a summary of the dynamic processes carried out by the growth plate cellular machinery. As these cell-level mechanisms unfold in an individual, time-specific manner, there are many critical points at which a genetic growth program can be enhanced or perturbed. Recognizing both the complexity and fluidity of this adaptive system questions the likelihood of a single, optimal growth pattern and instead identifies a larger bandwidth of saltatory frequencies for "normal" growth. Further inquiry into mechanistic sources of variability acting at critical organizational points of chondrogenesis can provide new opportunities for growth interventions. © 2017 Wiley Periodicals, Inc.

  15. Modulation of human endothelial cell proliferation and migration by fucoidan and heparin.

    PubMed

    Giraux, J L; Matou, S; Bros, A; Tapon-Bretaudière, J; Letourneur, D; Fischer, A M

    1998-12-01

    Fucoidan is a sulfated polysaccharide extracted from brown seaweeds. It has anticoagulant and antithrombotic properties and inhibits, as well as heparin, vascular smooth muscle cell growth. In this study, we investigated, in the presence of serum and human recombinant growth factors, the effects of fucoidan and heparin on the growth and migration of human umbilical vein endothelial cells (HUVEC) in culture. We found that fucoidan stimulated fetal bovine serum-induced HUVEC proliferation, whereas heparin inhibited it. In the presence of fibroblast growth factor-1 (FGF-1), both fucoidan and heparin potentiated HUVEC growth. In contrast, fucoidan and heparin inhibited HUVEC proliferation induced by FGF-2, but did not influence the mitogenic activity of vascular endothelial growth factor (VEGF). In the in vitro migration assay from a denuded area of confluent cells, the two sulfated polysaccharides markedly enhanced the migration of endothelial cells in the presence of FGF-1. Finally, a weak inhibitory effect on cell migration was found only with the two polysaccharides at high concentrations (> or = 100 micro/ml) in presence of serum or combined with FGF-2. All together, the results indicated that heparin and fucoidan can be used as tools to further investigate the cellular mechanisms regulating the proliferation and migration of human vascular cells. Moreover, the data already suggest a potential role of fucoidan as a new therapeutic agent of vegetal origin in the vascular endothelium wound repair.

  16. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides. © 2016 Institute of Food Technologists®

  17. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration

    PubMed Central

    Dias, Sergio; Hattori, Koichi; Zhu, Zhenping; Heissig, Beate; Choy, Margaret; Lane, William; Wu, Yan; Chadburn, Amy; Hyjek, Elizabeth; Gill, Muhammad; Hicklin, Daniel J.; Witte, Larry; Moore, M.A.S.; Rafii, Shahin

    2000-01-01

    Emerging data suggest that VEGF receptors are expressed by endothelial cells as well as hematopoietic stem cells. Therefore, we hypothesized that functional VEGF receptors may also be expressed in malignant counterparts of hematopoietic stem cells such as leukemias. We demonstrate that certain leukemias not only produce VEGF but also express functional VEGFR-2 in vivo and in vitro, resulting in the generation of an autocrine loop that may support leukemic cell survival and proliferation. Approximately 50% of freshly isolated leukemias expressed mRNA and protein for VEGFR-2. VEGF165 induced phosphorylation of VEGFR-2 and increased proliferation of leukemic cells, demonstrating these receptors were functional. VEGF165 also induced the expression of MMP-9 by leukemic cells and promoted their migration through reconstituted basement membrane. The neutralizing mAb IMC-1C11, specific to human VEGFR-2, inhibited leukemic cell survival in vitro and blocked VEGF165-mediated proliferation of leukemic cells and VEGF-induced leukemic cell migration. Xenotransplantation of primary leukemias and leukemic cell lines into immunocompromised nonobese diabetic mice resulted in significant elevation of human, but not murine, VEGF in plasma and death of inoculated mice within 3 weeks. Injection of IMC-1C11 inhibited proliferation of xenotransplanted human leukemias and significantly increased the survival of inoculated mice. Interruption of signaling by VEGFRs, particularly VEGFR-2, may provide a novel strategy for inhibiting leukemic cell proliferation. PMID:10953026

  18. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    PubMed

    Cao, Wenqing; Ma, ZhiFan; Rasenick, Mark M; Yeh, ShuYan; Yu, JiangZhou

    2012-01-01

    Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA) on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa) MCF-7 and T47D cells. 17 β-estradiol (E2) enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM) treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2). E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0) as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear) estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1) may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  19. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, andmore » IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.« less

  20. Cross talk between primary human renal tubular cells and endothelial cells in cocultures.

    PubMed

    Tasnim, Farah; Zink, Daniele

    2012-04-15

    Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.

  1. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.

    PubMed

    Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-02-28

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payton-Stewart, Florastina; Tilghman, Syreeta L.; Williams, LaKeisha G.

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets formore » developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  3. Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana.

    PubMed

    Yuan, Chengfu; Wang, Changdong; Wang, Junjie; Kumar, Vikas; Anwar, Firoz; Xiao, Fangxiang; Mushtaq, Gohar; Liu, Yufei; Kamal, Mohammad Amjad; Yuan, Ding

    2016-11-01

    Breast cancer is the second cause of cancer-related death among Women. Current therapies for breast cancer have adverse side-effects. Selenium (Se)-containing polysaccharides have multiple health benefits to humans. Pyracantha fortuneana (P. fortuneana) contains rich Se polysaccharides. We hypothesized that Se-containing polysaccharides from P. fortuneana possess anticancer activity on breast cancer via inhibiting growth and inducing apoptosis. This study aimed to assess the anticancer effect of Se-containing polysaccharides from P. fortuneana and the underlying mechanisms. Se-containing polysaccharides were purified. Their properties and monosaccharide compositions were analyzed. Their effects on cell growth, expression of cycle proteins, apoptosis and apoptosis-related protein, and tumor growth in mouse xenograft model were examined. This extract contained 93.7% (w/w) of carbohydrate, 2.1% (w/w) of uronic acid and 3.7μg/g of Se, and was considered as Se-conjugated polysaccharides (Se-PFPs). In vitro studies showed that treatment of triple negative breast cancer (TNBC) MDA-MB-231 cells with Se-PFPs (1) inhibited cell growth dose-dependently by arresting cells at G2 phase via inhibiting CDC25C-CyclinB1/CDC2 pathway; (2) caused apoptosis associated with increased p53, Bax, Puma and Noxa, decreased Bcl2, increased Bax/Bcl2 ratio and increased activities of caspases 3/9, suggesting its effect on p53-mediated cytochrome c-caspase pathway. Treatment of nude mice bearing MDA-MB-231-derived xenograft tumors with Se-PFPs significantly reduced tumor growth without altering body weight, confirming its antitumor activity without toxic side effects. Se-PFPs enhanced doxorubicin cytotoxic effects. It is concluded that Se-containing polysaccharides from P. fortuneana potently inhibit the growth and induce apoptosis of TNBC cells and can be potential anticancer agent for TNBC. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cytostatic inhibition of cancer cell growth by lignan secoisolariciresinol diglucoside.

    PubMed

    Ayella, Allan; Lim, Soyoung; Jiang, Yu; Iwamoto, Takeo; Lin, Dingbo; Tomich, John; Wang, Weiqun

    2010-11-01

    Our previous study demonstrated that lignan metabolites enterolactone and enterodiol inhibited colonic cancer cell growth by inducing cell cycle arrest and apoptosis. However, the dietary lignans are naturally present as glycoside precursors, such as secoisolariciresinol diglucoside (SDG), which have not been evaluated yet. This study tested the hypothesis that dietary SDG might have a different effect than its metabolites in human colonic SW480 cancer cells. Treatment with SDG at 0 to 40 μmol/L for up to 48 hours resulted in a dose- and time-dependent decrease in cell numbers, which was comparable to enterolactone. The inhibition of cell growth by SDG did not appear to be mediated by cytotoxicity, but by a cytostatic mechanism associated with an increase of cyclin A expression. Furthermore, high-performance liquid chromatography analysis indicated that SDG in the media was much more stable than enterolactone (95% of SDG survival vs 57% of enterolactone after 48-hour treatment). When the cells were treated with either enterolactone or SDG at 40 μmol/L for 48 hours, the intracellular levels of enterolactone, as measured by high-performance liquid chromatography-mass spectrometry/electron spray ionization, were about 8.3 × 10(-8) nmol per cell; but intracellular SDG or potential metabolites were undetectable. Taken together, SDG demonstrated similar effects on cell growth, cytotoxicity, and cell cycle arrest when compared with its metabolite enterolactone. However, the reliable stability and undetectable intracellular SDG in treated cells may suggest that metabolism of SDG, if exposed directly to the colonic cells, could be different from the known degradation by microorganisms in human gut. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2more » and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.« less

  6. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    PubMed

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility

  7. Efficient expression of stable recombinant human insulin-like growth factor-1 fusion with human serum albumin in Chinese hamster ovary cells.

    PubMed

    Wan, Aini; Xu, Dongsheng; Liu, Kedong; Peng, Lin; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2017-08-09

    Insulin-like growth factor-1 (IGF-1) plays a crucial role in cell development, differentiation, and metabolism, and has been a potential therapeutic agent for many diseases. Chinese hamster ovary (CHO) cells are widely used for production of recombinant therapeutic proteins, but the expression level of IGF-1 in CHO cells is very low (1,500 µg/L) and the half-life of IGF-1 in blood circulation is only 4.5 min according to previous studies. Therefore, IGF-1 was fused to long-circulating serum protein human serum albumin (HSA) and expressed in CHO cells. After 8-day fed-batch culture, the expression level of HSA-IGF-1 reached 100 mg/L. The fusion protein HSA-IGF-1 was purified with a recovery of 35% using a two-step chromatographic procedure. According to bioactivity assay, the purified HSA-IGF-1 could stimulate the proliferation of NIH3T3 cells in a dose-dependent fashion and promote the cell-cycle progression. Besides this, HSA-IGF-1 could bind to IGF-1 receptor on cell membrane and activate the intracellular PI3K/AKT signaling pathway. Our study suggested that HSA fusion technology carried out in CHO cells not only provided bioactivity in HSA-IGF-1 for further research but also offered a beneficial strategy to produce other similar cytokines in CHO cells.

  8. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth.

    PubMed

    Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H

    2002-01-01

    A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.

  9. Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470).

    PubMed Central

    Kusaka, M.; Sudo, K.; Matsutani, E.; Kozai, Y.; Marui, S.; Fujita, T.; Ingber, D.; Folkman, J.

    1994-01-01

    Recently, we reported the anti-angiogenic action along with anti-tumour activity of TNP-470 (AGM-1470). In this study, the effect of TNP-470 on the growth of human umbilical vein endothelial (HUVE) cells was examined. TNP-470 inhibited the growth of HUVE cells in a biphasic manner. The inhibition was cytostatic in the first phase (complete inhibition at 300 pg ml-1 to 3 micrograms ml-1 with an IC50 of 15 pg ml-1) and cytotoxic in the second phase (> or = 30 micrograms ml-1). The cytostatic inhibition of HUVE cell growth by TNP-470 was durable after washing out TNP-470 in culture. Incorporation of thymidine but not uridine and leucine by HUVE cells was inhibited in the first phase, while that of all three compounds was inhibited in the second phase. Human and rat endothelial cells among various types of cells were the most sensitive to the cytostatic inhibition, while differences in the cytotoxic inhibition were minimal. These results suggest that TNP-470 exerts its specific anti-angiogenic action by inhibiting cytostatically growth of endothelial cells in a relatively specific manner. PMID:8297716

  10. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    PubMed

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells.

    PubMed

    Sudhagar, S; Sathya, S; Anuradha, R; Gokulapriya, G; Geetharani, Y; Lakshmi, B S

    2018-02-01

    To examine the potential of ferulic acid and 4-vinylguaiacol for inhibiting epidermal growth factor receptor (EGFR) in human breast cancer cells in vitro. Ferulic acid and 4-vinylguaiacol limit the EGF (epidermal growth factor)-induced breast cancer proliferation and new DNA synthesis. Western blot analysis revealed both ferulic acid and 4-vinylguaiacol exhibit sustained inhibition of EGFR activation through down-regulation of Tyr 1068 autophosphorylation. Molecular docking analysis shows ferulic acid forming hydrogen bond interaction with Lys 745 and Met 793 whereas, 4-vinylguaiacol forms two hydrogen bonds with Phe 856 and exhibits stronger hydrophobic interactions with multiple amino acid residues at the EGFR kinase domain. Ferulic acid and 4-vinylguaiacol could serve as a potential structure for the development of new small molecule therapeutics against EGFR.

  12. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  13. Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells.

    PubMed

    He, Ke; Qu, Hu; Xu, Li-Nan; Gao, Jun; Cheng, Fu-Yi; Xiang, Peng; Zhou, Can-Quan

    2016-10-01

    To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer. © 2016 The Author(s).

  14. Developmental insights from early mammalian embryos and core signaling pathways that influence human pluripotent cell growth and differentiation.

    PubMed

    Chen, Kevin G; Mallon, Barbara S; Johnson, Kory R; Hamilton, Rebecca S; McKay, Ronald D G; Robey, Pamela G

    2014-05-01

    Human pluripotent stem cells (hPSCs) have two potentially attractive applications: cell replacement-based therapies and drug discovery. Both require the efficient generation of large quantities of clinical-grade stem cells that are free from harmful genomic alterations. The currently employed colony-type culture methods often result in low cell yields, unavoidably heterogeneous cell populations, and substantial chromosomal abnormalities. Here, we shed light on the structural relationship between hPSC colonies/embryoid bodies and early-stage embryos in order to optimize current culture methods based on the insights from developmental biology. We further highlight core signaling pathways that underlie multiple epithelial-to-mesenchymal transitions (EMTs), cellular heterogeneity, and chromosomal instability in hPSCs. We also analyze emerging methods such as non-colony type monolayer (NCM) and suspension culture, which provide alternative growth models for hPSC expansion and differentiation. Furthermore, based on the influence of cell-cell interactions and signaling pathways, we propose concepts, strategies, and solutions for production of clinical-grade hPSCs, stem cell precursors, and miniorganoids, which are pivotal steps needed for future clinical applications. Published by Elsevier B.V.

  15. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function.

    PubMed

    Broxmeyer, Hal E; Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun; Chan, Rebecca J

    2013-03-15

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity.

  16. Paracrine-Mediated Neuroprotection and Neuritogenesis of Axotomised Retinal Ganglion Cells by Human Dental Pulp Stem Cells: Comparison with Human Bone Marrow and Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Mead, Ben; Logan, Ann; Berry, Martin

    2014-01-01

    We have investigated and compared the neurotrophic activity of human dental pulp stem cells (hDPSC), human bone marrow-derived mesenchymal stem cells (hBMSC) and human adipose-derived stem cells (hAMSC) on axotomised adult rat retinal ganglion cells (RGC) in vitro in order to evaluate their therapeutic potential for neurodegenerative conditions of RGC. Using the transwell system, RGC survival and length/number of neurites were quantified in coculture with stem cells in the presence or absence of specific Fc-receptor inhibitors to determine the role of NGF, BDNF, NT-3, VEGF, GDNF, PDGF-AA and PDGF-AB/BB in stem cell-mediated RGC neuroprotection and neuritogenesis. Conditioned media, collected from cultured hDPSC/hBMSC/hAMSC, were assayed for the secreted growth factors detailed above using ELISA. PCR array determined the hDPSC, hBMSC and hAMSC expression of genes encoding 84 growth factors and receptors. The results demonstrated that hDPSC promoted significantly more neuroprotection and neuritogenesis of axotomised RGC than either hBMSC or hAMSC, an effect that was neutralized after the addition of specific Fc-receptor inhibitors. hDPSC secreted greater levels of various growth factors including NGF, BDNF and VEGF compared with hBMSC/hAMSC. The PCR array confirmed these findings and identified VGF as a novel potentially therapeutic hDPSC-derived neurotrophic factor (NTF) with significant RGC neuroprotective properties after coculture with axotomised RGC. In conclusion, hDPSC promoted significant multi-factorial paracrine-mediated RGC survival and neurite outgrowth and may be considered a potent and advantageous cell therapy for retinal nerve repair. PMID:25290916

  17. [Effect of EMP-1 gene on human esophageal cancer cell line].

    PubMed

    Wang, Hai-tao; Liu, Zhi-hua; Wang, Xiu-qin; Wu, Min

    2002-03-01

    EMP-1 was selected from a series of differential expressed genes obtained from cDNA microarray in the authors' lab. Epithelial membrane pnteiu-1 gene (EMP-1) was expressed 6 fold lower in esophageal cancer than in normal tissue. The authors further designed the experiment to study the effect of human EMP-1 gene on human esophageal cancer cell line in order to explain the function of this gene on the carcinogensis and progression esophageal cancer. EMP-1 gene was cloned into eukaryotic vector and transfected into the human esophageal cancer cell line. The transfection effect was qualified by Western blot and RT-PCR method. The cell growth curve was observed and the cell cycle was checked by FACS method. EMP-1 was transfected into EC9706 cell line and its expression was up-regulated. The cell growth is accelerated and expression of EMP-1 is linked to induction of S phase arrest. EMP-1 gene has some relationship with carcinogenesis of esophagus.

  18. Connective tissue growth factor is a positive regulator of epithelial-mesenchymal transition and promotes the adhesion with gastric cancer cells in human peritoneal mesothelial cells.

    PubMed

    Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Na, Di; Li, Feng; Li, Jia-Bin; Sun, Zhe; Xu, Hui-Mian

    2013-01-01

    Connective tissue growth factor (CTGF) is involved in human cancer development and progression. Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. In this study, we wished to investigate the role of CTGF in EMT of peritoneal mesothelial cells and the effects of CTGF on adhesion of gastric cancer cells to mesothelial cells. Human peritoneal mesothelial cells (HPMCs) were cultured with TGF-β1 or various concentrations of CTGF for different time. The EMT process was monitored by morphology. Real-time RT-PCR and Western blot were used to evaluate the expression of vimentin, α-SMA , E-cadherin and β-catenin. RNA interference was used to achieve selective and specific knockdown of CTGF. We demonstrated that CTGF induced EMT of mesothelial cells in a dose- and time-dependent manner. HPMCs were exposed to TGF-β1 also underwent EMT which was associated with the induction of CTGF expression. Transfection with CTGF siRNA was able to reverse the EMT partially after treatment of TGF-β1. Moreover, the induced EMT of HPMCs was associated with an increased adhesion of gastric cancer cells to mesothelial cells. These findings suggest that CTGF is not only an important mediator but a potent activator of EMT in peritoneal mesothelial cells, which in turn promotes gastric cancer cell adhesion to peritoneum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    PubMed

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1.

    PubMed

    Guo, Yue; Shu, Limin; Zhang, Chengyue; Su, Zheng-Yuan; Kong, Ah-Ng Tony

    2015-03-15

    Colorectal cancer remains the most prevalent malignancy in humans. The impact of epigenetic alterations on the development of this complex disease is now being recognized. The dynamic and reversible nature of epigenetic modifications makes them a promising target in colorectal cancer chemoprevention and treatment. Curcumin (CUR), the major component in Curcuma longa, has been shown as a potent chemopreventive phytochemical that modulates various signaling pathways. Deleted in lung and esophageal cancer 1 (DLEC1) is a tumor suppressor gene with reduced transcriptional activity and promoter hypermethylation in various cancers, including colorectal cancer. In the present study, we aimed to investigate the inhibitory role of DLEC1 in anchorage-independent growth of the human colorectal adenocarcinoma HT29 cells and epigenetic regulation by CUR. Specifically, we found that CUR treatment inhibited colony formation of HT29 cells, whereas stable knockdown of DLEC1 using lentiviral short hairpin RNA vector increased cell proliferation and colony formation. Knockdown of DLEC1 in HT29 cells attenuated the ability of CUR to inhibit anchorage-independent growth. Methylation-specific polymerase chain reaction (MSP), bisulfite genomic sequencing, and methylated DNA immunoprecipitation revealed that CUR decreased CpG methylation of the DLEC1 promoter in HT29 cells after 5 days of treatment, corresponding to increased mRNA expression of DLEC1. Furthermore, CUR decreased the protein expression of DNA methyltransferases and subtypes of histone deacetylases (HDAC4, 5, 6, and 8). Taken together, our results suggest that the inhibitory effect of CUR on anchorage-independent growth of HT29 cells could, at least in part, involve the epigenetic demethylation and up-regulation of DLEC1. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors.

    PubMed

    Fu, Binqing; Zhou, Yonggang; Ni, Xiang; Tong, Xianhong; Xu, Xiuxiu; Dong, Zhongjun; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2017-12-19

    Natural killer (NK) cells are present in large populations at the maternal-fetal interface during early pregnancy. However, the role of NK cells in fetal growth is unclear. Here, we have identified a CD49a + Eomes + subset of NK cells that secreted growth-promoting factors (GPFs), including pleiotrophin and osteoglycin, in both humans and mice. The crosstalk between HLA-G and ILT2 served as a stimulus for GPF-secreting function of this NK cell subset. Decreases in this GPF-secreting NK cell subset impaired fetal development, resulting in fetal growth restriction. The transcription factor Nfil3, but not T-bet, affected the function and the number of this decidual NK cell subset. Adoptive transfer of induced CD49a + Eomes + NK cells reversed impaired fetal growth and rebuilt an appropriate local microenvironment. These findings reveal properties of NK cells in promoting fetal growth. In addition, this research proposes approaches for therapeutic administration of NK cells in order to reverse restricted nourishments within the uterine microenvironment during early pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    PubMed

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  3. Metalloproteinase-dependent transforming growth factor-alpha release mediates neurotensin-stimulated MAP kinase activation in human colonic epithelial cells.

    PubMed

    Zhao, Dezheng; Zhan, Yanai; Koon, Hon Wai; Zeng, Huiyan; Keates, Sarah; Moyer, Mary P; Pothoulakis, Charalabos

    2004-10-15

    Expression of the neuropeptide neurotensin (NT) and its high affinity receptor (NTR1) is increased during the course of Clostridium difficile toxin A-induced acute colitis, and NTR1 antagonism attenuates the severity of toxin A-induced inflammation. We recently demonstrated in non-transformed human colonic epithelial NCM460 cells that NT treatment caused activation of a Ras-mediated MAP kinase pathway that significantly contributes to NT-induced interleukin-8 (IL-8) secretion. Here we used NCM460 cells, which normally express low levels of NTR1, and NCM460 cells stably transfected with NTR1 to identify the upstream signaling molecules involved in NT-NTR1-mediated MAP kinase activation. We found that inhibition of the epidermal growth factor receptor (EGFR) by either an EGFR neutralizing antibody or by its specific inhibitor AG1478 (0.2 microm) blocked NT-induced MAP kinase activation. Moreover, NT stimulated tyrosine phosphorylation of the EGFR, and pretreatment with a broad spectrum metalloproteinase inhibitor batimastat reduced NT-induced MAP kinase activation. Using neutralizing antibodies against the EGFR ligands EGF, heparin-binding-EGF, transforming growth factor-alpha (TGFalpha), or amphiregulin we have shown that only the anti-TGFalpha antibody significantly decreases NT-induced phosphorylation of EGFR and MAP kinases. Furthermore, inhibition of the EGF receptor by AG1478 significantly reduced NT-induced IL-8 promoter activity and IL-8 secretion. This is the first report demonstrating that NT binding to NTR1 transactivates the EGFR and that this response is linked to NT-mediated proinflammatory signaling. Our findings indicate that matrix metalloproteinase-mediated release of TGFalpha and subsequent EGFR transactivation triggers a NT-mediated MAP kinase pathway that leads to IL-8 gene expression in human colonic epithelial cells.

  4. Density-dependent regulation of growth of BSC-1 cells in cell culture: growth inhibitors formed by the cells.

    PubMed Central

    Holley, R W; Armour, R; Baldwin, J H

    1978-01-01

    Inhibitors formed by a monkey epithelial cell line, BSC-1, play an important role in limiting growth at high cell densities. At least three inhibitors are formed: lactic acid, ammonia, and an unidentified inhibitor that may be an unstable protein. The unidentified inhibitor is destroyed by shaking the conditioned medium, by bubbling gas through the medium, or by heating or storing the medium in the absence of cells. The concentrations of lactic acid and ammonia that accumulate in conditioned medium inhibit growth when added to fresh medium. These results, together with earlier studies, indicate that density-dependent regulation of growth of BSC-1 cells results from the combined effects of (a) inhibitors formed by the cells, (b) decreased availability of receptor sites for serum growth factors as the cells become crowded, and (c) limiting concentrations of low molecular weight nutrients in the medium. In contrast, density-dependent regulation of growth in 3T3 mouse embryo fibroblasts results almost entirely from inactivation of serum factors. PMID:273914

  5. Picropodophyllin inhibits the growth of Ewing's sarcoma cells through the insulin‑like growth factor‑1 receptor/Akt signaling pathway.

    PubMed

    Wu, Yong-Tao; Wang, Bao-Jun; Miao, Sheng-Wu; Gao, Jian-Jun

    2015-11-01

    Ewing's sarcoma (ES) is the second most common type of pediatric bone tumor, and is associated with a poor prognosis. Picropodophyllin (PPP), a novel selective inhibitor of insulin‑like growth factor‑1 receptor (IGF‑1R), is able to strongly inhibit various types of cancers. However, the effect of IGF‑1R on ES remains unclear. Following treatment with various concentrations of PPP for various times, cell viability was determined using an MTT assay. In addition, cell proliferation and apoptosis was investigated separately by bromodeoxyuridine staining and flow cytometry, respectively. The PPP‑associated signaling pathway was also investigated. The results of the present study suggested that PPP inhibited cell proliferation and viability of A673 and SK‑ES‑1 human Ewing's sarcoma cells in a dose- and time‑dependent manner. In addition, cell apoptosis rates were increased following treatment with PPP. Further investigation of the underlying mechanism revealed that PPP inhibited Akt phosphorylation. Fumonisin B1, an Akt‑specific activator, reversed the inhibitory effects of PPP on cell growth. Furthermore, the results suggested that PPP decreased the expression levels of IGF‑1R, a common activator of Akt signaling. PPP inhibited the growth of human Ewing's sarcoma cells by targeting the IGF‑1R/Akt signaling pathway. Therefore, PPP may prove useful in the development of an effective strategy for the treatment of Ewing's sarcoma.

  6. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.

  7. Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles

    PubMed Central

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-01-01

    Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  8. S100A8/A9 (Calprotectin) Negatively Regulates G2/M Cell Cycle Progression and Growth of Squamous Cell Carcinoma

    PubMed Central

    Khammanivong, Ali; Wang, Chengxing; Sorenson, Brent S.; Ross, Karen F.; Herzberg, Mark C.

    2013-01-01

    Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches. PMID:23874958

  9. Bidirectional enhancing activities between human T cell leukemia-lymphoma virus type I and human cytomegalovirus in human term syncytiotrophoblast cells cultured in vitro.

    PubMed

    Tóth, F D; Aboagye-Mathiesen, G; Szabó, J; Liu, X; Mosborg-Petersen, P; Kiss, J; Hager, H; Zdravkovic, M; Andirkó, I; Aranyosi, J

    1995-12-01

    The syncytiotrophoblast layer of the human placenta has an important role in limiting transplacental viral spread from mother to fetus. Human cytomegalovirus (HCMV) is capable of establishing a latent infection in syncytiotrophoblast cells, with restriction of gene expression to immediate-early and early proteins. We analyzed the extent of replication of human T cell leukemia-lymphoma virus type I (HTLV-I) in human term syncytiotrophoblasts infected with HTLV-I alone or coinfected with HTLV-I and HCMV. Although syncytiotrophoblasts could be infected with cell-free HTLV-I, no viral protein expression was found in the singly infected cells. On the contrary, coinfection of the cells with HTLV-I and HCMV resulted in simultaneous replication of both viruses. Bidirectional enhancing activities between HTLV-I and HCMV were mediated primarily by the Tax and immediate-early proteins, respectively. The stimulatory effect of HTLV-I Tax on HCMV replication appeared to be mediated partly by tumor necrosis factor beta and transforming growth factor beta-1. We observed formation of pseudotypes with HTLV-I nucleocapsids within HCMV envelopes, whereas HCMV was not pseudotyped by HTLV-I envelopes in dually infected syncytiotrophoblast cells. Our data suggest that in vivo dual infection of syncytiotrophoblast cells with HTLV-I and HCMV may facilitate the transplacental transmission of both viruses.

  10. [5-aza-2'-deoxycytidine-induced inhibition of CDH13 expression and its inhibitory effect on methylation status in human colon cancer cells in vitro and on growth of xenograft in nude mice].

    PubMed

    Ren, Jian-zhen; Huo, Ji-rong

    2012-01-01

    To determine the inhibitory effect of 5-aza-2'-deoxycytidine (5-Aza-CdR) on the growth of human colon carcinoma cells and xenografts in nude mice, to observe its effect on CDH13 gene expression and methylation in the xenografts, and to explore the possible mechanisms. Human colon carcinoma cell line HCT116 cells were treated with 5-Aza-CdR, and the cell morphology was observe by phase contrast microscopy. The cell growth was assessed by MTT assay. A tumor-bearing mouse model was generated by subcutaneous inoculation of human colon carcinoma HCT116 cells into nude mice. The tumor growth in the nude mice was observed, the CDH13 gene expression and its methylation status in the tumors were detected using methylation specific PCR (MSP), RT-PCR, Western blotting and immunohistochemistry. After treatment with 5-Aza-CdR, the inhibition rate of the growth of cultured HCT116 cells was increased as the concentration was increasing. The growth of the xenografts in nude mice was significantly inhibited, and the methylated CDH13 gene was reactivated. After 4 weeks of 5-Aza-CdR treatment, no significant difference was found between the body weights of nude mice in the 5-Aza-CdR group [(18.06 ± 1.29) g] and control group [(17.07 ± 0.84) g], (P > 0.10), and the average volume of xenografts of the 5-Aza-CdR group was (907.00 ± 87.29) mm(3), significantly smaller than the (1370.93 ± 130.20) mm(3) in the control group (P < 0.005). No expression of CDH13 gene was found in the control group. The expression of CDH13 gene in the 5-Aza-CdR group was increased along with the increasing concentration of 5-Aza-CdR. 5-Aza-CdR inhibits the growth of human colon cancer cells in culture and in nude mice, and induces the cancer cells to re-express CDH13 in nude mice. Its mechanism may be that demethylation of the methylated CDH13 promoter induced by 5-Aza-CdR restores CDH13 expression and thus inhibits the tumor growth in nude mice.

  11. Preparative electrophoresis of cultured human cells: Effect of cell cycle phase

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.

    1985-01-01

    Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.

  12. Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering.

    PubMed

    Hsieh-Bonassera, Nancy D; Wu, Iwen; Lin, Jonathan K; Schumacher, Barbara L; Chen, Albert C; Masuda, Koichi; Bugbee, William D; Sah, Robert L

    2009-11-01

    To determine if selected culture conditions enhance the expansion and redifferentiation of chondrocytes isolated from human osteoarthritic cartilage with yields appropriate for creation of constructs for treatment of joint-scale cartilage defects, damage, or osteoarthritis. Chondrocytes isolated from osteoarthritic cartilage were analyzed to determine the effects of medium supplement on cell expansion in monolayer and then cell redifferentiation in alginate beads. Expansion was assessed as cell number estimated from DNA, growth rate, and day of maximal growth. Redifferentiation was evaluated quantitatively from proteoglycan and collagen type II content, and qualitatively by histology and immunohistochemistry. Using either serum or a growth factor cocktail (TFP: transforming growth factor beta1, fibroblast growth factor 2, and platelet-derived growth factor type bb), cell growth rate in monolayer was increased to 5.5x that of corresponding conditions without TFP, and cell number increased 100-fold within 17 days. In subsequent alginate bead culture with human serum or transforming growth factor beta1 and insulin-transferrin-selenium-linoleic acid-bovine serum albumin, redifferentiation was enhanced with increased proteoglycan and collagen type II production. Effects of human serum were dose dependent, and 5% or higher induced formation of chondron-like structures with abundant proteoglycan-rich matrix. Chondrocytes from osteoarthritic cartilage can be stimulated to undergo 100-fold expansion and then redifferentiation, suggesting that they may be useful as a cell source for joint-scale cartilage tissue engineering.

  13. Wound-healing potential of human umbilical cord blood-derived mesenchymal stromal cells in vitro--a pilot study.

    PubMed

    You, Hi-Jin; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2015-11-01

    Our previous studies demonstrated that human bone marrow-derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-β) production were compared among the three cell groups. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-β production. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Yung-Wei; Institute of Medicine, Chung Shan Medical University, Taiwan; Lin, Tseng-Hsi

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38more » mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.« less

  15. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Keitaro; Department of Longevity and Aging Research, Gifu International Institute of Biotechnology, 1-1 Naka-fudogaoka, Kakamigahara, Gifu 504-0838; Ohhashi, Riyako

    2008-08-29

    SIRT1, which belongs to the family of type III histone deacetylase, is implicated in diverse cellular processes. We have determined the expression levels of SIRT1 in human prostate cancer cell lines and have examined the roles of SIRT1 in cell growth and chemoresistance. SIRT1 expression was markedly up-regulated in androgen-refractory PC3 and DU145 cells compared with androgen-sensitive LNCaP cells and its expression level was correlated with cell growth in PC3 cells. Treatment with a SIRT1 inhibitor, sirtinol, inhibited cell growth and increased sensitivity to camptothecin and cisplatin. Silencing of SIRT1 expression by siRNA also suppressed cell proliferation and reduced camptothecinmore » resistance in PC3 cells, mimicking the chemosensitizing effect caused by sirtinol. Also in DU145 cells, sirtinol treatment enhanced sensitivity to camptothecin and cisplatin. These results suggest that up-regulation of SIRT1 expression may play an important role in promoting cell growth and chemoresistance in androgen-refractory PC3 and DU145 cells.« less

  16. Somatostatin Receptor-1 Induces Cell Cycle Arrest and Inhibits Tumor Growth in Pancreatic Cancer

    PubMed Central

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F. Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E.

    2010-01-01

    Functional somatostatin receptors (SSTRs) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G0/G1 growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n=5, p<0.05, t-test), and inhibited tumor weight by 69% and 47%, (n=5, p<0.05, t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  17. Hematopoietic Colony Formation from Human Growth Factor-Dependent TF1 Cells and Human Cord Blood Myeloid Progenitor Cells Depends on SHP2 Phosphatase Function

    PubMed Central

    Etienne-Julan, Maryse; Gotoh, Akihiko; Braun, Stephen E.; Lu, Li; Cooper, Scott; Feng, Gen-Sheng; Li, Xing Jun

    2013-01-01

    The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity. PMID:23082805

  18. Human CD34(lo)CD133(lo) fetal liver cells support the expansion of human CD34(hi)CD133(hi) hematopoietic stem cells.

    PubMed

    Yong, Kylie Su Mei; Keng, Choong Tat; Tan, Shu Qi; Loh, Eva; Chang, Kenneth Te; Tan, Thiam Chye; Hong, Wanjin; Chen, Qingfeng

    2016-09-01

    We have recently discovered a unique CD34(lo)CD133(lo) cell population in the human fetal liver (FL) that gives rise to cells in the hepatic lineage. In this study, we further characterized the biological functions of FL CD34(lo)CD133(lo) cells. Our findings show that these CD34(lo)CD133(lo) cells express markers of both endodermal and mesodermal lineages and have the capability to differentiate into hepatocyte and mesenchymal lineage cells by ex vivo differentiation assays. Furthermore, we show that CD34(lo)CD133(lo) cells express growth factors that are important for human hematopoietic stem cell (HSC) expansion: stem cell factor (SCF), insulin-like growth factor 2 (IGF2), C-X-C motif chemokine 12 (CXCL12), and factors in the angiopoietin-like protein family. Co-culture of autologous FL HSCs and allogenic HSCs derived from cord blood with CD34(lo)CD133(lo) cells supports and expands both types of HSCs.These findings are not only essential for extending our understanding of the HSC niche during the development of embryonic and fetal hematopoiesis but will also potentially benefit adult stem cell transplantations in clinics because expanded HSCs demonstrate the same capacity as primary cells to reconstitute the human immune system and mediate long-term hematopoiesis in vivo. Together, CD34(lo)CD133(lo) cells not only serve as stem/progenitor cells for liver development but are also an essential component of the HSC niche in the human FL.

  19. Development of a Xeno-Free Feeder-Layer System from Human Umbilical Cord Mesenchymal Stem Cells for Prolonged Expansion of Human Induced Pluripotent Stem Cells in Culture.

    PubMed

    Zou, Qing; Wu, Mingjun; Zhong, Liwu; Fan, Zhaoxin; Zhang, Bo; Chen, Qiang; Ma, Feng

    2016-01-01

    Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.

  20. Development of a Xeno-Free Feeder-Layer System from Human Umbilical Cord Mesenchymal Stem Cells for Prolonged Expansion of Human Induced Pluripotent Stem Cells in Culture

    PubMed Central

    Zou, Qing; Wu, Mingjun; Zhong, Liwu; Fan, Zhaoxin; Zhang, Bo; Chen, Qiang; Ma, Feng

    2016-01-01

    Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells. PMID:26882313

  1. Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro.

    PubMed

    Griffiths, Sarah; Baraniak, Priya R; Copland, Ian B; Nerem, Robert M; McDevitt, Todd C

    2013-12-01

    Multipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown. MSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to "rescue" the proliferative capacity of MSCs. hPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS. hPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells.

    PubMed

    Xu, Dongchao; Liu, Ajuan; Wang, Xuan; Chen, Yidan; Shen, Yunyun; Tan, Zhou; Qiu, Mengsheng

    2018-05-01

    Glioblastoma (GBM) is the most common primary malignancy of the central nervous system (CNS) with <10% 5-year survival rate. The growth and invasion of GBM cells into normal brain make the resection and treatment difficult. A better understanding of the biology of GBM cells is crucial to the targeted therapies for the disease. In this study, we identified Septin9 (SEPT9) and Septin2 (SEPT2) as GBM-related genes through integrated multi-omics analysis across independent transcriptomic and proteomic studies. Further studies revealed that expression of SEPT9 and SEPT2 was elevated in glioma tissues and cell lines (A172, U87-MG). Knockdown of SEPT9 and SEPT2 in A172/U87-MG was able to inhibit GBM cell proliferation and arrest cell cycle progression in the S phase in a synergistic mechanism. Moreover, suppression of SEPT9 and SEPT2 decreased the GBM cell invasive capability and significantly impaired the growth of glioma xenografts in nude mice. Furthermore, the decrease in GBM cell growth caused by SEPT9 and SEPT2 RNAi appears to involve two parallel signaling pathway including the p53/p21 axis and MEK/ERK activation. Together, our integration of multi-omics analysis has revealed previously unrecognized synergistic role of SEPT9 and SEPT2 in GBM, and provided novel insights into the targeted therapy of GBM.

  3. Generation of Oligodendrogenic Spinal Neural Progenitor Cells From Human Induced Pluripotent Stem Cells.

    PubMed

    Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G

    2017-08-14

    This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  4. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.

    PubMed

    Zammit, C; Coope, R; Gomm, J J; Shousha, S; Johnston, C L; Coombes, R C

    2002-04-08

    Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.

  5. Monoclonal Antibody and an Antibody-Toxin Conjugate to a Cell Surface Proteoglycan of Melanoma Cells Suppress in vivo Tumor Growth

    NASA Astrophysics Data System (ADS)

    Bumol, T. F.; Wang, Q. C.; Reisfeld, R. A.; Kaplan, N. O.

    1983-01-01

    A monoclonal antibody directed against a cell surface chondroitin sulfate proteoglycan of human melanoma cells, 9.2.27, and its diphtheria toxin A chain (DTA) conjugate were investigated for their effects on in vitro protein synthesis and in vivo tumor growth of human melanoma cells. The 9.2.27 IgG and its DTA conjugate display similar serological activities against melanoma target cells but only the conjugate can induce consistent in vitro inhibition of protein synthesis and toxicity in M21 melanoma cells. However, both 9.2.27 IgG and its DTA conjugate effect significant suppression of M21 tumor growth in vivo in an immunotherapy model of a rapidly growing tumor in athymic nu/nu mice, suggesting that other host mechanisms may mediate monoclonal antibody-induced tumor suppression.

  6. Taspine isolated from Radix et Rhizoma Leonticis inhibits growth of human umbilical vein endothelial cell (HUVEC) by inducing its apoptosis.

    PubMed

    Zhang, Yanmin; He, Langchong; Zhou, Yali

    2008-01-01

    The present study was to evaluate the effects of taspine isolated from Radix et Rhizoma Leonticsi on the growth and apoptosis of human umbilical vein endothelial cell (HUVEC) line by MTT and flow cytometer, respectively. At the same time, a series of changes were observed in HUVEC treated by taspine, including microstructure, protein expression of bax, bcl-2 and VEGF. The change of microstructure was observed by transmission electron microscope (TEM). The protein expression of bax and bcl-2 was detected by immunohistochemistry (IHC), and VEGF protein secreted was determined by enzyme-linked immunosorbent assay (ELISA). The results showed taspine could inhibit growth and induce apoptosis of HUVEC in a dose-dependent manner. Cell cycle was significantly stopped at the S phase. Under electronic microscope, the morphology of HUVEC treated with taspine showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. Bcl-2 and VEGF expressions were decreased and bax expression was increased. All these results demonstrate that taspine has an inhibitory effect on growth of HUVEC and can induce its apoptosis.

  7. Growth regulation of simian and human AIDS-related non-Hodgkin's lymphoma cell lines by TGF-β1 and IL-6

    PubMed Central

    Ruff, Kristin R; Puetter, Adriane; Levy, Laura S

    2007-01-01

    Background AIDS-related non-Hodgkin's lymphoma (AIDS-NHL) is the second most frequent cancer associated with AIDS, and is a frequent cause of death in HIV-infected individuals. Experimental analysis of AIDS-NHL has been facilitated by the availability of an excellent animal model, i.e., simian Acquired Immunodeficiency Syndrome (SAIDS) in the rhesus macaque consequent to infection with simian immunodeficiency virus. A recent study of SAIDS-NHL demonstrated a lymphoma-derived cell line to be sensitive to the growth inhibitory effects of the ubiquitous cytokine, transforming growth factor-beta (TGF-beta). The authors concluded that TGF-beta acts as a negative growth regulator of the lymphoma-derived cell line and, potentially, as an inhibitory factor in the regulatory network of AIDS-related lymphomagenesis. The present study was conducted to assess whether other SAIDS-NHL and AIDS-NHL cell lines are similarly sensitive to the growth inhibitory effects of TGF-beta, and to test the hypothesis that interleukin-6 (IL-6) may represent a counteracting positive influence in their growth regulation. Methods Growth stimulation or inhibition in response to cytokine treatment was quantified using trypan blue exclusion or colorimetric MTT assay. Intracellular flow cytometry was used to analyze the activation of signaling pathways and to examine the expression of anti-apoptotic proteins and distinguishing hallmarks of AIDS-NHL subclass. Apoptosis was quantified by flow cytometric analysis of cell populations with sub-G1 DNA content and by measuring activated caspase-3. Results Results confirmed the sensitivity of LCL8664, an immunoblastic SAIDS-NHL cell line, to TGF-beta1-mediated growth inhibition, and further demonstrated the partial rescue by simultaneous treatment with IL-6. IL-6 was shown to activate STAT3, even in the presence of TGF-beta1, and thereby to activate proliferative and anti-apoptotic pathways. By comparison, human AIDS-NHL cell lines differed in their

  8. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate

    PubMed Central

    Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Wiemer, Nicolas; Ciotkowska, Anna; Rutz, Beata; Waidelich, Raphaela; Strittmatter, Frank; Liu, Chunxiao; Stief, Christian G.; Hennenberg, Martin

    2016-01-01

    Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients’ adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1–10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under

  9. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate.

    PubMed

    Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Wiemer, Nicolas; Ciotkowska, Anna; Rutz, Beata; Waidelich, Raphaela; Strittmatter, Frank; Liu, Chunxiao; Stief, Christian G; Hennenberg, Martin

    2016-01-01

    Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients' adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1-10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under experimental

  10. Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line.

    PubMed

    Mileo, Anna Maria; Di Venere, Donato; Abbruzzese, Claudia; Miccadei, Stefania

    2015-01-01

    Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16(INK4a) and p21(Cip1/Waf1) in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy.

  11. Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line

    PubMed Central

    Di Venere, Donato

    2015-01-01

    Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16INK4a and p21Cip1/Waf1 in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy. PMID:26180585

  12. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells

    PubMed Central

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Wong, Emily B; Suleman, Moosa; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-01

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.001 PMID:28130921

  13. Liquiritin (LT) exhibits suppressive effects against the growth of human cervical cancer cells through activating Caspase-3 in vitro and xenograft mice in vivo.

    PubMed

    He, She-Hong; Liu, Hong-Gai; Zhou, Yu-Fei; Yue, Qing-Fen

    2017-08-01

    Cervical cancer is one of the most common female malignancies worldwide. Liquiritin (LT), a major constituent of Glycyrrhiza Radix, possesses a variety of pharmacological activities, including anti-cancer, anti-oxidative, anti-inflammatory and neuro-protective effects. However, its role in human cervical cancer remains to be elusive. In our study, we found that LT suppressed cervical cancer cell migration, invasion and cloning ability with little cytotoxicity to human normal cells. In addition, apoptosis was induced by LT in cervical cancer cells through activation of Caspase-3 and poly ADP-ribose polymerase (PARP) cleavage. LT-triggered apoptosis was dependent on extrinsic and intrinsic pathways, which were relied on Fas-associated protein with death domain (FADD)- and Bcl-2/Bax-regulated pathways, leading to Caspase-8 and Caspase-9 cleavage, respectively. LT was found to increase FADD expression, while reduce Bcl-2 expression, contributing to Caspase-3 cleavage. And tumor suppressors, p21 and p53, were enhanced after LT treatment, inhibiting the growth of cervical cancer cells in vitro. Significantly, in vivo study suggested that tumor growth was impeded by LT in a dose-dependent manner through enhancing apoptosis. Together, the data here revealed that LT was an effective and promising candidate for preventing human cervical cancer progression via apoptosis enhancement. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  15. Standardized cryopreservation of human primary cells.

    PubMed

    Ramos, Thomas V; Mathew, Aby J; Thompson, Maria L; Ehrhardt, Rolf O

    2014-09-02

    Cryopreservation is the use of low temperatures to preserve structurally intact living cells. The cells that survive the thermodynamic journey from the 37 °C incubator to the -196 °C liquid nitrogen storage tank are free from the influences of time. Thus, cryopreservation is a critical component of cell culture and cell manufacturing protocols. Successful cryopreservation of human cells requires that the cells be derived from patient samples that are collected in a standardized manner, and carefully handled from blood draw through cell isolation. Furthermore, proper equipment must be in place to ensure consistency, reproducibility, and sterility. In addition, the correct choice and amount of cryoprotectant agent must be added at the correct temperature, and a controlled rate of freezing (most commonly 1 °C/min) must be applied prior to a standardized method of cryogenic storage. This appendix describes how human primary cells can be frozen for long-term storage and thawed for growth in a tissue culture vessel. Copyright © 2014 John Wiley & Sons, Inc.

  16. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro

    PubMed Central

    Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C

    2013-01-01

    Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. PMID:23593935

  17. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  18. Wharton's Jelly Derived Mesenchymal Stem Cells: Comparing Human and Horse.

    PubMed

    Merlo, Barbara; Teti, Gabriella; Mazzotti, Eleonora; Ingrà, Laura; Salvatore, Viviana; Buzzi, Marina; Cerqueni, Giorgia; Dicarlo, Manuela; Lanci, Aliai; Castagnetti, Carolina; Iacono, Eleonora

    2018-08-01

    Wharton's jelly (WJ) is an important source of mesenchymal stem cells (MSCs) both in human and other animals. The aim of this study was to compare human and equine WJMSCs. Human and equine WJMSCs were isolated and cultured using the same protocols and culture media. Cells were characterized by analysing morphology, growth rate, migration and adhesion capability, immunophenotype, differentiation potential and ultrastructure. Results showed that human and equine WJMSCs have similar ultrastructural details connected with intense synthetic and metabolic activity, but differ in growth, migration, adhesion capability and differentiation potential. In fact, at the scratch assay and transwell migration assay, the migration ability of human WJMSCs was higher (P < 0.05) than that of equine cells, while the volume of spheroids obtained after 48 h of culture in hanging drop was larger than the volume of equine ones (P < 0.05), demonstrating a lower cell adhesion ability. This can also revealed in the lower doubling time of equine cells (3.5 ± 2.4 days) as compared to human (6.5 ± 4.3 days) (P < 0.05), and subsequently in the higher number of cell doubling after 44 days of culture observed for the equine (20.3 ± 1.7) as compared to human cells (8.7 ± 2.4) (P < 0.05), and to the higher (P < 0.05) ability to form fibroblast colonies at P3. Even if in both species tri-lineage differentiation was achieved, equine cells showed an higher chondrogenic and osteogenic differentiation ability (P < 0.05). Our findings indicate that, although the ultrastructure demonstrated a staminal phenotype in human and equine WJMSCs, they showed different properties reflecting the different sources of MSCs.

  19. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.

    PubMed

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura

    2015-06-01

    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  20. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonon, Anna; Mangolini, Alessandra; Pinton, Paolo

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding formore » polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open

  1. Human Embryonic Stem Cells Undergo Osteogenic Differentiation in Human Bone Marrow Stromal Cell Microenvironments

    PubMed Central

    Tong, Wilbur; Brown, Shelley E.; Krebsbach, Paul H.

    2009-01-01

    Human embryonic stem cells (hESCs) may offer an unlimited supply of cells that can be directed to differentiate into all cell types within the body and used in regenerative medicine for tissue and cell replacement therapies. Previous work has shown that exposing hESCs to exogenous factors such as dexamethasone, ascorbic acid and β-glycerophosphate can induce osteogenesis. The specific factors that induce osteogenic differentiation of hESCs have not been identified yet, however, it is possible that differentiated human bone marrow stromal cells (hMBSCs) may secrete factors within the local microenvironment that promote osteogenesis. Here we report that the lineage progression of hESCs to osteoblasts is achieved in the presence of soluble signaling factors derived from differentiated hBMSCs. For 28 days, hESCs were grown in a transwell co-culture system with hBMSCs that had been previously differentiated in growth medium containing defined osteogenic supplements for 7-24 days. As a control. hESCs were co-cultured with undifferentiated hBMSCs and alone. Von Kossa and Alizarin Red staining as well as immunohistochemistry confirmed that the hESCs co-cultured with differentiated hBMSCs formed mineralized bone nodules and secreted extracellular matrix protein osteocalcin (OCN). Quantitative Alizarin Red assays showed increased mineralization as compared to the control with undifferentiated hBMSCs. RT-PCR revealed the loss of pluripotent hESC markers with the concomitant gain of osteoblastic markers such as collagen type I, runx2, and osterix. We demonstrate that osteogenic growth factors derived from differentiated hBMSCs within the local microenvironment may help to promote hESC osteogenic differentiation. PMID:20671800

  2. Human telomerase reverse transcriptase regulates vascular endothelial growth factor expression via human papillomavirus oncogene E7 in HPV-18-positive cervical cancer cells.

    PubMed

    Li, Fang; Cui, Jinquan

    2015-07-01

    Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.

  3. Effects of recombinant human growth hormone on enterocutaneous fistula patients.

    PubMed

    Gu, Guo-Sheng; Ren, Jian-An; Li, Ning; Li, Jie-Shou

    2008-11-28

    To explore the effects of recombinant human growth hormone (rhGH) on intestinal mucosal epithelial cell proliferation and nutritional status in patients with enterocutaneous fistula. Eight patients with enterocutaneous fistulas received recombinant human growth hormone (10 microg/d) for 7 d. Image analysis and immunohistochemical techniques were used to analyse the expression of proliferating cell nuclear antigen (PCNA) in intestinal mucosal epithelial cells in biopsy samples from the patients who had undergone an endoscopic biopsy through the fistula at day 0, 4 and 7. Body weights, nitrogen excretion, serum levels of total proteins, albumin, prealbumin, transferrin and fibronectin were measured at day 0, 4 and 7. Significant improvements occurred in the expression of PCNA in the intestinal mucosal epithelial cells at day 4 and 7 compared to day 0 (24.93 +/- 3.41%, 30.46 +/- 5.24% vs 12.92 +/- 4.20%, P < 0.01). These changes were accompanied by the significant improvement of villus height (500.54 +/- 53.79 microm, 459.03 +/- 88.98 microm vs 210.94 +/- 49.16 microm, P < 0.01), serum levels of total proteins (70.52 +/- 5.13 g/L, 74.89 +/- 5.16 g/L vs 63.51 +/- 2.47 g/L, P < 0.01), albumin (39.44 +/- 1.18 g/L, 42.39 +/- 1.68 g/L vs 35.74 +/- 1.75 g/L, P < 0.01) and fibronectin (236.3 +/- 16.5 mg/L, 275.8 +/- 16.9 mg/L vs 172.5 +/- 21.4 mg/L, P < 0.01) at day 4 and 7, and prealbumin (286.38 +/- 65.61 mg/L vs 180.88 +/- 48.28 mg/L, P < 0.05), transferrin (2.61 +/- 0.12 g/L vs 2.41 +/- 0.14 g/L, P < 0.05) at day 7. Nitrogen excretion was significantly decreased at day 7 (3.40 +/- 1.65 g/d vs 7.25 +/- 3.92 g/d, P < 0.05). No change was observed in the body weight. Recombinant human growth hormone could promote intestinal mucosal epithelial cell proliferation and protein synthesis in patients with enterocutaneous fistula.

  4. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    PubMed

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  5. 6-Gingerol Inhibits Hair Shaft Growth in Cultured Human Hair Follicles and Modulates Hair Growth in Mice

    PubMed Central

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal. PMID:23437345

  6. Immunohistochemical demonstration of epidermal growth factor in human gastric cancer xenografts of nude mice.

    PubMed

    Yoshiyuki, T; Shimizu, Y; Onda, M; Tokunaga, A; Kiyama, T; Nishi, K; Mizutani, T; Matsukura, N; Tanaka, N; Akimoto, M

    1990-02-15

    Thirty-two surgical specimens and three cell lines of human gastric cancers were used for subcutaneous transplantation into nude mice, resulting in the establishment of eight (25%) xenografts from the surgical specimens and two (67%) from the cell lines. The localization of epidermal growth factor (EGF) in the surgical specimens and cell lines of the gastric cancers and their xenografts in nude mice was then investigated immunohistochemically. Epidermal growth factor was stained in the cytoplasm of the cancer cells, being detected in 16 (50%) of the 32 surgical specimens and in all of the cell lines. Seven (44%) of the sixteen EGF-positive surgical specimens and one (6%) of the 16 EGF-negative ones were tumorigenic in nude mice. All of the xenografts in nude mice were positive for EGF. The tumorigenicity of human gastric cancer xenografts in nude mice may, therefore, be correlated with the presence of EGF in cancer cells.

  7. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell.

    PubMed

    Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji

    2012-12-01

    Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.

  8. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes

    NASA Technical Reports Server (NTRS)

    Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Stampfer, M. R.; Haupt, L. M.; Tlsty, T. D.

    2001-01-01

    Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.

  9. Enhanced growth of influenza A virus by coinfection with human parainfluenza virus type 2.

    PubMed

    Goto, Hideo; Ihira, Hironobu; Morishita, Keiichi; Tsuchiya, Mitsuki; Ohta, Keisuke; Yumine, Natsuko; Tsurudome, Masato; Nishio, Machiko

    2016-06-01

    It has been reported that dual or multiple viruses can coinfect epithelial cells of the respiratory tract. However, little has been reported on in vitro interactions of coinfected viruses. To explore how coinfection of different viruses affects their biological property, we examined growth of influenza A virus (IAV) and human parainfluenza virus type 2 (hPIV2) during coinfection of Vero cells. We found that IAV growth was enhanced by coinfection with hPIV2. The enhanced growth of IAV was not reproduced by coinfection with an hPIV2 mutant with reduced cell fusion activity, or by ectopic expression of the V protein of hPIV2. In contrast, induction of cell fusion by ectopic expression of the hPIV2 HN and F proteins augments IAV growth. hPIV2 coinfection supported IAV growth in cells originated from the respiratory epithelium. The enhancement correlated closely with cell fusion ability of hPIV2 in those cells. These results indicate that cell fusion induced by hPIV2 infection is beneficial to IAV replication and that enhanced viral replication by coinfection with different viruses can modify their pathological consequences.

  10. Human Dental Pulp Stem Cells Suppress Alloantigen-induced Immunity by Stimulating T Cells to Release Transforming Growth Factor Beta.

    PubMed

    Kwack, Kyu Hwan; Lee, Jung Min; Park, Sang Hyuk; Lee, Hyeon Woo

    2017-01-01

    Human dental pulp stem cells (hDPSCs) are ideal candidates for regenerating damaged dental tissue. To examine the possibility that hDPSCs may be used to regenerate pulp, we tested their in vitro effects on acute allogeneic immune responses. A peripheral blood mononuclear cell (PBMC) proliferation assay and immunoglobulin (Ig) production assay were performed to evaluate the immunosuppressive properties of hDPSCs. The mixed lymphocyte reaction was suppressed by incubation with hDPSCs. Transforming growth factor beta (TGF-β) was the major soluble factor responsible for inhibiting the allogeneic proliferation of PBMCs. The production of IgM and IgG by allogeneic activation of responder B lymphocytes was also completely abrogated by TGF-β released from hDPSCs via interferon gamma in response to activation of the responder T lymphocytes. hDPSCs inhibit acute allogeneic immune responses by their release of TGF-β as a result of allogeneic stimulation of T lymphocytes. This study provides an insight into the potential clinical use of hDPSCs for allogeneic transplantation. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Effects of PHA-665752 and vemurafenib combination treatment on in vitro and murine xenograft growth of human colorectal cancer cells with BRAFV600E mutations.

    PubMed

    Zhi, Jie; Li, Zhongxin; Lv, Jian; Feng, Bo; Yang, Donghai; Xue, Liang; Zhao, Zhaolong; Zhang, Yanni; Wu, Jianhua; Jv, Yingchao; Jia, Yitao

    2018-03-01

    It remains unknown whether blockade of B-Raf proto-oncogene, serine/threonine kinase (BRAF) V600E signaling and MET proto-oncogene, receptor tyrosine kinase (c-Met) signaling is effective in suppressing the growth of human colorectal cancer (CRC) cells. The present study investigated the effects of the vemurafenib alone and in combination with c-Met inhibitor PHA-665752 on the growth of human CRC cells in vitro and in mouse xenografts. HT-29 and RKO CRC cell lines with BRAF V600E mutations and mice bearing HT-29 xenografts were treated with vemurafenib in the absence or presence of PHA-665752. Cell viability and cycle phase were respectively examined by using the MTT and flow cytometry assay. Immunohistochemistry was conducted to detect the protein expression levels of hepatocyte growth factor (HGF), phosphorylated (p)-c-Met, p-AKT serine/threonine kinase (AKT) and p-extracellular signal-regulated kinase (p-ERK). The MTT assay demonstrated that the growth of RKO and HT-29 cells was inhibited by PHA-665752 in a time- and dose-dependent manner (P<0.05), however no significant suppressive effects were observed with vemurafenib. Relative to the PHA-665752 or vemurafenib stand-alone treatment groups, the combination of PHA-665752 and vemurafenib had a significant inhibitory effect on the proliferation of CRC cell lines (P<0.05). The mean tumor volume in mice treated with vemurafenib in combination with PHA-665752 was significantly smaller compared with those treated with only vemurafenib or PHA-665752 (P<0.05). Flow cytometry assay revealed that the G0/G1 phase frequency was significantly increased in the combination group compared with any other treatment groups (P<0.05). Immunohistochemistry demonstrated that vemurafenib in combination with PHA-665752 effectively induced the expression of p-c-Met, p-AKT and p-ERK, however had no effect on HGF.

  12. Jumonji/Arid1b (Jarid1b) protein modulates human esophageal cancer cell growth

    PubMed Central

    KANO, YOSHIHIRO; KONNO, MASAMITSU; OHTA, KATSUYA; HARAGUCHI, NAOTSUGU; NISHIKAWA, SHIMPEI; KAGAWA, YOSHINORI; HAMABE, ATSUSHI; HASEGAWA, SHINICHIRO; OGAWA, HISATAKA; FUKUSUMI, TAKAHITO; NOGUCHI, YUKO; OZAKI, MIYUKI; KUDO, TOSHIHIRO; SAKAI, DAISUKE; SATOH, TAROH; ISHII, MASARU; MIZOHATA, EIICHI; INOUE, TAKESHI; MORI, MASAKI; DOKI, YUICHIRO; ISHII, HIDESHI

    2013-01-01

    Although esophageal cancer is highly heterogeneous and the involvement of epigenetic regulation of cancer stem cells is highly suspected, the biological significance of epigenetically modified molecules that regulate different subpopulations remains to be firmly established. Using esophageal cancer cells, we investigated the functional roles of the H3K4 demethylase Jumonji/Arid1b (Jarid1b) (Kdm5b/Plu-1/Rbp2-h1), an epigenetic factor that is required for continuous cell growth in melanoma. JARID1B knockdown resulted in the suppression of esophageal cancer cell growth, sphere formation and invasion ability and was associated with loss of epithelial marker expression. However, these inhibitory effects observed on tumor formation were reverted subsequent to subcutaneous inoculation of these cells into immune-deficient mice. These results indicated that JARID1B plays a role in maintaining cancer stem cells in the esophagus and justifies the rationale for studying the effects of continuous inhibition of this epigenetic factor in esophageal cancer. PMID:24649241

  13. A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma.

    PubMed

    Wang, Michael; Zhang, Liang; Han, Xiaohong; Yang, Jing; Qian, Jianfei; Hong, Sungyoul; Lin, Pei; Shi, Yuankai; Romaguera, Jorge; Kwak, Larry W; Yi, Qing

    2008-04-01

    To establish a severe combined immunodeficient (SCID)-hu in vivo mouse model of human primary mantle cell lymphoma (MCL) for the study of the biology and novel therapy of human MCL. Primary MCL cells were isolated from spleen, lymph node, bone marrow aspirates, or peripheral blood of six different patients and injected respectively into human bone chips, which had been s.c. implanted in SCID-hu. Circulating human beta(2)-microglobulin in mouse serum was used to monitor the engraftment and growth of patient's MCL cells. H&E staining and immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies were used to confirm the tumor growth and migration. Increasing levels of circulating human beta(2)-microglobulin in mouse serum indicated that the patient's MCL cells were engrafted successfully into human bone chip of SCID-hu mice. The engraftment and growth of patient's MCL cells were dependent on human bone marrow microenvironment. Immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies confirmed that patient's MCL cells were able to not only survive and propagate in the bone marrow microenvironment of the human fetal bone chips, but also similar to the human disease, migrate to lymph nodes, spleen, bone marrow, and gastrointestinal tract of host mice. Treatment of MCL-bearing SCID-hu mice with atiprimod, a novel antitumor compound against the protection of bone marrow stromal cells, induced tumor regression. This is the first human primary MCL animal model that should be useful for the biological and therapeutic research on MCL.

  14. Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules.

    PubMed

    Tasnim, Farah; Phan, Derek; Toh, Yi-Chin; Yu, Hanry

    2015-11-01

    Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy, disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers, urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen, Chlorpromazine, Diclofenac, Digoxin, Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore, SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The response of single human cells to zero-gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Shulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.

    1977-01-01

    Microscopic and histochemical evaluations of human embrionic lung cells after exposure to zero-gravity are reported. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of fixed cells revealed no effects on the cultures. Minor unexplained differences have been found in biochemical constituents of the samples.

  16. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer’s Disease

    PubMed Central

    McGinley, Lisa M.; Sims, Erika; Lunn, J. Simon; Kashlan, Osama N.; Chen, Kevin S.; Bruno, Elizabeth S.; Pacut, Crystal M.; Hazel, Tom; Johe, Karl; Sakowski, Stacey A.

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar “best in class” cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD. Significance There is no cure for Alzheimer’s disease (AD) and

  17. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    PubMed

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  18. Growth control of the eukaryote cell: a systems biology study in yeast.

    PubMed

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David Cj; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom Pj; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the

  19. Growth control of the eukaryote cell: a systems biology study in yeast

    PubMed Central

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David CJ; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom PJ; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome

  20. Establishment and characterization of five immortalized human scalp dermal papilla cell lines.

    PubMed

    Kwack, Mi Hee; Yang, Jung Min; Won, Gong Hee; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan

    2018-02-05

    Dermal papilla (DP) regulates the growth and cycling of hair follicles. Cultured DP cells are useful for the study of their role in relation to hair growth and regeneration. However, cultivation of human DP cells is tedious and difficult. In addition, cultured DP cells possess a relatively short replicative life span, requiring immortalized human DP cell lines. We previously established an immortalized human DP cell line, SV40T-hTERT-DPC, by introducing human telomerase reverse transcriptase (hTERT) gene into the transformed cell line, SV40T-DPC. In this study, we co-transfected the simian virus 40 large T antigen (SV40T-Ag) and hTERT into DP cells from scalp hair follicles from a male with androgenetic alopecia and established five immortalized DP cell lines and named KNU-101, KNU-102, KNU-103, KNU-201 and KNU-202. We then evaluated tumorigenicity, expression of DP markers, responses to androgen, Wnt3a and BMP4, and expression of DP signature genes. These cell lines displayed early passage morphology and maintained responses to androgen, Wnt and BMP. Furthermore, these cell lines expressed DP markers and DP signature genes. KNU cell lines established in this study are potentially useful sources for hair research. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Effect of cyclophilin A on gene expression in human pancreatic cancer cells.

    PubMed

    Li, Min; Wang, Hao; Li, Fei; Fisher, William E; Chen, Changyi; Yao, Qizhi

    2005-11-01

    We previously found that cyclophilin A (CypA) is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. In this study, we further investigated the effect of CypA on gene expression of several key molecules that are involved in pancreatic cancer cell proliferation. Human pancreatic cancer cell lines (Panc-1, MIA PaCa-2, and BxPC-3) and human pancreatic ductal epithelial (HPDE) cells were used. The messenger RNA (mRNA) levels of CypA, CypB, CD147, neuropilins (NRPs), vascular endothelial growth factor (VEGF), and VEGF receptors upon the treatment of exogenous recombinant human CypA were determined by real-time reverse-transcription polymerase chain reaction. Exogenous human recombinant CypA reduced the mRNA levels of NRP-1 and VEGF, but not endogenous CypA, CypB, and CD147, in Panc-1, MIA PaCa-2, and BxPC-3 cells. In contrast, HPDE cells showed a decrease of endogenous CypA and CD147 mRNA, but not detectable changes of CypB, NRPs, and VEGF mRNA levels upon exogenous CypA treatment. These data show that exogenous CypA downregulates NRP-1 and VEGF expression in pancreatic cancer cells. This effect is different in normal HPDE cells. Thus, soluble CypA may affect cell growth of pancreatic cancer.

  2. Controlled Growth and the Maintenance of Human Pluripotent Stem Cells by Cultivation with Defined Medium on Extracellular Matrix-Coated Micropatterned Dishes

    PubMed Central

    Takenaka, Chiemi; Miyajima, Hiroshi; Yoda, Yusuke; Imazato, Hideo; Yamamoto, Takako; Gomi, Shinichi; Ohshima, Yasuhiro; Kagawa, Kenichi; Sasaki, Tetsuji; Kawamata, Shin

    2015-01-01

    Here, we introduce a new serum-free defined medium (SPM) that supports the cultivation of human pluripotent stem cells (hPSCs) on recombinant human vitronectin-N (rhVNT-N)-coated dishes after seeding with either cell clumps or single cells. With this system, there was no need for an intervening sequential adaptation process after moving hPSCs from feeder layer-dependent conditions. We also introduce a micropatterned dish that was coated with extracellular matrix by photolithographic technology. This procedure allowed the cultivation of hPSCs on 199 individual rhVNT-N-coated small round spots (1 mm in diameter) on each 35-mm polystyrene dish (termed “patterned culture”), permitting the simultaneous formation of 199 uniform high-density small-sized colonies. This culture system supported controlled cell growth and maintenance of undifferentiated hPSCs better than dishes in which the entire surface was coated with rhVNT-N (termed “non-patterned cultures”). Non-patterned cultures produced variable, unrestricted cell proliferation with non-uniform cell growth and uneven densities in which we observed downregulated expression of some self-renewal-related markers. Comparative flow cytometric studies of the expression of pluripotency-related molecules SSEA-3 and TRA-1-60 in hPSCs from non-patterned cultures and patterned cultures supported this concept. Patterned cultures of hPSCs allowed sequential visual inspection of every hPSC colony, giving an address and number in patterned culture dishes. Several spots could be sampled for quality control tests of production batches, thereby permitting the monitoring of hPSCs in a single culture dish. Our new patterned culture system utilizing photolithography provides a robust, reproducible and controllable cell culture system and demonstrates technological advantages for the mass production of hPSCs with process quality control. PMID:26115194

  3. Establishment and characterization of a new human functional cell line from a choriocarcinoma.

    PubMed

    Okabe, T; Sasaki, N; Matsuzaki, M; Imai, Y; Kaneko, Y; Matsuzaki, F; Takaku, F; Tsushima, T

    1983-10-01

    A new human functional tumor cell line, designated as T3M-3, has been established from a xenotransplanted choriocarcinoma grown in nude mice. One of the biggest problems of the in vitro culture of these tumor cells using the xenotransplanted tumors had been the dense contamination of fibroblasts of host nude mouse origin. In the present study, these fibroblasts were completely removed by incubating the cells with antiserum raised against nude mouse spleen cells. The cell line established from the remaining tumor cells has been successfully propagated in vitro for as long as 4 years. These cells show the morphology of epithelioid cells containing a prominent nucleus with one or two large nucleoli. The cells grow in a monolayered sheet with the population-doubling time of 19 hr. The cells show perfect tumor takes when they are reinoculated into nude mice. Chromosomal analysis revealed that the cell is a human aneuploid one with a hypotriploid mode. These cultured cells maintained well the function of secreting large amounts of human chorionic gonadotropin, progesterone, and estrogen. The secretion of human chorionic gonadotropin and progesterone by these cells is enhanced by stimulation with tumor promoters, such as 12-O-tetradecanoylphorbol-13-acetate and teleocidin B, or with epidermal growth factor in a dose-and time-dependent manner. Interestingly, however, the tumor promoters did not exert a marked effect on the cellular binding of epidermal growth factor, indicating that the receptors for these reagents in T3M-3 cells are not shared by epidermal growth factor.

  4. Plant-Produced Human Recombinant Erythropoietic Growth Factors Support Erythroid Differentiation In Vitro

    PubMed Central

    Musiychuk, Konstantin; Sivalenka, Rajarajeswari; Jaje, Jennifer; Bi, Hong; Flores, Rosemary; Shaw, Brenden; Jones, R. Mark; Golovina, Tatiana; Schnipper, Jacob; Khandker, Luipa; Sun, Ruiqiang; Li, Chang; Kang, Lin; Voskinarian-Berse, Vanessa; Zhang, Xiaokui; Streatfield, Stephen; Hambor, John; Abbot, Stewart

    2013-01-01

    Clinically available red blood cells (RBCs) for transfusions are at high demand, but in vitro generation of RBCs from hematopoietic stem cells requires significant quantities of growth factors. Here, we describe the production of four human growth factors: erythropoietin (EPO), stem cell factor (SCF), interleukin 3 (IL-3), and insulin-like growth factor-1 (IGF-1), either as non-fused proteins or as fusions with a carrier molecule (lichenase), in plants, using a Tobacco mosaic virus vector-based transient expression system. All growth factors were purified and their identity was confirmed by western blotting and peptide mapping. The potency of these plant-produced cytokines was assessed using TF1 cell (responsive to EPO, IL-3 and SCF) or MCF-7 cell (responsive to IGF-1) proliferation assays. The biological activity estimated here for the cytokines produced in plants was slightly lower or within the range cited in commercial sources and published literature. By comparing EC50 values of plant-produced cytokines with standards, we have demonstrated that all four plant-produced growth factors stimulated the expansion of umbilical cord blood-derived CD34+ cells and their differentiation toward erythropoietic precursors with the same potency as commercially available growth factors. To the best of our knowledge, this is the first report on the generation of all key bioactive cytokines required for the erythroid development in a cost-effective manner using a plant-based expression system. PMID:23517237

  5. Effect of bevacizumab on angiogenesis and growth of canine osteosarcoma cells xenografted in athymic mice.

    PubMed

    Scharf, Valery F; Farese, James P; Coomer, Alastair R; Milner, Rowan J; Taylor, David P; Salute, Marc E; Chang, Myron N; Neal, Dan; Siemann, Dietmar W

    2013-05-01

    Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.

  6. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture

    PubMed Central

    Pijuan-Galitó, Sara; Tamm, Christoffer; Schuster, Jens; Sobol, Maria; Forsberg, Lars; Merry, Catherine L. R.; Annerén, Cecilia

    2016-01-01

    Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. PMID:27405751

  7. Impact of static magnetic fields on human myoblast cell cultures.

    PubMed

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Kassner, Stefan S; Faber, Anne; Sauter, Alexander; Schulz, Johannes D; Hörmann, Karl; Kinscherf, Ralf; Goessler, Ulrich Reinhart

    2011-12-01

    Treatment of skeletal muscle loss due to trauma or tumor ablation therapy still lacks a suitable clinical approach. Creation of functional muscle tissue in vitro using the differentiation potential of human satellite cells (myoblasts) is a promising new research field called tissue engineering. Strong differentiation stimuli, which can induce formation of myofibers after cell expansion, have to be identified and evaluated in order to create sufficient amounts of neo-tissue. The objective of this study was to determine the influence of static magnetic fields (SMF) on human satellite cell cultures as one of the preferred stem cell sources in skeletal muscle tissue engineering. Experiments were performed using human satellite cells with and without SMF stimulation after incubation with a culture medium containing low [differentiation medium (DM)] or high [growth medium (GM)] concentrations of growth factors. Proliferation analysis using the alamarBlue assay revealed no significant influence of SMF on cell division. Real-time RT-PCR of the following marker genes was investigated: myogenic factor 5 (MYF5), myogenic differentiation antigen 1 (MYOD1), myogenin (MYOG), skeletal muscle α1 actin (ACTA1), and embryonic (MYH3), perinatal (MYH8) and adult (MYH1) skeletal muscle myosin heavy chain. We detected an influence on marker gene expression by SMF in terms of a down-regulation of the marker genes in cell cultures treated with SMF and DM, but not in cell cultures treated with SMF and GM. Immunocytochemical investigations using antibodies directed against the differentiation markers confirmed the gene expression results and showed an enhancement of maturation after stimulation with GM and SMF. Additional calculation of the fusion index also revealed an increase in myotube formation in cell cultures treated with SMF and GM. Our findings show that the effect of SMF on the process of differentiation depends on the growth factor concentration in the culture medium in human

  8. Stimulation of growth hormone secretion from seabream pituitary cells in primary culture by growth hormone secretagogues is independent of growth hormone transcription.

    PubMed

    Chan, C B; Fung, C K; Fung, Wendy; Tse, Margaret C L; Cheng, Christopher H K

    2004-10-01

    The action of a number of growth hormone secretagogues (GHS) on growth hormone (GH) secretion and gene expression was studied in a primary culture of pituitary cells isolated from the black seabream Acanthopagrus schlegeli. The peptide GHS employed included growth hormone-releasing peptide (GHRP)-2, ipamorelin, and human ghrelin. The nonpeptide GHS employed included the benzolactam GHS L692,585 and the spiropiperidine GHS L163,540. Secreted GH was measured in the culture medium by an enzyme-linked immunosorbent assay (ELISA) method using a specific antibody against seabream GH. The GH mRNA content in the incubated cells was assessed by reverse transcription polymerase chain reaction (RT-PCR) using a pair of gene-specific primers designed from the cloned black seabream GH cDNA sequence. A dose-dependent stimulation of GH release was demonstrated by all the GHS tested, except human ghrelin, with EC(50) values in the nanomolar range. Simultaneous measurement of GH mRNA levels in the incubated seabream pituitary cells indicated that the GHS-stimulated increase in GH secretion was not paralleled by corresponding changes in GH gene expression. In contrast to the situation previously reported in the rat, no change in GH gene expression was noticed in the seabream pituitary cells even though the time of stimulation by GHS was increased up to 48 h, confirming that the GHS-stimulated GH secretion in seabream is independent of GH gene transcription.

  9. Exclusive destruction of mitotic spindles in human cancer cells.

    PubMed

    Visochek, Leonid; Castiel, Asher; Mittelman, Leonid; Elkin, Michael; Atias, Dikla; Golan, Talia; Izraeli, Shai; Peretz, Tamar; Cohen-Armon, Malka

    2017-03-28

    We identified target proteins modified by phenanthrenes that cause exclusive eradication of human cancer cells. The cytotoxic activity of the phenanthrenes in a variety of human cancer cells is attributed by these findings to post translational modifications of NuMA and kinesins HSET/kifC1 and kif18A. Their activity prevented the binding of NuMA to α-tubulin and kinesins in human cancer cells, and caused aberrant spindles. The most efficient cytotoxic activity of the phenanthridine PJ34, caused significantly smaller aberrant spindles with disrupted spindle poles and scattered extra-centrosomes and chromosomes. Concomitantly, PJ34 induced tumor growth arrest of human malignant tumors developed in athymic nude mice, indicating the relevance of its activity for cancer therapy.

  10. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin.

    PubMed

    Kim, Yoon-Jin; Yoo, Sae Mi; Park, Hwan Hee; Lim, Hye Jin; Kim, Yu-Lee; Lee, Seunghee; Seo, Kwang-Won; Kang, Kyung-Sun

    2017-11-18

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) play an important role in cutaneous wound healing, and recent studies suggested that MSC-derived exosomes activate several signaling pathways, which are conducive in wound healing and cell growth. In this study, we investigated the roles of exosomes that are derived from USC-CM (USC-CM Exos) in cutaneous collagen synthesis and permeation. We found that USC-CM has various growth factors associated with skin rejuvenation. Our in vitro results showed that USC-CM Exos integrate in Human Dermal Fibroblasts (HDFs) and consequently promote cell migration and collagen synthesis of HDFs. Moreover, we evaluated skin permeation of USC-CM Exos by using human skin tissues. Results showed that Exo-Green labeled USC-CM Exos approached the outermost layer of the epidermis after 3 h and gradually approached the epidermis after 18 h. Moreover, increased expressions of Collagen I and Elastin were found after 3 days of treatment on human skin. The results showed that USC-CM Exos is absorbed into human skin, it promotes Collagen I and Elastin synthesis in the skin, which are essential to skin rejuvenation and shows the potential of USC-CM integration with the cosmetics or therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth hormone...

  12. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth hormone...

  13. Effects of homeopathic preparations on human prostate cancer growth in cellular and animal models.

    PubMed

    MacLaughlin, Brian W; Gutsmuths, Babett; Pretner, Ewald; Jonas, Wayne B; Ives, John; Kulawardane, Don Victor; Amri, Hakima

    2006-12-01

    The use of dietary supplements for various ailments enjoys unprecedented popularity. As part of this trend, Sabal serrulata (saw palmetto) constitutes the complementary treatment of choice with regard to prostate health. In homeopathy, Sabal serrulata is commonly prescribed for prostate problems ranging from benign prostatic hyperplasia to prostate cancer. The authors' work assessed the antiproliferative effects of homeopathic preparations of Sabal serrulata, Thuja occidentalis, and Conium maculatum, in vivo, on nude mouse xenografts, and in vitro, on PC-3 and DU-145 human prostate cancer as well as MDA-MB-231 human breast cancer cell lines. Treatment with Sabal serrulata in vitro resulted in a 33% decrease of PC-3 cell proliferation at 72 hours and a 23% reduction of DU-145 cell proliferation at 24 hours (P<.01). The difference in reduction is likely due to the specific doubling time of each cell line. No effect was observed on MDA-MB-231 human breast cancer cells. Thuja occidentalis and Conium maculatum did not have any effect on human prostate cancer cell proliferation. In vivo, prostate tumor xenograft size was significantly reduced in Sabal serrulata-treated mice compared to untreated controls (P=.012). No effect was observed on breast tumor growth. Our study clearly demonstrates a biologic response to homeopathic treatment as manifested by cell proliferation and tumor growth. This biologic effect was (i)significantly stronger to Sabal serrulata than to controls and (ii)specific to human prostate cancer. Sabal serrulata should thus be further investigated as a specific homeopathic remedy for prostate pathology.

  14. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    PubMed

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  15. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayne, M.L.; Cascieri, M.A.; Kelder, B.

    1987-05-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less

  16. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways

    PubMed Central

    Al-Maqtari, Tareq; Cao, Pengxiao; Keith, Matthew C. L.; Wysoczynski, Marcin; Zhao, John; Moore IV, Joseph B.; Bolli, Roberto

    2015-01-01

    A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs. To test this hypothesis, human CPCs were grown under stress conditions in the presence or absence of SCF, and the effects of SCF-mediated activation of c-kit on CPC survival/growth and migration were measured. SCF treatment led to a significant increase in cell survival and a reduction in cell death under serum depletion conditions. In addition, SCF significantly promoted CPC migration in vitro. Furthermore, the pro-survival and pro-migratory effects of SCF were augmented by c-kit overexpression and abrogated by c-kit inhibition with imatinib. Mechanistically, c-kit activation in CPCs led to activation of the PI3K and the MAPK pathways. With the use of specific inhibitors, we confirmed that the SCF/c-kit-dependent survival and chemotaxis of CPCs are dependent on both pathways. Taken together, our findings suggest that c-kit promotes the survival/growth and migration of human CPCs cultured ex vivo via the activation of PI3K and MAPK pathways. These results imply that the efficiency of CPC homing to the injury site as well as their survival after transplantation may be improved by modulating the activity of c-kit. PMID:26474484

  17. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro.

    PubMed

    Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C

    2013-06-01

    Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  18. Pentameric procyanidin from Theobroma cacao selectively inhibits growth of human breast cancer cells.

    PubMed

    Ramljak, Danica; Romanczyk, Leo J; Metheny-Barlow, Linda J; Thompson, Nicole; Knezevic, Vladimir; Galperin, Mikhail; Ramesh, Arun; Dickson, Robert B

    2005-04-01

    A naturally occurring, cocoa-derived pentameric procyanidin (pentamer) was previously shown to cause G0/G1 cell cycle arrest in human breast cancer cells by an unknown molecular mechanism. Here, we show that pentamer selectively inhibits the proliferation of human breast cancer cells (MDA MB-231, MDA MB-436, MDA MB-468, SKBR-3, and MCF-7) and benzo(a)pyrene-immortalized 184A1N4 and 184B5 cells. In contrast, normal human mammary epithelial cells in primary culture and spontaneously immortalized MCF-10A cells were significantly resistant. We evaluated whether this differential response to pentamer may involve depolarization of the mitochondrial membrane. Pentamer caused significant depolarization of mitochondrial membrane in MDA MB231 cells but not the more normal MCF-10A cells, whereas other normal and tumor cell lines tested gave variable results. Further investigations, using a proteomics approach with pentamer-treated MDA MB-231, revealed a specific dephosphorylation, without changes in protein expression, of several G1-modulatory proteins: Cdc2 (at Tyr15), forkhead transcription factor (at Ser256, the Akt phosphorylation site) and p53 (Ser392). Dephosphorylation of p53 (at Ser392) by pentamer was confirmed in MDA MB-468 cells. However, both expression and phosphorylation of retinoblastoma protein were decreased after pentamer treatment. Our results show that breast cancer cells are selectively susceptible to the cytotoxic effects of pentameric procyanidin, and suggest that inhibition of cellular proliferation by this compound is associated with the site-specific dephosphorylation or down-regulation of several cell cycle regulatory proteins.

  19. The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D

    PubMed Central

    Raza, Asad; Ki, Chang Seok; Lin, Chien-Chi

    2013-01-01

    A highly tunable synthetic biomimetic hydrogel platform was developed to study the growth and morphogenesis of pancreatic ductal epithelial cells (PDEC) under the influence of a myriad of instructive cues. A PDEC line, PANC-1, was used as a model system to illustrate the importance of matrix compositions on cell fate determination. PANC-1 is an immortalized ductal epithelial cell line widely used in the study of pancreatic tumor cell behaviors. PANC-1 cells are also increasingly explored as a potential cell source for endocrine differentiation. Thus far, most studies related to PANC-1, among other PDEC lines, are performed on 2D culture surfaces. Here, we evaluated the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D. Specifically, PANC-1 cells were encapsulated in PEG-based hydrogels prepared by step-growth thiol-ene photopolymerization. It was found that thiol-ene hydrogels provided a cytocompatible environment for encapsulation and 3D culture of PANC-1 cells. In contrast to a monolayer morphology on 2D culture surfaces, PANC-1 cells formed clusters in 3D thiol-ene hydrogels within 4 days of culture. After culturing for 10 days, however, the growth and structures of these clusters were significantly impacted by gel matrix properties, including sensitivity of the matrix to proteases, stiffness of the matrix, and ECM-mimetic motifs. The use of matrix metalloproteinase (MMP) sensitive linker or the immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated cells formed smaller and more compact aggregates in non-MMP responsive gels. The incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of epithelial cell markers including β-catenin and E-cadherin. These studies have established PEG

  20. Prostaglandin E₂ regulates cellular migration via induction of vascular endothelial growth factor receptor-1 in HCA-7 human colon cancer cells.

    PubMed

    Fujino, Hiromichi; Toyomura, Kaori; Chen, Xiao-bo; Regan, John W; Murayama, Toshihiko

    2011-02-01

    An important event in the development of tumors is angiogenesis, or the formation of new blood vessels. Angiogenesis is also known to be involved in tumor cell metastasis and is dependent upon the activity of the vascular endothelial growth factor (VEGF) signaling pathway. Studies of mice in which the EP3 prostanoid receptors have been genetically deleted have shown a role for these receptors in cancer growth and angiogenesis. In the present study, human colon cancer HCA-7 cells were used as a model system to understand the potential role of EP3 receptors in tumor cell migration. We now show that stimulation of HCA-7 cells with PGE₂ enhanced the up-regulation of VEGF receptor-1 (VEGFR-1) expression by a mechanism involving EP3 receptor-mediated activation of phosphatidylinositol 3-kinase and the extracellular signal-regulated kinases. Moreover, the PGE₂ stimulated increase in VEGFR-1 expression was accompanied by an increase in the cellular migration of HCA-7 cells. Given the known involvement of VEGFR-1 in cellular migration, our results suggest that EP3 receptors may contribute to tumor cell metastasis by increasing cellular migration through the up-regulation of VEGFR-1 signaling. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Chimeras of the native form or achondroplasia mutant (G375C) of human fibroblast growth factor receptor 3 induce ligand-dependent differentiation of PC12 cells.

    PubMed Central

    Thompson, L M; Raffioni, S; Wasmuth, J J; Bradshaw, R A

    1997-01-01

    Mutations in the gene for human fibroblast growth factor receptor 3 (hFGFR3) cause a variety of skeletal dysplasias, including the most common genetic form of dwarfism, achondroplasia (ACH). Evidence indicates that these phenotypes are not due to simple haploinsufficiency of FGFR3 but are more likely related to a role in negatively regulating skeletal growth. The effects of one of these mutations on FGFR3 signaling were examined by constructing chimeric receptors composed of the extracellular domain of human platelet-derived growth factor receptor beta (hPDGFR beta) and the transmembrane and intracellular domains of hFGFR3 or of an ACH (G375C) mutant. Following stable transfection in PC12 cells, which lack platelet-derived growth factor (PDGF) receptors, all clonal cell lines, with either type of chimera, showed strong neurite outgrowth in the presence of PDGF but not in its absence. Antiphosphotyrosine immunoblots showed ligand-dependent autophosphorylation, and both receptor types stimulated strong phosphorylation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase, an event associated with the differentiative response of these cells. In addition, ligand-dependent phosphorylation of phospholipase Cgamma and Shc was also observed. All of these responses were comparable to those observed from ligand activation, such as by nerve growth factor, of the native PC12 cells used to prepare the stable transfectants. The cells with the chimera bearing the ACH mutation were more rapidly responsive to ligand with less sustained MAPK activation, indicative of a preactivated or primed condition and consistent with the view that these mutations weaken ligand control of FGFR3 function. However, the full effect of the mutation likely depends in part on structural features of the extracellular domain. Although FGFR3 has been suggested to act as a negative regulator of long-bone growth in chrondrocytes, it produces differentiative signals similar to

  2. Deregulation of cell growth and malignant transformation.

    PubMed

    Sulić, Sanda; Panić, Linda; Dikić, Ivan; Volarević, Sinisa

    2005-08-01

    Cell growth and cell division are fundamental aspects of cell behavior in all organisms. Recent insights from many model organisms have shed light on the molecular mechanisms that control cell growth and cell division. A significant body of evidence has now been accumulated, showing a direct link between deregulation of components of cell cycle machinery and cancer. In addition, defects in one or more steps that control growth are important for malignant transformation, as many tumor suppressors and proto-oncogenes have been found to regulate cell growth. The importance of cell growth in tumor development is further supported by the discovery that rapamycin, an effective anticancer drug, inhibits a key regulator of protein synthetic machinery and cell growth, mammalian target of rapamycin (mTOR). In most cases, cell growth and cell division are coupled, thereby maintaining cell size within physiological limits. We believe that, in a long-term perspective, understanding how these two processes are coordinated in vivo and how their interplay is deregulated in a number of diseases, including cancer, may have a direct impact on the efficiency of modern therapeutics.

  3. Gab3 is required for human colorectal cancer cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Shihao; Wang, Na; Hui, Pingping

    Here, we focused on the potential function of Gab3, an uncommon Gab family protein, in human colorectal cancer (CRC) cells. We found that Gab3 was only expressed in human colon cancer tissues as well as in established (HCT-116 and HT-29 lines) and primary human CRC cells. It was however absent in normal human colon cancer tissues and in FHC colon epithelial cells. Knockdown of Gab3 by targeted-shRNAs inhibited proliferation of the CRC cells. Reversely, exogenous over-expression of Gab3 promoted CRC cell proliferation. At the signaling level, Gab3 co-precipitated with p85 and SHP2 in CRC cells, which was required for subsequentmore » Akt and Erk activation. Gab3 shRNA knockdown inhibited Akt and Erk activation, yet Gab3 over-expression augmented it. In vivo, HCT-116 xenograft tumor growth in severe combined immune deficient (SCID) mice was suppressed following expressing Gab3 shRNAs. Meanwhile, Akt and Erk activation in Gab3 shRNA-expressing tumors was also largely inhibited. Together, our results suggest that Gab3 expression in CRC cells is important for Akt-Erk activation and cell proliferation. - Highlights: • Gab3 is only expressed in colorectal cancer (CRC) cells, but not in colon epithelial cells. • Gab3 shRNA knockdown inhibits CRC cell proliferation. • Exogenous over-expression of Gab3 promotes HCT-116 cell proliferation. • Gab3 co-precipitates with p85 and SHP2 to mediate Akt and Erk activation in CRC cells. • HCT-116 tumor growth in SCID mice is suppressed with expression of Gab3 shRNAs.« less

  4. Growth hormone-like factor produced by the tapeworm, Spirometra mansonoides, displaces human growth hormone (hGH) from its receptors on cultured human lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, D.J.; Phares, C.K.

    1986-03-01

    An analogue of hGH isolated from plerocercoids of the tapeworm Spirometra mansonoides displaces (/sup 125/I)hGH from its receptors in rabbit, rat, and hamster liver membranes. Biologically, plerocercoid growth factor (PGF) is more similar to hGH than to other mammalian GH's but has not been shown to bond human cells. Receptors specific for hGH have been described on cultured human lymphocytes (IM-9). In this study, the authors compared the binding of PGF and hGH in IM-9 cells and in rabbit hepatic membranes. IM-9 lymphocytes (12 x 10/sup 6/ cells/tube) were incubated with (/sup 125/I)hGH and increasing concentrations of hGH (ng/ml) ormore » PGF (serial dilutions) for 90 min at 30/sup 0/ C. Specific binding (B/sub 0/ - NSB) was determined for each dose of hGH or PGF and the binding curves were analyzed by logit-log regression. The results show that PGF displaced (/sup 125/I)hGH from human cells in a dose dependent manner (r = 0.98). Based on the IM-9 assay, 1 ml of the PGF had an activity equivalent to 625 ng of the hGH standard (ngE). However, the binding activity of the PGF in the rabbit liver RRA was 1653 ngE/ml, indicating that the binding potency of PGF in IM-9 cells was only 38% of that in the rabbit liver. These results clearly demonstrate that PGF binds hGH receptors in cells of human origin, suggesting that PGF will be effective in humans.« less

  5. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line.

    PubMed

    Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik; Daub, Carsten O; Balwierz, Piotr J; Irvine, Katharine M; Lassmann, Timo; Ravasi, Timothy; Hasegawa, Yuki; de Hoon, Michiel J L; Katayama, Shintaro; Schroder, Kate; Carninci, Piero; Tomaru, Yasuhiro; Kanamori-Katayama, Mutsumi; Kubosaki, Atsutaka; Akalin, Altuna; Ando, Yoshinari; Arner, Erik; Asada, Maki; Asahara, Hiroshi; Bailey, Timothy; Bajic, Vladimir B; Bauer, Denis; Beckhouse, Anthony G; Bertin, Nicolas; Björkegren, Johan; Brombacher, Frank; Bulger, Erika; Chalk, Alistair M; Chiba, Joe; Cloonan, Nicole; Dawe, Adam; Dostie, Josee; Engström, Pär G; Essack, Magbubah; Faulkner, Geoffrey J; Fink, J Lynn; Fredman, David; Fujimori, Ko; Furuno, Masaaki; Gojobori, Takashi; Gough, Julian; Grimmond, Sean M; Gustafsson, Mika; Hashimoto, Megumi; Hashimoto, Takehiro; Hatakeyama, Mariko; Heinzel, Susanne; Hide, Winston; Hofmann, Oliver; Hörnquist, Michael; Huminiecki, Lukasz; Ikeo, Kazuho; Imamoto, Naoko; Inoue, Satoshi; Inoue, Yusuke; Ishihara, Ryoko; Iwayanagi, Takao; Jacobsen, Anders; Kaur, Mandeep; Kawaji, Hideya; Kerr, Markus C; Kimura, Ryuichiro; Kimura, Syuhei; Kimura, Yasumasa; Kitano, Hiroaki; Koga, Hisashi; Kojima, Toshio; Kondo, Shinji; Konno, Takeshi; Krogh, Anders; Kruger, Adele; Kumar, Ajit; Lenhard, Boris; Lennartsson, Andreas; Lindow, Morten; Lizio, Marina; Macpherson, Cameron; Maeda, Norihiro; Maher, Christopher A; Maqungo, Monique; Mar, Jessica; Matigian, Nicholas A; Matsuda, Hideo; Mattick, John S; Meier, Stuart; Miyamoto, Sei; Miyamoto-Sato, Etsuko; Nakabayashi, Kazuhiko; Nakachi, Yutaka; Nakano, Mika; Nygaard, Sanne; Okayama, Toshitsugu; Okazaki, Yasushi; Okuda-Yabukami, Haruka; Orlando, Valerio; Otomo, Jun; Pachkov, Mikhail; Petrovsky, Nikolai; Plessy, Charles; Quackenbush, John; Radovanovic, Aleksandar; Rehli, Michael; Saito, Rintaro; Sandelin, Albin; Schmeier, Sebastian; Schönbach, Christian; Schwartz, Ariel S; Semple, Colin A; Sera, Miho; Severin, Jessica; Shirahige, Katsuhiko; Simons, Cas; St Laurent, George; Suzuki, Masanori; Suzuki, Takahiro; Sweet, Matthew J; Taft, Ryan J; Takeda, Shizu; Takenaka, Yoichi; Tan, Kai; Taylor, Martin S; Teasdale, Rohan D; Tegnér, Jesper; Teichmann, Sarah; Valen, Eivind; Wahlestedt, Claes; Waki, Kazunori; Waterhouse, Andrew; Wells, Christine A; Winther, Ole; Wu, Linda; Yamaguchi, Kazumi; Yanagawa, Hiroshi; Yasuda, Jun; Zavolan, Mihaela; Hume, David A; Arakawa, Takahiro; Fukuda, Shiro; Imamura, Kengo; Kai, Chikatoshi; Kaiho, Ai; Kawashima, Tsugumi; Kawazu, Chika; Kitazume, Yayoi; Kojima, Miki; Miura, Hisashi; Murakami, Kayoko; Murata, Mitsuyoshi; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Ogawa, Chihiro; Sano, Takuma; Simon, Christophe; Tagami, Michihira; Takahashi, Yukari; Kawai, Jun; Hayashizaki, Yoshihide

    2009-05-01

    Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.

  6. Human Prostate Side Population Cells Demonstrate Stem Cell Properties in Recombination with Urogenital Sinus Mesenchyme

    PubMed Central

    Foster, Barbara A.; Gangavarapu, Kalyan J.; Mathew, Grinu; Azabdaftari, Gissou; Morrison, Carl D.; Miller, Austin; Huss, Wendy J.

    2013-01-01

    Stem cell enrichment provides a tool to examine prostate stem cells obtained from benign and malignant tissue. Functional assays can enrich stem cells based on common stem cell phenotypes, such as high ATP binding cassette (ABC) transporter mediated efflux of Hoechst substrates (side population assay). This functional assay is based upon mechanisms that protect cells from environmental insult thus contributing to the survival and protection of the stem cell population. We have isolated and analyzed cells digested from twelve clinical prostate specimens based on the side population assay. Prostate stem cell properties of the isolated cells were tested by serial recombination with rat urogenital mesenchyme. Recombinants with side population cells demonstrate an increase in the frequency of human ductal growth and the number of glands per recombinant when compared to recombinants with non-side population cells. Isolated cells were capable of prostatic growth for up to three generations in the recombination assay with as little as 125 sorted prostate cells. The ability to reproducibly use cells isolated by fluorescence activated cell sorting from human prostate tissue is an essential step to a better understanding of human prostate stem cell biology. ABC transporter G2 (ABCG2) was expressed in recombinants from side population cells indicating the side population cells have self-renewal properties. Epithelial cell differentiation of recombinants was determined by immunohistochemical analysis for expression of the basal, luminal, and neuroendocrine markers, p63, androgen receptor, prostate specific antigen, and chromogranin A, respectively. Thus, the ABCG2 expressing side population demonstrates multipotency and self-renewal properties indicating stem cells are within this population. PMID:23383057

  7. Isolation and characterization of human umbilical cord-derived endothelial colony-forming cells

    PubMed Central

    Zhang, Hao; Tao, Yanling; Ren, Saisai; Liu, Haihui; Zhou, Hui; Hu, Jiangwei; Tang, Yongyong; Zhang, Bin; Chen, Hu

    2017-01-01

    Endothelial colony-forming cells (ECFCs) are a population of endothelial progenitor cells (EPCs) that display robust proliferative potential and vessel-forming capability. Previous studies have demonstrated that a limited number of ECFCs may be obtained from adult bone marrow, peripheral blood and umbilical cord (UC) blood. The present study describes an effective method for isolating ECFCs from human UC. The ECFCs derived from human UC displayed the full properties of EPCs. Analysis of the growth kinetics, cell cycle and colony-forming ability of the isolated human UC-ECFCs indicated that the cells demonstrated properties of stem cells, including relative stability and rapid proliferation in vitro. Gene expression of Fms related tyrosine kinase 1, kinase insert domain receptor, vascular endothelial cadherin, cluster of differentiation (CD)31, CD34, epidermal growth factor homology domains-2, von Willebrand factor and endothelial nitric oxide synthase was assessed by reverse transcription-polymerase chain reaction. The cells were positive for CD34, CD31, CD73, CD105 and vascular endothelial growth factor receptor-2, and negative for CD45, CD90 and human leukocyte antigen-antigen D related protein according to flow cytometry. 1,1′-dioctadecyl-3,3,3′,3′-tetra-methyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein and fluorescein isothiocyanate-Ulex europaeus-l were used to verify the identity of the UC-ECFCs. Matrigel was used to investigate tube formation capability. The results demonstrated that the reported technique is a valuable method for isolating human UC-ECFCs, which have potential for use in vascular regeneration. PMID:29067104

  8. Immortalized human hepatic cell lines for in vitro testing and research purposes

    PubMed Central

    Ramboer, Eva; Vanhaecke, Tamara; Rogiers, Vera; Vinken, Mathieu

    2015-01-01

    Summary The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications. PMID:26272134

  9. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes.

    PubMed

    Ramboer, Eva; Vanhaecke, Tamara; Rogiers, Vera; Vinken, Mathieu

    2015-01-01

    The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.

  10. Specification of functional cranial placode derivatives from human pluripotent stem cells.

    PubMed

    Dincer, Zehra; Piao, Jinghua; Niu, Lei; Ganat, Yosif; Kriks, Sonja; Zimmer, Bastian; Shi, Song-Hai; Tabar, Viviane; Studer, Lorenz

    2013-12-12

    Cranial placodes are embryonic structures essential for sensory and endocrine organ development. Human placode development has remained largely inaccessible despite the serious medical conditions caused by the dysfunction of placode-derived tissues. Here, we demonstrate the efficient derivation of cranial placodes from human pluripotent stem cells. Timed removal of the BMP inhibitor Noggin, a component of the dual-SMAD inhibition strategy of neural induction, triggers placode induction at the expense of CNS fates. Concomitant inhibition of fibroblast growth factor signaling disrupts placode derivation and induces surface ectoderm. Further fate specification at the preplacode stage enables the selective generation of placode-derived trigeminal ganglia capable of in vivo engraftment, mature lens fibers, and anterior pituitary hormone-producing cells that upon transplantation produce human growth hormone and adrenocorticotropic hormone in vivo. Our results establish a powerful experimental platform to study human cranial placode development and set the stage for the development of human cell-based therapies in sensory and endocrine disease. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold.

    PubMed

    Hassanein, Wessam; Uluer, Mehmet C; Langford, John; Woodall, Jhade D; Cimeno, Arielle; Dhru, Urmil; Werdesheim, Avraham; Harrison, Joshua; Rivera-Pratt, Carlos; Klepfer, Stephen; Khalifeh, Ali; Buckingham, Bryan; Brazio, Philip S; Parsell, Dawn; Klassen, Charlie; Drachenberg, Cinthia; Barth, Rolf N; LaMattina, John C

    2017-01-02

    Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.

  12. Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo.

    PubMed

    Liu, Weihua; Xu, Jinmei; Liu, Yilun; Yu, Xiaoping; Tang, Xi; Wang, Zhi; Li, Xin

    2014-10-01

    Human epidermal growth factor receptor 2 (HER2) has been found to be overexpressed in ~25% of invasive breast cancer and is significantly associated with a poor prognosis in breast cancer patients. The anthocyanins cyanidin-3-glucoside (C3G) and peonidin-3-glucoside have been identified as potential drugs for the therapy of HER2‑positive breast cancer. They have been used as supplements in targeted therapeutics and chemotherapeutics in Asia, however, the underlying mechanism remains to be elucidated. The aim of the present study was to investigate the synergism between C3G and trastuzumab (Trast). To address this question, the response to C3G, Trast and a combination of the two drugs, in three representative HER2‑positive cell lines was evaluated. The combination treatments induced apoptosis, inhibited cell growth and affected HER2 and its downstream signaling pathway in MDA‑MB‑453, BT474 and HCC1569 cells, and the effects were synergistic. The combination of 3CG and Trast inhibited tumor growth in an in vivo xenograft model. The data from the present study suggested that C3G exhibits potent antitumor activity when combined with Trast under the investigated conditions.

  13. Density-dependent induction of apoptosis by transforming growth factor-beta 1 in a human ovarian carcinoma cell line.

    PubMed

    Mathieu, C; Jozan, S; Mazars, P; Côme, M G; Moisand, A; Valette, A

    1995-01-01

    Transforming growth factor-beta 1 inhibited proliferation of a human ovarian carcinoma cell line (NIH-OVCAR-3). The inhibition of NIH-OVCAR-3 cell proliferation was accompanied by a decrease in clonogenic potential, evidenced by the reduced ability of TGF-beta 1-treated NIH-OVCAR-3 cells to form colonies on a plastic substratum. This rapid decrease of clonogenic potential, which was detected 6 h after addition of TGF-beta 1 was dose-dependent (IC50 = 4 pM). Fluorescence microscopy of DAPI-stained cells supported by electron-microscopic examination showed that TGF-beta 1 induced chromatin condensation and nuclear fragmentation. In addition, oligonucleosomal-sized fragments were detected in the TGF-beta 1-treated cells. These features indicated that TGF-beta 1 induced NIH-OVCAR-3 cell death by an apoptosis-like mechanism. This TGF-beta 1 apoptotic effect was subject to modulation by cell density. It was observed that an increase in cell density (up to 20 x 10(3) cells/cm2) protected NIH-OVCAR-3 cells against apoptosis induced by TGF-beta 1. Conditioned medium from high-density cultures of NIH-OVCAR-3 cells did not inhibit apoptosis induced by TGF-beta 1 on NIH-OVCAR-3 cells cultured at low density, suggesting that the protective effect of cell density was not related to the cell secretion of a soluble survival factor.

  14. A microRNA-7/growth arrest specific 6/TYRO3 axis regulates the growth and invasiveness of sorafenib-resistant cells in human hepatocellular carcinoma.

    PubMed

    Kabir, Tasnuva D; Ganda, Clarissa; Brown, Rikki M; Beveridge, Dianne J; Richardson, Kirsty L; Chaturvedi, Vishal; Candy, Patrick; Epis, Michael; Wintle, Larissa; Kalinowski, Felicity; Kopp, Christina; Stuart, Lisa M; Yeoh, George C; George, Jacob; Leedman, Peter J

    2018-01-01

    Sorafenib remains the only approved drug for treating patients with advanced hepatocellular carcinoma (HCC). However, the therapeutic effect of sorafenib is transient, and patients invariably develop sorafenib resistance (SR). Recently, TYRO3, a member of the TYRO3-AXL-MER family of receptor tyrosine kinases, was identified as being aberrantly expressed in a significant proportion of HCC; however, its role in SR is unknown. In this study, we generated two functionally distinct sorafenib-resistant human Huh-7 HCC cell lines in order to identify new mechanisms to abrogate acquired SR as well as new potential therapeutic targets in HCC. Initially, we investigated the effects of a microRNA (miR), miR-7-5p (miR-7), in both in vitro and in vivo preclinical models of human HCC and identified miR-7 as a potent tumor suppressor of human HCC. We identified TYRO3 as a new functional target of miR-7, which regulates proliferation, migration, and invasion of Huh-7 cells through the phosphoinositide 3-kinase/protein kinase B pathway and is markedly elevated with acquisition of SR. Furthermore, miR-7 effectively silenced TYRO3 expression in both sorafenib-sensitive and sorafenib-resistant Huh-7 cells, inhibiting TYRO3/growth arrest specific 6-mediated cancer cell migration and invasion. We identified a mechanism for acquiring SR in HCC that is through the aberrant expression of the TYRO3/phosphoinositide 3-kinase/protein kinase B signal transduction pathway, and that can be overcome by miR-7 overexpression. Taken together, these data suggest a potential role for miR-7 as an RNA-based therapeutic to treat refractory and drug-resistant HCC. (Hepatology 2018;67:216-231). © 2017 by the American Association for the Study of Liver Diseases.

  15. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.

    PubMed

    Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J

    2016-08-17

    Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  16. An In Vitro Comparison of the Incorporation, Growth, and Chondrogenic Potential of Human Bone Marrow versus Adipose Tissue Mesenchymal Stem Cells in Clinically Relevant Cell Scaffolds Used for Cartilage Repair

    PubMed Central

    Kohli, Nupur; Wright, Karina T.; Sammons, Rachel L.; Jeys, Lee; Snow, Martyn

    2015-01-01

    Aim To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair. Methods Human BM and AT MSCs were isolated, culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively. Results A greater number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro-Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no marked difference in GAG secretion by MSCs from either cell source. Conclusion Chondro-Gide and Alpha Chondro Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue. PMID:26425263

  17. Single-cell cloning and expansion of human induced pluripotent stem cells by a microfluidic culture device.

    PubMed

    Matsumura, Taku; Tatsumi, Kazuya; Noda, Yuichiro; Nakanishi, Naoyuki; Okonogi, Atsuhito; Hirano, Kunio; Li, Liu; Osumi, Takashi; Tada, Takashi; Kotera, Hidetoshi

    2014-10-10

    The microenvironment of cells, which includes basement proteins, shear stress, and extracellular stimuli, should be taken into consideration when examining physiological cell behavior. Although microfluidic devices allow cellular responses to be analyzed with ease at the single-cell level, few have been designed to recover cells. We herein demonstrated that a newly developed microfluidic device helped to improve culture conditions and establish a clonality-validated human pluripotent stem cell line after tracing its growth at the single-cell level. The device will be a helpful tool for capturing various cell types in the human body that have not yet been established in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Essential Roles of Raf/Extracellular Signal-regulated Kinase/Mitogen-activated Protein Kinase Pathway, YY1, and Ca2+ Influx in Growth Arrest of Human Vascular Smooth Muscle Cells by Bilirubin*

    PubMed Central

    Stoeckius, Marlon; Erat, Anna; Fujikawa, Tatsuya; Hiromura, Makoto; Koulova, Anna; Otterbein, Leo; Bianchi, Cesario; Tobiasch, Edda; Dagon, Yossi; Sellke, Frank W.; Usheva, Anny

    2012-01-01

    The biological effects of bilirubin, still poorly understood, are concentration-dependent ranging from cell protection to toxicity. Here we present data that at high nontoxic physiological concentrations, bilirubin inhibits growth of proliferating human coronary artery smooth muscle cells by three events. It impairs the activation of Raf/ERK/MAPK pathway and the cellular Raf and cyclin D1 content that results in retinoblastoma protein hypophosphorylation on amino acids S608 and S780. These events impede the release of YY1 to the nuclei and its availability to regulate the expression of genes and to support cellular proliferation. Moreover, altered calcium influx and calpain II protease activation leads to proteolytical degradation of transcription factor YY1. We conclude that in the serum-stimulated human vascular smooth muscle primary cell cultures, bilirubin favors growth arrest, and we propose that this activity is regulated by its interaction with the Raf/ERK/MAPK pathway, effect on cyclin D1 and Raf content, altered retinoblastoma protein profile of hypophosphorylation, calcium influx, and YY1 proteolysis. We propose that these activities together culminate in diminished 5 S and 45 S ribosomal RNA synthesis and cell growth arrest. The observations provide important mechanistic insight into the molecular mechanisms underlying the transition of human vascular smooth muscle cells from proliferative to contractile phenotype and the role of bilirubin in this transition. PMID:22262839

  19. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    PubMed

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  20. Growth promoting in vitro effect of synthetic cyclic RGD-peptides on human osteoblast-like cells attached to cancellous bone.

    PubMed

    Magdolen, Ursula; Auernheimer, Jörg; Dahmen, Claudia; Schauwecker, Johannes; Gollwitzer, Hans; Tübel, Jutta; Gradinger, Reiner; Kessler, Horst; Schmitt, Manfred; Diehl, Peter

    2006-06-01

    In tissue engineering, the application of biofunctional compounds on biomaterials such as integrin binding RGD-peptides has gained growing interest. Anchorage-dependent cells like osteoblasts bind to these peptides thus ameliorating the integration of a synthetic implant. In case sterilized bone grafts are used as substitutes for reconstruction of bone defects, the ingrowth of the implanted bone is often disturbed because of severe pretreatment such as irradiation or autoclaving, impairing the biological and mechanical properties of the bone. We report for the first time on the in vitro coating of the surface of freshly resected, cleaned bone discs with synthetic, cyclic RGD-peptides. For this approach, two different RGD-peptides were used, one containing two phosphonate anchors, the other peptide four of these binding moieties to allow efficient association of these reactive RGD-peptides to the inorganic bone matrix. Human osteoblast-like cells were cultured on RGD-coated bone discs and the adherence and growth of the cells were analyzed. Coating of bone discs with RGD-peptides did not improve the adhesion rate of osteoblast-like cells to the discs but significantly (up to 40%) accelerated growth of these cells within 8 days after attachment. This effect points to pretreatment of bone implants, especially at the critical interface area between the implanted bone and the non-resected residual bone structure, before re-implantation in order to stimulate and enhance osteointegration of a bone implant.

  1. Human amniotic fluid promotes retinal pigmented epithelial cells' trans-differentiation into rod photoreceptors and retinal ganglion cells.

    PubMed

    Ghaderi, Shima; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Davari, Maliheh; Jahromi, Fatemeh Sanie; Samie, Shahram; Rezaie-Kanavi, Mozhgan; Pakravesh, Jalil; Deezagi, Abdolkhalegh

    2011-09-01

    To evaluate the effect of human amniotic fluid (HAF) on retinal pigmented epithelial cells growth and trans-differentiation into retinal neurons, retinal pigmented epithelium (RPE) cells were isolated from neonatal human cadaver eye globes and cultured in Dulbecco's modified Eagle's medium-F12 supplemented with 10% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using FBS-containing or HAF-containing media. Amniotic fluid samples were received from pregnant women in the first trimester of gestation. Cell proliferation and death enzyme-linked immunosorbent assays were performed to assess the effect of HAF on RPE cell growth. Trans-differentiation into rod photoreceptors and retinal ganglion cells was also studied using immunocytochemistry and real-time polymerase chain reaction techniques. Primary cultures of RPE cells were successfully established under FBS-containing or HAF-containing media leading to rapid cell growth and proliferation. When RPE cells were moved to in vitro culture system, they began to lose their differentiation markers such as pigmentation and RPE65 marker and trans-differentiated neural-like cells followed by spheroid colonies pertaining to stem/progenitor cells were morphologically detected. Immunocytochemistry (ICC) analysis of HAF-treated cultures showed a considerable expression of Rhodopsin gene (30% Rhodopsin-positive cells) indicating trans-differentiation of RPE cells to rod photoreceptors. Real-time polymerase chain reaction revealed an HAF-dose-dependant expression of Thy-1 gene (RGC marker) and significant promoting effect of HAF on RGCs generation. The data presented here suggest that HAF possesses invaluable stimulatory effect on RPE cells growth and trans-differentiation into retinal neurons. It can be regarded as a newly introduced enriched supplement in serum-free kinds of media used in neuro-retinal regeneration studies.

  2. Differential effects of human papillomavirus type 6, 16, and 18 DNAs on immortalization and transformation of human cervical epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecoraro, G.; Morgan, D.; Defendi, V.

    1989-01-01

    The human papillomaviruses (HPVs) are associated with specific benign and malignant lesions of the skin and mucosal epithelia. Cloned viral DNAs from HPV types 6b, 16, and 18 associated with different pathological manifestations of genital neoplasia in vivo were introduced into primary human cervical epithelial cells by electroporation. Cells transfected with HPV16 or HPV18 DNA acquired indefinite lifespans, distinct morphological alterations, and anchorage-independent growth (HPV18), and contain integrated transcriptionally active viral genomes. HPV6b or plasmid electroporated cells senesced at low passage. The alterations in growth and differentiation of the cells appear to reflect the progressive oncogenic processes that result inmore » cervical carcinoma in vivo.« less

  3. Three-Dimensional Coculture Of Human Small-Intestine Cells

    NASA Technical Reports Server (NTRS)

    Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy

    1994-01-01

    Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).

  4. Stem cell factor and interleukin-2/15 combine to enhance MAPK-mediated proliferation of human natural killer cells

    PubMed Central

    Benson, Don M.; Yu, Jianhua; Becknell, Brian; Wei, Min; Freud, Aharon G.; Ferketich, Amy K.; Trotta, Rossana; Perrotti, Danilo; Briesewitz, Roger

    2009-01-01

    Stem cell factor (SCF) promotes synergistic cellular proliferation in combination with several growth factors, and appears important for normal natural killer (NK)–cell development. CD34+ hematopoietic precursor cells (HPCs) require interleukin-15 (IL-15) for differentiation into human NK cells, and this effect can be mimicked by IL-2. Culture of CD34+ HPCs or some primary human NK cells in IL-2/15 and SCF results in enhanced growth compared with either cytokine alone. The molecular mechanisms responsible for this are unknown and were investigated in the present work. Activation of NK cells by IL-2/15 increases expression of c-kit whose kinase activity is required for synergy with IL-2/15 signaling. Mitogen-activated protein kinase (MAPK) signaling intermediaries that are activated both by SCF and IL-2/15 are enhanced in combination to facilitate earlier cell-cycle entry. The effect results at least in part via enhanced MAPK-mediated modulation of p27 and CDK4. Collectively the data reveal a novel mechanism by which SCF enhances cellular proliferation in combination with IL-2/15 in primary human NK cells. PMID:19060242

  5. Human Hepatocyte Growth Factor (hHGF)-Modified Hepatic Oval Cells Improve Liver Transplant Survival

    PubMed Central

    Li, Li; Ran, Jiang-Hua; Li, Xue-Hua; Liu, Zhi-Heng; Liu, Gui-Jie; Gao, Yan-Chao; Zhang, Xue-Li; Sun, Hiu-Dong

    2012-01-01

    Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF) in modifying hepatic oval cells (HOCs) administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05). Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) levels while increasing the production of IL-10 and TGF-β1 (P<0.05). HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only). Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver injuries. PMID

  6. Targeting aminopeptidase N (APN/CD13) with cyclic-imide peptidomimetics derivative CIP-13F inhibits the growth of human ovarian carcinoma cells.

    PubMed

    Cui, Shu-Xiang; Qu, Xian-Jun; Gao, Zu-Hua; Zhang, Yu-Sheng; Zhang, Xiao-Fan; Zhao, Cui-Rong; Xu, Wen-Fang; Li, Qian-Bin; Han, Jin-Xiang

    2010-06-28

    Aminopeptidase N (APN/CD13) is an essential peptidase involved in the process of tumor growth, metastasis and angiogenesis. Inhibition of APN/CD13 may be an effective strategy for cancer treatment. CIP-13F is a cyclic-imide peptidomimetics compound designed to fit the active pockets S1 and S'1 of APN/CD13 that act in tumor proliferation. Our aim in this study was to evaluate the efficacy of CIP-13F as a candidate compound for cancer treatment. The experiments were performed on the human ovarian carcinoma (OVCA) ES-2 and HRA cell lines, which have high and low levels of APN/CD13 respectively. CIP-13F significantly blocked APN/CD13 activity on the surface of ES-2 cells as measured by quantitating the enzymatic cleavage of the substrate l-leucine-p-nitroanilide. CIP-13F effectively inhibited ES-2 cell growth and migration without significant cytotoxic effect. In contrast, CIP-13F did not significantly inhibit HRA cell growth, indicating that CIP-13F may inhibit ES-2 cell growth via suppression of APN/CD13. The suppression of APN/CD13 was also observed by using the assays of flow cytometry and Western blot analysis. Further, the inhibitory effects of CIP-13F on APN/CD13 and on ES-2 proliferation were supported by the induction of ES-2 apoptosis. CIP-13F-treated ES-2 cells resulted apoptotic characteristics, such as induction of externalization of phosphatidylserine and DNA laddering fragment. The activation of caspase-3 and poly ADP-ribose polymerase (PARP) was also enhanced. The inhibitory effects of CIP-13F on APN/CD13 expression and on ES-2 proliferation were confirmed in mice bearing ES-2 xenografts. CIP-13F delayed the growth of ES-2 xenografts in mice after 2 weeks of vena caudalis injection. These results suggest that CIP-13F has a high inhibitory effect on the growth of OVCA cells via decreasing the activity and expression of APN/CD13. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1.

    PubMed

    Treas, Justin; Tyagi, Tulika; Singh, Kamaleshwar P

    2013-11-01

    Chronic exposure to arsenic and estrogen is associated with risk of prostate cancer, but their mechanism is not fully understood. Additionally, the carcinogenic effects of their co-exposure are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic, estrogen, and their combination, on cell growth and transformation, and identify the mechanism behind these effects. RWPE-1 human prostate epithelial cells were chronically exposed to arsenic and estrogen alone and in combination. Cell growth was measured by cell count and cell cycle, whereas cell transformation was evaluated by colony formation assay. Gene expression was measured by quantitative real-time PCR and confirmed at protein level by Western blot analysis. MLH1 promoter methylation was determined by pyrosequencing method. Exposure to arsenic, estrogen, and their combinations increases cell growth and transformation in RWPE-1 cells. Increased expression of Cyclin D1 and Bcl2, whereas decreased expression of mismatch repair genes MSH4, MSH6, and MLH1 was also observed. Hypermethylation of MLH1 promoter further suggested the epigenetic inactivation of MLH1 expression in arsenic and estrogen treated cells. Arsenic and estrogen combination caused greater changes than their individual treatments. Findings of this study for the first time suggest that arsenic and estrogen exposures cause increased cell growth and survival potentially through epigenetic inactivation of MLH1 resulting in decreased MLH1-mediated apoptotic response, and consequently increased cellular transformation. © 2013 Wiley Periodicals, Inc.

  8. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth

    PubMed Central

    Kleffel, Sonja; Posch, Christian; Barthel, Steven R.; Mueller, Hansgeorg; Schlapbach, Christoph; Guenova, Emmanuella; Elco, Christopher P.; Lee, Nayoung; Juneja, Vikram R.; Zhan, Qian; Lian, Christine G.; Thomi, Rahel; Hoetzenecker, Wolfram; Cozzio, Antonio; Dummer, Reinhard; Mihm, Martin C.; Flaherty, Keith T.; Frank, Markus H.; Murphy, George F.; Sharpe, Arlene H.; Kupper, Thomas S.; Schatton, Tobias

    2015-01-01

    SUMMARY Therapeutic antibodies targeting programmed cell death-1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNA interference, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. PMID:26359984

  9. Gossypol inhibition of mitosis, cyclin D1 and Rb protein in human mammary cancer cells and cyclin-D1 transfected human fibrosarcoma cells.

    PubMed Central

    Ligueros, M.; Jeoung, D.; Tang, B.; Hochhauser, D.; Reidenberg, M. M.; Sonenberg, M.

    1997-01-01

    The antiproliferative effects of gossypol on human MCF-7 mammary cancer cells and cyclin D1-transfected HT-1060 human fibrosarcoma cells were investigated by cell cycle analysis and effects on the cell cycle regulatory proteins Rb and cyclin D1. Flow cytometry of MCF-7 cells at 24 h indicated that 10 microM gossypol inhibited DNA synthesis by producing a G1/S block. Western blot analysis using anti-human Rb antibodies and anti-human cyclin D1 antibodies in MCF-7 cells and high- and low-expression cyclin D1-transfected fibrosarcoma cells indicated that, after 6 h exposure, gossypol decreased the expression levels of these proteins in a dose-dependent manner. Gossypol also decreased the ratio of phosphorylated to unphosphorylated Rb protein in human mammary cancer and fibrosarcoma cell lines. Gossypol (10 microM) treated also decreased cyclin D1-associated kinase activity on histone H1 used as a substrate in MCF-7 cells. These results suggest that gossypol might suppress growth by modulating the expression of cell cycle regulatory proteins Rb and cyclin D1 and the phosphorylation of Rb protein. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:9218727

  10. Live-cell imaging visualizes frequent mitotic skipping during senescence-like growth arrest in mammary carcinoma cells exposed to ionizing radiation.

    PubMed

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-06-01

    Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO(2)-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer.

    PubMed

    Baker, Cheryl H; Solorzano, Carmen C; Fidler, Isaiah J

    2002-04-01

    We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer.

  12. Human Chorionic Gonadotrophin as a Possible Mediator of Leiomyoma Growth during Pregnancy: Molecular Mechanisms.

    PubMed

    Sarais, Veronica; Cermisoni, Greta Chiara; Schimberni, Matteo; Alteri, Alessandra; Papaleo, Enrico; Somigliana, Edgardo; Vigano', Paola

    2017-09-20

    Uterine fibroids are the most common gynecologic benign tumors. Studies supporting a strong pregnancy-related growth of leiomyomas generally claimed a crucial role of sex steroid hormones. However, sex steroids are unlikely the unique actors involved as estrogen and progesterone achieve a pick serum concentration in the last trimester while leiomyomas show a typical increase during the first trimester. Given the rapid exponential raise in serum human Chorionic Gonadotrophin (hCG) at the beginning of gestation, we conducted a review to assess the potential role of hCG in the striking growth of leiomyomas during initial pregnancy. Fibroid growth during initial pregnancy seems to correlate to the similar increase of serum hCG levels until 12 weeks of gestation. The presence of functional Luteinizing Hormone/human Chorionic Gonadotropin (LH/hCG) receptors was demonstrated on leiomyomas. In vitro treatment of leiomyoma cells with hCG determines an up to 500% increase in cell number after three days. Expression of cyclin E and cyclin-dependent kinase 1 was significantly increased in leiomyoma cells by hCG treatment. Moreover, upon binding to the receptor, hCG stimulates prolactin secretion in leiomyoma cells, promoting cell proliferation via the mitogen-activated protein kinase cascade. Fibroid enlargement during initial pregnancy may be regulated by serum hCG.

  13. Human Chorionic Gonadotrophin as a Possible Mediator of Leiomyoma Growth during Pregnancy: Molecular Mechanisms

    PubMed Central

    Sarais, Veronica; Cermisoni, Greta Chiara; Schimberni, Matteo; Alteri, Alessandra; Papaleo, Enrico; Somigliana, Edgardo; Vigano’, Paola

    2017-01-01

    Uterine fibroids are the most common gynecologic benign tumors. Studies supporting a strong pregnancy-related growth of leiomyomas generally claimed a crucial role of sex steroid hormones. However, sex steroids are unlikely the unique actors involved as estrogen and progesterone achieve a pick serum concentration in the last trimester while leiomyomas show a typical increase during the first trimester. Given the rapid exponential raise in serum human Chorionic Gonadotrophin (hCG) at the beginning of gestation, we conducted a review to assess the potential role of hCG in the striking growth of leiomyomas during initial pregnancy. Fibroid growth during initial pregnancy seems to correlate to the similar increase of serum hCG levels until 12 weeks of gestation. The presence of functional Luteinizing Hormone/human Chorionic Gonadotropin (LH/hCG) receptors was demonstrated on leiomyomas. In vitro treatment of leiomyoma cells with hCG determines an up to 500% increase in cell number after three days. Expression of cyclin E and cyclin-dependent kinase 1 was significantly increased in leiomyoma cells by hCG treatment. Moreover, upon binding to the receptor, hCG stimulates prolactin secretion in leiomyoma cells, promoting cell proliferation via the mitogen-activated protein kinase cascade. Fibroid enlargement during initial pregnancy may be regulated by serum hCG. PMID:28930160

  14. The additive effects of minoxidil and retinol on human hair growth in vitro.

    PubMed

    Yoo, Hyeon Gyeong; Chang, In-Young; Pyo, Hyun Keol; Kang, Yong Jung; Lee, Seung Ho; Kwon, Oh Sang; Cho, Kwang Hyun; Eun, Hee Chul; Kim, Kyu Han

    2007-01-01

    Minoxidil enhances hair growth by prolonging the anagen phase and induces new hair growth in androgenetic alopecia (AGA), whereas retinol significantly improves scalp skin condition and promotes hair growth. We investigated the combined effects of minoxidil and retinol on human hair growth in vitro and on cultured human dermal papilla cells (DPCs) and epidermal keratinocytes (HaCaT). The combination of minoxidil and retinol additively promoted hair growth in hair follicle organ cultures. In addition, minoxidil plus retinol more effectively elevated phosphorylated Erk, phosphorylated Akt levels, and the Bcl-2/Bax ratio than minoxidil alone in DPCs and HaCaT. We found that the significant hair shaft elongation demonstrated after minoxidil plus retinol treatment would depend on the dual kinetics associated with the activations of Erk- and Akt-dependent pathways and the prevention of apoptosis by increasing the Bcl-2/Bax ratio.

  15. Cells competition in tumor growth poroelasticity

    NASA Astrophysics Data System (ADS)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  16. Expression and rearrangement of the ROS1 gene in human glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchmeier, C.; Sharma, S.; Wigler, M.

    1987-12-01

    The human ROS1 gene, which possibly encodes a growth factor receptor, was found to be expressed in human tumor cell lines. In a survey of 45 different human cell lines, the authors found ROS1 to be expressed in glioblastoma-derived cell lines at high levels and not to be expressed at all, or expressed at very low levels, in the remaining cell lines. The ROS1 gene was present in normal copy numbers in all cell lines that expressed the gene. However, in one particular glioblastoma line, they detected a potentially activating mutation at the ROS1 locus.

  17. MicroRNA-627 Mediates the Epigenetic Mechanisms of Vitamin D to Suppress Proliferation of Human Colorectal Cancer Cells and Growth of Xenograft Tumors in Mice

    PubMed Central

    Padi, Sathish K.R.; Zhang, Qunshu; Rustum, Youcef M; Morrison, Carl; Guo, Bin

    2013-01-01

    Background & Aims Vitamin D protects against colorectal cancer by unclear mechanisms. We investigated the effects of calcitriol (1α,25-dihydroxyvitamin D3, the active form of vitamin D) on levels of different microRNAs (miRs) in colorectal cancer (CRC) cells from humans and xenograft tumors in mice. Methods Expression of microRNAs in CRC cell lines was examined using the Ambion mirVana miRNA Bioarray. The effects of calcitriol on expression of miR-627 and cell proliferation were determined by real-time PCR and WST-1 assay, respectively; growth of colorectal xenograft tumors was examined in nude mice. Real-time PCR was used to analyze levels of miR-627 in human colon adenocarcinoma samples and non-tumor colon mucosa tissues (controls). Results In HT-29 cells, miR-627 was the only microRNA significantly upregulated by calcitriol. Jumonji domain containing 1A (JMJD1A), which encodes a histone demethylase, was found to be a target of miR-627. By downregulating JMJD1A, miR-627 increased methylation of histone H3K9 and suppressed expression of proliferative factors such as GDF15. Calcitriol induced expression of miR-627, which downregulated JMJD1A and suppressed growth of xenograft tumors from HCT-116 cells in nude mice. Overexpression of miR-627 prevented proliferation of CRC cell lines in culture and growth of xenograft tumors in mice. Conversely, blocking the activity of miR-627 inhibited the tumor suppressive effects of calcitriol in cultured CRC cells and in mice. Levels of miR-627 were decreased in human colon adenocarcinoma samples, compared with controls. Conclusions miR-627 mediates tumor-suppressive epigenetic activities of vitamin D on CRC cells and xenograft tumors in mice. The mRNA that encodes the histone demethylase JMJD1A is a direct target of miR-627. Reagents designed to target JMJD1A or its mRNA, or increase the function of miR-627, might have the same antitumor activities of vitamin D without the hypercalcemic side effects. PMID:23619147

  18. Mouse preantral follicle growth in 3D co-culture system using human menstrual blood mesenchymal stem cell.

    PubMed

    Rajabi, Zahra; Yazdekhasti, Hossein; Noori Mugahi, Seyed Mohammad Hossein; Abbasi, Mehdi; Kazemnejad, Somaieh; Shirazi, Abolfazl; Majidi, Masoumeh; Zarnani, Amir-Hassan

    2018-03-01

    Follicle culture provides a condition which can help investigators to evaluate various aspects of ovarian follicle growth and development and impact of different components and supplementations as well as presumably application of follicle culture approach in fertility preservation procedures. Mesenchymal Stem Cells (MSCs), particularly those isolated from menstrual blood has the potential to be used as a tool for improvement of fertility. In the current study, a 3D co-culture system with mice preantral follicles and human Menstrual Blood Mesenchymal Stem Cells (MenSCs) using either collagen or alginate beads was designed to investigate whether this system allows better preantral follicles growth and development. Results showed that MenSCs increase the indices of follicular growth including survival rate, diameter, and antrum formation as well as the rate of in vitro maturation (IVM) in both collagen and alginates beads. Although statistically not significant, alginate was found to be superior in terms of supporting survival rate and antrum formation. Hormone assay demonstrated that the amount of secreted 17 β-estradiol and progesterone in both 3D systems increased dramatically after 12 days, with the highest levels in system employing MenSCs. Data also demonstrated that relative expression of studied genes increased for Bmp15 and Gdf9 and decreased for Mater when follicles were cultured in the presence of MenSCs. Collectively, results of the present study showed that MenSCs could improve indices of follicular growth and maturation in vitro. Further studies are needed before a clinical application of MenSCs-induced IVM is considered. Copyright © 2018 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. All rights reserved.

  19. Altered tumor cell growth and tumorigenicity in models of microgravity

    NASA Astrophysics Data System (ADS)

    Yamauchi, K.; Taga, M.; Furian, L.; Odle, J.; Sundaresan, A.; Pellis, N.; Andrassy, R.; Kulkarni, A.

    Spaceflight environment and microgravity (MG) causes immune dysfunction and is a major health risk to humans, especially during long-term space missions. The effects of microgravity environment on tumor growth and carcinogenesis are yet unknown. Hence, we investigated the effects of simulated MG (SMG) on tumor growth and tumorigenicity using in vivo and in vitro models. B16 melanoma cells were cultured in static flask (FL) and rotating wall vessel bioreactors (BIO) to measure growth and properties, melanin production and apoptosis. BIO cultures had 50% decreased growth (p<0.01), increased doubling time and a 150% increase in melanin production (p<0.05). Flow cytometric analysis showed increased apoptosis in BIO. When BIO cultured melanoma cells were inoculated sc in mice there was a significant increase in tumorigenicity as compared to FL cells. Thus SMG may have supported &selected highly tumorigenic cells and it is pos sible that in addition to decreased immune function MG may alter tumor cell characteristics and invasiveness. Thus it is important to study effects of microgravity environment and its stressors using experimental tumors and SMG to understand and evaluate carcinogenic responses to true microgravity. Further studies on carcinogenic events and their mechanisms will allow us develop and formulate countermeasures and protect space travelers. Additional results will be presented. (Supported by NASA NCC8-168 grant, ADK)

  20. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells

    PubMed Central

    Li, Dongli; He, Yan; Li, Yu; Du, Zhiyun; Zhang, Kun; DiPaola, Robert; Goodin, Susan; Zheng, Xi

    2015-01-01

    α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer. PMID:26630272