Science.gov

Sample records for human cerebral endothelial

  1. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    PubMed

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy. PMID:26377633

  2. Interleukin-6 triggers human cerebral endothelial cells proliferation and migration: The role for KDR and MMP-9

    SciTech Connect

    Yao, Jianhua S.; Zhai Wenwu; Young, William L.; Yang Guoyuan . E-mail: gyyang@anesthesia.ucsf.edu

    2006-04-21

    Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for First time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p < 0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression.

  3. Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats.

    PubMed

    Fang, Lili; Li, Xue; Zhong, Yinbo; Yu, Jing; Yu, Lina; Dai, Haibin; Yan, Min

    2015-10-01

    Cerebral microvascular endothelial cells (ECs) are crucial for brain vascular repair and maintenance, but their physiological function may be impaired during ischemic stroke and diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, could exacerbate ischemia-induced EC injury and dysfunction. We investigated the protective effect of autophagy on cultured human brain microvascular endothelial cells (HBMEC) that underwent MGO treatment. A further study was conducted to explore the underlying mechanisms of the protective effect. Autophagic activity was assessed by evaluating protein levels, using western blot. 3-methyladenine (3-MA), bafilomycin A1, ammonium chloride (AC), Beclin 1 siRNA, and chloroquine (CQ) were used to cause autophagy inhibition. Alarmar blue assay and lactate dehydrogenase release assay were used to evaluate cell viability. Streptozotocin was administered to induce type I diabetes in rats and post-permanent middle cerebral artery occlusion was performed to elicit cerebral ischemia. Blood-brain barrier permeability was also assessed. Our study found that MGO reduced HBMEC cell viability in a concentration- and time-dependent manner, and triggered the responsive autophagy activation. Autophagy inhibitors bafilomycin A1, AC, 3-MA, and BECN1 siRNA exacerbated MGO-induced HBMEC injury. FAK phosphorylation inhibitor PF573228 inhibited MGO-triggered autophagy and enhanced lactate dehydrogenase release. Meanwhile, similar autophagy activation in brain vascular ECs was observed during permanent middle cerebral artery occlusion-induced cerebral ischemia in diabetic rats, while chloroquine-induced autophagy inhibition enhanced blood-brain barrier permeability. Taken together, our study indicates that autophagy triggered by MGO defends HBMEC against injuries. PMID:26251121

  4. Neuroprotective effects of systemic cerebral endothelial cell transplantation in a rat model of cerebral ischemia

    PubMed Central

    Moon, Jong-Hyun; Na, Joo-Young; Lee, Min-Cheol; Choi, Kang-Ho; Lee, Jeong-Kil; Min, Jung-Joon; Kim, Kyung-Tae; Park, Jong-Tae; Park, Man-Seok; Kim, Hyung-Seok

    2016-01-01

    Human cerebral microvascular endothelial cell line (hCMEC)/D3 cells, which are from a stable clonal cell line of human immortalized cerebral endothelial cells, were intra-arterially transplanted through the common carotid artery in a rat model of photochemical-induced cerebral ischemia. Their therapeutic effects on infarct size, blood-brain barrier (BBB) breakdown, and outcome were examined. The hCMEC/D3 cells were genetically modified with the firefly luciferase gene for in vivo imaging post-transplantation. Transplanted hCMEC/D3 cells were identified in the infarcted brain by bioluminescence imaging at 1 day after transplantation. Compared with the control group, the hCMEC/D3-transplanted group showed reduced infarct size on day 3, reduced Evans blue dye leakage on day 1 indicating decreased BBB breakdown, and early recovery from Rotarod test neurological deficits. The hCMEC/D3-transplanted group also showed decreased levels of matrix metalloproteinase (MMP)-9, which were inversely correlated with TIMP-1 levels on post-transplantation days 1 and 3. The expression of tumor necrosis factor-α and interleukin-1β were markedly diminished in the hCMEC/D3-transplanted group compared with controls. The systemically transplanted cells selectively migrated and integrated into the ischemically lesioned area, which accelerated neurological recovery. This new cerebral endothelial cell-based therapy may hold promise for clinical trials in patients with ischemic stroke. PMID:27347342

  5. Neuroprotective effects of systemic cerebral endothelial cell transplantation in a rat model of cerebral ischemia.

    PubMed

    Moon, Jong-Hyun; Na, Joo-Young; Lee, Min-Cheol; Choi, Kang-Ho; Lee, Jeong-Kil; Min, Jung-Joon; Kim, Kyung-Tae; Park, Jong-Tae; Park, Man-Seok; Kim, Hyung-Seok

    2016-01-01

    Human cerebral microvascular endothelial cell line (hCMEC)/D3 cells, which are from a stable clonal cell line of human immortalized cerebral endothelial cells, were intra-arterially transplanted through the common carotid artery in a rat model of photochemical-induced cerebral ischemia. Their therapeutic effects on infarct size, blood-brain barrier (BBB) breakdown, and outcome were examined. The hCMEC/D3 cells were genetically modified with the firefly luciferase gene for in vivo imaging post-transplantation. Transplanted hCMEC/D3 cells were identified in the infarcted brain by bioluminescence imaging at 1 day after transplantation. Compared with the control group, the hCMEC/D3-transplanted group showed reduced infarct size on day 3, reduced Evans blue dye leakage on day 1 indicating decreased BBB breakdown, and early recovery from Rotarod test neurological deficits. The hCMEC/D3-transplanted group also showed decreased levels of matrix metalloproteinase (MMP)-9, which were inversely correlated with TIMP-1 levels on post-transplantation days 1 and 3. The expression of tumor necrosis factor-α and interleukin-1β were markedly diminished in the hCMEC/D3-transplanted group compared with controls. The systemically transplanted cells selectively migrated and integrated into the ischemically lesioned area, which accelerated neurological recovery. This new cerebral endothelial cell-based therapy may hold promise for clinical trials in patients with ischemic stroke. PMID:27347342

  6. Immortalized human cerebral microvascular endothelial cells maintain the properties of primary cells in an in vitro model of immune migration across the blood brain barrier

    PubMed Central

    Daniels, Brian P.; Cruz-Orengo, Lillian; Pasieka, Tracy Jo; Couraud, Pierre-Olivier; Romero, Ignacio A.; Weksler, Babette; Cooper, John A.; Doering, Tamara L.; Klein, Robyn S.

    2012-01-01

    The immortalized human cerebral microvascular endothelial cell line HCMEC/D3 presents a less expensive and more logistically feasible alternative to primary human brain microvascular endothelial cells (HBMEC’s) for use in constructing in vitro models of the blood brain barrier (BBB). However, the fidelity of the HCMEC/D3 cell line to primary HBMEC’s in studies of immune transmigration has yet to be established. Flow cytometric analysis of primary human leukocyte migration across in vitro BBB’s generated with either HCMEC/D3 or primary HBMEC’s revealed that HCMEC/D3 maintains the immune barrier properties of primary HBMEC’s. Leukocyte migration responses and inflammatory cytokine production were statistically indistinguishable between both endothelial cell types, and both cell types responded similarly to astrocyte coculture, stimulation of leukocytes with phorbol myristate acetate (PMA) and ionomycin, and inflammatory cytokine treatment. This report is the first to validate the HCMEC/D3 cell line in a neuroimmunological experimental system via direct comparison to primary HBMEC’s, demonstrating remarkable fidelity in terms of barrier resistance, immune migration profiles, and responsiveness to inflammatory cytokines. Moreover, we report novel findings demonstrating that interaction effects between immune cells and resident CNS cells are preserved in HCMEC/D3, suggesting that important characteristics of neuroimmune interactions during CNS inflammation are preserved in systems utilizing this cell line. Together, these findings demonstrate that HCMEC/D3 is a valid and powerful tool for less expensive and higher throughput in vitro investigations of immune migration at the BBB. PMID:23068604

  7. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure.

    PubMed

    Jacob, Aude; Potin, Sophie; Chapy, Hélène; Crete, Dominique; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-07-10

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure. PMID:25858487

  8. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction.

    PubMed

    Chang, Jennifer; Fedinec, Alexander L; Kuntamallappanavar, Guruprasad; Leffler, Charles W; Bukiya, Anna N; Dopico, Alex M

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  9. Plasmodium falciparum Histidine-Rich Protein II Compromises Brain Endothelial Barriers and May Promote Cerebral Malaria Pathogenesis

    PubMed Central

    Pal, Priya; Daniels, Brian P.; Oskman, Anna; Diamond, Michael S.; Klein, Robyn S.

    2016-01-01

    ABSTRACT Cerebral malaria (CM) is a disease of the vascular endothelium caused by Plasmodium falciparum. It is characterized by parasite sequestration, inflammatory cytokine production, and vascular leakage. A distinguishing feature of P. falciparum infection is parasite production and secretion of histidine-rich protein II (HRPII). Plasma HRPII is a diagnostic and prognostic marker for falciparum malaria. We demonstrate that disruption of a human cerebral microvascular endothelial barrier by P. falciparum-infected erythrocytes depends on expression of HRPII. Purified recombinant or native HRPII can recapitulate these effects. HRPII action occurs via activation of the inflammasome, resulting in decreased integrity of tight junctions and increased endothelial permeability. We propose that HRPII is a virulence factor that may contribute to cerebral malaria by compromising endothelial barrier integrity within the central nervous system. PMID:27273825

  10. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    SciTech Connect

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K. )

    1990-11-15

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling.

  11. Reduced circulating endothelial progenitor cells in reversible cerebral vasoconstriction syndrome

    PubMed Central

    2014-01-01

    Background The pathophysiology of reversible cerebral vasoconstriction syndrome (RCVS) remains elusive. Endothelial dysfunction might play a role, but direct evidence is lacking. This study aimed to explore whether patients with RCVS have a reduced level of circulating circulating endothelial progenitor cells (EPCs) to repair the dysfunctional endothelial vasomotor control. Methods We prospectively recruited 24 patients with RCVS within one month of disease onset and 24 healthy age- and sex-matched controls. Flow cytometry was used to quantify the numbers of circulating EPCs, defined as KDR+CD133+, CD34+CD133+, and CD34+KDR+ double-positive mononuclear cells. The Lindegaard index, an index of vasoconstriction, was calculated by measuring the mean flow velocity of middle cerebral arteries and distal extracranial internal carotid arteries via color-coded sonography on the same day as blood drawing. A Lindegaard index of 2 was chosen as the cutoff value for significant vasoconstriction of middle cerebral arteries based on our previous study. Results Patients with RCVS had a reduced number of CD34+KDR+ cells (0.009 ± 0.006% vs. 0.014 ± 0.010%, p = 0.031) but not KDR+CD133+ cells or CD34+CD133+ EPCs, in comparison with controls. The number of CD34+KDR+ cells was inversely correlated with the Lindegaard index (rs = -0.418, p = 0.047). Of note, compared to controls, patients with a Lindegaard index > 2 (n = 13) had a reduced number of CD34+KDR+ cells (0.007 ± 0.005% vs. 0.014 ± 0.010%, p = 0.010), but those with a Lindegaard index ≤ 2 did not. Conclusions Patients with RCVS had reduced circulating CD34+KDR+ EPCs, which were correlated with the severity of vasoconstriction. Endothelial dysfunction might contribute to the pathogenesis of RCVS. PMID:25466718

  12. Regulation of NOD-like receptors and inflammasome activation in cerebral endothelial cells.

    PubMed

    Nagyőszi, Péter; Nyúl-Tóth, Ádám; Fazakas, Csilla; Wilhelm, Imola; Kozma, Mihály; Molnár, Judit; Haskó, János; Krizbai, István A

    2015-11-01

    Cerebral endothelial cells (CECs) forming the blood-brain barrier are at the interface of the immune and the central nervous systems and thus may play an important role in the functional integration of the two systems. Here, we investigated how CECs recognize and respond to pathogen- and damage-associated molecular patterns to regulate the functions of the neurovascular unit. First we detected the expression of several NOD-like receptors (NLRs) - including NOD1, NOD2, NLRC4, NLRC5, NLRP1, NLRP3, NLRP5, NLRP9, NLRP10, NLRP12, NLRA, and NLRX - in human brain endothelial cells. Inflammatory cytokines, such as interferon-γ, tumor necrosis factor-α, and IL-1β had stimulatory effects on the transcription of many of these receptors. Expression of key inflammasome components (NOD2, NLRP3, and caspase 1) along with caspase-cleaved interleukins IL-1β and IL-33 could be induced by priming with lipopolysaccharide and activation with muramyl dipeptide. In addition, combined treatment with lipopolysaccharide and muramyl dipeptide resulted in IL-1β secretion in a caspase- and ERK1/2 kinase-dependent manner. Our findings demonstrate that NLRs and inflammasomes can be activated in cerebral endothelial cells, which may confer a yet unexplored role to the blood-brain barrier in neuroimmune and neuroinflammatory processes. PMID:26083549

  13. A primate model for human cerebral malaria: Plasmodium coatneyi-infected rhesus monkeys.

    PubMed

    Aikawa, M; Brown, A; Smith, C D; Tegoshi, T; Howard, R J; Hasler, T H; Ito, Y; Perry, G; Collins, W E; Webster, K

    1992-04-01

    A major factor in the pathogenesis of human cerebral malaria is blockage of cerebral microvessels by the sequestration of parasitized human red blood cells (PRBC). In vitro studies indicate that sequestration of PRBC in the microvessels is mediated by the attachment of knobs on PRBC to receptors on the endothelial cell surface such as CD36, thrombospondin (TSP), and intercellular adhesion molecule-1 (ICAM-1). However, it is difficult to test this theory in vivo because fresh human brain tissues from cerebral malarial autopsy cases are not easy to obtain. Although several animal models for human cerebral malaria have been proposed, none have shown pathologic findings that are similar to those seen in humans. In order to develop an animal model for human cerebral malaria, we studied brains of rhesus monkeys infected with the primate malaria parasite, Plasmodium coatneyi. Our study demonstrated PRBC sequestration and cytoadherence of knobs on PRBC to endothelial cells in the cerebral microvessels of these monkeys. Cerebral microvessels with sequestered PRBC were shown by immunohistochemical analysis to possess CD36, TSP, and ICAM-1. These proteins were not evident in the cerebral microvessels of uninfected control monkeys. Thus, our study indicates, for the first time, that rhesus monkeys infected with P. coatneyi can be used as a primate model to study human cerebral malaria. By using this animal model, we may be able to evaluate strategies for the development of vaccines to prevent human cerebral malaria. PMID:1374220

  14. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling.

    PubMed

    Zhou, Zinan; Tang, Alan T; Wong, Weng-Yew; Bamezai, Sharika; Goddard, Lauren M; Shenkar, Robert; Zhou, Su; Yang, Jisheng; Wright, Alexander C; Foley, Matthew; Arthur, J Simon C; Whitehead, Kevin J; Awad, Issam A; Li, Dean Y; Zheng, Xiangjian; Kahn, Mark L

    2016-04-01

    Cerebral cavernous malformations (CCMs) are common inherited and sporadic vascular malformations that cause strokes and seizures in younger individuals. CCMs arise from endothelial cell loss of KRIT1, CCM2 or PDCD10, non-homologous proteins that form an adaptor complex. How disruption of the CCM complex results in disease remains controversial, with numerous signalling pathways (including Rho, SMAD and Wnt/β-catenin) and processes such as endothelial-mesenchymal transition (EndMT) proposed to have causal roles. CCM2 binds to MEKK3 (refs 7, 8, 9, 10, 11), and we have recently shown that CCM complex regulation of MEKK3 is essential during vertebrate heart development. Here we investigate this mechanism in CCM disease pathogenesis. Using a neonatal mouse model of CCM disease, we show that expression of the MEKK3 target genes Klf2 and Klf4, as well as Rho and ADAMTS protease activity, are increased in the endothelial cells of early CCM lesions. By contrast, we find no evidence of EndMT or increased SMAD or Wnt signalling during early CCM formation. Endothelial-specific loss of Map3k3 (also known as Mekk3), Klf2 or Klf4 markedly prevents lesion formation, reverses the increase in Rho activity, and rescues lethality. Consistent with these findings in mice, we show that endothelial expression of KLF2 and KLF4 is increased in human familial and sporadic CCM lesions, and that a disease-causing human CCM2 mutation abrogates the MEKK3 interaction without affecting CCM complex formation. These studies identify gain of MEKK3 signalling and KLF2/4 function as causal mechanisms for CCM pathogenesis that may be targeted to develop new CCM therapeutics. PMID:27027284

  15. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: A review.

    PubMed

    Poggesi, Anna; Pasi, Marco; Pescini, Francesca; Pantoni, Leonardo; Inzitari, Domenico

    2016-01-01

    The term cerebral small vessel disease (SVD) refers to a group of pathologic processes with various etiologies that affect small arteries, arterioles, venules, and capillaries of the brain. Magnetic resonance imaging (MRI) correlates of SVD are lacunes, recent small subcortical infarcts, white-matter hyperintensities, enlarged perivascular spaces, microbleeds, and brain atrophy. Endothelial dysfunction is thought to have a role in the mechanisms leading to SVD-related brain changes, and the study of endothelial dysfunction has been proposed as an important step for a better comprehension of cerebral SVD. Among available methods to assess endothelial function in vivo, measurement of molecules of endothelial origin in peripheral blood is currently receiving selective attention. These molecules include products of endothelial cells that change when the endothelium is activated, as well as molecules that reflect endothelial damage and repair. This review examines the main molecular factors involved in both endothelial function and dysfunction, and the evidence linking endothelial dysfunction with cerebral SVD, and gives an overview of clinical studies that have investigated the possible association between endothelial circulating biomarkers and SVD-related brain changes. PMID:26058695

  16. Signaling hierarchy regulating human endothelial cell development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  17. Human liver endothelial cells, but not macrovascular or microvascular endothelial cells, engraft in the mouse liver.

    PubMed

    Filali, Ebtisam El; Hiralall, Johan K; van Veen, Henk A; Stolz, Donna B; Seppen, Jurgen

    2013-01-01

    Liver cell transplantation has had limited clinical success so far, partly due to poor engraftment of hepatocytes. Instead of hepatocytes. other cell types, such as endothelial cells, could be used in ex vivo liver gene therapy. The goal of the present study was to compare the grafting and repopulation capacity of human endothelial cells derived from various tissues. Human endothelial cells were isolated from adult and fetal livers using anti-human CD31 antibody-conjugated magnetic beads. Human macrovascular endothelial cells were obtained from umbilical vein. Human microvascular endothelial cells were isolated from adipose tissue. Cells were characterized using flow cytometry. Liver engraftment and repopulation of endothelial cells was studied after intrasplenic transplantation in monocrotaline-treated immunodeficient mice. Following transplantation, human liver endothelial cells engrafted throughout the mouse liver. With immunoscanning electron microscopy, fenestrae in engrafted human liver endothelial cells were identified, a characteristic feature of liver sinusoidal endothelial cells. In contrast, CD31-negative liver cells, human macrovascular and microvascular endothelial cells were not capable of repopulating mouse liver. Characterization of human liver, macrovascular, and microvascular endothelial cells demonstrated expression of CD31, CD34, and CD146 but not CD45. Our study shows that only human liver endothelial cells, but not macro- and microvascular endothelial cells, have the unique capacity to engraft and repopulate the mouse liver. These results indicate that mature endothelial cells cannot transdifferentiate in vivo and thus do not exhibit phenotypic plasticity. Our results have set a basis for further research to the potential of human liver endothelial cells in liver-directed cell and gene therapy. PMID:23044355

  18. Human Pulmonary Endothelial Cells in Culture

    PubMed Central

    Johnson, Alice R.

    1980-01-01

    Endothelial cells were cultured from various different human vessels, including aortas, pulmonary, ovarian, and umbilical arteries, and pulmonary, ovarian, and umbilical veins. The cultured cells were identified as endothelial cells by the presence of Factor VIII antigen and antiotensin I converting enzyme (kininase II). They retained these markers for at least five passages in culture, and some cells had them for seven passages or more. Endothelial cells from the various vessels were compared with respect to their ability to metabolize angiotensins I and II and bradykinin. Cells from arteries had three to five times the angiotensin I converting enzyme activity as cells from veins. The activity of angiotensinase A (aspartyl aminopeptidase) had a similar distribution, and cells from arteries were consistently more active than cells from veins. Cultures of endothelial cells from pulmonary and umbilical vessels formed prostacyclin in response to mechanical stimulation. Media from cell monolayers that were subjected to a change of medium and gentle agitation inhibited aggregation of human platelets. This inhibitory activity was generated within 2-5 min, and it was not formed by cells that were treated with indomethacin or tranylcypromine. Addition of prostaglandin (PG)H2 to indomethacin-treated cells restored the ability to form the inhibitor, but cells treated with tranylcypromine were not responsive to PGH2. In experiments where [14C]arachidonic acid was added to the cells before stimulation, the major metabolite identified by thin-layer chromatography was 6-keto PGF1α. Thus, it appears that pulmonary endothelial cells, as well as umbilical cord cells, can form prostacyclin. In experiments comparing the ability of arterial and venous cells to form prostacyclin, arterial cells were more active than venous cells. These studies of cells from various human vessels suggest that the vascular origin of cultured endothelial cells determines how they metabolize vasoactive

  19. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia

    PubMed Central

    2014-01-01

    Neurovascular and gliovascular interactions significantly affect endothelial phenotype. Physiologically, brain endothelium attains several of its properties by its intimate association with neurons and astrocytes. However, during cerebrovascular pathologies such as cerebral ischemia, the uncoupling of neurovascular and gliovascular units can result in several phenotypical changes in brain endothelium. The role of neurovascular and gliovascular uncoupling in modulating brain endothelial properties during cerebral ischemia is not clear. Specifically, the roles of metabolic stresses involved in cerebral ischemia, including aglycemia, hypoxia and combined aglycemia and hypoxia (oxygen glucose deprivation and re-oxygenation, OGDR) in modulating neurovascular and gliovascular interactions are not known. The complex intimate interactions in neurovascular and gliovascular units are highly difficult to recapitulate in vitro. However, in the present study, we used a 3D co-culture model of brain endothelium with neurons and astrocytes in vitro reflecting an intimate neurovascular and gliovascular interactions in vivo. While the cellular signaling interactions in neurovascular and gliovascular units in vivo are much more complex than the 3D co-culture models in vitro, we were still able to observe several important phenotypical changes in brain endothelial properties by metabolically stressed neurons and astrocytes including changes in barrier, lymphocyte adhesive properties, endothelial cell adhesion molecule expression and in vitro angiogenic potential. PMID:24438487

  20. Proteoglycans from human umbilical vein endothelial cells.

    PubMed

    Griesmacher, A; Hennes, R; Keller, R; Greiling, H

    1987-10-01

    Human umbilical vein endothelial cells were incubated with [35S]sulphate and investigated for their proteoglycan production. By gel chromatography, ion-exchange chromatography and CsCl density-gradient centrifugation we obtained preparative amounts of the endothelial proteoheparan sulphate HSI and of proteochondroitin sulphate from the conditioned medium of mass-cultured human umbilical vein endothelial cells. Approximately 90% of the 35S-labeled material in the endothelial cell conditioned medium was proteochondroitin sulphate. This molecule, with a molecular mass of 180-200 kDa, contains four side-chains of 35-40 kDa and a core protein of 35-40 kDa. Two proteoheparan sulphate forms (HSI and HSII) from the conditioned medium were distinguished by molecular mass and transport kinetics from the cell layer to the medium in pulse-chase experiments. One major form (HSI), with an approximate molecular mass of 160-200 kDa a core protein of 55-60 kDa and three to four polysaccharide side-chains of 35 kDa each, was found enriched in the cellular membrane pellet. Another proteoheparan sulphate (HSII), with polysaccharide moieties of 20 kDa, is enriched in the subendothelial matrix (substratum). PMID:2959475

  1. Glutathione in Cerebral Microvascular Endothelial Biology and Pathobiology: Implications for Brain Homeostasis

    PubMed Central

    Li, Wei; Busu, Carmina; Circu, Magdalena L.; Aw, Tak Yee

    2012-01-01

    The integrity of the vascular endothelium of the blood-brain barrier (BBB) is central to cerebrovascular homeostasis. Given the function of the BBB as a physical and metabolic barrier that buffers the systemic environment, oxidative damage to the endothelial monolayer will have significant deleterious impact on the metabolic, immunological, and neurological functions of the brain. Glutathione (GSH) is a ubiquitous major thiol within mammalian cells that plays important roles in antioxidant defense, oxidation-reduction reactions in metabolic pathways, and redox signaling. The existence of distinct GSH pools within the subcellular organelles supports an elegant mode for independent redox regulation of metabolic processes, including those that control cell fate. GSH-dependent homeostatic control of neurovascular function is relatively unexplored. Significantly, GSH regulation of two aspects of endothelial function is paramount to barrier preservation, namely, GSH protection against oxidative endothelial cell injury and GSH control of postdamage cell proliferation in endothelial repair and/or wound healing. This paper highlights our current insights and hypotheses into the role of GSH in cerebral microvascular biology and pathobiology with special focus on endothelial GSH and vascular integrity, oxidative disruption of endothelial barrier function, GSH regulation of endothelial cell proliferation, and the pathological implications of GSH disruption in oxidative stress-associated neurovascular disorders, such as diabetes and stroke. PMID:22745639

  2. ANKS1B Interacts with the Cerebral Cavernous Malformation Protein-1 and Controls Endothelial Permeability but Not Sprouting Angiogenesis

    PubMed Central

    Moll, Iris; Yang, Wan-Jen; Wüstehube-Lausch, Joycelyn; Fischer, Andreas

    2015-01-01

    Cerebral cavernous malformations are fragile blood vessel conglomerates in the central nervous system that are caused by mutations in the CCM1/KRIT1, CCM2 or CCM3 genes. The gene products form a protein complex at adherens junctions and loss of either CCM protein disrupts endothelial cell quiescence leading to increased permeability and excessive angiogenesis. We performed a yeast 2-hybrid screen to identify novel proteins directly interacting with KRIT1. The ankyrin repeat and sterile alpha motif domain-containing protein 1B (ANKS1B) was identified as a novel binding partner of KRIT1. Silencing of ANKS1B or the related gene ANKS1A in primary human endothelial cells had no significant effects on cellular proliferation, migration and sprouting angiogenesis. However, silencing of ANKS1B expression disturbed endothelial cell barrier functions leading to increased permeability. Forced ANKS1B expression reduced permeability. This was independent of Rho kinase activity and the presence of KRIT1. Taken together, ANKS1B was identified as a novel KRIT1-interacting protein that selectively controls endothelial permeability but not angiogenesis. PMID:26698571

  3. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    PubMed

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  4. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury

    PubMed Central

    Andrews, Allison M.; Lutton, Evan M.; Merkel, Steven F.; Razmpour, Roshanak; Ramirez, Servio H.

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  5. In vivo stimulatory effect of erythropoietin on endothelial nitric oxide synthase in cerebral arteries.

    PubMed

    Santhanam, Anantha Vijay R; Smith, Leslie A; Nath, Karl A; Katusic, Zvonimir S

    2006-08-01

    The discovery of tissue protective effects of erythropoietin has stimulated significant interest in erythropoietin (Epo) as a novel therapeutic approach to vascular protection. The present study was designed to determine the cerebral vascular effects of recombinant Epo in vivo. Recombinant adenoviral vectors (10(9) plaque-forming units/animal) encoding genes for human erythropoietin (AdEpo) and beta-galactosidase (AdLacZ) were injected into the cisterna magna of rabbits. After 48 h, basilar arteries were harvested for analysis of vasomotor function, Western blotting, and measurement of cGMP levels. Gene transfer of AdEpo increased the expressions of recombinant Epo and its receptor in the basilar arteries. Arteries exposed to recombinant Epo demonstrated attenuation of contractile responses to histamine (10(-9) to 10(-5) mol/l) (P < 0.05, n = 5). Endothelium-dependent relaxations to acetylcholine (10(-9) to 10(-5) mol/l) were significantly augmented (P < 0.05, n = 5), whereas endothelium-independent relaxations to a nitric oxide (NO) donor 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt remained unchanged in AdEpo-transduced basilar arteries. Transduction with AdEpo increased the protein expression of endothelial NO synthase (eNOS) and phosphorylated the S1177 form of the enzyme. Basal levels of cGMP were significantly elevated in arteries transduced with AdEpo consistent with increased NO production. Our studies suggest that in cerebral circulation, Epo enhances endothelium-dependent vasodilatation mediated by NO. This effect could play an important role in the vascular protective effect of Epo. PMID:16565320

  6. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  7. Phospholipid composition of cultured human endothelial cells.

    PubMed

    Murphy, E J; Joseph, L; Stephens, R; Horrocks, L A

    1992-02-01

    Detailed analyses of the phospholipid compositions of cultured human endothelial cells are reported here. No significant differences were found between the phospholipid compositions of cells from human artery, saphenous and umbilical vein. However, due to the small sample sizes, relatively large standard deviations for some of the phospholipid classes were observed. A representative composition of endothelial cells is: phosphatidylcholine 36.6%, choline plasmalogen 3.7%, phosphatidylethanolamine 10.2%, ethanolamine plasmalogen 7.6%, sphingomyelin 10.8%, phosphatidylserine 7.1%, lysophosphatidylcholine 7.5%, phosphatidylinositol 3.1%, lysophosphatidylethanolamine 3.6%, phosphatidylinositol 4,5-bisphosphate 1.8%, phosphatidic acid 1.9%, phosphatidylinositol 4-phosphate 1.5%, and cardiolipin 1.9%. The cells possess high choline plasmalogen and lysophosphatidylethanolamine contents. The other phospholipids are within the normal biological ranges expected. Phospholipids were separated by high-performance liquid chromatography and quantified by lipid phosphorus assay. PMID:1315902

  8. Cerebral capillary endothelial cells are covered by the VEGF-expressing foot processes of astrocytes.

    PubMed

    Saito, Tomomi; Shibasaki, Koji; Kurachi, Masashi; Puentes, Sandra; Mikuni, Masahiko; Ishizaki, Yasuki

    2011-06-22

    Molecules that have crucial functions in both nervous and vascular systems have attracted keen attention recently, and the name "angioneurins" has been proposed. The most striking example of angioneurins is vascular endothelial growth factor A (VEGF), which was originally identified as a key regulator of angiogenesis and has only recently been found to have important functions in the nervous system. In this study, we compared VEGF expression in the vasculature in the brain with that in the aorta and the vasculature in the kidney in mice. In larger vessels containing smooth muscle cells, VEGF was expressed by smooth muscle cells covering the lining of endothelial cells, both in and outside the brain. In cerebral capillaries lacking smooth muscle cells, endothelial cells were closely covered by VEGF-expressing foot processes of astrocytes, whereas capillaries were surrounded by VEGF-expressing processes of podocytes in the renal glomeruli. We also found that cultured cerebral microvessel endothelial cells do not express VEGF, whereas cultured cortical astrocytes do express VEGF. PMID:21536099

  9. Endothelial dysfunction is associated with the severity of cerebral small vessel disease.

    PubMed

    Nezu, Tomohisa; Hosomi, Naohisa; Aoki, Shiro; Kubo, Satoshi; Araki, Mutsuko; Mukai, Tomoya; Takahashi, Tetsuya; Maruyama, Hirofumi; Higashi, Yukihito; Matsumoto, Masayasu

    2015-04-01

    The pathogenesis of cerebral small vessel disease, a disease that involves white matter lesions (WMLs) and cerebral microbleeds (CMBs), is thought to be associated with endothelial dysfunction. Flow-mediated dilation (FMD) has been used to measure endothelium-dependent vasodilation. The aim of this study was to investigate the association between endothelial function (as measured by FMD) and cerebral small vessel disease. Patients with a history of cerebrovascular disease and comorbidities were enrolled in this study (n=102; 69 males, 70.1±9.2 years). The patients were divided into two groups according to the severity of WMLs, which were assessed by Fazekas classification; grades 0 to 1 as mild WMLs group and grades 2 to 3 as severe WMLs group. A gradient-echo MRI was performed in 96 patients (94.1%) to evaluate whether CMBs were present. The patients in the severe WMLs group (n=40) were older (P=0.001), more frequently exhibited hypertension (P=0.045) and diabetes mellitus (P=0.026) and possessed lower FMD values (P<0.001) than the patients in the mild WMLs group (n=62). CMBs were observed in 30 patients (31.3%). Using receiver operating characteristic curves, the optimal FMD cutoff values for predicting the presence of severe WMLs and CMBs were 3.9% and 3.7%, respectively. On multivariate logistic analysis, FMD <4.0% (odds ratio 9.50; 95% confidence interval 3.55-28.83) was independently associated with severe WMLs. Additionally, FMD <3.8% (5.82; 2.23-16.50) was also associated with the presence of CMBs. Endothelial dysfunction as evaluated by FMD may be predictive of the severity of cerebral small vessel disease. PMID:25672660

  10. Transfer of ultrasmall iron oxide nanoparticles from human brain-derived endothelial cells to human glioblastoma cells.

    PubMed

    Halamoda Kenzaoui, Blanka; Angeloni, Silvia; Overstolz, Thomas; Niedermann, Philippe; Chapuis Bernasconi, Catherine; Liley, Martha; Juillerat-Jeanneret, Lucienne

    2013-05-01

    Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer. PMID:23578059

  11. Adhesion and stress relaxation forces between melanoma and cerebral endothelial cells.

    PubMed

    Végh, Attila G; Fazakas, Csilla; Nagy, Krisztina; Wilhelm, Imola; Molnár, Judit; Krizbai, István A; Szegletes, Zsolt; Váró, György

    2012-02-01

    Mechanical parameters play a crucial role in proper cellular functions. This article examines the process of the appearance and breaking of adhesion forces during contact between the confluent cerebral endothelial cell layer and a melanoma cell attached to a tipless cantilever. This adhesion is the initial phase of melanoma transmigration through the endothelial cell layer. Taking the force measurement, if the contact was prolonged for several seconds, a decrease in the load force was observed, which corresponds to stress relaxation of the cells. The dependence of adhesion force and stress relaxation on dwell time showed a saturation-like behavior. These stress relaxation curves could be fitted with the sum of two exponentials, suggesting that two independent processes take place simultaneously. The breakup of the adhesion during the retraction of the cantilever with the attached melanoma cell is not continuous but shows jumps. Between living endothelial and melanoma cells, a minimum jump size of about 20 pN could be determined. The minimum jump is independent of the dwell time and load force. It seems to be the elementary binding force between these two cell types. In case of fixed endothelial cells, the adhesion force was strongly decreased and the jumps disappeared, whereas the stress relaxation did not show considerable change upon fixation. PMID:22038122

  12. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array.

    PubMed

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-01-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer's disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases. PMID:26047027

  13. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    NASA Astrophysics Data System (ADS)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  14. The Age of Human Cerebral Cortex Neurons

    SciTech Connect

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  15. Human cerebral response to animal affective vocalizations

    PubMed Central

    Belin, Pascal; Fecteau, Shirley; Charest, Ian; Nicastro, Nicholas; Hauser, Marc D; Armony, Jorge L

    2007-01-01

    It is presently unknown whether our response to affective vocalizations is specific to those generated by humans or more universal, triggered by emotionally matched vocalizations generated by other species. Here, we used functional magnetic resonance imaging in normal participants to measure cerebral activity during auditory stimulation with affectively valenced animal vocalizations, some familiar (cats) and others not (rhesus monkeys). Positively versus negatively valenced vocalizations from cats and monkeys elicited different cerebral responses despite the participants' inability to differentiate the valence of these animal vocalizations by overt behavioural responses. Moreover, the comparison with human non-speech affective vocalizations revealed a common response to the valence in orbitofrontal cortex, a key component on the limbic system. These findings suggest that the neural mechanisms involved in processing human affective vocalizations may be recruited by heterospecific affective vocalizations at an unconscious level, supporting claims of shared emotional systems across species. PMID:18077254

  16. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition

    PubMed Central

    Krishnan, Shanmugarajan; Szabo, Emese; Burghardt, Isabel; Frei, Karl; Tabatabai, Ghazaleh; Weller, Michael

    2015-01-01

    Glioblastoma are among the most angiogenic tumors. The molecular mechanisms that control blood vessel formation by endothelial cells (EC) in glioblastoma remain incompletely understood. Transforming growth factor-β (TGF-β) is a key regulatory cytokine that has proinvasive and stemness-maintaining autocrine properties in glioblastoma and confers immunosuppression to the tumor microenvironment. Here we characterize potential pro- and anti-angiogenic activities of TGF-β in the context of glioblastoma in vitro, using human brain-derived microvascular endothelial cells (hCMEC/D3) and glioblastoma-derived endothelial cells (GMEC) as model systems. We find that TGF-β induces vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) mRNA expression and protein release in a TGF-β receptor (TβR) II / activin-like kinase (ALK)-5-dependent manner under normoxia and hypoxia, defining potential indirect proangiogenic activity of TGF-β in glioblastoma. In parallel, exogenous TGF-β has also inhibitory effects on EC properties and induces endothelial-mesenchymal transition (EndMT) in hCMEC and GMEC. Accordingly, direct inhibition of endogenous TGF-β/ALK-5 signalling increases EC properties such as tube formation, von-Willebrand factor (vWF) and claudin (CLDN) 5 expression. Yet, the supernatant of TGF-β-stimulated hCMEC and GMEC strongly promotes EC-related gene expression and tube formation in a cediranib-sensitive manner. These observations shed light on the complex pro- and anti-angiogenic pathways involving the cross-talk between TGF-β and VEGF/PLGF signalling in glioblastoma which may involve parallel stimulation of angiogenesis and EndMT in distinct target cell populations. PMID:26090865

  17. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition.

    PubMed

    Krishnan, Shanmugarajan; Szabo, Emese; Burghardt, Isabel; Frei, Karl; Tabatabai, Ghazaleh; Weller, Michael

    2015-09-01

    Glioblastoma are among the most angiogenic tumors. The molecular mechanisms that control blood vessel formation by endothelial cells (EC) in glioblastoma remain incompletely understood. Transforming growth factor-β (TGF-β) is a key regulatory cytokine that has proinvasive and stemness-maintaining autocrine properties in glioblastoma and confers immunosuppression to the tumor microenvironment. Here we characterize potential pro- and anti-angiogenic activities of TGF-β in the context of glioblastoma in vitro, using human brain-derived microvascular endothelial cells (hCMEC/D3) and glioblastoma-derived endothelial cells (GMEC) as model systems. We find that TGF-β induces vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) mRNA expression and protein release in a TGF-β receptor (TβR) II / activin-like kinase (ALK)-5-dependent manner under normoxia and hypoxia, defining potential indirect proangiogenic activity of TGF-β in glioblastoma. In parallel, exogenous TGF-β has also inhibitory effects on EC properties and induces endothelial-mesenchymal transition (EndMT) in hCMEC and GMEC. Accordingly, direct inhibition of endogenous TGF-β/ALK-5 signalling increases EC properties such as tube formation, von-Willebrand factor (vWF) and claudin (CLDN) 5 expression. Yet, the supernatant of TGF-β-stimulated hCMEC and GMEC strongly promotes EC-related gene expression and tube formation in a cediranib-sensitive manner. These observations shed light on the complex pro- and anti-angiogenic pathways involving the cross-talk between TGF-β and VEGF/PLGF signalling in glioblastoma which may involve parallel stimulation of angiogenesis and EndMT in distinct target cell populations. PMID:26090865

  18. Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries.

    PubMed

    Yip, Ham; Chan, Wing-Yee; Leung, Pan-Cheung; Kwan, Hiu-Yee; Liu, Cuiling; Huang, Yu; Michel, Villaz; Yew, David Tai-Wai; Yao, Xiaoqiang

    2004-12-01

    TRPC channels are a group of Ca(2+)-permeable nonselective cation channels that mediate store-operated and/or agonist-stimulated Ca(2+) influx in a variety of cell types. In this study, we extensively examined the expression patterns of TRPC homologs in human vascular tissues. RT-PCR amplified cDNA fragments of TRPC1 (505 bp), TRPC3 (372 bp), TRPC4 (499 bp), TRPC5 (325 bp), TRPC6 (509 bp), and TRPC7 (187 bp) from RNA isolated from cultured human coronary artery endothelial cells. In situ hybridization yielded strong labeling of TRPC1,3-6 in the endothelial and smooth muscle cells of human coronary and cerebral arteries. TRPC7 labeling was exclusively found in endothelial cells but not in smooth muscle cells. Results from immunohistochemical staining were consistent with those from in situ hybridization. Similar expression patterns of TRPC homologs were also observed in arterioles and vaso vasora. In conclusion, our study indicates that TRPC homologs are widely expressed in human vessels of all calibers, including medium-sized coronary arteries and cerebral arteries, smaller-sized resistance arteries, and vaso vasora. These results suggest a ubiquitous role of TRPC homologs in regulating blood supply to different regions and in controlling arterial blood pressure. PMID:15538613

  19. Amyloid-β peptide on sialyl-Lewis(X)-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface.

    PubMed

    Askarova, Sholpan; Sun, Zhe; Sun, Grace Y; Meininger, Gerald A; Lee, James C-M

    2013-01-01

    Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewis(x) (sLe(x)) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLe(x) and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf ), and produced a bimodal population of Fmtf , suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf . In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB. PMID:23593361

  20. Amyloid-β Peptide on Sialyl-LewisX-Selectin-Mediated Membrane Tether Mechanics at the Cerebral Endothelial Cell Surface

    PubMed Central

    Askarova, Sholpan; Sun, Zhe; Sun, Grace Y.; Meininger, Gerald A.; Lee, James C-M.

    2013-01-01

    Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB. PMID:23593361

  1. Replication of human endothelial cells in culture.

    PubMed

    Lewis, L J; Hoak, J C; Maca, R D; Fry, G L

    1973-08-01

    Investigative studies dealing with the properties and functions of endothelial cells have been hampered because there has been little or no success in the isolation, growth, and passage of individual cells in large numbers. We have developed a system whereby pure cultures of endothelial cells derived from umbilical veins can be subcultured for at least five serial passages. Many facets of endothelial function and interaction can be evaluated with the use of this new adaptive system of isolation and culture. PMID:4718112

  2. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    SciTech Connect

    Schock, Sarah C.; Edrissi, Hamidreza; Burger, Dylan; Cadonic, Robert; Hakim, Antoine; Thompson, Charlie

    2014-07-18

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.

  3. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  4. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain.

    PubMed

    Mun, Chin Hee; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2010-09-01

    Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult. PMID:21212863

  5. Prolonged cyclic strain inhibits human endothelial cell growth.

    PubMed

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  6. Pathogenesis of Cerebral Malaria: Recent Experimental Data and Possible Applications for Humans

    PubMed Central

    Lou, Jinning; Lucas, Ralf; Grau, Georges E.

    2001-01-01

    Malaria still is a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria, remains incompletely understood. Experimental models represent useful tools to better understand the mechanisms of this syndrome. Here, data generated by several models are reviewed both in vivo and in vitro; we propose that some pathogenic mechanisms, drawn from data obtained from experiments in a mouse model, may be instrumental in humans. In particular, tumor necrosis factor (TNF) receptor 2 is involved in this syndrome, implying that the transmembrane form of TNF may be more important than the soluble form of the cytokine. It has also been shown that in addition to differences in immune responsiveness between genetically resistant and susceptible mice, there are marked differences at the level of the target cell of the lesion, namely, the brain endothelial cell. In murine cerebral malaria, a paradoxical role of platelets has been proposed. Indeed, platelets appear to be pathogenic rather than protective in inflammatory conditions because they can potentiate the deleterious effects of TNF. More recently, it has been shown that interactions among platelets, leukocytes, and endothelial cells have phenotypic and functional consequences for the endothelial cells. A better understanding of these complex interactions leading to vascular injury will help improve the outcome of cerebral malaria. PMID:11585786

  7. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    PubMed

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value. PMID:20087768

  8. Hypoxia-Induced Vascular Endothelial Growth Factor Expression Precedes Neovascularization after Cerebral Ischemia

    PubMed Central

    Marti, Hugo J. H.; Bernaudin, Myriam; Bellail, Anita; Schoch, Heike; Euler, Monika; Petit, Edwige; Risau, Werner

    2000-01-01

    We investigated the hypothesis that hypoxia induces angiogenesis and thereby may counteract the detrimental neurological effects associated with stroke. Forty-eight to seventy-two hours after permanent middle cerebral artery occlusion we found a strong increase in the number of newly formed vessels at the border of the infarction. Using the hypoxia marker nitroimidazole EF5, we detected hypoxic cells in the ischemic border of the neocortex. Expression of vascular endothelial growth factor (VEGF), which is the main regulator of angiogenesis and is inducible by hypoxia, was strongly up-regulated in the ischemic border, at times between 6 and 24 hours after occlusion. In addition, both VEGF receptors (VEGFRs) were up-regulated at the border after 48 hours and later in the ischemic core. Finally, the two transcription factors, hypoxia-inducible factor-1 (HIF-1) and HIF-2, known to be involved in the regulation of VEGF and VEGFR gene expression, were increased in the ischemic border after 72 hours, suggesting a regulatory function for these factors. These results strongly suggest that the VEGF/VEGFR system, induced by hypoxia, leads to the growth of new vessels after cerebral ischemia. Exogenous support of this natural protective mechanism might lead to enhanced survival after stroke. PMID:10702412

  9. Aging and vascular endothelial function in humans

    PubMed Central

    SEALS, Douglas R.; JABLONSKI, Kristen L.; DONATO, Anthony J.

    2012-01-01

    Advancing age is the major risk factor for the development of CVD (cardiovascular diseases). This is attributable, in part, to the development of vascular endothelial dysfunction, as indicated by reduced peripheral artery EDD (endothelium-dependent dilation) in response to chemical [typically ACh (acetylcholine)] or mechanical (intravascular shear) stimuli. Reduced bioavailability of the endothelium-synthesized dilating molecule NO (nitric oxide) as a result of oxidative stress is the key mechanism mediating reduced EDD with aging. Vascular oxidative stress increases with age as a consequence of greater production of reactive oxygen species (e.g. superoxide) without a compensatory increase in antioxidant defences. Sources of increased superoxide production include up-regulation of the oxidant enzyme NADPH oxidase, uncoupling of the normally NO-producing enzyme, eNOS (endothelial NO synthase) (due to reduced availability of the cofactor tetrahydrobiopterin) and increased mitochondrial synthesis during oxidative phosphorylation. Increased bioactivity of the potent endothelial-derived constricting factor ET-1 (endothelin-1), reduced endothelial production of/responsiveness to dilatory prostaglandins, the development of vascular inflammation, formation of AGEs (advanced glycation end-products), an increased rate of endothelial apoptosis and reduced expression of oestrogen receptor α (in postmenopausal females) also probably contribute to impaired EDD with aging. Several lifestyle and biological factors modulate vascular endothelial function with aging, including regular aerobic exercise, dietary factors (e.g. processed compared with non-processed foods), body weight/fatness, vitamin D status, menopause/oestrogen deficiency and a number of conventional and non-conventional risk factors for CVD. Given the number of older adults now and in the future, more information is needed on effective strategies for the prevention and treatment of vascular endothelial aging. PMID

  10. LPS Induces Occludin Dysregulation in Cerebral Microvascular Endothelial Cells via MAPK Signaling and Augmenting MMP-2 Levels

    PubMed Central

    Qin, Lan-hui; Huang, Wen; Mo, Xue-an; Chen, Yan-lan; Wu, Xiang-hong

    2015-01-01

    Disrupted blood-brain barrier (BBB) integrity contributes to cerebral edema during central nervous system infection. The current study explored the mechanism of lipopolysaccharide- (LPS-) induced dysregulation of tight junction (TJ) proteins. Human cerebral microvascular endothelial cells (hCMEC/D3) were exposed to LPS, SB203580 (p38MAPK inhibitor), or SP600125 (JNK inhibitor), and cell vitality was determined by MTT assay. The proteins expressions of p38MAPK, JNK, and TJs (occludin and zonula occludens- (ZO-) 1) were determined by western blot. The mRNA levels of TJ components and MMP-2 were measured with quantitative real-time polymerase chain reaction (qRT-PCR), and MMP-2 protein levels were determined by enzyme-linked immunosorbent assay (ELISA). LPS, SB203580, and SP600125 under respective concentrations of 10, 7.69, or 0.22 µg/mL had no effects on cell vitality. Treatment with LPS decreased mRNA and protein levels of occludin and ZO-1 and enhanced p38MAPK and JNK phosphorylation and MMP-2 expression. These effects were attenuated by pretreatment with SB203580 or SP600125, but not in ZO-1 expression. Both doxycycline hyclate (a total MMP inhibitor) and SB-3CT (a specific MMP-2 inhibitor) partially attenuated the LPS-induced downregulation of occludin. These data suggest that MMP-2 overexpression and p38MAPK/JNK pathways are involved in the LPS-mediated alterations of occludin in hCMEC/D3; however, ZO-1 levels are not influenced by p38MAPK/JNK. PMID:26290681

  11. "All-laser" endothelial corneal transplant in human patients

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Menabuoni, Luca; Malandrini, Alex; Canovetti, Annalisa; Lenzetti, Ivo; Pini, Roberto

    2012-03-01

    Femtosecond laser sculpturing of corneal tissue is commonly used for the preparation of endothelial flaps. Diode laser welding of ocular tissues is a procedure that enables minimally invasive suturing of tissues. The combination of these laser based techniques results in a new approach to minimally invasive ophthalmic surgery, such as in endothelial corneal transplant (or endothelial keratoplasty - EK). In this work we present the "all laser" EK performed in human subjects. 24 pseudophakic patients with bullous keratopathy underwent EK: the femtosecond laser was used to prepare the 100 ìm thick and 8.5 mm diameter donor Descemet endothelial flap. After staining the stromal layer of the donor flap with a liquid ICG solution, the donor flap was inserted in the recipient eye by the use of the Busin injector. Then, the endothelial layer was laser-welded to the recipient eye (10 laser spots around the periphery of the flap), in order to reduce the risk of postoperative dislocation of the transplanted flap. A transplanted flap engraftment was observed in all the treated eyes. The staining procedure used to perform laser welding also enabled to evidence the stromal side of the donor flap, so as the flap was always placed in the right side position. The endothelial cells counts in both the laserwelded flaps and in a control group were in good agreement. The proposed technique is easy to perform and enables the reduction of postoperative endothelial flap dislocations.

  12. Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling.

    PubMed

    Chou, Chung-Hsing; Modo, Michel

    2016-01-01

    Transplanted neural stem cells (NSC) interact with the host brain microenvironment. A neovascularization is commonly observed in the vicinity of the cell deposit, which is correlated with behavioral improvements. To elucidate the signaling mechanisms between human NSCs and endothelial cells (ECs), these were cocultured in an in vitro model in which NSC-induced endothelial morphogenesis produced a neurovascular environment. Soluble (autocrine/paracrine) and contact-mediated (juxtacrine) signaling molecules were evaluated for two conditionally immortalized fetal NSC lines derived from the cortical anlage (CTXOE03) and ganglionic eminence (STROC05), as well as an adult EC line (D3) derived from the cerebral microvasculature of a hippocampal biopsy. STROC05 were 4 times as efficient to induce endothelial morphogenesis compared to CTXOE03. The cascade of reciprocal interactions between NSCs and ECs in this process was determined by quantifying soluble factors, receptor mapping, and immunocytochemistry for extracellular matrix molecules. The mechanistic significance of these was further evaluated by pharmacological blockade. The sequential cell-specific regulation of autocrine/paracrine and juxtacrine signaling accounted for the differential efficiency of NSCs to induce endothelial morphogenesis. These in vitro studies shed new light on the reciprocal interactions between NSCs and ECs, which are pivotal for our mechanistic understanding of the efficacy of NSC transplantation. PMID:27374240

  13. Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling

    PubMed Central

    Chou, Chung-Hsing; Modo, Michel

    2016-01-01

    Transplanted neural stem cells (NSC) interact with the host brain microenvironment. A neovascularization is commonly observed in the vicinity of the cell deposit, which is correlated with behavioral improvements. To elucidate the signaling mechanisms between human NSCs and endothelial cells (ECs), these were cocultured in an in vitro model in which NSC-induced endothelial morphogenesis produced a neurovascular environment. Soluble (autocrine/paracrine) and contact–mediated (juxtacrine) signaling molecules were evaluated for two conditionally immortalized fetal NSC lines derived from the cortical anlage (CTXOE03) and ganglionic eminence (STROC05), as well as an adult EC line (D3) derived from the cerebral microvasculature of a hippocampal biopsy. STROC05 were 4 times as efficient to induce endothelial morphogenesis compared to CTXOE03. The cascade of reciprocal interactions between NSCs and ECs in this process was determined by quantifying soluble factors, receptor mapping, and immunocytochemistry for extracellular matrix molecules. The mechanistic significance of these was further evaluated by pharmacological blockade. The sequential cell-specific regulation of autocrine/paracrine and juxtacrine signaling accounted for the differential efficiency of NSCs to induce endothelial morphogenesis. These in vitro studies shed new light on the reciprocal interactions between NSCs and ECs, which are pivotal for our mechanistic understanding of the efficacy of NSC transplantation. PMID:27374240

  14. Effects of interferon-gamma on primary cultures of human brain microvessel endothelial cells.

    PubMed Central

    Huynh, H. K.; Dorovini-Zis, K.

    1993-01-01

    Primary cultures of human brain microvessel endothelial cells were used to study the effects of human recombinant interferon-gamma (IFN-gamma) on cerebral endothelium in vitro. Incubation of monolayers with various concentrations of IFN-gamma (10 to 200 U/ml) for 12 to 96 hours induced surface expression of class II major histocompatibility complex (Ia) antigen in a time- and concentration-dependent manner. In immunogold-stained cultures, labeling was observed as early as 12 hours, was maximal after 48 hours, and persisted at plateau levels in the continuous presence of the cytokine. Expression was blocked by coincubation with anti-IFN-gamma antibody and was reversed 4 days following removal of IFN-gamma from the culture media. Endothelial cells treated with IFN-gamma for 3 to 4 days became spindle-shaped, extensively overlapped, and frequently formed cellular whorls. These changes did not occur in the presence of anti-IFN-gamma antibody and reversed upon removal of IFN-gamma from the media. The morphological alterations were associated with increased permeability of confluent monolayers to macromolecules as compared with untreated cultures. The results of these studies indicate that human brain microvessel endothelial cells respond to in vitro cytokine stimulation by undergoing profound morphological, functional, and permeability changes. We conclude that cerebral endothelium may play an important role in the initiation and regulation of lymphocyte traffic across the blood-brain barrier in inflammatory disorders of the human central nervous system. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 PMID:8475997

  15. Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children

    PubMed Central

    Wassmer, Samuel C.; Milner, Danny A.; Chisala, Ngawina V.; Taylor, Terrie E.; Seydel, Karl B.; Molyneux, Malcolm E.; Faragher, Brian; Esmon, Charles T.; Downey, Colin; Toh, Cheng-Hock; Craig, Alister G.; Heyderman, Robert S.

    2013-01-01

    Cerebral malaria (CM) is a major cause of mortality in African children and the mechanisms underlying its development, namely how malaria-infected erythrocytes (IEs) cause disease and why the brain is preferentially affected, remain unclear. Brain microhemorrhages in CM suggest a clotting disorder, but whether this phenomenon is important in pathogenesis is debated. We hypothesized that localized cerebral microvascular thrombosis in CM is caused by a decreased expression of the anticoagulant and protective receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR) and that low constitutive expression of these regulatory molecules in the brain make it particularly vulnerable. Autopsies from Malawian children with CM showed cerebral fibrin clots and loss of EPCR, colocalized with sequestered IEs. Using a novel assay to examine endothelial phenotype ex vivo using subcutaneous microvessels, we demonstrated that loss of EPCR and TM at sites of IE cytoadherence is detectible in nonfatal CM. In contrast, although clotting factor activation was seen in the blood of CM patients, this was compensated and did not disseminate. Because of the pleiotropic nature of EPCR and TM, these data implicate disruption of the endothelial protective properties at vulnerable sites and particularly in the brain, linking coagulation and inflammation with IE sequestration. PMID:23741007

  16. Human cultured endothelial cells do secrete endothelin-1

    SciTech Connect

    Clozel, M.; Fischli, W. )

    1989-01-01

    Endothelin-1 (ET-1) has been identified in the conditioned medium of porcine endothelial cells. Human endothelin (ET-1) cloned from a placenta cDNA library is similar to porcine, but it is not known whether endothelin itself is secreted by human endothelial cells. To answer this question, a conditioned medium taken every 48 h from confluent cultures of umbilical vein endothelial cells was analyzed by HPLC and all fractions were tested for their ability to inhibit ({sup 125}I)ET-1 binding on human placenta membranes. Only one fraction did inhibit ({sup 125}I)ET-1 binding. When the conditioned medium was spiked with ET-1, the same single fraction inhibited ({sup 125}I)ET-1 binding showing that ET-1, itself, is present in the conditioned medium of human endothelial cells. ET-1 accumulates with time, reaching a plateau at 48 h. ET-1 secretion is not increased by a 24-h incubation of endothelial cells with phorbol myristate acetate, interleukin-1, tumor necrosis factor, thrombin or neuropeptide Y.

  17. Human endothelial cell culture plaques induced by Rickettsia rickettsii.

    PubMed Central

    Walker, D H; Firth, W T; Edgell, C J

    1982-01-01

    Primary cultures of human umbilical vein endothelial cells were inoculated with plaque-purified Rickettsia rickettsii. After adsorption of rickettsiae, monolayers were overlaid with medium containing 0.5% agarose. Small plaques appeared on day 4 postinoculation, and distinct 1- to 2-mm plaques were observed on day 5. Plaquing efficiency was less than that of primary chicken embryo cells in the same medium. Human endothelial cell monolayers were susceptible to infection by R. rickettsii and underwent necrosis as demonstrated by supravital staining. The topographic association of endothelial cell necrosis and rickettsial infection in the plaque model confirmed the direct cytopathic effect of R. rickettsii on human endothelium. Uninfected cells appeared normal by supravital staining and transmission electron microscopy. This model offers the possibility of investigating rickettsial pathogenesis and mechanisms of enhanced severity of Rocky Mountain spotted fever in specific genetically determined conditions. Images PMID:6809631

  18. Plasma Biomarkers of Inflammation, Endothelial Function and Hemostasis in Cerebral Small Vessel Disease

    PubMed Central

    Wiseman, Stewart J; Doubal, Fergus N; Chappell, Francesca M; Valdés-Hernández, Maria C; Wang, Xi; Rumley, An; Lowe, Gordon D.O; Dennis, Martin S; Wardlaw, Joanna M

    2015-01-01

    Background The cause of lacunar ischemic stroke, a clinical feature of cerebral small vessel disease (SVD), is largely unknown. Inflammation and endothelial dysfunction have been implicated. Plasma biomarkers could provide mechanistic insights but current data are conflicting. White matter hyperintensities (WMHs) are an important imaging biomarker of SVD. It is unknown if plasma biomarkers add predictive capacity beyond age and vascular risk factors in explaining WMH. Methods We prospectively recruited patients presenting with non-disabling ischemic stroke, classifying them clinically and with the help of MRI as lacunar or cortical. We measured biomarkers of inflammation, endothelial dysfunction and hemostasis for >1 month after stroke and compared biomarker levels between stroke subtypes. We quantitatively calculated WMH. We used multiple linear regression analysis to model WMH as a function of age, sex, hypertension and smoking (the baseline model). We fitted exploratory models using plasma biomarkers as predictor variables to assess model improvement over baseline. Results We recruited 125 patients. The lacunar group (n = 65) had lower tissue plasminogen activator (t-PA) levels in unadjusted (7.39 vs. 8.59 ng/ml, p = 0.029) and adjusted (p = 0.035) analyses compared with the cortical group (n = 60). There were no significant differences in the other plasma biomarkers. The results for t-PA were consistent with an updated meta-analysis, although the effect remains non-significant (standardized mean difference −0.08 (95% CI −0.25 to 0.09)). The baseline regression model explained 29% of the variance in quantitative WMH (R2 0.289). Inflammatory biomarkers showed minor improvement over baseline (R2 0.291), but the other plasma biomarkers did not improve the baseline model. Conclusion Plasma t-PA levels appear to differ between lacunar and cortical stroke subtypes, late after stroke, independent of age, sex and vascular risk factors and may reflect endothelial

  19. Chronic Aldosterone Administration Causes NOX2-Mediated Increases In Reactive Oxygen Species Production and Endothelial Dysfunction in the Cerebral Circulation

    PubMed Central

    CHRISSOBOLIS, Sophocles; DRUMMOND, Grant R.; FARACI, Frank M.; SOBEY, Christopher G.

    2014-01-01

    Objective An elevated plasma aldosterone level is an independent cardiovascular risk factor. Although excess aldosterone promotes cardiovascular disease, no studies have examined the effect of increased plasma aldosterone on the cerebral circulation. A major source of vascular reactive oxygen species (ROS) during cardiovascular disease is the NADPH oxidases. Because NOX2-containing NADPH oxidase (NOX2 oxidase) is highly expressed in cerebral endothelium, we postulated that it might contribute to ROS generation and vascular dysfunction in response to aldosterone. Here we examined the effect of aldosterone and NOX2 oxidase on ROS production and endothelial dysfunction in the cerebral circulation, and whether the effects of aldosterone are exacerbated in aged mice. Methods and Results In adult (average age ~24–25 wk) wild-type (WT) and Nox2-deficient (Nox2−/y) mice, neither vehicle nor aldosterone (0.28 mg/kg/day for 14 days) affected blood pressure (measured using tail-cuff). By contrast, aldosterone treatment reduced dilation of the basilar artery (measured using myography) to the endothelium-dependent agonist acetylcholine in WT mice (P<0.05), but had no such effect in NOX2−/y mice (P>0.05). Aldosterone increased basal and phorbol-dibutyrate stimulated superoxide production (measured using L-012-enhanced chemiluminesence) in cerebral arteries from WT but not Nox2−/y mice. In aged WT mice (average age ~70 wk), aldosterone treatment increased blood pressure, but had a similar effect on cerebral artery superoxide levels as in adult WT mice. Conclusions These data indicate that NOX2 oxidase mediates aldosterone-induced increases in ROS production and endothelial dysfunction in cerebral arteries from adult mice independently of blood pressure changes. Aldosterone-induced hypertension is augmented during aging. PMID:24991871

  20. Endothelial gene expression and molecular changes in response to radiosurgery in in vitro and in vivo models of cerebral arteriovenous malformations.

    PubMed

    Tu, Jian; Hu, Zhiqiang; Chen, Zhongbin

    2013-01-01

    Radiosurgery for cerebral arteriovenous malformations (AVMs) is limited to 2-year latency. There is no early marker to monitor whether the lesion is responsive to radiosurgery. In this study, we examined endothelial gene expression and molecular changes in response to radiosurgery. Gene expression of E- and P-selectin, ICAM-1, PECAM-1, VCAM-1, tissue factor, and vWF in human cerebral microvascular endothelial cells was quantified by RT-qPCR at different radiation doses and time points. Soluble E- and P-selectin, ICAM-1, VCAM-1, and tissue factor in an animal model of AVMs were quantified by ELISA at different time after radiosurgery. We found that gene expression of E- and P-selectin, ICAM-1, PECAM-1, and VCAM-1 was upregulated by radiation in a dose-dependent manner (P < .05). Gene expression of E- and P-selectin and ICAM-1 was more sensitive to irradiation than that of PECAM-1 and VCAM-1. Radiosurgery induced gene expression of P-selectin, ICAM-1, PECAM-1, and VCAM-1 was linearly correlated with time (P < .05). Radiosurgery induced elevation of soluble E- and P-selectin, ICAM-1, VCAM-1, and tissue factor in a rat model of AVMs (P < .05). Thus, a combination of these molecules measured at different time points may serve as an early predictor of responsiveness of AVMs to radiosurgery. PMID:24199192

  1. 2-methoxycinnamaldehyde reduces IL-1beta-induced prostaglandin production in rat cerebral endothelial cells.

    PubMed

    Guo, Jian-You; Huo, Hai-Ru; Yang, Yuan-Xiao; Li, Cang-Hai; Liu, Hong-Bin; Zhao, Bao-Sheng; Li, Lan-Fang; Ma, Yue-Ying; Guo, Shu-Ying; Jiang, Ting-Liang

    2006-11-01

    Prostaglandin E2 (PGE2) works as a common final mediator of the febrile. Guizhi-Tang, one of the most famous traditional Chinese medical formula used to treat influenza, common cold and other pyretic conditions, was previously reported to reduce the production of PGE 2 in rats. 2-Methoxycinnamaldehyde is a principle compound isolated from Guizhi-Tang. The aim of the present study was to investigate the effects of 2-methoxycinnamaldehyde on PGE2 production of rat cerebral endothelial cells (CECs). 2-Methoxycinnamaldehyde dose-dependently inhibited interleukin (IL)-1beta-induced PGE2 production in CECs with IC50 values of 174 microM. IL-1beta stimulation increased the protein, activity and mRNA expression of cyclooxygenase (COX)-2 but not COX-1. 2-Methoxycinnamaldehyde reduced IL-1beta-induced protein and activity of COX-2, but did not influence the COX-2 mRNA expression. Our results show that prostaglandin production in CECs during stimulated conditions is sensitive to inhibition by 2-methoxycinnamaldehyde and suggest that 2-methoxycinnamaldehyde may reduce COX-2 protein level and activity but not COX-2 mRNA. PMID:17077517

  2. Immuno-localisation of anti-thyroid antibodies in adult human cerebral cortex.

    PubMed

    Moodley, Kogie; Botha, Julia; Raidoo, Deshandra Munsamy; Naidoo, Strinivasen

    2011-03-15

    Expression of thyroid-stimulating hormone receptor (TSH-R) has been demonstrated in adipocytes, lymphocytes, bone, kidney, heart, intestine and rat brain. Immuno-reactive TSH-R has been localised in rat brain and human embryonic cerebral cortex but not in adult human brain. We designed a pilot study to determine whether anti-thyroid auto-antibodies immuno-localise in normal adult human cerebral cortex. Forensic samples from the frontal, motor, sensory, occipital, cingulate and parieto-occipito-temporal association cortices were obtained from five individuals who had died of trauma. Although there were no head injuries, the prior psychiatric history of patients was unknown. The tissues were probed with commercial antibodies against both human TSH-R and human thyroglobulin (TG). Anti-TSH-R IgG immuno-localised to cell bodies and axons of large neurones in all 6 regions of all 5 brains. The intensity and percentage of neurones labelled were similar in all tissue sections. TSH-R immuno-label was also observed in vascular endothelial cells in the cingulate gyrus. Although also found in all 5 brains and all six cortical regions, TG localised exclusively in vascular smooth muscle cells and not on neurones. Although limited by the small sample size and number of brain areas examined, this is the first study describing the presence of antigenic targets for anti-TSH-R IgG on human cortical neurons, and anti-TG IgG in cerebral vasculature. PMID:21196016

  3. The human cerebral cortex flattens during adolescence.

    PubMed

    Alemán-Gómez, Yasser; Janssen, Joost; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Immaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2013-09-18

    The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter. PMID:24048830

  4. Pharmacological neutropenia prevents endothelial dysfunction but not smooth muscle functions impairment induced by middle cerebral artery occlusion

    PubMed Central

    Pétrault, Olivier; Ouk, Thavarak; Gautier, Sophie; Laprais, Maud; Gelé, Patrick; Bastide, Michèle; Bordet, Régis

    2005-01-01

    The polymorphonuclear neutrophils (PMN) activation and mobilization observed in acute cerebral infarction contribute to the brain tissue damage, but PMN could also be involved in postischemic functional injury of ischemied blood vessel. This study was undertaken to investigate whether pharmacological neutropenia could modify the postischemic endothelial dysfunction in comparison to smooth muscle whose impairment is likely more related to reperfusion and oxidative stress. A cerebral ischemia–reperfusion by endoluminal occlusion of right middle cerebral artery (MCA) was performed 4 days after intravenous administration of vinblastine or 12 h after RP-3 anti-rat neutrophils monoclonal antibody (mAb RP-3) injection into the peritoneal cavity, on male Wistar rats with 1-h ischemia then followed by 24-h reperfusion period. Brain infarct volume was measured by histomorphometric analysis and vascular endothelial and smooth muscle reactivity of MCA was analysed using Halpern myograph. Neutropenia induced a neuroprotective effect as demonstrated by a significant decrease of brain infarct size. In parallel to neuroprotection, neutropenia prevented postischemic impairment of endothelium-dependent relaxing response to acetylcholine. In contrast, smooth muscle functional alterations were not prevented by neutropenia. Ischemia–reperfusion-induced myogenic tone impairment remained unchanged in vinblastine and mAb RP-3-treated rats. Postischemic Kir2.x-dependent relaxation impairment was not prevented in neutropenic conditions. The fully relaxation of smooth muscle response to sodium nitroprusside was similar in all groups. Our results evidenced the dissociate prevention of pharmacologically induced neutropenia on postischemic vascular endothelial and smooth muscle impairment. The selective endothelial protection by neutropenia is parallel to a neuroprotective effect suggesting a possible relationship between the two phenomena. PMID:15700030

  5. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    NASA Astrophysics Data System (ADS)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  6. The effects of glucocorticoids on cultured human endothelial cells.

    PubMed

    Maca, R D; Fry, G L; Hoak, J C

    1978-04-01

    The effects of hydrocortisone, dexamethasone and prednisone on the morphology, replication, DNA synthesis, cell protein content and protein synthesis of cultured, human endothelial cells were evaluated. After culturing the cells with these glucocorticoids for 24-48 h, the cells covered a greater portion of the culture surface area. The mean surface area of the individual endothelial cell treated with glucocorticoids was 1.53 times greater than that of the untreated control endothelial cell. When compared with controls, the endothelial cover provided by the cells treated with glucocorticoids was more extensive and in many instances covered the entire culture surface. The change in morphology was associated with an increase in protein synthesis and protein content of the cells without an increase in DNA synthesis or cellular replication. Dexamethasone was approximately 10-fold more effective than hydrocortisone, while prednisone was the least effective. Aldosterone, DOCA, testosterone, progesterone, oestradiol and oestriol were ineffective. These studies indicate that glucocorticoids can alter the morphology and biochemistry of cultured endothelial cells and may have implications for the effects of steroids in the treatment of thrombocytopenic states and vascular disorders in man. PMID:646949

  7. Novel role of lactosylceramide in vascular endothelial growth factor-mediated angiogenesis in human endothelial cells.

    PubMed

    Rajesh, Mohanraj; Kolmakova, Antonina; Chatterjee, Subroto

    2005-10-14

    Vascular endothelial growth factor (VEGF) has been implicated in angiogenesis associated with coronary heart disease, vascular complications in diabetes, inflammatory vascular diseases, and tumor metastasis. The mechanism of VEGF-driven angiogenesis involving glycosphingolipids such as lactosylceramide (LacCer), however, is not known. To demonstrate the involvement of LacCer in VEGF-induced angiogenesis, we used small interfering RNA (siRNA)-mediated silencing of LacCer synthase expression (GalT-V) in human umbilical vein endothelial cells. This gene silencing markedly inhibited VEGF-induced platelet endothelial cell adhesion molecule-1 (PECAM-1) expression and angiogenesis. Second, we used D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of LacCer synthase and glucosylceramide synthase, that significantly mitigated VEGF-induced PECAM-1 expression and angiogenesis. Interestingly, these phenotypic changes were reversed by LacCer but not by structurally related compounds such as glucosylceramide, digalactosylceramide, and ceramide. In a human mesothelioma cell line (REN) that lacks the endogenous expression of PECAM-1, VEGF/LacCer failed to stimulate PECAM-1 expression and tube formation/angiogenesis. In REN cells expressing human PECAM-1 gene/protein, however, both VEGF and LacCer-induced PECAM-1 protein expression and tube formation/angiogenesis. In fact, VEGF-induced but not LacCer-induced angiogenesis was mitigated by SU-1498, a VEGF receptor tyrosine kinase inhibitor. Also, VEGF/LacCer-induced PECAM-1 expression and angiogenesis was mitigated by protein kinase C and phospholipase A2 inhibitors. These results indicate that LacCer generated in VEGF-treated endothelial cells may serve as an important signaling molecule for PECAM-1 expression and in angiogenesis. This finding and the reagents developed in our report may be useful as anti-angiogenic drugs for further studies in vitro and in vivo. PMID:16151023

  8. Subtractive transcriptomics : establishing polarity drives human endothelial morphogenesis

    SciTech Connect

    Glesne, D. A.; Zhang, W.; Mandava, S.; Ursos, L.; Buell, M. E.; Makowski, L.; Rodi, D. J.; Biosciences Division

    2006-04-15

    Although investigations of mature normal and tumor-derived capillaries have resulted in characterization of these structures at the phenotypic level, less is known regarding the initial molecular cues for cellular assembly of endothelial cells into human capillaries. Here, we employ a novel combination of microenvironmental manipulation and microarray data filtration over narrowly delineated temporal data series to identify the morphogenesis component apart from the proliferation component, as pooled human microvascular-derived endothelial cells are induced to form capillary-like structures in vitro in a murine tumor-derived matrix. The 217 morphogenesis-specific genes identified using this subtractive transcriptomics approach are mostly independent of the angiogenic proteins currently used as therapeutic targets for aberrant angiogenesis. Quantitative real-time PCR was used to validate 20% of these transcripts. Immunofluorescent analysis of proliferating and tube-forming cells validates at the protein level the morphogenesis-specific expression pattern of 16 of the 217 gene products identified. The transcripts that are selectively up-regulated in tube-forming endothelial cells reveal a temporal expression pattern of genes primarily associated with intracellular trafficking, guided migration, cytoskeletal reorganization, cellular adhesion, and proliferation inhibition. These data show that a sequential upregulation of genes that establish and maintain polarity occurs during migration and morphogenesis of in vitro human endothelial cells undergoing tubulogenesis; some of which may well be effective as novel antiangiogenic drug targets.

  9. [The structural typology of the human cerebral cranium].

    PubMed

    Zaĭchenko, A A

    1997-01-01

    819 skulls (250 of them were represented as frontal sections) obtained from men and women of different age were examined in order to study the variability of human cerebral cranium biomechanical stability to external mechanical influences and to work out its morphological constructional typology. Methods were based considering cerebral cranium as a coat, approximating to half of the rotation ellipsoid in shape. The following craniotypes are the extreme types of cerebral cranium construction stability, a) morphologically-stable one, where strength is provided both by great bone thickness and small curvature radiuses, 6) structurally-stable, in which strength is provided by great bone thickness, B) configurationally stable in which strength is provided by curvature small radiuses, r) morphologically unstable with small bone thickness and great curvature radiuses. Phylo-ontogenetic dynamics of human cerebral cranium construction stability was followed up. PMID:9244538

  10. Mineralocorticoid Receptors Modulate Vascular Endothelial Function in Human Obesity

    PubMed Central

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H.; English, Mark; Segal, Mark S.; Christou, Demetra D.

    2015-01-01

    Obesity increases linearly with age and is associated with impaired vascular endothelial function and increased risk for cardiovascular disease. Mineralocorticoid receptors (MR) contribute to impaired vascular endothelial function in cardiovascular disease; however, their role in uncomplicated human obesity is unknown. Because plasma aldosterone levels are elevated in obesity and adipocytes may be a source of aldosterone, we hypothesized that MR modulate vascular endothelial function in older adults in an adiposity-dependent manner. To test this hypothesis, we administered MR blockade (Eplerenone; 100 mg/day) for 1 month in a balanced, randomized, double-blind, placebo-controlled, crossover study to 22 older adults (10 men, 55–79 years) varying widely in adiposity (body mass index: 20–45 kg/m2) but who were free from overt cardiovascular disease. We evaluated vascular endothelial function (brachial artery flow-mediated dilation [FMD] via ultrasonography) and oxidative stress (plasma F2-isoprostanes and vascular endothelial cell protein expression of nitrotyrosine and NADPH oxidase p47phox) during placebo and MR blockade. In the whole group, oxidative stress (P>0.05) and FMD did not change with MR blockade (6.39±0.67 vs. 6.23±0.73 %, P=0.7, placebo vs. Eplerenone). However, individual improvements in FMD in response to Eplerenone were associated with higher total body fat (body mass index: r=0.45, P=0.02 and DXA-derived % body fat: r=0.50, P=0.009) and abdominal fat (total: r=0.61, P=0.005, visceral: r=0.67, P=0.002 and subcutaneous: r=0.48, P=0.03). In addition, greater improvements in FMD with Eplerenone were related with higher baseline fasting glucose (r=0.53, P=0.01). MR influence vascular endothelial function in an adiposity-dependent manner in healthy older adults. PMID:23786536

  11. Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites.

    PubMed

    Hung, Huey-Shan; Yang, Yi-Chun; Lin, Yu-Chun; Lin, Shinn-Zong; Kao, Wei-Chien; Hsieh, Hsien-Hsu; Chu, Mei-Yun; Fu, Ru-Huei; Hsu, Shan-hui

    2014-08-01

    The mobilization and homing of endothelial progenitor cells (EPCs) are critical to the development of an antithrombotic cardiovascular prosthesis. Polyurethane (PU) with superior elasticity may provide a mechanical environment resembling that of the natural vascular tissues. The topographical cues of PU were maximized by making nanocomposites with a small amount of gold nanoparticles (AuNPs). The nanocomposites of PU-AuNPs ("PU-Au") with a favorable response of endothelial cells were previously established. In the current study, the effect of PU and PU-Au nanocomposites on the behavior of human peripheral blood EPCs was investigated in vitro and in vivo. It was found that PU-Au promoted EPCs to become differentiated endothelial cells in vitro, confirmed by the increased expressions of CD31 and VEGF-R2 surface markers. The increased maturation of EPCs was significantly more remarkable on PU-Au, probably through the stromal derived factor 1α (SDF-1α)/CXCR4 signaling pathway. In vivo experiments showed that EPCs seeded on PU-Au coated catheters effectively reduced thrombosis by differentiation into endothelial cells. Surface endothelialization with CD31 and CD34 expression as well as intimal formation with α-SMA expression was significantly accelerated in the group receiving EPC-seeded PU-Au catheters. Moreover, the analysis of collagen deposition revealed a reduction of fibrosis in the group receiving EPC-seeded PU-Au catheters as compared to the other groups. These results suggest that EPCs engineered with a proper elastic substrate may provide unique endothelialization and antithrombogenic properties that benefit vascular tissue regeneration. PMID:24836305

  12. Analysis of the endothelial nitric oxide synthase gene as a modifier of the cerebral response to ischemia.

    PubMed

    Dutra, Ana Virginia; Lin, Hsiu-Fen; Juo, Suh-Hang Hank; Boyadjis, Melanie; Moussouttas, Michael; Reddy, P Leema; Grewal, Raji Paul

    2006-01-01

    We studied the endothelial nitric oxide synthase (eNOS or NOS-3) gene as a potential modifier of the cerebral response to ischemia by investigating the association of two common polymorphisms with ischemic stroke volume. We genotyped an intronic variable number tandem repeat and a single nucleotide polymorphism, G894T, in 132 patients with nonlacunar ischemic strokes in whom clinical data and stroke lesion volume were recorded. Our results show that all genotypes are in Hardy-Weinberg equilibrium. After adjustment of covariates, neither of the NOS-3 polymorphisms showed significant differences comparing the genotypes and mean stroke volume (analysis of variance). Our results do not suggest a major gene effect of the NOS-3 gene as a modifier of the cerebral response to ischemia. PMID:17904064

  13. Beneficial effects of lifelong caloric restriction on endothelial function are greater in conduit arteries compared to cerebral resistance arteries.

    PubMed

    Walker, Ashley E; Henson, Grant D; Reihl, Kelly D; Nielson, Elizabeth I; Morgan, R Garrett; Lesniewski, Lisa A; Donato, Anthony J

    2014-04-01

    Endothelial dysfunction occurs in conduit and cerebral resistance arteries with advancing age. Lifelong caloric restriction (CR) can prevent the onset of age-related dysfunction in many tissues, but its effects on cerebral resistance artery function, as compared with conduit artery function, have not been determined. We measured endothelium-dependent dilation (EDD) in the carotid artery and middle cerebral artery (MCA) from young (5-7 months), old ad libitum fed (AL, 29-32 months), and old lifelong CR (CR, 40 % CR, 29-32 months) B6D2F1 mice. Compared with young, EDD for old AL was 24 % lower in the carotid and 47 % lower in the MCA (p < 0.05). For old CR, EDD was not different from young in the carotid artery (p > 0.05), but was 25 % lower than young in the MCA (p < 0.05). EDD was not different between groups after NO synthase inhibition with N(ω)-nitro-L-arginine methyl ester in the carotid artery or MCA. Superoxide production by the carotid artery and MCA was greater in old AL compared with young and old CR (p < 0.05). In the carotid, incubation with the superoxide scavenger TEMPOL improved EDD for old AL (p > 0.05), with no effect in young or old CR (p > 0.05). In the MCA, incubation with TEMPOL or the NADPH oxidase inhibitor apocynin augmented EDD in old AL (p < 0.05), but reduced EDD in young and old CR (p < 0.05). Thus, age-related endothelial dysfunction is prevented by lifelong CR completely in conduit arteries, but only partially in cerebral resistance arteries. These benefits of lifelong CR on EDD result from lower oxidative stress and greater NO bioavailability. PMID:24065292

  14. The expression of ADAMTS13 in human microvascular endothelial cells.

    PubMed

    Wang, Anyou; Duan, Qiaohong; Wu, Jingsheng; Liu, Xin; Sun, Zimin

    2016-06-01

    ADAMTS13, as a specific von Willebrand factor (VWF)-cleaving protease, prevents microvascular thrombosis of VWF/platelet thrombi. It has been reported that human vascular endothelial cells could also synthesize and secrete ADAMTS13, and these reports were focused in human umbilical vascular endothelial cells. Considering the particularity of its huge quantity and structure of human microvascular endothelial cells (HMECs) in the body, whether ADAMTS13 is expressed in HMECs also needs to be confirmed. To investigate whether ADAMTS13 is expressed in HMECs. Real-time PCR (RT-PCR) amplification detected ADAMTS13 mRNA in HMEC-1 cell line. The expression and distribution of ADAMTS13 protein and VWF were detected by fluorescence immunoassay and western blot. We observed the expression and distribution of ADAMTS13 in HMECs. We confirmed the expression of ADAMTS13 mRNA in HMEC-1, and found that there were some partly common distributions of ADAMTS13 protein and VWF. This study provides the evidence that HMECs also express ADAMTS13. HMECs might also be a primary source for human plasma ADAMTS13. The overlap region for the distribution of ADAMTS13 and VWF suggests that ADAMTS13 might have a potential regulation role for VWF inside cells. PMID:26366828

  15. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells.

    PubMed

    Chen, Changyi; Chai, Hong; Wang, Xinwen; Jiang, Jun; Jamaluddin, Md Saha; Liao, Dan; Zhang, Yuqing; Wang, Hao; Bharadwaj, Uddalak; Zhang, Sheng; Li, Min; Lin, Peter; Yao, Qizhi

    2008-10-15

    The purpose of this study was to determine the effects and mechanisms of sCD40L on endothelial dysfunction in both human coronary artery endothelial cells (HCAECs) and porcine coronary artery rings. HCAECs treated with sCD40L showed significant reductions of endothelial nitric oxide synthase (eNOS) mRNA and protein levels, eNOS mRNA stability, eNOS enzyme activity, and cellular NO levels, whereas superoxide anion (O(2)(-)) production was significantly increased. sCD40L enhanced eNOS mRNA 3'UTR binding to cytoplasmic molecules and induced a unique expression pattern of 95 microRNAs. sCD40L significantly decreased mitochondrial membrane potential, and catalase and SOD activities, whereas it increased NADPH oxidase (NOX) activity. sCD40L increased phosphorylation of MAPKs p38 and ERK1/2 as well as IkappaBalpha and enhanced NF-kappaB nuclear translocation. In porcine coronary arteries, sCD40L significantly decreased endothelium-dependent vasorelaxation and eNOS mRNA levels, whereas it increased O(2)(-) levels. Antioxidant seleno-l-methionine; chemical inhibitors of p38, ERK1/2, and mitochondrial complex II; as well as dominant negative mutant forms of IkappaBalpha and NOX4 effectively blocked sCD40L-induced eNOS down-regulation in HCAECs. Thus, sCD40L reduces eNOS levels, whereas it increases oxidative stress through the unique molecular mechanisms involving eNOS mRNA stability, 3'UTR-binding molecules, microRNAs, mitochondrial function, ROS-related enzymes, p38, ERK1/2, and NF-kappaB signal pathways in endothelial cells. PMID:18658029

  16. Modeling human endothelial cell transformation in vascular neoplasias

    PubMed Central

    Wen, Victoria W.; MacKenzie, Karen L.

    2013-01-01

    Endothelial cell (EC)-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia. PMID:24046386

  17. Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells.

    PubMed

    Ziberna, Lovro; Martelanc, Mitja; Franko, Mladen; Passamonti, Sabina

    2016-01-01

    Bilirubin is a standard serum biomarker of liver function. Inexplicably, it is inversely correlated with cardiovascular disease risk. Given the role of endothelial dysfunction in originating cardiovascular diseases, direct analysis of bilirubin in the vascular endothelium would shed light on these relationships. Hence, we used high-performance liquid chromatography coupled with thermal lens spectrometric detection and diode array detection for the determination of endogenous cellular IXα-bilirubin. To confirm the isomer IXα-bilirubin, we used ultra-performance liquid chromatography coupled with a high-resolution mass spectrometer using an electrospray ionization source, as well as tandem mass spectrometric detection. We measured bilirubin in both arterial and venous rat endothelium (0.9-1.5 pmol mg(-1) protein). In the human endothelial Ea.hy926 cell line, we demonstrated that intracellular bilirubin (3-5 pmol mg(-1) protein) could be modulated by either extracellular bilirubin uptake, or by up-regulation of heme oxygenase-1, a cellular enzyme related to endogenous bilirubin synthesis. Moreover, we determined intracellular antioxidant activity by bilirubin, with EC50 = 11.4 ± 0.2 nM, in the range of reported values of free serum bilirubin (8.5-13.1 nM). Biliverdin showed similar antioxidant properties as bilirubin. We infer from these observations that intra-endothelial bilirubin oscillates, and may thus be a dynamic factor of the endothelial function. PMID:27381978

  18. Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells

    PubMed Central

    Ziberna, Lovro; Martelanc, Mitja; Franko, Mladen; Passamonti, Sabina

    2016-01-01

    Bilirubin is a standard serum biomarker of liver function. Inexplicably, it is inversely correlated with cardiovascular disease risk. Given the role of endothelial dysfunction in originating cardiovascular diseases, direct analysis of bilirubin in the vascular endothelium would shed light on these relationships. Hence, we used high-performance liquid chromatography coupled with thermal lens spectrometric detection and diode array detection for the determination of endogenous cellular IXα-bilirubin. To confirm the isomer IXα-bilirubin, we used ultra-performance liquid chromatography coupled with a high-resolution mass spectrometer using an electrospray ionization source, as well as tandem mass spectrometric detection. We measured bilirubin in both arterial and venous rat endothelium (0.9–1.5 pmol mg−1 protein). In the human endothelial Ea.hy926 cell line, we demonstrated that intracellular bilirubin (3–5 pmol mg−1 protein) could be modulated by either extracellular bilirubin uptake, or by up-regulation of heme oxygenase-1, a cellular enzyme related to endogenous bilirubin synthesis. Moreover, we determined intracellular antioxidant activity by bilirubin, with EC50 = 11.4 ± 0.2 nM, in the range of reported values of free serum bilirubin (8.5–13.1 nM). Biliverdin showed similar antioxidant properties as bilirubin. We infer from these observations that intra-endothelial bilirubin oscillates, and may thus be a dynamic factor of the endothelial function. PMID:27381978

  19. Virulent Treponema pallidum activates human vascular endothelial cells.

    PubMed

    Riley, B S; Oppenheimer-Marks, N; Hansen, E J; Radolf, J D; Norgard, M V

    1992-03-01

    Perivascular lymphocytic infiltration, fibrin deposition, and endothelial cell abnormalities consistent with cellular activation are prominent histopathologic features of syphilis, a sexually transmitted disease caused by the spirochetal bacterium Treponema pallidum. Because activated endothelial cells play important roles in lymphocyte homing and hemostasis, the ability of virulent T. pallidum to activate cultured human umbilical vein endothelial cells (HUVEC) was investigated. T. pallidum induced the expression of intercellular adhesion molecule-1 (ICAM-1) and procoagulant activity on the surface of HUVEC. Electron microscopy of T. pallidum-stimulated HUVEC revealed extensive networks of fibrin strands not observed in cultures without treponemes. ICAM-1 expression in HUVEC also was promoted by a 47-kDa integral membrane lipoprotein purified from T. pallidum, implicating a role for spirochete membrane lipoproteins in endothelial cell activation. The combined findings are consistent with the pathology of syphilis and provide the first evidence that a pathogenic spirochetal bacterium such as T. pallidum or its constituent integral membrane lipoprotein(s) can activate directly host vascular endothelium. PMID:1347056

  20. IL-6 stimulates a concentration-dependent increase in MCP-1 in immortalised human brain endothelial cells

    PubMed Central

    Choi, Jai Min; Rotimi, Odunayo O.; O'Carroll, Simon J.; Nicholson, Louise F.B.

    2016-01-01

    Systemic inflammation is associated with neurodegeneration, with elevated interleukin-6 (IL-6) in particular being correlated with an increased risk of dementia. The brain endothelial cells of the blood brain barrier (BBB) serve as the interface between the systemic circulation and the brain microenvironment and are therefore likely to be a key player in the development of neuropathology associated with systemic inflammation. Endothelial cells are known to require soluble IL-6 receptor (sIL-6R) in order to respond to IL-6, but studies in rat models have shown that this is not the case for brain endothelial cells and studies conducted in human cells are limited. Here we report for the first time that the human cerebral microvascular cell line, hCMVEC, uses the classical mIL-6R signalling pathway in response to IL-6 in a concentration-dependent manner as measured by the production of monocyte chemotactic protein (MCP-1). This novel finding highlights a unique characteristic of human brain endothelial cells and that further investigation into the phenotype of this cell type is needed to elucidate the mechanisms of BBB pathology in inflammatory conditions. PMID:27347374

  1. Functional CB1 cannabinoid receptors in human vascular endothelial cells.

    PubMed Central

    Liu, J; Gao, B; Mirshahi, F; Sanyal, A J; Khanolkar, A D; Makriyannis, A; Kunos, G

    2000-01-01

    Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation. PMID:10698714

  2. Autonomic neural control of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, Rong; Zuckerman, Julie H.; Iwasaki, Kenichi; Wilson, Thad E.; Crandall, Craig G.; Levine, Benjamin D.

    2002-01-01

    BACKGROUND: The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. METHODS AND RESULTS: We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% (P<0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure. CONCLUSIONS: These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.

  3. Resistin increases monolayer permeability of human coronary artery endothelial cells.

    PubMed

    Jamaluddin, Md Saha; Yan, Shaoyu; Lü, Jianming; Liang, Zhengdong; Yao, Qizhi; Chen, Changyi

    2013-01-01

    Resistin has been linked to obesity, insulin resistance, atherosclerosis, and the development of cardiovascular disease. Nevertheless, the effects and the molecular mechanisms of resistin on endothelial permeability, a key event in the development of atherosclerosis, inflammation, and vascular disease, are largely unknown. In order to determine the effect of resistin on endothelial permeability, human coronary artery endothelial cells (HCAECs) were treated with clinically relevant concentrations of resistin and the endothelial permeability was measured using the Transwell system with a Texas-Red-labeled dextran tracer. The permeability of HCAEC monolayers treated with resistin (80 ng/mL) was 51% higher than the permeability of control monolayers (P<0.05). The mRNA levels of tight junction proteins zonula occludens-1 (ZO-1) and occludin in resistin-treated cells were 37% and 42% lower, respectively, than the corresponding levels in untreated cells. The protein levels of these molecules in resistin-treated cells were significantly reduced by 35% and 37%, respectively (P<0.05), as shown by flow cytometry and Western blot analysis. Superoxide dismutase (SOD) mimetic MnTBAP effectively blocked the resistin-mediated reduction of ZO-1 and occludin levels in HCAECs. In addition, superoxide anion production was increased from 21% (untreated cells) to 55% (cells treated with 40 ng/mL resistin), and 64% (resistin, 80 mg/mL) (P<0.05). The natural antioxidant Ginkgolide A effectively inhibited resistin-induced increase in permeability and the increase in superoxide anion production in HCAECs. Furthermore, resistin treatment significantly activated p38 MAPK, but not ERK1/2. Pretreatment of HCAECs with a p38 inhibitor effectively blocked resistin-induced permeability. These results provide new evidence that resistin may contribute to the vascular lesion formation via increasing endothelial permeability through the mechanism of oxidative stress and the activation of p38 MAPK. PMID

  4. Resistin Increases Monolayer Permeability of Human Coronary Artery Endothelial Cells

    PubMed Central

    Jamaluddin, Md Saha; Yan, Shaoyu; Lü, Jianming; Liang, Zhengdong; Yao, Qizhi; Chen, Changyi

    2013-01-01

    Resistin has been linked to obesity, insulin resistance, atherosclerosis, and the development of cardiovascular disease. Nevertheless, the effects and the molecular mechanisms of resistin on endothelial permeability, a key event in the development of atherosclerosis, inflammation, and vascular disease, are largely unknown. In order to determine the effect of resistin on endothelial permeability, human coronary artery endothelial cells (HCAECs) were treated with clinically relevant concentrations of resistin and the endothelial permeability was measured using the Transwell system with a Texas-Red-labeled dextran tracer. The permeability of HCAEC monolayers treated with resistin (80 ng/mL) was 51% higher than the permeability of control monolayers (P<0.05). The mRNA levels of tight junction proteins zonula occludens-1 (ZO-1) and occludin in resistin-treated cells were 37% and 42% lower, respectively, than the corresponding levels in untreated cells. The protein levels of these molecules in resistin-treated cells were significantly reduced by 35% and 37%, respectively (P<0.05), as shown by flow cytometry and Western blot analysis. Superoxide dismutase (SOD) mimetic MnTBAP effectively blocked the resistin-mediated reduction of ZO-1 and occludin levels in HCAECs. In addition, superoxide anion production was increased from 21% (untreated cells) to 55% (cells treated with 40 ng/mL resistin), and 64% (resistin, 80 mg/mL) (P<0.05). The natural antioxidant Ginkgolide A effectively inhibited resistin-induced increase in permeability and the increase in superoxide anion production in HCAECs. Furthermore, resistin treatment significantly activated p38 MAPK, but not ERK1/2. Pretreatment of HCAECs with a p38 inhibitor effectively blocked resistin-induced permeability. These results provide new evidence that resistin may contribute to the vascular lesion formation via increasing endothelial permeability through the mechanism of oxidative stress and the activation of p38 MAPK. PMID

  5. Acid-sensing ion channel 1 and nitric oxide synthase are in adjacent layers in the wall of rat and human cerebral arteries

    PubMed Central

    Lin, Li-Hsien; Jin, Jingwen; Nashelsky, Marcus B.; Talman, William T.

    2014-01-01

    Extracellular acidification activates a family of proteins known as acid-sensing ion channels (ASICs). One ASIC subtype, ASIC type 1 (ASIC1), may play an important role in synaptic plasticity, memory, fear conditioning and ischemic brain injury. ASIC1 is found primarily in neurons, but one report showed its expression in isolated mouse cerebrovascular cells. In this study, we sought to determine if ASIC1 is present in intact rat and human major cerebral arteries. A potential physiological significance of such a finding is suggested by studies showing that nitric oxide (NO), which acts as a powerful vasodilator, may modulate proton-gated currents in cultured cells expressing ASIC1s. Because both constitutive NO synthesizing enzymes, neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS), are expressed in cerebral arteries we also studied the anatomical relationship between ASIC1 and nNOS or eNOS in both rat and human cerebral arteries. Western blot analysis demonstrated ASIC1 in cerebral arteries from both species. Immunofluorescent histochemistry and confocal microscopy also showed that ASIC1-immunoreactivity (IR), colocalized with the smooth muscle marker alpha-smooth muscle actin (SMA), was present in the anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA) and basilar artery (BA) of rat and human. Expression of ASIC1 in cerebral arteries is consistent with a role for ASIC1 in modulating cerebrovascular tone both in rat and human. Potential interactions between smooth muscle ASIC1 and nNOS or eNOS were supported by the presence of nNOS-IR in the neighboring adventitial layer and the presence of nNOS-IR and eNOS-IR in the adjacent endothelial layer of the cerebral arteries. PMID:25462386

  6. Image analysis of human corneal endothelial cells based on fractal theory

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Luo, Qingming; Zeng, Shaoqun; Zhang, Xinyu; Huang, Dexiu; Chen, Weiguo

    1999-09-01

    A fast method is developed to quantitatively characterize the shape of human corneal endothelial cells with fractal theory and applied to analyze microscopic photographs of human corneal endothelial cells. The results show that human corneal endothelial cells possess the third characterization parameter-- fractal dimension, besides another two characterization parameter (its size and shape). Compared with tradition method, this method has many advantages, such as automatism, speediness, parallel processing and can be used to analyze large numbers of endothelial cells, the obtained values are statistically significant, it offers a new approach for clinic diagnosis of endothelial cells.

  7. High plasma levels of soluble endothelial protein C receptor are associated with increased mortality among children with cerebral malaria in Benin.

    PubMed

    Moussiliou, Azizath; Alao, Maroufou J; Denoeud-Ndam, Lise; Tahar, Rachida; Ezimegnon, Sem; Sagbo, Gratien; Amoussou, Annick; Luty, Adrian J F; Deloron, Philippe; Tuikue Ndam, Nicaise

    2015-05-01

    Loss of endothelial protein C receptor (EPCR) occurs at the sites of Plasmodium falciparum-infected erythrocyte sequestration in patients with or who died from cerebral malaria. In children presenting with different clinical syndromes of malaria, we assessed the relationships between endogenous plasma soluble EPCR (sEPCR) levels and clinical presentation or mortality. After adjustment for age, for treatment before admission, and for a known genetic factor, sEPCR level at admission was positively associated with cerebral malaria (P = .011) and with malaria-related mortality (P = .0003). Measuring sEPCR levels at admission could provide an early biological marker of the outcome of cerebral malaria. PMID:25425698

  8. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids

    PubMed Central

    Limbourg, Florian P.; Huang, Zhihong; Plumier, Jean-Christophe; Simoncini, Tommaso; Fujioka, Masayuki; Tuckermann, Jan; Schütz, Günther; Moskowitz, Michael A.; Liao, James K.

    2002-01-01

    Many cellular responses to corticosteroids involve the transcriptional modulation of target genes by the glucocorticoid receptor (GR). A rapid, non-nuclear effect of GR was found to mediate neuroprotection. High-dose corticosteroids (20 mg/kg intraperitoneally), given within 2 hours of transient cerebral ischemia, acutely increased endothelial nitric oxide synthase (eNOS) activity, augmented regional cerebral blood flow (CBF) by 40% to 50%, and reduced cerebral infarct size by 32%. These neuroprotective effects of corticosteroids were abolished by the GR antagonist RU486 and by inhibition of phosphatidylinositol 3-kinase (PI3K), and were absent in eNOS–/– mice. To determine the mechanism by which GR activated eNOS, we measured the effect of corticosteroids on PI3K and the protein kinase Akt. In a ligand-dependent manner, GR activated PI3K and Akt in vitro and in vivo caused NO-dependent vasodilation, which was blocked by cotreatment with RU486 or the PI3K inhibitor LY294002 but not by transcriptional inhibitors. Indeed, a mutant GR, which cannot dimerize and bind to DNA, still activated PI3K and Akt in response to corticosteroids. These findings indicate that non-nuclear GR rapidly activates eNOS through the PI3K/Akt pathway and suggest that this mechanism mediates the acute neuroprotective effects of corticosteroids through augmentation of CBF. PMID:12464678

  9. Identification of endothelial antigens relevant to transplant coronary artery disease from a human endothelial cell cDNA expression library.

    PubMed

    Ationu, A

    1998-06-01

    Accelerated transplant coronary artery disease (TxCAD) results in increased expression of antiendothelial antibodies whose target antigens remain largely unidentified. One of these endothelial antigens has been identified as vimentin, a cytoskeletal protein present in cells of the blood vessel walls. In the present study, SDS-PAGE and Western blot analysis of human endothelial cell (EAHy 926) lysates probed with sera from a TxCAD patient were used to confirm immunoreactivity of antiendothelial antibodies towards several endothelial proteins. To further elucidate the identity of these putative antigens, a human endothelial cell (EAHy 926) cDNA expression library was immunoscreened with serum obtained from a TxCAD patient. Two positive cDNA clones were identified by partial nucleotide sequence analysis and GenBank/EMBL database searches for homology as the 85 kDa human CD36 antigen (a cell surface glycoprotein expressed in various cells including epithelial and endothelial cells) and a 50 kDa keratin-like protein (a member of the intermediate filament protein expressed in epithelial cells). These results are the first to demonstrate that human CD36 antigen and a keratin-like protein may be additional target proteins for the anti-endothelial antibodies associated with TxCAD. PMID:9852639

  10. [Isolation of endothelial cells from human umbilical cords and development of low-cost culture medium].

    PubMed

    Karasaki, Y

    1996-12-01

    To study the role of endothelial cells in important biological phenomena such as thrombosis and atherosclerosis, it is necessary to have a sufficient amount of endothelial cells. This report shows modified methods to isolate endothelial cells from the human umbilical vein and the components of potent and low-cost culture medium for the cells. PMID:8981651

  11. Modulation of Human Vascular Endothelial Cell Behaviors by Nanotopographic Cues

    PubMed Central

    Liliensiek, S.J.; Wood, J.A.; Yong, J.; Auerbach, R.; Nealey, P.F.; Murphy, C.J.

    2010-01-01

    Basement membranes possess a complex three dimensional topography in the nanoscale and submicron range which have been shown to profoundly modulate a large menu of fundamental cell behaviors. Using the topographic features found in native vascular endothelial basement membranes as a guide, polyurethane substrates were fabricated containing anisotropically ordered ridge and groove structures and isotropically ordered pores from 200 nm to 2000 nm in size. We investigated the impact of biomimetic length-scale topographic cues on orientation/elongation, proliferation and migration on four human vascular endothelial cell-types from large and small diameter vessels. We found that all cell-types exhibited orientation and alignment with the most pronounced response on anisotropically ordered ridges ≥ 800 nm. HUVEC cells were the only cell-type examined to demonstrate a decrease in proliferation in response to the smallest topographic features regardless of surface order. On anisotropically ordered surfaces all cell types migrated preferentially parallel to the long axis of the ridges, with the greatest increase in cell migration being observed on the 1200 nm pitch. In contrast, cells did not exhibit any preference in direction or increase in migration speed on isotropically ordered surfaces. Overall, our data demonstrate that surface topographic features impact vascular endothelial cell behavior and that the impact of features varies with the cell behavior being considered, topographic feature scale, surface order, and the anatomic origin of the cell being investigated. PMID:20400175

  12. [Isolation, culture and identification of human umbilical vein endothelial cells].

    PubMed

    Chen, Xiaocui; Chen, Bangdang; Yang, Yining; Zhou, Yun; Liu, Fen; Gai, Mintao; Chen, Qingjie; Ma, Yitong

    2016-03-01

    Objective To establish a simple, reliable and efficient isolation and culture method of human umbilical vein endothelial cells (HUVECs) in vitro. Methods Type 2 collagenase was used to digest umbilical cord and separate HUVECs. The cells were cultured in the endothelial cell culture medium (ECM). The cell morphology was observed under an inverted phase-contrast microscope. Immunofluorescence technique was applied to detect the expression of von Willebrand factor (vWF). Cell purity was determined by detecting CD31 level on cell surface with flow cytometry. Tube formation assay was used to test the function of the endothelial cells after cryopreservation in vitro. Results HUVECs successfully isolated were proved with high purity and good activity. HUVECs of primary generation could merge into a single layer one week after isolation. The cells showed a typical cobblestone-like arrangement. Immunofluorescence technique validated that the cells could widely express vWF and the expression frequency of CD31 was 93.1%. The cells were still capable of forming the lumen structure after cryopreservation, indicating that the standardized cryopreservation method could well maintain the cell function. Conclusion This is a simple, reliable and efficient method of isolating and culturing HUVECs in vitro. PMID:26927551

  13. Modulation of human vascular endothelial cell behaviors by nanotopographic cues.

    PubMed

    Liliensiek, Sara J; Wood, Joshua A; Yong, Jiang; Auerbach, Robert; Nealey, Paul F; Murphy, Christopher J

    2010-07-01

    Basement membranes possess a complex three-dimensional topography in the nanoscale and submicron range which have been shown to profoundly modulate a large menu of fundamental cell behaviors. Using the topographic features found in native vascular endothelial basement membranes as a guide, polyurethane substrates were fabricated containing anisotropically ordered ridge and groove structures and isotropically ordered pores from 200 nm to 2000 nm in size. We investigated the impact of biomimetic length-scale topographic cues on orientation/elongation, proliferation and migration on four human vascular endothelial cell-types from large and small diameter vessels. We found that all cell-types exhibited orientation and alignment with the most pronounced response on anisotropically ordered ridges > or =800 nm. HUVEC cells were the only cell-type examined to demonstrate a decrease in proliferation in response to the smallest topographic features regardless of surface order. On anisotropically ordered surfaces all cell-types migrated preferentially parallel to the long axis of the ridges, with the greatest increase in cell migration being observed on the 1200 nm pitch. In contrast, cells did not exhibit any preference in direction or increase in migration speed on isotropically ordered surfaces. Overall, our data demonstrate that surface topographic features impact vascular endothelial cell behavior and that the impact of features varies with the cell behavior being considered, topographic feature scale, surface order, and the anatomic origin of the cell being investigated. PMID:20400175

  14. Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells

    SciTech Connect

    Noguer, Oriol Villena, Joan; Lorita, Jordi; Vilaro, Senen; Reina, Manuel

    2009-03-10

    The formation of new blood vessels, or angiogenesis, is a necessary process during development but also for tumour growth and other pathologies. It is promoted by different growth factors that stimulate endothelial cells to proliferate, migrate, and generate new tubular structures. Syndecans, transmembrane heparan sulphate proteoglycans, bind such growth factors through their glycosaminoglycan chains and could transduce the signal to the cytoskeleton, thus regulating cell behaviour. We demonstrated that syndecan-2, the major syndecan expressed by human microvascular endothelial cells, is regulated by growth factors and extracellular matrix proteins, in both bidimensional and tridimensional culture conditions. The role of syndecan-2 in 'in vitro' tumour angiogenesis was also examined by inhibiting its core protein expression with antisense phosphorothioate oligonucleotides. Downregulation of syndecan-2 reduces spreading and adhesion of endothelial cells, enhances their migration, but also impairs the formation of capillary-like structures. These results suggest that syndecan-2 has an important function in some of the necessary steps that make up the angiogenic process. We therefore propose a pivotal role of this heparan sulphate proteoglycan in the formation of new blood vessels.

  15. Glycoproteomic Analysis of the Secretome of Human Endothelial Cells*

    PubMed Central

    Yin, Xiaoke; Bern, Marshall; Xing, Qiuru; Ho, Jenny; Viner, Rosa; Mayr, Manuel

    2013-01-01

    Previous proteomics studies have partially unraveled the complexity of endothelial protein secretion but have not investigated glycosylation, a key modification of secreted and membrane proteins for cell communication. In this study, human umbilical vein endothelial cells were kept in serum-free medium before activation by phorbol-12-myristate-13 acetate, a commonly used secretagogue that induces exocytosis of endothelial vesicles. In addition to 123 secreted proteins, the secretome was particularly rich in membrane proteins. Glycopeptides were enriched by zwitterionic hydrophilic interaction liquid chromatography resins and were either treated with PNGase F and H218O or directly analyzed using a recently developed workflow combining higher-energy C-trap dissociation (HCD) with electron-transfer dissociation (ETD) for a hybrid linear ion trap–orbitrap mass spectrometer. After deglycosylation with PNGase F in the presence of H218O, 123 unique peptides displayed 18O-deamidation of asparagine, corresponding to 86 proteins with a total of 121 glycosylation sites. Direct glycopeptide analysis via HCD-ETD identified 131 glycopeptides from 59 proteins and 118 glycosylation sites, of which 41 were known, 51 were predicted, and 26 were novel. Two methods were compared: alternating HCD-ETD and HCD-product-dependent ETD. The former detected predominantly high-intensity, multiply charged glycopeptides, whereas the latter preferentially selected precursors with complex/hybrid glycans for fragmentation. Validation was performed by means of glycoprotein enrichment and analysis of the input, the flow-through, and the bound fraction. This study represents the most comprehensive characterization of endothelial protein secretion to date and demonstrates the potential of new HCD-ETD workflows for determining the glycosylation status of complex biological samples. PMID:23345538

  16. Cardiovascular responses to water immersion in humans: impact on cerebral perfusion

    PubMed Central

    Spence, Angela L.; Pugh, Christopher J. A.; Ainslie, Philip; Naylor, Louise H.; Green, Daniel J.

    2014-01-01

    Episodic increases in cerebrovascular perfusion and shear stress may have beneficial impacts on endothelial function that improve brain health. We hypothesized that water immersion to the level of the right atrium in humans would increase cerebral perfusion. We continuously measured, in 9 young (means ± SD, 24.6 ± 2.0 yr) healthy men, systemic hemodynamic variables along with blood flows in the common carotid and middle and posterior cerebral arteries during controlled filling and emptying of a water tank to the level of the right atrium. Mean arterial pressure (80 ± 9 vs. 91 ± 12 mmHg, P < 0.05), cardiac output (4.8 ± 0.7 vs. 5.1 ± 0.6 l/min, P < 0.05) and end-tidal carbon dioxide (PetCO2, 39.5 ± 2.0 vs. 44.4 ± 3.5 mmHg, P < 0.05) increased with water immersion, along with middle (59 ± 6 vs. 64 ± 6 cm/s, P < 0.05) and posterior cerebral artery blood flow velocities (41 ± 9 vs. 44 ± 10 cm/s, P < 0.05). These changes were reversed when the tank was emptied. Water immersion is associated with hemodynamic and PetCO2 changes, which increase cerebral blood velocities in humans. This study provides an evidence base for future studies to examine the potential additive effect of exercise in water on improving cerebrovascular health. PMID:24553298

  17. Intrinsic Functional Relations Between Human Cerebral Cortex and Thalamus

    PubMed Central

    Zhang, Dongyang; Snyder, Abraham Z.; Fox, Michael D.; Sansbury, Mark W.; Shimony, Joshua S.; Raichle, Marcus E.

    2008-01-01

    The brain is active even in the absence of explicit stimuli or overt responses. This activity is highly correlated within specific networks of the cerebral cortex when assessed with resting-state functional magnetic resonance imaging (fMRI) blood oxygen level–dependent (BOLD) imaging. The role of the thalamus in this intrinsic activity is unknown despite its critical role in the function of the cerebral cortex. Here we mapped correlations in resting-state activity between the human thalamus and the cerebral cortex in adult humans using fMRI BOLD imaging. Based on this functional measure of intrinsic brain activity we partitioned the thalamus into nuclear groups that correspond well with postmortem human histology and connectional anatomy inferred from nonhuman primates. This structure/function correspondence in resting-state activity was strongest between each cerebral hemisphere and its ipsilateral thalamus. However, each hemisphere was also strongly correlated with the contralateral thalamus, a pattern that is not attributable to known thalamocortical monosynaptic connections. These results extend our understanding of the intrinsic network organization of the human brain to the thalamus and highlight the potential of resting-state fMRI BOLD imaging to elucidate thalamocortical relationships. PMID:18701759

  18. First Case of Human Cerebral Taenia martis Cysticercosis

    PubMed Central

    Benoilid, Aurélien; Kremer, Stéphane; Dalvit, Constanza; Lefebvre, Nicolas; Hansmann, Yves; Chenard, Marie-Pierre; Mathieu, Bruno; Grimm, Felix; Deplazes, Peter; Pfaff, Alexander W.; Abou-Bacar, Ahmed; Marescaux, Christian; Candolfi, Ermanno

    2015-01-01

    Taenia martis is a tapeworm affecting mustelids, with rodents serving as intermediate hosts. The larval stage (cysticercus) has been found before only rarely in humans or primates. We hereby describe a case of cerebral T. martis cysticercosis in a French immunocompetent patient, confirmed by DNA analyses of biopsy material. PMID:26019196

  19. Endothelial dysfunction of cerebral and major arteries during chronic obstructive disease.

    PubMed

    Geltser, B I; Brodskaya, T A; Kotelnikov, V N; Agafonova, I G; Lukyanov, P A

    2007-12-01

    Vasomotor activity of the major and cerebral arteries was studied in mice with chronic obstructive pulmonary disease. Regional differences were revealed in the endothelium-dependent response of arteries. The development of chronic obstructive pulmonary disease was associated with a paradoxical response of the dilatational component of vasoregulation against the background of increased constrictive influences of the vascular endothelium in the major and cerebral vessels. PMID:18856197

  20. Inflammation and human cerebral aneurysms: current and future treatment prospects

    PubMed Central

    Hudson, Joseph S; Hoyne, Danielle S; Hasan, David M

    2013-01-01

    The formation of cerebral aneurysms and their rupture propensity is of immediate clinical importance. Current management includes observation with expectant management, microsurgical clipping and/or endovascular coiling. The surgical options are invasive and are not without increased risk despite the technological advances. Recent human and animal studies have shown that inflammation plays a critical role in aneurysm formation and progression to rupture. Modulating this inflammatory process may prove to be clinically significant. This review will discuss cerebral aneurysm pathogenesis with a focus on current and future research of potential use of pharmaceutical agents that attenuate inflammation in the aneurysm wall leading to decreased risk of aneurysm rupture. PMID:24376373

  1. Gene expression profiling in the human middle cerebral artery after cerebral ischemia.

    PubMed

    Vikman, P; Edvinsson, L

    2006-12-01

    We have investigated the gene expression in human middle cerebral artery (MCA) after ischemia. Ischemic stroke affects the perfusion in the affected area and experimental cerebral ischemia results in upregulation of vasopressor receptors in the MCA leading to the ischemic area. We obtained human MCA samples distributing to the ischemic area, 7-10 days post-stroke. The gene expression was examined with real-time polymerase chain reaction (PCR) and microarray, proteins were studied with immunohistochemistry. We investigated genes previously shown to be upregulated in animal models of cerebral ischemia (e.g. ET(A), ET(B), AT1, AT2, and 5-HT(2A/1B/1D)). Their mRNA expression was increased compared with controls, consistent with findings in experimental stroke. Immunohistochemistry showed upregulation of the receptors localized on the smooth muscle cells. The gene expression was profiled with microarray and seven genes chosen for further investigation with real-time PCR; ELK3, LY64, Metallothionin IG, POU3F4, Actin alpha2, RhoA and smoothelin. Six of these were regulated the same way when confirming array expression with real-time PCR. Gene expression studies in the human MCA leading to the ischemic region is similar to that seen after MCA occlusion in rats. We found new genes that support the dynamic changes that occur in the MCA distributing to the ischemic region. PMID:17116215

  2. Cerebral versus systemic hemodynamics during graded orthostatic stress in humans

    NASA Technical Reports Server (NTRS)

    Levine, B. D.; Giller, C. A.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.

    1994-01-01

    BACKGROUND: Orthostatic syncope is usually attributed to cerebral hypoperfusion secondary to systemic hemodynamic collapse. Recent research in patients with neurocardiogenic syncope has suggested that cerebral vasoconstriction may occur during orthostatic hypotension, compromising cerebral autoregulation and possibly contributing to the loss of consciousness. However, the regulation of cerebral blood flow (CBF) in such patients may be quite different from that of healthy individuals, particularly when assessed during the rapidly changing hemodynamic conditions associated with neurocardiogenic syncope. To be able to interpret the pathophysiological significance of these observations, a clear understanding of the normal responses of the cerebral circulation to orthostatic stress must be obtained, particularly in the context of the known changes in systemic and regional distributions of blood flow and vascular resistance during orthostasis. Therefore, the specific aim of this study was to examine the changes that occur in the cerebral circulation during graded reductions in central blood volume in the absence of systemic hypotension in healthy humans. We hypothesized that cerebral vasoconstriction would occur and CBF would decrease due to activation of the sympathetic nervous system. We further hypothesized, however, that the magnitude of this change would be small compared with changes in systemic or skeletal muscle vascular resistance in healthy subjects with intact autoregulation and would be unlikely to cause syncope without concomitant hypotension. METHODS AND RESULTS: To test this hypothesis, we studied 13 healthy men (age, 27 +/- 7 years) during progressive lower body negative pressure (LBNP). We measured systemic flow (Qc is cardiac output; C2H2 rebreathing), regional forearm flow (FBF; venous occlusion plethysmography), and blood pressure (BP; Finapres) and calculated systemic (SVR) and forearm (FVR) vascular resistances. Changes in brain blood flow were

  3. Glycated serum albumin stimulates expression of endothelial cell specific molecule-1 in human umbilical vein endothelial cells: Implication in diabetes mediated endothelial dysfunction.

    PubMed

    Nirala, Bikesh K; Perumal, Vivekanandan; Gohil, Nivedita K

    2015-07-01

    Pro-inflammatory conditions induced by products of protein glycation in diabetes substantially enhance the risk of endothelial dysfunction and related vascular complications. Endothelial cell specific molecule-1 (ESM-1) or endocan has been demonstrated as a potential biomarker in cancer and sepsis. Its role in diabetes-induced pathologies remains unknown. The expression of ESM-1 gene is under cytokine regulation, indicating its role in endothelium-dependent pathological disorders. In this study, we investigated the effect of advanced glycated human serum albumin (AGE-HSA) on the production of ESM-1. We show that AGE-HSA exerts a modulating role on the expression of ESM-1 in human umbilical vein endothelial cells. It up-regulates expression of ESM-1 protein in a dose-dependent manner which correlates with its messenger RNA (mRNA) transcription. RAGE and galectin-3, both AGE receptors, show antagonistic action on its expression. While gene silencing of RAGE has down-regulatory effect, that of galectin-3 has up-regulatory effect on AGE-induced expression of ESM-1. Inhibition of MAPKKK and JNK pathways did not alter the expression. In contrast, phosphatidylinositol 3 kinase (PI3K) inhibition significantly up-regulated ESM-1 expression. In conclusion, these results suggest that AGE-induced activation of human umbilical vein endothelial cells promotes formation of endocan which is an endothelial dysfunction marker and may be related to vascular disease in diabetes. PMID:25963575

  4. Mapping the Structural Core of Human Cerebral Cortex

    PubMed Central

    Hagmann, Patric; Cammoun, Leila; Gigandet, Xavier; Meuli, Reto; Honey, Christopher J; Wedeen, Van J; Sporns, Olaf

    2008-01-01

    Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration. PMID:18597554

  5. Antiproliferative effect of elevated glucose in human microvascular endothelial cells

    NASA Technical Reports Server (NTRS)

    Kamal, K.; Du, W.; Mills, I.; Sumpio, B. E.

    1998-01-01

    Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P < 0.05) HMEC-1 proliferation after 7, 10, and 14 days. This effect was not mimicked by 20 mM mannitol. The antiproliferative effect was more pronounced with longer exposure (1-14 days) to elevated glucose and was irreversible 4 days after a 10-day exposure. The antiproliferative effect was partially reversed in the presence of a PKA inhibitor, Rp-cAMP (10-50 microM), and/or a PKC inhibitor, Calphostin C (10 nM). HMEC-1 exposed to elevated glucose (20 mM) for 14 days caused an increase in cyclic AMP accumulation, PKA, and PKC activity but was not associated with the activation of downstream events such as CRE and AP-1 binding activity. These data support the hypothesis that HMEC-1 is a suitable model to study the deleterious effects of elevated glucose on microvascular endothelial cells. Continued studies with HMEC-1 may prove advantageous in delineation of the molecular

  6. Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase

    PubMed Central

    Wallace, Breanna K.; Foroutan, Shahin

    2011-01-01

    Increased blood-brain barrier (BBB) Na-K-Cl cotransporter activity appears to contribute to cerebral edema formation during ischemic stroke. We have shown previously that inhibition of BBB Na-K-Cl cotransporter activity reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of ischemic stroke. We have also shown that the BBB cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), although the mechanisms responsible are not well understood. AMP-activated protein kinase (AMPK), a key mediator of cell responses to stress, can be activated by a variety of stresses, including ischemia, hypoxia, and aglycemia. Previous studies have shown that the AMPK inhibitor Compound C significantly reduces infarct in mouse MCAO. The present study was conducted to evaluate the possibility that AMPK participates in ischemic factor-induced stimulation of the BBB Na-K-Cl cotransporter. Cerebral microvascular endothelial cells (CMEC) were assessed for Na-K-Cl cotransporter activity as bumetanide-sensitive 86Rb influx. AMPK activity was assessed by Western blot analysis and immunofluorescence methods using antibodies that detect total versus phosphorylated (activated) AMPK. We found that hypoxia (7% and 2% O2), aglycemia, AVP, and oxygen-glucose deprivation (5- to 120-min exposures) increase activation of AMPK. We also found that Compound C inhibition of AMPK reduces hypoxia-, aglycemia-, and AVP-induced stimulation of CMEC Na-K-Cl cotransporter activity. Confocal immunofluorescence of perfusion-fixed rat brain slices revealed the presence of AMPK, both total and phosphorylated kinase, in BBB in situ of both control and ischemic brain. These findings suggest that ischemic factor stimulation of the BBB Na-K-Cl cotransporter involves activation of AMPK. PMID:21562306

  7. Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase.

    PubMed

    Wallace, Breanna K; Foroutan, Shahin; O'Donnell, Martha E

    2011-08-01

    Increased blood-brain barrier (BBB) Na-K-Cl cotransporter activity appears to contribute to cerebral edema formation during ischemic stroke. We have shown previously that inhibition of BBB Na-K-Cl cotransporter activity reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of ischemic stroke. We have also shown that the BBB cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), although the mechanisms responsible are not well understood. AMP-activated protein kinase (AMPK), a key mediator of cell responses to stress, can be activated by a variety of stresses, including ischemia, hypoxia, and aglycemia. Previous studies have shown that the AMPK inhibitor Compound C significantly reduces infarct in mouse MCAO. The present study was conducted to evaluate the possibility that AMPK participates in ischemic factor-induced stimulation of the BBB Na-K-Cl cotransporter. Cerebral microvascular endothelial cells (CMEC) were assessed for Na-K-Cl cotransporter activity as bumetanide-sensitive (86)Rb influx. AMPK activity was assessed by Western blot analysis and immunofluorescence methods using antibodies that detect total versus phosphorylated (activated) AMPK. We found that hypoxia (7% and 2% O(2)), aglycemia, AVP, and oxygen-glucose deprivation (5- to 120-min exposures) increase activation of AMPK. We also found that Compound C inhibition of AMPK reduces hypoxia-, aglycemia-, and AVP-induced stimulation of CMEC Na-K-Cl cotransporter activity. Confocal immunofluorescence of perfusion-fixed rat brain slices revealed the presence of AMPK, both total and phosphorylated kinase, in BBB in situ of both control and ischemic brain. These findings suggest that ischemic factor stimulation of the BBB Na-K-Cl cotransporter involves activation of AMPK. PMID:21562306

  8. Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin.

    PubMed

    Yu, Young; Wise, Steven G; Michael, Praveesuda L; Bax, Daniel V; Yuen, Gloria S C; Hiob, Matti A; Yeo, Giselle C; Filipe, Elysse C; Dunn, Louise L; Chan, Kim H; Hajian, Hamid; Celermajer, David S; Weiss, Anthony S; Ng, Martin K C

    2015-01-01

    The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs) are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE) and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants. PMID:26115013

  9. Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin

    PubMed Central

    Yu, Young; Wise, Steven G.; Michael, Praveesuda L.; Bax, Daniel V.; Yuen, Gloria S. C.; Hiob, Matti A.; Yeo, Giselle C.; Filipe, Elysse C.; Dunn, Louise L.; Chan, Kim H.; Hajian, Hamid; Celermajer, David S.; Weiss, Anthony S.; Ng, Martin K. C.

    2015-01-01

    The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs) are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE) and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants. PMID:26115013

  10. 3D map of the human corneal endothelial cell

    PubMed Central

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  11. 3D map of the human corneal endothelial cell.

    PubMed

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc'h, Michel; Defoe, Dennis M; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  12. Volume changes of human endothelial cells induced by photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Leunig, Andreas; Staub, Frank; Plesnila, Nick; Peters, Jurgen; Feyh, Jens; Gutmann, Ralph; Goetz, Alwin E.

    1996-01-01

    Photodynamic therapy (PDT) has shown promising results in treatment of malignant tumors. However, the mechanisms leading to tumor destruction during PDT are still not completely understood. In addition to effects on the microcirculation, damage to cellular structures has been observed following exposure of cells to PDT. A phenomenon preceding these events might possibly be cell swelling. We therefore studied the influence of treatment with Photofrin (PF) and laser light on volume changes and cell viability of endothelial cells. Endothelial cells were obtained from human umbilical cord veins (HUVEC) by an adaption of the method of Maruyama (1963). After subcultivation the cells were harvested and transferred as a cell suspension into a specially designed incubation chamber. Cells received either PF in concentrations of 1.5 or 3.0 (mu) g/ml and laser illumination (630 nm; 40 mW/cm2, 4 Joule), PF alone, or laser treatment only. Following start of PF incubation and after phototreatment cell samples were taken for volume measurements using flow cytometry and for studies of cellular morphology using scanning electron microscopy. Simultaneously, cell viability was monitored by the trypan blue exclusion test and colorimetric MTT assay. (abstract truncated)

  13. Three electrophysiological phenotypes of cultured human umbilical vein endothelial cells.

    PubMed

    Yu, K; Ruan, D Y; Ge, S Y

    2002-09-01

    The conventional whole cell patch-clamp technique was used to measure the resting membrane conductance and membrane currents of nonstimulated cultured human umbilical vein endothelial cells (HUVECs) in different ionic conditions. Three electrophysiological phenotypes of cultured HUVECs (n = 122) were determined: first, 20% of cells as type I mainly displaying the inwardly rectifying potassium current (IKi); second, 38% of cells as type II in which IKi was super-posed on a TEA-sensitive, delayed rectifying current; third, 27% of cells as type III predominantly displaying the outwardly rectifying current which was sensitive to TEA and slightly inhibited by a chloride channel blocker niflumic acid (N.A.). In cells of type I, the mean zero-current potential (V0) was dependent on extracellular K+ ([K+]o) but not on Cl-, indicating major permeability to K+. Whereas V0 of type II was also affected by extracellular Cl- ([Cl-]o), indicating the contribution of an outward Cl- current in setting V0. The cells of type III were not sensitive to decrease of [Cl-]o and the outward current was activated in a relative stable voltage range. This varying phenotypic expression and multipotential behavior of HUVECs suggests that the electrical features of HUVEC may be primarily determined by embryonic origin and local effect of the microenvironment. This research provided the detailed electrophysiological knowledge of the endothelial cells. PMID:12537354

  14. Endothelial human dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling

    PubMed Central

    Whitsett, Jennifer; Filho, Artur Rangel; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vásquez-Vivar, Jeannette

    2013-01-01

    Tetrahydrobiopterin (BH4) is required for NO synthesis and inhibition of superoxide release from eNOS. Clinical trials using BH4 to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH4. One of the oxidation products of BH4, 7,8-dihydrobiopterin (7,8-BH2), is recycled back to BH4 by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH4 treatment is lacking. To characterize this reaction, we applied a novel multi-electrode coulometric HPLC method that enabled the direct quantification of 7,8-BH2 and BH4 which is not possible with fluorescent-based methodologies. We found that basal untreated BH4 and 7,8-BH2 concentrations in human ECs is lower than bovine and murine endothelioma cells. Treatment of human ECs with BH4 transiently increased intracellular BH4 while accumulating the more stable 7,8-BH2. This was different from bovine or murine ECs that resulted in preferential BH4 increase. Using BH4 diastereomers, 6S-BH4 and 6R-BH4, the narrow contribution of enzymatic DHFR recycling to total intracellular BH4 was demonstrated. Reduction of 7,8-BH2 to BH4 occurs at very slow rates in cells and needs supra-physiological levels of 7,8-BH2, indicating this reaction is kinetically limited. Activity assays verified that hDHFR has very low affinity for 7,8-BH2 (DHF7,8-BH2) and folic acid inhibits 7,8-BH2 recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies which may be further aggravated by folate supplements. PMID:23707606

  15. [Changes of cerebral blood flow during diving reactions in humans].

    PubMed

    Baranova, T I; Berlov, D N; Ianvareva, I N

    2014-05-01

    The characteristics of human cerebral blood flow were estimated during the implementation of the diving response, simulated by complex cold-hypoxic-hypercapnic exposure (CHHE), and under the influence of separate cold, hypercapnic and hypoxic stimuli. Was studied 18 people aged 18-22 years who had no special training. Cerebral blood flow was recorded by transcranial Doppler. It is shown that in the CHHE with the respect initial state to observe a marked increase in cerebral blood flow linear velocity (BFV) to 82.3 ± 15.2%, as well as reducing characterizing the tone of resistance vessels of the brain pulsatility index (PI) to 77.2 ± 13.1%. During cold and tactile stimulation of facial skin BFV and PI did not change significantly, with a single breath hold (Genchi test) BFV increased by 52.3 ± 12.5%, PI at 64.5 ± 15%. The latent period of cerebral blood flow (14-43) allow suppose metabolic (chemical) nature of regulatory influences, which provide changes of considered indicators. PMID:25669101

  16. Induced secretion of beta-hexosaminidase by human brain endothelial cells: a novel approach in Sandhoff disease?

    PubMed

    Batista, Lionel; Miller, Florence; Clave, Céline; Arfi, Audrey; Douillard-Guilloux, Gaëlle; Couraud, Pierre-Olivier; Caillaud, Catherine

    2010-03-01

    Sandhoff disease is an autosomal recessive lysosomal disorder due to mutations in the beta-hexosaminidase beta-chain gene, resulting in beta-hexosaminidases A (alphabeta) and B (betabeta) deficiency and GM2 ganglioside accumulation in the brain. In this study, our aim was to demonstrate that transduction of cerebral endothelial cells cultured in two-chamber culture inserts with a lentiviral vector encoding the hexosaminidases alpha and beta chains could induce a vectorial secretion of hexosaminidases. Therefore, the human cerebral endothelial cell line hCMEC/D3 was infected with the bicistronic vector from the apical compartment, and beta-hexosaminidase activity was measured in transduced cells and in deficient fibroblasts co-cultured in the basal (i.e. brain) compartment. Induced beta-hexosaminidase secretion by transduced hCMEC/D3 cells was sufficient to allow for a 70-90% restoration of beta-hexosaminidase activity in deficient fibroblasts. On the basis of these in vitro data, we propose that brain endothelium be considered as a novel therapeutic target in Sandhoff disease. PMID:20005954

  17. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability

    PubMed Central

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Guo, Nancy Lan; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2011-01-01

    Perfluorooctane sulfonate (PFOS) is a member of perfluoroalkyl acids (PFAA) containing an 8-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are one of the strongest in organic chemistry and widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level. PMID:20391123

  18. Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin.

    PubMed

    Gospodarowicz, D; Brown, K D; Birdwell, C R; Zetter, B R

    1978-06-01

    Because the response of human endothelial cells to growth factors and conditioning agents has broad implications for our understanding of wound healing angiogenesis, and human atherogenesis, we have investigated the responses of these cells to the fibroblast (FGF) and epidermal growth factors (EGF), as well as to the protease thrombin, which has been previously shown to potentiate the growth response of other cell types of FGF and EGF. Because the vascular endothelial cells that form the inner lining of blood vessels may be expected to be exposed to high thrombin concentrations after trauma or in pathological states associated with thrombosis, they are of particular interest with respect to the physiological role of this protease in potentiating cell proliferation. Our results indicate that human vascular endothelial cells respond poorly to either FGF or thrombin alone. In contrast, when cells are maintained in the presence of thrombin, their proliferative response to FGF is greatly increased even in cultures seeded at a density as low as 3 cells/mm2. Human vascular endothelial cells also respond to EGF and thrombin, although their rate of proliferation is much slower than when maintained with FGF and thrombin. In contrast, bovine vascular endothelial cells derived from vascular territories as diverse as the bovine heart, aortic arch, and umbilical vein respond maximally to FGF alone and neither respond to nor bind EGF. Furthermore, the response of bovine vascular endothelial cells to FGF was not potentiated by thrombin, indicating that the set of factors controlling the proliferation of vascular endothelial cells could be species-dependent. The requirement of cultured human vascular endothelial cells for thrombin could explain why the human cells, in contrast to bovine endothelial cells, are so difficult to maintain in tissue culture. Our results demonstrate that by using FGF and thrombin one can develop cultures of human vascular endothelial cells capable of

  19. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions.

    PubMed

    Bao, Xiaoping; Lian, Xiaojun; Palecek, Sean P

    2016-01-01

    Efficient derivation of endothelial cells and their progenitors from human pluripotent stem cells (hPSCs) can facilitate studies of human vascular development, disease modeling, drug discovery, and cell-based therapy. Here we provide a detailed protocol for directing hPSCs to functional endothelial cells and their progenitors in a completely defined, growth factor- and serum-free system by temporal modulation of Wnt/β-catenin signaling via small molecules. We demonstrate a 10-day, two-stage process that recapitulates endothelial cell development, in which hPSCs first differentiate to endothelial progenitors that then generate functional endothelial cells and smooth muscle cells. Methods to characterize endothelial cell identity and function are also described. PMID:27590162

  20. Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study.

    PubMed

    Zhang, Zhongxing; Khatami, Ramin

    2014-11-01

    Vasomotion is important in the study of vascular disorders, including stroke. Spontaneous low and very low hemodynamic oscillations (3-150 mHz) measured with near-infrared spectroscopy (NIRS) reflect the endothelial (3-20 mHz), neurogenic (20-40 mHz) and myogenic (40-150 mHz) components of vasomotion. We investigated sleep-specific patterns of vasomotion by characterizing hemodynamic oscillations with NIRS in healthy subjects, and tested the feasibility of NIRS as a bedside tool for monitoring vasomotion during whole-night sleep. To characterize local cerebral vasomotion, we compared cerebral NIRS measurements with muscular NIRS measurements and peripheral arterial oxygen saturation (SpO2 ) during different sleep stages in 14 healthy volunteers. Spectral powers of hemodynamic oscillations in the frequency range of endothelial vasomotion were systemically predominant in every sleep stage, and the powers of endothelial and neurogenic vasomotion decreased in deep sleep as compared with light sleep and rapid eye movement (REM) sleep in brain, muscle, and SpO2 . The decrease in the powers of myogenic vasomotion in deep sleep only occurred in brain, and not in muscle. These results point to a predominant role of endothelial function in regulating vasomotion during sleep. The decline in cerebral endothelial and neurogenic vasomotion during progression to deeper non-REM sleep suggests that deep sleep may play a protective role for vascular function. NIRS can be used to monitor endothelial control of vasomotion during nocturnal sleep, thus providing a promising non-invasive bedside tool with which to study the sleep-relevant pathological mechanisms in vascular diseases and stroke. PMID:25156240

  1. Expression and endocytosis of VEGF and its receptors in human colonic vascular endothelial cells.

    PubMed

    Wang, Dongfang; Lehman, Richard E; Donner, David B; Matli, Mary R; Warren, Robert S; Welton, Mark L

    2002-06-01

    Normal human colonic microvascular endothelial cells (HUCMEC) have been isolated from surgical specimens by their adherence to Ulex europaeus agglutinin bound to magnetic dynabeads that bind alpha-L-fucosyl residues on the endothelial cell membrane. Immunocytochemistry demonstrated the presence of a range of endothelial-specific markers on HUCMEC, including the von Willebrand factor, Ulex europaeus agglutinin, and platelet endothelial cell adhesion molecule-1. The growing cells form monolayers with the characteristic cobblestone morphology of endothelial cells and eventually form tube-like structures. HUCMEC produce vascular endothelial growth factor (VEGF) and express the receptors, kinase insert domain-containing receptor (KDR) and fms-like tyrosine kinase, through which VEGF mediates its actions in the endothelium. VEGF induces the tyrosine phosphorylation of KDR and a proliferative response from HUCMEC comparable to that elicited from human umbilical vein endothelial cells (HUVEC). On binding to HUCMEC or HUVEC, (125)I-labeled VEGF internalizes or dissociates to the medium. Once internalized, (125)I-labeled VEGF is degraded and no evidence of ligand recycling was observed. However, significantly less VEGF is internalized, and more is released to the medium from HUCMEC than HUVEC. Angiogenesis results from the proliferation and migration of microvascular, not large-vessel, endothelial cells. The demonstration that microvascular endothelial cells degrade less and release more VEGF to the medium than large-vessel endothelial cells identifies a mechanism permissive of the role of microvascular cells in angiogenesis. PMID:12016135

  2. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  3. Nanoliposomes protect against human arteriole endothelial dysfunction induced by β-amyloid peptide.

    PubMed

    Truran, Seth; Weissig, Volkmar; Madine, Jillian; Davies, Hannah A; Guzman-Villanueva, Diana; Franco, Daniel A; Karamanova, Nina; Burciu, Camelia; Serrano, Geidy; Beach, Thomas G; Migrino, Raymond Q

    2016-02-01

    We tested whether nanoliposomes containing phosphatidylcholine, cholesterol and phosphatidic acid (NLPA) prevent β-amyloid 1-42 (Aβ42) fibrillation and Aβ42-induced human arteriole endothelial dysfunction. NLPA abolished Aβ42 fibril formation (thioflavin-T fluorescence/electron microscopy). In ex-vivo human adipose and leptomeningeal arterioles, Aβ42 impaired dilator response to acetylcholine that was reversed by NLPA; this protection was abolished by L-NG-nitroarginine methyl ester. Aβ42 reduced human umbilical vein endothelial cell NO production that was restored by NLPA. Nanoliposomes prevented Aβ42 amyloid formation, reversed Aβ42-induced human microvascular endothelial dysfunction and may be useful in Alzheimer's disease. PMID:26661197

  4. Transcript Analysis Reveals a Specific HOX Signature Associated with Positional Identity of Human Endothelial Cells

    PubMed Central

    Toshner, Mark; Dunmore, Benjamin J.; McKinney, Eoin F.; Southwood, Mark; Caruso, Paola; Upton, Paul D.; Waters, John P.; Ormiston, Mark L.; Skepper, Jeremy N.; Nash, Gerard; Rana, Amer A.; Morrell, Nicholas W.

    2014-01-01

    The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole “HOX transcriptome” of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity. PMID:24651450

  5. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells

    PubMed Central

    Muid, Suhaila; Froemming, Gabriele R. Anisah; Rahman, Thuhairah; Ali, A. Manaf; Nawawi, Hapizah M.

    2016-01-01

    Background Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims 1) To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM), together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α), adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin), eNOS, and NFκB. Results δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM) but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM) but exhibits neutral effects at lower concentrations. Conclusion δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a

  6. Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature.

    PubMed

    Macdonald, Jennifer A; Murugesan, Nivetha; Pachter, Joel S

    2010-05-15

    The blood-brain barrier (BBB) refers to the network of microvessels that selectively restricts the passage of substances between the circulation and the central nervous system (CNS). This microvascular network is comprised of arterioles, capillaries and venules, yet the respective contribution of each of these to the BBB awaits clarification. In this regard, it has been postulated that brain microvascular endothelial cells (BMEC) from these different tributaries might exhibit considerable heterogeneity in form and function, with such diversity underlying unique roles in physiological and pathophysiological processes. Means to begin exploring such endothelial differences in situ, free from caveats associated with cell isolation and culturing procedures, are crucial to comprehending the nature and treatment of CNS diseases with vascular involvement. Here, the recently validated approach of immuno-laser capture microdissection (immuno-LCM) coupled to quantitative real-time PCR (qRT-PCR) was used to analyze gene expression patterns of BMEC retrieved in situ from either capillaries or venules. From profiling 87 genes known to play a role in BBB function and/or be enriched in isolated brain microvessels, results imply that most BBB properties reside in both segments, but that capillaries preferentially express some genes related to solute transport, while venules tend toward higher expression of an assortment of genes involved in inflammatory-related tasks. Fuller appreciation of such heterogeneity will be critical for efficient therapeutic targeting of the endothelium and the management of CNS disease. PMID:20025060

  7. Virulent Treponema pallidum promotes adhesion of leukocytes to human vascular endothelial cells.

    PubMed Central

    Riley, B S; Oppenheimer-Marks, N; Radolf, J D; Norgard, M V

    1994-01-01

    Perivasculitis and endothelial cell abnormalities are characteristic histopathologic features of syphilis, a sexually transmitted disease caused by Treponema pallidum. To extend earlier studies demonstrating that T. pallidum activates endothelial cells, we now show that virulent T. pallidum, but not heat-killed T. pallidum or nonpathogenic Treponema phagedenis, promotes increased adherence of lymphocytes and monocytes to human umbilical vein endothelial cells. Lymphocytes and monocytes are the two cell types prominent in the histopathology of syphilis. Recognition that T. pallidum can stimulate endothelial cells to bind leukocytes provides important insights into the early mechanisms of syphilis immunopathogenesis. Images PMID:7927729

  8. Ultrasound fails to induce proliferation of human brain and mouse endothelial cell lines

    NASA Astrophysics Data System (ADS)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    Both in vitro and in vivo studies suggest that ultrasound (US) is capable of inducing angiogenesis. There is no information, however, on whether ultrasound can induce proliferation of brain endothelial cells. We therefore explored the angiogenic potential of ultrasound on a novel immortalised human brain endothelial cell line (hCMEC/D3) and on mouse brain microvascular endothelial cells (bEND3). Ultrasound failed to enhance cell proliferation in both cell lines at all acoustic pressures studied. Endothelial cell damage occurred at 0.24 MPa with significantly slower proliferation. Cells growing in Opticell{trade mark, serif} dishes did not show damage or reduced proliferation at these pressures.

  9. SIRT3 Deficiency Induces Endothelial Insulin Resistance and Blunts Endothelial-Dependent Vasorelaxation in Mice and Human with Obesity

    PubMed Central

    Yang, Lu; Zhang, Julei; Xing, Wenjuan; Zhang, Xing; Xu, Jie; Zhang, Haifeng; Chen, Li; Ning, Xiaona; Ji, Gang; Li, Jia; Zhao, Qingchuan; Gao, Feng

    2016-01-01

    Recent evidence implicates the critical role of Sirtuin 3 (SIRT3) in the development of many metabolic diseases, but the contribution of SIRT3 to vascular homeostasis remains largely unknown. The aim of this study was to investigate the role of SIRT3 in endothelial insulin resistance and vascular dysfunction in obesity. We found an impaired insulin-induced mesenteric vasorelaxation and concomitant reduced vascular SIRT3 expression in morbid obese human subjects compared with the non-obese subjects. Downregulation of SIRT3 in cultured human endothelial cells increased mitochondrial reactive oxygen species (mtROS) and impaired insulin signaling as evidenced by decreased phosphorylation of Akt and endothelial nitric oxide synthase and subsequent reduced nitric oxide (NO) release. In addition, obese mice induced by 24-week high-fat diet (HFD) displayed an impaired endothelium-dependent vasorelaxation to both insulin and acetylcholine, which was further exacerbated by the gene deletion of Sirt3. Scavenging of mtROS not only restored insulin-stimulated NO production in SIRT3 knockdown cells, but also improved insulin-induced vasorelaxation in SIRT3 knockout mice fed with HFD. Taken together, our findings suggest that SIRT3 positively regulates endothelial insulin sensitivity and show that SIRT3 deficiency and resultant increased mtROS contribute to vascular dysfunction in obesity. PMID:27000941

  10. Isolation of endothelial cells from human placental microvessels: effect of different proteolytic enzymes on releasing endothelial cells from villous tissue.

    PubMed

    Ugele, B; Lange, F

    2001-01-01

    Approaches for the isolation of human placental microvascular endothelial cells (HPMEC) using proteolytic enzymes have been described recently. However, the isolation procedure and enzyme composition most suitable for optimal disaggregation of placental tissue and isolation of HPMEC has not yet been established. We tested different proteolytic enzymes and enzyme mixtures for their capabilities of releasing endothelial cells from human term placental villous tissue. Best results were obtained with a mixture of collagenase/dispase/deoxyribonuclease I (0.28%/0.25%/0.01%). By adding a discontinuous Percoll gradient centrifugation step to the enzymatic dispersion, about 1 x 10(6) cells/g tissue with more than 30% von Willebrand factor (vWf)-positive cells were obtained. However, the total cell number and number of vWf-positive cells were highly dependent on the lot of collagenase used. A perfusion step prior to mincing of villous tissue did not increase the amount of vWf-positive cells. We conclude that the methods described in this study are suitable to isolate high yields of HPMEC and that the composition of the collagenase preparation is crucial to the successful release of endothelial cells from placental tissue. To obtain pure HPMEC, further separation steps, e.g., cell sorting with antibodies against endothelial specific cell surface antigens are necessary. PMID:11573814

  11. SIRT3 Deficiency Induces Endothelial Insulin Resistance and Blunts Endothelial-Dependent Vasorelaxation in Mice and Human with Obesity.

    PubMed

    Yang, Lu; Zhang, Julei; Xing, Wenjuan; Zhang, Xing; Xu, Jie; Zhang, Haifeng; Chen, Li; Ning, Xiaona; Ji, Gang; Li, Jia; Zhao, Qingchuan; Gao, Feng

    2016-01-01

    Recent evidence implicates the critical role of Sirtuin 3 (SIRT3) in the development of many metabolic diseases, but the contribution of SIRT3 to vascular homeostasis remains largely unknown. The aim of this study was to investigate the role of SIRT3 in endothelial insulin resistance and vascular dysfunction in obesity. We found an impaired insulin-induced mesenteric vasorelaxation and concomitant reduced vascular SIRT3 expression in morbid obese human subjects compared with the non-obese subjects. Downregulation of SIRT3 in cultured human endothelial cells increased mitochondrial reactive oxygen species (mtROS) and impaired insulin signaling as evidenced by decreased phosphorylation of Akt and endothelial nitric oxide synthase and subsequent reduced nitric oxide (NO) release. In addition, obese mice induced by 24-week high-fat diet (HFD) displayed an impaired endothelium-dependent vasorelaxation to both insulin and acetylcholine, which was further exacerbated by the gene deletion of Sirt3. Scavenging of mtROS not only restored insulin-stimulated NO production in SIRT3 knockdown cells, but also improved insulin-induced vasorelaxation in SIRT3 knockout mice fed with HFD. Taken together, our findings suggest that SIRT3 positively regulates endothelial insulin sensitivity and show that SIRT3 deficiency and resultant increased mtROS contribute to vascular dysfunction in obesity. PMID:27000941

  12. (-)-Epigallocatechin Gallate Inhibits Asymmetric Dimethylarginine-Induced Injury in Human Brain Microvascular Endothelial Cells.

    PubMed

    Li, Jia; Zhang, Zhiming; Lv, Lianjie; Qiao, Haibo; Chen, Xiuju; Zou, Changlin

    2016-08-01

    (-)-Epigallocatechin gallate (EGCG) is the main polyphenol component of green tea (leaves of the Camellia sinensis plant). EGCG has been reported to protect human brain microvascular endothelial cells (HBMECs) against injury in several models. However, the exact mechanism is still unclear. In the current study we found that EGCG protected against asymmetric dimethylarginine (ADMA)-induced HBMEC injury, and inhibited ADMA-induced reactive oxygen species production and malondialdehyde expression. At the same time, we found that pretreatment with EGCG attenuated the upregulation of Bax and the downregulation of Bcl-2, thus confirming the cellular protective properties of EGCG against ADMA-induced apoptosis. Furthermore, we found that EGCG inhibited ADMA-induced phosphorylation of ERK1/2 and p-38, whose inhibitors relieved HBMEC injury. In conclusion, EGCG can protect against ADMA-induced HBMEC injury via the ERK1/2 and p38 MAPK pathways, which are involved in the underlying mechanisms of HBMEC injury in cerebral infarction. PMID:27038929

  13. Human hepatocytes and endothelial cells in organotypic membrane systems.

    PubMed

    Salerno, Simona; Campana, Carla; Morelli, Sabrina; Drioli, Enrico; De Bartolo, Loredana

    2011-12-01

    The realization of organotypic liver model that exhibits stable phenotype is a major challenge in the field of liver tissue engineering. In this study we developed liver organotypic co-culture systems by using synthetic and biodegradable membranes with primary human hepatocytes and human umbilical vein endothelial cells (HUVEC). Synthetic membranes prepared by a polymeric blend constituted of modified polyetheretherketone (PEEK-WC) and polyurethane (PU) and biodegradable chitosan membranes were developed by phase inversion technique and used in homotypic and organotypic culture systems. The morphological and functional characteristics of cells in the organotypic co-culture membrane systems were evaluated in comparison with homotypic cultures and traditional systems. Hepatocytes in the organotypic co-culture systems exhibit compact polyhedral cells with round nuclei and well demarcated cell-cell borders like in vivo, as a result of heterotypic interaction with HUVECs. In addition HUVECs formed tube-like structures directly through the interactions with the membranes and hepatocytes and indirectly through the secretion of ECM proteins which secretion improved in the organotypic co-culture membrane systems. The heterotypic cell-cell contacts have beneficial effect on the hepatocyte albumin production, urea synthesis and drug biotransformation. The developed organotypic co-culture membrane systems elicit liver specific functions in vitro and could be applied for the realization of engineered liver tissues to be used in tissue engineering, drug metabolism studies and bioartificial liver devices. PMID:21871658

  14. Genome-wide analyses of human perisylvian cerebral cortical patterning

    PubMed Central

    Abrahams, B. S.; Tentler, D.; Perederiy, J. V.; Oldham, M. C.; Coppola, G.; Geschwind, D. H.

    2007-01-01

    Despite the well established role of the frontal and posterior perisylvian cortices in many facets of human-cognitive specializations, including language, little is known about the developmental patterning of these regions in the human brain. We performed a genome-wide analysis of human cerebral patterning during midgestation, a critical epoch in cortical regionalization. A total of 345 genes were identified as differentially expressed between superior temporal gyrus (STG) and the remaining cerebral cortex. Gene ontology categories representing transcription factors were enriched in STG, whereas cell-adhesion and extracellular matrix molecules were enriched in the other cortical regions. Quantitative RT-PCR or in situ hybridization was performed to validate differential expression in a subset of 32 genes, most of which were confirmed. LIM domain-binding 1 (LDB1), which we show to be enriched in the STG, is a recently identified interactor of LIM domain only 4 (LMO4), a gene known to be involved in the asymmetric pattering of the perisylvian region in the developing human brain. Protocadherin 17 (PCDH17), a neuronal cell adhesion molecule, was highly enriched in focal regions of the human prefrontal cortex. Contactin associated protein-like 2 (CNTNAP2), in which mutations are known to cause autism, epilepsy, and language delay, showed a remarkable pattern of anterior-enriched cortical expression in human that was not observed in mouse or rat. These data highlight the importance of expression analysis of human brain and the utility of cross-species comparisons of gene expression. Genes identified here provide a foundation for understanding molecular aspects of human-cognitive specializations and the disorders that disrupt them. PMID:17978184

  15. Focally regulated endothelial proliferation and cell death in human synovium.

    PubMed Central

    Walsh, D. A.; Wade, M.; Mapp, P. I.; Blake, D. R.

    1998-01-01

    Angiogenesis and vascular insufficiency each may support the chronic synovial inflammation of rheumatoid arthritis. We have shown by quantitative immunohistochemistry and terminal uridyl deoxynucleotide nick end labeling that endothelial proliferation and cell death indices were each increased in synovia from patients with rheumatoid arthritis compared with osteoarthritic and noninflamed controls, whereas endothelial fractional areas did not differ significantly among disease groups. Markers of proliferation were associated with foci immunoreactive for vascular endothelial growth factor and integrin alpha(v)beta3, whereas cell death was observed in foci in which immunoreactivities for these factors were weak or absent. No association was found with thrombospondin immunoreactivity. The balance between angiogenesis and vascular regression in rheumatoid synovitis may be determined by the focal expression of angiogenic and endothelial survival factors. Increased endothelial cell turnover may contribute to microvascular dysfunction and thereby facilitate persistent synovitis. Images Figure 1 Figure 3 Figure 4 PMID:9502411

  16. Plastic Compressed Collagen as a Novel Carrier for Expanded Human Corneal Endothelial Cells for Transplantation

    PubMed Central

    Levis, Hannah J.; Peh, Gary S. L.; Toh, Kah-Peng; Poh, Rebekah; Shortt, Alex J.; Drake, Rosemary A. L.; Mehta, Jodhbir S.; Daniels, Julie T.

    2012-01-01

    Current treatments for reversible blindness caused by corneal endothelial cell failure involve replacing the failed endothelium with donor tissue using a one donor-one recipient strategy. Due to the increasing pressure of a worldwide donor cornea shortage there has been considerable interest in developing alternative strategies to treat endothelial disorders using expanded cell replacement therapy. Protocols have been developed which allow successful expansion of endothelial cells in vitro but this approach requires a supporting material that would allow easy transfer of cells to the recipient. We describe the first use of plastic compressed collagen as a highly effective, novel carrier for human corneal endothelial cells. A human corneal endothelial cell line and primary human corneal endothelial cells retained their characteristic cobblestone morphology and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase α1 after culture on collagen constructs for up to 14 days. Additionally, ultrastructural analysis suggested a well-integrated endothelial layer with tightly opposed cells and apical microvilli. Plastic compressed collagen is a superior biomaterial in terms of its speed and ease of production and its ability to be manipulated in a clinically relevant manner without breakage. This method provides expanded endothelial cells with a substrate that could be suitable for transplantation allowing one donor cornea to potentially treat multiple patients. PMID:23226443

  17. Dynamic analysis of the human brain with complex cerebral sulci.

    PubMed

    Tseng, Jung-Ge; Huang, Bo-Wun; Ou, Yi-Wen; Yen, Ke-Tien; Wu, Yi-Te

    2016-07-01

    The brain is one of the most vulnerable organs inside the human body. Head accidents often appear in daily life and are easy to cause different level of brain damage inside the skull. Once the brain suffered intense locomotive impact, external injuries, falls, or other accidents, it will result in different degrees of concussion. This study employs finite element analysis to compare the dynamic characteristics between the geometric models of an assumed simple brain tissue and a brain tissue with complex cerebral sulci. It is aimed to understand the free vibration of the internal brain tissue and then to protect the brain from injury caused by external influences. Reverse engineering method is used for a Classic 5-Part Brain (C18) model produced by 3B Scientific Corporation. 3D optical scanner is employed to scan the human brain structure model with complex cerebral sulci and imported into 3D graphics software to construct a solid brain model to simulate the real complex brain tissue. Obtaining the normal mode analysis by inputting the material properties of the true human brain into finite element analysis software, and then to compare the simplified and the complex of brain models. PMID:27459595

  18. A multi-modal parcellation of human cerebral cortex.

    PubMed

    Glasser, Matthew F; Coalson, Timothy S; Robinson, Emma C; Hacker, Carl D; Harwell, John; Yacoub, Essa; Ugurbil, Kamil; Andersson, Jesper; Beckmann, Christian F; Jenkinson, Mark; Smith, Stephen M; Van Essen, David C

    2016-08-11

    Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease. PMID:27437579

  19. Transdifferentiation of human endothelial progenitors into smooth muscle cells.

    PubMed

    Ji, HaYeun; Atchison, Leigh; Chen, Zaozao; Chakraborty, Syandan; Jung, Youngmee; Truskey, George A; Christoforou, Nicolas; Leong, Kam W

    2016-04-01

    Access to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD. The EPC undergo a cytoskeletal rearrangement resembling that of mesenchymal cells within 3 days post initiation of MYOCD expression. By day 7, the reprogrammed cells show upregulation of smooth muscle markers ACTA2, MYH11, and TAGLN by qRT-PCR and ACTA2 and MYH11 expression by immunofluorescence. By two weeks, they resemble umbilical artery SMC in microarray gene expression analysis. The iSMC, in contrast to EPC control, show calcium transients in response to phenylephrine stimulation and a contractility an order of magnitude higher than that of EPC as determined by traction force microscopy. Tissue-engineered blood vessels constructed using iSMC show functionality with respect to flow- and drug-mediated vasodilation and vasoconstriction. PMID:26874281

  20. Adhesion Molecule Expression in Human Endothelial Cells under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Rudimov, E. G.; Andreeva, E. R.; Buravkova, L. B.

    2013-02-01

    High gravisensitivity of endothelium is now well recognized. Therefore, the microgravity can be one of the main factors affecting the endothelium in space flight. In this work we studied the effects of gravity vector randomization (3D-clinorotation in RPM) on the viability of endothelial cells from human umbilical vein (HUVEC) and the expression of adhesion molecules on its surface. After RPM exposure, HUVEC conditioning medium was collected for cytokines evaluation, a part of vials was used for immunocytochemistry and other one - for cytofluorimetric analysis of ICAM-I, VCAM-I, PECAM-I, E-selectin, Endoglin, VE-cadherin expression. The viability of HUVEC and constitutive expression of EC marker molecules PECAM-I and Endoglin were similar in all experimental groups both after 6 and 24 hrs of exposure. There were no differences in ICAM-I and E-selectin expression on HUVEC in 3 groups after 6 hrs of exposure. 24 hrs incubation has provoked decrease in ICAM-I and E-selectin expression. Thus, gravity vector randomization can lead to the disruption of ECs monolayer.

  1. SNEV overexpression extends the life span of human endothelial cells

    SciTech Connect

    Voglauer, Regina; Chang, Martina Wei-Fen; Dampier, Brigitta; Wieser, Matthias; Baumann, Kristin; Sterovsky, Thomas; Schreiber, Martin; Katinger, Hermann; Grillari, Johannes . E-mail: j.grillari@iam.boku.ac.at

    2006-04-01

    In a recent screening for genes downregulated in replicatively senescent human umbilical vein endothelial cells (HUVECs), we have isolated the novel protein SNEV. Since then SNEV has proven as a multifaceted protein playing a role in pre-mRNA splicing, DNA repair, and the ubiquitin/proteosome system. Here, we report that SNEV mRNA decreases in various cell types during replicative senescence, and that it is increased in various immortalized cell lines, as well as in breast tumors, where SNEV transcript levels also correlate with the survival of breast cancer patients. Since these mRNA profiles suggested a role of SNEV in the regulation of cell proliferation, the effect of its overexpression was tested. Thereby, a significant extension of the cellular life span was observed, which was not caused by altered telomerase activity or telomere dynamics but rather by enhanced stress resistance. When SNEV overexpressing cells were treated with bleomycin or bleomycin combined with BSO, inducing DNA damage as well as reactive oxygen species, a significantly lower fraction of apoptotic cells was found in comparison to vector control cells. These data suggest that high levels of SNEV might extend the cellular life span by increasing the resistance to stress or by improving the DNA repair capacity of the cells.

  2. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation

    PubMed Central

    McCabe, Kathryn L.; Kunzevitzky, Noelia J.; Chiswell, Brian P.; Xia, Xin; Goldberg, Jeffrey L.; Lanza, Robert

    2015-01-01

    Aim To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies. Materials and Methods Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression. Results hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1) and Na+/K+ATPaseα1 (ATPA1) on the apical surface in monolayer culture, and produced the key proteins of Descemet’s membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2). Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis. Conclusion hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium. PMID:26689688

  3. Innate Immunity in Human Embryonic Stem Cells: Comparison with Adult Human Endothelial Cells

    PubMed Central

    Badiger, Rekha; Paul-Clark, Mark; Moreno, Laura; Lendvai, Zsuzsanna; Wright, Jamie S.; Ali, Nadire N.; Harding, Sian E.; Mitchell, Jane A.

    2010-01-01

    Treatment of human disease with human embryonic stem cell (hESC)-derived cells is now close to reality, but little is known of their responses to physiological and pathological insult. The ability of cells to respond via activation of Toll like receptors (TLR) is critical in innate immune sensing in most tissues, but also extends to more general danger sensing, e.g. of oxidative stress, in cardiomyocytes. We used biomarker release and gene-array analysis to compare responses in hESC before and after differentiation, and to those in primary human endothelial cells. The presence of cardiomyocytes and endothelial cells was confirmed in differentiated cultures by immunostaining, FACS-sorting and, for cardiomyocytes, beating activity. Undifferentiated hESC did not respond with CXCL8 release to Gram positive or Gram negative bacteria, or a range of PAMPs (pathogen associated molecular patterns) for TLRs 1-9 (apart from flagellin, an activator of TLR5). Surprisingly, lack of TLR-dependent responses was maintained over 4 months of differentiation of hESC, in cultures which included cardiomyocytes and endothelial cells. In contrast, primary cultures of human aortic endothelial cells (HAEC) demonstrated responses to a broad range of PAMPs. Expression of downstream TLR signalling pathways was demonstrated in hESC, and IL-1β, TNFα and INFγ, which bypass the TLRs, stimulated CXCL8 release. NFκB pathway expression was also present in hESC and NFκB was able to translocate to the nucleus. Low expression levels of TLRs were detected in hESC, especially TLRs 1 and 4, explaining the lack of response of hESC to the main TLR signals. TLR5 levels were similar between differentiated hESC and HAEC, and siRNA knockdown of TLR5 abolished the response to flagellin. These findings have potential implications for survival and function of grafted hESC-derived cells. PMID:20463927

  4. Ultrastructural characteristics of human adult and infant cerebral cortical neurons.

    PubMed Central

    Ong, W Y; Garey, L J

    1991-01-01

    Biopsy specimens of human cerebral cortex from three adults and two infants were studied by correlating their light microscopic features in semithin sections with their ultrastructural characteristics. There was good tissue preservation, due to a minimum delay between obtaining the specimens and fixation. Pyramidal cells had a prominent apical dendrite, fine heterochromatin clumps in the nucleus and generally small numbers of cytoplasmic organelles, except for numerous free ribosomes in some of the large pyramids of Layers III to VI. Non-pyramidal cells lacked an apical dendrite and were further classified, on size and ultrastructure, into small, medium and large types. Large numbers of asymmetrical and symmetrical synapses were present in the neuropil but very few axosomatic synapses were found in the human cerebral cortex compared with subhuman primates and other mammals. Some symmetrical synapses were characterised by the presence of wide pre- and postsynaptic densities. The same general features of the adult cortex were also encountered in the infant, with certain exceptions. Many of the infant neurons had less densely packed heterochromatin, but greater numbers of free ribosomes, compared with the adult, and lipofuscin was absent. There was a total absence of myelinated fibres from the infant cortex; more large diameter dendrites were present than in the adult and axosomatic synapses were commoner. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 PMID:2050578

  5. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    PubMed Central

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  6. Effects of Parietaria judaica pollen extract on human microvascular endothelial cells.

    PubMed

    Taverna, Simona; Flugy, Anna; Colomba, Paolo; Barranca, Marilisa; De Leo, Giacomo; Alessandro, Riccardo

    2008-08-01

    Pollinosis from Parietaria judaica is one of the main causes of allergy in the Mediterranean area. The present study is designed to assess if P. judaica pollens contain bioactive compounds able to elicit a functional response in endothelial cells. We have demonstrated that addition of pollen extract to human lung microvascular endothelial cells (HMVEC-L) induces a modification of cell morphology, actin cytoskeletal rearrangements and an increase in endothelial cell permeability. We further showed that the treatment of endothelial cells with pollen extract causes an increase of E-selectin and VCAM-1 protein levels as well as an increase of IL-8 production. The stimulation of cell-cell adhesion molecules was paralleled by a dose-dependent increase of adhesion of polymorphonuclear cells (PMNs) to HMVEC-L monolayer. Our results suggest for the first time that pollen affect directly endothelial cells (EC) modulating critical functions related to the inflammatory response. PMID:18515075

  7. Characterisation of a mouse cerebral microvascular endothelial cell line (bEnd.3) after oxygen glucose deprivation and reoxygenation.

    PubMed

    Ku, Jacqueline M; Taher, Mohammadali; Chin, Kai Yee; Grace, Megan; McIntyre, Peter; Miller, Alyson A

    2016-08-01

    Studies have utilised immortalised mouse cerebral endothelial cells (bEnd.3) exposed to oxygen glucose deprivation (OGD) to study blood-brain barrier (BBB) disruption after ischaemia. However, there is a paucity of literature describing the duration of OGD (and reoxygenation [RO]) required to best simulate BBB disruption in vivo. In this study we assessed BBB disruption in bEnd.3 cells after exposure to a range of OGD periods, and also after OGD + RO. Exposure of bEnd.3 monolayers to 4, 6, 16, or 24 hours of OGD resulted in a significant increase in permeability. The hyperpermeability after 16 or 24 hours was associated with decreased expression of tight junction proteins (occludin and claudin-5). Furthermore, there was a decrease in cell viability and increased expression of the pro-apoptotic protein, cleaved caspase-3. Exposure of bEnd.3 monolayers to 1 hour OGD+ 23 hours RO exacerbated hyperpermeability relative to 1 hour OGD, which was associated with decreased expression levels of occludin and ZO-1, but no change in cell viability or caspase-3. 4 hours OGD + 23 hours RO exacerbated hyperpermeability, decreased expression levels of tight junction proteins, decreased cell viability, and increased caspase-3 expression. Thus, bEnd.3 cells exhibit hyperpermeability, a loss of tight junction proteins, and undergo cell death, after exposure to prolonged periods of OGD. Moreover, they exhibit exacerbated hyperpermeability, a loss of tight junction proteins, and increased expression of caspase-3 after OGD + RO. These findings will facilitate the use of this cell line in studies of BBB disruption and for the testing of therapeutics. PMID:27128638

  8. Expression of major histocompatibility complex antigens on mouse brain microvascular endothelial cells in relation to susceptibility to cerebral malaria.

    PubMed Central

    Monso-Hinard, C; Lou, J N; Behr, C; Juillard, P; Grau, G E

    1997-01-01

    The physiopathology of experimental cerebral malaria (CM), an acute neurological complication of Plasmodium berghei ANKA (PbA) infection, involves interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), two cytokines that are known to modulate major histocompatibility complex (MHC) molecule expression. The aim of this study was to evaluate whether the genetic susceptibility to CM is related to the constitutive or IFN-gamma-induced expression of MHC molecules on brain microvessels. To this end, brain microvascular endothelial cells (B-MVEC) were isolated from CM-susceptible (CM-S, CBA/J) and resistant (CM-R, BALB/c) mice. By flow cytometry, we found that less than 5% of CM-S B-MVEC constitutively expressed MHC class I molecules, in contrast to up to 90% of CM-R B-MVEC. Upon stimulation with IFN-gamma, the percentage of positive cells for MHC class I molecules in CM-S B-MVEC became comparable to CM-R B-MVEC, but a higher fluorescence intensity existed on CM-S B-MVEC compared with CM-R B-MVEC. MHC class II molecules were not constitutively expressed on B-MVEC from either strain. IFN-gamma-induced expression of MHC class II (I-A, I-E) molecules was significantly higher in CM-S than CM-R B-MVEC both in percentage of positive cells and fluorescence intensity. These data demonstrate that absent or low MHC class I and higher inducibility of MHC class II expression on B-MVEC are associated with the genetic susceptibility to CM. Images Figure 4 Figure 5 PMID:9370924

  9. Sulfonylurea receptor 1 expression in human cerebral infarcts.

    PubMed

    Mehta, Rupal I; Ivanova, Svetlana; Tosun, Cigdem; Castellani, Rudy J; Gerzanich, Volodymyr; Simard, J Marc

    2013-09-01

    In animal models of stroke, sulfonylurea receptor 1 (Sur1), a member of the adenosine triphosphate binding cassette transporter gene family, is transcriptionally upregulated in neural and vascular cells in which it plays a leading role in edema formation and necrotic cell death. To date, expression of Sur1 in the brains of humans with cerebral infarcts has not been systematically evaluated. We examined Sur1 expression in postmortem specimens obtained from 13 patients within the first 31 days after focal infarcts, 5 patients with lacunar infarcts, and 6 normal control brains using immunohistochemistry. Elevated immunoreactivity for Sur1 was detected in all cases of focal infarcts, with 3 distinct temporal patterns of expression: 1) neurons and endothelium showed the greatest elevation during the first week, after which levels declined; 2) astrocytes and microglia/macrophages showed progressive increases during the first 31 days; and 3) neutrophils near the infarct showed prominent immunoreactivity that did not change over time. Upregulation of Sur1 was corroborated using in situ hybridization for Abcc8 mRNA. Sulfonylurea receptor 1 immunoreactivity in lacunar infarcts was less prominent and more sporadic than in nonlacunar infarcts. In conjunction with previous studies, these data suggest that Sur1 may be a promising treatment target in patients with acute cerebral infarction. PMID:23965746

  10. Sulfonylurea Receptor 1 Expression in Human Cerebral Infarcts

    PubMed Central

    Mehta, Rupal I.; Ivanova, Svetlana; Tosun, Cigdem; Castellani, Rudy J.; Gerzanich, Volodymyr

    2013-01-01

    Abstract In animal models of stroke, sulfonylurea receptor 1 (Sur1), a member of the adenosine triphosphate binding cassette transporter gene family, is transcriptionally upregulated in neural and vascular cells in which it plays a leading role in edema formation and necrotic cell death. To date, expression of Sur1 in the brains of humans with cerebral infarcts has not been systematically evaluated. We examined Sur1 expression in postmortem specimens obtained from 13 patients within the first 31 days after focal infarcts, 5 patients with lacunar infarcts, and 6 normal control brains using immunohistochemistry. Elevated immunoreactivity for Sur1 was detected in all cases of focal infarcts, with 3 distinct temporal patterns of expression: 1) neurons and endothelium showed the greatest elevation during the first week, after which levels declined; 2) astrocytes and microglia/macrophages showed progressive increases during the first 31 days; and 3) neutrophils near the infarct showed prominent immunoreactivity that did not change over time. Upregulation of Sur1 was corroborated using in situ hybridization for Abcc8 mRNA. Sulfonylurea receptor 1 immunoreactivity in lacunar infarcts was less prominent and more sporadic than in nonlacunar infarcts. In conjunction with previous studies, these data suggest that Sur1 may be a promising treatment target in patients with acute cerebral infarction. PMID:23965746

  11. The future of human cerebral cartography: a novel approach

    PubMed Central

    Frackowiak, Richard; Markram, Henry

    2015-01-01

    Cerebral cartography can be understood in a limited, static, neuroanatomical sense. Temporal information from electrical recordings contributes information on regional interactions adding a functional dimension. Selective tagging and imaging of molecules adds biochemical contributions. Cartographic detail can also be correlated with normal or abnormal psychological or behavioural data. Modern cerebral cartography is assimilating all these elements. Cartographers continue to collect ever more precise data in the hope that general principles of organization will emerge. However, even detailed cartographic data cannot generate knowledge without a multi-scale framework making it possible to relate individual observations and discoveries. We propose that, in the next quarter century, advances in cartography will result in progressively more accurate drafts of a data-led, multi-scale model of human brain structure and function. These blueprints will result from analysis of large volumes of neuroscientific and clinical data, by a process of reconstruction, modelling and simulation. This strategy will capitalize on remarkable recent developments in informatics and computer science and on the existence of much existing, addressable data and prior, though fragmented, knowledge. The models will instantiate principles that govern how the brain is organized at different levels and how different spatio-temporal scales relate to each other in an organ-centred context. PMID:25823868

  12. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta

    PubMed Central

    Leclercq, Anne; Veillat, Véronique; Loriot, Sandrine; Spuul, Pirjo; Madonna, Francesco; Roques, Xavier; Génot, Elisabeth

    2015-01-01

    Background Aortic diseases are diverse and involve a multiplicity of biological systems in the vascular wall. Aortic dissection, which is usually preceded by aortic aneurysm, is a leading cause of morbidity and mortality in modern societies. Although the endothelium is now known to play an important role in vascular diseases, its contribution to aneurysmal aortic lesions remains largely unknown. The aim of this study was to define a reliable methodology for the isolation of aortic intimal and adventitial endothelial cells in order to throw light on issues relevant to endothelial cell biology in aneurysmal diseases. Methodology/Principal Findings We set up protocols to isolate endothelial cells from both the intima and the adventitia of human aneurysmal aortic vessel segments. Throughout the procedure, analysis of cell morphology and endothelial markers allowed us to select an endothelial fraction which after two rounds of expansion yielded a population of >90% pure endothelial cells. These cells have the features and functionalities of freshly isolated cells and can be used for biochemical studies. The technique was successfully used for aortic vessel segments of 20 patients and 3 healthy donors. Conclusions/Significance This simple and highly reproducible method allows the simultaneous preparation of reasonably pure primary cultures of intimal and adventitial human endothelial cells, thus providing a reliable source for investigating their biology and involvement in both thoracic aneurysms and other aortic diseases. PMID:26599408

  13. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium

    PubMed Central

    Navaratnam, Jesintha; Utheim, Tor P.; Rajasekhar, Vinagolu K.; Shahdadfar, Aboulghassem

    2015-01-01

    Corneal endothelium is a single layer of specialized cells that lines the posterior surface of cornea and maintains corneal hydration and corneal transparency essential for vision. Currently, transplantation is the only therapeutic option for diseases affecting the corneal endothelium. Transplantation of corneal endothelium, called endothelial keratoplasty, is widely used for corneal endothelial diseases. However, corneal transplantation is limited by global donor shortage. Therefore, there is a need to overcome the deficiency of sufficient donor corneal tissue. New approaches are being explored to engineer corneal tissues such that sufficient amount of corneal endothelium becomes available to offset the present shortage of functional cornea. Although human corneal endothelial cells have limited proliferative capacity in vivo, several laboratories have been successful in in vitro expansion of human corneal endothelial cells. Here we provide a comprehensive analysis of different substrates employed for in vitro cultivation of human corneal endothelial cells. Advances and emerging challenges with ex vivo cultured corneal endothelial layer for the ultimate goal of therapeutic replacement of dysfunctional corneal endothelium in humans with functional corneal endothelium are also presented. PMID:26378588

  14. Photodynamic effect of hypericin in primary cultures of human umbilical endothelial cells and glioma cell lines.

    PubMed

    Stupáková, Viktória; Varinská, Lenka; Mirossay, Andrej; Sarisský, Marek; Mojzis, Ján; Dankovcík, Róbert; Urdzík, Peter; Ostró, Alexander; Mirossay, Ladislav

    2009-06-01

    Hypericin is the most powerful naturally occurring photosensitizer and as such there is renaissant interest in the potentials of this compound for anticancer photodynamic therapy (PDT). The purpose of this study was to investigate the hypericin-mediated photodynamic therapy effects on normal human umbilical endothelial cells (HUVECs) in comparison with cancer human glioma cell lines U-87 MG and U-373 MG, in in vitro conditions. The data suggest that endothelial cells as well as glioma cell lines are sensitive only to photoactivated hypericin. The inhibitory effects of photoactivated hypericin did not differ in endothelial compared with tumor cells in cytotoxicity MTT and DNA fragmentation assays. However, an important difference in sensitivity was found between the above mentioned cell types in migration and metalloproteinases inhibition assays performed as cell function tests. The findings in both function tests were supported by the high sensitivity of endothelial cells in an additional angiogenesis test of tubular formation in vitro. PMID:19173218

  15. Cerebral blood flow in humans following resuscitation from cardiac arrest

    SciTech Connect

    Cohan, S.L.; Mun, S.K.; Petite, J.; Correia, J.; Tavelra Da Silva, A.T.; Waldhorn, R.E.

    1989-06-01

    Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and may indicate the onset of irreversible brain damage.

  16. Association of Aortic Compliance and Brachial Endothelial Function with Cerebral Small Vessel Disease in Type 2 Diabetes Mellitus Patients: Assessment with High-Resolution MRI.

    PubMed

    Shan, Yan; Lin, Jiang; Xu, Pengju; Zeng, Mengsu; Lin, Huandong; Yan, Hongmei

    2016-01-01

    Objective. To assess the possible association of aortic compliance and brachial endothelial function with cerebral small vessel disease in type 2 diabetes mellitus (DM2) patients by using 3.0 T high-resolution magnetic resonance imaging. Methods. Sixty-two clinically confirmed DM2 patients (25 women and 37 men; mean age: 56.8 ± 7.5 years) were prospectively enrolled for noninvasive MR examinations of the aorta, brachial artery, and brain. Aortic arch pulse wave velocity (PWV), flow-mediated dilation (FMD) of brachial artery, lacunar brain infarcts, and periventricular and deep white matter hyperintensities (WMHs) were assessed. Pearson and Spearman correlation analysis were performed to analyze the association between PWV and FMD with clinical data and biochemical test results. Univariable logistic regression analyses were used to analyze the association between PWV and FMD with cerebral small vessel disease. Multiple logistic regression analyses were used to find out the independent predictive factors of cerebral small vessel disease. Results. Mean PWV was 6.73 ± 2.00 m/s and FMD was 16.67 ± 9.11%. After adjustment for compounding factors, PWV was found significantly associated with lacunar brain infarcts (OR = 2.00; 95% CI: 1.14-3.2; P < 0.05) and FMD was significantly associated with periventricular WMHs (OR = 0.82; 95% CI: 0.71-0.95; P < 0.05). Conclusions. Quantitative evaluation of aortic compliance and endothelial function by using high-resolution MRI may be potentially useful to stratify DM2 patients with risk of cerebral small vessel disease. PMID:27525261

  17. Association of Aortic Compliance and Brachial Endothelial Function with Cerebral Small Vessel Disease in Type 2 Diabetes Mellitus Patients: Assessment with High-Resolution MRI

    PubMed Central

    Shan, Yan; Zeng, Mengsu; Lin, Huandong; Yan, Hongmei

    2016-01-01

    Objective. To assess the possible association of aortic compliance and brachial endothelial function with cerebral small vessel disease in type 2 diabetes mellitus (DM2) patients by using 3.0 T high-resolution magnetic resonance imaging. Methods. Sixty-two clinically confirmed DM2 patients (25 women and 37 men; mean age: 56.8 ± 7.5 years) were prospectively enrolled for noninvasive MR examinations of the aorta, brachial artery, and brain. Aortic arch pulse wave velocity (PWV), flow-mediated dilation (FMD) of brachial artery, lacunar brain infarcts, and periventricular and deep white matter hyperintensities (WMHs) were assessed. Pearson and Spearman correlation analysis were performed to analyze the association between PWV and FMD with clinical data and biochemical test results. Univariable logistic regression analyses were used to analyze the association between PWV and FMD with cerebral small vessel disease. Multiple logistic regression analyses were used to find out the independent predictive factors of cerebral small vessel disease. Results. Mean PWV was 6.73 ± 2.00 m/s and FMD was 16.67 ± 9.11%. After adjustment for compounding factors, PWV was found significantly associated with lacunar brain infarcts (OR = 2.00; 95% CI: 1.14–3.2; P < 0.05) and FMD was significantly associated with periventricular WMHs (OR = 0.82; 95% CI: 0.71–0.95; P < 0.05). Conclusions. Quantitative evaluation of aortic compliance and endothelial function by using high-resolution MRI may be potentially useful to stratify DM2 patients with risk of cerebral small vessel disease. PMID:27525261

  18. Phyllanthus emblica L. Enhances Human Umbilical Vein Endothelial Wound Healing and Sprouting

    PubMed Central

    Chularojmontri, Linda; Suwatronnakorn, Maneewan; Wattanapitayakul, Suvara K.

    2013-01-01

    Endothelial dysfunction is the hallmark of impaired wound healing and increased risk of cardiovascular disease. Antioxidants from natural sources decrease oxidative stress and protect against cellular damage caused by reactive oxygen species (ROS). In this study, we examined the antioxidant constituents and capacity of Phyllanthus emblica L. (PE) fruit in freeze-dried power form. The pharmacological properties of PE were investigated using human umbilical vein endothelial cells (HUVECs) in the aspects of endothelial cell proliferation, nitric oxide (NO) production, wound healing, cell migration, in vitro angiogenesis, and VEGF gene expression. The ASC content of PE was 1.574% + 0.046% (w/w) as determined by HPLC and the total phenolic content was 36.1% ± 0.7% gallic acid equivalent when measured by Folin-Ciocalteu assay. The FRAP assay revealed a relatively high antioxidant capacity at 3,643 + 192.5 µmole/mg. PE at 0.1 to 10 µg/mL did not significantly influence endothelial cell proliferation, but at higher concentrations PE decreased cell survival to 62%. PE significantly promoted NO production, endothelial wound closure, endothelial sprouting, and VEGF mRNA expression. Therefore, PE is a candidate for antioxidant supplement that promotes endothelial function and restores wound healing competency. PMID:23606890

  19. Effects of glucocorticoids on the interaction of lymphoblastoid cells with human endothelial cells in vitro.

    PubMed

    Maca, R D; Fry, G L; Hakes, A D

    1978-08-01

    The adhesive characteristics of cultured acute lymphocytic leukemia cells (CCRF-CEM), lymphoma cells (Raji), and freshly isolated acute lymphocytic leukemia cells to human cultured endothelial cells were studied. An assay system was used whereby these neoplastic cells were allowed to interact with endothelial cells while being continuously agitated on a rocking platform. All cell lines adhered significantly to the endothelium monolayers. This process appeared not to be dependent upon intact microtubular or microfilament function. Likewise, removing surface sialic acid from either cell type did not alter this process. In contrast incubating the endothelial cells for 24 or 48 hr with dexamethasone decreased adhesiveness of either CCRF-CEM or Raji cells to the endothelial cells by approximately 40%. Incubating these cells with hydrocortisone instead of dexamethasone for 48 hr was equally as effective in altering the endothelial cell adhesiveness. The decreased adhesiveness could be blocked by cycloheximide, indicating that this altered adhesiveness of the endothelial cells involves protein synthesis, presumably of a surface protein. We suggest that this assay system may provide a means to evaluate other agents that can alter the surface characteristics of endothelial cells, which may have important implications in various disease states such as inflammation, thrombogenesis, and metastatic disease. PMID:276420

  20. A simple and biosafe method for isolation of human umbilical vein endothelial cells.

    PubMed

    Lei, Jinghui; Peng, Sha; Samuel, Sonia B; Zhang, Suli; Wu, Ye; Wang, Pengli; Li, Ya-Feng; Liu, Huirong

    2016-09-01

    Human umbilical vein endothelial cells (HUVECS) are used as an irreplaceable tool for the study of vascular diseases. However, the technicians who isolate HUVECs are largely exposed to potential infectious threats. Here we report the development of a specialized instrument to protect researchers from known or unknown infectious agents when they operate on human umbilical cords. This instrument can be assembled by common laboratory supplies and adapted to accommodate umbilical cords of different lengths. When the cord is enclosed within the instrument, the risk of sample contamination and operator infection is greatly reduced. Using our instrument, endothelial cells were successfully isolated from human umbilical veins without contamination. The cells were verified by their cobblestone-like morphology and by immunofluorescence staining (Factor VIII and CD31 positivity and α-SMA negativity). Our instrument simplifies and optimizes the cell extraction process, and most importantly elevates the biosafety to a higher level during the isolation of human umbilical vein endothelial cells. PMID:27335213

  1. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    ERIC Educational Resources Information Center

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  2. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    SciTech Connect

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.; Haudenschild, C.C.; Diamond, R.D.

    1987-05-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of /sup 51/Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of /sup 51/Cr release from radiolabeled monolayers.

  3. Differential regulation of angiopoietin 1 and angiopoietin 2 during dengue virus infection of human umbilical vein endothelial cells: implications for endothelial hyperpermeability.

    PubMed

    Ong, Siew Pei; Ng, Mah Lee; Chu, Justin Jang Hann

    2013-12-01

    Infection with dengue virus (DV) can result in dengue hemorrhagic fever and dengue shock syndrome, where patients suffer from bleeding and plasma leakage involving endothelial cells. Angiopoietins (Ang) 1 and 2 are important angiogenic factors that affect endothelial barrier integrity. In this study, DV was observed to induce endothelial leakage at multiplicity of infection of 10 in primary human umbilical vein endothelial cells (HUVEC) with interendothelial gap formation. Immunostaining of vascular endothelial cadherin (VE-cadherin) and zona occludin 1 (ZO-1) showed the absence of these endothelial junctional proteins at the cell-cell contact zones between adjacent cells. In addition, Ang1 that is required for protecting against endothelial hyperpermeability was found to be down-regulated during DV infection. Treatment with increasing concentrations of recombinant Ang1 was shown to prevent DV-induced endothelial hyperpermeability in a dose-dependent manner by preventing the down-regulation of VE-cadherin and ZO-1 at cell membrane. In contrast, the expression of Ang2, the natural antagonist of Ang1, was observed to be up-regulated during DV infection. Recombinant Ang2 added to HUVEC at non-toxic concentrations showed decreased in transendothelial electrical resistance reading and the down-regulation of VE-cadherin and ZO-1. These findings suggest that DV reduces the expression of Ang1 and enhances the expression of Ang2 in endothelial cells and that this imbalance of Ang 1 and Ang 2 may play a contributing role to the increased permeability of human primary endothelial cells during DV infection. PMID:23989887

  4. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation

    PubMed Central

    Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan

    2016-01-01

    Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.

  5. CD40-TRAF Signaling Upregulates CX3CL1 and TNF-α in Human Aortic Endothelial Cells but Not in Retinal Endothelial Cells

    PubMed Central

    Greene, Jennifer A.; Portillo, Jose-Andres C.; Lopez Corcino, Yalitza; Subauste, Carlos S.

    2015-01-01

    CD40, CX3CL1 and TNF-α promote atheroma and neointima formation. CD40 and TNF-α are also central to the development of diabetic retinopathy while CX3CL1 may play a role in the pathogenesis of this retinopathy. The purpose of this study was to examine whether CD40 ligation increases CX3CL1 and TNF-α protein expression in human endothelial cells from the aorta and retina. CD154 (CD40 ligand) upregulated membrane-bound and soluble CX3CL1 in human aortic endothelial cells. CD154 triggered TNF-α production by human aortic endothelial cells. TNF Receptor Associated Factors (TRAF) are key mediators of CD40 signaling. Compared to human aortic endothelial cells that express wt CD40, cells that express CD40 with a mutation that prevents TRAF2,3 recruitment, or CD40 with a mutation that prevents TRAF6 recruitment exhibited a profound inhibition of CD154-driven upregulation of membrane bound and soluble CX3CL1 as well as of TNF-α secretion. While both CD154 and TNF-α upregulated CX3CL1 in human aortic endothelial cells, these stimuli could act independently of each other. In contrast to human aortic endothelial cells, human retinal endothelial cells did not increase membrane bound or soluble CX3CL1 expression or secrete TNF-α in response to CD154 even though CD40 ligation upregulated ICAM-1 and CCL2 in these cells. Moreover, TNF-α did not upregulate CX3CL1 in retinal endothelial cells. In conclusion, CD40 ligation increases CX3CL1 protein levels and induces TNF-α production in endothelial cells. However, endothelial cells are heterogeneous in regards to these responses. Human aortic but not retinal endothelial cells upregulated CX3CL1 and TNF-α in response to CD40 ligation, as well as upregulated CX3CL1 in response to TNF-α. These dissimilarities may contribute to differences in regulation of inflammation in large vessels versus the retina. PMID:26710229

  6. Expression of the vascular endothelial growth factor receptor, KDR, in human placenta.

    PubMed Central

    Vuckovic, M; Ponting, J; Terman, B I; Niketic, V; Seif, M W; Kumar, S

    1996-01-01

    Vascular endothelial growth factor (VEGF) is a heparin-binding growth factor known to act directly on vascular endothelial cells by promoting cell proliferation and permeability. To date, 3 structurally related cell surface receptors for VEGF, Flt-1, Flt-4 and KDR, have been identified and shown to be human type III receptor tyrosine kinases. The establishment of a vascular network is crucial to the development of the placenta and occurs through both angiogenesis and vasculogenesis. The signals controlling these processes are unclear. Immunohistochemical and in situ hybridisation techniques have localised VEGF in the trophoblast layers and VEGF binding to placental vascular endothelial cells and haemangioblasts has been shown, suggesting a role for VEGF and its receptors in development of the vascular network. In this study we have used specific antibodies to localise KDR and endothelial cells in 1st and 3rd trimester human placenta. The staining showed a colocalisation of KDR with endothelial cells and haemangioblasts. No staining of trophoblast cells was observed, but strong staining of the endothelial cells was seen in the villous stroma adjacent to areas of trophoblast proliferation. Images Fig. 1 Fig. 2 PMID:8621335

  7. CD133 positive progenitor endothelial cell lines from human cord blood.

    PubMed

    Paprocka, Maria; Krawczenko, Agnieszka; Dus, Danuta; Kantor, Aneta; Carreau, Aude; Grillon, Catherine; Kieda, Claudine

    2011-08-01

    Endothelial progenitor cells (EPCs) modulate postnatal vascularization and contribute to vessel regeneration in adults. Stem cells and progenitor cells were found in umbilical cord blood, bone marrow, and mobilized peripheral blood cells, from where they were isolated and cultured. However, the yield of progenitor cells is usually not sufficient for clinical application and the quality of progenitor cells varies. The aim of the study was the immortalization of early progenitor cells with high proliferative potential, capable to differentiate to EPCs and, further, toward endothelial cells. Two cell lines, namely HEPC-CB.1 and HEPC-CB.2 (human endothelial progenitor cells-cord blood) were isolated. As assessed by specific antibody labeling and flow cytometric analysis, they express a panel of stem cell markers: CD133, CD13, CD271, CD90 and also endothelial cell markers: CD202b, CD309 (VEGFR2), CD146, CD105, and CD143 but they do not present markers of finally differentiated endothelial cells: CD31, vWf, nor CD45 which is a specific hematopoietic cell marker. Using the multiplex Cytometric Bead Assay, the simultaneous production of proangiogenic cytokines IL8, angiogenin, and VEGF was demonstrated in normoxia and was shown to be increased by hypoxia. Both cell lines, similarly as mature endothelial cells, underwent in vitro pre-angiogenic process, formed pseudovessel structures and present an accelerated angiogenesis in hypoxic conditions. To date, these are the first CD133 positive established cell lines from human cord blood cells. PMID:21710642

  8. Impairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humans

    PubMed Central

    Thum, Thomas; Schmitter, Kerstin; Fleissner, Felix; Wiebking, Volker; Dietrich, Bernd; Widder, Julian D.; Jazbutyte, Virginija; Hahner, Stefanie; Ertl, Georg; Bauersachs, Johann

    2011-01-01

    Aims Hyperaldosteronism is associated with vascular injury and increased cardiovascular events. Bone marrow-derived endothelial progenitor cells (EPCs) play an important role in endothelial repair and vascular homeostasis. We hypothesized that hyperaldosteronism impairs EPC function and vascularization capacity in mice and humans. Methods and results We characterized the effects of aldosterone and mineralocorticoid receptor (MR) blockade on EPC number and function as well as vascularization capacity and endothelial function. Treatment of human EPC with aldosterone induced translocation of the MR and impaired multiple cellular functions of EPC, such as differentiation, migration, and proliferation in vitro. Impaired EPC function was rescued by pharmacological blockade or genetic ablation of the MR. Aldosterone protein kinase A (PKA) dependently increased reactive oxygen species formation in EPC. Aldosterone infusion in mice impaired EPC function, EPC homing to vascular structures and vascularization capacity in a MR-dependent but blood pressure-independent manner. Endothelial progenitor cells from patients with primary hyperaldosteronism compared with controls of similar age displayed reduced migratory potential. Impaired EPC function was associated with endothelial dysfunction. MR blockade in patients with hyperaldosteronism improved EPC function and arterial stiffness. Conclusion Endothelial progenitor cells express a MR that mediates functional impairment by PKA-dependent increase of reactive oxygen species. Normalization of EPC function may represent a novel mechanism contributing to the beneficial effects of MR blockade in cardiovascular disease prevention and treatment. PMID:20926363

  9. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo

    NASA Astrophysics Data System (ADS)

    Plate, Karl H.; Breier, Georg; Weich, Herbert A.; Risau, Werner

    1992-10-01

    CLINICAL and experimental studies suggest that angiogenesis is a prerequisite for solid tumour growth1,2. Several growth factors with mitogenic or chemotactic activity for endothelial cells in vitro have been described, but it is not known whether these mediate tumour vascularization in vivo3,4. Glioblastoma, the most common and most malignant brain tumour in humans, is distinguished from astrocytoma by the presence of necroses and vascular prolifer-ations5'6. Here we show that expression of an endothelial cell-specific mitogen, vascular endothelial growth factor (VEGF), is induced in astrocytoma cells but is dramatically upregulated in two apparently different subsets of glioblastoma cells. The high-affinity tyrosine kinase receptor for VEGF, flt, although not expressed in normal brain endothelium, is upregulated in tumour endothelial cells in vivo. These observations strongly support the concept that tumour angiogenesis is regulated by paracrine mechanisms and identify VEGF as a potential tumour angiogenesis factor in vivo.

  10. Isolation and expansion of human and mouse brain microvascular endothelial cells.

    PubMed

    Navone, Stefania E; Marfia, Giovanni; Invernici, Gloria; Cristini, Silvia; Nava, Sara; Balbi, Sergio; Sangiorgi, Simone; Ciusani, Emilio; Bosutti, Alessandra; Alessandri, Giulio; Slevin, Mark; Parati, Eugenio A

    2013-09-01

    Brain microvascular endothelial cells (BMVECs) have an important role in the constitution of the blood-brain barrier (BBB). The BBB is involved in the disease processes of a number of neurological disorders in which its permeability increases. Isolation of BMVECs could elucidate the mechanism involved in these processes. This protocol describes how to isolate and expand human and mouse BMVECs. The procedure covers brain-tissue dissociation, digestion and cell selection. Cells are selected on the basis of time-responsive differential adhesiveness to a collagen type I-precoated surface. The protocol also describes immunophenotypic characterization, cord formation and functional assays to confirm that these cells in endothelial proliferation medium (EndoPM) have an endothelial origin. The entire technique requires ∼7 h of active time. Endothelial cell clusters are readily visible after 48 h, and expansion of BMVECs occurs over the course of ∼60 d. PMID:23928501

  11. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE.

    PubMed Central

    Rollins, B. J.; Yoshimura, T.; Leonard, E. J.; Pober, J. S.

    1990-01-01

    We have demonstrated inducible expression of the mRNA encoding the monocyte chemoattractant MCP-1, the human homolog of the JE gene, in endothelial cells within 3 hours of treatment with IL-1 beta and tumor necrosis factor. IFN-gamma also induced expression of this mRNA after 24 hours, but to a lesser extent. MCP-1/JE protein steadily accumulated in the medium of endothelial cells during a 48-hour exposure to IL-1 beta. Medium conditioned by IL-1 beta-treated endothelial cells contained monocyte chemoattractant activity that was immunoadsorbed by anti-MCP-1 antibodies. These results suggest that endothelial cells secrete a monocyte chemoattractant, MCP-1/JE, in response to inflammatory mediators, and thus may contribute to the accumulation of monocytes at sites of inflammation. Images Figure 1 Figure 2 PMID:2113354

  12. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  13. Honokiol suppresses TNF-α-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IκBα.

    PubMed

    Chen, Po-Jen; Wang, Yu-Ling; Kuo, Liang-Mou; Lin, Chwan-Fwu; Chen, Chun-Yu; Tsai, Yung-Fong; Shen, Jiann-Jong; Hwang, Tsong-Long

    2016-01-01

    Adhesion molecules expressed on cerebral endothelial cells (ECs) mediate leukocyte recruitment and play a significant role in cerebral inflammation. Increased levels of adhesion molecules on the EC surface induce leukocyte infiltration into inflammatory areas and are thus hallmarkers of inflammation. Honokiol, isolated from the Chinese medicinal herb Magnolia officinalis, has various pharmacological activities, including anti-inflammatory effects, yet the nature of honokiol targeting molecules remains to be revealed. Here, we investigated the inhibitory effect of honokiol on neutrophil adhesion and vascular cell adhesion molecule-1 (VCAM-1) expression, which underlie its molecular target, and mechanisms for inactivating nuclear factor κ enhancer binding protein (NF-κB) in mouse cerebral ECs. Honokiol inhibited tumour necrosis factor-α (TNF-α)-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs. The inflammatory transcription factor NF-κB was downregulated by honokiol. Honokiol significantly blocked TNF-α-induced NF-κB p65 nuclear translocation and degradation of the proteasome-dependent inhibitor of NF-κB α (IκBα). From docking model prediction, honokiol directly targeted the ubiquitin-ubiquitin interface of Lys48-linked polychains. Moreover, honokiol prevented the TNF-α-induced Lys48-linked polyubiquitination, including IκBα-polyubiquitin interaction. Honokiol has protective anti-inflammatory effects on TNF-α-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs, at least in part by directly inhibiting ubiquitination-mediated IκBα degradation and then preventing NF-κB nuclear translocation. PMID:27212040

  14. Honokiol suppresses TNF-α-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IκBα

    PubMed Central

    Chen, Po-Jen; Wang, Yu-Ling; Kuo, Liang-Mou; Lin, Chwan-Fwu; Chen, Chun-Yu; Tsai, Yung-Fong; Shen, Jiann-Jong; Hwang, Tsong-Long

    2016-01-01

    Adhesion molecules expressed on cerebral endothelial cells (ECs) mediate leukocyte recruitment and play a significant role in cerebral inflammation. Increased levels of adhesion molecules on the EC surface induce leukocyte infiltration into inflammatory areas and are thus hallmarkers of inflammation. Honokiol, isolated from the Chinese medicinal herb Magnolia officinalis, has various pharmacological activities, including anti-inflammatory effects, yet the nature of honokiol targeting molecules remains to be revealed. Here, we investigated the inhibitory effect of honokiol on neutrophil adhesion and vascular cell adhesion molecule-1 (VCAM-1) expression, which underlie its molecular target, and mechanisms for inactivating nuclear factor κ enhancer binding protein (NF-κB) in mouse cerebral ECs. Honokiol inhibited tumour necrosis factor-α (TNF-α)-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs. The inflammatory transcription factor NF-κB was downregulated by honokiol. Honokiol significantly blocked TNF-α–induced NF-κB p65 nuclear translocation and degradation of the proteasome-dependent inhibitor of NF-κB α (IκBα). From docking model prediction, honokiol directly targeted the ubiquitin–ubiquitin interface of Lys48-linked polychains. Moreover, honokiol prevented the TNF-α-induced Lys48-linked polyubiquitination, including IκBα-polyubiquitin interaction. Honokiol has protective anti-inflammatory effects on TNF-α-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs, at least in part by directly inhibiting ubiquitination-mediated IκBα degradation and then preventing NF-κB nuclear translocation. PMID:27212040

  15. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells

    PubMed Central

    Patsch, Christoph; Challet-Meylan, Ludivine; Thoma, Eva C.; Urich, Eduard; Heckel, Tobias; O’Sullivan, John F; Grainger, Stephanie J; Kapp, Friedrich G.; Sun, Lin; Christensen, Klaus; Xia, Yulei; Florido, Mary H. C.; He, Wei; Pan, Wei; Prummer, Michael; Warren, Curtis R.; Jakob-Roetne, Roland; Certa, Ulrich; Jagasia, Ravi; Freskgård, Per-Ola; Adatto, Isaac; Kling, Dorothee; Huang, Paul; Zon, Leonard I; Chaikof, Elliot L.; Gerszten, Robert E.; Graf, Martin; Iacone, Roberto; Cowan, Chad A.

    2015-01-01

    The use of human pluripotent stem cells for in vitro disease modeling and clinical applications requires protocols that convert these cells into relevant adult cell types. Here, we report the rapid and efficient differentiation of human pluripotent stem cells into vascular endothelial and smooth muscle cells. We found that GSK3 inhibition and BMP4 treatment rapidly committed pluripotent cells to a mesodermal fate and subsequent exposure to VEGF or PDGF-BB resulted in the differentiation of either endothelial or vascular smooth muscle cells, respectively. Both protocols produced mature cells with efficiencies over 80% within six days. Upon purification to 99% via surface markers, endothelial cells maintained their identity, as assessed by marker gene expression, and showed relevant in vitro and in vivo functionality. Global transcriptional and metabolomic analyses confirmed that the cells closely resembled their in vivo counterparts. Our results suggest that these cells could be used to faithfully model human disease. PMID:26214132

  16. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells.

    PubMed

    Patsch, Christoph; Challet-Meylan, Ludivine; Thoma, Eva C; Urich, Eduard; Heckel, Tobias; O'Sullivan, John F; Grainger, Stephanie J; Kapp, Friedrich G; Sun, Lin; Christensen, Klaus; Xia, Yulei; Florido, Mary H C; He, Wei; Pan, Wei; Prummer, Michael; Warren, Curtis R; Jakob-Roetne, Roland; Certa, Ulrich; Jagasia, Ravi; Freskgård, Per-Ola; Adatto, Isaac; Kling, Dorothee; Huang, Paul; Zon, Leonard I; Chaikof, Elliot L; Gerszten, Robert E; Graf, Martin; Iacone, Roberto; Cowan, Chad A

    2015-08-01

    The use of human pluripotent stem cells for in vitro disease modelling and clinical applications requires protocols that convert these cells into relevant adult cell types. Here, we report the rapid and efficient differentiation of human pluripotent stem cells into vascular endothelial and smooth muscle cells. We found that GSK3 inhibition and BMP4 treatment rapidly committed pluripotent cells to a mesodermal fate and subsequent exposure to VEGF-A or PDGF-BB resulted in the differentiation of either endothelial or vascular smooth muscle cells, respectively. Both protocols produced mature cells with efficiencies exceeding 80% within six days. On purification to 99% via surface markers, endothelial cells maintained their identity, as assessed by marker gene expression, and showed relevant in vitro and in vivo functionality. Global transcriptional and metabolomic analyses confirmed that the cells closely resembled their in vivo counterparts. Our results suggest that these cells could be used to faithfully model human disease. PMID:26214132

  17. Oxidized-LDL induce the expression of heat shock protein 70 in human endothelial cells.

    PubMed

    Zhu, W; Roma, P; Pellegatta, F; Catapano, A L

    1994-04-15

    Heat shock proteins are detectable in human atherosclerotic plaques, especially in endothelial cells. In this report we show by immunofluorescence that incubation "in vitro" with OxLDL is a stress capable of inducing the expression of heat shock protein 70 in both the EAhy-926 cell line and human umbilical vein endothelial cells (HUVEC). This induction was parallel to the cytotoxicity of oxidized LDL as determined by [3H]adenine release. When cells were confluent, however, both effects were greatly reduced. We speculate that induction of hsp70 is related to the cytotoxicity of oxidized LDL and that the detection of heat shock proteins in human atherosclerotic plaques is a further indication for the presence "in vivo" of oxidized LDL. These observations may be relevant to the understanding of endothelial response to injury in proatherosclerotic events. PMID:8166710

  18. Mapping striate and extrastriate visual areas in human cerebral cortex.

    PubMed Central

    DeYoe, E A; Carman, G J; Bandettini, P; Glickman, S; Wieser, J; Cox, R; Miller, D; Neitz, J

    1996-01-01

    Functional magnetic resonance imaging (fMRI) was used to identify and map the representation of the visual field in seven areas of human cerebral cortex and to identify at least two additional visually responsive regions. The cortical locations of neurons responding to stimulation along the vertical or horizontal visual field meridia were charted on three-dimensional models of the cortex and on unfolded maps of the cortical surface. These maps were used to identify the borders among areas that would be topographically homologous to areas V1, V2, V3, VP, and parts of V3A and V4 of the macaque monkey. Visually responsive areas homologous to the middle temporal/medial superior temporal area complex and unidentified parietal visual areas were also observed. The topography of the visual areas identified thus far is consistent with the organization in macaque monkeys. However, these and other findings suggest that human and simian cortical organization may begin to differ in extrastriate cortex at, or beyond, V3A and V4. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8637882

  19. Stimulation of the cerebral cortex in the intact human subject

    NASA Astrophysics Data System (ADS)

    Merton, P. A.; Morton, H. B.

    1980-05-01

    One of the most fertile methods of investigating the brain is to stimulate a part of it electrically and observe the results. So far, however, use of the method in man has been restricted by the necessity of opening the skull surgically to apply the electrodes. Much could be done, both with healthy subjects and with neurological patients, if it were feasible to stimulate through electrodes on the scalp, although the localization of the stimulus on the cortex will always be much less sharp than with electrodes on the brain surface. In an intact man, however, the brain is protected from electricity by the skull and by the scalp, both of which normally offer considerable resistance. Furthermore, the cerebral cortex does not have a particularly low electrical threshold. It is probably for these reasons (despite an occasional contrary claim1) that attempts to stimulate the brain by applying stimuli from conventional stimulators to the scalp have been stopped by pain or have otherwise failed. These obstacles have now begun to yield. Recently, it was found that, on stimulating muscles in the human hand2 without any special preparation of the skin, the effective resistance fell to low values if brief but very high voltage shocks were used. Applying the same technique to the head, it has now proved possible at the first attempt to stimulate two areas of the human cortex, without undue discomfort.

  20. Greater impairments in cerebral artery compared with skeletal muscle feed artery endothelial function in a mouse model of increased large artery stiffness

    PubMed Central

    Walker, Ashley E; Henson, Grant D; Reihl, Kelly D; Morgan, R Garrett; Dobson, Parker S; Nielson, Elizabeth I; Ling, Jing; Mecham, Robert P; Li, Dean Y; Lesniewski, Lisa A; Donato, Anthony J

    2015-01-01

    Advancing age as well as diseases such as diabetes are characterized by both increased large artery stiffness and impaired peripheral artery function. It has been hypothesized that greater large artery stiffness causes peripheral artery dysfunction; however, a cause-and-effect relationship has not previously been established. We used elastin heterozygote mice (Eln+/–) as a model of increased large artery stiffness without co-morbidities unrelated to the large artery properties. Aortic stiffness, measured by pulse wave velocity, was ∼35% greater in Eln+/– mice than in wild-type (Eln+/+) mice (P = 0.04). Endothelium-dependent dilatation (EDD), assessed by the maximal dilatation to acetylcholine, was ∼40% lower in Eln+/– than Eln+/+ mice in the middle cerebral artery (MCA, P < 0.001), but was similar between groups in the gastrocnemius feed arteries (GFA, P = 0.79). In the MCA, EDD did not differ between groups after incubation with the nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester (P > 0.05), indicating that lower NO bioavailability contributed to the impaired EDD in Eln+/– mice. Superoxide production and content of the oxidative stress marker nitrotyrosine was higher in MCAs from Eln+/− compared with Eln+/+ mice (P < 0.05). In the MCA, after incubation with the superoxide scavenger TEMPOL, maximal EDD improved by ∼65% in Eln+/– (P = 0.002), but was unchanged in Eln+/+ mice (P = 0.17). These results indicate that greater large artery stiffness has a more profound effect on endothelial function in cerebral arteries compared with skeletal muscle feed arteries. Greater large artery stiffness can cause cerebral artery endothelial dysfunction by reducing NO bioavailability and increasing oxidative stress. PMID:25627876

  1. Engineering of Surface Functionality onto Polystyrene Microcarriers for the Attachment and Growth of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Xiong, Gordon M.; Foord, John S.; Griffiths, Jon-Paul; Parker, Emily M.; Moloney, Mark G.; Choong, Cleo

    2014-08-01

    This work reports the effects of introducing diverse chemical functionalities onto the surface of polystyrene microcarrier beads on their ability to function as injectable cell carriers. Cellular adhesion and proliferation, as well as cellular outgrowths from microcarrier surfaces, using human umbilical vein endothelial cells (HUVECs), were examined in detail. It was observed that initial cell adhesion appeared to be most significantly decreased by hydrophobicity, whilst cell proliferation appeared to be improved in most chemical functional groups over unmodified polystyrene. Overall, our study highlights the importance of surface chemistry in directing the growth and function of human endothelial cells.

  2. Human microvascular endothelial cells express receptors for platelet-derived growth factor

    SciTech Connect

    Beitz, J.G.; Kim, Insoon; Calabresi, P.; Frackelton, A.R. Jr. )

    1991-03-01

    Endothelial cells have been widely thought to be unresponsive to platelet-derived growth factor (PDGF, a major growth factor released from stimulated platelets at the sites of vascular insults) and devoid of PDGF receptors. Nevertheless, in examining the growth-factor responses of microvascular endothelial cells isolated from human omental adipose tissue, the authors were surprised to detect PDGF-induced tyrosine phosphorylation of a 180-kDa glycoprotein, subsequently identified as the cellular receptor for PDGF by specific immunoprecipitation. Scatchard analysis of {sup 125}I-labeled PDGF binding to human microvascular endothelial cells revealed 30,000 PDGF receptors per cell with a K{sub d} of 0.14 nM. Normal cellular consequences of receptor activation were also observed, including tyrosine phosphorylation of a 42-kDa protein and serine phosphorylation of ribosomal protein S6. Furthermore, PDGF was mitogenic for these cells. Microvascular endothelial cells play a central role in neovascularization required for wound healing and solid tumor growth. Thus, the discovery of functional PFDG receptors on human microvascular endothelial cells suggests a direct role for PDGF in this process.

  3. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells.

    PubMed

    Yamazaki, Madoka; Nakamura, Kazumasa; Mizukami, Yusuke; Ii, Masaaki; Sasajima, Junpei; Sugiyama, Yoshiaki; Nishikawa, Tomoya; Nakano, Yasuhiro; Yanagawa, Nobuyuki; Sato, Kazuya; Maemoto, Atsuo; Tanno, Satoshi; Okumura, Toshikatsu; Karasaki, Hidenori; Kono, Toru; Fujiya, Mikihiro; Ashida, Toshifumi; Chung, Daniel C; Kohgo, Yutaka

    2008-06-01

    Hedgehog signaling is important in the pathogenesis of pancreatic cancer. Several recent observations suggest the involvement of sonic hedgehog (SHH) in postnatal neovascularization. We identified a novel role for SHH in tumor-associated angiogenesis in pancreatic cancer. Immunohistochemical analysis revealed that patched homolog 1 (PTCH1), both a receptor for and transcriptional target of hedgehog signaling, was expressed in a small fraction of endothelial cells within pancreatic cancer, but not in normal pancreatic tissue. When endothelial progenitor cells (EPC) isolated from human peripheral blood were cultured with supernatant from SHH-transfected 293 cells or pancreatic cancer cells, mRNA levels of vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 and angiopoietin-1 were significantly increased, whereas no such induction was observed in human umbilical vein endothelial cell (HUVEC) and human dermal microvascular endothelial cell (HMVEC). HUVEC tube formation was stimulated when cocultured with EPC, and preconditioning EPC with supernatant from KP-1 N pancreatic cancer cells highly expressing SHH significantly enhanced the effect. The effect was partially attenuated by specific inhibition of SHH with cyclopamine or a neutralizing antibody. These findings suggest that tumor-derived SHH can induce angiogenesis, and this is mediated by its effects on EPC specifically. Targeting SHH would be a novel therapeutic approach that can inhibit not only proliferation of cancer cells but also EPC-mediated angiogenesis. PMID:18422746

  4. Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction

    SciTech Connect

    Lenzi, G.L.; Frackowiak, R.S.; Jones, T.

    1982-09-01

    Fifteen patients with acute cerebral hemispheric infarcts have been studied with positron emission tomography and the /sup 15/O steady-state inhalation technique. Thirteen follow-up studies were also performed. The values of cerebral oxygen metabolism (CMRO/sub 2/), cerebral blood flow (CBF), and oxygen extraction ration (OER) have been calculated for the infarcted regions, their borders, the symmetrical regions in contralateral cerebral hemispheres, and the cerebellar hemispheres. This study demonstrates that in the completed stroke there are thresholds for regional CMRO/sub 2/ and regional CBF below which the general clinical outcome of the patients is usually poor. The ischaemic lesions invariably produce an uncoupling between the greatly decreased metabolic demand and the less affected blood supply, with very frequent instances of relative hyperperfusion. Remote effects of the hemispheric infarcts have been demonstrated, such as crossed cerebellar diaschisis and contralateral transhemispheric depression. The level of consciousness correlates with oxygen uptake and blood flow both in the posterior fossa and in the contralateral cerebral hemispheres. The follow-up studies of individual patients underline the high variability of metabolism-to-flow balance during the acute phase of the illness, and stress the need for more studies focused on repeated assessments of homogeneous patient populations.

  5. Ionizing radiation increases adhesiveness of human aortic endothelial cells via a chemokine-dependent mechanism.

    PubMed

    Khaled, Saman; Gupta, Kiran B; Kucik, Dennis F

    2012-05-01

    Exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Since radiation also induces inflammation, a possible mechanism is a change in the adhesiveness of vascular endothelial cells, triggering pro-atherogenic accumulation of leukocytes. To investigate this mechanism at the cellular level, the effect of X rays on adhesiveness of cultured human aortic endothelial cells (HAECs) was determined. HAECs were grown as monolayers and exposed to 0 to 30 Gy X rays, followed by measurement of adhesiveness under physiological shear stress using a flow chamber adhesion assay. Twenty-four hours after irradiation, HAEC adhesiveness was increased, with a peak effect at 15 Gy. Radiation had no significant effect on surface expression of the endothelial adhesion molecules ICAM-1 and VCAM-1. Antibody blockade of the leukocyte integrin receptors for ICAM-1 and VCAM-1, however, abolished the radiation-induced adhesiveness. Since these leukocyte integrins can be activated by chemokines presented on the endothelial cell surface, the effect of pertussis toxin (PTX), an inhibitor of chemokine-mediated integrin activation, was tested. PTX specifically inhibited radiation-induced adhesiveness, with no significant effect on nonirradiated cells. Therefore, radiation induces increased adhesiveness of aortic endothelial cells through chemokine-dependent signaling from endothelial cells to leukocytes, even in the absence of increased expression of the adhesion molecules involved. PMID:22087741

  6. Anti-CD31 delays platelet adhesion/aggregation at sites of endothelial injury in mouse cerebral arterioles.

    PubMed Central

    Rosenblum, W. I.; Murata, S.; Nelson, G. H.; Werner, P. K.; Ranken, R.; Harmon, R. C.

    1994-01-01

    The arterioles on the surface of the mouse brain (pial arterioles) were observed by in vivo microscopy. A focus of minor endothelial damage was produced in a single pial arteriole in each mouse by briefly exposing the site to a helium neon laser after an intravenous injection of Evans blue. Mice were injected 10 minutes before injury with a monoclonal antibody (MAb) to mouse CD31, also known as platelet endothelial cell adhesion molecule. This treatment doubled (P < .01) the time required for the laser to produce a recognizable platelet aggregate. In additional experiments, an MAb to mouse CD61 and an MAb to mouse intercellular adhesion molecule 1 had no effect. The data support previous observations indicating that platelet adhesion/aggregation in this model is induced by endothelial injury without exposure of basal lamina. The data are consistent with the hypothesis that the endothelial injury exposes or activates a platelet endothelial cell adhesion molecule on the endothelium which is blocked by the MAb directed against CD31. This may be the first demonstration of an effect of an anti-platelet endothelial cell adhesion molecule on platelet endothelial cell adhesion molecule on platelet adhesion/aggregation in vivo. PMID:8030753

  7. Anti-CD31 delays platelet adhesion/aggregation at sites of endothelial injury in mouse cerebral arterioles.

    PubMed

    Rosenblum, W I; Murata, S; Nelson, G H; Werner, P K; Ranken, R; Harmon, R C

    1994-07-01

    The arterioles on the surface of the mouse brain (pial arterioles) were observed by in vivo microscopy. A focus of minor endothelial damage was produced in a single pial arteriole in each mouse by briefly exposing the site to a helium neon laser after an intravenous injection of Evans blue. Mice were injected 10 minutes before injury with a monoclonal antibody (MAb) to mouse CD31, also known as platelet endothelial cell adhesion molecule. This treatment doubled (P < .01) the time required for the laser to produce a recognizable platelet aggregate. In additional experiments, an MAb to mouse CD61 and an MAb to mouse intercellular adhesion molecule 1 had no effect. The data support previous observations indicating that platelet adhesion/aggregation in this model is induced by endothelial injury without exposure of basal lamina. The data are consistent with the hypothesis that the endothelial injury exposes or activates a platelet endothelial cell adhesion molecule on the endothelium which is blocked by the MAb directed against CD31. This may be the first demonstration of an effect of an anti-platelet endothelial cell adhesion molecule on platelet endothelial cell adhesion molecule on platelet adhesion/aggregation in vivo. PMID:8030753

  8. Size and composition effects of household particles on inflammation and endothelial dysfunction of human coronary artery endothelial cells

    NASA Astrophysics Data System (ADS)

    Lin, Lian-Yu; Liu, I.-Jung; Chuang, Hsiao-Chi; Lin, Hui-Yi; Chuang, Kai-Jen

    2013-10-01

    People spend generally 90 percent of their time indoors, yet toxicity of household particles has not been thoroughly investigated before. The objective of this study is to examine particle size and components effects of household particles on human coronary artery endothelial cells (HCAEC). We used two micro-orifice uniform deposit impactors to collect 60 sets of indoor particulate matters (PM) from 30 houses in Taipei, Taiwan. Polycyclic aromatic hydrocarbons (PAHs) effects of household particles were determined by high-resolution gas chromatograph/high-resolution mass spectrometer, respectively. HCAEC were exposed to household particles extracts in three size ranges: PM0.1 (diameters less than 0.1 μm), PM1.0-0.1 (diameters between 1.0 and 0.1 μm), and PM10-1.0 (diameters between 10 and 1.0 μm) at 50 μg mL-1 for 4 h, and interleukin-6 (IL-6), endothelin-1 (ET-1), and nitric oxide (NO) concentrations in the medium were measured. We found that household PM1.0-0.1 was associated with increased IL-6 and ET-1 production and decreased NO synthesis. Naphthalene of PM1.0-0.1 was highly correlated with IL-6 and ET-1 production and NO reduction. We concluded that size and compositions of household particles were both important factors on inflammation and endothelial dysfunction in HCAEC.

  9. Definitive proof of endothelialization of a Dacron arterial prosthesis in a human being.

    PubMed

    Wu, M H; Shi, Q; Wechezak, A R; Clowes, A W; Gordon, I L; Sauvage, L R

    1995-05-01

    A 10 mm woven Dacron axillofemoral bypass graft was removed from a 65-year-old patient during redo surgery after an implant period of 26 months, because of a large seroma that surrounded the entire length of the graft. Tissue blocks were taken from representative areas along the entire length of the graft surface and evaluated by light microscopy with hematoxylin and eosin and Masson trichrome staining, scanning electron microscopy, transmission electron microscopy, and immunocytochemical staining. Paraffin-embedded sections were stained with smooth muscle cell alpha-actin, which demonstrated smooth muscle cells in the pseudointima, and Ham 56 stain to identify macrophages. Endothelial factor VIII/von Willebrand factor and Ulex europaeus agglutinin identified human endothelial cells on the flow surface, in areas far removed from the anastomoses to the native vessels. This is the first definitive proof in a human of endothelialization of a synthetic arterial graft beyond the pannus ingrowth zone. PMID:7769746

  10. Alloproliferation of purified CD4+ T cells to adult human heart endothelial cells, and study of second-signal requirements.

    PubMed Central

    McDouall, R M; Page, C S; Hafizi, S; Yacoub, M H; Rose, M L

    1996-01-01

    Human endothelial cells have been shown to be capable of causing direct allostimulation of T cells. However, the majority of immunological studies of human endothelial cells have been performed on cells of fetal origin. Here we use endothelial cells isolated from the adult human heart, both large vessel (coronary artery, pulmonary artery and aorta) and also microvascular. We have examined the ability of all these endothelial cells to cause direct allostimulation of T cells, and show that purified CD4+ T cells can proliferate in response to adult human heart endothelial cells, the response being dependent on pretreatment of the endothelial cells with interferon-gamma (IFN-gamma) and inhibited by anti-HLA-DR monoclonal antibody. The proliferative responses of CD8+ T cells to adult but not fetal endothelial cells was inconsistent and weak. Proliferative responses were not blocked by CTLA4-Ig, which inhibits T-cell responses to "classical' antigen-presenting cells (APC), but > 50% inhibition was achieved with monoclonal antibody to lymphocyte function-associated antigen-3 (LFA-3). These results show that adult human cardiovascular endothelial cells are capable of causing allostimulation of resting CD4+ T cells, using a different second signal to classical APC. In view of these findings endothelial cells should be considered as APC following solid organ transplantation. PMID:8943718

  11. Human cerebral neuropathology of Type 2 diabetes mellitus⋆

    PubMed Central

    Nelson, Peter T.; Smith, Charles D.; Abner, Erin A.; Schmitt, Frederick A.; Scheff, Stephen W.; Davis, Gregory J.; Keller, Jeffrey N.; Jicha, Gregory A.; Davis, Daron; Wang-Xia, Wang; Hartman, Adria; Katz, Douglas G.; Markesbery, William R.

    2010-01-01

    The cerebral neuropathology of Type 2 diabetes (CNDM2) has not been positively defined. This review includes a description of CNDM2 research from before the ‘Pubmed Era’. Recent neuroimaging studies have focused on cerebrovascular and white matter pathology. These and prior studies about cerebrovascular histopathology in diabetes are reviewed. Evidence is also described for and against the link between CNDM2 and Alzheimer’s disease pathogenesis. To study this matter directly, we evaluated data from University of Kentucky Alzheimer’s Disease Center (UK ADC) patients recruited while non-demented and followed longitudinally. Of patients who had come to autopsy (N=234), 139 met inclusion criteria. These patients provided the basis for comparing the prevalence of pathological and clinical indices between well-characterized cases with (N=50) or without (N=89) the premortem diagnosis of diabetes. In diabetics, cerebrovascular pathology was more frequent and Alzheimer-type pathology was less frequent than in non-diabetics. Finally, a series of photomicrographs demonstrates histopathological features (including clinical–radiographical correlation) observed in brains of persons that died after a history of diabetes. These preliminary, correlative, and descriptive studies may help develop new hypotheses about CNDM2. We conclude that more work should be performed on human material in the context of CNDM2. PMID:18789386

  12. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells

    PubMed Central

    Belair, David G.; Whisler, Jordan A.; Valdez, Jorge; Velazquez, Jeremy; Molenda, James A.; Vickerman, Vernella; Lewis, Rachel; Daigh, Christine; Hansen, Tyler D.; Mann, David A.; Thomson, James A.; Griffith, Linda G.; Kamm, Roger D.; Schwartz, Michael P.; Murphy, William L.

    2015-01-01

    Here we describe a strategy to model blood vessel development using a well-defined iPSC-derived endothelial cell type (iPSC-EC) cultured within engineered platforms that mimic the 3D microenvironment. The iPSC-ECs used here were first characterized by expression of endothelial markers and functional properties that included VEGF responsiveness, TNF-α-induced upregulation of cell adhesion molecules (MCAM/CD146; ICAM1/CD54), thrombin-dependent barrier function, shear stress-induced alignment, and 2D and 3D capillary-like network formation in Matrigel. The iPSC-ECs also formed 3D vascular networks in a variety of engineering contexts, yielded perfusable, interconnected lumen when co-cultured with primary human fibroblasts, and aligned with flow in microfluidics devices. iPSC-EC function during tubule network formation, barrier formation, and sprouting was consistent with that of primary ECs, and the results suggest a VEGF-independent mechanism for sprouting, which is relevant to therapeutic anti-angiogenesis strategies. Our combined results demonstrate the feasibility of using a well-defined, stable source of iPSC-ECs to model blood vessel formation within a variety of contexts using standard in vitro formats. PMID:25190668

  13. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells.

    PubMed

    Morita, Rimpei; Suzuki, Mayu; Kasahara, Hidenori; Shimizu, Nana; Shichita, Takashi; Sekiya, Takashi; Kimura, Akihiro; Sasaki, Ken-ichiro; Yasukawa, Hideo; Yoshimura, Akihiko

    2015-01-01

    Transplantation of endothelial cells (ECs) is a promising therapeutic approach for ischemic disorders. In addition, the generation of ECs has become increasingly important for providing vascular plexus to regenerated organs, such as the liver. Although many attempts have been made to generate ECs from pluripotent stem cells and nonvascular cells, the minimum number of transcription factors that specialize in directly inducing vascular ECs remains undefined. Here, by screening 18 transcription factors that are important for both endothelial and hematopoietic development, we demonstrate that ets variant 2 (ETV2) alone directly converts primary human adult skin fibroblasts into functional vascular endothelial cells (ETVECs). In coordination with endogenous FOXC2 in fibroblasts, transduced ETV2 elicits expression of multiple key endothelial development factors, including FLI1, ERG, and TAL1, and induces expression of endothelial functional molecules, including EGFL7 and von Willebrand factor. Consequently, ETVECs exhibits EC characteristics in vitro and forms mature functional vasculature in Matrigel plugs transplanted in NOD SCID mice. Furthermore, ETVECs significantly improve blood flow recovery in a hind limb ischemic model using BALB/c-nu mice. Our study indicates that the creation of ETVECs provides further understanding of human EC development induced by ETV2. PMID:25540418

  14. Tailoring Material Properties of Cardiac Matrix Hydrogels to Induce Endothelial Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Jeffords, Megan E.; Wu, Jinglei; Shah, Mickey; Hong, Yi; Zhang, Ge

    2015-01-01

    Cardiac matrix hydrogel has shown great promise as an injectable biomaterial due to the possession of cardiac-specific extracellular matrix composition. A cardiac matrix hydrogel facilitating neovascularization will further improve its therapeutic outcomes in cardiac repair. In this study, we explored the feasibility of tailoring material properties of cardiac matrix hydrogels using a natural compound, genipin, to promote endothelial differentiation of stem cells. Our results demonstrated that the genipin crosslinking could increase the mechanical properties of the cardiac matrix hydrogel to a stiffness range promoting endothelial differentiation of human mesenchymal stem cells (hMSCs). It also decreased the swelling ratio and prolonged degradation without altering gelation time. Human mesenchymal stem cells cultured on the genipin crosslinked cardiac matrix hydrogels showed great viability. After 1-day culture, hMSCs demonstrated down-regulation of early endothelial marker expression and up-regulation of mature endothelial marker expression. Especially for 1 mM genipin crosslinked cardiac matrix hydrogels, hMSCs showed particularly significant expression of mature endothelial cell marker vWF. These attractive results indicate the potential of using genipin crosslinked cardiac matrix hydrogels to promote rapid vascularization for cardiac infarction treatment through minimally invasive therapy. PMID:25946697

  15. Cerebral energetic effects of creatine supplementation in humans.

    PubMed

    Pan, J W; Takahashi, K

    2007-04-01

    There has been considerable interest in the use of creatine (Cr) supplementation to treat neurological disorders. However, in contrast to muscle physiology, there are relatively few studies of creatine supplementation in the brain. In this report, we use high-field MR (31)P and (1)H spectroscopic imaging of human brain with a 7-day protocol of oral Cr supplementation to examine its effects on cerebral energetics (phosphocreatine, PCr; ATP) and mitochondrial metabolism (N-acetyl aspartate, NAA; and Cr). We find an increased ratio of PCr/ATP (day 0, 0.80 +/- 0.10; day 7, 0.85 +/- 09), with this change largely due to decreased ATP, from 2.7 +/- 0.3 mM to 2.5 +/- 0.3 mM. The ratio of NAA/Cr also decreased (day 0, 1.32 +/- 0.17; day 7 1.18 +/- 0.13), primarily from increased Cr (9.6 +/- 1.9 to 10.1 +/- 2.0 mM). The Cr-induced changes significantly correlated with the basal state, with the fractional increase in PCr/ATP negatively correlating with the basal PCr/ATP value (R = -0.74, P < 0.001). As NAA is a measure of mitochondrial function, there was also a significant negative correlation between basal NAA concentrations with the fractional change in PCr and ATP. Thus healthy human brain energetics is malleable and shifts with 7 days of Cr supplementation, with the regions of initially low PCr showing the largest increments in PCr. Overall, Cr supplementation appears to improve high-energy phosphate turnover in healthy brain and can result in either a decrease or an increase in high-energy phosphate concentrations. PMID:17185404

  16. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase

    PubMed Central

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood–brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2•- generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2•- by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2•- production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase. PMID:24936444

  17. Inactivation of the Human Cytomegalovirus US20 Gene Hampers Productive Viral Replication in Endothelial Cells

    PubMed Central

    Cavaletto, Noemi; Luganini, Anna

    2015-01-01

    ABSTRACT The human cytomegalovirus (HCMV) US12 gene family includes a group of 10 contiguous genes (US12 to US21) encoding predicted seven-transmembrane-domain (7TMD) proteins that are nonessential for replication within cultured fibroblasts. Nevertheless, inactivation of some US12 family members affects virus replication in other cell types; e.g., deletion of US16 or US18 abrogates virus growth in endothelial and epithelial cells or in human gingival tissue, respectively, suggesting a role for some US12 proteins in HCMV cell tropism. Here, we provide evidence that another member, US20, impacts the ability of a clinical strain of HCMV to replicate in endothelial cells. Through the use of recombinant HCMV encoding tagged versions of the US20 protein, we investigated the expression pattern, localization, and topology of the US20-encoded protein (pUS20). We show that pUS20 is expressed as a partially glycosylated 7TMD protein which accumulates late in infection in endoplasmic reticulum-derived peripheral structures localized outside the cytoplasmic virus assembly compartment (cVAC). US20-deficient mutants generated in the TR clinical strain of HCMV exhibited major growth defects in different types of endothelial cells, whereas they replicated normally in fibroblasts and epithelial cells. While the attachment and entry phases in endothelial cells were not significantly affected by the absence of US20 protein, US20-null viruses failed to replicate viral DNA and express representative E and L mRNAs and proteins. Taken together, these results indicate that US20 sustains the HCMV replication cycle at a stage subsequent to entry but prior to E gene expression and viral DNA synthesis in endothelial cells. IMPORTANCE Human cytomegalovirus (HCMV) is a major pathogen in newborns and immunocompromised individuals. A hallmark of HCMV pathogenesis is its ability to productively replicate in an exceptionally broad range of target cells, including endothelial cells, which represent

  18. Noninvasive method of estimating human newborn regional cerebral blood flow

    SciTech Connect

    Younkin, D.P.; Reivich, M.; Jaggi, J.; Obrist, W.; Delivoria-Papadopoulos, M.

    1982-12-01

    A noninvasive method of estimating regional cerebral blood flow (rCBF) in premature and full-term babies has been developed. Based on a modification of the /sup 133/Xe inhalation rCBF technique, this method uses eight extracranial NaI scintillation detectors and an i.v. bolus injection of /sup 133/Xe (approximately 0.5 mCi/kg). Arterial xenon concentration was estimated with an external chest detector. Cerebral blood flow was measured in 15 healthy, neurologically normal premature infants. Using Obrist's method of two-compartment analysis, normal values were calculated for flow in both compartments, relative weight and fractional flow in the first compartment (gray matter), initial slope of gray matter blood flow, mean cerebral blood flow, and initial slope index of mean cerebral blood flow. The application of this technique to newborns, its relative advantages, and its potential uses are discussed.

  19. Neutrophil killing of human umbilical vein endothelial cells is oxygen radical-mediated and enhanced by TNF-. alpha

    SciTech Connect

    Dame, M.K.; Varani, J.; Weinberg, J.M.; Ward, P.A. )

    1991-03-11

    Human umbilical vein endothelial cells are sensitive to killing by activated human neutrophils. Killing is inhibited in the presence of catalase and deferoxamine mesylate but not soybean trypsin inhibitor. Reagent hydrogen peroxide can substitute for activated neutrophils in producing endothelial cell injury. These data suggest that lethal injury is due to the production of oxygen radicals by activated neutrophils. In these respects, the human umbilical vein endothelial cells are similar to rat pulmonary artery endothelial cells in that pretreatment with TNF-{alpha} increases sensitivity to injury by activated neutrophils. In part, the increased endothelial cell sensitivity to killing by neutrophils may be due to up-regulation of surface adhesion molecules. However, it was observed that cells passaged more than two times in culture did not demonstrate increased killing after treatment with TNF-{alpha} while up-regulation of neutrophil adhesion could be detected through several additional passages. Although the human umbilical vein endothelial cells are qualitatively similar to rat pulmonary artery endothelial cells in their sensitivity to killing, they are quantitatively much more resistant. What accounts for the relative resistance of the human umbilical vein endothelial cells is not fully understood. In the rat pulmonary artery endothelial cells, killing is known to be dependent on an intraendothelial source of iron. Pre-treatment of the human umbilical vein endothelial cells with 8-hydroxyquinoline-bound iron increased their sensitivity to oxidant injury. These data suggest that the availability of iron within the human umbilical vein endothelial cells may be a limiting factor in sensitivity to oxygen radical-mediated injury.

  20. Isolation and chromosomal localization of the human endothelial nitric oxide synthase (NOS3) gene

    SciTech Connect

    Robinson, L.J.; Michel, T.; Weremowicz, S.; Morton, C.C. )

    1994-01-15

    Endothelial NOS activity is a major determinant of vascular tone and blood pressure, and in several important (and sometimes hereditary) disease states, such as hypertension, diabetes, and atherosclerosis, the endothelial NO signaling system appears to be abnormal. To explore the relationship of the endothelial NOS activity, the authors isolated the human gene encoding the endothelial NOS. Genomic clones containing the 5[prime] end of this gene were identified in a human genomic library by applying a polymerase chain reaction (PCR)-based approach. Identification of the human gene for endothelial NOS (NOS3) was confirmed by nucleotide sequence analysis of the first coding exon, which was found to be identical to its cognate cDNA. The NOS3 gene spans at least 20 kb and appears to contain multiple introns. The transcription start site and promoter region of the NOS3 gene were identified by primer extension and ribonuclease protection assays. Sequencing of the putative promoter revealed consensus sequences for the shear stress-response element, as well as cytokine-responsive cis regulatory sequences, both possible important to the roles played by NOS3 in the normal and the diseased cardiovascular system. The authors also mapped the chromosomal location of the NOS3 gene. First, a chromosomal panel of human-rodent somatic cell hybrids was screened using PCR with oligonucleotide primers derived from the NOS3 genomic clone. The specificity of the amplified PCR product was confirmed by human and hamster genomic DNA controls, as well as by Southern blot analysis, using the NOS3 cDNA as probe. Definitive chromosomal assignment of the NOS3 gene to human chromosome 7 was based upon 0% discordancy; fluorescence in situ hybridization sublocalized the NOS3 gene to 7q36. The identification and characterization of the NOS3 gene may lead to further insights into heritable disease states associated with this gene product. 41 refs., 3 figs., 1 tab.

  1. Endothelial Interleukin-6 defines the tumorigenic potential of primary human cancer stem cells

    PubMed Central

    Krishnamurthy, Sudha; Warner, Kristy A.; Dong, Zhihong; Imai, Atsushi; Nör, Carolina; Ward, Brent B.; Helman, Joseph I.; Taichman, Russell S.; Bellile, Emily L.; McCauley, Laurie K.; Polverini, Peter J.; Prince, Mark E.; Wicha, Max S.; Nör, Jacques E.

    2014-01-01

    Head and neck squamous cell carcinomas (HNSCC) contain a small sub-population of stem cells endowed with unique capacity to generate tumors. These cancer stem cells (CSC) are localized in perivascular niches and rely on crosstalk with endothelial cells for survival and self-renewal, but the mechanisms involved are unknown. Here, we report that stromal interleukin (IL)-6 defines the tumorigenic capacity of CSC sorted from primary human HNSCC and transplanted into mice. In search for the cellular source of IL-6, we observed a direct correlation between IL-6 levels in tumor-associated endothelial cells and the tumorigenicity of CSC. In vitro, endothelial cell-IL-6 enhanced orosphere formation, p-STAT3 activation, survival and self-renewal of human CSC. Notably, a humanized anti-IL-6R antibody (tocilizumab) inhibited primary human CSC-mediated tumor initiation. Collectively, these data demonstrate that endothelial cell-secreted IL-6 defines the tumorigenic potential of CSC, and suggest that HNSCC patients might benefit from therapeutic inhibition of IL-6/IL-6R signaling. PMID:25078284

  2. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells.

    PubMed

    Krishnamurthy, Sudha; Warner, Kristy A; Dong, Zhihong; Imai, Atsushi; Nör, Carolina; Ward, Brent B; Helman, Joseph I; Taichman, Russell S; Bellile, Emily L; McCauley, Laurie K; Polverini, Peter J; Prince, Mark E; Wicha, Max S; Nör, Jacques E

    2014-11-01

    Head and neck squamous cell carcinomas (HNSCC) contain a small subpopulation of stem cells endowed with unique capacity to generate tumors. These cancer stem cells (CSC) are localized in perivascular niches and rely on crosstalk with endothelial cells for survival and self-renewal, but the mechanisms involved are unknown. Here, we report that stromal interleukin (IL)-6 defines the tumorigenic capacity of CSC sorted from primary human HNSCC and transplanted into mice. In search for the cellular source of Interleukin-6 (IL-6), we observed a direct correlation between IL-6 levels in tumor-associated endothelial cells and the tumorigenicity of CSC. In vitro, endothelial cell-IL-6 enhanced orosphere formation, p-STAT3 activation, survival, and self-renewal of human CSC. Notably, a humanized anti-IL-6R antibody (tocilizumab) inhibited primary human CSC-mediated tumor initiation. Collectively, these data demonstrate that endothelial cell-secreted IL-6 defines the tumorigenic potential of CSC, and suggest that HNSCC patients might benefit from therapeutic inhibition of IL-6/IL-6R signaling. PMID:25078284

  3. Early gene response of human brain endothelial cells to Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene expression of human brain microvascular endothelial cells (HBMEC) to Listeria monocytogenes at 4 hour infection was analyzed. Four hours after infection, the expression of 456 genes of HBMEC had changed (p<0.05). We noted that many active genes were involved in the formyl-methionylleucylph...

  4. Preserved endothelial function in human obesity in the absence of insulin resistance

    PubMed Central

    2013-01-01

    Background Insulin resistance (IR) is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD). On the other hand, obesity has long been related to IR and increased CVD. However it is not known if IR is a necessary condition for endothelial dysfunction in human obesity, allowing for preserved endothelial function in obese people when absent. Therefore, the purpose of the study was to assess the relationship between IR and endothelial dysfunction in human obesity and the mechanisms involved. Methods Twenty non-insulin resistant morbid obese (NIR-MO), 32 insulin resistant morbid obese (IR-MO), and 12 healthy subjects were included. Serum concentrations of glucose, insulin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), resistin and adiponectin were determined. IR was evaluated by HOMA-index. Endothelium-dependent relaxation to bradykinin (BK) in mesenteric microvessels was assessed in wire myograph. Results Serum IL-6, and TNF-α levels were elevated only in IR-MO patients while resistin was elevated and adiponectin reduced in all MO individuals. Mesenteric arteries from IR-MO, but not from NIR-MO subjects displayed blunted relaxation to BK. Vasodilatation was improved in IR-MO arteries by the superoxide scavenger, superoxide dismutase (SOD) or the mitochondrial-targeted SOD mimetic, mito-TEMPO. NADPH oxidase inhibitors (apocynin and VAS2870) and the nitric oxide synthase (NOS) cofactor, tetrahydrobiopterin failed to modify BK-induced vasodilatations. Superoxide generation was higher in vessels from IR-MO subjects and reduced by mito-TEMPO. Blockade of TNF-α with infliximab, but not inhibition of inducible NOS or cyclooxygenase, improved endothelial relaxation and decreased superoxide formation. Conclusions Endothelial dysfunction is observed in human morbid obesity only when insulin resistance is present. Mechanisms involved include augmented mitochondrial superoxide generation, and

  5. Human cerebral malaria and Plasmodium falciparum genotypes in Malawi

    PubMed Central

    2012-01-01

    Background Cerebral malaria, a severe form of Plasmodium falciparum infection, is an important cause of mortality in sub-Saharan African children. A Taqman 24 Single Nucleotide Polymorphisms (SNP) molecular barcode assay was developed for use in laboratory parasites which estimates genotype number and identifies the predominant genotype. Methods The 24 SNP assay was used to determine predominant genotypes in blood and tissues from autopsy and clinical patients with cerebral malaria. Results Single genotypes were shared between the peripheral blood, the brain, and other tissues of cerebral malaria patients, while malaria-infected patients who died of non-malarial causes had mixed genetic signatures in tissues examined. Children with retinopathy-positive cerebral malaria had significantly less complex infections than those without retinopathy (OR = 3.7, 95% CI [1.51-9.10]).The complexity of infections significantly decreased over the malaria season in retinopathy-positive patients compared to retinopathy-negative patients. Conclusions Cerebral malaria patients harbour a single or small set of predominant parasites; patients with incidental parasitaemia sustain infections involving diverse genotypes. Limited diversity in the peripheral blood of cerebral malaria patients and correlation with tissues supports peripheral blood samples as appropriate for genome-wide association studies of parasite determinants of pathogenicity. PMID:22314206

  6. Utilization of Microgravity Bioreactor for Differentiation and Growth of Human Vascular Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Chen, Chu-Huang; Pellis, Neal R.

    1997-01-01

    The goal was to delineate mechanisms of genetic responses to angiogenic stimulation of human coronary arterial and dermal microvascular endothelial cells during exposure to microgravity. The NASA-designed rotating-wall vessel was used to create a three-dimensional culture environment with low shear-stress and microgravity simulating that in space. The primary specific aim was to determine whether simulated microgravity enhances endothelial cell growth and whether the growth enhancement is associated by augmented expression of Basic Fibroblast Growth Factor (BFGF) and c-fos, an immediate early gene and component of the transcription factor AP-1.

  7. Impact of Corneal Endothelial Dysfunctions on Intraocular Oxygen Levels in Human Eyes

    PubMed Central

    Huang, Andrew J. W.; Shui, Ying-Bo; Han, Yu-Ping; Bai, Fang; Siegfried, Carla J.; Beebe, David C.

    2015-01-01

    Purpose We studied the implications of corneal endothelial dysfunctions on oxidative stress in the anterior segment via in vivo measurements of oxygen partial pressure (pO2) in the anterior chamber (AC) of human eyes. Methods We recruited 51 patients undergoing cataract surgery and/or endothelial keratoplasty (EK). Endothelial cell density (ECD; n = 33) and central corneal thickness (CCT; n = 41) were measured on patients with relatively clear corneas. Before surgery, an oxygen sensor was introduced into the AC via a peripheral corneal paracentesis. In all patients, seven measurements of pO2 were obtained by positioning the flexible tip near the endothelium at the central cornea, at four cardinal subendothelial locations near the midperipheral cornea, and in the mid-AC and AC angle. In patients with pseudophakia or eyes undergoing cataract surgery, pO2 also was measured near the lens surface and in the posterior chamber. Results Consistent with our previous reports, a steep oxygen gradient was noted in the anterior segment of normal controls (n = 24). In patients with endothelial dysfunctions (n = 27), there was a significant increase of pO2 at all five subendothelial locations without a significant increase of pO2 in the AC angle. By regression analyses, subendothelial pO2 correlated inversely with ECD and positively with CCT in patients with endothelial dysfunctions. Conclusions This study demonstrates an even steeper intraocular oxygen gradient in eyes with corneal endothelial dysfunctions. It suggests that the reduced oxygen consumption in corneal endothelial cells may increase oxidative stress in the AC and the existence of an alternative aqueous inflow pathway that maintains a relatively low and constant pO2 at the AC angle. PMID:26447982

  8. Non-nucleoside reverse transcriptase inhibitor efavirenz increases monolayer permeability of human coronary artery endothelial cells.

    PubMed

    Jamaluddin, Md Saha; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2010-01-01

    Highly active antiretroviral therapy (HAART) is often associated with endothelial dysfunction and cardiovascular complications. In this study, we determined whether HIV non-nucleoside reverse transcriptase inhibitor efavirenz (EFV) could increase endothelial permeability. Human coronary artery endothelial cells (HCAECs) were treated with EFV (1, 5 and 10 microg/ml) and endothelial permeability was determined by a transwell system with a fluorescence-labeled dextran tracer. HCAECs treated with EFV showed a significant increase of endothelial permeability in a concentration-dependent manner. With real time PCR analysis, EFV significantly reduced the mRNA levels of tight junction proteins claudin-1, occludin, zonula occluden-1 and junctional adhesion molecule-1 compared with controls (P<0.05). Protein levels of these tight junction molecules were also reduced substantially in the EFV-treated cells by western blot and flow cytometry analyses. In addition, EFV also increased superoxide anion production with dihydroethidium and cellular glutathione assays, while it decreased mitochondrial membrane potential with JC-staining. Antioxidants (ginkgolide B and MnTBAP) effectively blocked EFV-induced endothelial permeability and mitochondrial dysfunction. Furthermore, EFV increased the phosphorylation of MAPK JNK and IkappaBalpha, thereby increasing NFkappaB translocation to the nucleus. Chemical JNK inhibitor and dominant negative mutant JNK and IkappaBalpha adenoviruses effectively blocked the effects of EFV on HCAECs. Thus, EFV increases endothelial permeability which may be due to the decrease of tight junction proteins and the increase of superoxide anion. JNK and NFkappaB activation may be directly involved in the signal transduction pathway of EFV action in HCAECs. PMID:19674747

  9. Different forms of human vascular adhesion protein-1 (VAP-1) in blood vessels in vivo and in cultured endothelial cells: implications for lymphocyte-endothelial cell adhesion models.

    PubMed

    Salmi, M; Jalkanen, S

    1995-10-01

    Vascular endothelium plays a pivotal role in controlling leukocyte extravasation from the blood into the tissues. Vascular adhesion protein-1 (VAP-1) is a novel endothelial cell molecule which mediates lymphocyte binding to the vascular lining (Salmi, M., and Jalkanen, S., Science 1992. 257:1407). In this study, we analyzed endothelial cell type-specific differences of VAP-1. In vivo, VAP-1 is a 90/170-kDa molecule which is mainly expressed on the lumenal surface and in cytoplasmic granules of peripheral lymph node-type postcapillary venules (high endothelial venules, HEV). In tonsil HEV, VAP-1 is modified with abundant sialic acids. VAP-1 is also detectable in the cytoplasm of human umbilical vein endothelial cells (HUVEC) and in an endothelial cell hybrid EaHy-926, although both cell types lack detectable surface VAP-1. Cultured endothelial cells do not express MECA-79-defined peripheral lymph node addressins either. VAP-1 was not translocated onto the endothelial cell surface after stimulation with multiple cytokines, mitogens or secretagogues which induced expression of other known endothelial adhesion molecules. Biochemical analyses revealed that VAP-1 is a approximately 180-kDa protein in these endothelial cell types. Digestions with neuraminidase, O-glycanase and N-glycanase, as well as treatment of cells with tunicamycin and benzyl-N-acetylgalactosaminide, did not alter the molecular mass of VAP-1 in EaHy-926. Pulse-chase experiments showed that VAP-1 is directly synthesized as a 180-kDa molecule without any detectable precursors. Thus, in cultured endothelial cells, VAP-1 is a 180-kDa protein which is devoid of post-translational modifications, and in particular, lacks the sialic acids crucial for the function of VAP-1 in tonsil vessels. Notably, the endothelial cell types commonly used as a model in studying lymphocyte-endothelial cell interactions lack surface expression of VAP-1 and peripheral node addressins, and hence are inherently of limited use in

  10. Microwave irradiation of rats at 2. 45 GHz activates pinocytotic-like uptake of tracer by capillary endothelial cells of cerebral cortex

    SciTech Connect

    Neubauer, C.; Phelan, A.M.; Kues, H.; Lange, D.G. )

    1990-01-01

    Far-field exposures of male albino rats to 2.45-GHz microwaves (10-microseconds pulses, 100 pps) at a low average power density (10 mW/cm2; SAR approximately 2 W/kg) and short durations (30-120 min) resulted in increased uptakes of tracer through the blood-brain barrier (BBB). The uptake of systemically administered rhodamine-ferritin complex by capillary endothelial cells (CECs) of the cerebral cortex was dependent on power density and on duration of exposure. At 5 mW/cm2, for example, a 15-min exposure had no effect. Near-complete blockade of uptake resulted when rats were treated before exposure to microwaves with a single dose of colchicine, which inhibits microtubular function. A pinocytotic-like mechanism is presumed responsible for the microwave-induced increase in BBB permeability.

  11. Aescin protection of human vascular endothelial cells exposed to cobalt chloride mimicked hypoxia and inflammatory stimuli.

    PubMed

    Montopoli, Monica; Froldi, Guglielmina; Comelli, Maria Cristina; Prosdocimi, Marco; Caparrotta, Laura

    2007-03-01

    Human vascular endothelial cells (HUVECs) were exposed to CoCl2 as an in vitro model of hypoxia. Expression of VCAM-1 (vascular cell adhesion molecule), reduction of PECAM-1 (platelet endothelial cell adhesion molecule) and cytoskeletal changes without alterations in cell viability were observed. HUVECs were also exposed to Escherichia coli lipopolysaccaride (LPS) as an in vitro model of inflammation: significant IL-6 release was measured. Pre-treatment of HUVECs with aescin prevented, in a concentration-dependent fashion (0.1-1 microM), the action of CoCl2 on VCAM-1 and PECAM-1, also preserving endothelial cell morphology. Furthermore, aescin pre-treatment reduced IL-6 release from LPS-activated vascular endothelium. PMID:17310430

  12. Kaempferia parviflora ethanolic extract promoted nitric oxide production in human umbilical vein endothelial cells.

    PubMed

    Wattanapitayakul, Suvara K; Suwatronnakorn, Maneewan; Chularojmontri, Linda; Herunsalee, Angkana; Niumsakul, Somchit; Charuchongkolwongse, Suphan; Chansuvanich, Nuchattra

    2007-04-01

    The rhizomes of Kaempferia parviflora (KP) (Zingiberaceae) have been used in Thai traditional medicine for health promotion and for the treatment of digestive disorders and gastric ulcer. This study investigated effect of KP on endothelial function. Studies in human umbilical vein endothelial cells (HUVEC) showed that KP dose-dependently increased nitrite concentrations in culture media after 48 h incubation. eNOS mRNA and protein expression were also enhanced. The induction of eNOS mRNA was detected at 4 h and plateau at 48 h while iNOS expression was not observed. These data demonstrate that KP has a great potential for a supplemental use in vascular endothelial health promotion. PMID:17113256

  13. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells

    SciTech Connect

    Wu Hualin; Lin ChiIou; Huang Yuanli; Chen, Pin-Shern; Kuo, Cheng-Hsiang; Chen, Mei-Shing; Wu, G.C.-C.; Shi, G.-Y.; Yang, H.-Y.; Lee Hsinyu

    2008-02-29

    Thrombomodulin (TM) is an anticoagulant glycoprotein highly expressed on endothelial cell surfaces. Increased levels of soluble TM in circulation have been widely accepted as an indicator of endothelial damage or dysfunction. Previous studies indicated that various proinflammatory factors stimulate TM shedding in various cell types such as smooth muscle cells and epithelial cells. Lysophosphatidic acid (LPA) is a bioactive lipid mediator present in biological fluids during endothelial damage or injury. In the present study, we first observed that LPA triggered TM shedding in human umbilical vein endothelial cells (HUVECs). By Cyflow analysis, we showed that the LPA-induced accessibility of antibodies to the endothelial growth factor (EGF)-like domain of TM is independent of matrix metalloproteinases (MMPs), while LPA-induced TM lectin-like domain shedding is MMP-dependent. Furthermore, a stable cell line expressing TM without its lectin-like domain exhibited a higher cell proliferation rate than a stable cell line expressing full-length TM. These results imply that LPA induces TM lectin-like domain shedding, which might contribute to the exposure of its EGF-like domain for EGF receptor (EGFR) binding, thereby stimulating subsequent cell proliferation. Based on our findings, we propose a novel mechanism for the exposure of TM EGF-like domain, which possibly mediates LPA-induced EGFR transactivation.

  14. Cocaine inhibits human endothelial cell IL-8 production: the role of transforming growth factor-beta.

    PubMed

    Mao, J T; Zhu, L X; Sharma, S; Chen, K; Huang, M; Santiago, S J; Gulsurd, J; Tashkin, D P; Dubinett, S M

    1997-10-10

    Cocaine use is associated with modulation of a broad range of biological functions including the capacity to influence cytokine production in murine and human immunoeffector cells. Little is known, however, regarding the effects of cocaine on endothelial cell cytokine production. Because the vascular endothelium actively participates in acute and chronic inflammatory responses and interleukin-8 (IL-8) is one of the key cytokines involved in the inflammatory process, modification of the production of IL-8 by vascular endothelial cells may interfere with the host response to infection or tissue injury. We investigated the effect of cocaine on endothelial cell IL-8 production. Conditioned supernatant from EA.hy 926 cells were evaluated by ELISA following in vitro cocaine exposure. Cocaine decreased IL-8 production in a dose-responsive manner, and this reduction correlated with down-regulation of IL-8 mRNA expression. Cocaine also increased the production of TGF-beta by EA.hy 926 cells and anti-TGF-beta abrogated the cocaine-mediated decrement of IL-8 production, indicating that cocaine down-regulates endothelial IL-8 production by increasing TGF-beta. Our findings suggest that the immunomodulatory effects of cocaine may be mediated, in part, by modification of endothelial-derived cytokine production. PMID:9344494

  15. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  16. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    SciTech Connect

    Zhou Yijun . E-mail: zhou-yijun@hotmail.com; Wang Jiahe; Zhang Jin

    2006-06-02

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-{kappa}B, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-{kappa}B, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease.

  17. Study of apoptosis induced by cytostatics and vegetal extracts on human endothelial cell line.

    PubMed

    Bârzu, Simona Natalia; Bădulescu, Maria Mihaela; Lupu, Andreea Roxana; Cremer, Lidia; Szegli, G; Kerek, F; Călugăru, Ana

    2008-01-01

    Angiogenesis, the biological process by which new capillaries are formed from pre-existing vessels, is a tightly controlled and complex process involving several factors with both stimulating and inhibiting steps. In solid tumor growth, a specific clinical turning point is the transition to the vascular phase. Once it develops an intrinsic vascular network, a tumor grows indefinitely. Tumor angiogenesis depends mainly on the release by neoplasic cells of growth factors specific for endothelial cells (ECs), able to stimulate growth of the host blood vessels. The aim of this study was to analyze the apoptotic effect of some cytostatics, Vinblastine, Rapamycin and Doxorubicin, and vegetal extracts (called VOB) isolated and purified from Vitis sp., on human EA.hy926 endothelial cell line. In a proliferation assay using Crystal Violet, we demonstrated that Vinblastine and Rapamycin cytostatics have synergistic effect on endothelial cell line EA.hy926 growth inhibition. The inhibitory effects of Vinblastine and Doxorubicin were enhanced by VOB vegetal extracts. A combined treatment of cytostatics and VOB vegetal extracts resulted in a stronger antiproliferative effect of EA.hy926 endothelial cells. Results obtained regarding the apoptosis induced on EA.hy926 endothelial cells showed that each compound alone was able to induce a significant percent of apoptotic cells in a dose-dependent manner. PMID:19284159

  18. Cytokine factors present in dengue patient sera induces alterations of junctional proteins in human endothelial cells.

    PubMed

    Appanna, Ramapraba; Wang, Seok Mui; Ponnampalavanar, Sasheela A; Lum, Lucy Chai See; Sekaran, Shamala Devi

    2012-11-01

    Plasma leakage in severe dengue has been postulated to be associated with skewed cytokine immune responses. In this study, the association of cytokines with vascular permeability in dengue patients was investigated. Human serum samples collected from 48 persons (13 with dengue fever, 29 with dengue hemorrhagic fever, and 6 healthy) were subjected to cytokines analysis by using Luminex Multiplex Technology. Selected serum samples from patients with dengue hemorrhagic fever sera and recombinant human cytokines were then tested for roles on inducing vascular permeability by treatment of human umbilical vein endothelial cells. Confocal immunofluorescence staining indicated morphologic alteration of human umbilical vein endothelial cells treated with serum samples from patients with dengue hemorrhagic fever compared with serum samples from healthy persons. The findings suggest that cytokines produced during dengue hemorrhagic infections could induce alterations in the vascular endothelium, which may play a fundamental role in the pathophysiology of dengue. PMID:22987650

  19. Direct cytotoxic action of Shiga toxin on human vascular endothelial cells.

    PubMed Central

    Obrig, T G; Del Vecchio, P J; Brown, J E; Moran, T P; Rowland, B M; Judge, T K; Rothman, S W

    1988-01-01

    To help explain a role of the Shiga toxin family in hemorrhagic colitis and hemolytic-uremic syndrome in humans, it has been hypothesized that these toxins cause direct damage to the vascular endothelium. We now report that Shiga toxin purified from Shigella dysenteriae 1 does indeed have a direct cytotoxic effect on vascular endothelial cells in cultures. Human umbilical vein endothelial cells (HUVEC) in confluent monolayers were reduced 50% by 10(-8) M Shiga toxin after a lag period of 48 to 96 h. In comparison, nonconfluent HUVEC were reduced 50% by 10(-10) M Shiga toxin within a 24-h period. These data suggest that dividing endothelial cells are more sensitive to Shiga toxin than are quiescent cells in confluent monolayers. Both confluent and nonconfluent HUVEC specifically bound 125I-Shiga toxin. However, in response to the toxin, rates of incorporation of [3H]leucine into protein were more severely reduced in nonconfluent cells than in confluent cells. Toxin inhibition of protein synthesis preceded detachment of cells from the substratum. The specific binding of 125I-Shiga toxin to human endothelial cells and the cytotoxic response were both toxin dose dependent and neutralized by anti-Shiga toxin antibody. Heat-denatured Shiga toxin was without the cytotoxic effect. In addition, the complete culture system contained less than 0.1 ng of bacterial endotoxin per ml, as measured by the Limulus amoebocyte lysate test. PMID:3044997

  20. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions.

    PubMed

    Zhu, Ying-Ting; Chen, Hung-Chi; Chen, Szu-Yu; Tseng, Scheffer C G

    2012-08-01

    Contact inhibition ubiquitously exists in non-transformed cells that are in contact with neighboring cells. This phenomenon explains the poor regenerative capacity of in vivo human corneal endothelial cells during aging, injury and surgery. This study demonstrated that the conventional approach of expanding human corneal endothelial cells by disrupting contact inhibition with EDTA followed by bFGF activated canonical Wnt signaling and lost the normal phenotype to endothelial-mesenchymal transition, especially if TGFβ1 was added. By contrast, siRNA against p120 catenin (CTNND1) also uniquely promoted proliferation of the endothelial cells by activating trafficking of p120 catenin to the nucleus, thus relieving repression by nuclear Kaiso. This nuclear p120-catenin-Kaiso signaling is associated with activation of RhoA-ROCK signaling, destabilization of microtubules and inhibition of Hippo signaling, but not with activation of Wnt-β-catenin signaling. Consequently, proliferating human corneal endothelial cells maintained a hexagonal shape, with junctional expression of N-cadherin, ZO-1 and Na(+)/K(+)-ATPase. Further expansion of human corneal endothelial monolayers with a normal phenotype and a higher density was possible by prolonging treatment with p120 catenin siRNA followed by its withdrawal. This new strategy of perturbing contact inhibition by selective activation of p120-catenin-Kaiso signaling without disrupting adherent junction could be used to engineer surgical grafts containing normal human corneal endothelial cells to meet a global corneal shortage and for endothelial keratoplasties. PMID:22505615

  1. Acute laminar shear stress reversibly increases human glomerular endothelial cell permeability via activation of endothelial nitric oxide synthase.

    PubMed

    Bevan, Heather S; Slater, Sadie C; Clarke, Hayley; Cahill, Paul A; Mathieson, Peter W; Welsh, Gavin I; Satchell, Simon C

    2011-10-01

    Laminar shear stress is a key determinant of systemic vascular behavior, including through activation of endothelial nitric oxide synthase (eNOS), but little is known of its role in the glomerulus. We confirmed eNOS expression by glomerular endothelial cells (GEnC) in tissue sections and examined effects of acute exposure (up to 24 h) to physiologically relevant levels of laminar shear stress (10-20 dyn/cm(2)) in conditionally immortalized human GEnC. Laminar shear stress caused an orientation of GEnC and stress fibers parallel to the direction of flow and induced Akt and eNOS phosphorylation along with NO production. Inhibition of the phophatidylinositol (PI)3-kinase/Akt pathway attenuated laminar shear stress-induced eNOS phosphorylation and NO production. Laminar shear stress of 10 dyn/cm(2) had a dramatic effect on GEnC permeability, reversibly decreasing the electrical resistance across GEnC monolayers. Finally, the laminar shear stress-induced reduction in electrical resistance was attenuated by the NOS inhibitors l-N(G)-monomethyl arginine (l-NMMA) and l-N(G)-nitroarginine methyl ester (l-NAME) and also by inhibition of the PI3-kinase/Akt pathway. Hence we have shown for GEnC in vitro that acute permeability responses to laminar shear stress are dependent on NO, produced via activation of the PI3-kinase/Akt pathway and increased eNOS phosphorylation. These results suggest the importance of laminar shear stress and NO in regulating the contribution of GEnC to the permeability properties of the glomerular capillary wall. PMID:21775480

  2. Concise Review: An Update on the Culture of Human Corneal Endothelial Cells for Transplantation.

    PubMed

    Parekh, Mohit; Ferrari, Stefano; Sheridan, Carl; Kaye, Stephen; Ahmad, Sajjad

    2016-02-01

    The cornea forms the front window of the eye, enabling the transmission of light to the retina through a crystalline lens. Many disorders of the cornea lead to partial or total blindness, and therefore corneal transplantation becomes mandatory. Recently, selective corneal layer (as opposed to full thickness) transplantation has become popular because this leads to earlier rehabilitation and visual outcomes. Corneal endothelial disorders are a common cause of corneal disease and transplantation. Corneal endothelial transplantation is successful but limited worldwide because of lower donor corneal supply. Alternatives to corneal tissue for endothelial transplantation therefore require immediate attention. The field of human corneal endothelial culture for transplantation is rapidly emerging as a possible viable option. This manuscript provides an update regarding these developments. Significance: The cornea is the front clear window of the eye. It needs to be kept transparent for normal vision. It is formed of various layers of which the posterior layer (the endothelium) is responsible for the transparency of the cornea because it allows the transport of ions and solutes to and from the other layers of the cornea. Corneal blindness that results from the corneal endothelial dysfunction can be treated using healthy donor tissues. There is a huge demand for human donor corneas but limited supply, and therefore there is a need to identify alternatives that would reduce this demand. Research is underway to understand the isolation techniques for corneal endothelial cells, culturing these cells in the laboratory, and finding possible options to transplant these cells in the patients. This review article is an update on the recent developments in this field. PMID:26702128

  3. Pterostilbene, an Active Constituent of Blueberries, Stimulates Nitric Oxide Production via Activation of Endothelial Nitric Oxide Synthase in Human Umbilical Vein Endothelial Cells.

    PubMed

    Park, Seong Hoon; Jeong, Sun-Oh; Chung, Hun-Teag; Pae, Hyun-Ock

    2015-09-01

    Endothelial dysfunction, a key process in development of cardiovascular diseases, is largely due to reduced nitric oxide (NO) derived from endothelial NO synthase (eNOS). Resveratrol has been reported to stimulate NO production via estrogen receptor α (ERα) activation in endothelial cells. Here, we investigated whether two natural methylated analogs of resveratrol, pterostilbene (Pts) and trans-3,5,4'-trimethoxystilbene (TMS), similarly to resveratrol, could influence endothelial NO release in human umbilical vein endothelial cells (HUVECs). In HUVECs exposed to Pts or TMS, NO production and phosphorylation of eNOS, protein kinase B (Akt), and ERα were measured by using a fluorimetric NO assay kit and Western blot analysis, respectively. Dimethylated Pts, but not trimethylated TMS, stimulated dose-dependent NO production via eNOS phosphorylation. Pts also stimulated dose-dependent phosphorylation of Akt, but not of ERα. NO production and eNOS phosphorylation in response to Pts were significantly abolished by the phosphoinositide 3-kinase (PI3K)/Akt inhibitor LY294002, but not by the ERα antagonist ICI182780. Our results suggest that Pts, but not TMS, is capable of inducing eNOS phosphorylation and the subsequent NO release, presumably, by activating PI3K/Akt pathway. The potential efficacy of Pts, an active constituent of blueberries, may aid in the prevention of cardiovascular diseases characterized by endothelial dysfunction. PMID:26008990

  4. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system

    PubMed Central

    Seo, Ha-Rim; Jeong, Hyo Eun; Joo, Hyung Joon; Choi, Seung-Cheol; Park, Chi-Yeon; Kim, Jong-Ho; Choi, Ji-Hyun; Cui, Long-Hui; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2016-01-01

    The human body contains different endothelial cell types and differences in their angiogenic potential are poorly understood. We compared the functional angiogenic ability of human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using a three-dimensional (3D) microfluidic cell culture system. HAECs and HUVECs exhibited similar cellular characteristics in a 2D culture system; however, in the 3D microfluidic angiogenesis system, HAECs exhibited stronger angiogenic potential than HUVECs. Interestingly, the expression level of fibroblast growth factor (FGF)2 and FGF5 under vascular endothelial growth factor (VEGF)-A stimulation was significantly higher in HAECs than in HUVECs. Moreover, small interfering RNA-mediated knockdown of FGF2 and FGF5 more significantly attenuated vascular sprouting induced from HAECs than HUVECs. Our results suggest that HAECs have greater angiogenic potential through FGF2 and FGF5 upregulation and could be a compatible endothelial cell type to achieve robust angiogenesis. PMID:27357248

  5. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system.

    PubMed

    Seo, Ha-Rim; Jeong, Hyo Eun; Joo, Hyung Joon; Choi, Seung-Cheol; Park, Chi-Yeon; Kim, Jong-Ho; Choi, Ji-Hyun; Cui, Long-Hui; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2016-01-01

    The human body contains different endothelial cell types and differences in their angiogenic potential are poorly understood. We compared the functional angiogenic ability of human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using a three-dimensional (3D) microfluidic cell culture system. HAECs and HUVECs exhibited similar cellular characteristics in a 2D culture system; however, in the 3D microfluidic angiogenesis system, HAECs exhibited stronger angiogenic potential than HUVECs. Interestingly, the expression level of fibroblast growth factor (FGF)2 and FGF5 under vascular endothelial growth factor (VEGF)-A stimulation was significantly higher in HAECs than in HUVECs. Moreover, small interfering RNA-mediated knockdown of FGF2 and FGF5 more significantly attenuated vascular sprouting induced from HAECs than HUVECs. Our results suggest that HAECs have greater angiogenic potential through FGF2 and FGF5 upregulation and could be a compatible endothelial cell type to achieve robust angiogenesis. PMID:27357248

  6. Bortezomib induces autophagic death in proliferating human endothelial cells

    SciTech Connect

    Belloni, Daniela; Veschini, Lorenzo; Foglieni, Chiara; Dell'Antonio, Giacomo; Caligaris-Cappio, Federico; Ferrarini, Marina; Ferrero, Elisabetta

    2010-04-01

    The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.

  7. Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration

    SciTech Connect

    Cheng Chingwen Yeh Juching; Fan Taiping; Smith, Stephen K.; Charnock-Jones, D. Stephen

    2008-01-11

    Cell to cell interaction is one of the key processes effecting angiogenesis and endothelial cell function. Wnt signalling is mediated through cell-cell interaction and is involved in many developmental processes and cellular functions. In this study, we investigated the possible function of Wnt5a and the non-canonical Wnt pathway in human endothelial cells. We found that Wnt5a-mediated non-canonical Wnt signalling regulated endothelial cell proliferation. Blocking this pathway using antibody, siRNA or a down-stream inhibitor led to suppression of endothelial cell proliferation, migration, and monolayer wound closure. We also found that the mRNA level of Wnt5a is up-regulated when endothelial cells are treated with a cocktail of inflammatory cytokines. Our findings suggest non-canonical Wnt signalling plays a role in regulating endothelial cell growth and possibly in angiogenesis.

  8. Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial cells.

    PubMed

    Moysidis, Stavros N; Alvarez-Delfin, Karen; Peschansky, Veronica J; Salero, Enrique; Weisman, Alejandra D; Bartakova, Alena; Raffa, Gabriella A; Merkhofer, Richard M; Kador, Karl E; Kunzevitzky, Noelia J; Goldberg, Jeffrey L

    2015-04-01

    To improve the delivery and integration of cell therapy using magnetic cell guidance for replacement of corneal endothelium, here we assess magnetic nanoparticles' (MNPs') effects on human corneal endothelial cells (HCECs) in vitro. Biocompatible, 50 nm superparamagnetic nanoparticles endocytosed by cultured HCECs induced no short- or long-term change in viability or identity. Assessment of guidance of the magnetic HCECs in the presence of different magnet shapes and field strengths showed a 2.4-fold increase in delivered cell density compared to gravity alone. After cell delivery, HCECs formed a functional monolayer, with no difference in tight junction formation between MNP-loaded and control HCECs. These data suggest that nanoparticle-mediated magnetic cell delivery may increase the efficiency of cell delivery without compromising HCEC survival, identity or function. Future studies may assess the safety and efficacy of this therapeutic modality in vivo. From the clinical editor: The authors show in this article that magnetic force facilitates the delivery of human corneal endothelial cells loaded by superparamagnetic nanoparticles to cornea, without changing their morphology, identity or functional properties. This novel idea can potentially have vast impact in the treatment of corneal endothelial dystrophies by providing self-endothelial cells after ex-vivo expansion. PMID:25596075

  9. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells

    PubMed Central

    Reinhard, Nathalie R.; van Helden, Suzanne F.; Anthony, Eloise C.; Yin, Taofei; Wu, Yi I.; Goedhart, Joachim; Gadella, Theodorus W. J.; Hordijk, Peter L.

    2016-01-01

    Endothelial cells line the vasculature and are important for the regulation of blood pressure, vascular permeability, clotting and transendothelial migration of leukocytes and tumor cells. A group of proteins that that control the endothelial barrier function are the RhoGTPases. This study focuses on three homologous (>88%) RhoGTPases: RhoA, RhoB, RhoC of which RhoB and RhoC have been poorly characterized. Using a RhoGTPase mRNA expression analysis we identified RhoC as the highest expressed in primary human endothelial cells. Based on an existing RhoA FRET sensor we developed new RhoB/C FRET sensors to characterize their spatiotemporal activation properties. We found all these RhoGTPase sensors to respond to physiologically relevant agonists (e.g. Thrombin), reaching transient, localized FRET ratio changes up to 200%. These RhoA/B/C FRET sensors show localized GEF and GAP activity and reveal spatial activation differences between RhoA/C and RhoB. Finally, we used these sensors to monitor GEF-specific differential activation of RhoA/B/C. In summary, this study adds high-contrast RhoB/C FRET sensors to the currently available FRET sensor toolkit and uncover new insights in endothelial and RhoGTPase cell biology. This allows us to study activation and signaling by these closely related RhoGTPases with high spatiotemporal resolution in primary human cells. PMID:27147504

  10. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells.

    PubMed

    Reinhard, Nathalie R; van Helden, Suzanne F; Anthony, Eloise C; Yin, Taofei; Wu, Yi I; Goedhart, Joachim; Gadella, Theodorus W J; Hordijk, Peter L

    2016-01-01

    Endothelial cells line the vasculature and are important for the regulation of blood pressure, vascular permeability, clotting and transendothelial migration of leukocytes and tumor cells. A group of proteins that that control the endothelial barrier function are the RhoGTPases. This study focuses on three homologous (>88%) RhoGTPases: RhoA, RhoB, RhoC of which RhoB and RhoC have been poorly characterized. Using a RhoGTPase mRNA expression analysis we identified RhoC as the highest expressed in primary human endothelial cells. Based on an existing RhoA FRET sensor we developed new RhoB/C FRET sensors to characterize their spatiotemporal activation properties. We found all these RhoGTPase sensors to respond to physiologically relevant agonists (e.g. Thrombin), reaching transient, localized FRET ratio changes up to 200%. These RhoA/B/C FRET sensors show localized GEF and GAP activity and reveal spatial activation differences between RhoA/C and RhoB. Finally, we used these sensors to monitor GEF-specific differential activation of RhoA/B/C. In summary, this study adds high-contrast RhoB/C FRET sensors to the currently available FRET sensor toolkit and uncover new insights in endothelial and RhoGTPase cell biology. This allows us to study activation and signaling by these closely related RhoGTPases with high spatiotemporal resolution in primary human cells. PMID:27147504

  11. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    SciTech Connect

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S. . E-mail: atarnawski@yahoo.com

    2007-02-09

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling.

  12. Binding, internalization, and degradation of basic fibroblast growth factor in human microvascular endothelial cells

    SciTech Connect

    Bikfalvi, A.; Dupuy, E.; Inyang, A.L.; Tobelem, G. ); Fayein, N.; Courtois, Y. ); Leseche, G. )

    1989-03-01

    The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells. The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely {sup 125}I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound {sup 125}I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At this temperature, degradation of the internalized ligand was followed after 1 hour by the appearance of three major bands of 15,000 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.

  13. Plasma membrane microdomains regulate TACE-dependent TNFR1 shedding in human endothelial cells

    PubMed Central

    D’Alessio, Alessio; Esposito, Bianca; Giampietri, Claudia; Ziparo, Elio; Pober, Jordan S; Filippini, Antonio

    2012-01-01

    Abstract Upon stimulation by histamine, human vascular endothelial cells (EC) shed a soluble form of tumour necrosis factor receptor 1 (sTNFR1) that binds up free TNF, dampening the inflammatory response. Shedding occurs through proteolytic cleavage of plasma membrane-expressed TNFR1 catalysed by TNF-α converting enzyme (TACE). Surface expressed TNFR1 on EC is largely sequestered into specific plasma membrane microdomains, the lipid rafts/caveolae. The purpose of this study was to determine the role of these domains in TACE-mediated TNFR1 shedding in response to histamine. Human umbilical vein endothelial cells derived EA.hy926 cells respond to histamine via H1 receptors to shed TNFR1. Both depletion of cholesterol by methyl-β-cyclodextrin and small interfering RNA knockdown of the scaffolding protein caveolin-1 (cav-1), treatments that disrupt caveolae, reduce histamine-induced shedding of membrane-bound TNFR1. Moreover, immunoblotting of discontinuous sucrose gradient fractions show that TACE, such as TNFR1, is present within low-density membrane fractions, concentrated within caveolae, in unstimulated EA.hy926 endothelial cells and co-immunoprecipitates with cav-1. Silencing of cav-1 reduces the levels of both TACE and TNFR1 protein and displaces TACE, from low-density membrane fractions where TNFR1 remains. In summary, we show that endothelial lipid rafts/caveolae co-localize TACE to surface expressed TNFR1, promoting efficient shedding of sTNFR1 in response to histamine. PMID:21645239

  14. Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    PubMed Central

    Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha

    2011-01-01

    Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was

  15. Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier.

    PubMed

    Elmorsy, Ekramy; Elzalabany, Laila M; Elsheikha, Hany M; Smith, Paul A

    2014-10-01

    Although the mechanisms of action of antipsychotics (APs) on neuronal function are well understood, very little is known about their effects on cells of the blood-brain barrier (BBB); one function of which is to limit the access of these amphiphilic compounds to the central nervous system. To address this question we have investigated the cytological and functional effects of four APs: chlorpromazine (CLP), haloperidol (HAL), risperidone (RIS) and clozapine (CLZ), at concentrations typical of high therapeutic dosage on a human brain microvascular endothelial cell (HBMEC) model of the BBB. At ~10 µM all four APs impaired the ability of HBMECs to reduce MTT which was followed by decreased Trypan blue exclusion and increased Lactate dehydrogenase release. These effects were associated with oxidative stress which was partly reversed by incubation in 10mM glutathione. At their EC50 concentrations for MTT reduction, all four APs disrupted cellular ultrastructure and morphology. HAL, CPZ and CLZ increased Caspase -3, -8 and -9 activity, chromatin condensation and fragmentation, data indicative of apoptosis. These events were associated with decreased transcytosis of Evans blue and increased transendothelial potential difference and electrical resistance of this BBB model. These findings suggest that at high therapeutic concentrations, CPZ and CLZ are likely to incur cytoxic effects and apoptosis of BBB endothelia with an impairment of barrier functionality. Such events may underlie the aetiology of neuroleptic associated cerebral oedema and neuroleptic malignant syndrome. PMID:25139421

  16. Experimental Models of Microvascular Immunopathology: The Example of Cerebral Malaria

    PubMed Central

    El-Assaad, Fatima; Combes, Valery; Grau, Georges ER

    2015-01-01

    Human cerebral malaria is a severe and often lethal complication of Plasmodium falciparum infection. Complex host and parasite interactions should the precise mechanisms involved in the onset of this neuropathology. Adhesion of parasitised red blood cells and host cells to endothelial cells lead to profound endothelial alterations that trigger immunopathological changes, varying degrees of brain oedema and can compromise cerebral blood flow, cause cranial nerve dysfunction and hypoxia. Study of the cerebral pathology in human patients is limited to clinical and genetic field studies in endemic areas, thus cerebral malaria (CM) research relies heavily on experimental models. The availability of malaria models allows study from the inoculation of Plasmodium to the onset of disease and permit invasive experiments. Here, we discuss some aspects of our current understanding of CM, the experimental models available and some important recent findings extrapolated from these models. PMID:26430675

  17. Effects of Fe particle irradiation on human endothelial barrier structure and function

    NASA Astrophysics Data System (ADS)

    Sharma, Preety; Guida, Peter; Grabham, Peter

    2014-07-01

    Space travel involves exposure to biologically effective heavy ion radiation and there is consequently a concern for possible degenerative disorders in humans. A significant target for radiation effects is the microvascular system, which is crucial to healthy functioning of the tissues. Its pathology is linked to disrupted endothelial barrier function and is not only a primary event in a range of degenerative diseases but also an important influencing factor in many others. Thus, an assessment of the effects of heavy ion radiation on endothelial barrier function would be useful for estimating the risks of space travel. This study was aimed at understanding the effects of high LET Fe particles (1 GeV/n) and is the first investigation of the effects of charged particles on the function of the human endothelial barrier. We used a set of established and novel endpoints to assess barrier function after exposure. These include, trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in 2D monolayers and in 3D tissue models), and permeability of molecules through the endothelial barrier. A dose of 0.50 Gy was sufficient to cause a progressive reduction in TEER measurements that were significant 48 hours after exposure. Concurrently, there were morphological changes and a 14% loss of cells from monolayers. Gaps also appeared in the normally continuous cell-border localization of the tight junction protein - ZO-1 but not the Platelet endothelial cell adhesion molecule (PECAM-1) in both monolayers and in 3D vessel models. Disruption of barrier function was confirmed by increased permeability to 3 kDa and 10 kDa dextran molecules. A dose of 0.25 Gy caused no detectible change in cell number, morphology, or TEER, but did cause barrier disruption since there were gaps in the cell border localization of ZO-1 and an increased permeability to 3 kDa dextran. These results indicate that Fe particles potently have

  18. Induction of connective tissue growth factor (CTGF) in human endothelial cells by lysophosphatidic acid, sphingosine-1-phosphate, and platelets.

    PubMed

    Muehlich, Susanne; Schneider, Nadine; Hinkmann, Fabian; Garlichs, Christoph D; Goppelt-Struebe, Margarete

    2004-08-01

    Endothelial dysfunction is characterized by multiple interactions between endothelial cells and components of the blood. This study focussed on the induction of the pro-atherogenic connective tissue growth factor (CTGF) in endothelial cells by bioactive lipids and platelets. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) led to a time- and concentration-dependent increase in CTGF mRNA and protein expression in the human endothelial cell line EAHY 926 and in primary cultures of human umbilical vein endothelial cells (HUVEC). As both cell types expressed various receptors for LPA and S1P, signaling pathways were further characterized by pharmacological means: induction of CTGF was pertussis toxin-insensitive and inhibition of activation of p42/44 MAP kinases only partially reduced CTGF expression. On the contrary, interference with the RhoA signaling pathway by simvastatin, an inhibitor of geranylgeranyltransferases, or the Rho-kinase inhibitor Y27632 prevented induction of CTGF. Co-incubation of endothelial cells with freshly isolated human platelets significantly increased the expression of CTGF mRNA in endothelial cells, which was also sensitive to simvastatin. Up-regulation of CTGF in endothelial cells, induced by LPA, S1P, or platelets, may contribute to the initiation and progression of atherosclerosis. Interference of simvastatin with the synthesis of this pro-atherogenic factor further supports the anti-atherogenic role of statins. PMID:15262182

  19. Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia.

    PubMed

    Ainslie, Philip N; Shaw, Andrew D; Smith, Kurt J; Willie, Christopher K; Ikeda, Keita; Graham, Joseph; Macleod, David B

    2014-05-01

    Characterization of the influence of oxygen availability on brain metabolism is an essential step toward a better understanding of brain energy homoeostasis and has obvious clinical implications. However, how brain metabolism depends on oxygen availability has not been clearly examined in humans. We therefore assessed the influence of oxygen on CBF (cerebral blood flow) and CMRO2 (cerebral metabolic rates for oxygen) and carbohydrates. PaO2 (arterial partial pressure of oxygen) was decreased for 15 min to ~60, ~44 and ~35 mmHg [to target a SaO2 (arterial oxygen saturation) of 90, 80 and 70% respectively], and elevated to ~320 and ~430 mmHg. Isocapnia was maintained during each trial. At the end of each stage, arterial-jugular venous differences and volumetric CBF were measured to directly calculate cerebral metabolic rates. During progressive hypoxaemia, elevations in CBF were correlated with the reductions in both SaO2 (R2=0.54, P<0.05) and CaO2 (arterial oxygen content) (R2=0.57, P<0.05). Despite markedly reduced CaO2, cerebral oxygen delivery was maintained by increased CBF. Cerebral metabolic rates for oxygen, glucose and lactate remained unaltered during progressive hypoxia. Consequently, cerebral glucose delivery was in excess of that required, and net lactate efflux increased slightly in severe hypoxia, as reflected by a small increase in jugular venous lactate. Progressive hyperoxia did not alter CBF, CaO2, substrate delivery or cerebral metabolism. In conclusion, marked elevations in CBF with progressive hypoxaemia and related reductions in CaO2 resulted in a well-maintained cerebral oxygen delivery. As such, cerebral metabolism is still supported almost exclusively by carbohydrate oxidation during severe levels of hypoxaemia. PMID:24117382

  20. Interleukin-33 stimulates GM-CSF and M-CSF production by human endothelial cells.

    PubMed

    Montanari, Eliana; Stojkovic, Stefan; Kaun, Christoph; Lemberger, Christof E; de Martin, Rainer; Rauscher, Sabine; Gröger, Marion; Maurer, Gerald; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-08-01

    Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in various inflammatory conditions targeting amongst other cells the endothelium. Besides regulating the maturation and functions of myeloid cells, granulocyte macrophage-colony stimulating factor (GM-CSF) and macrophage-CSF (M-CSF) have been shown to play a role in such pathologies too. It was the aim of our study to investigate a possible influence of IL-33 on GM-CSF and M-CSF production by human endothelial cells. IL-33, but not IL-18 or IL-37, stimulated GM-CSF and M-CSF mRNA expression and protein production by human umbilical vein endothelial cells (HUVECs) and human coronary artery ECs (HCAECs) through the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in an IL-1-independent way. This effect was inhibited by the soluble form of ST2 (sST2), which is known to act as a decoy receptor for IL-33. The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor fluvastatin could also be shown to moderately reduce the IL-33-mediated effect on M-CSF, but not on GM-CSF expression. In addition, IL-33, IL-1β, GM-CSF and M-CSF were detected in endothelial cells of human carotid atherosclerotic plaques using immunofluorescence. Upregulation of GM-CSF and M-CSF production by human endothelial cells, an effect that appears to be mediated by NF-κB and to be independent of IL-1, may be an additional mechanism through which IL-33 contributes to inflammatory activation of the vessel wall. PMID:27173404

  1. Tetrahydrobiopterin Role in human umbilical vein endothelial dysfunction in maternal supraphysiological hypercholesterolemia.

    PubMed

    Leiva, Andrea; Fuenzalida, Bárbara; Salsoso, Rocío; Barros, Eric; Toledo, Fernando; Gutiérrez, Jaime; Pardo, Fabián; Sobrevia, Luis

    2016-04-01

    Maternal physiological hypercholesterolemia (MPH) allows a proper foetal development; however, maternal supraphysiological hypercholesterolemia (MSPH) associates with foetal endothelial dysfunction and early development of atherosclerosis. MSPH courses with reduced endothelium-dependent dilation of the human umbilical vein due to reduced endothelial nitric oxide synthase activity compared with MPH. Whether MSPH modifies the availability of the nitric oxide synthase cofactor tetrahydrobiopterin is unknown. We investigated whether MSPH-associated lower umbilical vein vascular reactivity results from reduced bioavailability of tetrahydrobiopterin. Total cholesterol <7.2mmol/L was considered as maternal physiological hypercholesterolemia (n=72 women) and ≥7.2mmol/L as MSPH (n=35 women). Umbilical veins rings were used for vascular reactivity assays (wire myography), and primary cultures of human umbilical vein endothelial cells (HUVECs) to measure nitric oxide synthase, GTP cyclohydrolase 1, and dihydrofolate reductase expression and activity, as well as tetrahydrobiopterin content. MSPH reduced the umbilical vein rings relaxation caused by calcitonine gene-related peptide, a phenomenon partially improved by incubation with sepiapterin. HUVECs from MSPH showed lower nitric oxide synthase activity (l-citrulline synthesis from l-arginine) without changes in its protein abundance, as well as reduced tetrahydrobiopterin level compared with MPH, a phenomenon reversed by incubation with sepiapterin. Expression and activity of GTP cyclohydrolase 1 was lower in MSPH, without changes in dihydrofolate reductase expression. MSPH is a pathophysiological condition reducing human umbilical vein reactivity due to lower bioavailability of tetrahydrobiopterin leading to lower NOS activity in the human umbilical vein endothelium. PMID:26826019

  2. Stimulation of angiogenesis and survival of endothelial cells by human monoclonal Tie2 receptor antibody.

    PubMed

    Hwang, Byungtae; Lee, Sang-Hyun; Kim, Jang-Seong; Moon, Ji Hyun; Jeung, In Cheul; Lee, Na Geum; Park, Jongjin; Hong, Hyo Jeong; Cho, Young-Lai; Jung, Haiyoung; Park, Young-Jun; Lee, Seon-Jin; Lee, Hee Gu; Kim, Won Kon; Han, Baek Soo; Bae, Kwang-Hee; Chung, Sang J; Kwon, Young-Guen; Lee, Sang Chul; Kim, Sang Jik; Min, Jeong-Ki

    2015-05-01

    Angiopoietin-1 (Ang1) and its endothelium-specific receptor, tyrosine kinase with Ig and epidermal growth factor homology domain 2 (Tie2), play critical roles in vascular development. Although the Ang1/Tie2 system has been considered a promising target for therapeutic neovascularization, several imitations of large-scale production have hampered the development of recombinant Ang1 for therapeutics. In this study, we produced a fully human agonistic antibody against Tie2, designated 1-4h, and tested the applicability of 1-4h as an alternative to native Ang1 in therapeutic angiogenesis. 1-4h significantly enhanced the phosphorylation of Tie2 in a dose- and time-dependent manner in human Tie2-expressing HEK293 cells and human umbilical vein endothelial cells. Moreover, 1-4h induced the activation of Tie2-mediated intracellular signaling such as AKT, eNOS, MAPK, and Focal Adhesion Kinase p125(FAK). In addition, 1-4h increased the chemotactic motility and capillary-like tube formation of endothelial cells in vitro and enhanced the survival of serum-deprived endothelial cells. Taken together, our data clearly suggest that a human Tie2 agonistic antibody is a potentially useful therapeutic approach for the treatment of several ischemic diseases including delayed-wound healing and ischemic heart and limb diseases. PMID:25771003

  3. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    PubMed

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured

  4. Elevated Cell-Specific Microparticles Are a Biological Marker for Cerebral Dysfunctions in Human Severe Malaria

    PubMed Central

    Pankoui Mfonkeu, Joël Bertrand; Gouado, Inocent; Fotso Kuaté, Honoré; Zambou, Odile; Amvam Zollo, Paul Henri; Grau, Georges Emile Raymond; Combes, Valéry

    2010-01-01

    Cerebral malaria (CM) and severe anemia (SA) are the most severe complications of Plasmodium falciparum infections. Although increased release of endothelial microparticles (MP) correlates with malaria severity, the full extent of vascular cell vesiculation remains unknown. Here, we characterize the pattern of cell-specific MP in patients with severe malaria. We tested the hypothesis that systemic vascular activation contributes to CM by examining origins and levels of plasma MP in relation to clinical syndromes, disease severity and outcome. Patients recruited in Douala, Cameroon, were assigned to clinical groups following WHO criteria. MP quantitation and phenotyping were carried out using cell-specific markers by flow cytometry using antibodies recognizing cell-specific surface markers. Platelet, erythrocytic, endothelial and leukocytic MP levels were elevated in patients with cerebral dysfunctions and returned to normal by discharge. In CM patients, platelet MP were the most abundant and their levels significantly correlated with coma depth and thrombocytopenia. This study shows for the first time a widespread enhancement of vesiculation in the vascular compartment appears to be a feature of CM but not of SA. Our data underpin the role of MP as a biomarker of neurological involvement in severe malaria. Therefore, intervention to block MP production in severe malaria may provide a new therapeutic pathway. PMID:20976232

  5. Ginkgolide B protects human umbilical vein endothelial cells against xenobiotic injuries via PXR activation

    PubMed Central

    Zhou, Tao; You, Wen-ting; Ma, Zeng-chun; Liang, Qian-de; Tan, Hong-ling; Xiao, Cheng-rong; Tang, Xiang-lin; Zhang, Bo-li; Wang, Yu-guang; Gao, Yue

    2016-01-01

    Aim: Pregnane X receptor (PXR) is a nuclear receptor that regulates a number of genes encoding drug metabolism enzymes and transporters and plays a key role in xeno- and endobiotic detoxification. Ginkgolide B has shown to increase the activity of PXR. Here we examined whether ginkgolide B activated PXR and attenuated xenobiotic-induced injuries in endothelial cells. Methods: Human umbilical vein endothelial cells (HUVECs) were treated with ginkgolide B. The expression of PXR, CYP3A4, MDR1, VCAM-1, E-selectin and caspase-3 were quantified with qRT-PCR and Western blot analysis. Cell apoptosis was analyzed with flow cytometry. Fluorescently labeled human acute monocytic leukemia cells (THP-1 cells) were used to examine cell adhesion. Results: Ginkgolide B (30–300 μmol/L) did not change the mRNA and protein levels of PXR in the cells, but dose-dependently increased nuclear translocation of PXR protein. Ginkgolide B increased the expression of CYP3A4 and MDR1 in the cells, which was partially reversed by pretreatment with the selective PXR signaling antagonist sulforaphane, or transfection with PXR siRNA. Functionally, ginkgolide B dose-dependently attenuated doxorubicin- or staurosporine-induced apoptosis, which was reversed by transfection with PXR siRNA. Moreover, ginkgolide B suppressed TNF-α-induced THP-1 cell adhesion and TNF-α-induced expression of vascular adhesion molecule 1 (VCAM-1) and E-selectin in the cells, which was also reversed by transfection with PXR siRNA. Conclusion: Ginkgolide B exerts anti-apoptotic and anti-inflammatory effects on endothelial cells via PXR activation, suggesting that a PXR-mediated endothelial detoxification program may be important for protecting endothelial cells from xeno- and endobiotic-induced injuries. PMID:26775663

  6. Biomaterials trigger endothelial cell activation when co-incubated with human whole blood.

    PubMed

    Herklotz, Manuela; Hanke, Jasmin; Hänsel, Stefanie; Drichel, Juliane; Marx, Monique; Maitz, Manfred F; Werner, Carsten

    2016-10-01

    Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood. PMID:27472163

  7. Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation.

    PubMed

    Salinet, Angela S M; Robinson, Thompson G; Panerai, Ronney B

    2015-01-15

    Cerebral blood flow (CBF) regulation can be impaired in acute ischemic stroke but the combined effects of dynamic cerebral autoregulation (CA), CO2 cerebrovascular reactivity (CVR), and neurovascular coupling (NVC), obtained from simultaneous measurements, have not been described. CBF velocity in the middle cerebral artery (MCA) (CBFv, transcranial Doppler), blood pressure (BP, Finometer), and end-tidal Pco2 (PetCO2 , infrared capnography) were recorded during a 1-min passive movement of the arm in 27 healthy controls [mean age (SD) 61.4 (6.0) yr] and 27 acute stroke patients [age 63 (11.7) yr]. A multivariate autoregressive-moving average model was used to separate the contributions of BP, arterial Pco2 (PaCO2 ), and the neural activation to the CBFv responses. CBFv step responses for the BP, CO2, and stimulus inputs were also obtained. The contribution of the stimulus to the CBFv response was highly significant for the difference between the affected side [area under the curve (AUC) 104.5 (4.5)%] and controls [AUC 106.9 (4.3)%; P = 0.008]. CBFv step responses to CO2 [affected hemisphere 0.39 (0.7), unaffected 0.55 (0.8), controls 1.39 (0.9)%/mmHg; P = 0.01, affected vs. controls; P = 0.025, unaffected vs. controls] and motor stimulus inputs [affected hemisphere 0.20 (0.1), unaffected 0.22 (0.2), controls 0.37 (0.2) arbitrary units; P = 0.009, affected vs. controls; P = 0.02, unaffected vs. controls] were reduced in the stroke group compared with controls. The CBFv step responses to the BP input at baseline and during the paradigm were not different between groups (P = 0.07), but PetCO2 was lower in the stroke group (P < 0.05). These results provide new insights into the interaction of CA, CVR, and NVC in both health and disease states. PMID:25593216

  8. Microrheology and ROCK Signaling of Human Endothelial Cells Embedded in a 3D Matrix

    PubMed Central

    Panorchan, Porntula; Lee, Jerry S. H.; Kole, Thomas P.; Tseng, Yiider; Wirtz, Denis

    2006-01-01

    Cell function is profoundly affected by the geometry of the extracellular environment confining the cell. Whether and how cells plated on a two-dimensional matrix or embedded in a three-dimensional (3D) matrix mechanically sense the dimensionality of their environment is mostly unknown, partly because individual cells in an extended matrix are inaccessible to conventional cell-mechanics probes. Here we develop a functional assay based on multiple particle tracking microrheology coupled with ballistic injection of nanoparticles to measure the local intracellular micromechanical properties of individual cells embedded inside a matrix. With our novel assay, we probe the mechanical properties of the cytoplasm of individual human umbilical vein endothelial cells (HUVECs) embedded in a 3D peptide hydrogel in the presence or absence of vascular endothelial growth factor (VEGF). We found that VEGF treatment, which enhances endothelial migration, increases the compliance and reduces the elasticity of the cytoplasm of HUVECs in a matrix. This VEGF-induced softening response of the cytoplasm is abrogated by specific Rho-kinase (ROCK) inhibition. These results establish combined particle-tracking microrheology and ballistic injection as the first method able to probe the micromechanical properties and mechanical response to agonists and/or drug treatments of individual cells inside a matrix. These results suggest that ROCK plays an essential role in the regulation of the intracellular mechanical response to VEGF of endothelial cells in a 3D matrix. PMID:16891369

  9. Human Umbilical Vein Endothelial Cell Interaction with Fluorine-Incorporated Amorphous Carbon Films

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Yukihiro; Hasebe, Terumitsu; Nagashima, So; Kamijo, Aki; Nakatani, Tatsuyuki; Yamagami, Takuji; Kitamura, Noriko; Kitagawa, Tomoya; Hotta, Atsushi; Takahashi, Koki; Suzuki, Tetsuya

    2012-09-01

    A major clinical concern in coronary intervention for cardiovascular disease is late stent thrombosis after the implantation of drug eluting stents (DES). DES widely used in clinical settings currently utilize polymer coatings, which can induce persistent arterial wall inflammation and delayed vascular healing, resulting in impaired endothelialization. We examined the viability of human umbilical vein endothelial cells (HUVECs) for fluorine-incorporated amorphous carbon (a-C:H:F) coatings, which are known to be anti-thrombogenic. a-C:H:F and a-C:H were synthesized on the tissue culture dishes using radio frequency plasma enhanced chemical vapor deposition by varying the ratio of hexafluoroethane and acetylene. HUVECs were seeded on coated dishes for 6 days. The results indicate that the a-C:H:F surface does not disturb HUVEC proliferation in 6 days of culture and is promising for stent materials that allows the preservation of endothelialization, even if the fluorine concentration of a-C:H surface affects the early adhesion of endothelial cells.

  10. p27 Nuclear localization and growth arrest caused by perlecan knockdown in human endothelial cells

    SciTech Connect

    Sakai, Katsuya; Oka, Kiyomasa; Matsumoto, Kunio; Nakamura, Toshikazu

    2010-02-12

    Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and its expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.