Sample records for human chromosome 2

  1. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    PubMed

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Assembly of YAC contigs on the long arm of human chromosome 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Fujiwara, T.M.; Wang, J.X.

    1994-09-01

    We have previously identified approximately 2,000 chromosome 2-specific YACs by screening the CEPH Mark I YAC library (`Midi- YACs`). Using STS content mapping, we have been able to order groups of these YACs along chromosome 2q. The four biggest YAC groups were associated with VIL (2q35), FN (2q34), PAX3 (2q36), ALPI (2q37) and contained 113, 107, 79, and 63 YACs, respectively. We have identified the minimal tiling paths for most YAC groups and determined the insert sizes of over 300 YACs. Furthermore, on human chromosome 2q31-q37, 15 microsatellite markers were linked to various expressed genes through overlapping YACs and themore » physical distance of microsatellites to expressed genes was determined. The precise mapping of a set of highly informative microsatellite markers with respect to known genes provides a useful tool for linkage studies and the identification of disease genes from the long arm of human chromosome 2.« less

  3. Genomic structure and paralogous regions of the inversion breakpoint occurring between human chromosome 3p12.3 and orangutan chromosome 2.

    PubMed

    Yue, Y; Grossmann, B; Tsend-Ayush, E; Grützner, F; Ferguson-Smith, M A; Yang, F; Haaf, T

    2005-01-01

    Intrachromosomal duplications play a significant role in human genome pathology and evolution. To better understand the molecular basis of evolutionary chromosome rearrangements, we performed molecular cytogenetic and sequence analyses of the breakpoint region that distinguishes human chromosome 3p12.3 and orangutan chromosome 2. FISH with region-specific BAC clones demonstrated that the breakpoint-flanking sequences are duplicated intrachromosomally on orangutan 2 and human 3q21 as well as at many pericentromeric and subtelomeric sites throughout the genomes. Breakage and rearrangement of the human 3p12.3-homologous region in the orangutan lineage were associated with a partial loss of duplicated sequences in the breakpoint region. Consistent with our FISH mapping results, computational analysis of the human chromosome 3 genomic sequence revealed three 3p12.3-paralogous sequence blocks on human chromosome 3q21 and smaller blocks on the short arm end 3p26-->p25. This is consistent with the view that sequences from an ancestral site at 3q21 were duplicated at 3p12.3 in a common ancestor of orangutan and humans. Our results show that evolutionary chromosome rearrangements are associated with microduplications and microdeletions, contributing to the DNA differences between closely related species. Copyright (c) 2005 S. Karger AG, Basel.

  4. Non-random Mis-segregation of Human Chromosomes.

    PubMed

    Worrall, Joseph Thomas; Tamura, Naoka; Mazzagatti, Alice; Shaikh, Nadeem; van Lingen, Tineke; Bakker, Bjorn; Spierings, Diana Carolina Johanna; Vladimirou, Elina; Foijer, Floris; McClelland, Sarah Elizabeth

    2018-06-12

    A common assumption is that human chromosomes carry equal chances of mis-segregation during compromised cell division. Human chromosomes vary in multiple parameters that might generate bias, but technological limitations have precluded a comprehensive analysis of chromosome-specific aneuploidy. Here, by imaging specific centromeres coupled with high-throughput single-cell analysis as well as single-cell sequencing, we show that aneuploidy occurs non-randomly following common treatments to elevate chromosome mis-segregation. Temporary spindle disruption leads to elevated mis-segregation and aneuploidy of a subset of chromosomes, particularly affecting chromosomes 1 and 2. Unexpectedly, we find that a period of mitotic delay weakens centromeric cohesion and promotes chromosome mis-segregation and that chromosomes 1 and 2 are particularly prone to suffer cohesion fatigue. Our findings demonstrate that inherent properties of individual chromosomes can bias chromosome mis-segregation and aneuploidy rates, with implications for studies on aneuploidy in human disease. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Construction of human chromosome 21-specific yeast artificial chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, M.K.; Shero, J.H.; Hieter, P.A.

    1989-12-01

    Chromosome 21-specific yeast artificial chromosomes (YACs) have been constructed by a method that performs all steps in agarose, allowing size selection by pulsed-field gel electrophoresis and the use of nanogram to microgram quantities of DNA. The DNA sources used were hybrid cell line WAV-17, containing chromosome 21 as the only human chromosome and flow-sorted chromosome 21. The transformation efficiency of ligation products was similar to that obtained in aqueous transformations and yielded YACs with sizes ranging from 100 kilobases (kb) to > 1 megabase when polyamines were included in the transformation procedure. Twenty-five YACs containing human DNA have been obtainedmore » from a mouse-human hybrid, ranging in size from 200 to > 1000 kb, with an average size of 410 kb. Ten of these YACs were localized to subregions of chromosome 21 by hybridization of RNA probes to a panel of somatic cell hybrid DNA. Twenty-one human YACs, ranging in size from 100 to 500 kb, with an average size of 150 kb, were obtained from {approx} 50 ng of flow-sorted chromosome 21 DNA. Three were localized to subregions of chromosome 21. YACs will aid the construction of a physical map of human chromosome 21 and the study of disorders associated with chromosome 21 such as Alzheimer disease and Down syndrome.« less

  6. Numerically abnormal chromosome constitutions in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  7. Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, A.K.; Hubbard, K.; Kaur, G.P.

    1994-06-07

    In these studies the authors show that introduction of a normal human chromosome 6 or 6q can suppress the immortal phenotype of simian virus 40-transformed human fibroblasts (SV/HF). Normal human fibroblasts have a limited life span in culture. Immortal clones of SV/HF displayed nonrandom rearrangements in chromosome 6. Single human chromosomes present in mouse/human monochromosomal hybrids were introduced into SV/HF via microcell fusion and maintained by selection for a dominant selectable marker gpt, previously integrated into the human chromosome. Clones of SV/HF cells bearing chromosome 6 displayed limited potential for cell division and morphological characteristics of senescent cells. The lossmore » of chromosome 6 from the suppressed clones correlated with the reappearance of immortal clones. Introduced chromosome 6 in the senescing cells was distinguished from those of parental cells by analysis for DNA sequences specific for the donor chromosome. The results further show that suppression of immortal phenotype in SV/HF is specific to chromosome 6. Introduction of individual human chromosomes 2, 8, or 19 did not impart cellular senescence in SV/HF. In addition, introduction of chromosome 6 into human glioblastoma cells did not lead to senescence. Based upon these results the authors propose that at least one of the genes (SEN6) for cellular senescence in human fibroblasts is present on the long arm of chromosome 6.« less

  8. Molecular Characterization of the Pericentric Inversion That Causes Differences Between Chimpanzee Chromosome 19 and Human Chromosome 17

    PubMed Central

    Kehrer-Sawatzki, Hildegard; Schreiner, Bettina; Tänzer, Simone; Platzer, Matthias; Müller, Stefan; Hameister, Horst

    2002-01-01

    A comparison of the human genome with that of the chimpanzee is an attractive approach to attempts to understand the specificity of a certain phenotype's development. The two karyotypes differ by one chromosome fusion, nine pericentric inversions, and various additions of heterochromatin to chromosomal telomeres. Only the fusion, which gave rise to human chromosome 2, has been characterized at the sequence level. During the present study, we investigated the pericentric inversion by which chimpanzee chromosome 19 differs from human chromosome 17. Fluorescence in situ hybridization was used to identify breakpoint-spanning bacterial artificial chromosomes (BACs) and plasmid artificial chromosomes (PACs). By sequencing the junction fragments, we localized breakpoints in intergenic regions rich in repetitive elements. Our findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation. No addition or deletion of any sequence element was detected at the breakpoints or in the surrounding sequences. Next to the break, at a distance of 10.2–39.1 kb, the following genes were found: NGFR and NXPH3 (on human chromosome 17q21.3) and GUC2D and ALOX15B (on human chromosome 17p13). The inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes. PMID:12094327

  9. Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes.

    PubMed

    Szamalek, Justyna M; Goidts, Violaine; Cooper, David N; Hameister, Horst; Kehrer-Sawatzki, Hildegard

    2006-08-01

    The human and chimpanzee genomes are distinguishable in terms of ten gross karyotypic differences including nine pericentric inversions and a chromosomal fusion. Seven of these large pericentric inversions are chimpanzee-specific whereas two of them, involving human chromosomes 1 and 18, were fixed in the human lineage after the divergence of humans and chimpanzees. We have performed detailed molecular and computational characterization of the breakpoint regions of the human-specific inversion of chromosome 1. FISH analysis and sequence comparisons together revealed that the pericentromeric region of HSA 1 contains numerous segmental duplications that display a high degree of sequence similarity between both chromosomal arms. Detailed analysis of these regions has allowed us to refine the p-arm breakpoint region to a 154.2 kb interval at 1p11.2 and the q-arm breakpoint region to a 562.6 kb interval at 1q21.1. Both breakpoint regions contain human-specific segmental duplications arranged in inverted orientation. We therefore propose that the pericentric inversion of HSA 1 was mediated by intra-chromosomal non-homologous recombination between these highly homologous segmental duplications that had themselves arisen only recently in the human lineage by duplicative transposition.

  10. Human Autoantibodies Reveal Titin as a Chromosomal Protein

    PubMed Central

    Machado, Cristina; Sunkel, Claudio E.; Andrew, Deborah J.

    1998-01-01

    Assembly of the higher-order structure of mitotic chromosomes is a prerequisite for proper chromosome condensation, segregation and integrity. Understanding the details of this process has been limited because very few proteins involved in the assembly of chromosome structure have been discovered. Using a human autoimmune scleroderma serum that identifies a chromosomal protein in human cells and Drosophila embryos, we cloned the corresponding Drosophila gene that encodes the homologue of vertebrate titin based on protein size, sequence similarity, developmental expression and subcellular localization. Titin is a giant sarcomeric protein responsible for the elasticity of striated muscle that may also function as a molecular scaffold for myofibrillar assembly. Molecular analysis and immunostaining with antibodies to multiple titin epitopes indicates that the chromosomal and muscle forms of titin may vary in their NH2 termini. The identification of titin as a chromosomal component provides a molecular basis for chromosome structure and elasticity. PMID:9548712

  11. The Divergence of Neandertal and Modern Human Y Chromosomes.

    PubMed

    Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D

    2016-04-07

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Micromechanics of human mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F.

    2011-02-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.

  13. Introduction of new genetic markers on human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Hitoshi; Barrett, J.C.; Oshimura, Mitsuo

    1991-03-01

    The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter{yields}3p12::Xq26{yields}Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. These results demonstrate that microcell chromosome transfer can bemore » used to select chromosomes containing multiple markers.« less

  14. Chromosome mapping of the human arrestin (SAG), {beta}-arrestin 2 (ARRB2), and {beta}-adrenergic receptor kinase 2 (ADRBK2) genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, G.; Sallese, M.; Stornaiuolo, A.

    1994-09-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor and its functional cofactor, {beta}-arrestin. Both {beta}ARK and {beta}-arrestin are members of multigene families. The family of G-protein-coupled receptor kinases includes rhodopsin kinase, {beta}ARK1, {beta}ARK2, IT11-A (GRK4), GRK5, and GRK6. The arrestin/{beta}-arrestin gene family includes arrestin (also known as S-antigen), {beta}-arrestin 1, and {beta}-arrestin 2. Here we report the chromosome mapping of the human genes for arrestin (SAG), {beta}arrestin 2 (ARRB2), and {beta}ARK2 (ADRBK2) by fluorescence in situ hybridization (FISH). FISH results confirmed the assignment ofmore » the gene coding for arrestin (SAG) to chromosome 2 and allowed us to refine its localization to band q37. The gene coding for {beta}-arrestin 2 (ARRB2) was mapped to chromosome 17p13 and that coding for {beta}ARK2 (ADRBK2) to chromosome 22q11. 17 refs., 1 fig.« less

  15. Chromosomal abnormalities in human sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhapsmore » reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.« less

  16. The Divergence of Neandertal and Modern Human Y Chromosomes

    PubMed Central

    Mendez, Fernando L.; Poznik, G. David; Castellano, Sergi; Bustamante, Carlos D.

    2016-01-01

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes—including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447–806 kya). This is ∼2.1 (95% CI: 1.7–2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445

  17. Chromosome Conformation of Human Fibroblasts Grown in 3-Dimensional Spheroids

    PubMed Central

    Chen, Haiming; Comment, Nicholas; Chen, Jie; Ronquist, Scott; Hero, Alfred; Ried, Thomas; Rajapakse, Indika

    2015-01-01

    In the study of interphase chromosome organization, genome-wide chromosome conformation capture (Hi-C) maps are often generated using 2-dimensional (2D) monolayer cultures. These 2D cells have morphological deviations from cells that exist in 3-dimensional (3D) tissues in vivo, and may not maintain the same chromosome conformation. We used Hi-C maps to test the extent of differences in chromosome conformation between human fibroblasts grown in 2D cultures and those grown in 3D spheroids. Significant differences in chromosome conformation were found between 2D cells and those grown in spheroids. Intra-chromosomal interactions were generally increased in spheroid cells, with a few exceptions, while inter-chromosomal interactions were generally decreased. Overall, chromosomes located closer to the nuclear periphery had increased intra-chromosomal contacts in spheroid cells, while those located more centrally had decreased interactions. This study highlights the necessity to conduct studies on the topography of the interphase nucleus under conditions that mimic an in vivo environment. PMID:25738643

  18. A YAC contig of the human CC chemokine genes clustered on chromosome 17q11.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruse, Kuniko; Nomiyama, Hisayuki; Miura, Retsu

    1996-06-01

    CC chemokines are cytokines that attract and activate leukocytes. The human genes for the CC chemokines are clustered on chromosome 17. To elucidate the genomic organization of the CC chemokine genes, we constructed a YAC contig comprising 34 clones. The contig was shown to contain all 10 CC chemokine genes reported so far, except for one gene whose nucleotide sequence is not available. The contig also contains 4 CC chemokine-like genes, which were deposited in GenBank as ESTs and are here referred to as NCC-1, NCC-2, NCC-3, and NCC-4. Within the contig, the CC chemokine genes were localized in twomore » regions. In addition, the CC chemokine genes were localized in two regions. In addition, the CC chemokine genes were more precisely mapped on chromosome 17q11.2 using a somatic cell hybrid cell DNA panel containing various portions of human chromosome 17. Interestingly, a reciprocal translocation t(Y;17) breakpoint, contained in the hybrid cell line Y1741, lay between the two chromosome 17 chemokine gene regions covered by our YAC contig. From these results, the order and the orientation of CC chemokine genes on chromosome 17 were determined as follows: centromere-neurofibromatosis 1-(MCP-3, MCP-1, NCC-1, I-309)-Y1741 breakpoint-RANTES-(LD78{gamma}, AT744.2, LD78{beta})-(NCC-3, NCC-2, AT744.1, LD78{alpha})-NCC-4-retinoic acid receptor {alpha}-telomere. 22 refs., 1 fig., 2 tabs.« less

  19. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, P.E.; Gosden, J.; Lawson, D.

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize andmore » spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.« less

  20. Chromosomal localization of murine and human oligodendrocyte-specific protein genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronstein, J.M.; Wu, S.; Korenberg, J.R.

    1996-06-01

    Oligodendrocyte-specific protein (OSP) is a recently described protein present only in myelin of the central nervous system. Several inherited disorders of myelin are caused by mutations in myelin genes but the etiology of many remain unknown. We mapped the location of the mouse OSP gene to the proximal region of chromosome 3 using two sets of multilocus crosses and to human chromosome 3 using somatic cell hybrids. Fine mapping with fluorescence in situ hybridization placed the OSP gene at human chromosome 3q26.2-q26.3. To date, there are no known inherited neurological disorders that localize to these regions. 24 refs., 2 figs.

  1. Chromosome localization of human genes for clathrin adaptor polypeptides AP2{beta} and AP50 and the clathrin-binding protein, VCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druck, T.; Gu, Y.; Prabhala, G.

    1995-11-01

    Clathrin-coated vesicles, involved in endocytosis and Golgi processing, have a surface lattice containing clathrin triskelia and stoichiometric amounts of additional components termed {open_quotes}assembly proteins,{close_quotes} or APs. The AP form at the plasma membrane, AP2, is composed of two large subunits of 100-115 kDa, denoted AP2{alpha} and AP2{beta}, a medium chain of 50 kDa, designated AP50, and a small chain. We have determined human chromosomal locations of genes for a large AP2{beta} (CLAPB1) and a medium (CLAPM1) AP subunit and of a novel clathrin-binding protein, VCP, that binds clathrin simultaneously with A1`s. Chromosomal in situ hybridization of a human genomic clonemore » demonstrated that the CLAPM1 gene mapped to chromosome region 3q28. The gene for the CLAPB1 large subunit was mapped to 17q11.2-q12 by PCR amplification of an AP2{beta} fragment from a panel of rodent-human hybrid DNAs. To map the human VCP sequence, a human-specific probe was made by RT-PCR of human mRNA using oligonucleotide primers from conserved regions of the porcine sequence. The amplified human fragment served as probe on Southern blots of hybrid DNAs to determine that the human VCP locus maps to chromosome region 9pter-q34. 13 refs., 2 figs.« less

  2. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2.

    PubMed

    Kim, Jaemin; Lee, Taeheon; Kim, Tae-Hun; Lee, Kyung-Tai; Kim, Heebal

    2012-12-19

    Traditional candidate gene approach has been widely used for the study of complex diseases including obesity. However, this approach is largely limited by its dependence on existing knowledge of presumed biology of the phenotype under investigation. Our combined strategy of comparative genomics and chromosomal heritability estimate analysis of obesity traits, subscapular skinfold thickness and back-fat thickness in Korean cohorts and pig (Sus scrofa), may overcome the limitations of candidate gene analysis and allow us to better understand genetic predisposition to human obesity. We found common genes including FTO, the fat mass and obesity associated gene, identified from significant SNPs by association studies of each trait. These common genes were related to blood pressure and arterial stiffness (P = 1.65E-05) and type 2 diabetes (P = 0.00578). Through the estimation of variance of genetic component (heritability) for each chromosome by SNPs, we observed a significant positive correlation (r = 0.479) between genetic contributions of human and pig to obesity traits. Furthermore, we noted that human chromosome 2 (syntenic to pig chromosomes 3 and 15) was most important in explaining the phenotypic variance for obesity. Obesity genetics still awaits further discovery. Navigating syntenic regions suggests obesity candidate genes on chromosome 2 that are previously known to be associated with obesity-related diseases: MRPL33, PARD3B, ERBB4, STK39, and ZNF385B.

  3. Sialoadhesin (Sn) maps to mouse chromosome 2 and human chromosome 20 and is not linked to the other members of the Sialoadhesin family, CD22, MAG, and CD33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mucklow, S.; Hartnell, A.; Crocker, P.R.

    1995-07-20

    Sialoadhesin is a cell-cell interaction molecule expressed by subpopulations of tissue macrophages. It contains 17 immunoglobulin (Ig)-like domains and is structurally related to CD22, MAG, and CD33. These molecules establish a distinct family of sialic acid-dependent adhesion molecules, the sialoadhesin family. We have mapped the rodent sialoadhesin gene, Sn, to chromosome 2F-H1 by in situ hybridization (ISH) and shown linkage to Il1b and four other markers by backcross linkage analysis. We have also used ISH and a human-mouse somatic cell hybrid panel to localize the human sialoadhesin gene, SN, to the conserved syntenic region on human chromosome 20p13. This demonstratesmore » that the sialoadhesin gene is not linked to the other members of the sialoadhesin family, CD22, MAG. and CD33, which have been independently mapped to the distal region of mouse chromosome 7 and to human chromosome 19q13.1-3. 19 refs., 1 fig.« less

  4. Abnormal chromosome behavior in human oocytes which remained unfertilized during human in vitro fertilization.

    PubMed

    Spielmann, H; Krüger, C; Stauber, M; Vogel, R

    1985-09-01

    Chromosomal abnormalities and abnormal embryonic development have previously been observed after human in vitro fertilization (IVF). Chromosomal abnormalities may arise not only after fertilization but even earlier during meiotic maturation of human oocytes in culture. Since chromosomal analysis is simple in oocytes during meiotic maturation, the chromosomal status was analyzed in oocytes which remained unfertilized in a human in vitro fertilization program. In 50 fertilization attempts the chromosomes of 62 unfertilized oocytes could be analyzed; 45 of them were in the process of meiotic maturation. In three oocytes two small polar bodies were observed 16-18 hr after insemination in the absence of fertilization. In one oocyte abnormal chromosome behavior was found during the first meiotic division, and in four oocytes during metaphase of the second meiotic division. These data suggest that chromosomal analysis of unfertilized oocytes in human IVF may improve the understanding human oocyte maturation and fertilization.

  5. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17.

    PubMed

    Cheng, S V; Nadeau, J H; Tanzi, R E; Watkins, P C; Jagadesh, J; Taylor, B A; Haines, J L; Sacchi, N; Gusella, J F

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid beta precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, we have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  6. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors havemore » established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.« less

  7. Chromosome segregation regulation in human zygotes: altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex.

    PubMed

    van de Werken, C; Avo Santos, M; Laven, J S E; Eleveld, C; Fauser, B C J M; Lens, S M A; Baart, E B

    2015-10-01

    Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal phosphorylation dynamics of histone H2A at T120 (H2ApT120) by Bub1 kinase and subsequent recruitment of Shugoshin, but phosphorylation of histone H3 at threonine 3 (H3pT3) by Haspin failed to show the expected centromeric enrichment on metaphase chromosomes in the zygote. Human cleavage stage embryos show high levels of chromosomal instability. What causes this high error rate is unknown, as mechanisms used to ensure proper chromosome segregation in mammalian embryos are poorly described. In this study, we investigated the pathways regulating CPC targeting to the inner centromere in human embryos. We characterized the distribution of the CPC in relation to activity of its two main centromeric targeting pathways: the Bub1-H2ApT120-Sgo-CPC and Haspin-H3pT3-CPC pathways. The study was conducted between May 2012 and March 2014 on human surplus embryos resulting from in vitro fertilization treatment and donated for research. In zygotes, nuclear envelope breakdown was monitored by time-lapse imaging to allow timed incubations with specific inhibitors to arrest at prometaphase and metaphase, and to interfere with Haspin and Aurora B/C kinase activity. Functionality of the targeting pathways was assessed through characterization of histone phosphorylation dynamics by immunofluorescent analysis, combined with gene expression by RT-qPCR and immunofluorescent localization of key pathway proteins. Immunofluorescent analysis of the CPC subunit Inner Centromere Protein revealed the pool of stably bound CPC proteins was not strictly confined to the inner centromere of prometaphase chromosomes in human zygotes, as observed in later stages of preimplantation development and somatic cells. Investigation of the

  8. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    PubMed

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  9. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis

    PubMed Central

    Wandke, Cornelia; Barisic, Marin; Sigl, Reinhard; Rauch, Veronika; Wolf, Frank; Amaro, Ana C.; Tan, Chia H.; Pereira, Antonio J.; Kutay, Ulrike; Maiato, Helder; Meraldi, Patrick

    2012-01-01

    Chromokinesins are microtubule plus end–directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively. PMID:22945934

  10. Characterization of a microdissection library from human chromosome region 3p14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardenheuer, W.; Szymanski, S.; Lux, A.

    1994-01-15

    Structural alterations in human chromosome region 3p14-p23 resulting in the inactivation of one or more tumor suppressor genes are thought to play a pathogenic role in small cell lung cancer, renal cell carcinoma, and other human neoplasms. To identify putative tumor suppressor genes, 428 recombinant clones from a microdissection library specific for human chromosome region 3p14 were isolated and characterized. Ninety-six of these (22.5%) were human single-copy DNA sequences, 57 of which were unique sequence clones. Forty-four of these were mapped to the microdissected region using a cell hybrid mapping panel. Within this mapping panel, four probes detected two newmore » chromosome breakpoints that were previously indistinguishable from the translocation breakpoint t(3;8) in 3p14.2 in hereditary renal cell carcinoma. One probe maps to the homozygously deleted region of the small cell lung cancer cell line U2020. In addition, microdissection clones have been shown to be suitable for isolation of yeast artificial chromosomes. 52 refs., 3 figs., 2 tabs.« less

  11. GABRA2 Alcohol Dependence Risk Allele is Associated with Reduced Expression of Chromosome 4p12 GABAA Subunit Genes in Human Neural Cultures.

    PubMed

    Lieberman, Richard; Kranzler, Henry R; Joshi, Pujan; Shin, Dong-Guk; Covault, Jonathan

    2015-09-01

    Genetic variation in a region of chromosome 4p12 that includes the GABAA subunit gene GABRA2 has been reproducibly associated with alcohol dependence (AD). However, the molecular mechanisms underlying the association are unknown. This study examined correlates of in vitro gene expression of the AD-associated GABRA2 rs279858*C-allele in human neural cells using an induced pluripotent stem cell (iPSC) model system. We examined mRNA expression of chromosome 4p12 GABAA subunit genes (GABRG1, GABRA2, GABRA4, and GABRB1) in 36 human neural cell lines differentiated from iPSCs using quantitative polymerase chain reaction and next-generation RNA sequencing. mRNA expression in adult human brain was examined using the BrainCloud and BRAINEAC data sets. We found significantly lower levels of GABRA2 mRNA in neural cell cultures derived from rs279858*C-allele carriers. Levels of GABRA2 RNA were correlated with those of the other 3 chromosome 4p12 GABAA genes, but not other neural genes. Cluster analysis based on the relative RNA levels of the 4 chromosome 4p12 GABAA genes identified 2 distinct clusters of cell lines, a low-expression cluster associated with rs279858*C-allele carriers and a high-expression cluster enriched for the rs279858*T/T genotype. In contrast, there was no association of genotype with chromosome 4p12 GABAA gene expression in postmortem adult cortex in either the BrainCloud or BRAINEAC data sets. AD-associated variation in GABRA2 is associated with differential expression of the entire cluster of GABAA subunit genes on chromosome 4p12 in human iPSC-derived neural cell cultures. The absence of a parallel effect in postmortem human adult brain samples suggests that AD-associated genotype effects on GABAA expression, although not present in mature cortex, could have effects on regulation of the chromosome 4p12 GABAA cluster during neural development. Copyright © 2015 by the Research Society on Alcoholism.

  12. Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40.

    PubMed

    Mills, W; Critcher, R; Lee, C; Farr, C J

    1999-05-01

    A linear mammalian artificial chromosome (MAC) will require at least three types of functional element: a centromere, two telomeres and origins of replication. As yet, our understanding of these elements, as well as many other aspects of structure and organization which may be critical for a fully functional mammalian chromosome, remains poor. As a way of defining these various requirements, minichromosome reagents are being developed and analysed. Approaches for minichromosome generation fall into two broad categories: de novo assembly from candidate DNA sequences, or the fragmentation of an existing chromosome to reduce it to a minimal size. Here we describe the generation of a human minichromosome using the latter, top-down, approach. A human X chromosome, present in a DT40-human microcell hybrid, has been manipulated using homologous recombination and the targeted seeding of a de novo telomere. This strategy has generated a linear approximately 2.4 Mb human X centromere-based minichromosome capped by two artificially seeded telomeres: one immediately flanking the centromeric alpha-satellite DNA and the other targeted to the zinc finger gene ZXDA in Xp11.21. The chromosome retains an alpha-satellite domain of approximately 1. 8 Mb, a small array of gamma-satellite repeat ( approximately 40 kb) and approximately 400 kb of Xp proximal DNA sequence. The mitotic stability of this minichromosome has been examined, both in DT40 and following transfer into hamster and human cell lines. In all three backgrounds, the minichromosome is retained efficiently, but in the human and hamster microcell hybrids its copy number is poorly regulated. This approach of engineering well-defined chromosome reagents will allow key questions in MAC development (such as whether a lower size limit exists) to be addressed. In addition, the 2.4 Mb minichromosome described here has potential to be developed as a vector for gene delivery.

  13. Paradigm Lost: The Human Chromosome Story.

    ERIC Educational Resources Information Center

    Unger, Lawrence; Blystone, Robert V.

    1996-01-01

    Discusses whether the discovery in 1956 that humans have a chromosome number of 46, as opposed to 47 or 48 as previously thought, fits into a paradigm shift of the Kuhnian type. Concludes that Kuhn probably would not have considered the chromosome number shift to be large enough to be a focus for one of his paradigms. (AIM)

  14. Rapid metaphase and interphase detection of radiation-induced chromosome aberrations in human lymphocytes by chromosomal suppression in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cremer, T.; Popp, S.; Emmerich, P.

    1990-01-01

    Chromosomal in situ suppression (CISS)-hybridization of biotinylated phage DNA-library inserts from sorted human chromosomes was used to decorate chromosomes 1 and 7 specifically from pter to qter and to detect structural aberrations of these chromosomes in irradiated human peripheral lymphocytes. In addition, probe pUC1.77 was used to mark the 1q12 subregion in normal and aberrant chromosomes 1. Low LET radiation (60Co-gamma-rays; 1.17 and 1.33 MeV) of lymphocyte cultures was performed with various doses (D = 0, 2, 4, 8 Gy) 5 h after stimulation with phytohaemagglutinin. Irradiated cells were cultivated for an additional 67 h before Colcemid arrested metaphase spreadsmore » were obtained. Aberrations of the specifically stained chromosomes, such as deletions, dicentrics, and rings, were readily scored after in situ hybridization with either the 1q12 specific probe or DNA-library inserts. By the latter approach, translocations of the specifically stained chromosomes could also be reliably assessed. A linear increase of the percentage of specifically stained aberrant chromosomes was observed when plotted as a function of the square of the dose D. A particular advantage of this new approach is provided by the possibility to delineate numerical and structural chromosome aberrations directly in interphase nuclei. These results indicate that cytogenetic monitoring of ionizing radiation may be considerably facilitated by CISS-hybridization.« less

  15. Hierarchical radial and polar organisation of chromosomes in human sperm.

    PubMed

    Millan, N M; Lau, P; Hann, M; Ioannou, D; Hoffman, D; Barrionuevo, M; Maxson, W; Ory, S; Tempest, H G

    2012-10-01

    It is well established that chromosomes occupy distinct positions within the interphase nuclei, conferring a potential functional implication to the genome. In addition, alterations in the nuclear organisation patterns have been associated with disease phenotypes (e.g. cancer or laminopathies). The human sperm is the smallest cell in the body with specific DNA packaging and the mission of delivering the paternal genome to the oocyte during fertilisation. Studies of nuclear organisation in the sperm have postulated nonrandom chromosome position and have proposed a chromocentre model with the centromeres facing toward the interior and the telomeres toward the periphery of the nucleus. Most studies have assessed the nuclear address in the sperm longitudinally predominantly using centromeric or telomeric probes and to a lesser extent with whole chromosome paints. To date, studies investigating the radial organisation of human sperm have been limited. The purpose of this study was to utilise whole chromosome paints for six clinically important chromosomes (18, 19, 21, 22, X, and Y) to investigate nuclear address by assessing their radial and longitudinal nuclear organisation. A total of 10,800 sperm were analysed in nine normozoospermic individuals. The results have shown nonrandom chromosome position for all chromosomes using both methods of analysis. We present novel radial and polar analysis of chromosome territory localization within the human sperm nucleus. Specifically, a hierarchical organisation was observed radially with chromosomes organised from the interior to the periphery (chromosomes 22, 21, Y, X, 19, and 18 respectively) and polar organisation from the sperm head to tail (chromosomes X, 19, Y, 22, 21, and 18, respectively). We provide evidence of defined nuclear organisation in the human sperm and discuss the function of organisation and potential possible clinical ramifications of these results in regards to male infertility and early human development.

  16. Human gastrin-releasing peptide gene is located on chromosome 18.

    PubMed

    Naylor, S L; Sakaguchi, A Y; Spindel, E; Chin, W W

    1987-01-01

    Gastrin-releasing peptide (GRP), a bombesin-like peptide, increases plasma levels of gastrin, pancreatic polypeptide, glucagon, gastric inhibitory peptide, and insulin. GRP is produced in large quantities by small-cell lung cancer and acts as a growth factor for these cells. To determine if chromosomal changes in small-cell lung cancer are related to the expression of GRP, we chromosomally mapped the gene using human-mouse somatic cell hybrids. Twenty hybrids, characterized for human chromosomes, were analyzed by Southern filter hybridization of DNA digested with EcoRI. Human DNA cut with EcoRI yields a major band of 6.8 kb and a minor band of 11.3 kb. The 6.8 kb band segregated concordantly with chromosome 18 and the marker peptidase A. The chromosome 3 abnormalities seen in small-cell lung cancer do not correlate with the chromosomal location of GRP, suggesting that the elevated expression of this gene may be due to mechanisms other than chromosomal rearrangement.

  17. Chromosomal localization and structure of the human type II IMP dehydrogenase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glesne, D.; Huberman, E.; Collart, F.

    1994-05-01

    We determined the chromosomal localization and structure of the gene encoding human type II inosine 5{prime}-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205), an enzyme associated with cellular proliferation, malignant transformation, and differentiation. Using polymerase chain reaction (PCR) primers specific for type II IMPDH, we screened a panel of human-Chinese hamster cell somatic hybrids and a separate deletion panel of chromosome 3 hybrids and localized the gene to 3p21.1{yields}p24.2. Two overlapping yeast artificial chromosome clones containing the full gene for type II IMPDH were isolated and a physical map of 117 kb of human genomic DNA in this region of chromosome 3 wasmore » constructed. The gene for type II IMPDH was localized and oriented on this map and found to span no more than 12.5 kb.« less

  18. Human HST1 (HSTF1) gene maps to chromosome band 11q13 and coamplifies with the INT2 gene in human cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Michihiro C.; Wada, Makio; Satoh, Hitoshi

    1988-07-01

    The human HST1 gene, previously designated the hst gene, and now assigned the name HSTF1 for heparin-binding secretory transforming factor in human gene nomenclature, was originally identified as a transforming gene in DNAs from human stomach cancers by transfection assay with mouse NIH 3T3 cells. The amino acid sequence of the product deduced from DNA sequences of the HST1 cDNA and genomic clones had approximately 40% homology to human basic and acidic fibroblast growth factors and mouse Int-2-encoded protein. The authors have mapped the human HST1 gene to chromosome 11 at band q13.3 by Southern blot hybridization analysis of amore » panel of human and mouse somatic cell hybrids and in situ hybridization with an HST1 cDNA probe. The HST1 gene was found to be amplified in DNAs obtained from a stomach cancer and a vulvar carcinoma cell line, A431. In all of these samples of DNA, the INT2 gene, previously mapped to human chromosome 11q13, was also amplified to the same degree as the HST1 gene.« less

  19. Human cytomegalovirus UL76 induces chromosome aberrations

    PubMed Central

    2009-01-01

    Background Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells. Methods To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76. Results We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells. We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels. Conclusion Our findings suggest that the virus-associated protein UL76 induces DNA damage and the accumulation of chromosome aberrations. PMID:19930723

  20. Labeling and Other Effects of Actinomycin D on Human Chromosomes*

    PubMed Central

    Miles, Charles P.

    1970-01-01

    3H-actinomycin D, a guanine-binding agent, labels fixed human chromosomes nonrandomly. Actinomycin D added in G2 inhibits secondary constrictions and breaks chromosomes. There is some tendency for label to be concentrated at the ends of chromosomes and near the centromere. Labeling with 3H-thymidine in the late stage of DNA synthesis shows a different pattern and in general lacks the telomeric concentrations. The sites of actinomycin D-induced breaks do not show good correspondence with the sites of actinomycin D label. Images PMID:5267140

  1. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    PubMed

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  2. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: Involvement of the human ERCC2 DNA repair gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flejter, W.L.; McDaniel, L.D.; Johns, D.

    1992-01-01

    Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. The authors now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2)more » gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.« less

  3. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content

    PubMed Central

    Hughes, Jennifer F.; Skaletsky, Helen; Pyntikova, Tatyana; Graves, Tina A.; van Daalen, Saskia K. M.; Minx, Patrick J.; Fulton, Robert S.; McGrath, Sean D.; Locke, Devin P.; Friedman, Cynthia; Trask, Barbara J.; Mardis, Elaine R.; Warren, Wesley C.; Repping, Sjoerd; Rozen, Steve; Wilson, Richard K.; Page, David C.

    2013-01-01

    The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome1,2. Little is known about the Y chromosome’s recent evolution because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis3,4. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes5-8, but they have not been tested in older, highly evolved Y chromosomes like that of humans. We therefore finished sequencing the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. We then compared the MSYs of the two species and found that they differ radically in sequence structure and gene content, implying rapid evolution during the past 6 million years. The chimpanzee MSY harbors twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the MSY’s prominent role in sperm production, genetic hitchhiking effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behavior. While genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the ongoing evolution of chimpanzee, human, and perhaps other older MSYs. PMID:20072128

  4. Assessment of aneuploidy in human oocytes and preimplantation embryos by chromosome painting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rougier, N.; Viegas-Pequignot, E.; Plachot, M.

    1994-09-01

    The poor quality of chromosome preparations often observed after fixation of oocytes and embryos did not usually allow accurate identification of chromosomes involved in non-disjunctions. We, therefore, used chromosome painting to determine the incidence of abnormalities for chromosomes 1 and 7. A total of 50 oocytes inseminated for IVF and showing no signs of fertilization as well as 37 diploid embryos donated for research were fixed according to the Dyban`s technique. Fluorescence in situ hybridization was carried out using whole chromosome painting DNA probes specific for human chromosome 1 and 7. The incidence of aneuploidy was 28%, 10% and 60%more » for metaphase II, polar body and sperm chromosomes, respectively. The high incidence of aneuploidy observed in sperm prematurely condensed sperm chromosomes is due to the fact that usually far less than 23 sperm chromatids are observed, maybe as a consequence of incomplete chromosome condensation. Thirty seven embryos were analyzed with the same probes. 48% of early embryos were either monosomic 1 or 7 or mosaics comprising blastomeres with 1, 2 or 3 signals. Thus, 8 among the 11 abnormal embryos had hypodiploid cells (25 to 37 chromosomes) indicating either an artefactual loss of chromosomes or a complex anomaly of nuclear division (maltinucleated blastomeres, abnormal migration of chromosomes at anaphase). We therefore calculated a {open_quotes}corrected{close_quotes} incidence of aneuploidy for chromosomes 1 or 7 in early embryos: 18%. 86% of the blastocysts showed mosaicism 2n/3 or 4n as a consequence of the formation of the syncitiotrophoblast. To conclude, chromosome painting is an efficient method to accurately identify chromosomes involved in aneuploidy. This technique should allow us to evaluate the incidence of non-disjunction for all chromosome pairs. Our results confirm the high incidence of chromosome abnormalities occurring as a consequence of meiotic or mitotic non-disjunctions in human oocytes and

  5. Chromosome speciation: Humans, Drosophila, and mosquitoes

    PubMed Central

    Ayala, Francisco J.; Coluzzi, Mario

    2005-01-01

    Chromosome rearrangements (such as inversions, fusions, and fissions) may play significant roles in the speciation between parapatric (contiguous) or partly sympatric (geographically overlapping) populations. According to the “hybrid-dysfunction” model, speciation occurs because hybrids with heterozygous chromosome rearrangements produce dysfunctional gametes and thus have low reproductive fitness. Natural selection will, therefore, promote mutations that reduce the probability of intercrossing between populations carrying different rearrangements and thus promote their reproductive isolation. This model encounters a disabling difficulty: namely, how to account for the spread in a population of a chromosome rearrangement after it first arises as a mutation in a single individual. The “suppressed-recombination” model of speciation points out that chromosome rearrangements act as a genetic filter between populations. Mutations associated with the rearranged chromosomes cannot flow from one to another population, whereas genetic exchange will freely occur between colinear chromosomes. Mutations adaptive to local conditions will, therefore, accumulate differentially in the protected chromosome regions so that parapatric or partially sympatric populations will genetically differentiate, eventually evolving into different species. The speciation model of suppressed recombination has recently been tested by gene and DNA sequence comparisons between humans and chimpanzees, between Drosophila species, and between species related to Anopheles gambiae, the vector of malignant malaria in Africa. PMID:15851677

  6. Regulation of X-chromosome dosage compensation in human: mechanisms and model systems.

    PubMed

    Sahakyan, Anna; Plath, Kathrin; Rougeulle, Claire

    2017-11-05

    The human blastocyst forms 5 days after one of the smallest human cells (the sperm) fertilizes one of the largest human cells (the egg). Depending on the sex-chromosome contribution from the sperm, the resulting embryo will either be female, with two X chromosomes (XX), or male, with an X and a Y chromosome (XY). In early development, one of the major differences between XX female and XY male embryos is the conserved process of X-chromosome inactivation (XCI), which compensates gene expression of the two female X chromosomes to match the dosage of the single X chromosome of males. Most of our understanding of the pre-XCI state and XCI establishment is based on mouse studies, but recent evidence from human pre-implantation embryo research suggests that many of the molecular steps defined in the mouse are not conserved in human. Here, we will discuss recent advances in understanding the control of X-chromosome dosage compensation in early human embryonic development and compare it to that of the mouse.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  7. The Human Proteome Organization Chromosome 6 Consortium: integrating chromosome-centric and biology/disease driven strategies.

    PubMed

    Borchers, C H; Kast, J; Foster, L J; Siu, K W M; Overall, C M; Binkowski, T A; Hildebrand, W H; Scherer, A; Mansoor, M; Keown, P A

    2014-04-04

    The Human Proteome Project (HPP) is designed to generate a comprehensive map of the protein-based molecular architecture of the human body, to provide a resource to help elucidate biological and molecular function, and to advance diagnosis and treatment of diseases. Within this framework, the chromosome-based HPP (C-HPP) has allocated responsibility for mapping individual chromosomes by country or region, while the biology/disease HPP (B/D-HPP) coordinates these teams in cross-functional disease-based groups. Chromosome 6 (Ch6) provides an excellent model for integration of these two tasks. This metacentric chromosome has a complement of 1002-1034 genes that code for known, novel or putative proteins. Ch6 is functionally associated with more than 120 major human diseases, many with high population prevalence, devastating clinical impact and profound societal consequences. The unique combination of genomic, proteomic, metabolomic, phenomic and health services data being drawn together within the Ch6 program has enormous potential to advance personalized medicine by promoting robust biomarkers, subunit vaccines and new drug targets. The strong liaison between the clinical and laboratory teams, and the structured framework for technology transfer and health policy decisions within Canada will increase the speed and efficacy of this transition, and the value of this translational research. Canada has been selected to play a leading role in the international Human Proteome Project, the global counterpart of the Human Genome Project designed to understand the structure and function of the human proteome in health and disease. Canada will lead an international team focusing on chromosome 6, which is functionally associated with more than 120 major human diseases, including immune and inflammatory disorders affecting the brain, skeletal system, heart and blood vessels, lungs, kidney, liver, gastrointestinal tract and endocrine system. Many of these chronic and persistent

  8. Large-scale polymorphism near the ends of several human chromosomes analyzed by using fluorescence in situ hybridization (FISH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trask, B.J.; Friedman, C.; Giorgi, D.

    1994-09-01

    We have discovered a large DNA segment that is polymorphically present at the ends of several human chromosomes. The segment, f7501, was originally derived form a human chromosome 19-specific cosmid library. FISH was used to determine the cosmid`s chromosomal distribution on 44 unrelated humans and several closely related primates. The human subjects represent a diversity of reproductively isolated ethnic populations. FISH analysis revealed that sequences highly homologous to the cosmid`s insert are present on both homologs at 3q, 15q,. and 19p in almost all individuals (88, 85, and 87 of 88 homologs, respectively). Other chromosomes sites were labeled much moremore » rarely in the sampled individuals. For example, 56 of the 88 analyzed chromosomes 11 were labeled (18+/+, 6-/-, and 20+/- individuals). In contrast, 2q was labeled on only 1/88 sampled chromosomes. The termini of 2q, 5q, 6p, 6q, 7p, 8p, 9p, 9q, 11p, 12q, 16p, 19q, and 20q and an interstitial site at 2q13-14 were labeled in at least one individual of the set. EcoR1-fragments derived from the cosmid showed the same hybridization pattern as the entire cosmid, indicating that at least 40 kbp is shared by these chromosome ends. Ethnic differences in the allele frequency of these polymorphic variants was observed. For example, signals were observed on 8/10 and 7/10 of the chromosomes 7p and 16q, respectively, derived form Biakan Pygmies, but these sites were infrequently labeled in non-Pygmy human populations (2/68, respectively). This region has undergone significant changes in chromosome location during human evolution. Strong signal was seen on chimpanzee and gorilla chromosome 3, which is homologous to human chromosome 4, a chromosome unlabeled in any of the humans we have analyzed.« less

  9. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AbuBakar, S.; Au, W.W.; Legator, M.S.

    1988-01-01

    Human cytomegalovirus (CMV) is potentially an effective but often overlooked genotoxic agent in humans. We report here evidence that indicates that infection by CMV can induce chromosome alterations and mitotic inhibition. The frequency of chromosome aberrations induced was dependent on the input multiplicity of infection (m.o.i.) for human lung fibroblasts (LU), but not for human peripheral blood lymphocytes (PBLs) when both cell types were infected at the GO phase of the cell cycle. The aberrations induced by CMV were mostly chromatid breaks and chromosome pulverizations that resembled prematurely condensed S-phase chromatin. Pulverized chromosomes were not observed in LU cells infectedmore » with virus stocks that had been rendered nonlytic by UV-irradiation at 24,000 ergs/mm2 or from infection of human lymphocytes. In LU cells infected with UV-irradiated CMV, the frequency of aberrations induced was inversely dependent on the extent of the exposure of the CMV stock to the UV-light. In permissive CMV infection of proliferating LU cells at 24 hr after subculture, a high percentage (greater than 40%) of the metaphase cells were arrested at their first metaphase and displayed severely condensed chromosomes when harvested 48 hr later. A significant increase (p less than 0.05) in the chromosome aberration frequency was also observed. Our study shows that CMV infection is genotoxic to host cells. The types and extent of damage are dependent on the viral genome expression and on the cell cycle stage of the cells at the time of infection. The possible mechanisms for induction of chromosome damage by CMV are discussed.« less

  10. Effects of hepatitis B virus infection on human sperm chromosomes.

    PubMed

    Huang, Jian-Min; Huang, Tian-Hua; Qiu, Huan-Ying; Fang, Xiao-Wu; Zhuang, Tian-Gang; Liu, Hong-Xi; Wang, Yong-Hua; Deng, Li-Zhi; Qiu, Jie-Wen

    2003-04-01

    To evaluate the level of sperm chromosome aberrations in male patients with hepatitis B, and to directly detect whether there are HBV DNA integrations in sperm chromosomes of hepatitis B patients. Sperm chromosomes of 14 tested subjects (5 healthy controls, 9 patients with HBV infection, including 1 with acute hepatitis B, 2 with chronic active hepatitis B, 4 with chronic persistent hepatitis B, 2 chronic HBsAg carriers with no clinical symptoms) were prepared using interspecific in vitro fertilization between zona-free golden hamster ova and human spermatozoa, and the frequencies of aberration spermatozoa were compared between subjects of HBV infection and controls. Fluorescence in situ hybridization (FISH) to sperm chromosome spreads was carried out with biotin-labeled full length HBV DNA probe to detect the specific HBV DNA sequences in the sperm chromosomes. The total frequency of sperm chromosome aberrations in HBV infection group (14.8 %, 33/223) was significantly higher than that in the control group (4.3 %, 5/116). Moreover, the sperm chromosomes in HBV infection patients commonly presented stickiness, clumping, failure to staining, etc, which would affect the analysis of sperm chromosomes. Specific fluorescent signal spots for HBV DNA were seen in sperm chromosomes of one patient with chronic persistent hepatitis. In 9 (9/42) sperm chromosome complements containing fluorescent signal spots, one presented 5 obvious FISH spots, others presented 2 to 4 signals. There was significant difference of fluorescence intensity among the signal spots. The distribution of signal sites among chromosomes was random. HBV infection can bring about mutagenic effects on sperm chromosomes. Integrations of viral DNA into sperm chromosomes which are multisites and nonspecific, can further increase the instability of sperm chromosomes. This study suggested that HBV infection can create extensively hereditary effects by alteration genetic constituent and/or induction chromosome

  11. Landscape of X chromosome inactivation across human tissues.

    PubMed

    Tukiainen, Taru; Villani, Alexandra-Chloé; Yen, Angela; Rivas, Manuel A; Marshall, Jamie L; Satija, Rahul; Aguirre, Matt; Gauthier, Laura; Fleharty, Mark; Kirby, Andrew; Cummings, Beryl B; Castel, Stephane E; Karczewski, Konrad J; Aguet, François; Byrnes, Andrea; Lappalainen, Tuuli; Regev, Aviv; Ardlie, Kristin G; Hacohen, Nir; MacArthur, Daniel G

    2017-10-11

    X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of 'escape' from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.

  12. [Research progress in human artificial chromosomes(HACs) and the potentials in application].

    PubMed

    Zuo, Guo-Wei; Lü, Feng-Lin

    2005-11-01

    Since the first report of the establishment of human artificial chromosome(HAC) was published in 1997, several types of HAC have been created by different strategies. Compared to other artificial chromosomes, such as yeast artificial chromosome (YAC) and bacterial artificial chromosome(BAC), HAC exists in a cell independently, in other words, HAC does not integrated into the cellular genome, and can undergo normal mitosis and meiosis from generation to generation in vitro and in vivo. Recent results proved that HAC, as a DNA carrier, is able to host a large fragment of DNA or mini-chromosome, thus it could be a very important tool in the study of human gene expression and regulation, human chromosome function and minimum functional elements and animal models for human diseases. In the near future, HAC can also be used in gene therapy for human genetic diseases.

  13. Correlation of physical and genetic maps of human chromosome 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less

  14. The human interleukin-1 alpha gene is located on the long arm of chromosome 2 at band q13.

    PubMed

    Lafage, M; Maroc, N; Dubreuil, P; de Waal Malefijt, R; Pébusque, M J; Carcassonne, Y; Mannoni, P

    1989-01-01

    Interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) are two biochemically distinct, but distantly related, polypeptidic cytokines that play a key role in inflammation, immunologic reactions, and tissue repair. Recently, it has been shown that IL-1 alpha is identical to hematopoietin 1, which was described as a hematopoietic growth factor acting on early progenitor cells in synergy with other hematopoietic growth factors. In this report we discuss our use of in situ hybridization on human prometaphase cells with a human IL-1 alpha cDNA probe to localize the human IL-1 alpha gene on the proximal part of the long arm of chromosome 2 at band q13, in the same chromosomal region as the IL-1 beta gene.

  15. Structure and chromosomal localization of the human PD-1 gene (PDCD1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinohara, T.; Ishida, Y.; Kawaichi, M.

    1994-10-01

    A cDNA encoding mouse PD-1, a member of the immunoglobulin superfamily, was previously isolated from apoptosis-induced cells by subtractive hybridization. To determine the structure and chromosomal location of the human PD-1 gene, we screened a human T cell cDNA library by mouse PD-1 probe and isolated a cDNA coding for the human PD-1 protein. The deduced amino acid sequence of human PD-1 was 60% identical to the mouse counterpart, and a putative tyrosine kinase-association motif was well conserved. The human PD-1 gene was mapped to 2q37.3 by chromosomal in situ hybridization. 7 refs., 3 figs.

  16. Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q.

    PubMed

    Seldin, M F; Morse, H C; LeBoeuf, R C; Steinberg, A D

    1988-01-01

    A linkage map of distal mouse chromosome 1 was constructed by restriction fragment length polymorphism analysis of DNAs from seven sets of recombinant inbred (RI) strains. The data obtained with seven probes on Southern hybridization combined with data from previous studies suggest the gene order Cfh, Pep-3/Ren-1,2, Ly-5, Lamb-2, At-3, Apoa-2/Ly-17,Spna-1. These results confirm and extend analyses of a large linkage group which includes genes present on a 20-30 cM span of mouse chromosome 1 and those localized to human chromosome 1q21-32. Moreover, the data indicate similar relative positions of human and mouse complement receptor-related genes REN, CD45, LAMB2, AT3, APOA2, and SPTA. These results suggest that mouse gene analyses may help in detailed mapping of human genes within such a syntenic group.

  17. Induction of chromosomal aberrations and micronuclei by 2-hydroxy-4-methoxybenzophenone (oxybenzone) in human lymphocytes.

    PubMed

    Santovito, Alfredo; Ruberto, Stefano; Galli, Gabriella; Menghi, Costanza; Girotti, Marilena; Cervella, Piero

    2018-04-12

    Oxybenzone or benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is a filter used in a variety of personal care products for protection of human skin and hair from damage by ultraviolet radiation. BP-3 is suspected to exhibit endocrine disruptive properties. Indeed, it was found to be able to interact with the endocrine system causing alteration of its homeostasis, with consequent adverse health effects. Moreover, it is ubiquitously present in the environment, mostly in aquatic ecosystems, with consequent risks to the health of aquatic organisms and humans. In the present study, we analyzed the cytogenetic effects of BP-3 on human lymphocytes using in vitro chromosomal aberrations and micronuclei assays. Blood samples were obtained from five healthy Italian subjects. Lymphocyte cultures were exposed to five concentrations of BP-3 (0.20, 0.10, 0.05, 0.025, and 0.0125 μg/mL) for 24 and 48 h (for chromosomal aberrations and micronuclei tests, respectively). The concentration of 0.10 µg/mL represents the acceptable/tolerable daily intake reference dose established by European Union, whereas 0.20, 0.05, 0.025, and 0.0125 µg/mL represent multiple and sub-multiple of this concentration value. Our results reported cytogenetic effects of BP-3 on cultured human lymphocytes in terms of increased micronuclei and chromosomal aberrations' frequencies at all tested concentrations, including concentrations lower than those established by European Union. Vice versa, after 48-h exposure, a significant reduction of the cytokinesis-block proliferation index value in cultures treated with BP-3 was not observed, indicating that BP-3 does not seem to produce effects on the proliferation/mitotic index when its concentration is equal to or less than 0.20 μg/mL.

  18. The DNA sequence of the human X chromosome

    PubMed Central

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  19. Low-frequency chimeric yeast artificial chromosome libraries from flow-sorted human chromosomes 16 and 21.

    PubMed Central

    McCormick, M K; Campbell, E; Deaven, L; Moyzis, R

    1993-01-01

    Construction of chromosome-specific yeast artificial chromosome (YAC) libraries from sorted chromosomes was undertaken (i) to eliminate drawbacks associated with first-generation total genomic YAC libraries, such as the high frequency of chimeric YACs, and (ii) to provide an alternative method for generating chromosome-specific YAC libraries in addition to isolating such collections from a total genomic library. Chromosome-specific YAC libraries highly enriched for human chromosomes 16 and 21 were constructed. By maximizing the percentage of fragments with two ligatable ends and performing yeast transformations with less than saturating amounts of DNA in the presence of carrier DNA, YAC libraries with a low percentage of chimeric clones were obtained. The smaller number of YAC clones in these chromosome-specific libraries reduces the effort involved in PCR-based screening and allows hybridization methods to be a manageable screening approach. Images PMID:8430075

  20. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    PubMed

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  1. Polymorphic human somatostatin gene is located on chromosome 3.

    PubMed Central

    Naylor, S L; Sakaguchi, A Y; Shen, L P; Bell, G I; Rutter, W J; Shows, T B

    1983-01-01

    Somatostatin is a 14-amino-acid neuropeptide and hormone that inhibits the secretion of several peptide hormones. The human gene for somatostatin SST has been cloned, and the sequence has been determined. This clone was used as a probe in chromosome mapping studies to detect the human somatostatin sequence in human-rodent hybrids. Southern blot analysis of 41 hybrids, including some containing translocations of human chromosomes, placed SST in the q21 leads to qter region of chromosome 3. Human DNAs from unrelated individuals were screened for restriction fragment polymorphisms detectable by the somatostatin gene probe. Two polymorphisms were found: (i) an EcoRI variant located at the 3' end of the gene, found in Caucasian, U.S. Black, and Asian populations with a frequency of approximately 0.10 and (ii) a BamHI variant in the intron, which occurs in Caucasians at a frequency of 0.13. Images PMID:6133281

  2. Mapping genes to human chromosome 19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Sarah

    1996-05-01

    For this project, 22 Expressed Sequence Tags (ESTs) were fine mapped to regions of human chromosome 19. An EST is a short DNA sequence that occurs once in the genome and corresponds to a single expressed gene. {sup 32}P-radiolabeled probes were made by polymerase chain reaction for each EST and hybridized to filters containing a chromosome 19-specific cosmid library. The location of the ESTs on the chromosome was determined by the location of the ordered cosmid to which the EST hybridized. Of the 22 ESTs that were sublocalized, 6 correspond to known genes, and 16 correspond to anonymous genes. Thesemore » localized ESTs may serve as potential candidates for disease genes, as well as markers for future physical mapping.« less

  3. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  4. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  5. The study of human Y chromosome variation through ancient DNA.

    PubMed

    Kivisild, Toomas

    2017-05-01

    High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.

  6. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells.

    PubMed

    Sato, Hiroshi; Kato, Hiroki; Yamaza, Haruyoshi; Masuda, Keiji; Nguyen, Huong Thi Nguyen; Pham, Thanh Thi Mai; Han, Xu; Hirofuji, Yuta; Nonaka, Kazuaki

    2017-01-01

    Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  7. Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkin, D.J.; Jones, C.; Kimbro, K.S.

    1993-07-01

    Indoleamine 2,3-dioxygenase (IDO) is the first enzyme in the catabolic pathway for tryptophan. This extrahepatic enzyme differs from the hepatic enzyme, tryptophan 2,3-dioxygenase (TDO), in molecular as well as enzymatic characteristics, although both enzymes catalyze the same reaction: cleavage of tryptophan into N-formylkynurenine. The induction of IDO by IFN-[gamma] plays a role in the antigrowth effect of IFN-[gamma] in cell cultures and in the inhibition of intracellular pathogens, e.g., Toxoplasma gondii and Chlamydia psittaci. Tryptophan is also the precursor for the synthesis of serotonin, and reduced levels of tryptophan and serotonin found in AIDS patients have been correlated with themore » presence of IFN-[gamma] and consequent elevation of IDO activity. The IDO enzyme has been purified and characterized, and its cDNA and genomic DNA clones have been isolated and analyzed. DNA from hybrid cells containing fragments of human chromosome 8 was used to determine the regional localization of the IDO gene on chromosome 8. The hybrids R30-5B and R30-2A contain 8p11 [yields] qter and 8q13 [yields] qter, respectively. Hybrid 229-3A contains the 8pter [yields] q11. The hybrid R30-2A was negative for the IDO gene, whereas R30-5B and 229-3A were positive as analyzed by PCR and verified by Southern blotting. Only the region close to the centromere is shared by R30-5B and 229-3A hybrids. The results indicate that the IDO gene is located on chromosome 8p11 [yields] q11.« less

  8. cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2-p12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, C.K.; Li, X.; Luna, J.

    1994-09-15

    Lactate and pyruvate are transported across cell membranes by monocarboxylate transporters (MCTs). Here, the authors use the recently cloned cDNA for hamster MCT1 to isolate cDNA and genomic clones for human MCT1. Comparison of the human and hamster amino acid sequences revealed that the proteins are 86% identical. The gene for human MCT1 (gene symbol, SLC16A1) was localized to human chromosome bands 1p13.2-p12 by PCR analysis of panels of human X rodent cell hybrid lines and by fluorescence chromosomal in situ hybridization. 9 refs., 2 figs.

  9. Epigenetic Pattern on the Human Y Chromosome Is Evolutionarily Conserved

    PubMed Central

    Meng, Hao; Agbagwa, Ikechukwu O.; Wang, Ling-Xiang; Wang, Yingzhi; Yan, Shi; Ren, Shancheng; Sun, Yinghao; Pei, Gang; Liu, Xin; Liu, Jiang; Jin, Li; Li, Hui; Sun, Yingli

    2016-01-01

    DNA methylation plays an important role for mammalian development. However, it is unclear whether the DNA methylation pattern is evolutionarily conserved. The Y chromosome serves as a powerful tool for the study of human evolution because it is transferred between males. In this study, based on deep-rooted pedigrees and the latest Y chromosome phylogenetic tree, we performed epigenetic pattern analysis of the Y chromosome from 72 donors. By comparing their respective DNA methylation level, we found that the DNA methylation pattern on the Y chromosome was stable among family members and haplogroups. Interestingly, two haplogroup-specific methylation sites were found, which were both genotype-dependent. Moreover, the African and Asian samples also had similar DNA methylation pattern with a remote divergence time. Our findings indicated that the DNA methylation pattern on the Y chromosome was conservative during human male history. PMID:26760298

  10. Natural selection reduced diversity on human y chromosomes.

    PubMed

    Wilson Sayres, Melissa A; Lohmueller, Kirk E; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area.

  11. Natural Selection Reduced Diversity on Human Y Chromosomes

    PubMed Central

    Wilson Sayres, Melissa A.; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. PMID:24415951

  12. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  13. Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2017-01-01

    Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed. © 2017 S. Karger AG, Basel.

  14. Protannotator: a semiautomated pipeline for chromosome-wise functional annotation of the "missing" human proteome.

    PubMed

    Islam, Mohammad T; Garg, Gagan; Hancock, William S; Risk, Brian A; Baker, Mark S; Ranganathan, Shoba

    2014-01-03

    The chromosome-centric human proteome project (C-HPP) aims to define the complete set of proteins encoded in each human chromosome. The neXtProt database (September 2013) lists 20,128 proteins for the human proteome, of which 3831 human proteins (∼19%) are considered "missing" according to the standard metrics table (released September 27, 2013). In support of the C-HPP initiative, we have extended the annotation strategy developed for human chromosome 7 "missing" proteins into a semiautomated pipeline to functionally annotate the "missing" human proteome. This pipeline integrates a suite of bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology, and biochemical pathways. From sequential BLAST searches, we have primarily identified homologues from reviewed nonhuman mammalian proteins with protein evidence for 1271 (33.2%) "missing" proteins, followed by 703 (18.4%) homologues from reviewed nonhuman mammalian proteins and subsequently 564 (14.7%) homologues from reviewed human proteins. Functional annotations for 1945 (50.8%) "missing" proteins were also determined. To accelerate the identification of "missing" proteins from proteomics studies, we generated proteotypic peptides in silico. Matching these proteotypic peptides to ENCODE proteogenomic data resulted in proteomic evidence for 107 (2.8%) of the 3831 "missing proteins, while evidence from a recent membrane proteomic study supported the existence for another 15 "missing" proteins. The chromosome-wise functional annotation of all "missing" proteins is freely available to the scientific community through our web server (http://biolinfo.org/protannotator).

  15. Ordered mapping of 3 alphoid DNA subsets on human chromosome 22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonacci, R.; Baldini, A.; Archidiacono, N.

    1994-09-01

    Alpha satellite DNA consists of tandemly repeated monomers of 171 bp clustered in the centromeric region of primate chromosomes. Sequence divergence between subsets located in different human chromosomes is usually high enough to ensure chromosome-specific hybridization. Alphoid probes specific for almost every human chromosome have been reported. A single chromosome can carry different subsets of alphoid DNA and some alphoid subsets can be shared by different chromosomes. We report the physical order of three alphoid DNA subsets on human chromosome 22 determined by a combination of low and high resolution cytological mapping methods. Results visually demonstrate the presence of threemore » distinct alphoid DNA domains at the centromeric region of chromosome 22. We have measured the interphase distances between the three probes in three-color FISH experiments. Statistical analysis of the results indicated the order of the subsets. Two color experiments on prometaphase chromosomes established the order of the three domains relative to the arms of chromosome 22 and confirmed the results obtained using interphase mapping. This demonstrates the applicability of interphase mapping for alpha satellite DNA orderering. However, in our experiments, interphase mapping did not provide any information about the relationship between extremities of the repeat arrays. This information was gained from extended chromatin hybridization. The extremities of two of the repeat arrays were seen to be almost overlapping whereas the third repeat array was clearly separated from the other two. Our data show the value of extended chromatin hybridization as a complement of other cytological techniques for high resolution mapping of repetitive DNA sequences.« less

  16. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Yusuf, Mohammed; Hashimoto, Teruo

    The human genetic material is packaged into 46 chromosomes. The structure of chromosomes is known at the lowest level, where the DNA chain is wrapped around a core of eight histone proteins to form nucleosomes. Around a million of these nucleosomes, each about 11 nm in diameter and 6 nm in thickness, are wrapped up into the complex organelle of the chromosome, whose structure is mostly known at the level of visible light microscopy to form a characteristic cross shape in metaphase. However, the higher-order structure of human chromosomes, between a few tens and hundreds of nanometers, has not beenmore » well understood. We show a three-dimensional (3D) image of a human prophase nucleus obtained by serial block-face scanning electron microscopy, with 36 of the complete set of 46 chromosomes captured within it. The acquired image allows us to extract quantitative 3D structural information about the nucleus and the preserved, intact individual chromosomes within it, including their positioning and full spatial morphology at a resolution of around 50 nm in three dimensions. The chromosome positions were found, at least partially, to follow the pattern of chromosome territories previously observed only in interphase. The 3D conformation shows parallel, planar alignment of the chromatids, whose occupied volumes are almost fully accounted for by the DNA and known chromosomal proteins. Here, we also propose a potential new method of identifying human chromosomes in three dimensions, on the basis of the measurements of their 3D morphology.« less

  17. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus

    PubMed Central

    Chen, Bo; Yusuf, Mohammed; Hashimoto, Teruo; Estandarte, Ana Katrina; Thompson, George; Robinson, Ian

    2017-01-01

    The human genetic material is packaged into 46 chromosomes. The structure of chromosomes is known at the lowest level, where the DNA chain is wrapped around a core of eight histone proteins to form nucleosomes. Around a million of these nucleosomes, each about 11 nm in diameter and 6 nm in thickness, are wrapped up into the complex organelle of the chromosome, whose structure is mostly known at the level of visible light microscopy to form a characteristic cross shape in metaphase. However, the higher-order structure of human chromosomes, between a few tens and hundreds of nanometers, has not been well understood. We show a three-dimensional (3D) image of a human prophase nucleus obtained by serial block-face scanning electron microscopy, with 36 of the complete set of 46 chromosomes captured within it. The acquired image allows us to extract quantitative 3D structural information about the nucleus and the preserved, intact individual chromosomes within it, including their positioning and full spatial morphology at a resolution of around 50 nm in three dimensions. The chromosome positions were found, at least partially, to follow the pattern of chromosome territories previously observed only in interphase. The 3D conformation shows parallel, planar alignment of the chromatids, whose occupied volumes are almost fully accounted for by the DNA and known chromosomal proteins. We also propose a potential new method of identifying human chromosomes in three dimensions, on the basis of the measurements of their 3D morphology. PMID:28776025

  18. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus

    DOE PAGES

    Chen, Bo; Yusuf, Mohammed; Hashimoto, Teruo; ...

    2017-07-21

    The human genetic material is packaged into 46 chromosomes. The structure of chromosomes is known at the lowest level, where the DNA chain is wrapped around a core of eight histone proteins to form nucleosomes. Around a million of these nucleosomes, each about 11 nm in diameter and 6 nm in thickness, are wrapped up into the complex organelle of the chromosome, whose structure is mostly known at the level of visible light microscopy to form a characteristic cross shape in metaphase. However, the higher-order structure of human chromosomes, between a few tens and hundreds of nanometers, has not beenmore » well understood. We show a three-dimensional (3D) image of a human prophase nucleus obtained by serial block-face scanning electron microscopy, with 36 of the complete set of 46 chromosomes captured within it. The acquired image allows us to extract quantitative 3D structural information about the nucleus and the preserved, intact individual chromosomes within it, including their positioning and full spatial morphology at a resolution of around 50 nm in three dimensions. The chromosome positions were found, at least partially, to follow the pattern of chromosome territories previously observed only in interphase. The 3D conformation shows parallel, planar alignment of the chromatids, whose occupied volumes are almost fully accounted for by the DNA and known chromosomal proteins. Here, we also propose a potential new method of identifying human chromosomes in three dimensions, on the basis of the measurements of their 3D morphology.« less

  19. Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans.

    PubMed

    Kehrer-Sawatzki, H; Sandig, C A; Goidts, V; Hameister, H

    2005-01-01

    During this study, we analysed the pericentric inversion that distinguishes human chromosome 12 (HSA12) from the homologous chimpanzee chromosome (PTR10). Two large chimpanzee-specific duplications of 86 and 23 kb were observed in the breakpoint regions, which most probably occurred associated with the inversion. The inversion break in PTR10p caused the disruption of the SLCO1B3 gene in exon 11. However, the 86-kb duplication includes the functional SLCO1B3 locus, which is thus retained in the chimpanzee, although inverted to PTR10q. The second duplication spans 23 kb and does not contain expressed sequences. Eleven genes map to a region of about 1 Mb around the breakpoints. Six of these eleven genes are not among the differentially expressed genes as determined previously by comparing the human and chimpanzee transcriptome of fibroblast cell lines, blood leukocytes, liver and brain samples. These findings imply that the inversion did not cause major expression differences of these genes. Comparative FISH analysis with BACs spanning the inversion breakpoints in PTR on metaphase chromosomes of gorilla (GGO) confirmed that the pericentric inversion of the chromosome 12 homologs in GGO and PTR have distinct breakpoints and that humans retain the ancestral arrangement. These findings coincide with the trend observed in hominoid karyotype evolution that humans have a karyotype close to an ancestral one, while African great apes present with more derived chromosome arrangements. Copyright (c) 2005 S. Karger AG, Basel.

  20. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  1. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells.

    PubMed

    Durante, M; Grossi, G F; Gialanella, G; Pugliese, M; Nappo, M; Yang, T C

    1995-08-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Human Chromosome 7: DNA Sequence and Biology

    PubMed Central

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.; Fernandez, Bridget A.; Kanematsu, Emiko; Gentles, Simone; Christopoulos, Constantine C.; Choufani, Sanaa; Kwasnicka, Dorota; Zheng, Xiangqun H.; Lai, Zhongwu; Nusskern, Deborah; Zhang, Qing; Gu, Zhiping; Lu, Fu; Zeesman, Susan; Nowaczyk, Malgorzata J.; Teshima, Ikuko; Chitayat, David; Shuman, Cheryl; Weksberg, Rosanna; Zackai, Elaine H.; Grebe, Theresa A.; Cox, Sarah R.; Kirkpatrick, Susan J.; Rahman, Nazneen; Friedman, Jan M.; Heng, Henry H. Q.; Pelicci, Pier Giuseppe; Lo-Coco, Francesco; Belloni, Elena; Shaffer, Lisa G.; Pober, Barbara; Morton, Cynthia C.; Gusella, James F.; Bruns, Gail A. P.; Korf, Bruce R.; Quade, Bradley J.; Ligon, Azra H.; Ferguson, Heather; Higgins, Anne W.; Leach, Natalia T.; Herrick, Steven R.; Lemyre, Emmanuelle; Farra, Chantal G.; Kim, Hyung-Goo; Summers, Anne M.; Gripp, Karen W.; Roberts, Wendy; Szatmari, Peter; Winsor, Elizabeth J. T.; Grzeschik, Karl-Heinz; Teebi, Ahmed; Minassian, Berge A.; Kere, Juha; Armengol, Lluis; Pujana, Miguel Angel; Estivill, Xavier; Wilson, Michael D.; Koop, Ben F.; Tosi, Sabrina; Moore, Gudrun E.; Boright, Andrew P.; Zlotorynski, Eitan; Kerem, Batsheva; Kroisel, Peter M.; Petek, Erwin; Oscier, David G.; Mould, Sarah J.; Döhner, Hartmut; Döhner, Konstanze; Rommens, Johanna M.; Vincent, John B.; Venter, J. Craig; Li, Peter W.; Mural, Richard J.; Adams, Mark D.; Tsui, Lap-Chee

    2010-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism. PMID:12690205

  3. The morbid anatomy of the human genome: chromosomal location of mutations causing disease.

    PubMed Central

    McKusick, V A; Amberger, J S

    1993-01-01

    Information is given in tabular form derived from a synopsis of the human gene map which has been updated continuously since 1973 as part of Mendelian Inheritance in Man (Johns Hopkins University Press, 10th ed, 1992) and of OMIM (Online Mendelian Inheritance in Man, available generally since 1987). The part of the synopsis reproduced here consists of chromosome by chromosome gene lists of loci for which there are associated disorders (table 1), a pictorial representation of this information (fig 1a-d), and an index of disorders for which the causative mutations have been mapped (table 2). In table 1, information on genes that have been located to specific chromosomal positions and are also the site of disease producing mutations is arranged by chromosome, starting with chromosome 1 and with the end of the short arm of the chromosome in each case. In table 2 an alphabetized list of these disorders and the chromosomal location of the mutation in each case are provided. Both in the 'Disorder' field of table 1 and in table 2, the numbers 1, 2, or 3 in parentheses after the name of the disorder indicate that its chromosomal location was determined by mapping of the wildtype gene (1), by mapping of the clinical phenotype (2), or by both strategies (3). PMID:8423603

  4. [Human chromosome banding with raw extract of fruits or leaves of papaya].

    PubMed

    Solís, M V

    2001-01-01

    One week old human chromosome preparations were treated with filtrate from one liquefied leaf (53 g) of papaya (Carica papaya) in 100 ml of distilled water, and stained with 1.5% Giemsa (pH 6.8). Good chromosome banding was obtained after 2 min of treatment. Solutions that have been frozen even for years are effective and the method is cheaper and easier than others.

  5. Chromosome Connections: Compelling Clues to Common Ancestry

    ERIC Educational Resources Information Center

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  6. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  7. Mapping of aldose reductase gene sequences to human chromosomes 1, 3, 7, 9, 11, and 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, J.B.; Kojis, T.; Heinzmann, C.

    1993-09-01

    Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, the authors mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q43, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other activemore » genes, non-aldose reductase homologous sequences, or pseudogenes. 24 refs., 3 figs., 2 tabs.« less

  8. Complementation of DNA repair defect in xeroderma pigmentosum cells of group C by the transfer of human chromosome 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, G.P.; Athwal, R.S.

    1993-01-01

    Complementation of DNA excision repair defect in xeroderma pigmentosum cells of group C (XP-C) has been achieved by the transfer of human chromosome 5. Individual human chromosomes tagged with a selectable marker were transferred to XP-C cells by microcell fusion from mouse-human hybrid cell lines each bearing a single different human chromosome. Analysis of the chromosome transfer clones revealed that introduction of chromosome 5 into XP-C cells corrected the DNA repair defect as well as UV-sensitive phenotypes, while chromosomes 2, 6, 7, 9, 13, 15, 17, and 21 failed to complement. The introduced chromosome 5 in complemented UV[sup r] clonesmore » was distinguished from the parental XP-C chromosomes by polymorphism for dinucleotide (CA)[sub n] repeats at two loci, D5S117 and D5S209. In addition, an intact marked chromosome 5 was rescued into mouse cells from a complemented UV[sup r] clone by microcell fusion. Five subclones of a complemented clone that had lost the marked chromosome 5 exhibited UV-sensitive and repair-deficient phenotypes identical to parental XP-C cells. Concordant loss of the transferred chromosome and reappearance of XP-C phenotype further confirmed the presence of a DNA repair gene on human chromosome 5. 38 refs., 7 figs., 1 tab.« less

  9. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content.

    PubMed

    Hughes, Jennifer F; Skaletsky, Helen; Pyntikova, Tatyana; Graves, Tina A; van Daalen, Saskia K M; Minx, Patrick J; Fulton, Robert S; McGrath, Sean D; Locke, Devin P; Friedman, Cynthia; Trask, Barbara J; Mardis, Elaine R; Warren, Wesley C; Repping, Sjoerd; Rozen, Steve; Wilson, Richard K; Page, David C

    2010-01-28

    The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, 'genetic hitchhiking' effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.

  10. M-BAND analysis of chromosome aberration induced by Fe-ions in human epithelial cells cultured in 3-dimensional matrices

    NASA Astrophysics Data System (ADS)

    Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied lowand high-LET radiationinduced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137 Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  11. M-BAND Analysis of Chromosome Aberration Induced by Fe-Ions in Human Epithelial Cells Cultured in 3-Dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelia cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultued at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  12. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome.

    PubMed

    Thévenin, Annelyse; Ein-Dor, Liat; Ozery-Flato, Michal; Shamir, Ron

    2014-09-01

    Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in the human genome. We test this question for three types of functional groups: pairs of interacting proteins, complexes and pathways. We find a significant concentration of functional groups both in terms of their distance within the same chromosome and in terms of their dispersal over several chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear close in the 3D space of the nucleus, we show that members of the same functional group that reside on distinct chromosomes tend to co-localize in space. The result holds for all three types of functional groups that we tested. Hence, the human genome shows substantial concentration of functional groups within chromosomes and across chromosomes in space. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. GTG banding pattern on human metaphase chromosomes revealed by high resolution atomic-force microscopy.

    PubMed

    Thalhammer, S; Koehler, U; Stark, R W; Heckl, W M

    2001-06-01

    Surface topography of human metaphase chromosomes following GTG banding was examined using high resolution atomic force microscopy (AFM). Although using a completely different imaging mechanism, which is based on the mechanical interaction of a probe tip with the chromosome, the observed banding pattern is comparable to results from light microscopy and a karyotype of the AFM imaged metaphase spread can be generated. The AFM imaging process was performed on a normal 2n = 46, XX karyotype and on a 2n = 46, XY, t(2;15)(q23;q15) karyotype as an example of a translocation of chromosomal bands.

  14. Human chromosome Y and SRY.

    PubMed

    Shah, V C; Smart, V

    1996-01-01

    The precise location of the SRY gene on the human Y chromosome has been revealed through studies of sex reversal cases involving deletion, cross-linking and mutations of the SRY gene. Its DNA sequence and mechanism of action are being understood. Similarity of SRY with Sry of mice and its interaction with other genes in male sex determination are discussed.

  15. Frequencies of occurrence of all human chromosomes in micronuclei from normal and 5-azacytidine-treated lymphocytes as revealed by chromosome painting.

    PubMed

    Fauth, E; Scherthan, H; Zankl, H

    1998-05-01

    Chromosome painting with library DNA probes specific for all human chromosomes was used to study the chromosomal content of micronuclei (MN) in normal and 5-azacytidine (5-aza-C)-treated lymphocyte cultures. More than 60,000 normal lymphocytes were screened for associated MN after in situ hybridization. At least 50 MN were scored for each probe. With the exception of chromosomes 12 and 19, which did not occur in MN, all other chromosomes were detected in MN at frequencies varying from 1 to 11.5%. Treatment of lymphocyte cultures with 5-aza-C induced preferential exclusion of chromosomes 1 (34%), 9 (32%) and 16 (20%) material in MN, whereas chromosome 8, 10, 12-15 and 21 material was not detected in MN. The results obtained from normal lymphocytes allow for the first time an estimation of the frequency of occurrence of all chromosomes in spontaneously occurring MN in human cells. Data derived from 5-aza-C-treated lymphocytes are furthermore consistent with the view that undermethylation of heterochromatin may be associated with loss of specific chromosomes at metaphase.

  16. Molecular cloning of metaphase chromosome protein 1 (MCP1), a novel human autoantigen that associates with condensed chromosomes during mitosis.

    PubMed

    Bronze-da-Rocha, E; Catita, J A; Sunkel, C E

    1998-02-01

    Systemic lupus erythematosus autoantibodies were used to identify and to characterize new human chromosome-associated proteins. Previous immunolocalization studies in human and murine tissue culture cells showed that some of these monoclonal antibodies recognize nuclear antigens that associate with condensed chromosomes during mitosis. One antibody was selected for screening a human HeLa S3 cDNA expression library, and cDNAs that code for an antigen of 31-33 kDa were isolated. Immunological, biochemical and cell fractionation data indicate that the 31- to 33-kDa antigen corresponds to the chromosome-associated protein recognized by the original monoclonal antibody. Sequence analysis shows that we isolated a novel human gene. Immunolocalization to human tissue culture cells shows that during interphase the antigen is dispersed in the nucleus and that during mitosis it associates exclusively with condensed chromosomes. A similar pattern of localization was also observed in mouse fibroblasts, suggesting that the antigen is conserved among different species. Finally, we show that part of the antigen remains bound to the scaffold/matrix component, even after high salt extraction.

  17. Induction of chromosome aberrations in human cells by charged particles

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Chromosome aberrations induced by high-energy charged particles in normal human lymphocytes and human fibroblasts have been investigated. The charged particles included 250 MeV/nucleon protons, 290 MeV/nucleon carbon ions and 1 GeV/nucleon iron ions. The energies of the charged particles were higher than in most of the studies reported in the literature. Lymphocytes were stimulated to grow immediately after irradiation, while fibroblasts were incubated at 37 degrees C for 24 h for repair. Chromosomes were collected at the first mitosis after irradiation and chromosome aberrations were scored using the fluorescence in situ hybridization (FISH) technique with a whole-chromosome 4 probe. Chromosome aberrations were classified as reciprocal exchanges, incomplete exchanges, deletions and complex exchanges. The relative biological effectiveness (RBE) for each type of aberration was calculated by dividing a dose of 4 Gy by the dose of the charged particles producing the same effect as 4 Gy of gamma rays. Results of this study showed that complex aberrations have the highest RBE for radiation of high linear energy transfer (LET) for human lymphocytes, but for fibroblasts, the greatest effect was for incomplete exchanges. For both lymphocytes and fibroblasts, iron ions induced a similar fraction of aberrant cells.

  18. DNA Double-Strand Breaks Coupled with PARP1 and HNRNPA2B1 Binding Sites Flank Coordinately Expressed Domains in Human Chromosomes

    PubMed Central

    Fedoseeva, Daria M.; Sosin, Dmitri V.; Grachev, Sergei A.; Serebraykova, Marina V.; Romanenko, Svetlana A.; Vorobieva, Nadezhda V.; Kravatsky, Yuri V.

    2013-01-01

    Genome instability plays a key role in multiple biological processes and diseases, including cancer. Genome-wide mapping of DNA double-strand breaks (DSBs) is important for understanding both chromosomal architecture and specific chromosomal regions at DSBs. We developed a method for precise genome-wide mapping of blunt-ended DSBs in human chromosomes, and observed non-random fragmentation and DSB hot spots. These hot spots are scattered along chromosomes and delimit protected 50–250 kb DNA domains. We found that about 30% of the domains (denoted forum domains) possess coordinately expressed genes and that PARP1 and HNRNPA2B1 specifically bind DNA sequences at the forum domain termini. Thus, our data suggest a novel type of gene regulation: a coordinated transcription or silencing of gene clusters delimited by DSB hot spots as well as PARP1 and HNRNPa2B1 binding sites. PMID:23593027

  19. Refined human artificial chromosome vectors for gene therapy and animal transgenesis

    PubMed Central

    Kazuki, Y; Hoshiya, H; Takiguchi, M; Abe, S; Iida, Y; Osaki, M; Katoh, M; Hiratsuka, M; Shirayoshi, Y; Hiramatsu, K; Ueno, E; Kajitani, N; Yoshino, T; Kazuki, K; Ishihara, C; Takehara, S; Tsuji, S; Ejima, F; Toyoda, A; Sakaki, Y; Larionov, V; Kouprina, N; Oshimura, M

    2011-01-01

    Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-proficient chicken DT40 cells. The HAC was physically characterized using a transformation-associated recombination (TAR) cloning strategy followed by sequencing of TAR-bacterial artificial chromosome clones. No endogenous genes were remained in the HAC. We demonstrated that any desired gene can be cloned into the HAC using the Cre-loxP system in Chinese hamster ovary cells, or a homologous recombination system in DT40 cells. The HAC can be efficiently transferred to other type of cells including mouse ES cells via microcell-mediated chromosome transfer. The transferred HAC was stably maintained in vitro and in vivo. Furthermore, tumor cells containing a HAC carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were selectively killed by ganciclovir in vitro and in vivo. Thus, this novel HAC vector may be useful not only for gene and cell therapy, but also for animal transgenesis. PMID:21085194

  20. Human ETS2 gene on chromosome 21 is not rearranged in Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacchi, N.; Nalbantoglu, J.; Sergovich, F.R.

    1988-10-01

    The human ETS2 gene, a member of the ETS gene family, with sequence homology with the retroviral ets sequence of the avian erythroblastosis retrovirus E26 is located on chromosome 21. Molecular genetic analysis of Down syndrome (DS) patients with partial trisomy 21 allowed us to reinforce the supposition that ETS2 may be a gene of the minimal DS genetic region. It was originally proposed that a duplication of a portion of the DS region represents the genetic basis of Alzheimer disease, a condition associated also with DS. No evidence of either rearrangements or duplications of ETS2 could be detected inmore » DNA from fibroblasts and brain tissue of Alzheimer disease patients with either the sporadic or the familiar form of the disease. Thus, an altered ETS2 gene dosage does not seem to be a genetic cause or component of Alzheimer disease.« less

  1. Sex chromosomes: platypus genome suggests a recent origin for the human X.

    PubMed

    Ellegren, Hans

    2008-07-08

    The unusual sex chromosomes of platypus are not homologous to the human X and Y chromosomes, implying that the sex chromosomes of placental mammals evolved after the monotreme and placental mammal lineages split about 165 million years ago.

  2. First Pass Annotation of Promoters on Human Chromosome 22

    PubMed Central

    Scherf, Matthias; Klingenhoff, Andreas; Frech, Kornelie; Quandt, Kerstin; Schneider, Ralf; Grote, Korbinian; Frisch, Matthias; Gailus-Durner, Valérie; Seidel, Alexander; Brack-Werner, Ruth; Werner, Thomas

    2001-01-01

    The publication of the first almost complete sequence of a human chromosome (chromosome 22) is a major milestone in human genomics. Together with the sequence, an excellent annotation of genes was published which certainly will serve as an information resource for numerous future projects. We noted that the annotation did not cover regulatory regions; in particular, no promoter annotation has been provided. Here we present an analysis of the complete published chromosome 22 sequence for promoters. A recent breakthrough in specific in silico prediction of promoter regions enabled us to attempt large-scale prediction of promoter regions on chromosome 22. Scanning of sequence databases revealed only 20 experimentally verified promoters, of which 10 were correctly predicted by our approach. Nearly 40% of our 465 predicted promoter regions are supported by the currently available gene annotation. Promoter finding also provides a biologically meaningful method for “chromosomal scaffolding”, by which long genomic sequences can be divided into segments starting with a gene. As one example, the combination of promoter region prediction with exon/intron structure predictions greatly enhances the specificity of de novo gene finding. The present study demonstrates that it is possible to identify promoters in silico on the chromosomal level with sufficient reliability for experimental planning and indicates that a wealth of information about regulatory regions can be extracted from current large-scale (megabase) sequencing projects. Results are available on-line at http://genomatix.gsf.de/chr22/. PMID:11230158

  3. Hexavalent chromium induces chromosome instability in human urothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Sandra S.; Holmes, Amie L.; Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damagemore » in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.« less

  4. X Chromosome of female cells shows dynamic changes in status during human somatic cell reprogramming.

    PubMed

    Kim, Kun-Yong; Hysolli, Eriona; Tanaka, Yoshiaki; Wang, Brandon; Jung, Yong-Wook; Pan, Xinghua; Weissman, Sherman Morton; Park, In-Hyun

    2014-06-03

    Induced pluripotent stem cells (iPSCs) acquire embryonic stem cell (ESC)-like epigenetic states, including the X chromosome. Previous studies reported that human iPSCs retain the inactive X chromosome of parental cells, or acquire two active X chromosomes through reprogramming. Most studies investigated the X chromosome states in established human iPSC clones after completion of reprogramming. Thus, it is still not fully understood when and how the X chromosome reactivation occurs during reprogramming. Here, we report a dynamic change in the X chromosome state throughout reprogramming, with an initial robust reactivation of the inactive X chromosome followed by an inactivation upon generation of nascent iPSC clones. iPSCs with two active X chromosomes or an eroded X chromosome arise in passaging iPSCs. These data provide important insights into the plasticity of the X chromosome of human female iPSCs and will be crucial for the future application of such cells in cell therapy and X-linked disease modeling.

  5. Human sperm chromosome analysis after subzonal sperm insemination of hamster oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, J.

    1994-09-01

    Sperm microinjection techniques, subzonal sperm insemination (SUZI) and intracytoplasmic sperm injection (ICSI), have achieved a wide spread clinical application for the treatment of male infertility. To date, only one study has focused on sperm karyotypes after microinjection. Martin et al. reported a very high incidence of abnormal human sperm complements after ICSI into hamster oocytes. In the present study, are reported the first human sperm karyotypes after SUZI of hamster oocytes. Spermatozoa from two control donors were treated by calcium ionophore A23187 and injected under the zona of hamster eggs. The microinjected eggs were then cultured for cytogenetic analysis ofmore » the pronuclei. Out of 47 analyzed sperm chromosome metaphases, 5 (10.6%) were abnormal, 4 (8.5%) were hypohaploid and 1 (2.1%) had a structural abnormality. The sex ratio was not significantly different from the expected 1:1 ratio. Rates of chromosomal abnormalities in microinjected spermatozoa were similar to those observed in spermatozoa inseminated with zona free eggs, suggesting that SUZI procedure per se does not increase sperm chromosomal abnormalities.« less

  6. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes

    PubMed Central

    Pongsavee, Malinee

    2009-01-01

    Background Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. Methods The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation) and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE) technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. Results It showed that the immune cell proliferation (lymphocyte proliferation) was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI). The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P < 0.05). Conclusion Borax had effects on immune cell proliferation (lymphocyte proliferation) and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human. PMID:19878537

  7. Assignment of the structural gene for human beta glucuronidase to chromosome 7 and tetrameric association of subunits in the enzyme molecule.

    PubMed Central

    Chern, C J; Croce, C M

    1976-01-01

    The structural locus for human beta glucuronidase is assigned to chromosome 7, a localization based upon concordant segregation of the expression of the human enzyme and the presence of human chromosome 7 in somatic cell hybrid clones derived independently from fusions of different human and mouse cells. Hybrid clones containing only human chromosome 7 are included in this study. Electrophoresis of beta glucuronidase also has revealed that human beta glucuronidase has a tetrametric structure. Images Fig. 1 Fig. 2 Fig. 3 PMID:941902

  8. Hexavalent Chromium Induces Chromosome Instability in Human Urothelial Cells

    PubMed Central

    Wise, Sandra S.; Holmes, Amie L.; Liou, Louis; Adam, Rosalyn M.; Wise, John Pierce

    2016-01-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of Cr(VI) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Hexavalent chromium (Cr(VI)) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer specifically and may be a mechanism for metal-induced bladder cancer in general. PMID:26908176

  9. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih

    Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplicationmore » in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.« less

  10. The chorionic gonadotropin alpha-subunit gene is on human chromosome 18 in JEG cells.

    PubMed Central

    Hardin, J W; Riser, M E; Trent, J M; Kohler, P O

    1983-01-01

    The gene for the alpha subunit of human chorionic gonadotropin (hCG) has been tentatively assigned to human chromosome 18. This localization was accomplished through the use of Southern blot analysis. A full-length cDNA probe for the hCG alpha subunit and DNA isolated from a series of somatic hybrids between mouse and human cells were utilized to make this assignment. In addition, in situ hybridization with normal human peripheral blood lymphocytes as a source of human chromosomes and with the same cDNA probe confirmed this result. The presence of human chromosome 18 was required for the detection of DNA fragments characteristic of the alpha-hCG gene. These results are consistent with our previous observation that human chromosomes 10 and 18 are required for the production of hCG in cultured cells. Images PMID:6578509

  11. The ubiquitous mitochondrial creatine kinase gene maps to a conserved region on human chromosome 15q15 and mouse chromosome 2 bands F1-F3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steeghs, K.; Wieringa, B.; Merkx, G.

    1994-11-01

    Members of the creatine kinase isoenzyme family (CKs; EC 2.7.3.2) are found in mitochondria and specialized subregions of the cytoplasm and catalyze the reversible exchange of high-energy phosphoryl between ATP and phosphocreatine. At least four functionally active genes, which encode the distinct CK subunits CKB, CKM, CKMT1 (ubiquitous), and CKMT2 (sarcomeric), and a variable number of CKB pseudogenes have been identified. Here, we report the use of a CKMT1 containing phage to map the CKMT1 gene by in situ hybridization on both human and mouse chromosomes.

  12. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals

    PubMed Central

    Cloutier, Jeffrey M.; Mahadevaiah, Shantha K.; ElInati, Elias; Nussenzweig, André; Tóth, Attila; Turner, James M. A.

    2015-01-01

    Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities. PMID:26509888

  13. Flow analysis of human chromosome sets by means of mixing-stirring device

    NASA Astrophysics Data System (ADS)

    Zenin, Valeri V.; Aksenov, Nicolay D.; Shatrova, Alla N.; Klopov, Nicolay V.; Cram, L. Scott; Poletaev, Andrey I.

    1997-05-01

    A new mixing and stirring device (MSD) was used to perform flow karyotype analysis of single human mitotic chromosomes analyzed so as to maintain the identity of chromosomes derived from the same cell. An improved method for cell preparation and intracellular staining of chromosomes was developed. The method includes enzyme treatment, incubation with saponin and separation of prestained cells from debris on a sucrose gradient. Mitotic cells are injected one by one in the MSD which is located inside the flow chamber where cells are ruptured, thereby releasing chromosomes. The set of chromosomes proceeds to flow in single file fashion to the point of analysis. The device works in a stepwise manner. The concentration of cells in the sample must be kept low to ensure that only one cell at a time enters the breaking chamber. Time-gated accumulation of data in listmode files makes it possible to separate chromosome sets comprising of single cells. The software that was developed classifies chromosome sets according to different criteria: total number of chromosomes, overall DNA content in the set, and the number of chromosomes of certain types. This approach combines the high performance of flow cytometry with the advantages of image analysis. Examples obtained with different human cell lines are presented.

  14. Coincidence of synteny breakpoints with malignancy-related deletions on human chromosome 3

    PubMed Central

    Kost-Alimova, Maria; Kiss, Hajnalka; Fedorova, Ludmila; Yang, Ying; Dumanski, Jan P.; Klein, George; Imreh, Stefan

    2003-01-01

    We have found previously that during tumor growth intact human chromosome 3 transferred into tumor cells regularly looses certain 3p regions, among them the ≈1.4-Mb common eliminated region 1 (CER1) at 3p21.3. Fluorescence in situ hybridization analysis of 12 mouse orthologous loci revealed that CER1 splits into two segments in mouse and therefore contains a murine/human conservation breakpoint region (CBR). Several breaks occurred in tumors within the region surrounding the CBR, and this sequence has features that characterize unstable chromosomal regions: deletions in yeast artificial chromosome clones, late replication, gene and segment duplications, and pseudogene insertions. Sequence analysis of the entire 3p12-22 revealed that other cancer-associated deletions (regions eliminated from monochromosomal hybrids carrying an intact chromosome 3 during tumor growth and homozygous deletions found in human tumors) colocalized nonrandomly with murine/human CBRs and were characterized by an increased number of local gene duplications and murine/human conservation mismatches (single genes that do not match into the conserved chromosomal segment). The CBR within CER1 contains a simple tandem TATAGA repeat capable of forming a 40-bp-long secondary hairpin-like structure. This repeat is nonrandomly localized within the other tumor-associated deletions and in the vicinity of 3p12-22 CBRs. PMID:12738884

  15. Chromosomal localization and cDNA cloning of the human DBP and TEF genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatib, Z.A.; Inaba, T.; Valentine, M.

    1994-09-15

    The authors have isolated cDNA and genomic clones and determined the human chromosome positions of two genes encoding transcription factors expressed in the liver and the pituitary gland: albumin D-site-binding protein (DBP) and thyrotroph embryonic factor (TEF). Both proteins have been identified as members of the PAR (proline and acidic amino acid-rich) subfamily of bZIP transcription factors in the rat, but human homologues have not been characterized. Using a fluorescence in situ hybridization technique, the DBP locus was assigned to chromosome 19q13, and TEF to chromosome 22q13. Each assignment was confirmed by means of human chromosome segregation in somatic cellmore » hybrids. Coding sequences of DBP and TEF, extending beyond the bZIP domain to the PAR region, were highly conserved in both human-human and interspecies comparisons. Conservation of the exon-intron boundaries of each bZIP domain-encoding exon suggested derivation from a common ancestral gene. DBP and TEF mRNAs were expressed in all tissues and cell lines examined, including brain, lung, liver, spleen, and kidney. Knowledge of the human chromosome locations of these PAR proteins will facilitate studies to assess their involvement in carcinogenesis and other fundamental biological processes. 37 refs., 5 figs., 1 tab.« less

  16. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans.

    PubMed

    Dickinson, Peter J; York, Dan; Higgins, Robert J; LeCouteur, Richard A; Joshi, Nikhil; Bannasch, Danika

    2016-07-01

    Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  17. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans

    PubMed Central

    York, Dan; Higgins, Robert J.; LeCouteur, Richard A.; Joshi, Nikhil; Bannasch, Danika

    2016-01-01

    Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. PMID:27251041

  18. The gene for PAX7, a member of the paired-box-containing genes, is localized on human chromosome arm 1p36.

    PubMed

    Shapiro, D N; Sublett, J E; Li, B; Valentine, M B; Morris, S W; Noll, M

    1993-09-01

    The murine Pax-7 gene and the cognate human gene, formerly designated HuP1, are members of the multigene paired-box-containing class of developmental regulatory genes first identified in Drosophila. By analysis of somatic cell hybrids segregating human chromosomes, the gene encoding PAX7 was localized to human chromosome 1. Fluorescence in situ hybridization confirmed this assignment and allowed mapping of the gene to the terminal region of the short arm (1p36) of the chromosome. Additionally, these results confirm the extensive homology between human chromosome 1p and the distal segment of mouse chromosome 4, extending from bands C5 through E2.

  19. Interstitial telomeric repeats are not preferentially involved in radiation-induced chromosome aberrations in human cells.

    PubMed

    Desmaze, C; Pirzio, L M; Blaise, R; Mondello, C; Giulotto, E; Murnane, J P; Sabatier, L

    2004-01-01

    Telomeric repeat sequences, located at the end of eukaryotic chromosomes, have been detected at intrachromosomal locations in many species. Large blocks of telomeric sequences are located near the centromeres in hamster cells, and have been reported to break spontaneously or after exposure to ionizing radiation, leading to chromosome aberrations. In human cells, interstitial telomeric sequences (ITS) can be composed of short tracts of telomeric repeats (less than twenty), or of longer stretches of exact and degenerated hexanucleotides, mainly localized at subtelomeres. In this paper, we analyzed the radiation sensitivity of a naturally occurring short ITS localized in 2q31 and we found that this region is not a hot spot of radiation-induced chromosome breaks. We then selected a human cell line in which approximately 800 bp of telomeric DNA had been introduced by transfection into an internal euchromatic chromosomal region in chromosome 4q. In parallel, a cell line containing the plasmid without telomeric sequences was also analyzed. Both regions containing the transfected plasmids showed a higher frequency of radiation-induced breaks than expected, indicating that the instability of the regions containing the transfected sequences is not due to the presence of telomeric sequences. Taken together, our data show that ITS themselves do not enhance the formation of radiation-induced chromosome rearrangements in these human cell lines. Copyright 2003 S. Karger AG, Basel

  20. Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    PubMed Central

    Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.

    2003-01-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes. PMID:14560014

  1. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

    PubMed

    Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F

    2003-11-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.

  2. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition.

    PubMed

    Bellott, Daniel W; Skaletsky, Helen; Pyntikova, Tatyana; Mardis, Elaine R; Graves, Tina; Kremitzki, Colin; Brown, Laura G; Rozen, Steve; Warren, Wesley C; Wilson, Richard K; Page, David C

    2010-07-29

    In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex--the W and Y chromosomes. By contrast, the sex chromosomes found in both sexes--the Z and X chromosomes--are assumed to have diverged little from their autosomal progenitors. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.

  3. The cnm locus, a canine homologue of human autosomal forms of centronuclear myopathy, maps to chromosome 2.

    PubMed

    Tiret, Laurent; Blot, Stéphane; Kessler, Jean-Louis; Gaillot, Hugues; Breen, Matthew; Panthier, Jean-Jacques

    2003-09-01

    Myotubular/centronuclear myopathies are a nosological group of hereditary disorders characterised by severe architectural and metabolic remodelling of skeletal muscle fibres. In most myofibres, nuclei are found at an abnormal central position within a halo devoid of myofibrillar proteins. The X-linked form (myotubular myopathy) is the most prevalent and severe form in human, leading to death during early postnatal life. Maturation of fibres is not completed and fibres resemble myotubes. Linkage analysis in human has helped to identify MTM1 as the morbid gene. MTM1 encodes myotubularin, a dual protein phosphatase. In families in which myotubular myopathy segregates, detected mutations in MTM1 abolish the specific phosphatase activity targeting the second messenger phosphatidylinositol 3-phosphate. Autosomal forms (centronuclear) have a later onset and are often compatible with life. At birth, fibres are normally constituted but progressively follow remodelling with a secondary centralisation of nuclei. Their prevalence is low; hence, no linkage data can be performed and no molecular aetiology is known. In the Labrador Retriever, a spontaneous disorder strikingly mimics the clinical evolution of the human centronuclear myopathy. We have established a canine pedigree and show that the disorder segregates as an autosomal recessive trait in that pedigree. We have further mapped the dog locus to a region on chromosome 2 that is orthologous to human chromosome 10p. To date, no human MTM1 gene member has been mapped to this genetic region. This report thus describes the first spontaneous mammalian model of centronuclear myopathy and defines a new locus for this group of diseases.

  4. Pax1, a member of the paired box-containing class of developmental control genes, is mapped to human chromosome 20p11.2 by in situ hybridization (ISH and FISH).

    PubMed

    Schnittger, S; Rao, V V; Deutsch, U; Gruss, P; Balling, R; Hansmann, I

    1992-11-01

    Pax-1, a member of a murine multigene family, belongs to the paired box-containing class of developmental control genes first identified in Drosophila. The Pax-1 gene encodes a sequence-specific DNA-binding protein with transcriptional activating properties and has been found to be mutated in the autosomal recessive mutation undulated (un) on mouse chromosome 2 with vertebral anomalies along the entire rostrocaudal axis. By radioactive in situ hybridization (ISH) using a fragment from the murine Pax-1 paired box that is almost identical to the respective sequences from the cognate human gene HuP48 and fluorescence in situ hybridization (FISH) using a complete mouse Pax-1 cDNA, we have assigned the human homologue of murine Pax-1, the PAX1 locus, to chromosome 20p. The map position of PAX1 after FISH (FL-pter value of 0.34 +/- 0.04) corresponds to band p11.2. These results confirm the exceptional homology between human chromosome 20 and the distal segment of mouse chromosome 2, extending from bands F to G, and add PAX1 to the group of genes on 20p like PTPA, PRNP, SCG1, BMP2A, which are located in proximity on both chromosomes.

  5. One pedigree we all may have come from - did Adam and Eve have the chromosome 2 fusion?

    PubMed

    Stankiewicz, Paweł

    2016-01-01

    In contrast to Great Apes, who have 48 chromosomes, modern humans and likely Neandertals and Denisovans have and had, respectively, 46 chromosomes. The reduction in chromosome number was caused by the head-to-head fusion of two ancestral chromosomes to form human chromosome 2 (HSA2) and may have contributed to the reproductive barrier with Great Apes. Next generation sequencing and molecular clock analyses estimated that this fusion arose prior to our last common ancestor with Neandertal and Denisovan hominins ~ 0.74 - 4.5 million years ago. I propose that, unlike recurrent Robertsonian translocations in humans, the HSA2 fusion was a single nonrecurrent event that spread through a small polygamous clan population bottleneck. Its heterozygous to homozygous conversion, fixation, and accumulation in the succeeding populations was likely facilitated by an evolutionary advantage through the genomic loss rather than deregulation of expression of the gene(s) flanking the HSA2 fusion site at 2q13. The origin of HSA2 might have been a critical evolutionary event influencing higher cognitive functions in various early subspecies of hominins. Next generation sequencing of Homo heidelbergensis and Homo erectus genomes and complete reconstruction of DNA sequence of the orthologous subtelomeric chromosomes in Great Apes should enable more precise timing of HSA2 formation and better understanding of its evolutionary consequences.

  6. Chromosome Aberration in Human Blood Lymphocytes Exposed to Energetic Protons

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry A.; Cucinotta, F. A.

    2008-01-01

    During space flight, astronauts are exposed to a space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/micrometer. and doses ranged from 0.2 to 3 Gy. Over this energy the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction produces such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are LET dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  7. Repetitive telomeric sequences in chromosomal translocations involving chromosome 21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, J.; Dallaire, L.; Fetni, R.

    Telomeres perform key functions in maintaining chromosome integrity. In some structural rearrangements the structure and polymorphism in human telomeres may play a significant role. However, of all the telomeric and subtelomeric sequences, only the terminal TTAGGG repeats are believed essential for telomere function. During the course of a study on the role of telomere structure and polymorphism in chromosomal rearrangements observed in families referred for prenatal diagnosis, we studied three cases in which chromosome 21 was involved. Repetitive TTAGGG sequences for all human chromosomes were used as probes (Oncor). Case 1, a de novo cryptic translocation (2;21) was initially identifiedmore » as monosomy 21 in a child with psychomotor delay and mild dysmorphism. Using a cosmid probe specific for region 21q22.3 and whole chromosome 21 specific painting probe, the long arm of 21 was found on the short arm of chromosome 2 with an interstitial telomere at the breakpoint junction. All the cells were monosomic for 21pter{yields}q21. Case 2 is a familial (19;21) translocation. GTG-banding and FISH with a satellite probe showed no apparent loss of material at the end of either 19q or 21q, with an interstitial telomere at the fusion site of the two intact chromosomes. In case 3, a four generation reciprocal (20;21) translocation, there was no interstitial telomere. The persistence of an interstitial telomere is a relatively rare event which can now be observed with in situ hybridization. Its study may lead to a better understanding of the dynamics of translocations and of chromosome imbalance.« less

  8. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and thatmore » a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.« less

  9. Systems-level chromosomal parameters represent a suprachromosomal basis for the non-random chromosomal arrangement in human interphase nuclei

    PubMed Central

    Fatakia, Sarosh N.; Mehta, Ishita S.; Rao, Basuthkar J.

    2016-01-01

    Forty-six chromosome territories (CTs) are positioned uniquely in human interphase nuclei, wherein each of their positions can range from the centre of the nucleus to its periphery. A non-empirical basis for their non-random arrangement remains unreported. Here, we derive a suprachromosomal basis of that overall arrangement (which we refer to as a CT constellation), and report a hierarchical nature of the same. Using matrix algebra, we unify intrinsic chromosomal parameters (e.g., chromosomal length, gene density, the number of genes per chromosome), to derive an extrinsic effective gene density matrix, the hierarchy of which is dominated largely by extrinsic mathematical coupling of HSA19, followed by HSA17 (human chromosome 19 and 17, both preferentially interior CTs) with all CTs. We corroborate predicted constellations and effective gene density hierarchy with published reports from fluorescent in situ hybridization based microscopy and Hi-C techniques, and delineate analogous hierarchy in disparate vertebrates. Our theory accurately predicts CTs localised to the nuclear interior, which interestingly share conserved synteny with HSA19 and/or HSA17. Finally, the effective gene density hierarchy dictates how permutations among CT position represents the plasticity within its constellations, based on which we suggest that a differential mix of coding with noncoding genome modulates the same. PMID:27845379

  10. Report of the Second International Workshop on Human Chromosome 5 Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, C.A.; Neuman, W.L.; McPherson, J.

    This report describes the accomplishments of the Second International Workshop on Human Chromosome 5 as was held May 11--13,1992 at the University of Chicago. Included in the report are abstract of individual presentations and a consensus map of the chromosome.

  11. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/myeloid leukemia factor 2 (MLF2).

    PubMed

    Kuefer, M U; Look, A T; Williams, D C; Valentine, V; Naeve, C W; Behm, F G; Mullersman, J E; Yoneda-Kato, N; Montgomery, K; Kucherlapati, R; Morris, S W

    1996-07-15

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, the MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal region frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements.

  12. Human structural variation: mechanisms of chromosome rearrangements

    PubMed Central

    Weckselblatt, Brooke; Rudd, M. Katharine

    2015-01-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074

  13. Relationships between chromosome structure and chromosomal aberrations

    NASA Astrophysics Data System (ADS)

    Eidelman, Yuri; Andreev, Sergey

    An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.

  14. Molecular and cytogenetic characterization of a chinese hamster/human hybrid cell line containing a der (21)t(Ypter [yields] cenY::cen21 [yields] 21qter) chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, D.; Hart, I.; Jones, C.

    1993-01-01

    Human/rodent somatic cell hybrids have been exceedingly useful in assigning human genes and DNA sequences to specific human chromosomes. As new technologies for analyzing the human chromosome complement of such human/rodent hybrid cells become available, it is of critical importance that these be applied to enhance characterization of existing hybrids. This is particularly important since human chromosomes in such hybrids have been observed to rearrange with time. We report here the use of fluorescence in situ hybridization of DNA probes to metaphase chromosomes to analyze one hybrid designated 72532X6. This analysis shows that the chromosome suspected to be a normalmore » human chromosome 21 in this hybrid is actually a translocation chromosome containing Yp and 21 q. In addition, the hybrid contains a fragment of human chromosome 9 translocated to a Chinese hamster chromosome. Analysis of the chromosomes from the human donor indicates that his chromosomes are normal. Thus, this translocation chromosome appears to have arisen after formation of the hybrid. 14 refs., 2 figs.« less

  15. Abnormal chromosome complement resulting from a familial inversion of chromosome 2.

    PubMed Central

    Richter, S; Lockwood, B; Lockwood, D; Allanson, J

    1989-01-01

    It has been suggested that pericentric inversions of chromosome 2 increase the risk for spontaneous abortion but do not increase the risk for unbalanced recombinant offspring. We report our experience of a familial pericentric inversion of chromosome 2 resulting in two unbalanced recombinant offspring. Both subjects have 46,XX,rec(2),dup q,inv(2)(p25q35). Images PMID:2479747

  16. Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.

    PubMed

    Lee, Hyoung-Joo; Jeong, Seul-Ki; Na, Keun; Lee, Min Jung; Lee, Sun Hee; Lim, Jong-Sun; Cha, Hyun-Jeong; Cho, Jin-Young; Kwon, Ja-Young; Kim, Hoguen; Song, Si Young; Yoo, Jong Shin; Park, Young Mok; Kim, Hail; Hancock, William S; Paik, Young-Ki

    2013-06-07

    As a starting point of the Chromosome-Centric Human Proteome Project (C-HPP), we established strategies of genome-wide proteomic analysis, including protein identification, quantitation of disease-specific proteins, and assessment of post-translational modifications, using paired human placental tissues from healthy and preeclampsia patients. This analysis resulted in identification of 4239 unique proteins with high confidence (two or more unique peptides with a false discovery rate less than 1%), covering 21% of approximately 20, 059 (Ensembl v69, Oct 2012) human proteins, among which 28 proteins exhibited differentially expressed preeclampsia-specific proteins. When these proteins are assigned to all human chromosomes, the pattern of the newly identified placental protein population is proportional to that of the gene count distribution of each chromosome. We also identified 219 unique N-linked glycopeptides, 592 unique phosphopeptides, and 66 chromosome 13-specific proteins. In particular, protein evidence of 14 genes previously known to be specifically up-regulated in human placenta was verified by mass spectrometry. With respect to the functional implication of these proteins, 38 proteins were found to be involved in regulatory factor biosynthesis or the immune system in the placenta, but the molecular mechanism of these proteins during pregnancy warrants further investigation. As far as we know, this work produced the highest number of proteins identified in the placenta and will be useful for annotating and mapping all proteins encoded in the human genome.

  17. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    PubMed

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-07

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. Copyright © 2015 the authors 0270-6474/15/350140-06$15.00/0.

  18. Decoding the disease-associated proteins encoded in the human chromosome 4.

    PubMed

    Chen, Lien-Chin; Liu, Mei-Ying; Hsiao, Yung-Chin; Choong, Wai-Kok; Wu, Hsin-Yi; Hsu, Wen-Lian; Liao, Pao-Chi; Sung, Ting-Yi; Tsai, Shih-Feng; Yu, Jau-Song; Chen, Yu-Ju

    2013-01-04

    Chromosome 4 is the fourth largest chromosome, containing approximately 191 megabases (~6.4% of the human genome) with 757 protein-coding genes. A number of marker genes for many diseases have been found in this chromosome, including genetic diseases (e.g., hepatocellular carcinoma) and biomedical research (cardiac system, aging, metabolic disorders, immune system, cancer and stem cell) related genes (e.g., oncogenes, growth factors). As a pilot study for the chromosome 4-centric human proteome project (Chr 4-HPP), we present here a systematic analysis of the disease association, protein isoforms, coding single nucleotide polymorphisms of these 757 protein-coding genes and their experimental evidence at the protein level. We also describe how the findings from the chromosome 4 project might be used to drive the biomarker discovery and validation study in disease-oriented projects, using the examples of secretomic and membrane proteomic approaches in cancer research. By integrating with cancer cell secretomes and several other existing databases in the public domain, we identified 141 chromosome 4-encoded proteins as cancer cell-secretable/shedable proteins. Additionally, we also identified 54 chromosome 4-encoded proteins that have been classified as cancer-associated proteins with successful selected or multiple reaction monitoring (SRM/MRM) assays developed. From literature annotation and topology analysis, 271 proteins were recognized as membrane proteins while 27.9% of the 757 proteins do not have any experimental evidence at the protein-level. In summary, the analysis revealed that the chromosome 4 is a rich resource for cancer-associated proteins for biomarker verification projects and for drug target discovery projects.

  19. Chromosomal localization and sequence analysis of a human episomal sequence with in vitro differentiating activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccaccio, C.; Deshatrette, J.; Meunier-Rotival, M.

    1994-05-01

    The genomic fragment carrying the human activator of liver function, previously described as an episome capable of inducing differentiation upon transfection into a dedifferentiated rat hepatoma cell line, was mapped on human chromosome 12q24.2-12q24.3. This chromosomal location was indistinguishable by in situ hybridization from that of the gene coding for the hepatic transcription factor HNF1. The sequence of the integrated form of the episome as well as its flanking sequences show that it is rich in retroposons. It contains a human ribosomal protein L21 processed pseudogene, one truncated L1Hs sequence, and 10 Alu repeats, which belong to different subfamilies.

  20. Ethiopians and Khoisan Share the Deepest Clades of the Human Y-Chromosome Phylogeny

    PubMed Central

    Semino, Ornella; Santachiara-Benerecetti, A. Silvana; Falaschi, Francesco; Cavalli-Sforza, L. Luca; Underhill, Peter A.

    2002-01-01

    The genetic structure of 126 Ethiopian and 139 Senegalese Y chromosomes was investigated by a hierarchical analysis of 30 diagnostic biallelic markers selected from the worldwide Y-chromosome genealogy. The present study reveals that (1) only the Ethiopians share with the Khoisan the deepest human Y-chromosome clades (the African-specific Groups I and II) but with a repertoire of very different haplotypes; (2) most of the Ethiopians and virtually all the Senegalese belong to Group III, whose precursor is believed to be involved in the first migration out of Africa; and (3) the Ethiopian Y chromosomes that fall into Groups VI, VIII, and IX may be explained by back migrations from Asia. The first observation confirms the ancestral affinity between the Ethiopians and the Khoisan, which has previously been suggested by both archaeological and genetic findings. PMID:11719903

  1. Chromosome aberrations in human blood lymphocytes exposed to energetic protons

    NASA Astrophysics Data System (ADS)

    Hada, Megumi; George, Ms Kerry; Cucinotta, Francis A.

    During space flight, astronauts are exposed to space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and are therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/µm. and doses ranged from 0.2 to 3 Gy. Over this energy range the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction products such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are energy dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  2. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/Myeloid Leukemia Factor 2 (MLF2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuefer, M.U.; Valentine, V.; Behm, F.G.

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, and MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal regionmore » frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements. 19 refs., 2 figs.« less

  3. Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints.

    PubMed

    Huang, L; Nesterenko, A; Nie, W; Wang, J; Su, W; Graphodatsky, A S; Yang, F

    2008-01-01

    Considering the giraffe (Giraffa camelopardalis, GCA, 2n = 30) as a primitive species, its comparative genomic data are critical for our understanding of the karyotype evolution of pecorans. Here, we have established genome-wide chromosomal homologies between giraffe, Chinese muntjac (Muntiacus reevesi, MRE, 2n = 46) and human (Homo sapiens, HSA, 2n = 46) with whole sets of chromosome-specific paints from Chinese muntjac and human, in addition to providing a high-resolution G-banding karyotype of giraffe. Chinese muntjac and human chromosome paints detected 32 and 45 autosomal homologs in the genome of giraffe, respectively. Our results suggest that it would require at least thirteen fissions, six fusions and three intrachromosomal rearrangements to 'transform' the 2n = 44 eutherian ancestral karyotype to the 2n = 58 pecoran ancestral karyotype. During giraffe evolution, some ancestral eutherian syntenies (i.e. association of HSA3/21, 4/8, 7/16, 14/15, 16/19 and two forms of 12/22) have been retained, while several derived syntenies (i.e. associations of human homologous segments 2/1, 2/9, 5/19, 4/12/22, 8/9, and 10/20) have been produced. The reduction of chromosome number in giraffe from the 2n = 58 pecoran ancestral karyotype could be primarily attributed to extensive Robertsonian translocations of ancestral chromosomal segments. More complex chromosomal rearrangements (including tandem fusion, centromere repositioning and pericentric inversion) have happened during the evolution of GCA2 and GCA8. Copyright 2008 S. Karger AG, Basel.

  4. Human-Specific Duplication and Mosaic Transcripts: The Recent Paralogous Structure of Chromosome 22

    PubMed Central

    Bailey, Jeffrey A. ; Yavor, Amy M. ; Viggiano, Luigi ; Misceo, Doriana ; Horvath, Juliann E. ; Archidiacono, Nicoletta ; Schwartz, Stuart ; Rocchi, Mariano ; Eichler, Evan E. 

    2002-01-01

    In recent decades, comparative chromosomal banding, chromosome painting, and gene-order studies have shown strong conservation of gross chromosome structure and gene order in mammals. However, findings from the human genome sequence suggest an unprecedented degree of recent (<35 million years ago) segmental duplication. This dynamism of segmental duplications has important implications in disease and evolution. Here we present a chromosome-wide view of the structure and evolution of the most highly homologous duplications (⩾1 kb and ⩾90%) on chromosome 22. Overall, 10.8% (3.7/33.8 Mb) of chromosome 22 is duplicated, with an average sequence identity of 95.4%. To organize the duplications into tractable units, intron-exon structure and well-defined duplication boundaries were used to define 78 duplicated modules (minimally shared evolutionary segments) with 157 copies on chromosome 22. Analysis of these modules provides evidence for the creation or modification of 11 novel transcripts. Comparative FISH analyses of human, chimpanzee, gorilla, orangutan, and macaque reveal qualitative and quantitative differences in the distribution of these duplications—consistent with their recent origin. Several duplications appear to be human specific, including a ∼400-kb duplication (99.4%–99.8% sequence identity) that transposed from chromosome 14 to the most proximal pericentromeric region of chromosome 22. Experimental and in silico data further support a pericentromeric gradient of duplications where the most recent duplications transpose adjacent to the centromere. Taken together, these data suggest that segmental duplications have been an ongoing process of primate genome evolution, contributing to recent gene innovation and the dynamic transformation of genome architecture within and among closely related species. PMID:11731936

  5. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells

    NASA Technical Reports Server (NTRS)

    Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard

    2003-01-01

    The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.

  6. Early and Late Damages in Chromosome 3 of Human Lymphocytes After Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Mangala, Lingegowda; Zhang, Ye; Kahdim, Munira; Wilson, Bobby; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    Tumor formation in humans or animals is a multi-step process. An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. GI is defined as elevated or persistent genetic damages occurring many generations after the cells are exposed. While early studies have demonstrated radiation-induced GI in several cell types as detected in endpoints such as mutation, apoptosis and damages in chromosomes, the dependence of GI on the quality of radiation remains uncertain. To investigate GI in human lymphocytes induced by both low- and high-LET radiation, we initially exposed white blood cells collected from healthy subjects to gamma rays in vitro, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis post irradiation and at several intervals during the culture period. Among a number of biological endpoints planned for the project, the multi-color banding fluorescent in situ hybridization (mBAND) allows identification of inversions that were expected to be stable. We present here early and late chromosome aberrations detected with mBAND in chromosome 3 after gamma exposure. Comparison of chromosome damages in between human lymphocytes and human epithelial cells is also discussed

  7. Highly stable maintenance of a mouse artificial chromosome in human cells and mice.

    PubMed

    Kazuki, Kanako; Takehara, Shoko; Uno, Narumi; Imaoka, Natsuko; Abe, Satoshi; Takiguchi, Masato; Hiramatsu, Kei; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2013-12-06

    Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) display several advantages as gene delivery vectors, such as stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Previously, we showed that a MAC vector developed from a natural mouse chromosome by chromosome engineering was more stably maintained in adult tissues and hematopoietic cells in mice than HAC vectors. In this study, to expand the utility for a gene delivery vector in human cells and mice, we investigated the long-term stability of the MACs in cultured human cells and transchromosomic mice. We also investigated the chromosomal copy number-dependent expression of genes on the MACs in mice. The MAC was stably maintained in human HT1080 cells in vitro during long-term culture. The MAC was stably maintained at least to the F8 and F4 generations in ICR and C57BL/6 backgrounds, respectively. The MAC was also stably maintained in hematopoietic cells and tissues derived from old mice. Transchromosomic mice containing two or four copies of the MAC were generated by breeding. The DNA contents were comparable to the copy number of the MACs in each tissue examined, and the expression of the EGFP gene on the MAC was dependent on the chromosomal copy number. Therefore, the MAC vector may be useful not only for gene delivery in mammalian cells but also for animal transgenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Chromosomal duplications in bacteria, fruit flies, and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupski, J.R.; Weinstock, G.M.; Roth, J.R.

    1996-01-01

    Tandem duplication of chromosomal segments has been recognized as a frequent mutational mechanism in several genetic model systems. In bacteria, fruit flies, and humans, duplications form by similar molecular mechanisms and appear to be important in genome evolution. 80 refs.

  9. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, N.; Wienberg, J.; Ermert, K.

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore,more » be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.« less

  10. A gene involved in control of human cellular senescence on human chromosome 1q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensler, P.J.; Pereira-Smith, O.M.; Annab, L.A.

    1994-04-01

    Normal cells in culture exhibit limited division potential and have been used as a model for cellular senescence. In contrast, tumor-derived or carcinogen- or virus-transformed cells are capable of indefinite division. Fusion of normal human diploid fibroblasts with immortal human cells yielded hybrids having limited life spans, indicating that cellular senescence was dominant. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. The purpose of this study was to determine whether human chromosome 1 could complement the recessive immortal defect of human cell lines assigned to one ofmore » the four complementation groups. Using microcell fusion, the authors introduced a single normal human chromosome 1 into immortal human cell lines representing the complementation groups and determined that it caused loss of proliferative potential of an osteosarcoma-derived cell line (TE85), a cytomegalovirus-transformed lung fibroblast cell line (CMV-Mj-HEL-1), and a Ki-ras[sup +]-transformed derivative of TE85 (143B TK[sup [minus

  11. Computer graphics of SEM images facilitate recognition of chromosome position in isolated human metaphase plates.

    PubMed

    Hodge, L D; Barrett, J M; Welter, D A

    1995-04-01

    There is general agreement that at the time of mitosis chromosomes occupy precise positions and that these positions likely affect subsequent nuclear function in interphase. However, before such ideas can be investigated in human cells, it is necessary to determine first the precise position of each chromosome with regard to its neighbors. It has occurred to us that stereo images, produced by scanning electron microscopy, of isolated metaphase plates could form the basis whereby these positions could be ascertained. In this paper we describe a computer graphic technique that permits us to keep track of individual chromosomes in a metaphase plate and to compare chromosome positions in different metaphase plates. Moreover, the computer graphics provide permanent, easily manipulated, rapid recall of stored chromosome profiles. These advantages are demonstrated by a comparison of the relative position of group A-specific and groups D- and G-specific chromosomes to the full complement of chromosomes in metaphase plates isolated from a nearly triploid human-derived cell (HeLa S3) to a hypo-diploid human fetal lung cell.

  12. [Intraspecific chromosomal variability in human pathogenic fungi, especially in Histoplasma capsulatum].

    PubMed

    Romero-Martínez, Rafael; Canteros, Cristina; Taylor, Maria Lucia

    2004-12-01

    The ploidy, karyotype, and chromosome length polymorphism (CLP) of human pathogenic fungi were revised with emphasis on Histoplasma capsulatum, the causative agent of the systemic mycosis, histoplasmosis. Currently, different systems of gel electrophoresis are being used to determine fungal electrokaryotypes (EK). By renaturation kinetic and genomic reconstruction in H. capsulatum strains (G-186AS and Downs), estimated genome sizes of 23 and 32 Mb were determined for both strains, respectively. The haploid state was proposed for both strains, although aneuploidy was suggested for the Downs strain. Contour-clamped homogeneous electric field (CHEF), field inversion gel electrophoresis (FIGE), and Southern blot using different probes showed the presence of six to seven chromosomes in the Downs strain (low virulence), whereas four chromosomes were identified in the G-186B strain (high virulence). The use of these methods in the three major H. capsulatum reference strains (G-217B and Downs from the United States of America, G-186B from Panama) revealed distinct chromosome sizes, from 0.5 to 5.7 Mb, with CLP associated with chromosomes size and mobility. Recently, by CHEF, using 19 H. capsulatum isolates from Latin-America and the G-186B strain, five to seven chromosomes with 1.1 to 11.2 Mb molecular sizes were revealed, which again suggested CLP in H. capsulatum. However, to elucidate the EKs polymorphism in H. capsulatum and its relationship with the isolates phenotype more studies are needed to understand the mechanisms controlling ploidy variability.

  13. Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization

    PubMed Central

    Mankiw, Catherine; Park, Min Tae M.; Reardon, P.K.; Fish, Ari M.; Clasen, Liv S.; Greenstein, Deanna; Blumenthal, Jonathan D.; Lerch, Jason P.; Chakravarty, M. Mallar

    2017-01-01

    The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences—including their spatial distribution, potential biological determinants, and independence from brain volume variation—lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male–female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the

  14. Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization.

    PubMed

    Mankiw, Catherine; Park, Min Tae M; Reardon, P K; Fish, Ari M; Clasen, Liv S; Greenstein, Deanna; Giedd, Jay N; Blumenthal, Jonathan D; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2017-05-24

    The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences-including their spatial distribution, potential biological determinants, and independence from brain volume variation-lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male-female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human

  15. Reactivation of Chromosomally Integrated Human Herpesvirus-6 by Telomeric Circle Formation

    PubMed Central

    Prusty, Bhupesh K.; Krohne, George; Rudel, Thomas

    2013-01-01

    More than 95% of the human population is infected with human herpesvirus-6 (HHV-6) during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6). In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle) formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR). Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation. PMID:24367281

  16. Arrested human embryos are more likely to have abnormal chromosomes than developing embryos from women of advanced maternal age.

    PubMed

    Qi, Shu-Tao; Liang, Li-Feng; Xian, Ye-Xing; Liu, Jian-Qiao; Wang, Weihua

    2014-01-01

    Aneuploidy is one of the major factors that result in low efficiency in human infertility treatment by in vitro fertilization (IVF). The development of DNA microarray technology allows for aneuploidy screening by analyzing all 23 pairs of chromosomes in human embryos. All chromosome screening for aneuploidy is more accurate than partial chromosome screening, as errors can occur in any chromosome. Currently, chromosome screening for aneuploidy is performed in developing embryos, mainly blastocysts. It has not been performed in arrested embryos and/or compared between developing embryos and arrested embryos from the same IVF cycle. The present study was designed to examine all chromosomes in blastocysts and arrested embryos from the same cycle in patients of advanced maternal ages. Embryos were produced by routine IVF procedures. A total of 90 embryos (45 blastocysts and 45 arrested embryos) from 17 patients were biopsied and analyzed by the Agilent DNA array platform. It was found that 50% of the embryos developed to blastocyst stage; however, only 15.6% of the embryos (both blastocyst and arrested) were euploid, and most (84.4%) of the embryos had chromosomal abnormalities. Further analysis indicated that 28.9% of blastocysts were euploid and 71.1% were aneuploid. By contrast, only one (2.2%) arrested embryo was euploid while others (97.8%) were aneuploid. The prevalence of multiple chromosomal abnormalities in the aneuploid embryos was also higher in the arrested embryos than in the blastocysts. These results indicate that high proportions of human embryos from patients of advanced maternal age are aneuploid, and the arrested embryos are more likely to have abnormal chromosomes than developing embryos.

  17. Analysis of Heavy Ion-Induced Chromosome Aberrations in Human Fibroblast Cells Using In Situ Hybridization

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 0 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Unrejoined chromosomal breaks and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, indicating the maximum number of chromosome domains traversed by a single Fe ion track. 2

  18. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    PubMed Central

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  19. Characteristics of chromosome instability in the human lymphoblast cell line WTK1

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Evans, H. H.

    2001-01-01

    The characteristics of spontaneous and radiation-induced chromosome instability were determined in each of 50 individual clones isolated from control populations of human lymphoblasts (WTK1), as well as from populations of these cells previously exposed to two different types of ionizing radiation, Fe-56 and Cs-137. The types of chromosome instability did not appear to change in clones surviving radiation exposure. Aneuploidy, polyploidy, chromosome dicentrics and translocations, and chromatid breaks and gaps were found in both control and irradiated clones. The primary effect of radiation exposure was to increase the number of cells within any one clone that had chromosome alterations. Chromosome instability was associated with telomere shortening and elevated levels of apoptosis. The results suggest that the proximal cause of chromosome instability is telomere shortening.

  20. Termini of human chromosomes display elevated rates of mitotic recombination.

    PubMed

    Cornforth, M N; Eberle, R L

    2001-01-01

    The strand-specific in situ hybridization technique of CO-FISH was used to probe telomeres of human mitotic cells in order to determine the spontaneous frequency of crossover. This approach allowed the detection of recombinational crossovers occurring anywhere along the length of individual chromosomes, including reciprocal events taking place between sister chromatids. Although the process of sister chromatid exchange (SCE) is the most prominent type of recombination in somatic mammalian cells, our results show that SCEs accounted for less than a third of the recombinational events revealed by CO-FISH. It is concluded that chromosomal regions near the termini of chromosome arms undergo extraordinarily high rates of spontaneous recombination, producing terminal crossovers whose small size precludes detection by standard cytogenetic methods. That similar results were observed for transformed epithelial cells, as well as primary fibroblasts, suggests that the phenomenon is a common characteristic of human cells. These findings are noteworthy because, although telomeric and subtelomeric DNA is known to be preferentially involved in certain types of recombination, the tips of somatic mammalian chromosomes have not previously been identified as preferred sites for crossover. Implications of these results are discussed in terms of limitations imposed on CO-FISH for its proposed use in directional hybridization mapping.

  1. Y chromosome diversity, human expansion, drift, and cultural evolution

    PubMed Central

    Chiaroni, Jacques; Underhill, Peter A.; Cavalli-Sforza, Luca L.

    2009-01-01

    The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent “Out of Africa” expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production. PMID:19920170

  2. Y chromosome diversity, human expansion, drift, and cultural evolution.

    PubMed

    Chiaroni, Jacques; Underhill, Peter A; Cavalli-Sforza, Luca L

    2009-12-01

    The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent "Out of Africa" expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production.

  3. cDNA cloning and characterization of the human THRAP2 gene which maps to chromosome 12q24, and its mouse ortholog Thrap2.

    PubMed

    Musante, Luciana; Bartsch, Oliver; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2004-05-12

    Characterization of a balanced t(2;12)(q37;q24) translocation in a patient with suspicion of Noonan syndrome revealed that the chromosome 12 breakpoint lies in the vicinity of a novel human gene, thyroid hormone receptor-associated protein 2 (THRAP2). We therefore characterized this gene and its mouse counterpart in more detail. Human and mouse THRAP2/Thrap2 span a genomic region of about 310 and >170 kilobases (kb), and both contain 31 exons. Corresponding transcripts are approximately 9.5 kb long. Their open reading frames code for proteins of 2210 and 2203 amino acids, which are 93% identical. By northern blot analysis, human and mouse THRAP2/Thrap2 genes showed ubiquitous expression. Transcripts were most abundant in human skeletal muscle and in mouse heart. THRAP2 protein is 56% identical to human TRAP240, which belongs to the thyroid hormone receptor associated protein (TRAP) complex and is evolutionary conserved up to yeast. This complex is involved in transcriptional regulation and is believed to serve as adapting interface between regulatory proteins bound to specific DNA sequences and RNA polymerase II.

  4. Painting analysis of chromosome aberrations induced by energetic heavy ions in human cells

    NASA Astrophysics Data System (ADS)

    Wu, H.; Hada, M.; Cucinotta, F. A.

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future exploration missions High-LET heavy ions are particularly effective in causing various biological effects including cell inactivation genetic mutations and cancer induction Most of these biological endpoints are closely related to chromosomal damage which can be utilized as a biomarker for radiation insults Over the years we have studied chromosomal damage in human fibroblast epithelia and lymphocyte cells exposed in vitro to energetic charged particles generated at several accelerator facilities in the world Various fluorescence in situ hybridization painting techniques have been used to identify from only the telomere region of the chromosome to every chromosome in a human cell We will summarize the results of the investigations and discuss the unique radiation signatures and biomarkers for space radiation exposure

  5. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.

    PubMed

    Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2016-02-24

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. Copyright © 2016 the authors 0270-6474/16/362438-11$15.00/0.

  6. Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting

    PubMed Central

    Nie, W; Wang, J; Su, W; Wang, D; Tanomtong, A; Perelman, P L; Graphodatsky, A S; Yang, F

    2012-01-01

    Chromosomal evolution in carnivores has been revisited extensively using cross-species chromosome painting. Painting probes derived from flow-sorted chromosomes of the domestic dog, which has one of the most rearranged karyotypes in mammals and the highest dipoid number (2n=78) in carnivores, are a powerful tool in detecting both evolutionary intra- and inter-chromosomal rearrangements. However, only a few comparative maps have been established between dog and other non-Canidae species. Here, we extended cross-species painting with dog probes to seven more species representing six carnivore families: Eurasian lynx (Lynx lynx), the stone marten (Martes foina), the small Indian civet (Viverricula indica), the Asian palm civet (Paradoxurus hermaphrodites), Javan mongoose (Hepestes javanicas), the raccoon (Procyon lotor) and the giant panda (Ailuropoda melanoleuca). The numbers and positions of intra-chromosomal rearrangements were found to differ among these carnivore species. A comparative map between human and stone marten, and a map among the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), stone marten and human were also established to facilitate outgroup comparison and to integrate comparative maps between stone marten and other carnivores with such maps between human and other species. These comparative maps give further insight into genome evolution and karyotype phylogenetic relationships among carnivores, and will facilitate the transfer of gene mapping data from human, domestic dog and cat to other species. PMID:22086079

  7. A fresh look at the male-specific region of the human Y chromosome.

    PubMed

    Jangravi, Zohreh; Alikhani, Mehdi; Arefnezhad, Babak; Sharifi Tabar, Mehdi; Taleahmad, Sara; Karamzadeh, Razieh; Jadaliha, Mahdieh; Mousavi, Seyed Ahmad; Ahmadi Rastegar, Diba; Parsamatin, Pouria; Vakilian, Haghighat; Mirshahvaladi, Shahab; Sabbaghian, Marjan; Mohseni Meybodi, Anahita; Mirzaei, Mehdi; Shahhoseini, Maryam; Ebrahimi, Marzieh; Piryaei, Abbas; Moosavi-Movahedi, Ali Akbar; Haynes, Paul A; Goodchild, Ann K; Nasr-Esfahani, Mohammad Hossein; Jabbari, Esmaiel; Baharvand, Hossein; Sedighi Gilani, Mohammad Ali; Gourabi, Hamid; Salekdeh, Ghasem Hosseini

    2013-01-04

    The Chromosome-centric Human Proteome Project (C-HPP) aims to systematically map the entire human proteome with the intent to enhance our understanding of human biology at the cellular level. This project attempts simultaneously to establish a sound basis for the development of diagnostic, prognostic, therapeutic, and preventive medical applications. In Iran, current efforts focus on mapping the proteome of the human Y chromosome. The male-specific region of the Y chromosome (MSY) is unique in many aspects and comprises 95% of the chromosome's length. The MSY continually retains its haploid state and is full of repeated sequences. It is responsible for important biological roles such as sex determination and male fertility. Here, we present the most recent update of MSY protein-encoding genes and their association with various traits and diseases including sex determination and reversal, spermatogenesis and male infertility, cancers such as prostate cancers, sex-specific effects on the brain and behavior, and graft-versus-host disease. We also present information available from RNA sequencing, protein-protein interaction, post-translational modification of MSY protein-coding genes and their implications in biological systems. An overview of Human Y chromosome Proteome Project is presented and a systematic approach is suggested to ensure that at least one of each predicted protein-coding gene's major representative proteins will be characterized in the context of its major anatomical sites of expression, its abundance, and its functional relevance in a biological and/or medical context. There are many technical and biological issues that will need to be overcome in order to accomplish the full scale mapping.

  8. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    PubMed

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  9. 17th Chromosome-Centric Human Proteome Project Symposium in Tehran.

    PubMed

    Meyfour, Anna; Pahlavan, Sara; Sobhanian, Hamid; Salekdeh, Ghasem Hosseini

    2018-04-01

    This report describes the 17th Chromosome-Centric Human Proteome Project which was held in Tehran, Iran, April 27 and 28, 2017. A brief summary of the symposium's talks including new technical and computational approaches for the identification of novel proteins from non-coding genomic regions, physicochemical and biological causes of missing proteins, and the close interactions between Chromosome- and Biology/Disease-driven Human Proteome Project are presented. A synopsis of decisions made on the prospective programs to maintain collaborative works, share resources and information, and establishment of a newly organized working group, the task force for missing protein analysis are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    DOE R&D Accomplishments Database

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  11. Unrepaired clustered DNA lesions induce chromosome breakage in human cells

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Chen, David J.

    2011-01-01

    Clustered DNA damage induced by ionizing radiation is refractory to repair and may trigger carcinogenic events for reasons that are not well understood. Here, we used an in situ method to directly monitor induction and repair of clustered DNA lesions in individual cells. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages, but not the physical location of these damages within the subnuclear domains, determined the cellular ability to repair the damage. We then examined checkpoint arrest mechanisms and yield of gross chromosomal aberrations. Induction of nonrepairable clustered damage affected only G2 accumulation but not the early G2/M checkpoint. Further, cells that were released from the G2/M checkpoint with unrepaired clustered damage manifested a spectrum of chromosome aberrations in mitosis. Difficulties associated with clustered DNA damage repair and checkpoint release before the completion of clustered DNA damage repair appear to promote genome instability that may lead to carcinogenesis. PMID:21527720

  12. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    PubMed Central

    de Souza, Sandro J.; Camargo, Anamaria A.; Briones, Marcelo R. S.; Costa, Fernando F.; Nagai, Maria Aparecida; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; de Fátima Sonati, Maria; Tajara, Eloiza H.; Valentini, Sandro R.; Acencio, Marcio; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Bengtson, Mário Henrique; Carraro, Dirce M.; Carvalho, Alex F.; Carvalho, Lúcia Helena; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Costa, Maria Cristina R.; Curcio, Cyntia; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Leite, Luciana C. C.; Maia, Gustavo; Majumder, Paromita; Marins, Mozart; Matsukuma, Adriana; Melo, Analy S. A.; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana Gilbert; Rahal, Paula; Rainho, Claudia A.; da Ro's, Nancy; de Sá, Renata G.; Sales, Magaly M.; da Silva, Neusa P.; Silva, Tereza C.; da Silva, Wilson; Simão, Daniel F.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Zalcberg, Heloisa; Brentani, Ricardo R.; Reis, Luis F. L.; Dias-Neto, Emmanuel; Simpson, Andrew J. G.

    2000-01-01

    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html). PMID:11070084

  13. Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting.

    PubMed Central

    Frönicke, Lutz; Wienberg, Johannes; Stone, Gary; Adams, Lisa; Stanyon, Roscoe

    2003-01-01

    This study presents a whole-genome comparison of human and a representative of the Afrotherian clade, the African elephant, generated by reciprocal Zoo-FISH. An analysis of Afrotheria genomes is of special interest, because recent DNA sequence comparisons identify them as the oldest placental mammalian clade. Complete sets of whole-chromosome specific painting probes for the African elephant and human were constructed by degenerate oligonucleotide-primed PCR amplification of flow-sorted chromosomes. Comparative genome maps are presented based on their hybridization patterns. These maps show that the elephant has a moderately rearranged chromosome complement when compared to humans. The human paint probes identified 53 evolutionary conserved segments on the 27 autosomal elephant chromosomes and the X chromosome. Reciprocal experiments with elephant probes delineated 68 conserved segments in the human genome. The comparison with a recent aardvark and elephant Zoo-FISH study delineates new chromosomal traits which link the two Afrotherian species phylogenetically. In the absence of any morphological evidence the chromosome painting data offer the first non-DNA sequence support for an Afrotherian clade. The comparative human and elephant genome maps provide new insights into the karyotype organization of the proto-afrotherian, the ancestor of extant placental mammals, which most probably consisted of 2n=46 chromosomes. PMID:12965023

  14. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  15. The prevalence of chromosomal deletions relating to developmental delay and/or intellectual disability in human euploid blastocysts.

    PubMed

    He, Wenyin; Sun, Xiaofang; Liu, Lian; Li, Man; Jin, Hua; Wang, Wei-Hua

    2014-01-01

    Chromosomal anomalies in human embryos produced by in vitro fertilization are very common, which include numerical (aneuploidy) and structural (deletion, duplication or others) anomalies. Our previous study indicated that chromosomal deletion(s) is the most common structural anomaly accounting for approximately 8% of euploid blastocysts. It is still unknown if these deletions in human euploid blastocysts have clinical significance. In this study, we analyzed 15 previously diagnosed euploid blastocysts that had chromosomal deletion(s) using Agilent oligonucleotide DNA microarray platform and localized the gene location in each deletion. Then, we used OMIM gene map and phenotype database to investigate if these deletions are related with some important genes that cause genetic diseases, especially developmental delay or intellectual disability. As results, we found that the detectable chromosomal deletion size with Agilent microarray is above 2.38 Mb, while the deletions observed in human blastocysts are between 11.6 to 103 Mb. With OMIM gene map and phenotype database information, we found that deletions can result in loss of 81-464 genes. Out of these genes, 34-149 genes are related with known genetic problems. Furthermore, we found that 5 out of 15 samples lost genes in the deleted region, which were related to developmental delay and/or intellectual disability. In conclusion, our data indicates that all human euploid blastocysts with chromosomal deletion(s) are abnormal and transfer of these embryos may cause birth defects and/or developmental and intellectual disabilities. Therefore, the embryos with chromosomal deletion revealed by DNA microarray should not be transferred to the patients, or further gene map and/or phenotype seeking is necessary before making a final decision.

  16. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    PubMed

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  17. Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    FISH, mFISH, mBAND, telomere and centromere probes have been used to study chromosome aberrations induced in human cells exposed to low-and high-LET radiation in vitro. High-LET induced damages are mostly a single track effect. Unrejoined chromosome breaks (incomplete exchanges) and complex type aberrations were higher for high-LET. Biosignatures may depend on the method the samples are collected. Recent mBAND analysis has revealed more information about the nature of intra-chromosome exchanges. Whether space flight/microgravity affects radiation-induced chromosome aberration frequencies is still an open question.

  18. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    PubMed

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG. Copyright © 2012 S. Karger AG, Basel.

  19. Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to Space-like Radiations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, F. A.; Gonda, S. R.; Wu, H.

    2005-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future exploration missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells and lymphocytes were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory (Upton, NY) or Cs-137 gamma radiation source at the Baylor College (Houston, TX). After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The possible relationship between the frequency of inter- and intra-chromosomal exchanges and the track structure of radiation is discussed. The work was supported by the NASA Space Radiation Health Program.

  20. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans.

    PubMed

    Romanenko, Svetlana A; Perelman, Polina L; Trifonov, Vladimir A; Serdyukova, Natalia A; Li, Tangliang; Fu, Beiyuan; O'Brien, Patricia C M; Ng, Bee L; Nie, Wenhui; Liehr, Thomas; Stanyon, Roscoe; Graphodatsky, Alexander S; Yang, Fengtang

    2015-01-01

    The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents.

  1. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans

    PubMed Central

    Romanenko, Svetlana A.; Perelman, Polina L.; Trifonov, Vladimir A.; Serdyukova, Natalia A.; Li, Tangliang; Fu, Beiyuan; O’Brien, Patricia C. M.; Ng, Bee L.; Nie, Wenhui; Liehr, Thomas; Stanyon, Roscoe; Graphodatsky, Alexander S.; Yang, Fengtang

    2015-01-01

    The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents. PMID:26010445

  2. Flow karyotyping and sorting of human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Lucas, J.; Peters, D.

    1986-07-16

    Flow cytometry and sorting are becoming increasingly useful as tools for chromosome classfication and for the detection of numerical and structural chromosome aberrations. Chromosomes of a single type can be purified with these tools to facilitate gene mapping or production of chromosome specific recombinant DNA libraries. For analysis of chromosomes with flow cytometry, the chromosomes are extracted from mitotic cells, stained with one or more fluorescent dyes and classified one-by-one according to their dye content(s). Thus, the flow approach is fundamentally different than conventional karyotyping where chromosomes are classified within the context of a metaphase spread. Flow sorting allows purificationmore » of chromosomes that can be distinguished flow cytometrically. The authors describe the basic principles of flow cytometric chromosome classification i.e. flow karyotyping, and chromosome sorting and describe several applications. 30 refs., 8 figs.« less

  3. Damage of chromosoms under irradiation of human blood lymphocytes and development of bystander effect.

    PubMed

    Shemetun, O V

    2016-12-01

    the research the distribution of radiation induced damages among chromosomes and their bands in irra diated in vitro human blood lymphocytes and in unirradiated bystander cells.Material and methods of research: cultivation of human peripheral blood lymphocytes by semi micromethod D.A. Hungerford, modeling of radiation induced bystander effect in mixed cultures consisting of irradiated in vitro and non irradiated blood lymphocytes from persons of different gender, GTG staining of metaphase chromosomes and their cytogenetic analysis. Break points in chromosomes under the formation of aberrations were identified in exposed in vitro human peripheral blood lymphocytes in doses 0.25 Gy (95 breaks in 1248 cells) and 1.0 Gy (227 breaks in 726 cells) and in non irradiated bystander cells under their joint cultivation with irradiated in vitro human lymphocytes (51 breaks in 1137 cells at irradiation of adjacent populations of lymphocytes in dose 0.25 Gy and 75 breaks in 1321 cells at irradiation of adjacent population of lymphocytes in a dose 1.0 Gy). The distribution of injuries among the chromo somes and their bands was investigated. in radiation exposed in vitro human peripheral blood lymphocytes as well as in bystander cells the fre quency of damaged bands and number of breaks which localized in them exceeded the control value (p < 0.01). As under direct radiation exposure, as under formation of breaks due to induction of bystander effect, chromosomes were damaged according to their relative length. Location of bands with increasing number of breaks coincided with the «hot spots» of chromosome damage following irradiation and fragile sites. More sensitive to damage were G negative euchromatin chromosome bands, in which were localized 82 88 % breaks. Damageability of telomeric regions in the irradiated cells had no significant difference from the control, while in bystander cells was lower than control value (p < 0.05). O. V. Shemetun.

  4. Mouse model systems to study sex chromosome genes and behavior: relevance to humans

    PubMed Central

    Cox, Kimberly H.; Bonthuis, Paul J.; Rissman, Emilie F.

    2014-01-01

    Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones. PMID:24388960

  5. The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): Structure, chromosomal localization, and tissue expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, S.L.; Bernard, M.; Roseboom, P.H.

    Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AA-NAT, HGMW-approved symbol AANAT;EC 2.3.1.87) is the penultimate enzyme in melatonin synthesis and controls the night/day rhythm in melatonin production in the vertebrate pineal gland. We have found that the human AA-NAT gene spans {approx}2.5 kb, contains four exons, and is located at chromosome 17q25. The open reading frame encodes a 23.2-kDa protein that is {approx}80% identical to sheep and rat AA-NAT. The AA-NAT transcript ({approx}1 kb) is highly abundant in the pineal gland and is expressed at lower levels in the retina and in the Y79 retinoblastoma cell line. AA-NAT mRNA is also detectable atmore » low levels in several brain regions and the pituitary gland, but not in several peripheral tissues examined. Brain and pituitary AA-NAT could modulate serotonin-dependent aspects of human behavior and pituitary function. 31 refs., 5 figs.« less

  6. Effects of human chromosome 12 on interactions between Tat and TAR of human immunodeficiency virus type 1.

    PubMed Central

    Alonso, A; Cujec, T P; Peterlin, B M

    1994-01-01

    Rates of transcriptions of the human immunodeficiency virus are greatly increased by the viral trans activator Tat. In vitro, Tat binds to the 5' bulge of the trans-activation response (TAR) RNA stem-loop, which is present in all viral transcripts. In human cells, the central loop in TAR and its cellular RNA-binding proteins are also critical for the function of Tat. Previously, we demonstrated that in rodent cells (CHO cells), but not in those which contain the human chromosome 12 (CHO12 cells), Tat-TAR interactions are compromised. In this study, we examined the roles of the bulge and loop in TAR in Tat trans activation in these cells. Whereas low levels of trans activation depended solely on interactions between Tat and the bulge in CHO cells, high levels of trans activation depended also on interactions between Tat and the loop in CHO12 cells. Since the TAR loop binding proteins in these two cell lines were identical and different from their human counterpart, the human chromosome 12 does not encode TAR loop binding proteins. In vivo binding competition studies with TAR decoys confirmed that the binding of Tat to TAR is more efficient in CHO12 cells. Thus, the protein(s) encoded on human chromosome 12 helps to tether Tat to TAR via its loop, which results in high levels of trans activation. Images PMID:8083988

  7. Large-scale oscillation of structure-related DNA sequence features in human chromosome 21

    NASA Astrophysics Data System (ADS)

    Li, Wentian; Miramontes, Pedro

    2006-08-01

    Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.

  8. Mapping biomedical concepts onto the human genome by mining literature on chromosomal aberrations

    PubMed Central

    Van Vooren, Steven; Thienpont, Bernard; Menten, Björn; Speleman, Frank; Moor, Bart De; Vermeesch, Joris; Moreau, Yves

    2007-01-01

    Biomedical literature provides a rich but unstructured source of associations between chromosomal regions and biomedical concepts. By mining MEDLINE abstracts, we annotate the human genome at the level of cytogenetic bands. Our method creates a set of chromosomal aberration maps that associate cytogenetic bands to biomedical concepts from a variety of controlled vocabularies, including disease, dysmorphology, anatomy, development and Gene Ontology branches. The association between a band (e.g. 4p16.3) and a concept (e.g. microcephaly) is assessed by the statistical overrepresentation of this concept in the abstracts relating to this band. Our method is validated using existing genome annotation resources and known chromosomal aberration maps and is further illustrated through a case study on heart disease. Our chromosomal aberration maps provide diagnostics support to clinical geneticists, aid cytogeneticists to interpret and report cytogenetic findings and support researchers interested in human gene function. The method is available as a web application, aBandApart, at http://www.esat.kuleuven.be/abandapart/. PMID:17403693

  9. Repression of hTERT transcription by the introduction of chromosome 3 into human oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishio, Sachiyo; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503; Ohira, Takahito

    Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcriptionmore » compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes. - Highlights: • hTERT mRNA expression level decreased in the chromosome 3 introduced HSC3 clones. • hTERT mRNA expression level was tend to suppressed in HSC3 and RCC23 hybrid cells. • We provide evidence that human chromosome 3 carries at least two distinct hTERT regulatory factors.« less

  10. Physical structure and chromosomal localization of a gene encoding human p58[sup clk-1], a cell division control related protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eipers, P.G.

    1992-01-01

    The gene for the human p58[sup clk[minus]1] protein kinase, a cell division control-related gene, has been mapped by somatic cell hybrid analyses, in situ localization with the chromosomal gene, and nested polymerase chain reaction amplification of microdissected chromosomes. These studies indicate that the expressed p58[sup clk[minus]1] chromosomal gene maps to 1p36, while a highly related p58[sup clk[minus]1] sequence of unknown nature maps to chromosome 15. Assignment of a p34[sup cdc2]-related gene to 1p36 region, including neuroblastoma, ductal carcinoma of the breast, malignant melanoma, Merkel cell carcinoma and endocrine neoplasia among others. Aberrant expression of this protein kinase negatively regulates normalmore » cellular growth. The p58[sup clk[minus]1] protein contains a central domain of 299 amino acids that is 46% identical to human p34[sup cdc2], the master mitotic protein kinase. This dissertation details the complete structure of the p58[sup clk[minus]1] chromosomal gene, including its putative promoter region, transcriptional start sites, exonic sequences, and intron/exon boundary sequences. The gene is 10 kb in size and contains 12 exons and 11 introns. Interestingly, the rather large 2.0 kb 3[prime] untranslated region is interrupted by an intron that separates a region containing numerous AUUUA destabilization motifs from the coding region. Furthermore, the expression of this gene in normal human tissues, as well as several human tumor cell samples and lines, is examined. The origin of multiple human transcripts from the same chromosomal gene, and the possible differential stability of these various transcripts, is discussed with regard to the transcriptional and post-transcriptional regulation of this gene. This is the first report of the chromosomal gene structure of a member of the p34[sup cdc2] supergene family.« less

  11. Cytogenetic evaluation of Fansidar on human lymphocyte chromosomes in vitro.

    PubMed

    Praveen, Nuzhat; Saifi, Muheet Alam; Shadab, G G H A

    2011-01-01

    Fansidar is a fixed combination of two antimalarial agents a diaminopyrimidine (Pyrimethamine) and a sulphonamide (Sulphadoxine) in the ratio 1:20- that have been used extensively worldwide for the treatment of Chloroquine resistant Plasmodium falciparum malaria, toxoplasmosis and Pneumocystis carinii pneumonia in patients with the acquired immunodeficiency syndrome. This study examined the effect of Fansidar on chromosomes in human lymphocyte culture. Fansidar was added to peripheral blood lymphocyte cultures in vitro at four different concentrations: 5,15, 25 and 50 microl in the ratio 1:20, 3:60, 5:100 and 10:200 microg ml(-1). Result shows that this drug induces moderate increase in the frequency of gaps, breaks and rearrangements. Therefore it can be concluded that Fansidar has moderate clastogenic effect on human chromosomes in vitro.

  12. Construction of a general human chromosome jumping library, with application to cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, F.S.; Drumm, M.L.; Cole, J.L.

    1987-02-27

    In many genetic disorders, the responsible gene and its protein product are unknown. The technique known as reverse genetics, in which chromosomal map positions and genetically linked DNA markers are used to identify and clone such genes, is complicated by the fact that the molecular distances from the closest DNA markers to the gene itself are often too large to traverse by standard cloning techniques. To address this situation, a general human chromosome jumping library was constructed that allows the cloning of DNA sequences approximately 100 kilobases away from any starting point in genomic DNA. As an illustration of itsmore » usefulness, this library was searched for a jumping clone, starting at the met oncogene, which is a marker tightly linked to the cystic fibrosis gene that is located on human chromosome 7. Mapping of the new genomic fragment by pulsed field gel electrophoresis confirmed that it resides on chromosome 7 within 240 kilobases downstream of the met gene. The use of chromosome jumping should be applicable to any genetic locus for which a closely linked DNA marker is available.« less

  13. A novel tandem repeat sequence located on human chromosome 4p: isolation and characterization.

    PubMed

    Kogi, M; Fukushige, S; Lefevre, C; Hadano, S; Ikeda, J E

    1997-06-01

    In an effort to analyze the genomic region of the distal half of human chromosome 4p, to where Huntington disease and other diseases have been mapped, we have isolated the cosmid clone (CRS447) that was likely to contain a region with specific repeat sequences. Clone CRS447 was subjected to detailed analysis, including chromosome mapping, restriction mapping, and DNA sequencing. Chromosome mapping by both a human-CHO hybrid cell panel and FISH revealed that CRS447 was predominantly located in the 4p15.1-15.3 region. CRS447 was shown to consist of tandem repeats of 4.7-kb units present on chromosome 4p. A single EcoRI unit was subcloned (pRS447), and the complete sequence was determined as 4752 nucleotides. When pRS447 was used as a probe, the number of copies of this repeat per haploid genome was estimated to be 50-70. Sequence analysis revealed that it contained two internal CA repeats and one putative ORF. Database search established that this sequence was unreported. However, two homologous STS markers were found in the database. We concluded that CRS447/pRS447 is a novel tandem repeat sequence that is mainly specific to human chromosome 4p.

  14. Chromosome Variations And Human Behavior

    ERIC Educational Resources Information Center

    Soudek, D.

    1974-01-01

    Article focused on the science of cytogenetics, which studied the transmission of the units of heredity called chromosomes, and considered the advantage of proper diagnosis of genetic diseases, treated on the chromosomal level. (Author/RK)

  15. Centromere reference models for human chromosomes X and Y satellite arrays

    PubMed Central

    Miga, Karen H.; Newton, Yulia; Jain, Miten; Altemose, Nicolas; Willard, Huntington F.; Kent, W. James

    2014-01-01

    The human genome sequence remains incomplete, with multimegabase-sized gaps representing the endogenous centromeres and other heterochromatic regions. Available sequence-based studies within these sites in the genome have demonstrated a role in centromere function and chromosome pairing, necessary to ensure proper chromosome segregation during cell division. A common genomic feature of these regions is the enrichment of long arrays of near-identical tandem repeats, known as satellite DNAs, which offer a limited number of variant sites to differentiate individual repeat copies across millions of bases. This substantial sequence homogeneity challenges available assembly strategies and, as a result, centromeric regions are omitted from ongoing genomic studies. To address this problem, we utilize monomer sequence and ordering information obtained from whole-genome shotgun reads to model two haploid human satellite arrays on chromosomes X and Y, resulting in an initial characterization of 3.83 Mb of centromeric DNA within an individual genome. To further expand the utility of each centromeric reference sequence model, we evaluate sites within the arrays for short-read mappability and chromosome specificity. Because satellite DNAs evolve in a concerted manner, we use these centromeric assemblies to assess the extent of sequence variation among 366 individuals from distinct human populations. We thus identify two satellite array variants in both X and Y centromeres, as determined by array length and sequence composition. This study provides an initial sequence characterization of a regional centromere and establishes a foundation to extend genomic characterization to these sites as well as to other repeat-rich regions within complex genomes. PMID:24501022

  16. Inferring human history in East Asia from Y chromosomes.

    PubMed

    Wang, Chuan-Chao; Li, Hui

    2013-06-03

    East Asia harbors substantial genetic, physical, cultural and linguistic diversity, but the detailed structures and interrelationships of those aspects remain enigmatic. This question has begun to be addressed by a rapid accumulation of molecular anthropological studies of the populations in and around East Asia, especially by Y chromosome studies. The current Y chromosome evidence suggests multiple early migrations of modern humans from Africa via Southeast Asia to East Asia. After the initial settlements, the northward migrations during the Paleolithic Age shaped the genetic structure in East Asia. Subsequently, recent admixtures between Central Asian immigrants and northern East Asians enlarged the genetic divergence between southern and northern East Asia populations. Cultural practices, such as languages, agriculture, military affairs and social prestige, also have impacts on the genetic patterns in East Asia. Furthermore, application of Y chromosome analyses in the family genealogy studies offers successful showcases of the utility of genetics in studying the ancient history.

  17. Inferring human history in East Asia from Y chromosomes

    PubMed Central

    2013-01-01

    East Asia harbors substantial genetic, physical, cultural and linguistic diversity, but the detailed structures and interrelationships of those aspects remain enigmatic. This question has begun to be addressed by a rapid accumulation of molecular anthropological studies of the populations in and around East Asia, especially by Y chromosome studies. The current Y chromosome evidence suggests multiple early migrations of modern humans from Africa via Southeast Asia to East Asia. After the initial settlements, the northward migrations during the Paleolithic Age shaped the genetic structure in East Asia. Subsequently, recent admixtures between Central Asian immigrants and northern East Asians enlarged the genetic divergence between southern and northern East Asia populations. Cultural practices, such as languages, agriculture, military affairs and social prestige, also have impacts on the genetic patterns in East Asia. Furthermore, application of Y chromosome analyses in the family genealogy studies offers successful showcases of the utility of genetics in studying the ancient history. PMID:23731529

  18. Inter- and Intraspecies Phylogenetic Analyses Reveal Extensive X–Y Gene Conversion in the Evolution of Gametologous Sequences of Human Sex Chromosomes

    PubMed Central

    Trombetta, Beniamino; Sellitto, Daniele; Scozzari, Rosaria; Cruciani, Fulvio

    2014-01-01

    It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X–Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X–Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human–chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X–Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X–Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X–Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought. PMID:24817545

  19. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture.

    PubMed

    Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi

    2009-01-01

    Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.

  20. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay.

    PubMed

    McAuliffe, M E; Williams, P L; Korrick, S A; Dadd, R; Marchetti, F; Martenies, S E; Perry, M J

    2014-10-10

    Is there an association between human sperm sex chromosome disomy and sperm DNA damage? An increase in human sperm XY disomy was associated with higher comet extent; however, there was no other consistent association of sex chromosome disomies with DNA damage. There is limited published research on the association between sex chromosome disomy and sperm DNA damage and the findings are not consistent across studies. We conducted a cross-sectional study of 190 men (25% ever smoker, 75% never smoker) from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. Multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei using an automated scoring method. The neutral comet assay was used to measure sperm DNA damage, as reflected by comet extent, percentage DNA in the comet tail, and tail distributed moment. Univariate and multiple linear regression models were constructed with sex chromosome disomy (separate models for each of the four disomic conditions) as the independent variable, and DNA damage parameters (separate models for each measure of DNA damage) as the dependent variable. Men with current or past smoking history had significantly greater comet extent (µm: regression coefficients with 95% CI) [XX18: 15.17 (1.98, 28.36); YY18: 14.68 (1.50, 27.86); XY18: 15.41 (2.37, 28.45); Total Sex Chromosome Disomy: 15.23 (2.09, 28.38)], and tail distributed moment [XX18: 3.01 (0.30, 5.72); YY18: 2.95 (0.24, 5.67); XY18: 3.04 (0.36, 5.72); Total Sex Chromosome Disomy: 3.10 (0.31, 5.71)] than men who had never smoked. In regression models adjusted for age and smoking, there was a positive association between XY disomy and comet extent. For an increase in XY disomy from 0.56 to 1.47% (representing the 25th to 75th percentile), there was a mean increase of 5.08 µm in comet extent. No other statistically significant

  1. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    PubMed

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  2. Polymorphism in and localization of the gene LCP2 (SLP-76) to chromosome 5q33.1-qter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunden, S.L.F.; Carr, L.L.; Clements, J.L.

    This report describes the localization of the human LCP2 gene to human chromosome 5q33.1-qter using single-stranded conformation polymorphisms analysis. This gene encodes an SH2 domain containing leukocyte protein of 76 kDa (SLP-76), which plays a functional role in T-cell activation. It remains to be determined whether mutations in this gene or translocations at this chromosome location are the genetic basis for various diseases, including lymphoblastic leukemia. 12 refs., 1 fig.

  3. Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13; 14) trisomy 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonarakis, S.E.; Blouin, J.L.; Maher, J.

    1993-06-01

    Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. The authors recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hyperchloesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, they have studied the genotypes of DNA polymorphic markers due to (GT)n repeats in the patient and her parents' blood DNA. The genotypes of markers D14S43, D14S45, D14S49, and D14S54 indicated maternal UPD for chromosome 14.more » There was isodisomy for proximal markers and heterodisomy for distal markers, suggesting a recombination event on maternal chromosomes 14. In addition, DNA analysis first revealed -- and subsequent cytogenetic analysis confirmed -- that there was mosaic trisomy 14 in 5% of blood lymphocytes. There was normal (biparental) inheritance for chromosome 13, and there was no evidence of false paternity in genotypes of 11 highly polymorphic markers on human chromosome 21. Two cases of maternal UPD for chromosome 14 have previously been reported, one with a familial rob t(13;14) and the other with a t(14;14). There are several similarities among these patients, and a [open quotes]maternal UPD chromosome 14 syndrome[close quotes] is emerging; however, the contribution of the mosaic trisomy 14 to the phenotype cannot be evaluated. The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes. 33 refs., 3 figs., 1 tab.« less

  4. Yleaf: Software for Human Y-Chromosomal Haplogroup Inference from Next-Generation Sequencing Data.

    PubMed

    Ralf, Arwin; Montiel González, Diego; Zhong, Kaiyin; Kayser, Manfred

    2018-05-01

    Next-generation sequencing (NGS) technologies offer immense possibilities given the large genomic data they simultaneously deliver. The human Y-chromosome serves as good example how NGS benefits various applications in evolution, anthropology, genealogy, and forensics. Prior to NGS, the Y-chromosome phylogenetic tree consisted of a few hundred branches, based on NGS data, it now contains many thousands. The complexity of both, Y tree and NGS data provide challenges for haplogroup assignment. For effective analysis and interpretation of Y-chromosome NGS data, we present Yleaf, a publically available, automated, user-friendly software for high-resolution Y-chromosome haplogroup inference independently of library and sequencing methods.

  5. The role of human and mouse Y chromosome genes in male infertility.

    PubMed

    Affara, N A; Mitchell, M J

    2000-11-01

    It was suggested by Ronald Fisher in 1931 that genes involved in benefit to the male (including spermatogenesis genes) would accumulate on the Y chromosome. The analysis of mouse Y chromosome deletions and the discovery of microdeletions of the human Y chromosome associated with diverse defective spermatogenic phenotypes has revealed the presence of intervals containing one or more genes controlling male germ cell differentiation. These intervals have been mapped, cloned and examined in detail for functional genes. This review discusses the genes mapping to critical spermatogenesis intervals and the evidence indicating which are the most likely candidates underlying Y-linked male infertility.

  6. Analysis of unrejoined chromosomal breakage in human fibroblast cells exposed to low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2002-01-01

    Reported studies of DNA breakage induced by radiation of various qualities have generally shown a higher fraction of unrejoined residual breaks after high-LET exposure. This observation is supported by the argument that high-LET radiation induced DNA breaks that are more complex in nature and, thus, less likely to be repaired. In most cases the doses used in these studies were very high. We have studied unrejoined chromosome breaks by analyzing chromosome aberrations using a fluorescence in situ hybridization (FISH) technique with a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosomes. Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 and 500 MeV/nucleon, and were allowed to repair at 37 degrees C for 24 hours after exposure. A chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and the ratio of unrejoined to misrejoined chromosome breaks increased steadily with LET up a peak value at 440 keV/microm.

  7. Chromosomal Inversions between Human and Chimpanzee Lineages Caused by Retrotransposons

    PubMed Central

    Lee, Jungnam; Han, Kyudong; Meyer, Thomas J.; Kim, Heui-Soo; Batzer, Mark A.

    2008-01-01

    The long interspersed element-1 (LINE-1 or L1) and Alu elements are the most abundant mobile elements comprising 21% and 11% of the human genome, respectively. Since the divergence of human and chimpanzee lineages, these elements have vigorously created chromosomal rearrangements causing genomic difference between humans and chimpanzees by either increasing or decreasing the size of genome. Here, we report an exotic mechanism, retrotransposon recombination-mediated inversion (RRMI), that usually does not alter the amount of genomic material present. Through the comparison of the human and chimpanzee draft genome sequences, we identified 252 inversions whose respective inversion junctions can clearly be characterized. Our results suggest that L1 and Alu elements cause chromosomal inversions by either forming a secondary structure or providing a fragile site for double-strand breaks. The detailed analysis of the inversion breakpoints showed that L1 and Alu elements are responsible for at least 44% of the 252 inversion loci between human and chimpanzee lineages, including 49 RRMI loci. Among them, three RRMI loci inverted exonic regions in known genes, which implicates this mechanism in generating the genomic and phenotypic differences between human and chimpanzee lineages. This study is the first comprehensive analysis of mobile element bases inversion breakpoints between human and chimpanzee lineages, and highlights their role in primate genome evolution. PMID:19112500

  8. Reconstruction and evolutionary history of eutherian chromosomes

    PubMed Central

    Kim, Jaebum; Auvil, Loretta; Capitanu, Boris; Larkin, Denis M.; Ma, Jian; Lewin, Harris A.

    2017-01-01

    Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over ∼105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first ∼60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases. PMID:28630326

  9. Assignment of the {beta}-arrestin 1 gene (ARRB1) to human chromosome 11q13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, G.; Morizio, E.; Palka, G.

    1994-11-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor, and its functional cofactor, {beta}-arrestin. {beta}ARK is a member of a multigene family, consisting of six known subtypes, which have also been named G-protein-coupled receptor kinases (GRK 1 to 6) due to the apparently unique functional association of such kinases with this receptor family. The gene for {beta}ARK1 has been localized to human chromosome 11q13. The four members of the arrestin/{beta}-arrestin gene family identified so far are arrestin, X-arrestin, {beta}-arrestin 1, and {beta}-arrestin 2. Here themore » authors report the chromosome mapping of the human gene for {beta}-arrestin 1 (ARRB1) to chromosome 11q13 by fluorescence in situ hybridization (FISH). Two-color FISH confirmed that the two genes coding for the functionally related proteins {beta}ARK1 and {beta}arrestin 1 both map to 11q13. 16 refs., 1 fig., 1 tab.« less

  10. Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes

    PubMed Central

    Bolzer, Andreas; Kreth, Gregor; Solovei, Irina; Koehler, Daniela; Saracoglu, Kaan; Fauth, Christine; Müller, Stefan; Eils, Roland; Cremer, Christoph; Speicher, Michael R

    2005-01-01

    Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes—independently of their gene density—were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding. PMID:15839726

  11. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    PubMed

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  12. Mapping of the gene for the Mel{sub 1a}-melatonin receptor to human chromosome 4 (MTNR1A) and mouse chromosome 8 (Mtnr1a)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaugenhaupt, S.A.; Liebert, C.B.; Altherr, M.R.

    The pineal hormone melatonin elicits potent circadian and reproductive effects in mammals. The authors report the chromosomal location of the gene for the Mel{sub 1a}-melatonin receptor that likely mediates these circadian and reproductive actions. PCR analysis of human-rodent somatic cell hybrids showed that the receptor gene (MTNR1A) maps to human chromosome 4q35.1. An interspecific backcross analysis revealed that the mouse gene (Mtnr1a) maps to the proximal portion of chromosome 8. These loci may be involved in genetically based circadian and neuroendocrine disorders. 14 refs., 1 fig.

  13. Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome

    PubMed Central

    Erliandri, Indri; Fu, Haiqing; Nakano, Megumi; Kim, Jung-Hyun; Miga, Karen H.; Liskovykh, Mikhail; Earnshaw, William C.; Masumoto, Hiroshi; Kouprina, Natalay; Aladjem, Mirit I.; Larionov, Vladimir

    2014-01-01

    In human chromosomes, centromeric regions comprise megabase-size arrays of 171 bp alpha-satellite DNA monomers. The large distances spanned by these arrays preclude their replication from external sites and imply that the repetitive monomers contain replication origins. However, replication within these arrays has not previously been profiled and the role of alpha-satellite DNA in initiation of DNA replication has not yet been demonstrated. Here, replication of alpha-satellite DNA in endogenous human centromeric regions and in de novo formed Human Artificial Chromosome (HAC) was analyzed. We showed that alpha-satellite monomers could function as origins of DNA replication and that replication of alphoid arrays organized into centrochromatin occurred earlier than those organized into heterochromatin. The distribution of inter-origin distances within centromeric alphoid arrays was comparable to the distribution of inter-origin distances on randomly selected non-centromeric chromosomal regions. Depletion of CENP-B, a kinetochore protein that binds directly to a 17 bp CENP-B box motif common to alpha-satellite DNA, resulted in enrichment of alpha-satellite sequences for proteins of the ORC complex, suggesting that CENP-B may have a role in regulating the replication of centromeric regions. Mapping of replication initiation sites in the HAC revealed that replication preferentially initiated in transcriptionally active regions. PMID:25228468

  14. EFFECTS OF INGESTED ARSENIC ON DNA AND CHROMOSOME IN HUMAN EXFOLIATED EPITHELIA

    EPA Science Inventory

    Effects of Ingested Arsenic on DNA and Chromosome in Human Exfoliated Epithelia

    Judy L. Mumford, Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    Arsenic...

  15. Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans

    PubMed Central

    Rogers, Rebekah L.

    2015-01-01

    Chromosomal rearrangements, which shuffle DNA throughout the genome, are an important source of divergence across taxa. Using a paired-end read approach with Illumina sequence data for archaic humans, I identify changes in genome structure that occurred recently in human evolution. Hundreds of rearrangements indicate genomic trafficking between the sex chromosomes and autosomes, raising the possibility of sex-specific changes. Additionally, genes adjacent to genome structure changes in Neanderthals are associated with testis-specific expression, consistent with evolutionary theory that new genes commonly form with expression in the testes. I identify one case of new-gene creation through transposition from the Y chromosome to chromosome 10 that combines the 5′-end of the testis-specific gene Fank1 with previously untranscribed sequence. This new transcript experienced copy number expansion in archaic genomes, indicating rapid genomic change. Among rearrangements identified in Neanderthals, 13% are transposition of selfish genetic elements, whereas 32% appear to be ectopic exchange between repeats. In Denisovan, the pattern is similar but numbers are significantly higher with 18% of rearrangements reflecting transposition and 40% ectopic exchange between distantly related repeats. There is an excess of divergent rearrangements relative to polymorphism in Denisovan, which might result from nonuniform rates of mutation, possibly reflecting a burst of transposable element activity in the lineage that led to Denisovan. Finally, loci containing genome structure changes show diminished rates of introgression from Neanderthals into modern humans, consistent with the hypothesis that rearrangements serve as barriers to gene flow during hybridization. Together, these results suggest that this previously unidentified source of genomic variation has important biological consequences in human evolution. PMID:26399483

  16. Reciprocal chromosome painting shows that the great difference in diploid number between human and African green monkey is mostly due to non-Robertsonian fissions.

    PubMed

    Finelli, P; Stanyon, R; Plesker, R; Ferguson-Smith, M A; O'Brien, P C; Wienberg, J

    1999-07-01

    We used reciprocal chromosome painting with both African green monkey (C. aethiops) and human chromosome specific DNA probes to delineate homologous regions in the two species. Probes were derived by fluorescence-activated chromosome flow sorting and then were reciprocally hybridized to metaphase spreads of each species. Segments in the size range of a single chromosome band were identified, demonstrating the sensitivity of the approach when comparing species that diverged more than 20 million years ago. Outgroup analysis shows that the great difference in diploid numbers between the African green monkey (2n = 60) and humans (2n = 46) is mainly owing to fissions, and the direction of change is towards increasing diploid numbers. However, most break points apparently lie outside of the centromere regions, suggesting that the changes were not solely Robertsonian as has been previously assumed. No reciprocal translocations have occurred in the phylogenetic lines leading to humans or African green monkeys. The primate paints established here are a valuable tool to establish interspecies homology, to define rearrangements, and to determine the mechanisms of chromosomal evolution in primate species.

  17. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  18. Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to High and Low LET Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Wilkins, R.; Saganti, P. B.; Gersey, B.; Cucinotta, F. A.; Wu, H.

    2006-01-01

    Energetic heavy ions pose a health risk to astronauts in extended ISS and future Mars missions. High-LET heavy ions are particularly effective in causing various biological effects including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human epithelial cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells (CH184B5F5/M10) were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory, high energy neutron at the Los Alamos Nuclear Science Center (LANSCE) or Cs-137-gamma radiation source at the University of Texas, MD Anderson Cancer Center. After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The results of the mBAND study showed a higher ratio of inversion involved with interchromosomal exchange in heavy ions compared to -ray irradiation. Analysis of chromosome aberrations using mBAND has the potential to provide useful information on human cell response to space-like radiation.

  19. Chromosome painting reveals specific patterns of chromosome occurrence in mitomycin C- and diethylstilboestrol-induced micronuclei.

    PubMed

    Fauth, E; Scherthan, H; Zankl, H

    2000-11-01

    Cultures of human blood lymphocytes from three subjects were incubated with the clastogen mitomycin C (MMC, 500 ng/ml) and the aneugen diethylstilboestrol (DES, 80 microM) 23 h before harvesting, to induce formation of micronuclei (MN) and numerical and structural alterations in metaphase chromosomes. We used fluorescence in situ hybridization (FISH) with painting probes for all human chromosomes to determine which chromosomes had contributed material to the induced MN. MMC treatment induced an approximately 18-fold increase in MN and led to a significant increase in hypodiploidy and structural chromosome aberrations in metaphase preparations. Undercondensation of pericentromeric heterochromatin of chromosomes 9 and 1 occurred in 20-75% of metaphases and FISH disclosed an abundance of material from these chromosomes in induced MN (62-69% from chromosome 9 and 7-12% from chromosome 1). DES treatment of lymphocytes induced a seven-fold increase in MN frequency and four-fold increase in the frequency of numerical aberrations; structural aberrations were not significantly increased. FISH analysis showed that material from all chromosomes was present in DES-induced MN, with material from chromosome 1 present in 16% of MN and material from each other chromosomes being present in 2-10% of MN. Material from chromosomes 14, 19 and 21 was significantly more frequent material from chromosome Y significantly less frequent in DES-treated cells than in controls. The findings of the MMC studies indicate that the heterochromatin block of chromosome 9 is a specific target for MMC-induced undercondensation, which induces a preferential occurrence of chromosome 9 material in MN. DES, in contrast, does not trigger heterochromatin decondensation and fails to induce such a significant appearance of material of particular chromosomes in MN.

  20. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M.

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which ismore » G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.« less

  1. Direct and inverted reciprocal chromosome insertions between chromosomes 7 and 14 in a woman with recurrent miscarriages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying-Tai Wang; Zhao-Cai Wang; Bajalica, S.

    We present the first case of direct and inverted reciprocal chromosome insertions between human chromosomes 7 and 14, ascertained because of repeated spontaneous abortions. Prometaphase GTG banding analysis showed the karyotype to be 46, XX, inv ins (7;14)(7pter {yields} 7q11.23::14q32.2 {yields} 14q22::7q21.2 {yields} 7qter), dir ins(14;7)(14pter {yields} 14q22::7q11.23 {yields} 7q21.2::14q32.2 {yields} 14qter). Origins of the insertion have been confirmed by chromosome painting with libraries specific for chromosomes 7 and 14 using fluorescence in situ hybridization. 5 refs., 3 figs.

  2. Comparative sequence analysis of a region on human chromosome 13q14, frequently deleted in B-cell chronic lymphocytic leukemia, and its homologous region on mouse chromosome 14.

    PubMed

    Kapanadze, B; Makeeva, N; Corcoran, M; Jareborg, N; Hammarsund, M; Baranova, A; Zabarovsky, E; Vorontsova, O; Merup, M; Gahrton, G; Jansson, M; Yankovsky, N; Einhorn, S; Oscier, D; Grandér, D; Sangfelt, O

    2000-12-15

    Previous studies have indicated the presence of a putative tumor suppressor gene on human chromosome 13q14, commonly deleted in patients with B-cell chronic lymphocytic leukemia (B-CLL). We have recently identified a minimally deleted region encompassing parts of two adjacent genes, termed LEU1 and LEU2 (leukemia-associated genes 1 and 2), and several additional transcripts. In addition, 50 kb centromeric to this region we have identified another gene, LEU5/RFP2. To elucidate further the complex genomic organization of this region, we have identified, mapped, and sequenced the homologous region in the mouse. Fluorescence in situ hybridization analysis demonstrated that the region maps to mouse chromosome 14. The overall organization and gene order in this region were found to be highly conserved in the mouse. Sequence comparison between the human deletion hotspot region and its homologous mouse region revealed a high degree of sequence conservation with an overall score of 74%. However, our data also show that in terms of transcribed sequences, only two of those, human LEU2 and LEU5/RFP2, are clearly conserved, strengthening the case for these genes as putative candidate B-CLL tumor suppressor genes.

  3. Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Prioleau, John C.; Stampfer, Martha R.; Rhim, Johng S.

    1992-07-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  4. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  5. Investigation of chromosome 17q as a locus for human essential hypertension in African Caribbeans.

    PubMed

    Knight, J; Gardner, G T; Clark, A J; Caulfield, M J

    2000-06-01

    Essential hypertension is a major risk factor for cardiovascular disease in humans, and originates from both genetic and environmental factors. Data from animal and more recently human studies have indicated the presence of a gene influencing blood pressure on human chromosome 17. This study tested for linkage of markers located on chromosome 17q to essential hypertension in African Caribbean hypertensive families. No support of linkage was found between the markers studied and hypertension, however only genes of a lamda sib value of less than 1.8 could be excluded Journal of Human Hypertension (2000) 14, 385-387

  6. Active role of a human genomic insert in replication of a yeast artificial chromosome.

    PubMed

    van Brabant, A J; Fangman, W L; Brewer, B J

    1999-06-01

    Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.

  7. A Study for the Feature Selection to Identify GIEMSA-Stained Human Chromosomes Based on Artificial Neural Network

    DTIC Science & Technology

    2001-10-25

    neural network (ANN) has been adopted for the human chromosome classification. It is important to select optimum features for training neural network...Many studies for computer-based chromosome analysis have shown that it is possible to classify chromosomes into 24 subgroups. In addition, artificial

  8. Report on the Second International Workshop on Human Chromosome 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowski, D.J.; Armour, J.; Bale, A.E.

    The Second International Workshop on Human Chromosome 9 was held in Chatham, Massachusetts on April 18--20, 1993. Fifty-three abstracts were received and the data presented on posters. The purpose of the meeting was to bring together all interested investigators working on the map of chromosome 9, many of whom had disease-specific interests. After a brief presentation of interests and highlighted results, the meeting broke up into the following subgroups for production of consensus maps: 9p; 9cen-q32; 9q32 ter. A global mapping group also met. Reports of each of these working groups is presented in the summary.

  9. Y chromosome evolution: emerging insights into processes of Y chromosome degeneration

    PubMed Central

    Bachtrog, Doris

    2014-01-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene determining gender but also because of its unusual evolutionary trajectory. Previously an autosome, Y chromosome evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species as well as in plants have shed light on the current gene content of the Y, its origins and its long-term fate. Comparative analysis of young and old Y chromosomes have given further insights into the evolutionary and molecular forces triggering Y degeneration and its evolutionary destiny. PMID:23329112

  10. Chromosome aberration analysis in atomic bomb survivors and Thorotrast patients using two- and three-colour chromosome painting of chromosomal subsets.

    PubMed

    Tanaka, K; Popp, S; Fischer, C; Van Kaick, G; Kamada, N; Cremer, T; Cremer, C

    1996-07-01

    Chromosomal translocations in peripheral lymphocytes of three healthy Hiroshima atomic (A)-bomb survivors, as well as three Thorotrast patients and two non-irradiated age-matched control persons from the German Thorotrast study were studied by two- and three-colour fluorescence in situ hybridization (chromosome painting) with various combinations of whole chromosome composite probes, including chromosomes 1, 2, 3, 4, 6, 7, 8, 9 and 12. Translocation frequencies detected by chromosome painting in cells of the A-bomb survivors were compared with results obtained by G-banding. A direct comparison was made, i.e. only those cells with simple translocations or complex aberrations detected by G-banding were taken into consideration which in principle could be detected also with the respective painting combination. The statistical analysis revealed no significant differences from a 1:1 relationship between the frequencies of aberrant cells obtained by both methods. The use of genomic translocation frequencies estimated from subsets of chromosomes for biological dosimetry is discussed in the light of evidence that chromosomes occupy distinct territories and are variably arranged in human lymphocyte nuclei. This territorial organization of interphase chromosomes implies that translocations will be restricted to chromatin located at the periphery of adjacent chromosome territories.

  11. The Biological Effectiveness of Four Energies of Neon Ions for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2011-01-01

    Chromosomal aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to neon ions at energies of 64, 89, 142, or 267. The corresponding LET values for these energies of neon ranged from 38-103 keV/micrometers and doses delivered were in the 10 to 80 cGy range. Chromosome exchanges were assessed in metaphase and G2 phase cells at first division after exposure using fluorescence in situ hybridization (FISH) with whole chromosome probes and dose response curves were generated for different types of chromosomal exchanges. The yields of total chromosome exchanges were similar for the 64, 89, and 142 MeV exposures, whereas the 267 MeV/u neon with LET of 38 keV/micrometers produced about half as many exchanges per unit dose. The induction of complex type chromosome exchanges (exchanges involving three or more breaks and two or more chromosomes) showed a clear LET dependence for all energies. The ratio of simple to complex type exchanges increased with LET from 18 to 51%. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The RBE(sub max) values for total chromosome exchanges for the 64 MeV/u was around 30.

  12. Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes.

    PubMed

    Cuadrado, A; Jouve, N

    2007-01-01

    Two simple sequence repeats (SSRs), AG and AC, were mapped directly in the metaphase chromosomes of man and barley (Hordeum vulgare L.), and in the metaphase and polytene chromosomes of Drosophila melanogaster. To this end, synthetic oligonucleotides corresponding to (AG)(12) and (AC)(8) were labelled by the random primer technique and used as probes in fluorescent in situ hybridisation (FISH) under high stringency and strict washing conditions. The distribution and intensity of the signals for the repeat sequences were found to be characteristic of the chromosomes and genomes of the three species analysed. The AC repeat sites were uniformly dispersed along the euchromatic segments of all three genomes; in fact, they were largely excluded from the heterochromatin. The Drosophila genome showed a high density of AC sequences on the X chromosome in both mitotic and polytene nuclei. In contrast, the AG repeats were associated with the euchromatic regions of the polytene chromosomes (and in high density on the X chromosome), but were only seen in specific heterochromatic regions in the mitotic chromosomes of all three species. In Drosophila, the AG repeats were exclusively distributed on the tips of the Y chromosome and near the centromere on both arms of chromosome 2. In barley and man, AG repeats were associated with the centromeres (of all chromosomes) and nucleolar organizer regions, respectively. The conserved chromosome distribution of AC within and between these three phylogenetically distant species, and the association of AG in specific chromosome regions with structural or functional properties, suggests that long clusters of these repeats may have some, as yet unknown, role. Copyright (c) 2007 S. Karger AG, Basel.

  13. A novel autosomal-recessive mutation, whitish chalk-like teeth, resembling amelogenesis imperfecta, maps to rat chromosome 14 corresponding to human 4q21.

    PubMed

    Masuyama, Taku; Miyajima, Katsuhiro; Ohshima, Hayato; Osawa, Masaru; Yokoi, Norihide; Oikawa, Toshihiro; Taniguchi, Kazuyuki

    2005-12-01

    A rat mutant, whitish chalk-like teeth (wct), with white, chalk-like abnormal incisors, was discovered and morphologically and genetically characterized. The mutant rats showed tooth enamel defects that were similar to those of human amelogenesis imperfecta. The wct mutation was found to disturb the morphological transition of ameloblasts from secretory to maturation stages and to induce cyst formation. This mutation also disturbs the transfer of iron into the enamel, resulting in the whitish chalk-like incisors. A genetic linkage study indicated that the wct locus maps to a specific interval of rat chromosome 14 between D14Got13 and D14Wox2. Interestingly, the human chromosomal region orthologous to wct, a 5.5-Mb interval in human chromosome 4q21, is a critical region for the locus of human amelogenesis imperfecta AIH2. These results strongly suggest that this wct mutant is a useful model for the identification of genes responsible for amelogenesis imperfecta and molecular mechanisms of tooth development.

  14. Students as "Humans Chromosomes" in Role-Playing Mitosis and Meiosis

    ERIC Educational Resources Information Center

    Chinnici, Joseph P.; Yue, Joyce W.; Torres, Kieron M.

    2004-01-01

    Students often find it challenging to understand mitosis and meiosis and determine their processes. To develop an easier way to understand these terms, students are asked to role-play mitosis and meiosis and students themselves act as human chromosomes, which help students to learn differences between mitosis and meiosis.

  15. Detection and quantitation of chromosomal mosaicism in human blastocysts using copy number variation sequencing.

    PubMed

    Ruttanajit, Tida; Chanchamroen, Sujin; Cram, David S; Sawakwongpra, Kritchakorn; Suksalak, Wanwisa; Leng, Xue; Fan, Junmei; Wang, Li; Yao, Yuanqing; Quangkananurug, Wiwat

    2016-02-01

    Currently, our understanding of the nature and reproductive potential of blastocysts associated with trophectoderm (TE) lineage chromosomal mosaicism is limited. The objective of this study was to first validate copy number variation sequencing (CNV-Seq) for measuring the level of mosaicism and second, examine the nature and level of mosaicism in TE biopsies of patient's blastocysts. TE biopy samples were analysed by array comparative genomic hybridization (CGH) and CNV-Seq to discriminate between euploid, aneuploid and mosaic blastocysts. Using artificial models of TE mosaicism for five different chromosomes, CNV-Seq accurately and reproducibly quantitated mosaicism at levels of 50% and 20%. In a comparative 24-chromosome study of 49 blastocysts by array CGH and CNV-Seq, 43 blastocysts (87.8%) had a concordant diagnosis and 6 blastocysts (12.2%) were discordant. The discordance was attributed to low to medium levels of chromosomal mosaicism (30-70%) not detected by array CGH. In an expanded study of 399 blastocysts using CNV-Seq as the sole diagnostic method, the proportion of diploid-aneuploid mosaics (34, 8.5%) was significantly higher than aneuploid mosaics (18, 4.5%) (p < 0.02). Mosaicism is a significant chromosomal abnormality associated with the TE lineage of human blastocysts that can be reliably and accurately detected by CNV-Seq. © 2015 John Wiley & Sons, Ltd.

  16. Topology, structures, and energy landscapes of human chromosomes

    PubMed Central

    Zhang, Bin; Wolynes, Peter G.

    2015-01-01

    Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward “ideal” chromosome structures that represent hierarchical fibrils of fibrils. PMID:25918364

  17. A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1.

    PubMed

    Hughes, A E; Newton, V E; Liu, X Z; Read, A P

    1994-08-01

    Waardenburg syndrome (WS), an autosomal dominant syndrome of hearing loss and pigmentary disturbances, comprises at least two separate conditions. WS type 1 is normally caused by mutations in PAX3 located at chromosome 2q35 and is distinguished clinically by minor facial malformations. We have now located a gene for WS type 2. Two families show linkage to a group of microsatellite markers located on chromosome 3p12-p14.1. D3S1261 gave a maximum lod score of 6.5 at zero recombination in one large Type 2 family. In a second, smaller family the adjacent marker D3S1210 gave a lod of 2.05 at zero recombination. Interestingly, the human homologue (MITF) of the mouse microphthalmia gene, a good candidate at the phenotypic level, has recently been mapped to 3p12.3-p14.4.

  18. Correlation of physical and genetic maps of human chromosome 16. Annual progress report, October 1, 1990--July 31, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, G.R.

    1991-12-31

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less

  19. Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Hada, Megumi; Cucinotta, Francis

    2007-01-01

    This viewgraph presentation reviews some of the techniques used to analyze the damage done to chromosome from ion radiation. Fluorescence in situ hybridization (FISH), mFISH, mBAND, telomere and centromereprobes have been used to study chromosome aberrations induced in human cells exposed to low-and high-LET radiation in vitro. There is some comparison of the different results from the various techniques. The results of the study are summarized.

  20. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization

    NASA Astrophysics Data System (ADS)

    di Stefano, Marco; Paulsen, Jonas; Lien, Tonje G.; Hovig, Eivind; Micheletti, Cristian

    2016-10-01

    Combining genome-wide structural models with phenomenological data is at the forefront of efforts to understand the organizational principles regulating the human genome. Here, we use chromosome-chromosome contact data as knowledge-based constraints for large-scale three-dimensional models of the human diploid genome. The resulting models remain minimally entangled and acquire several functional features that are observed in vivo and that were never used as input for the model. We find, for instance, that gene-rich, active regions are drawn towards the nuclear center, while gene poor and lamina associated domains are pushed to the periphery. These and other properties persist upon adding local contact constraints, suggesting their compatibility with non-local constraints for the genome organization. The results show that suitable combinations of data analysis and physical modelling can expose the unexpectedly rich functionally-related properties implicit in chromosome-chromosome contact data. Specific directions are suggested for further developments based on combining experimental data analysis and genomic structural modelling.

  1. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization.

    PubMed

    Di Stefano, Marco; Paulsen, Jonas; Lien, Tonje G; Hovig, Eivind; Micheletti, Cristian

    2016-10-27

    Combining genome-wide structural models with phenomenological data is at the forefront of efforts to understand the organizational principles regulating the human genome. Here, we use chromosome-chromosome contact data as knowledge-based constraints for large-scale three-dimensional models of the human diploid genome. The resulting models remain minimally entangled and acquire several functional features that are observed in vivo and that were never used as input for the model. We find, for instance, that gene-rich, active regions are drawn towards the nuclear center, while gene poor and lamina associated domains are pushed to the periphery. These and other properties persist upon adding local contact constraints, suggesting their compatibility with non-local constraints for the genome organization. The results show that suitable combinations of data analysis and physical modelling can expose the unexpectedly rich functionally-related properties implicit in chromosome-chromosome contact data. Specific directions are suggested for further developments based on combining experimental data analysis and genomic structural modelling.

  2. DNA Secondary Structure at Chromosomal Fragile Sites in Human Disease

    PubMed Central

    Thys, Ryan G; Lehman, Christine E; Pierce, Levi C. T; Wang, Yuh-Hwa

    2015-01-01

    DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease. PMID:25937814

  3. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    PubMed

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  4. Identification of the genomic locus for the human Rieske Fe-S Protein gene on Chromosome 19q12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennacchio, L.A.

    1994-05-06

    We have identified the chromosomal location of the human Rieske Iron-Sulfur Protein (UQCRFS1) gene. Mapping by hybridization to a panel of monochromosomal hybrid cell lines indicated that the gene was either on chromosome 19 or 22. By screening a human chromosome 19 specific genomic cosmid library with an oligonucleotide probe made from the published Rieske cDNA sequence, we identified a corresponding cosmid. Portions of this cosmid were sequenced directly. The exon, exon:intron junction, and flanking sequences verified that this cosmid contains the genomic locus. Fluorescent in situ hybridization (FISH) was performed to localize this cosmid to chromosome band 19q12.

  5. A family of long intergenic non-coding RNA genes in human chromosomal region 22q11.2 carry a DNA translocation breakpoint/AT-rich sequence

    PubMed Central

    2018-01-01

    FAM230C, a long intergenic non-coding RNA (lincRNA) gene in human chromosome 13 (chr13) is a member of lincRNA genes termed family with sequence similarity 230. An analysis using bioinformatics search tools and alignment programs was undertaken to determine properties of FAM230C and its related genes. Results reveal that the DNA translocation element, the Translocation Breakpoint Type A (TBTA) sequence, which consists of satellite DNA, Alu elements, and AT-rich sequences is embedded in the FAM230C gene. Eight lincRNA genes related to FAM230C also carry the TBTA sequences. These genes were formed from a large segment of the 3’ half of the FAM230C sequence duplicated in chr22, and are specifically in regions of low copy repeats (LCR22)s, in or close to the 22q.11.2 region. 22q11.2 is a chromosomal segment that undergoes a high rate of DNA translocation and is prone to genetic deletions. FAM230C-related genes present in other chromosomes do not carry the TBTA motif and were formed from the 5’ half region of the FAM230C sequence. These findings identify a high specificity in lincRNA gene formation by gene sequence duplication in different chromosomes. PMID:29668722

  6. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts after Exposure to Very Low Doses of High LET Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, Francis A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.

  7. Truly Incomplete and Complex Chromosomal Exchanges in Human Fibroblast Cells Exposed In Situ to Energetic Heavy Ions

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG 1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allow identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single Fe ion track.

  8. Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories.

    PubMed

    Torabi, Keyvan; Wangsa, Darawalee; Ponsa, Immaculada; Brown, Markus; Bosch, Anna; Vila-Casadesús, Maria; Karpova, Tatiana S; Calvo, Maria; Castells, Antoni; Miró, Rosa; Ried, Thomas; Camps, Jordi

    2017-10-01

    Human chromosomes occupy distinct territories in the interphase nucleus. Such chromosome territories (CTs) are positioned according to gene density. Gene-rich CTs are generally located in the center of the nucleus, while gene-poor CTs are positioned more towards the nuclear periphery. However, the association between gene expression levels and the radial positioning of genes within the CT is still under debate. In the present study, we performed three-dimensional fluorescence in situ hybridization experiments in the colorectal cancer cell lines DLD-1 and LoVo using whole chromosome painting probes for chromosomes 8 and 11 and BAC clones targeting four genes with different expression levels assessed by gene expression arrays and RT-PCR. Our results confirmed that the two over-expressed genes, MYC on chromosome 8 and CCND1 on chromosome 11, are located significantly further away from the center of the CT compared to under-expressed genes on the same chromosomes, i.e., DLC1 and SCN3B. When CCND1 expression was reduced after silencing the major transcription factor of the WNT/β-catenin signaling pathway, TCF7L2, the gene was repositioned and mostly detected in the interior of the CT. Thus, we suggest a non-random distribution in which over-expressed genes are located more towards the periphery of the respective CTs.

  9. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau-Merck, M.F.; Derre, J.; Berger, R.

    1995-11-20

    Vasopressin exerts its physiological effects on liver metabolism, fluid osmolarity, and corticotrophic response to stress through a set of at least three receptors, V1a, V2, and V3 (also called V1b), respectively. These receptors constitute a distinct group of the superfamily of G-protein-coupled cell surface receptors. When bound to vasopressin, they couple to G proteins activating phospholipase C for the V1a and V3 types and adenylate cyclase for the V2. The vasopressin receptor subfamily also includes the receptor for oxytocin, a structurally related hormone that signals through the activation of phospholipase C. The chromosomal position of the V2 receptor gene hasmore » been assigned to Xq28-qter by PCR-based screening of somatic cell hybrids, whereas the oxytocin receptor gene has been mapped to chromosome 3q26.2 by fluorescence in situ hybridization (FISH). The chromosomal location of the V1a gene is currently unknown. We recently cloned the cDNA and the gene coding for the human pituitary-specific V3 receptor (HGMW-approved symbol AVPR3). We report here the chromosomal localization of this gene by two distinct in situ hybridization techniques using radioactive and fluorescent probes. 11 refs., 1 fig.« less

  10. A chromosome-centric human proteome project (C-HPP) to characterize the sets of proteins encoded in chromosome 17.

    PubMed

    Liu, Suli; Im, Hogune; Bairoch, Amos; Cristofanilli, Massimo; Chen, Rui; Deutsch, Eric W; Dalton, Stephen; Fenyo, David; Fanayan, Susan; Gates, Chris; Gaudet, Pascale; Hincapie, Marina; Hanash, Samir; Kim, Hoguen; Jeong, Seul-Ki; Lundberg, Emma; Mias, George; Menon, Rajasree; Mu, Zhaomei; Nice, Edouard; Paik, Young-Ki; Uhlen, Mathias; Wells, Lance; Wu, Shiaw-Lin; Yan, Fangfei; Zhang, Fan; Zhang, Yue; Snyder, Michael; Omenn, Gilbert S; Beavis, Ronald C; Hancock, William S

    2013-01-04

    We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources, we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 "missing" proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of "missing" proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV, and single nucleotide variant (SNV) databases, and the construction of Web sites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the

  11. Altered chromosome 6 in immortal human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard-Smith, K.; Pardinas, J.R.; Jha, K.K.

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal tomore » 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene. 66 refs., 6 figs., 2 tabs.« less

  12. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    PubMed

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  13. Synteny of human chromosomes 14 and 15 in the platyrrhines (Primates, Platyrrhini)

    PubMed Central

    2009-01-01

    In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus,Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62). The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates. PMID:21637455

  14. Synteny of human chromosomes 14 and 15 in the platyrrhines (Primates, Platyrrhini).

    PubMed

    Gifalli-Iughetti, Cristiani; Koiffmann, Célia P

    2009-10-01

    In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus,Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62). The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates.

  15. Early onset intellectual disability in chromosome 22q11.2 deletion syndrome.

    PubMed

    Cascella, Marco; Muzio, Maria Rosaria

    2015-01-01

    Chromosome 22q11.2 deletion syndrome, or DiGeorge syndrome, or velocardiofacial syndrome, is one of the most common multiple anomaly syndromes in humans. This syndrome is commonly caused by a microdelection from chromosome 22 at band q11.2. Although this genetic disorder may reflect several clinical abnormalities and different degrees of organ commitment, the clinical features that have driven the greatest amount of attention are behavioral and developmental features, because individuals with 22q11.2 deletion syndrome have a 30-fold risk of developing schizophrenia. There are differing opinions about the cognitive development, and commonly a cognitive decline rather than an early onset intellectual disability has been observed. We report a case of 22q11.2 deletion syndrome with both early assessment of mild intellectual disabilities and tetralogy of Fallot as the only physic manifestation. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Cloning, characterization, and chromosomal mapping of a human electroneutral Na(+)-driven Cl-HCO3 exchanger.

    PubMed

    Grichtchenko, I I; Choi, I; Zhong, X; Bray-Ward, P; Russell, J M; Boron, W F

    2001-03-16

    The electroneutral Na(+)-driven Cl-HCO3 exchanger is a key mechanism for regulating intracellular pH (pH(i)) in neurons, glia, and other cells. Here we report the cloning, tissue distribution, chromosomal location, and functional characterization of the cDNA of such a transporter (NDCBE1) from human brain (GenBank accession number AF069512). NDCBE1, which encodes 1044 amino acids, is 34% identical to the mammalian anion exchanger (AE2); approximately 50% to the electrogenic Na/HCO3 cotransporter (NBCe1) from salamander, rat, and humans; approximately 73% to mammalian electroneutral Na/HCO3 cotransporters (NBCn1); 71% to mouse NCBE; and 47% to a Na(+)-driven anion exchanger (NDAE1) from Drosophila. Northern blot analysis of NDCBE1 shows a robust approximately 12-kilobase signal in all major regions of human brain and in testis, and weaker signals in kidney and ovary. This human gene (SLC4A8) maps to chromosome 12q13. When expressed in Xenopus oocytes and running in the forward direction, NDCBE1 is electroneutral and mediates increases in both pH(i) and [Na(+)](i) (monitored with microelectrodes) that require HCO3(-) and are blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The pH(i) increase also requires extracellular Na(+). The Na(+):HCO3(-) stoichiometry is 1:2. Forward-running NDCBE1 mediates a 36Cl efflux that requires extracellular Na(+) and HCO3(-) and is blocked by DIDS. Running in reverse, NDCBE1 requires extracellular Cl(-). Thus, NDCBE1 encodes a human, electroneutral Na(+)-driven Cl-HCO3 exchanger.

  17. Molecular cloning and chromosomal localization of a pseudogene related to the human Acyl-CoA binding protein/diazepam binding inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gersuk, V.H.; Rose, T.M.; Todaro, G.J.

    The acyl-CoA binding protein (ACBP) and the diazepam binding inhibitor (DBI) or endozepine are independent isolates of a single 86-amino-acid, 10-kDa protein. ACBP/DBI is highly conserved between species and has been identified in several diverse organisms, including human, cow, rat, frog, duck, insects, plants, and yeast. Although the genomic locus has not yet been cloned in humans, complementary DNA clones with different 5{prime} ends have been isolated and characterized. These cDNA clones appear to be encoded by a single gene. However, Southern blot analyses, in situ hybridizations, and somatic cell hybrid chromosomal mapping all suggest that there are multiple ACBP/DBI-relatedmore » sequences in the genome. To identify potential members of this gene family, degenerate oligonucleotides corresponding to highly conserved regions of ACBP/DBI were used to screen a human genomic DNA library using the polymerase chain reaction. A novel gene, DBIP1, that is closely related to ACBP/DBI but is clearly distinct was identified. DBIP1 bears extensive sequence homology to ACBP/DBI but lacks the introns predicted by rat and duck genomic sequence studies. A 1-base deletion in the coding region results in a frameshift and, along with the absence of introns and the lack of a detectable transcript, suggests that DBIP1 is a pseudogene. ACBP/DBI has previously been mapped to chromosome 2, although this was recently disputed, and a chromosome 6 location was suggested. We show that ACBP/DBI is correctly placed on chromosome 2 and that the gene identified on chromosome 6 is DBIP1. 33 refs., 3 figs., 1 tab.« less

  18. An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2.

    PubMed

    Han, Yonghua; Zhang, Zhonghua; Huang, Sanwen; Jin, Weiwei

    2011-01-27

    Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.). In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed. Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.

  19. Biological dosimetry by interphase chromosome painting.

    PubMed

    Durante, M; George, K; Yang, T C

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  20. Biological dosimetry by interphase chromosome painting

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  1. New Insights in the Cytogenetic Practice: Karyotypic Chaos, Non-Clonal Chromosomal Alterations and Chromosomal Instability in Human Cancer and Therapy Response

    PubMed Central

    Rangel, Nelson; Forero-Castro, Maribel; Rondón-Lagos, Milena

    2017-01-01

    Recently, non-clonal chromosomal alterations previously unappreciated are being proposed to be included in cytogenetic practice. The aim of this inclusion is to obtain a greater understanding of chromosomal instability (CIN) and tumor heterogeneity and their role in cancer evolution and therapy response. Although several genetic assays have allowed the evaluation of the variation in a population of cancer cells, these assays do not provide information at the level of individual cells, therefore limiting the information of the genomic diversity within tumors (heterogeneity). The karyotype is one of the few available cytogenetic techniques that allow us not only to identify the chromosomal alterations present within a single cell, but also allows us to profile both clonal (CCA) and non-clonal chromosomal alterations (NCCAs). A greater understanding of CIN and tumor heterogeneity in cancer could not only improve existing therapeutic regimens but could also be used as targets for the design of new therapeutic approaches. In this review we indicate the importance and significance of karyotypic chaos, NCCAs and CIN in the prognosis of human cancers. PMID:28587191

  2. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20.

    PubMed

    Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam

    2004-01-01

    This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.

  3. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice.

    PubMed

    Schmouth, Jean-François; Castellarin, Mauro; Laprise, Stéphanie; Banks, Kathleen G; Bonaguro, Russell J; McInerny, Simone C; Borretta, Lisa; Amirabbasi, Mahsa; Korecki, Andrea J; Portales-Casamar, Elodie; Wilson, Gary; Dreolini, Lisa; Jones, Steven J M; Wasserman, Wyeth W; Goldowitz, Daniel; Holt, Robert A; Simpson, Elizabeth M

    2013-10-14

    The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.

  4. Comparative Maps of Human 19p13.3 and Mouse Chromosome 10 Allow Identification of Sequences at Evolutionary Breakpoints

    PubMed Central

    Puttagunta, Radhika; Gordon, Laurie A.; Meyer, Gary E.; Kapfhamer, David; Lamerdin, Jane E.; Kantheti, Prameela; Portman, Kathleen M.; Chung, Wendy K.; Jenne, Dieter E.; Olsen, Anne S.; Burmeister, Margit

    2000-01-01

    A cosmid/bacterial artificial chromosome (BAC) contiguous (contig) map of human chromosome (HSA) 19p13.3 has been constructed, and over 50 genes have been localized to the contig. Genes and anonymous ESTs from ≈4000 kb of human 19p13.3 were placed on the central mouse chromosome 10 map by genetic mapping and pulsed-field gel electrophoresis (PFGE) analysis. A region of ∼2500 kb of HSA 19p13.3 is collinear to mouse chromosome (MMU) 10. In contrast, the adjacent ≈1200 kb are inverted. Two genes are located in a 50-kb region after the inversion on MMU 10, followed by a region of homology to mouse chromosome 17. The synteny breakpoint and one of the inversion breakpoints has been localized to sequenced regions in human <5 kb in size. Both breakpoints are rich in simple tandem repeats, including (TCTG)n, (CT)n, and (GTCTCT)n, suggesting that simple repeat sequences may be involved in chromosome breaks during evolution. The overall size of the region in mouse is smaller, although no large regions are missing. Comparing the physical maps to the genetic maps showed that in contrast to the higher-than-average rate of genetic recombination in gene-rich telomeric region on HSA 19p13.3, the average rate of recombination is lower than expected in the homologous mouse region. This might indicate that a hot spot of recombination may have been lost in mouse or gained in human during evolution, or that the position of sequences along the chromosome (telomeric compared to the middle of a chromosome) is important for recombination rates. PMID:10984455

  5. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashir, R.; Keers, S.; Strachan, T.

    1996-04-01

    The limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of disorders, different forms of which have been mapped to at least six distinct genetic loci. We have mapped to at least six distinct genetic loci. We have mapped an autosomal recessive form of LGMD (LGMD2B) to chromosome 2p13. Two other conditions have been shown to map to this region or to the homologous region in mouse: a gene for a form of autosomal recessive distal muscular dystrophy, Miyoshi myopathy, shows linkage to the same markers on chromosome 2p as LGMD2B, and an autosomal recessive mouse mutation mnd2, in whichmore » there is rapidly progressive paralysis and muscle atrophy, has been mapped to mouse chromosome 6 to a region showing conserved synteny with human chromosome 2p12-p13. We have assembled a 6-cM YAC contig spanning the LGMD2B locus and have mapped seven genes and 13 anonymous polymorphic microsatellites to it. Using haplotype analysis in the linked families, we have narrowed our region of interest to a 0-cM interval between D2S2113 and D2S145, which does not overlap with the critical region for mnd2 in mouse. Use of these most closely linked markers will help to determine the relationship between LGMD2B and Miyoshi myopathy. YACs selected from our contig will be the starting point for the cloning of the LGMD2B gene and thereby establish the biological basis for this form of muscular dystrophy and its relationship with the other limb-girdle muscular dystrophies. 26 refs., 6 figs.« less

  6. Mapping of the bcl-2 oncogene on mouse chromosome 1.

    PubMed

    Mock, B A; Givol, D; D'Hoostelaere, L A; Huppi, K; Seldin, M F; Gurfinkel, N; Unger, T; Potter, M; Mushinski, J F

    1988-01-01

    Two bcl-2 alleles have been identified in inbred strains of mice by restriction fragment length polymorphism (RFLP). Analysis of a bcl-2 RFLP in a series of bilineal congenic strains (C.D2), developed as a tool for chromosomal mapping studies, revealed linkage of bcl-2 to the Idh-1/Pep-3 region of murine chromosome 1. The co-segregation of bcl-2 alleles with allelic forms of two other chromosome 1 loci, Ren-1,2 and Spna-1, in a set of back-cross progeny, positions bcl-2 7.8 cM centromeric from Ren-1,2.

  7. Inducing rye 1R chromosome structural changes in common wheat cv. Chinese spring by the gametocidal chromosome 2C of Aegilops cylindrica.

    PubMed

    Shi, Fang; Liu, Kun-Fan; Endo, Takashi R; Wang, Dao-Wen

    2005-05-01

    To generate 1 R deletion and translocation lines, we introduced a 2C chromosome,which was derived from Aegilops cylindrica and was known to have a gametocidal function when added monosomically into common wheat cv. Chinese Spring (CS) and its derivative, into a wheat-rye 1R chromosome disomic addition line (CS-1R"). When the individuals with chromosome constitution 21" + 1R" + 2C' (2n = 45) were selfed, the 1R chromosome structural changes were found to be induced with high frequency (24.1%) among the progenies. By using C-banding and GISH analysis, we analyzed 1R structural changes in 46 F3 individuals, which came from 23 F2 plants. The rearranged 1R chromosomes could be characterized in about 85% of the F3 individuals. This included telosome 1RL (39.1%), iso-chromosome 1 RL (2.2%), whole arm translocation involving 1RL (32.6%), telosome 1RS (4.3%), iso-chromosome 1RS (4.3%), and 1R deletion mutant with break point in the long arm (2.2%). The mutant 1R lines obtained in this study will potentially be useful in mapping the chromosome locations of agronomically important genes located in 1R. This study also demonstrated that molecular markers might be used to identify wheat chromosome arm involved in translocation with 1R.

  8. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay

    PubMed Central

    McAuliffe, M.E.; Williams, P.L.; Korrick, S.A.; Dadd, R.; Marchetti, F.; Martenies, S.E.; Perry, M.J.

    2014-01-01

    STUDY QUESTION Is there an association between human sperm sex chromosome disomy and sperm DNA damage? SUMMARY ANSWER An increase in human sperm XY disomy was associated with higher comet extent; however, there was no other consistent association of sex chromosome disomies with DNA damage. WHAT IS KNOWN ALREADY There is limited published research on the association between sex chromosome disomy and sperm DNA damage and the findings are not consistent across studies. STUDY DESIGN, SIZE, AND DURATION We conducted a cross-sectional study of 190 men (25% ever smoker, 75% never smoker) from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. PARTICIPANTS/MATERIALS, SETTING, METHODS Multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei using an automated scoring method. The neutral comet assay was used to measure sperm DNA damage, as reflected by comet extent, percentage DNA in the comet tail, and tail distributed moment. Univariate and multiple linear regression models were constructed with sex chromosome disomy (separate models for each of the four disomic conditions) as the independent variable, and DNA damage parameters (separate models for each measure of DNA damage) as the dependent variable. MAIN RESULTS AND THE ROLE OF CHANCE Men with current or past smoking history had significantly greater comet extent (µm: regression coefficients with 95% CI) [XX18: 15.17 (1.98, 28.36); YY18: 14.68 (1.50, 27.86); XY18: 15.41 (2.37, 28.45); Total Sex Chromosome Disomy: 15.23 (2.09, 28.38)], and tail distributed moment [XX18: 3.01 (0.30, 5.72); YY18: 2.95 (0.24, 5.67); XY18: 3.04 (0.36, 5.72); Total Sex Chromosome Disomy: 3.10 (0.31, 5.71)] than men who had never smoked. In regression models adjusted for age and smoking, there was a positive association between XY disomy and comet extent. For an increase in XY

  9. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization.

    PubMed

    Xu, Juanjuan; Fang, Rui; Chen, Li; Chen, Daozhen; Xiao, Jian-Ping; Yang, Weimin; Wang, Honghua; Song, Xiaoqing; Ma, Ting; Bo, Shiping; Shi, Chong; Ren, Jun; Huang, Lei; Cai, Li-Yi; Yao, Bing; Xie, X Sunney; Lu, Sijia

    2016-10-18

    Preimplantation genetic screening (PGS) is widely used to select in vitro-fertilized embryos free of chromosomal abnormalities and to improve the clinical outcome of in vitro fertilization (IVF). A disadvantage of PGS is that it requires biopsy of the preimplantation human embryo, which can limit the clinical applicability of PGS due to the invasiveness and complexity of the process. Here, we present and validate a noninvasive chromosome screening (NICS) method based on sequencing the genomic DNA secreted into the culture medium from the human blastocyst. By using multiple annealing and looping-based amplification cycles (MALBAC) for whole-genome amplification (WGA), we performed next-generation sequencing (NGS) on the spent culture medium used to culture human blastocysts (n = 42) and obtained the ploidy information of all 24 chromosomes. We validated these results by comparing each with their corresponding whole donated embryo and obtained a high correlation for identification of chromosomal abnormalities (sensitivity, 0.882, and specificity, 0.840). With this validated NICS method, we performed chromosome screening on IVF embryos from seven couples with balanced translocation, azoospermia, or recurrent pregnancy loss. Six of them achieved successful clinical pregnancies, and five have already achieved healthy live births thus far. The NICS method avoids the need for embryo biopsy and therefore substantially increases the safety of its use. The method has the potential of much wider chromosome screening applicability in clinical IVF, due to its high accuracy and noninvasiveness.

  10. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease.

    PubMed

    Cantone, Irene; Fisher, Amanda G

    2017-11-05

    X-chromosome inactivation (XCI) is an exemplar of epigenetic regulation that is set up as pluripotent cells differentiate. Once established, XCI is stably propagated, but can be reversed in vivo or by pluripotent reprogramming in vitro Although reprogramming provides a useful model for inactive X (Xi) reactivation in mouse, the relative instability and heterogeneity of human embryonic stem (ES) cells and induced pluripotent stem cells hampers comparable progress in human. Here we review studies aimed at reactivating the human Xi using different reprogramming strategies. We outline our recent results using mouse ES cells to reprogramme female human fibroblasts by cell-cell fusion. We show that pluripotent reprogramming induces widespread and rapid chromatin remodelling in which the human Xi loses XIST and H3K27m3 enrichment and selected Xi genes become reactivated, ahead of mitotic division. Using RNA sequencing to map the extent of human Xi reactivation, and chromatin-modifying drugs to potentiate reactivation, we outline how this approach could be used to better design strategies to re-express human X-linked loci. As cell fusion induces the expression of human pluripotency genes that represent both the 'primed' and 'naive' states, this approach may also offer a fresh opportunity to segregate human pluripotent states with distinct Xi expression profiles, using single-cell-based approaches.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  11. Targeting of >1.5 Mb of Human DNA into the Mouse X Chromosome Reveals Presence of cis-Acting Regulators of Epigenetic Silencing

    PubMed Central

    Yang, Christine; McLeod, Andrea J.; Cotton, Allison M.; de Leeuw, Charles N.; Laprise, Stéphanie; Banks, Kathleen G.; Simpson, Elizabeth M.; Brown, Carolyn J.

    2012-01-01

    Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome. PMID:23023002

  12. Alternative Splicing of CHEK2 and Codeletion with NF2 Promote Chromosomal Instability in Meningioma1

    PubMed Central

    Yang, Hong Wei; Kim, Tae-Min; Song, Sydney S; Shrinath, Nihal; Park, Richard; Kalamarides, Michel; Park, Peter J; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2012-01-01

    Mutations of the NF2 gene on chromosome 22q are thought to initiate tumorigenesis in nearly 50% of meningiomas, and 22q deletion is the earliest and most frequent large-scale chromosomal abnormality observed in these tumors. In aggressive meningiomas, 22q deletions are generally accompanied by the presence of large-scale segmental abnormalities involving other chromosomes, but the reasons for this association are unknown. We find that large-scale chromosomal alterations accumulate during meningioma progression primarily in tumors harboring 22q deletions, suggesting 22q-associated chromosomal instability. Here we show frequent codeletion of the DNA repair and tumor suppressor gene, CHEK2, in combination with NF2 on chromosome 22q in a majority of aggressive meningiomas. In addition, tumor-specific splicing of CHEK2 in meningioma leads to decreased functional Chk2 protein expression. We show that enforced Chk2 knockdown in meningioma cells decreases DNA repair. Furthermore, Chk2 depletion increases centrosome amplification, thereby promoting chromosomal instability. Taken together, these data indicate that alternative splicing and frequent codeletion of CHEK2 and NF2 contribute to the genomic instability and associated development of aggressive biologic behavior in meningiomas. PMID:22355270

  13. A high-resolution genetic, physical, and comparative gene map of the doublefoot (Dbf) region of mouse chromosome 1 and the region of conserved synteny on human chromosome 2q35.

    PubMed

    Hayes, C; Rump, A; Cadman, M R; Harrison, M; Evans, E P; Lyon, M F; Morriss-Kay, G M; Rosenthal, A; Brown, S D

    2001-12-01

    The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0.4-cM (+/-0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.

  14. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  15. The pituitary hormones arginine vasopressin-neurophysin II and oxytocin-neurophysin I show close linkage with interleukin-1 on mouse chromosome 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marini, J.C.; Nelson, K.K.; Siracusa, L.D.

    1993-01-01

    Arginine vasopressin (AVP) and oxytocin (OXT) are posterior pituitary hormones. AVP is involved in fluid homeostasis, while OXT is involved in lactation and parturition. AVP is derived from a larger precursor, prepro-arginine-vasopressin-neurophysin II (prepro-AVP-NP II; AVP), and is physically linked to prepro-oxytocin-neurophysin I (prepro-OXT-NPI1; OXT). The genes for AVP and OXT are separated by only 12 kb of DNA in humans, whereas in the mouse 3.5 kb of intergenic sequence lies between Avp and Oxt. Interspecific backcross analysis has now been used to map the Avp/Oxt complex to chromosome 2 in the mouse. This map position confirms and extends themore » known region of linkage conservation between mouse chromosome 2 and human chromosome 20. 16 refs., 2 figs., 1 tab.« less

  16. A chromatin remodelling complex that loads cohesin onto human chromosomes

    NASA Astrophysics Data System (ADS)

    Hakimi, Mohamed-Ali; Bochar, Daniel A.; Schmiesing, John A.; Dong, Yuanshu; Barak, Orr G.; Speicher, David W.; Yokomori, Kyoko; Shiekhattar, Ramin

    2002-08-01

    Nucleosomal DNA is arranged in a higher-order structure that presents a barrier to most cellular processes involving protein DNA interactions. The cellular machinery involved in sister chromatid cohesion, the cohesin complex, also requires access to the nucleosomal DNA to perform its function in chromosome segregation. The machineries that provide this accessibility are termed chromatin remodelling factors. Here, we report the isolation of a human ISWI (SNF2h)-containing chromatin remodelling complex that encompasses components of the cohesin and NuRD complexes. We show that the hRAD21 subunit of the cohesin complex directly interacts with the ATPase subunit SNF2h. Mapping of hRAD21, SNF2h and Mi2 binding sites by chromatin immunoprecipitation experiments reveals the specific association of these three proteins with human DNA elements containing Alu sequences. We find a correlation between modification of histone tails and association of the SNF2h/cohesin complex with chromatin. Moreover, we show that the association of the cohesin complex with chromatin can be regulated by the state of DNA methylation. Finally, we present evidence pointing to a role for the ATPase activity of SNF2h in the loading of hRAD21 on chromatin.

  17. A chromosome painting test of the basal eutherian karyotype.

    PubMed

    Svartman, Marta; Stone, Gary; Page, John E; Stanyon, Roscoe

    2004-01-01

    We studied the chromosomes of an Afrotherian species, the short-eared elephant shrew Macroscelides proboscideus with traditional banding techniques and mapped the homology to human chromosomes by in-situ hybridization of human chromosome paints. Here we present for the first time the karyotype of this species, including banding patterns. The chromosome painting allowed us to test various hypotheses of the ancestral Eutherian karyotype, the validity of the radical taxonomic assemblage known as Afrotheria and the phylogenetic position of the elephant shrew within the Afrotheria. Current hypotheses concerning the Eutherian ancestral karyotype include diploid numbers ranging from 2n = 44 to 50 while molecular studies have proposed a new superordinal grouping of extant Eutherians. In particular, the Afrotheria is hotly debated, as it appears to be an odd mixture of species from Ungulata, Tubulidentata, Macroscelidea and Lipotyphla, which have no apparent morphological traits to unite them. The hybridization pattern delimited a total of 37 segments in the elephant shrew genome and revealed 21 different associations of human chromosome segments. Associations 1/19 and 5/21 link all Afrotheria so far studied and support the Afrotheria assemblage. Associations 2/8, 3/20, and 10/17 strongly link aardvarks and elephant shrews after the divergence of the line leading to elephants. The most likely ancestral Eutherian karyotype would be 2n = 48 chromosomes. However, the lack of comparative chromosome painting data between Eutherians and an appropriate outgroup is a severe limitation on attempts to delineate the ancestral genome of Eutherians. Current attempts lack legitimacy until this situation is corrected.

  18. Assignment of the human type I IMP dehydrogenase gene (IMPDH1) to chromosome 7q31.3-q32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jing Jin; Kaiser-Rogers, K.; Rao, K.

    Two phage {lambda} clones that contain 5{prime} portion of the human type I inosine 5{prime}-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205) gene were isolated. Both polymerase chain reaction analysis of a panel of human-mouse and human-hamster cell somatic hybrids using primers specific for the type I IMPDH gene and fluorescence in situ hybridization with metaphase human chromosome using type I IMPDH genomic DNA as probes indicate that the type I IMPDH gene (symbol IMPDH1) is located on chromosome 7. Sequential GTG-banding was performed to assign the band location of the type I IMPDH gene to chromosome 7q31.3-q32. 16 refs., 1 fig., 1more » tab.« less

  19. Genetic analysis of indefinite division in human cells: Evidence for a cell senescence-related gene(s) on human chromosome 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Ning; Ledbetter, D.H.; Smith, J.R.

    1991-07-01

    Earlier studies had demonstrated that fusion of normal with immortal human cells yielded hybrids having limited division potential. This indicated that the phenotype of limited proliferation (cellular senescence) is dominant and that immortal cells result from recessive changes in normal growth-regulatory genes. In additional studies, the authors exploited the fact that the immortal phenotype is recessive and, by fusing various immortal human cell lines with each other, identified four complementation groups for indefinite division. Assignment of cell lines to specific groups allowed us to take a focused approach to identify the chromosomes and genes involved in growth regulation that havemore » been modified in immortal cells. They report here that introduction of a normal human chromosome 4 into three immortal cell lines (HeLa, J82, T98G) assigned to complementation group B resulted in loss of proliferation and reversal of the immortal phenotype. No effect on the proliferation potential of cell lines representative of the other complementation groups was observed. This result suggests that a gene(s) involved in cellular senescence and normal growth regulation resides on chromosome 4.« less

  20. The alpha-spectrin gene is on chromosome 1 in mouse and man.

    PubMed Central

    Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J

    1985-01-01

    By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies. Images PMID:2987946

  1. The alpha-spectrin gene is on chromosome 1 in mouse and man.

    PubMed

    Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J

    1985-06-01

    By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies.

  2. The human gene for alkaptonuria (AKU) maps to chromosome 3q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janocha, S.; Wolz, W.; Grimm, T.

    1994-01-01

    Alkaptonuria (AKU; McKusick no. 203500) is a rare autosomal recessive disorder caused by the lack of homogentisic acid oxidase activity. Patients excrete large amounts of homogentisic acid in their urine and a black ochronotic pigment is deposited in their cartilage and collagenous tissues. Ochronosis is the predominant clinical complication of the disease leading to ochronotic arthropathy, dark urine, pigment changes of the skin, and other clinical features. A mutation causing alkaptonuria in the mouse has mapped to chromosome 16. Considering conserved synteny, the authors were able to map the human gene to chromosome 3q in six alkaptonuria pedigrees of Slovakmore » origin. 22 refs., 3 figs., 1 tab.« less

  3. Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4.

    PubMed

    Alvarado, David M; Aferol, Hyuliya; McCall, Kevin; Huang, Jason B; Techy, Matthew; Buchan, Jillian; Cady, Janet; Gonzales, Patrick R; Dobbs, Matthew B; Gurnett, Christina A

    2010-07-09

    Clubfoot is a common musculoskeletal birth defect for which few causative genes have been identified. To identify the genes responsible for isolated clubfoot, we screened for genomic copy-number variants with the Affymetrix Genome-wide Human SNP Array 6.0. A recurrent chromosome 17q23.1q23.2 microduplication was identified in 3 of 66 probands with familial isolated clubfoot. The chromosome 17q23.1q23.2 microduplication segregated with autosomal-dominant clubfoot in all three families but with reduced penetrance. Mild short stature was common and one female had developmental hip dysplasia. Subtle skeletal abnormalities consisted of broad and shortened metatarsals and calcanei, small distal tibial epiphyses, and thickened ischia. Several skeletal features were opposite to those described in the reciprocal chromosome 17q23.1q23.2 microdeletion syndrome associated with developmental delay and cardiac and limb abnormalities. Of note, during our study, we also identified a microdeletion at the locus in a sibling pair with isolated clubfoot. The chromosome 17q23.1q23.2 region contains the T-box transcription factor TBX4, a likely target of the bicoid-related transcription factor PITX1 previously implicated in clubfoot etiology. Our result suggests that this chromosome 17q23.1q23.2 microduplication is a relatively common cause of familial isolated clubfoot and provides strong evidence linking clubfoot etiology to abnormal early limb development. Copyright 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Sex chromosome-dependent differential viability of human spermatozoa during prolonged incubation.

    PubMed

    You, Young-Ah; Kwon, Woo-Sung; Saidur Rahman, Md; Park, Yoo-Jin; Kim, Young-Ju; Pang, Myung-Geol

    2017-06-01

    Are there significant differences in the ability of X chromosome-bearing (X) spermatozoa and Y chromosome-bearing (Y) spermatozoa to survive incubation under stressful conditions? Y spermatozoa are more vulnerable to stress than their X counterparts depending on culture period and temperature, and show higher expression of apoptotic proteins. The primary sex ratio is determined by there being an equal number of spermatozoa carrying X and Y chromosomes. This balance can be skewed by exposure to stressful environmental conditions such as changes in pH, pollutants or endocrine disruptors. However, less is known about the ability of sperm carrying either sex chromosome to withstand environmental stress. The difference in survival between X and Y spermatozoa was evaluated by measuring motility, viability and Y:X chromosome ratio during incubation for 5 days, at three temperatures (4, 22 and 37°C), and three pH conditions (6.5, 7.5 and 8.5). To identify the critical factors that determine the survival of X and Y bearing spermatozoa, we analysed the expression levels of apoptosis-related proteins (Bcl, Bax and Caspase-3), as well as the extent of DNA damage under a subset of conditions. Semen samples were obtained by masturbation from normozoospermic donors after 3 days of sexual abstinence. Four samples with >60% motility from different donors were mixed to obtain sufficient semen and eliminate sampling-related bias. Data are presented as mean ± SD of three independent experiments. Mean age of donors was 28.7 ± 3.2 years. In total, 58 489 spermatozoa were scored. The viability of Y spermatozoa was lower after exposure to different temperatures and culture periods than that of X spermatozoa (P < 0.05). Increased expression of apoptotic proteins in live Y spermatozoa was observed, despite the addition of tocopherol to the culture medium (P < 0.05). Spermatozoa were cultured in vitro during the treatment period. It is difficult to extrapolate the observed lifespan

  5. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Dose of High Let Radiation

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, K.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (0.01 - 0.20 Gy) of 170 MeV/u Si-28 ions or 600 MeV/u Fe-56 ions, including doses where on average less than one direct ion traversal per cell nucleus occurs. Chromosomes were analyzed using the whole-chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The responses for doses above 0.1 Gy (more than one ion traverses a cell) showed linear dose responses. However, for doses less than 0.1 Gy, both Si-28 ions and Fe-56 ions showed a dose independent response above background chromosome aberrations frequencies. Possible explanations for our results are non-targeted effects due to aberrant cell signaling [1], or delta-ray dose fluctuations [2] where a fraction of cells receive significant delta-ray doses due to the contributions of multiple ion tracks that do not directly traverse cell nuclei where chromosome aberrations are scored.

  6. Chromosome surveys of human populations: between epidemiology and anthropology.

    PubMed

    de Chadarevian, Soraya

    2014-09-01

    It is commonly held that after 1945 human genetics turned medical and focussed on the individual rather than on the study of human populations that had become discredited. However, a closer look at the research practices at the time quickly reveals that human population studies, using old and new tools, prospered in this period. The essay focuses on the rise of chromosome analysis as a new tool for the study of human populations. It reviews a broad array of population studies ranging from newborn screening programmes to studies of isolated or 'primitive' people. Throughout, it highlights the continuing role of concerns and opportunities raised by the propagation of atomic energy for civilian and military uses, the collection of large data bases and computers, and the role of international organisations like the World Health Organisation and the International Biological Programme in shaping research agendas and carving out a space for human heredity in the postwar era. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Genomic structure and chromosomal mapping of the human CD22 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.L.; Kozlow, E.; Kehrl, J.H.

    1993-06-01

    The human CD22 gene is expressed specifically in B lymphocytes and likely has an important function in cell-cell interactions. A nearly full length human CD22 cDNA clone was used to isolate genomic clones that span the CD22 gene. The CD22 gene is spread over 22 kb of DNA and is composed of 15 exons. The first exon contains the major transcriptional start sites. The translation initiation codon is located in exon 3, which also encodes a portion of the signal peptide. Exons 4 to 10 encode the seven Ig domains of CD22, exon 11 encodes the transmembrane domain, exons 12more » to 15 encode the intracytoplasmic domain of CD22, and exon 15 also contains the 3' untranslated region. A minor form of CD22 mRNA likely results from splicing of exon 5 to exon 8, skipping exons 6 and 7. A 4.6-kb Xbal fragment of the CD22 gene was used to map the chromosomal location of CD22 by fluorescence in situ hybridization. The hybridization locus was identified by combining fluorescent images of the probe with the chromosomal banding pattern generated by an Alu probe. The results demonstrate the CD22 is located within the band region q13.1 of chromosome 19. Two closely clustered major transcription start sites and several minor start sites were mapped by primer extension. Similarly to many other lymphoid-specific genes, the CD22 promoter lacks an obvious TATA box. Approximately 4 kb of DNA 5' of the transcription start sites were sequenced and found to contain multiple Alu elements. Potential binding sites for the transcriptional factors NF-kB, AP-1, and Oct-2 are located within 300 bp 5' of the major transcription start sites. A 400-bp fragment (bp -339 through +71) of the CD22 promoter region was subcloned into a pGEM-chloramphenicol acetyltransferase vector and after transfection into B and T cells was found to be active in both B and T cells. 45 refs., 7 figs., 2 tabs.« less

  8. Biomarker for Space Radiation Risk: Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, Kerry; Cucinotta, Francis A.; Wu, Honglu

    2007-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Over the years, we have studied chromosomal damage in human fibroblast, epithelia and lymphocyte cells exposed in vitro to energetic charged particles generated at several accelerator facilities in the world. We have also studied chromosome aberrations in astronaut s peripheral blood lymphocytes before and after space flight. Various fluorescence in situ hybridization painting techniques have been used to identify from only the telomere region of the chromosome to every chromosome in a human cell. We will summarize the results of the investigations, and discuss the unique radiation signatures and biomarkers for space radiation exposure.

  9. The human chromosomal fragile sites more often involved in constitutional deletions and duplications - A genetic and statistical assessment

    NASA Astrophysics Data System (ADS)

    Gomes, Dora Prata; Sequeira, Inês J.; Figueiredo, Carlos; Rueff, José; Brás, Aldina

    2016-12-01

    Human chromosomal fragile sites (CFSs) are heritable loci or regions of the human chromosomes prone to exhibit gaps, breaks and rearrangements. Determining the frequency of deletions and duplications in CFSs may contribute to explain the occurrence of human disease due to those rearrangements. In this study we analyzed the frequency of deletions and duplications in each human CFS. Statistical methods, namely data display, descriptive statistics and linear regression analysis were applied to analyze this dataset. We found that FRA15C, FRA16A and FRAXB are the most frequently involved CFSs in deletions and duplications occurring in the human genome.

  10. Genealogical and evolutionary inference with the human Y chromosome.

    PubMed

    Stumpf, M P; Goldstein, D B

    2001-03-02

    Population genetics has emerged as a powerful tool for unraveling human history. In addition to the study of mitochondrial and autosomal DNA, attention has recently focused on Y-chromosome variation. Ambiguities and inaccuracies in data analysis, however, pose an important obstacle to further development of the field. Here we review the methods available for genealogical inference using Y-chromosome data. Approaches can be divided into those that do and those that do not use an explicit population model in genealogical inference. We describe the strengths and weaknesses of these model-based and model-free approaches, as well as difficulties associated with the mutation process that affect both methods. In the case of genealogical inference using microsatellite loci, we use coalescent simulations to show that relatively simple generalizations of the mutation process can greatly increase the accuracy of genealogical inference. Because model-free and model-based approaches have different biases and limitations, we conclude that there is considerable benefit in the continued use of both types of approaches.

  11. TMAP/CKAP2 is essential for proper chromosome segregation.

    PubMed

    Hong, Kyung Uk; Kim, Eunhee; Bae, Chang-Dae; Park, Joobae

    2009-01-15

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), is a novel mitotic spindle-associated protein which is frequently up-regulated in various malignances. However, its cellular functions remain unknown. Previous reports suggested that the cellular functions of TMAP/CKAP2 pertain to regulation of the dynamics and assembly of the mitotic spindle. To investigate its role in mitosis, we studied the effects of siRNA-mediated depletion of TMAP/CKAP2 in cultured mammalian cells. Unexpectedly, TMAP/CKAP2 knockdown did not result in significant alterations of the spindle apparatus. However, TMAP/CKAP2-depleted cells often exhibited abnormal nuclear morphologies, which were accompanied by abnormal organization of the nuclear lamina, and chromatin bridge formation between two daughter cell nuclei. Time lapse video microscopy revealed that the changes in nuclear morphology and chromatin bridge formations observed in TMAP/CKAP2-depleted cells are the result of defects in chromosome segregation. Consistent with this, the spindle checkpoint activity was significantly reduced in TMAP/CKAP2-depleted cells. Moreover, chromosome missegregation induced by depletion of TMAP/CKAP2 ultimately resulted in reduced cell viability and increased chromosomal instability. Our present findings demonstrate that TMAP/CKAP2 is essential for proper chromosome segregation and for maintaining genomic stability.

  12. Unrepaired DNA damage facilitates elimination of uniparental chromosomes in interspecific hybrid cells

    PubMed Central

    Wang, Zheng; Yin, Hao; Lv, Lei; Feng, Yingying; Chen, Shaopeng; Liang, Junting; Huang, Yun; Jiang, Xiaohua; Jiang, Hanwei; Bukhari, Ihtisham; Wu, Lijun; Cooke, Howard J; Shi, Qinghua

    2014-01-01

    Elimination of uniparental chromosomes occurs frequently in interspecific hybrid cells. For example, human chromosomes are always eliminated during clone formation when human cells are fused with mouse cells. However, the underlying mechanisms are still elusive. Here, we show that the elimination of human chromosomes in human–mouse hybrid cells is accompanied by continued cell division at the presence of DNA damage on human chromosomes. Deficiency in DNA damage repair on human chromosomes occurs after cell fusion. Furthermore, increasing the level of DNA damage on human chromosomes by irradiation accelerates human chromosome loss in hybrid cells. Our results indicate that the elimination of human chromosomes in human–mouse hybrid cells results from unrepaired DNA damage on human chromosomes. We therefore provide a novel mechanism underlying chromosome instability which may facilitate the understanding of carcinogenesis. PMID:24608870

  13. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael D.; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Lung cancer induced from exposures to space radiation is one of the most significant health risks for long-term space travels. Evidences show that low- and high- Linear energy transfer (LET)-induced transformation of normal human bronchial epithelial cells (HBEC) that are immortalized through the expression of Cdk4 and hTERT. The cells were exposed to gamma rays and high-energy Fe ions for the selection of transformed clones. Transformed HBEC are identified and analyzed chromosome aberrations (i.e. genomic instability) using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. Our results show chromosomal translocations between different chromosomes and several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed and the parental HBEC regardless of the exposure conditions. We observed chromosomal aberrations in the lowand high-LET radiation-induced transformed clones and they are imperfectly different from clones obtain in spontaneous soft agar growth.

  14. The human MCP-2 gene (SCYA8): Cloning, sequence analysis, tissue expression, and assignment to the CC chemokine gene contig on chromosome 17q11.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Coillie, E.; Fiten, P.; Van Damme, J.

    1997-03-01

    Monocyte chemotactic proteins (MCPs) form a subfamily of chemokines that recruit leukocytes to sites of inflammation and that may contribute to tumor-associated leukocyte infiltration and to the antiviral state against HIV infection. With the use of degenerate primers that were based on CC chemokine consensus sequences, the known MIP-1{alpha}/LD78{alpha}, MCP-1, and MCP-3 genes and the previously unidentified eotaxin and MCP-2 genes were isolated from a YAC contig from human chromosome 17q11.2. The amplified genomic MCP-2 fragment was used to isolate an MCP-2 cosmid from which the gene sequence was determined. The MCP-2 gene shares with the MCP-1 and MCP-3 genesmore » a conserved intron-exon structure and a coding nucleotide sequence homology of 77%. By Northern blot analysis the 1.0-kb MCP-2 mRNA was predominantly detectable in the small intestine, peripheral blood, heart, placenta, lung, skeletal muscle, ovary, colon, spinal cord, pancreas, and thymus. Transcripts of 1.5 and 2.4 kb were found in the testis, the small intestine, and the colon. The isolation of the MCP-2 gene from the chemokine contig localized it on YAC clones of chromosome 17q11.2, which also contain the eotaxin, MCP-1, MCP-3, and NCC-1/MCP-4 genes. The combination of using degenerate primer PCR and YACs illustrates that novel genes can efficiently be isolated from gene cluster contigs with less redundancy and effort than the isolation of novel ESTs. 42 refs., 5 figs., 2 tabs.« less

  15. Organization of the human gene for nucleobindin (NUC) and its chromosomal assignment to 19q13.2-q13.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki

    1996-06-01

    Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequencesmore » in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.« less

  16. Non-Target Effect for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Doses of High LET Radiation

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, Kerry A.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (.01 - 0.2 Gy) of 170 MeV/u Si-28-ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The curves for doses above 0.1 Gy were more than one ion traverses a cell showed linear dose responses. However, for doses less than 0.1 Gy, Si-28-ions showed no dose response, suggesting a non-targeted effect when less than one ion traversal occurs. Additional findings for Fe-56 will be discussed.

  17. Primary structure, expression and chromosomal locus of a human homolog of rat ERK3.

    PubMed

    Meloche, S; Beatty, B G; Pellerin, J

    1996-10-03

    We report the cloning and characterization of a human cDNA encoding a novel homolog of rat extracellular signal-regulated kinase 3 (ERK3). The cDNA encodes a predicted protein of 721 amino acids which shares 92% amino acid identity with rat ERK3 over their shared length. Interestingly, the human protein contains a unique extension of 178 amino acids at its carboxy terminal extremity. The human ERK3 protein also displays various degrees of homology to other members of the MAP kinases family, but does not contain the typical TXY regulatory motif between subdomains VII and VIII. Northern blot analysis revealed that ERK3 mRNA is widely distributed in human tissues, with the highest expression detected in skeletal muscle. The human ERK3 gene was mapped by fluorescence in situ hybridization to chromosome 15q21, a region associated with chromosomal abnormalities in acute nonlymphoblastic leukemias. This information should prove valuable in designing studies to define the cellular function of the ERK3 protein kinase.

  18. Cytological and cytogenetical studies on brain tumors. V. Preferential loss of sex chromosomes in human meningiomas.

    PubMed

    Zankl, H; Seidel, H; Zang, K D

    1975-01-01

    Twelve out of 88 cytogenetically examined meningiomas of female patients showed, in addition to the typical loss of a chromosome 22, a loss of 1 or more chromosomes of group C. Among them 8 tumors had less than 8% cells with Barr-body-like particles, whereas in one tumor 12% and in 3 others over 20% Barr bodies were found, which, based on control studies, were classified as sex-chromatin negative, partly positive, and positive, respectively. In one case the loss of an X chromosome was verified by Giemsa banding. In 6 out of 24 meningiomas of male origin, the chromosomal morphology and association pattern strongly indicated that besides the loss of a chromosome 22, the Y chromosome was also missing. Moreover, the loss of the male sex chromosome could be ascertained in 4 tumors by the conspicuous absence of Y fluorescence in interphase nuclei and in metaphase plates after fluorescence staining. The findings are discussed in connection with the gonosomal loss in other human tumors and in old age.

  19. Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects.

    PubMed

    Lamm, Noa; Ben-David, Uri; Golan-Lev, Tamar; Storchová, Zuzana; Benvenisty, Nissim; Kerem, Batsheva

    2016-02-04

    Human pluripotent stem cells (hPSCs) frequently acquire chromosomal aberrations such as aneuploidy in culture. These aberrations progressively increase over time and may compromise the properties and clinical utility of the cells. The underlying mechanisms that drive initial genomic instability and its continued progression are largely unknown. Here, we show that aneuploid hPSCs undergo DNA replication stress, resulting in defective chromosome condensation and segregation. Aneuploid hPSCs show altered levels of actin cytoskeletal genes controlled by the transcription factor SRF, and overexpression of SRF rescues impaired chromosome condensation and segregation defects in aneuploid hPSCs. Furthermore, SRF downregulation in diploid hPSCs induces replication stress and perturbed condensation similar to that seen in aneuploid cells. Together, these results suggest that decreased SRF expression induces replicative stress and chromosomal condensation defects that underlie the ongoing chromosomal instability seen in aneuploid hPSCs. A similar mechanism may also operate during initiation of instability in diploid cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. High-LET radiation-induced aberrations in prematurely condensed G2 chromosomes of human fibroblasts

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Gotoh, E.; Durante, M.; Wu, H.; George, K.; Furusawa, Y.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)

    2000-01-01

    PURPOSE: To determine the number of initial chromatid breaks induced by low- or high-LET irradiations, and to compare the kinetics of chromatid break rejoining for radiations of different quality. MATERIAL AND METHODS: Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (290MeV/u), silicon (490MeV/u) and iron (200 and 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Chromatid breaks and exchanges in G2 cells were scored. PCC were collected after several post-irradiation incubation times, ranging from 5 to 600 min. RESULTS: The kinetics of chromatid break rejoining following low- or high-LET irradiation consisted of two exponential components representing a rapid and a slow time constant. Chromatid breaks decreased rapidly during the first 10min after exposure, then continued to decrease at a slower rate. The rejoining kinetics were similar for exposure to each type of radiation. Chromatid exchanges were also formed quickly. Compared to low-LET radiation, isochromatid breaks were produced more frequently and the proportion of unrejoined breaks was higher for high-LET radiation. CONCLUSIONS: Compared with gamma-rays, isochromatid breaks were observed more frequently in high-LET irradiated samples, suggesting that an increase in isochromatid breaks is a signature of high-LET radiation exposure.

  1. The effects of severe mixed environmental pollution on human chromosomes.

    PubMed Central

    Katsantoni, A; Nakou, S; Antoniadou-Koumatou, I; Côté, G B

    1986-01-01

    Cytogenetic studies were conducted on healthy young mothers, shortly after child birth, in two residential areas each with an approximate population of 20,000, situated about 25 km from Athens, Greece. One of the areas, Elefsis, is subject to severe mixed industrial pollution, and the other, Koropi, is relatively free of pollution. Chromosomal aberrations were investigated in 16 women from each area in 72 hour lymphocyte cultures treated with gentian violet to enhance any chromosomal instability induced by the pollution. The women were of a comparable socioeconomic level, aged between 20 and 31 years, and with no history of factors associated with mutagenesis. Venous blood samples were taken from the two groups and processed concurrently. The slides were coded and examined independently by two observers, who were unaware of the source of the samples. A total of 100 cells was examined on each sample. The two observers obtained highly comparable results. Women from Elefsis had an average of 0.42 anomalies per cell and those from Koropi had 0.39. The absence of a statistically significant difference between the two groups clearly shows that the severe mixed environmental pollution of Elefsis has no significant visible effect on human chromosomes in most residents. However, two Elefsis women had abnormal results and could be at risk. Their presence is not sufficient to raise significantly their group's average, but the induction by pollution of an increased rate of chromosomal anomalies in only a few people at risk could account for the known association between urban residence and cancer mortality. PMID:3783622

  2. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  3. Truly incomplete and complex exchanges in prematurely condensed chromosomes of human fibroblasts exposed in vitro to energetic heavy ions

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon silicon ions, or iron ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 degrees C for 24 h after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. To verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole-chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after irradiation with the heavy ions of high LET, and consequently the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/microm, the highest LET included in the present study. For samples exposed to 200 MeV/nucleon iron ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique, which allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy iron ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges; these ratios were higher than those obtained after exposure to 6 Gy gamma rays. After 0.7 Gy of iron ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single iron-ion track.

  4. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board?

    PubMed

    Geens, Mieke; Chuva De Sousa Lopes, Susana M

    2017-09-01

    Human pluripotent stem cells (hPSC), both embryonic and induced (hESC and hiPSC), are regarded as a valuable in vitro model for early human development. In order to fulfil this promise, it is important that these cells mimic as closely as possible the in vivo molecular events, both at the genetic and epigenetic level. One of the most important epigenetic events during early human development is X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female cells. XCI is important for proper development and aberrant XCI has been linked to several pathologies. Recently, novel data obtained using high throughput single-cell technology during human preimplantation development have suggested that the XCI mechanism is substantially different from XCI in mouse. It has also been suggested that hPSC show higher complexity in XCI than the mouse. Here we compare the available recent data to understand whether XCI during human preimplantation can be properly recapitulated using hPSC. We will summarize what is known on the timing and mechanisms of XCI during human preimplantation development. We will compare this to the XCI patterns that are observed during hPSC derivation, culture and differentiation, and comment on the cause of the aberrant XCI patterns observed in hPSC. Finally, we will discuss the implications of the aberrant XCI patterns on the applicability of hPSC as an in vitro model for human development and as cell source for regenerative medicine. Combinations of the following keywords were applied as search criteria in the PubMed database: X chromosome inactivation, preimplantation development, embryonic stem cells, induced pluripotent stem cells, primordial germ cells, differentiation. Recent single-cell RNASeq data have shed new light on the XCI process during human preimplantation development. These indicate a gradual inactivation on both XX chromosomes, starting from Day 4 of development and followed by a random choice

  5. Sequence conservation on the Y chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, L.H.; Yang-Feng, L.; Lau, C.

    The Y chromosome is present in all mammals and is considered to be essential to sex determination. Despite intense genomic research, only a few genes have been identified and mapped to this chromosome in humans. Several of them, such as SRY and ZFY, have been demonstrated to be conserved and Y-located in other mammals. In order to address the issue of sequence conservation on the Y chromosome, we performed fluorescence in situ hybridization (FISH) with DNA from a human Y cosmid library as a probe to study the Y chromosomes from other mammalian species. Total DNA from 3,000-4,500 cosmid poolsmore » were labeled with biotinylated-dUTP and hybridized to metaphase chromosomes. For human and primate preparations, human cot1 DNA was included in the hybridization mixture to suppress the hybridization from repeat sequences. FISH signals were detected on the Y chromosomes of human, gorilla, orangutan and baboon (Old World monkey) and were absent on those of squirrel monkey (New World monkey), Indian munjac, wood lemming, Chinese hamster, rat and mouse. Since sequence analysis suggested that specific genes, e.g. SRY and ZFY, are conserved between these two groups, the lack of detectable hybridization in the latter group implies either that conservation of the human Y sequences is limited to the Y chromosomes of the great apes and Old World monkeys, or that the size of the syntenic segment is too small to be detected under the resolution of FISH, or that homologeous sequences have undergone considerable divergence. Further studies with reduced hybridization stringency are currently being conducted. Our results provide some clues as to Y-sequence conservation across species and demonstrate the limitations of FISH across species with total DNA sequences from a particular chromosome.« less

  6. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  7. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.

    PubMed

    Veyrunes, Frédéric; Waters, Paul D; Miethke, Pat; Rens, Willem; McMillan, Daniel; Alsop, Amber E; Grützner, Frank; Deakin, Janine E; Whittington, Camilla M; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Ferguson-Smith, Malcolm A; Warren, Wes; Marshall Graves, Jennifer A

    2008-06-01

    In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.

  8. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana.

    PubMed

    Lin, X; Kaul, S; Rounsley, S; Shea, T P; Benito, M I; Town, C D; Fujii, C Y; Mason, T; Bowman, C L; Barnstead, M; Feldblyum, T V; Buell, C R; Ketchum, K A; Lee, J; Ronning, C M; Koo, H L; Moffat, K S; Cronin, L A; Shen, M; Pai, G; Van Aken, S; Umayam, L; Tallon, L J; Gill, J E; Adams, M D; Carrera, A J; Creasy, T H; Goodman, H M; Somerville, C R; Copenhaver, G P; Preuss, D; Nierman, W C; White, O; Eisen, J A; Salzberg, S L; Fraser, C M; Venter, J C

    1999-12-16

    Arabidopsis thaliana (Arabidopsis) is unique among plant model organisms in having a small genome (130-140 Mb), excellent physical and genetic maps, and little repetitive DNA. Here we report the sequence of chromosome 2 from the Columbia ecotype in two gap-free assemblies (contigs) of 3.6 and 16 megabases (Mb). The latter represents the longest published stretch of uninterrupted DNA sequence assembled from any organism to date. Chromosome 2 represents 15% of the genome and encodes 4,037 genes, 49% of which have no predicted function. Roughly 250 tandem gene duplications were found in addition to large-scale duplications of about 0.5 and 4.5 Mb between chromosomes 2 and 1 and between chromosomes 2 and 4, respectively. Sequencing of nearly 2 Mb within the genetically defined centromere revealed a low density of recognizable genes, and a high density and diverse range of vestigial and presumably inactive mobile elements. More unexpected is what appears to be a recent insertion of a continuous stretch of 75% of the mitochondrial genome into chromosome 2.

  9. Isolation of the human chromosomal band Xq28 within somatic cell hybrids by fragile X site breakage.

    PubMed Central

    Warren, S T; Knight, S J; Peters, J F; Stayton, C L; Consalez, G G; Zhang, F P

    1990-01-01

    The chromosomal fragile-site mapping to Xq27.3 is associated with a frequent form of mental retardation and is prone to breakage after induced deoxyribonucleotide pool perturbation. The human hypoxanthine phosphoribosyltransferase (HPRT) and glucose-6-phosphate dehydrogenase (G6PD) genes flank the fragile X chromosome site and can be used to monitor integrity of the site in human-hamster somatic cell hybrids deficient in the rodent forms of these activities. After induction of the fragile X site, negative selection for HPRT and positive enrichment for G6PD resulted in 31 independent colonies of HPRT-,G6PD+ phenotype. Southern blot analysis demonstrated the loss of all tested markers proximal to the fragile X site with retention of all tested human Xq28 loci in a majority of the hybrids. In situ hybridization with a human-specific probe demonstrated the translocation of a small amount of human DNA to rodent chromosomes in these hybrids, suggesting chromosome breakage at the fragile X site and the subsequent translocation of Xq28. Southern blot hybridization of hybrid-cell DNA, resolved by pulsed-field gel electrophoresis, for human-specific repetitive sequences revealed abundant CpG-islands within Xq28, consistent with its known gene density. The electrophoretic banding patterns of human DNA among the hybrids were remarkably consistent, suggesting that fragile X site breakage is limited to a relatively small region in Xq27-28. These somatic cell hybrids, containing Xq27.3-qter as the sole human DNA, will aid the search for DNA associated with the fragile X site and will augment the high resolution genomic analysis of Xq28, including the identification of candidate genes for genetic-disease loci mapping to this region. Images PMID:2339126

  10. Chromosomal mutagenesis in human somatic cells: 30-year cytogenetic monitoring after Chornobyl accident.

    PubMed

    Pilinska, M A; Shemetun, G M; Shemetun, O V; Dybsky, S S; Dybska, O B; Talan, O O; Pedan, L R; Kurinnyi, D А

    2016-12-01

    In the lecture we have generalized and analyzed the data of cytogenetic laboratory of National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine on 30-year selective cytogenetic monitoring among the priority contingents of different ages exposed to radiation after Chornobyl accident in Ukraine. It is highlighted that not only targeted but also untargeted radiation-induced cytogenetic effects should be explored, especially in delayed terms following radiation exposure. The new methodical approaches for studying "bystander effect", individual radiosensitivity, and various forms of radiation-induced chromosomal instability (delayed, hidden, transmissible) have been proposed. These approaches proved to be advantageous for analyzing cytogenetic patterns of induction and persistence of chromosomal instability in human somatic cells because of "bystander effect" and "bystander type effect". The phenomenon of positive "reverse" bystander effect has been found. The possibility of modifying the inherited individual human susceptibility to mutagenic exposure by ionizing radiation has been estimated. Finally, the association between hypersensitivity to radiation exposure and realization of oncopathology in exposed individuals has been revealed. The increased intensity of human somatic chromosomal mutagenesis was confirmed not only in the nearest but in the delayed terms following Chornobyl accident as a result of radiation-induced both targeted and untargeted cytogenetic effects. Such effects can be considered as risk factors for malignant transformation of cells, hereditary diseases, birth defects, and multifactorial somatic pathology. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  11. Stability of Radiation Induced Chromosome Damage in Human Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; George, K.; Willingham, V.

    2006-01-01

    Chromosome damage in an individual's peripheral blood lymphocytes can be an indicator of radiation exposure and this data can be used to evaluate dose after accidental or occupational exposure. Evidence suggests that the yield of chromosome damage in lymphocytes is also a relevant biomarker of cancer risk in humans that reflects individual cancer susceptibility. It follows that biomonitoring studies can be used to uncover subjects who are particularly susceptible to radiation damage and therefore at higher risk of cancer. Translocations and other stable aberrations are commonly believed to persist in peripheral blood cells for many years after exposure, and it has been suggested that translocations can be used for assessing retrospective radiation doses or chronic exposures. However, recent investigations suggest that translocations might not always persist indefinitely. We measured chromosome aberrations in the blood lymphocytes of six astronauts before their respective missions of approximately 3 to 6 months onboard the international space station, and again at various intervals up to 5 years after flight. In samples collected a few days after return to earth, the yield of chromosome translocations had significantly increased compared with preflight values, and results indicate that biodosimetry estimates lie within the range expected from physical dosimetry. However, for five of the astronauts, follow up analysis revealed a temporal decline in translocations with half-lives ranging from 10 to 58 months. The yield of exchanges remained unchanged for the sixth astronaut during an observation period of 5 months post-flight. These results may indicate complications with the use of stable aberrations for retrospective dose reconstruction and could affect cancer risk predictions that are estimated from yields of chromosome damage obtained shortly after exposure.

  12. Massively Parallel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome

    PubMed Central

    Clayton, Stephen; Prigmore, Elena; Langley, Elizabeth; Yang, Fengtang; Maguire, Sean; Fu, Beiyuan; Rajan, Diana; Sheppard, Olivia; Scott, Carol; Hauser, Heidi; Stephens, Philip J.; Stebbings, Lucy A.; Ng, Bee Ling; Fitzgerald, Tomas; Quail, Michael A.; Banerjee, Ruby; Rothkamm, Kai; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.; Carter, Nigel P.

    2013-01-01

    Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439. PMID:23596509

  13. Spread of X-chromosome inactivation into chromosome 15 is associated with Prader-Willi syndrome phenotype in a boy with a t(X;15)(p21.1;q11.2) translocation.

    PubMed

    Sakazume, Satoru; Ohashi, Hirofumi; Sasaki, Yuki; Harada, Naoki; Nakanishi, Katsumi; Sato, Hidenori; Emi, Mitsuru; Endoh, Kazushi; Sohma, Ryoichi; Kido, Yasuhiro; Nagai, Toshiro; Kubota, Takeo

    2012-01-01

    X-chromosome inactivation (XCI) is an essential mechanism in females that compensates for the genome imbalance between females and males. It is known that XCI can spread into an autosome of patients with X;autosome translocations. The subject was a 5-year-old boy with Prader-Willi syndrome (PWS)-like features including hypotonia, hypo-genitalism, hypo-pigmentation, and developmental delay. G-banding, fluorescent in situ hybridization, BrdU-incorporated replication, human androgen receptor gene locus assay, SNP microarrays, ChIP-on-chip assay, bisulfite sequencing, and real-time RT-PCR were performed. Cytogenetic analyses revealed that the karyotype was 46,XY,der(X)t(X;15)(p21.1;q11.2),-15. In the derivative chromosome, the X and half of the chromosome 15 segments showed late replication. The X segment was maternal, and the chromosome 15 region was paternal, indicating its post-zygotic origin. The two chromosome 15s had a biparental origin. The DNA methylation level was relatively high in the region proximal from the breakpoint, and the level decreased toward the middle of the chromosome 15 region; however, scattered areas of hypermethylation were found in the distal region. The promoter regions of the imprinted SNRPN and the non-imprinted OCA2 genes were completely and half methylated, respectively. However, no methylation was found in the adjacent imprinted gene UBE3A, which contained a lower density of LINE1 repeats. Our findings suggest that XCI spread into the paternal chromosome 15 led to the aberrant hypermethylation of SNRPN and OCA2 and their decreased expression, which contributes to the PWS-like features and hypo-pigmentation of the patient. To our knowledge, this is the first chromosome-wide methylation study in which the DNA methylation level is demonstrated in an autosome subject to XCI.

  14. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging.

    PubMed

    Capalbo, Antonio; Hoffmann, Eva R; Cimadomo, Danilo; Ubaldi, Filippo Maria; Rienzi, Laura

    2017-11-01

    The unbalanced transmission of chromosomes in human gametes and early preimplantation embryos causes aneuploidy, which is a major cause of infertility and pregnancy failure. A baseline of 20% of human oocytes are estimated to be aneuploid and this increases exponentially from 30 to 35 years, reaching on average 80% by 42 years. As a result, reproductive senescence in human females is predominantly determined by the accelerated decline in genetic quality of oocytes from 30 years of age. Understanding mechanisms of chromosome segregation and aneuploidies in the female germline is a crucial step towards the development of new diagnostic approaches and, possibly, for the development of therapeutic targets and molecules. Here, we have reviewed emerging mechanisms that may drive human aneuploidy, in particular the maternal age effect. We conducted a systematic search in PubMed Central of the primary literature from 1990 through 2016 following the PRISMA guidelines, using MeSH terms related to human aneuploidy. For model organism research, we conducted a literature review based on references in human oocytes manuscripts and general reviews related to chromosome segregation in meiosis and mitosis. Advances in genomic and imaging technologies are allowing unprecedented insight into chromosome segregation in human oocytes. This includes the identification of a novel chromosome segregation error, termed reverse segregation, as well as sister kinetochore configurations that were not predicted based on murine models. Elucidation of mechanisms that result in errors in chromosome segregation in meiosis may lead to therapeutic developments that could improve reproductive outcomes by reducing aneuploidy. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Reduced chromosome aberration complexity in normal human bronchial epithelial cells exposed to low-LET γ-rays and high-LET α-particles

    PubMed Central

    2013-01-01

    Purpose: Cells of the lung are at risk from exposure to low and moderate doses of ionizing radiation from a range of environmental and medical sources. To help assess human health risks from such exposures, a better understanding of the frequency and types of chromosome aberration initially-induced in human lung cell types is required to link initial DNA damage and rearrangements with transmission potential and, to assess how this varies with radiation quality. Materials and methods: We exposed normal human bronchial lung epithelial (NHBE) cells in vitro to 0.5 and 1 Gy low-linear energy transfer (LET) γ-rays and a low fluence of high-LET α-particles and assayed for chromosome aberrations in premature chromosome condensation (PCC) spreads by 24-color multiplex-fluorescence in situ hybridization (M-FISH). Results: Both simple and complex aberrations were induced in a LET and dose-dependent manner; however, the frequency and complexity observed were reduced in comparison to that previously reported in spherical cell types after exposure to comparable doses or fluence of radiation. Approximately 1–2% of all exposed cells were categorized as being capable of transmitting radiation-induced chromosomal damage to future NHBE cell generations, irrespective of dose. Conclusion: One possible mechanistic explanation for this reduced complexity is the differing geometric organization of chromosome territories within ellipsoid nuclei compared to spherical nuclei. This study highlights the need to better understand the role of nuclear organization in the formation of exchange aberrations and, the influence three-dimensional (3D) tissue architecture may have on this in vivo. PMID:23679558

  16. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael T.; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Lung cancer induced from exposure to space radiation is believed to be one of the most significant health risks for long-term space travels. In a previous study, normal human bronchial epithelial cells (HBECs), immortalized through the expression of Cdk4 and hTERT, were exposed to gamma rays and high energy Fe ions for the selection of transformed clones induced by low- and high-LET radiation. In this research, we analyzed chromosome aberrations in these selected clones for genomic instability using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. In most of the clones, we found chromosomal aberrations involving translocations between different chromosomes, with several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed clones and the parental HBEC cells regardless of the exposure condition. Our results indicated that the chromosomal aberrations in low- and high radiation-induced transformed clones are inadequately different from spontaneous soft agar growth. Further analysis is underway to reveal the genomic instability in more transformed clones

  17. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, K.; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to 28Si- ions with energies ranging from 90 to 600 MeV/u, or to 56Fe-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET of the Si ions ranged from 48 to 158 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to -rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600-Mev/u beam, and the highest RBE(sub max) value for Si ions was obtained with the 170 MeV/u beam. For both ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/ m for Si, and decreasing with further increase in LET. Additional studies for low doses 28Si-ions down to 0.02 Gy will be discussed.

  18. Comprehensive annotated STR physical map of the human Y chromosome: Forensic implications.

    PubMed

    Hanson, Erin K; Ballantyne, Jack

    2006-03-01

    A plethora of Y-STR markers from diverse sources have been deposited in public databases and represent potential candidates for incorporation into the next generation of Y-STR multiplexes for forensic use. Here, based upon all of the Y-STR loci that have been deposited in the human genome database (>400), we have sequentially positioned each one along the Y chromosome using the most current human genome sequencing data (NCBI Build 35). The information derived from this work defines the number and relative position of all potentially forensically relevant Y-STR loci, their location within the physical linkage map of the Y chromosome and their relationship to structural genes. We conclude that there exists at present at least 417 separate Y-STR markers available for potential forensic use, although many of these will be found to be unsuitable for other reasons. However, from this data, we were able to identify 28 pairs of duplicated loci that were given separate DYS designations and four pairs of loci with overlapping flanking regions. Removing one locus from each set of duplicates reduced the number of potentially useful loci from 417 to 389. The derived information should be useful for workers who are designing novel Y-STR multiplexes to ensure the presence of non-synonymous loci and, if so desired, to avoid loci that lie within structural genes. It may also be useful for forensic casework practitioners (or molecular anthropologists) to aid in distinguishing between chromosomal rearrangements (such as duplications and deletions) and bona fide DNA admixtures or null alleles caused by primer binding site mutations. We illustrate the practical usefulness of the chromosomal positioning data in the design of eight multiplex systems using 94 Y-STR loci.

  19. Genomic organization, complete sequence, and chromosomal location of the gene for human eotaxin (SCYA11), an eosinophil-specific CC chemokine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Zepeda, E.A.; Sarafi, M.N.; Luster, A.D.

    1997-05-01

    Eotaxin is a CC chemokine that is a specific chemoattractant for eosinophils and is implicated in the pathogenesis of eosinophilic inflammatory diseases, such as asthma. We describe the genomic organization, complete sequence, including 1354 bp 5{prime} of the RNA initiation site, and chromosomal localization of the human eotaxin gene. Fluorescence in situ hybridization analysis localized eotaxin to human chromosome 17, in the region q21.1-q21.2, and the human gene name SCYA11 was assigned. We also present the 5{prime} flanking sequence of the mouse eotaxin gene and have identified several regulatory elements that are conserved between the murine and the human promoters.more » In particular, the presence of elements such as NF-{Kappa}B, interferon-{gamma} response element, and glucocorticoid response element may explain the observed regulation of the eotaxin gene by cytokines and glucocorticoids. 17 refs., 4 figs., 1 tab.« less

  20. Genetics of the connective tissue proteins: Assignment of the gene for human type I procollagen to chromosome 17 by analysis of cell hybrids and microcell hybrids*

    PubMed Central

    Raj, Cholappadi V. Sundar; Church, Robert L.; Klobutcher, Lawrence A.; Ruddle, Frank H.

    1977-01-01

    Somatic cell hybrids between mouse and human cell lines have been used to identify the specific chromosome that governs the synthesis of type I procollagen. Fourteen hybrid clones and subclones were derived independently from crosses between mouse parents [LM (thymidine kinase-negative) or A9 (hypoxanthine phosphoribosyltransferase-negative)] and human cells (human diploid lung fibroblasts WI-38 or diploid skin fibroblasts GM5, GM17, and GM9). The cultures were labeled with [3H]proline in modified Eagle's medium without serum. Radioactive procollagens were purified from the medium by the method of Church et al. [(1974) J. Mol. Biol. 86, 785-799]. DEAE-cellulose chromatography was used to separate collagen and type I and type III procollagen. Human type I procollagen was assayed by double immunodiffusion analysis with type I procollagen antibodies prepared by immunizing rabbits with purified human type I procollagen. These analyses combined with karyology and isozyme analyses of each hybrid line have produced evidence for the assignment of the gene for human type I procollagen to chromosome 17. A human microcell-mouse hybrid cell line containing only human chromosome 17 was positive for human type I procollagen, lending further support to the assignment of the human type I procollagen gene to chromosome 17. Finally, by using a hybrid line containing only the long arm of human chromosome 17 translocated onto a mouse chromosome, the type I procollagen gene can be assigned more specifically to the long arm of chromosome 17. Images PMID:412188

  1. Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles

    PubMed Central

    Aldrup-MacDonald, Megan E.; Kuo, Molly E.; Sullivan, Lori L.; Chew, Kimberline

    2016-01-01

    Alpha satellite is a tandemly organized type of repetitive DNA that comprises 5% of the genome and is found at all human centromeres. A defined number of 171-bp monomers are organized into chromosome-specific higher-order repeats (HORs) that are reiterated thousands of times. At least half of all human chromosomes have two or more distinct HOR alpha satellite arrays within their centromere regions. We previously showed that the two alpha satellite arrays of Homo sapiens Chromosome 17 (HSA17), D17Z1 and D17Z1-B, behave as centromeric epialleles, that is, the centromere, defined by chromatin containing the centromeric histone variant CENPA and recruitment of other centromere proteins, can form at either D17Z1 or D17Z1-B. Some individuals in the human population are functional heterozygotes in that D17Z1 is the active centromere on one homolog and D17Z1-B is active on the other. In this study, we aimed to understand the molecular basis for how centromere location is determined on HSA17. Specifically, we focused on D17Z1 genomic variation as a driver of epiallele formation. We found that D17Z1 arrays that are predominantly composed of HOR size and sequence variants were functionally less competent. They either recruited decreased amounts of the centromere-specific histone variant CENPA and the HSA17 was mitotically unstable, or alternatively, the centromere was assembled at D17Z1-B and the HSA17 was stable. Our study demonstrates that genomic variation within highly repetitive, noncoding DNA of human centromere regions has a pronounced impact on genome stability and basic chromosomal function. PMID:27510565

  2. Isolation and characterization of 21 novel expressed DNA sequences from the distal region of human chromosome 4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Yoshikazu; Hadano, Shinji; Nagayama, Tomiko

    1994-07-15

    The authors have established an approach to the isolation of expressed DNA sequences from a defined region of the human chromosome. The method relies on the direct screening of cDNA libraries using pooled single-copy microclones generated by a laser chromosome microdissection in conjunction with a single unique primer polymerase chain reaction (SUP-PCR) procedure. They applied this method to the distal region of human chromosome 4p (4p15-4pter), which contains the Huntington disease (HD) and the Wolf-Hirschhorn syndrome (WHS) loci. Twenty-one nonoverlapping and region-specific cDNA clones encoding novel genes were isolated in this manner. Ten of 21 clones were subregionally assigned tomore » 4p16.1-4pter, and the remainder mapped to the region proximal to 4p16.1. Northern blot and reverse transcription followed by the PCR (RT-PCR) analysis revealed that 16 of these 21 clones detected transcripts in total RNA from human tissues. The method is applicable to other chromosomal regions and is a powerful approach to the isolation of region-specific cDNA clones. 44 refs., 3 figs., 3 tabs.« less

  3. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility.

    PubMed

    Nuttle, Xander; Giannuzzi, Giuliana; Duyzend, Michael H; Schraiber, Joshua G; Narvaiza, Iñigo; Sudmant, Peter H; Penn, Osnat; Chiatante, Giorgia; Malig, Maika; Huddleston, John; Benner, Chris; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Stessman, Holly A F; Marchetto, Maria C N; Denman, Laura; Harshman, Lana; Baker, Carl; Raja, Archana; Penewit, Kelsi; Janke, Nicolette; Tang, W Joyce; Ventura, Mario; Banci, Lucia; Antonacci, Francesca; Akey, Joshua M; Amemiya, Chris T; Gage, Fred H; Reymond, Alexandre; Eichler, Evan E

    2016-08-11

    Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95-kilobase-pair segment containing BOLA2 duplicated across the critical region approximately 282 thousand years ago (ka), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carried one or more copies of the duplication, which nearly fixed early in the human lineage--a pattern unlikely to have arisen so rapidly in the absence of selection (P < 0.0097). We show that the duplication of BOLA2 led to a novel, human-specific in-frame fusion transcript and that BOLA2 copy number correlates with both RNA expression (r = 0.36) and protein level (r = 0.65), with the greatest expression difference between human and chimpanzee in experimentally derived stem cells. Analyses of 152 patients carrying a chromosome 16p11. rearrangement show that more than 96% of breakpoints occur within the H. sapiens-specific duplication. In summary, the duplicative transposition of BOLA2 at the root of the H. sapiens lineage about 282 ka simultaneously increased copy number of a gene associated with iron homeostasis and predisposed our species to recurrent rearrangements associated with disease.

  4. Partial hexasomy of chromosome 15.

    PubMed

    Huang, Bing; Bartley, James

    2003-09-01

    Marker chromosomes originating from chromosome 15, often referred to as inv dup(15), is the most common marker chromosome found in humans. The large marker 15 that contains the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) chromosome region is usually associated with an abnormal phenotype of moderate to severe mental retardation, seizures, poor motor coordination, behavioral problems, and mild dysmorphic features. We report here an infant boy with two copies of the large inv dup(15). A 10-day-old infant was found to have infantile spasms, microcephaly, hypotonia, and lethargy. Lymphocyte chromosome analysis revealed a 48,XY, +2mar karyotype. Fluorescence in situ hybridization with probes rRNA, D15Z4, D15S11, and GABRB3 demonstrated that both markers were chromosome 15 in origin and contained the Prader-Willi/Angelman syndrome chromosome region. Therefore, this patient is hexasomic for the PWS/AS region. The phenotype of this patient does not appear to be significantly more severe than patients with one copy of the large inv dup(15) at birth, however, follow-up evaluation of the patient at 21 months of age shows that this patient has frequent and severe seizure activity, severe bilateral hearing loss, and cortical blindness. Copyright 2003 Wiley-Liss, Inc.

  5. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haiming Chen; Lalioti, M.D.; Perrin, G.

    1996-07-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-binding cassette transporter gene family and is homologous to Drosophila w (and to 2 genes from other species) and tomore » a lesser extent to Drosophila brown (bw) and scarlet (st) genes that are all involved in the transport of eye pigment precursor molecules. A DNA polymorphism with 62% heterozygosity due to variation of a poly (T) region in the 3{prime} UTR of the hW has been identified and used for the incorporation of this gene to the genetic map of chromosome 21. The hW is located at 21q22.3 between DNA markers D21S212 and D21S49 in a P1 clone that also contains marker BCEI. The gene is expressed at various levels in many human tissues. The contributions of this gene to the Down syndrome phenotypes, to human eye color, and to the resulting phenotypes of null or missense mutations are presently unknown. 56 refs., 8 figs., 1 tab.« less

  6. [Increasing the resolution of chromosome analysis using pyrido[1,2alpha]benzimidazoles].

    PubMed

    Rachinskaia, O A; Popov, K V; Ryzvanovich, G A; Bol'sheva, N L; Begunov, R S; Iurkevich, O Iu; Zelenin, A V; Muravlenko, O V

    2012-10-01

    We studied the influence of three derivatives of pyrido[1,2alpha]benzimidazoles (PBIs), which have DNA-intercalating properties, on plant mitotic chromosome condensation, in order to increase the resolution of chromosome analysis. The efficiency of the influence of these agents was assessed using the median chromosome length on chromosome slides, as well as by the number and size of chromosome DAPI bands. We used the third chromosome of Linum grandiflorum Desf. in these experiments. The chromosome was identified on the slides using its DAPI band pattern and a molecular marker, viz., the 5S rDNA site, which is located in the proximal region of the long arm of the chromosome. The influence of the well-known 9-aminoacridine (9-AMA) DNA intercalator, which is widely used in karyotype studies of short-chromosome organisms, was used as a control in all of the experiments. It was found that the influence of each of the three PBIs in the study on the root meristem of L. grandiflorum resulted in an increase in the median length of the third chromosome, the linear centromeric DAPI band size, and the number ofintercalary DAPI bands. All three PBIs acted more efficiently than 9-AMA. The median chromosome length was increased by 15-40% and the number of intercalary bands increased by 1.5-3 times after PBI treatment, as compared to 9-AMA treatment. At the same time, 7-CF3-PBI, in a similar manner to 9-AMA, did not change the relative size of the centromeric DAPI band, while 7-NH2-PBI and 7-CF3-9-NH2-PBI gradually increased this parameter. It is concluded that these substances can be used as intercalating agents in cytogenetic studies in order to increase the resolution of chromosome analysis.

  7. A genetic linkage map of the long arm of human chromosome 22.

    PubMed

    Rouleau, G A; Haines, J L; Bazanowski, A; Colella-Crowley, A; Trofatter, J A; Wexler, N S; Conneally, P M; Gusella, J F

    1989-01-01

    We have used a recombinant phage library enriched for chromosome 22 sequences to isolate and characterize eight anonymous DNA probes detecting restriction fragment length polymorphisms on this autosome. These were used in conjunction with eight previously reported loci, including the genes BCR, IGLV, and PDGFB, four anonymous DNA markers, and the P1 blood group antigen, to construct a linkage map for chromosome 22. The linkage group is surprisingly large, spanning 97 cM on the long arm of the chromosome. There are no large gaps in the map; the largest intermarker interval is 14 cM. Unlike several other chromosomes, little overall difference was observed for sex-specific recombination rates on chromosome 22. The availability of a genetic map will facilitate investigation of chromosome 22 rearrangements in such disorders as cat eye syndrome and DiGeorge syndrome, deletions in acoustic neuroma and meningioma, and translocations in Ewing sarcoma. This defined set of linked markers will also permit testing chromosome 22 for the presence of particular disease genes by family studies and should immediately support more precise mapping and identification of flanking markers for NF2, the defective gene causing bilateral acoustic neurofibromatosis.

  8. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    PubMed

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  9. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells

    PubMed Central

    Shrestha, Roshan L.; Ahn, Grace S.; Staples, Mae I.; Sathyan, Kizhakke M.; Karpova, Tatiana S.; Foltz, Daniel R.; Basrai, Munira A.

    2017-01-01

    Chromosomal instability (CIN) is a hallmark of many cancers and a major contributor to tumorigenesis. Centromere and kinetochore associated proteins such as the evolutionarily conserved centromeric histone H3 variant CENP-A, associate with centromeric DNA for centromere function and chromosomal stability. Stringent regulation of cellular CENP-A levels prevents its mislocalization in yeast and flies to maintain genome stability. CENP-A overexpression and mislocalization are observed in several cancers and reported to be associated with increased invasiveness and poor prognosis. We examined whether there is a direct relationship between mislocalization of overexpressed CENP-A and CIN using HeLa and chromosomally stable diploid RPE1 cell lines as model systems. Our results show that mislocalization of overexpressed CENP-A to chromosome arms leads to chromosome congression defects, lagging chromosomes, micronuclei formation and a delay in mitotic exit. CENP-A overexpressing cells showed altered localization of centromere and kinetochore associated proteins such as CENP-C, CENP-T and Nuf2 leading to weakened native kinetochores as shown by reduced interkinetochore distance and CIN. Importantly, our results show that mislocalization of CENP-A to chromosome arms is one of the major contributors for CIN as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A overexpressing cells. In summary, our results establish that CENP-A overexpression and mislocalization result in a CIN phenotype in human cells. This study provides insights into how overexpression of CENP-A may contribute to CIN in cancers and underscore the importance of understanding the pathways that prevent CENP-A mislocalization for genome stability. PMID:28596481

  10. Gender-Specific Gene Expression in Post-Mortem Human Brain: Localization to Sex Chromosomes

    PubMed Central

    Vawter, Marquis P; Evans, Simon; Choudary, Prabhakara; Tomita, Hiroaki; Meador-Woodruff, Jim; Molnar, Margherita; Li, Jun; Lopez, Juan F; Myers, Rick; Cox, David; Watson, Stanley J; Akil, Huda; Jones, Edward G; Bunney, William E

    2011-01-01

    Gender differences in brain development and in the prevalence of neuropsychiatric disorders such as depression have been reported. Gender differences in human brain might be related to patterns of gene expression. Microarray technology is one useful method for investigation of gene expression in brain. We investigated gene expression, cell types, and regional expression patterns of differentially expressed sex chromosome genes in brain. We profiled gene expression in male and female dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum using the Affymetrix oligonucleotide microarray platform. Differentially expressed genes between males and females on the Y chromosome (DBY, SMCY, UTY, RPS4Y, and USP9Y) and X chromosome (XIST) were confirmed using real-time PCR measurements. In situ hybridization confirmed the differential expression of gender-specific genes and neuronal expression of XIST, RPS4Y, SMCY, and UTY in three brain regions examined. The XIST gene, which silences gene expression on regions of the X chromosome, is expressed in a subset of neurons. Since a subset of neurons express gender-specific genes, neural subpopulations may exhibit a subtle sexual dimorphism at the level of differences in gene regulation and function. The distinctive pattern of neuronal expression of XIST, RPS4Y, SMCY, and UTY and other sex chromosome genes in neuronal subpopulations may possibly contribute to gender differences in prevalence noted for some neuropsychiatric disorders. Studies of the protein expression of these sex- chromosome-linked genes in brain tissue are required to address the functional consequences of the observed gene expression differences. PMID:14583743

  11. Human papilloma virus status and chromosomal imbalances in primary cervical carcinomas and tumour cell lines.

    PubMed

    Hidalgo, A; Schewe, C; Petersen, S; Salcedo, M; Gariglio, P; Schlüns, K; Dietel, M; Petersen, I

    2000-03-01

    Human papilloma virus (HPV) infection is the crucial step in the initiation of cervical carcinomas. In addition, HPV18 has been implicated in tumour progression and adverse clinical outcome. We determined the HPV types in 12 primary cervical carcinomas and 12 cell lines and compared the findings with the comparative genetic hybridisation (CGH) pattern of chromosomal alterations. The most frequent alteration was the deletion at 3p14 followed by the loss of 2q34-q36 along with 3q gain. High risk HPV types were detected in all samples except one primary tumour. In contrast to the normal distribution, HPV18 was present in 75% of cases including all cell lines. The cell lines carried a higher number of genetic alterations and a different CGH pattern for several chromosomes than the primary tumours, despite microdissection. Purely HPV18 positive cases indicated a high incidence of imbalances at specific loci with peaks of the histogram coinciding with known HPV integration sites. The study suggests that HPV infection is associated with a recurrent pattern of chromosomal changes in cervical carcinomas and that the development and progression of these alterations is triggered by integration into the host genome.

  12. Chromosome painting in the manatee supports Afrotheria and Paenungulata

    PubMed Central

    Kellogg, Margaret E; Burkett, Sandra; Dennis, Thomas R; Stone, Gary; Gray, Brian A; McGuire, Peter M; Zori, Roberto T; Stanyon, Roscoe

    2007-01-01

    Background Sirenia (manatees, dugongs and Stellar's sea cow) have no evolutionary relationship with other marine mammals, despite similarities in adaptations and body shape. Recent phylogenomic results place Sirenia in Afrotheria and with elephants and rock hyraxes in Paenungulata. Sirenia and Hyracoidea are the two afrotherian orders as yet unstudied by comparative molecular cytogenetics. Here we report on the chromosome painting of the Florida manatee. Results The human autosomal and X chromosome paints delimited a total of 44 homologous segments in the manatee genome. The synteny of nine of the 22 human autosomal chromosomes (4, 5, 6, 9, 11, 14, 17, 18 and 20) and the X chromosome were found intact in the manatee. The syntenies of other human chromosomes were disrupted in the manatee genome into two to five segments. The hybridization pattern revealed that 20 (15 unique) associations of human chromosome segments are found in the manatee genome: 1/15, 1/19, 2/3 (twice), 3/7 (twice), 3/13, 3/21, 5/21, 7/16, 8/22, 10/12 (twice), 11/20, 12/22 (three times), 14/15, 16/19 and 18/19. Conclusion There are five derived chromosome traits that strongly link elephants with manatees in Tethytheria and give implicit support to Paenungulata: the associations 2/3, 3/13, 8/22, 18/19 and the loss of the ancestral eutherian 4/8 association. It would be useful to test these conclusions with chromosome painting in hyraxes. The manatee chromosome painting data confirm that the associations 1/19 and 5/21 phylogenetically link afrotherian species and show that Afrotheria is a natural clade. The association 10/12/22 is also ubiquitous in Afrotheria (clade I), present in Laurasiatheria (clade IV), only partially present in Xenarthra (10/12, clade II) and absent in Euarchontoglires (clade III). If Afrotheria is basal to eutherians, this association could be part of the ancestral eutherian karyotype. If afrotherians are not at the root of the eutherian tree, then the 10/12/22 association

  13. "Mitochondrial Eve", "Y Chromosome Adam", testosterone, and human evolution.

    PubMed

    Howard, James Michael

    2002-01-01

    I suggest primate evolution began as a consequence of increased testosterone in males which increased aggression and sexuality, therefore, reproduction and success. With time, negative effects of excessive testosterone reduced spermatogenesis and started a decline of the group. Approximately 30-40 million years ago, the gene DAZ (Deleted in AZoospermia) appeared on the Y chromosome, increased spermatogenesis, and rescued the early primates from extinction. (Note: DAZ is considered by some to specifically, positively affect spermatogenesis; others suggest it has no effect on spermatogenesis.) Hominid evolution continued with increasing testosterone. The advent of increased testosterone in females of Homo erectus (or Homo ergaster) increased the female-to-male body size ratio, and eventually produced another era of excessive testosterone. Excessive testosterone caused a reduction in population size (bottleneck) that produced the "Mitochondrial Eve" (ME) mechanism. (Only certain females continued during the bottleneck to transmit their mitochondrial DNA.) That is, the ME mechanism culminated, again, in excessive testosterone and reduced spermatogenesis in the hominid line. Approximately 50,000 to 200,000 years ago, a "doubling" of the DAZ gene occurred on the Y chromosome in hominid males which rescued the hominid line with increased spermatogenesis in certain males. This produced the "Y Chromosome Adam" event. The doubling of DAZ allowed further increases in testosterone in hominids that resulted in the increased size and development of the brain. Modern humans periodically fluctuate between the positive and negative consequences of increased levels of testosterone, currently identifiable as the secular trend, increased infections, and reduced spermatogenesis.

  14. Dependence of the structure and mechanics of metaphase chromosomes on oxidized cysteines.

    PubMed

    Eastland, Adrienne; Hornick, Jessica; Kawamura, Ryo; Nanavati, Dhaval; Marko, John F

    2016-09-01

    We have found that reagents that reduce oxidized cysteines lead to destabilization of metaphase chromosome folding, suggesting that chemically linked cysteine residues may play a structural role in mitotic chromosome organization, in accord with classical studies by Dounce et al. (J Theor Biol 42:275-285, 1973) and Sumner (J Cell Sci 70:177-188, 1984a). Human chromosomes isolated into buffer unfold when exposed to dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP). In micromanipulation experiments which allow us to examine the mechanics of individual metaphase chromosomes, we have found that the gel-like elastic stiffness of native metaphase chromosomes is dramatically suppressed by DTT and TCEP, even before the chromosomes become appreciably unfolded. We also report protein labeling experiments on human metaphase chromosomes which allow us to tag oxidized and reduction-sensitive cysteine residues. PAGE analysis using fluorescent labels shows a small number of labeled bands. Mass spectrometry analysis of similarly labeled proteins provides a list of candidates for proteins with oxidized cysteines involved in chromosome organization, notably including components of condensin I, cohesin, the nucleosome-interacting proteins RCC1 and RCC2, as well as the RNA/DNA-binding protein NONO/p54NRB.

  15. Phylogeography of human Y-chromosome haplogroup Q3-L275 from an academic/citizen science collaboration.

    PubMed

    Balanovsky, Oleg; Gurianov, Vladimir; Zaporozhchenko, Valery; Balaganskaya, Olga; Urasin, Vadim; Zhabagin, Maxat; Grugni, Viola; Canada, Rebekah; Al-Zahery, Nadia; Raveane, Alessandro; Wen, Shao-Qing; Yan, Shi; Wang, Xianpin; Zalloua, Pierre; Marafi, Abdullah; Koshel, Sergey; Semino, Ornella; Tyler-Smith, Chris; Balanovska, Elena

    2017-02-07

    The Y-chromosome haplogroup Q has three major branches: Q1, Q2, and Q3. Q1 is found in both Asia and the Americas where it accounts for about 90% of indigenous Native American Y-chromosomes; Q2 is found in North and Central Asia; but little is known about the third branch, Q3, also named Q1b-L275. Here, we combined the efforts of population geneticists and genetic genealogists to use the potential of full Y-chromosome sequencing for reconstructing haplogroup Q3 phylogeography and suggest possible linkages to events in population history. We analyzed 47 fully sequenced Y-chromosomes and reconstructed the haplogroup Q3 phylogenetic tree in detail. Haplogroup Q3-L275, derived from the oldest known split within Eurasian/American haplogroup Q, most likely occurred in West or Central Asia in the Upper Paleolithic period. During the Mesolithic and Neolithic epochs, Q3 remained a minor component of the West Asian Y-chromosome pool and gave rise to five branches (Q3a to Q3e), which spread across West, Central and parts of South Asia. Around 3-4 millennia ago (Bronze Age), the Q3a branch underwent a rapid expansion, splitting into seven branches, some of which entered Europe. One of these branches, Q3a1, was acquired by a population ancestral to Ashkenazi Jews and grew within this population during the 1st millennium AD, reaching up to 5% in present day Ashkenazi. This study dataset was generated by a massive Y-chromosome genotyping effort in the genetic genealogy community, and phylogeographic patterns were revealed by a collaboration of population geneticists and genetic genealogists. This positive experience of collaboration between academic and citizen science provides a model for further joint projects. Merging data and skills of academic and citizen science promises to combine, respectively, quality and quantity, generalization and specialization, and achieve a well-balanced and careful interpretation of the paternal-side history of human populations.

  16. Chromosomal localization and partial genomic structure of the human peroxisome proliferator activated receptor-gamma (hPPAR gamma) gene.

    PubMed

    Beamer, B A; Negri, C; Yen, C J; Gavrilova, O; Rumberger, J M; Durcan, M J; Yarnall, D P; Hawkins, A L; Griffin, C A; Burns, D K; Roth, J; Reitman, M; Shuldiner, A R

    1997-04-28

    We determined the chromosomal localization and partial genomic structure of the coding region of the human PPAR gamma gene (hPPAR gamma), a nuclear receptor important for adipocyte differentiation and function. Sequence analysis and long PCR of human genomic DNA with primers that span putative introns revealed that intron positions and sizes of hPPAR gamma are similar to those previously determined for the mouse PPAR gamma gene[13]. Fluorescent in situ hybridization localized hPPAR gamma to chromosome 3, band 3p25. Radiation hybrid mapping with two independent primer pairs was consistent with hPPAR gamma being within 1.5 Mb of marker D3S1263 on 3p25-p24.2. These sequences of the intron/exon junctions of the 6 coding exons shared by hPPAR gamma 1 and hPPAR gamma 2 will facilitate screening for possible mutations. Furthermore, D3S1263 is a suitable polymorphic marker for linkage analysis to evaluate PPAR gamma's potential contribution to genetic susceptibility to obesity, lipoatrophy, insulin resistance, and diabetes.

  17. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  18. Biodosimetry of ionizing radiation by selective painting of prematurely condensed chromosomes in human lymphocytes

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.

  19. Biodosimetry of ionizing radiation by selective painting of prematurely condensed chromosomes in human lymphocytes.

    PubMed

    Durante, M; George, K; Yang, T C

    1997-11-01

    Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.

  20. Isolation, expression, and chromosomal localization of the human mitochondrial capsule selenoprotein gene (MCSP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aho, Hanne; Schwemmer, M.; Tessmann, D.

    1996-03-01

    The mitochondrial capsule selenoprotein (MCS) (HGMW-approved symbol MCSP) is one of three proteins that are important for the maintenance and stabilization of the crescent structure of the sperm mitochondria. We describe here the isolation of a cDNA, the exon-intron organization, the expression, and the chromosomal localization of the human MCS gene. Nucleotide sequence analysis of the human and mouse MCS cDNAs reveals that the 5{prime}- and 3{prime}-untranslated sequences are more conserved (71%) than the coding sequences (59%). The open reading frame encodes a 116-amino-acid protein and lacks the UGA codons, which have been reported to encode the selenocysteines in themore » N-terminal of the deduced mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein (39%). The most striking homology lies in the dicysteine motifs. Northern and Southern zooblot analyses reveal that the MCS gene in human, baboon, and bovine is more conserved than its counterparts in mouse and rat. The single intron in the human MCS gene is approximately 6 kb and interrupts the 5{prime}-untranslated region at a position equivalent to that in the mouse and rat genes. Northern blot and in situ hybridization experiments demonstrate that the expression of the human MCS gene is restricted to haploid spermatids. The human gene was assigned to q21 of chromosome 1. 30 refs., 9 figs.« less

  1. Testing for Archaic Hominin Admixture on the X Chromosome: Model Likelihoods for the Modern Human RRM2P4 Region From Summaries of Genealogical Topology Under the Structured Coalescent

    PubMed Central

    Cox, Murray P.; Mendez, Fernando L.; Karafet, Tatiana M.; Pilkington, Maya Metni; Kingan, Sarah B.; Destro-Bisol, Giovanni; Strassmann, Beverly I.; Hammer, Michael F.

    2008-01-01

    A 2.4-kb stretch within the RRM2P4 region of the X chromosome, previously sequenced in a sample of 41 globally distributed humans, displayed both an ancient time to the most recent common ancestor (e.g., a TMRCA of ∼2 million years) and a basal clade composed entirely of Asian sequences. This pattern was interpreted to reflect a history of introgressive hybridization from archaic hominins (most likely Asian Homo erectus) into the anatomically modern human genome. Here, we address this hypothesis by resequencing the 2.4-kb RRM2P4 region in 131 African and 122 non-African individuals and by extending the length of sequence in a window of 16.5 kb encompassing the RRM2P4 pseudogene in a subset of 90 individuals. We find that both the ancient TMRCA and the skew in non-African representation in one of the basal clades are essentially limited to the central 2.4-kb region. We define a new summary statistic called the minimum clade proportion (pmc), which quantifies the proportion of individuals from a specified geographic region in each of the two basal clades of a binary gene tree, and then employ coalescent simulations to assess the likelihood of the observed central RRM2P4 genealogy under two alternative views of human evolutionary history: recent African replacement (RAR) and archaic admixture (AA). A molecular-clock-based TMRCA estimate of 2.33 million years is a statistical outlier under the RAR model; however, the large variance associated with this estimate makes it difficult to distinguish the predictions of the human origins models tested here. The pmc summary statistic, which has improved power with larger samples of chromosomes, yields values that are significantly unlikely under the RAR model and fit expectations better under a range of archaic admixture scenarios. PMID:18202385

  2. Integration sites of Epstein-Barr virus genome on chromosomes of human lymphoblastoid cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuu, K.D.; Chen, Y.J.; Wang-Wuu, S.

    1994-09-01

    Epstein-Barr virus (EBV) is the pathogen of infectious mononucleosis. The viral genome is present in more than 95% of the African cases of Burkitt lymphoma and it is usually maintained in episomal form in the tumor cells. Viral integration has been described only for Nanalwa which is a Burkitt lymphoma cell line lacking episomes. In order to examine the role of EBV in the immortalization of human Blymphocytes, we investigated whether the EBV integration into the human genome is essential. If the integration does occur, we would like to know whether the integration is randomly distributed or whether the viralmore » DNA integrates preferentially at certain sites. Fourteen in vitro immortalized human lymphoblastoid cell lines (LCLs) were examined by fluorescence in situ hybridization (FISH) with a biotinylated EBV BamHI w DNA fragment as probe. The episomal form of EBV DNA was found in all cells of these cell lines, while only about 65% of the cells have the integrated viral DNA. This might suggest that integration is not a pre-requisite for cell immortalization. Although all chromosomes, except Y, have been found with integrated viral genome, chromsomes 1 and 5 are the most frequent EBV DNA carrier (p<0.05). Nine chromosome bands, namely, 1p31, 1q31, 2q32, 3q13, 3q26, 5q14, 6q24, 7q31 and 12q21, are preferential targets for EBV integration (p<0.001). Eighty percent of the total 938 EBV hybridization signals were found to be at G-band-positive area. This suggests that the mechanism of EBV integration might be different from that of the retroviruses, which specifically integrate to G-band-negative areas. Thus, we conclude that the integration of EBV to host genome is non-random and it may have something to do with the structure of chromosome and DNA sequences.« less

  3. DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states.

    PubMed

    White, Eric J; Emanuelsson, Olof; Scalzo, David; Royce, Thomas; Kosak, Steven; Oakeley, Edward J; Weissman, Sherman; Gerstein, Mark; Groudine, Mark; Snyder, Michael; Schübeler, Dirk

    2004-12-21

    Duplication of the genome during the S phase of the cell cycle does not occur simultaneously; rather, different sequences are replicated at different times. The replication timing of specific sequences can change during development; however, the determinants of this dynamic process are poorly understood. To gain insights into the contribution of developmental state, genomic sequence, and transcriptional activity to replication timing, we investigated the timing of DNA replication at high resolution along an entire human chromosome (chromosome 22) in two different cell types. The pattern of replication timing was correlated with respect to annotated genes, gene expression, novel transcribed regions of unknown function, sequence composition, and cytological features. We observed that chromosome 22 contains regions of early- and late-replicating domains of 100 kb to 2 Mb, many (but not all) of which are associated with previously described chromosomal bands. In both cell types, expressed sequences are replicated earlier than nontranscribed regions. However, several highly transcribed regions replicate late. Overall, the DNA replication-timing profiles of the two different cell types are remarkably similar, with only nine regions of difference observed. In one case, this difference reflects the differential expression of an annotated gene that resides in this region. Novel transcribed regions with low coding potential exhibit a strong propensity for early DNA replication. Although the cellular function of such transcripts is poorly understood, our results suggest that their activity is linked to the replication-timing program.

  4. Karyotyping human chromosomes by optical and x-ray ptychography methods

    DOE PAGES

    Shemilt, Laura; Verbanis, Ephanielle; Schwenke, Joerg; ...

    2015-02-01

    Sorting and identifying chromosomes, a process known as karyotyping, is widely used to detect changes in chromosome shapes and gene positions. In a karyotype the chromosomes are identified by their size and therefore this process can be performed by measuring macroscopic structural variables. Chromosomes contain a specific number of basepairs that linearly correlate with their size; therefore, it is possible to perform a karyotype on chromosomes using their mass as an identifying factor. Here, we obtain the first images, to our knowledge, of chromosomes using the novel imaging method of ptychography. We can use the images to measure the massmore » of chromosomes and perform a partial karyotype from the results. Lastly, we also obtain high spatial resolution using this technique with synchrotron source x-rays.« less

  5. Karyotyping human chromosomes by optical and x-ray ptychography methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemilt, Laura; Verbanis, Ephanielle; Schwenke, Joerg

    Sorting and identifying chromosomes, a process known as karyotyping, is widely used to detect changes in chromosome shapes and gene positions. In a karyotype the chromosomes are identified by their size and therefore this process can be performed by measuring macroscopic structural variables. Chromosomes contain a specific number of basepairs that linearly correlate with their size; therefore, it is possible to perform a karyotype on chromosomes using their mass as an identifying factor. Here, we obtain the first images, to our knowledge, of chromosomes using the novel imaging method of ptychography. We can use the images to measure the massmore » of chromosomes and perform a partial karyotype from the results. Lastly, we also obtain high spatial resolution using this technique with synchrotron source x-rays.« less

  6. Assignment of the gene encoding the 5-HT{sub 1E} serotonin receptor (S31) (locus HTR1E) to human chromosome 6q14-q15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, F.O.; Tasken, K.; Solberg, R.

    1994-08-01

    The human gene for the 5-HT{sub 1E} serotonin receptor was recently cloned, but no chromosomal assignment has yet been given to this gene (locus HTR1E). In this work, we demonstrate by two independent polymerase chain reactions on a panel of human-hamster somatic cell hybrid genomic DNA that the 5-HT{sub 1E} serotonin receptor gene is localized on human chromosome 6. Furthermore, by means of in situ hybridization to human metaphase chromosomes, using the cloned 5-HT{sub 1E} receptor gene (phage clone {lambda}-S31) as a probe, we demonstrate that this gene is localized to the q14-q15 region on chromosome 6. Screening of genomicmore » DNA from 15 unrelated Caucasian individuals, using as a probe the open reading frame of the cloned 5-HT{sub 1E} receptor gene, did not reveal any restriction fragment length polymorphisms with the enzymes BamHI, BanII, BglII, EcoRI, HincII, HindIII, HinfI, MspI, PstI, and PvuII. Since the 5-HT{sub 1E} receptor is found mainly in the cerebral cortex and abnormal function of the serotonergic system has been implicated in a variety of neurologic and psychiatric diseases, the precise chromosomal assignment of the 5-HT{sub 1E} receptor gene is the crucial first step toward the evaluation of this locus as a candidate for mutations in such syndromes. 28 refs., 2 figs., 2 tabs.« less

  7. Evolution of X-degenerate Y chromosome genes in greater apes: conservation of gene content in human and gorilla, but not chimpanzee.

    PubMed

    Goto, Hiroki; Peng, Lei; Makova, Kateryna D

    2009-02-01

    Compared with the X chromosome, the mammalian Y chromosome is considerably diminished in size and has lost most of its ancestral genes during evolution. Interestingly, for the X-degenerate region on the Y chromosome, human has retained all 16 genes, while chimpanzee has lost 4 of the 16 genes since the divergence of the two species. To uncover the evolutionary forces governing ape Y chromosome degeneration, we determined the complete sequences of the coding exons and splice sites for 16 gorilla Y chromosome genes of the X-degenerate region. We discovered that all studied reading frames and splice sites were intact, and thus, this genomic region experienced no gene loss in the gorilla lineage. Higher nucleotide divergence was observed in the chimpanzee than the human lineage, particularly for genes with disruptive mutations, suggesting a lack of functional constraints for these genes in chimpanzee. Surprisingly, our results indicate that the human and gorilla orthologues of the genes disrupted in chimpanzee evolve under relaxed functional constraints and might not be essential. Taking mating patterns and effective population sizes of ape species into account, we conclude that genetic hitchhiking associated with positive selection due to sperm competition might explain the rapid decline in the Y chromosome gene number in chimpanzee. As we found no evidence of positive selection acting on the X-degenerate genes, such selection likely targets other genes on the chimpanzee Y chromosome.

  8. Chromosome Segregation Is Biased by Kinetochore Size.

    PubMed

    Drpic, Danica; Almeida, Ana C; Aguiar, Paulo; Renda, Fioranna; Damas, Joana; Lewin, Harris A; Larkin, Denis M; Khodjakov, Alexey; Maiato, Helder

    2018-05-07

    Chromosome missegregation during mitosis or meiosis is a hallmark of cancer and the main cause of prenatal death in humans. The gain or loss of specific chromosomes is thought to be random, with cell viability being essentially determined by selection. Several established pathways including centrosome amplification, sister-chromatid cohesion defects, or a compromised spindle assembly checkpoint can lead to chromosome missegregation. However, how specific intrinsic features of the kinetochore-the critical chromosomal interface with spindle microtubules-impact chromosome segregation remains poorly understood. Here we used the unique cytological attributes of female Indian muntjac, the mammal with the lowest known chromosome number (2n = 6), to characterize and track individual chromosomes with distinct kinetochore size throughout mitosis. We show that centromere and kinetochore functional layers scale proportionally with centromere size. Measurement of intra-kinetochore distances, serial-section electron microscopy, and RNAi against key kinetochore proteins confirmed a standard structural and functional organization of the Indian muntjac kinetochores and revealed that microtubule binding capacity scales with kinetochore size. Surprisingly, we found that chromosome segregation in this species is not random. Chromosomes with larger kinetochores bi-oriented more efficiently and showed a 2-fold bias to congress to the equator in a motor-independent manner. Despite robust correction mechanisms during unperturbed mitosis, chromosomes with larger kinetochores were also strongly biased to establish erroneous merotelic attachments and missegregate during anaphase. This bias was impervious to the experimental attenuation of polar ejection forces on chromosome arms by RNAi against the chromokinesin Kif4a. Thus, kinetochore size is an important determinant of chromosome segregation fidelity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Human retina-specific amine oxidase (RAO): cDNA cloning, tissue expression, and chromosomal mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, Yutaka; Kubota, Ryo; Wang, Yimin

    In search of candidate genes for hereditary retinal disease, we have employed a subtractive and differential cDNA cloning strategy and isolated a novel retina-specific cDNA. Nucleotide sequence analysis revealed an open reading frame of 2187 bp, which encodes a 729-amino-acid protein with a calculated molecular mass of 80,644 Da. The putative protein contained a conserved domain of copper amine oxidase, which is found in various species from bacteria to mammals. It showed the highest homology to bovine serum amine oxidase, which is believed to control the level of serum biogenic amines. Northern blot analysis of human adult and fetal tissuesmore » revealed that the protein is expressed abundantly and specifically in retina as a 2.7-kb transcript. Thus, we considered this protein a human retina-specific amine oxidase (RAO). The RAO gene (AOC2) was mapped by fluorescence in situ hybridization to human chromosome 17q21. We propose that AOC2 may be a candidate gene for hereditary ocular diseases. 38 refs., 4 figs.« less

  10. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    PubMed Central

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  11. Capturing Chromosome Conformation

    NASA Astrophysics Data System (ADS)

    Dekker, Job; Rippe, Karsten; Dekker, Martijn; Kleckner, Nancy

    2002-02-01

    We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.

  12. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, F. A.

    2011-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, Ti-48-ions with energies ranging from 240 to 1000 MeV/u, or to Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Si beams in this study ranged from 48 to 158 keV/ m, the LET of the Ti ions ranged from 107 to 240 keV/micron, and the LET of the Fe-ions ranged from 145 to 440 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to gamma-rays. The estimates of RBEmax values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, 21.4+/-1.7 to 28.3+/-2.4 for Ti ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBEmax value for Fe ions was obtained with the 600 MeV/u beam, the highest RBEmax value for Ti ions was obtained 1000 MeV/u beam, and the highest RBEmax value for Si ions was obtained with the 170 MeV/u beam. For Si and Fe ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreasing with further increase in LET. Additional studies for low doses Si-28-ions down to 0.02 Gy will be discussed.

  13. The Geographic Distribution of Human Y Chromosome Variation

    PubMed Central

    Hammer, M. F.; Spurdle, A. B.; Karafet, T.; Bonner, M. R.; Wood, E. T.; Novelletto, A.; Malaspina, P.; Mitchell, R. J.; Horai, S.; Jenkins, T.; Zegura, S. L.

    1997-01-01

    We examined variation on the nonrecombining portion of the human Y chromosome to investigate human evolution during the last 200,000 years. The Y-specific polymorphic sites included the Y Alu insertional polymorphism or ``YAP'' element (DYS287), the poly(A) tail associated with the YAP element, three point mutations in close association with the YAP insertion site, an A-G polymorphic transition (DYS271), and a tetranucleotide microsatellite (DYS19). Global variation at the five bi-allelic sites (DYS271, DYS287, and the three point mutations) gave rise to five ``YAP haplotypes'' in 60 populations from Africa, Europe, Asia, Australasia, and the New World (n = 1500). Combining the multi-allelic variation at the microsatellite loci (poly(A) tail and DYS19) with the YAP haplotypes resulted in a total of 27 ``combination haplotypes''. All five of the YAP haplotypes and 21 of the 27 combination haplotypes were found in African populations, which had greater haplotype diversity than did populations from other geographical locations. Only subsets of the five YAP haplotypes were found outside of Africa. Patterns of observed variation were compatible with a variety of hypotheses, including multiple human migrations and range expansions. PMID:9055088

  14. Anti-proliferative effects, cell cycle G2/M phase arrest and blocking of chromosome segregation by probimane and MST-16 in human tumor cell lines

    PubMed Central

    Lu, Da Yong; Huang, Min; Xu, Cheng Hui; Yang, Wei Yi; Hu, Chao Xin; Lin, Li Ping; Tong, Lin Jiang; Li, Mei Hong; Lu, Wei; Zhang, Xiong Wen; Ding, Jian

    2005-01-01

    Background Anticancer bisdioxopiperazines, including ICRF-154, razoxane (Raz, ICRF-159) and ICRF-193, are a family of anticancer agents developed in the UK, especially targeting metastases of neoplasms. Two other bisdioxopiperazine derivatives, probimane (Pro) and MST-16, were synthesized at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. Cytotoxic activities and mechanisms of Raz (+)-steroisomer (ICRF-187, dexrazoxane), Pro and MST-16 against tumor cells were evaluated by MTT colorimetry, flow cytometry and karyotyping. Results Pro was cytotoxic to human tumor cell lines in vitro (IC50<50 μM for 48 h). Four human tumor cell lines (SCG-7901, K562, A549 and HL60) were susceptible to Pro at low inhibitory concentrations (IC50 values < 10 μM for 48 h). Although the IC50 against HeLa cell line of vincristine (VCR, 4.56 μM), doxorubicin (Dox, 1.12 μM) and 5-fluoruouracil (5-Fu, 0.232 μM) are lower than Pro (5.12 μM), ICRF-187 (129 μM) and MST-16 (26.4 μM), VCR, Dox and 5-Fu shows a low dose-related – high cytotoxic activity. Time-response studies showed that the cytotoxic effects of Pro are increased for 3 days in human tumor cells, whereas VCR, Dox and 5-Fu showed decreased cytotoxic action after 24 h. Cell cycle G2/M phase arrest and chromosome segregation blocking by Pro and MST-16 were noted. Although there was similar effects of Pro and MST-16 on chromosome segregation blocking action and cell cycle G2/M phase arrest at 1- 4 μM, cytotoxicity of Pro against tumor cells was higher than that of MST-16 in vitro by a factor of 3- 10 folds. Our data show that Pro may be more effective against lung cancer and leukemia while ICRF-187 and MST-16 shows similar IC50 values only against leukemia. Conclusion It suggests that Pro has a wider spectrum of cytotoxic effects against human tumor cells than other bisdioxopiperazines, especially against solid tumors, and with a single cytotoxic pathway of Pro and MST-16 affecting

  15. Nanodissection of human chromosomes and ultraprecise eye surgery with nanojoule near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Krauss, Oliver; Fritzsche, Wolfgang

    2002-04-01

    Nanojoule and sub-nanojoule 80 MHz femtosecond laser pulses at 750-850 nm of a compact titanium:sapphire laser have been used for highly precise nanoprocessing of DNA as well as of intracellular and intratissue compartments. In particular, a mean power between 15 mW and 100 mW, 170 fs pulse width, submicron distance of illumination spots and microsecond beam dwell times on spots have been used for multiphoton- mediated nanoprocessing of human chromosomes, brain and ocular intrastromal tissue. By focusing the laser beam with high numerical aperture focusing optics of the laser scan system femt-O-cut and of modified multiphoton scanning microscopes to diffraction-limited spots and TW/cm2 light intensities, precise submicron holes and cuts have been processed by single spot exposure and line scans. A minimum FWHM cut size below 70 nm during the partial dissection of the human chromosome 3 was achieved. Complete chromosome dissection could be performed with FWHM cut sizes below 200 nm. Intracellular chromosome dissection was possible. Intratissue processing in depths of 50 - 100micrometers and deeper with a precision of about 1micrometers including cuts through a nuclei of a single intratissue cell without destructive photo-disruption effects to surrounding tissue layers have been demonstrated in brain and eye tissues. The femt-O-cut system includes a diagnostic system for optical tomography with submicron resolution based on multiphoton- excited autofluorescence imaging (MAI) and second harmonic generation. This system was used to localize the intracellular and intratissue targets and to control the effects of nanoprocessing. These studies show, that in contrast to conventional approaches of material processing with amplified femtosecond laser systems and (mu) J pulse energies, nanoprocessing of materials including biotissues can be performed with nJ and sub-nJ high repetition femtosecond laser pulses of turn-key compact lasers without collateral damage. Potential

  16. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding.

    PubMed

    George, K; Willingham, V; Wu, H; Gridley, D; Nelson, G; Cucinotta, F A

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  17. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  18. Wolfram syndrome maps to distal human chromosome 4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polymeropoulos, M.H.; Swift, R.; Swift, M.

    Wolfram syndrome (MIM 222300) is an autosomal recessive disorder defined by the occurrence of diabetes mellitus and progressive bilateral optic atrophy. Wolfram syndrome homozygotes develop widespread nervous system abnormalities; in particular, they exhibit severe behavioral difficulties that often lead to suicide attempts or psychiatric hospitalizations. The Wolfram syndrome gene also predisposes heterozygous carriers to psychiatric disorders. Since these heterozygotes are common in the general population, the Wolfram syndrome gene may contribute significantly to the overall burden of psychiatric illness. Based on a linkage analysis of 11 families segregating for this syndrome, using microsatellite repeat polymorphisms throughout the human genome, wemore » found the Wolfram syndrome gene to be linked to markers on the short arm of human chromosome 4, with Zmax=6.46 at {theta}=0.02 for marker D4S431.« less

  19. Twenty-seven nonoverlapping zinc finger cDNAs from human T cells map to nine different chromosomes with apparent clustering.

    PubMed Central

    Huebner, K; Druck, T; Croce, C M; Thiesen, H J

    1991-01-01

    cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells. Images Figure 4 Figure 5 Figure 2 Figure 3 PMID:2014798

  20. Cloning of human cDNAs for Apg-1 and Apg-2, members of the Hsp110 family, and chromosomal assignment of their genes.

    PubMed

    Nonoguchi, K; Itoh, K; Xue, J H; Tokuchi, H; Nishiyama, H; Kaneko, Y; Tatsumi, K; Okuno, H; Tomiwa, K; Fujita, J

    1999-09-03

    In mice, the Hsp110/SSE family is composed of the heat shock protein (Hsp)110/105, Apg-1 and Apg-2. In humans, however, only the Hsp110/105 homolog has been identified as a member, and two cDNAs, Hsp70RY and HS24/p52, potentially encoding proteins structurally similar to, but smaller than, mouse Apg-2 have been reported. To clarify the membership of Hsp110 family in humans, we isolated Apg-1 and Apg-2 cDNAs from a human testis cDNA library. The human Apg-1 was 100% and 91.8% identical in length and amino acid (aa) sequence, respectively, to mouse Apg-1. Human Apg-2 was one aa shorter than and 95.5% identical in sequence to mouse Apg-2. In ECV304, human endothelial cells Apg-1 but not Apg-2 transcripts were induced in 2 h by a temperature shift from 32 degrees C to 39 degrees C. As found in mice, the response was stronger than that to a 37-42 degrees C shift. The human Apg-1 and Apg-2 genes were mapped to the chromosomal loci 4q28 and 5q23.3-q31.1, respectively, by fluorescence in-situ hybridization. We isolated cDNA and genomic clones encompassing the region critical for the difference between Apg-2 and HS24/p52. Although the primer sets used were derived from the sequences common to both cDNAs, all cDNA and genomic clones corresponded to Apg-2. Using a similar approach, the relationship between Apg-2 and Hsp70RY was assessed, and no clone corresponding to Hsp70RY was obtained. These results demonstrated that the Hsp110 family consists of at least three members, Apg-1, Apg-2 and Hsp110 in humans as well as in mice. The significance of HS24/p52 and Hsp70RY cDNAs previously reported remains to be determined.

  1. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21.

    PubMed

    Patil, N; Berno, A J; Hinds, D A; Barrett, W A; Doshi, J M; Hacker, C R; Kautzer, C R; Lee, D H; Marjoribanks, C; McDonough, D P; Nguyen, B T; Norris, M C; Sheehan, J B; Shen, N; Stern, D; Stokowski, R P; Thomas, D J; Trulson, M O; Vyas, K R; Frazer, K A; Fodor, S P; Cox, D R

    2001-11-23

    Global patterns of human DNA sequence variation (haplotypes) defined by common single nucleotide polymorphisms (SNPs) have important implications for identifying disease associations and human traits. We have used high-density oligonucleotide arrays, in combination with somatic cell genetics, to identify a large fraction of all common human chromosome 21 SNPs and to directly observe the haplotype structure defined by these SNPs. This structure reveals blocks of limited haplotype diversity in which more than 80% of a global human sample can typically be characterized by only three common haplotypes.

  2. Chromosome evolution in kangaroos (Marsupialia: Macropodidae): cross species chromosome painting between the tammar wallaby and rock wallaby spp. with the 2n = 22 ancestral macropodid karyotype.

    PubMed

    O'Neill, R J; Eldridge, M D; Toder, R; Ferguson-Smith, M A; O'Brien, P C; Graves, J A

    1999-06-01

    Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.

  3. Comparison of spontaneous and idoxuridine-induced micronuclei by chromosome painting.

    PubMed

    Fauth, E; Zankl, H

    1999-04-06

    Fluorescence in situ hybridisation (FISH) technique with chromosome specific library (CSL) DNA probes for all human chromosomes were used to study about 9000 micronuclei (MN) in normal and idoxuridine (IUdR)-treated lymphocyte cultures of female and male donors. In addition, MN rates and structural chromosome aberrations were scored in Giemsa-stained chromosome spreads of these cultures. IUdR treatment (40 microg/ml) induced on the average a 12-fold increase of the MN rate. Metaphase analysis revealed no distinct increase of chromosome breaks but a preferential decondensation at chromosome 9q12 (28-79%) and to a lower extend at 1q12 (8-21%). Application of FISH technique with CSL probes to one male and one female untreated proband showed that all human chromosomes except chromosome 12 (and to a striking high frequency chromosomes 9, X and Y) occurred in spontaneous MN. In cultures containing IUdR, the chromosomal spectrum found in MN was reduced to 10 chromosomes in the male and 13 in the female proband. Eight chromosomes (2, 6, 12, 13, 14, 15, 17 and 18) did not occur in MN of both probands. On the contrary chromosomes 1 and especially 9 were found much more frequently in the MN of IUdR-treated cultures than in MN of control cultures. DAPI-staining revealed heterochromatin signals in most of the IUdR-induced MN. In an additional study, spontaneous and IUdR-induced MN were investigated in lymphocytes of another female donor using CSL probes only for chromosomes 1, 6, 9, 15, 16 and X. The results confirmed the previous finding that chromosomes 1 and 9 occur very often in MN after IUdR-treatment. The results indicate that decondensation of heterochromatic regions on chromosomes 1 and 9 caused by IUdR treatment strongly correlates with MN formation by these chromosomes. Copyright 1999 Elsevier Science B.V.

  4. The Role of Xist in X-Chromosome Dosage Compensation.

    PubMed

    Sahakyan, Anna; Yang, Yihao; Plath, Kathrin

    2018-06-14

    In each somatic cell of a female mammal one X chromosome is transcriptionally silenced via X-chromosome inactivation (XCI), initiating early in development. Although XCI events are conserved in mouse and human postimplantation development, regulation of X-chromosome dosage in preimplantation development occurs differently. In preimplantation development, mouse embryos undergo imprinted form of XCI, yet humans lack imprinted XCI and instead regulate gene expression of both X chromosomes by dampening transcription. The long non-coding RNA Xist/XIST is expressed in mouse and human preimplantation and postimplantation development to orchestrate XCI, but its role in dampening is unclear. In this review, we discuss recent advances in our understanding of the role of Xist in X chromosome dosage compensation in mouse and human. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Function of the Sex Chromosomes in Mammalian Fertility

    PubMed Central

    Heard, Edith; Turner, James

    2011-01-01

    The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities. PMID:21730045

  6. Identification and genetic mapping of a homeobox gene to the 4p16. 1 region of human chromosome 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, H.S.; Padanilam, B.J.; Solursh, M.

    1992-12-01

    A human craniofacial cDNA library was screened with a degenerate oligonucleotide probe based on the conserved third helix of homeobox genes. From this screening, we identified a homeobox gene, H6, which shared only 57-65% amino acid identity to previously reported homeodomains. H6 was physically mapped to the 4P16.1 region by using somatic cell hybrids containing specific deletions of human chromosome 4. Linkage data from a single-stranded conformational polymorphism derived from the 3[prime] untranslated region of the H6 cDNA placed this homeobox gene more than 20 centimorgans proximal of the previously mapped HOX7 gene on chromosome 4. Identity comparisons of themore » H6 Homeodomain with previously reported homeodomains reveal the highest identities to be with the Nk class of homeobox genes in Drosophila melanogaster. 53 refs., 5 figs., 2 tabs.« less

  7. Effect of mobile phone station on micronucleus frequency and chromosomal aberrations in human blood cells.

    PubMed

    Yildirim, M S; Yildirim, A; Zamani, A G; Okudan, N

    2010-01-01

    The use of mobile telephones has rapidly increased worldwide as well as the number of mobile phone base stations that lead to rise low level radiofrequency emissions which may in turn have possible harm for human health. The national radiation protection board has published the known effects of radio waves exposure on humans living close to mobile phone base stations. However, several studies have claimed that the base station has detrimental effects on different tissues. In this study, we aimed to evaluate the effects of mobile phone base stations on the micronucleus (MN) frequency and chromosomal aberrations on blood in people who were living around mobile phone base stations and healthy controls. Frequency of MN and chromosomal aberrations in study and control groups was 8.96 +/- 3.51 and 6.97 +/- 1.52 (p: 0.16); 0.36 +/- 0.31 and 0.75 +/- 0.61 (p: 0.07), respectively. Our results show that there was not a significant difference of MN frequency and chromosomal aberrations between the two study groups. The results claim that cellular phones and their base stations do not produce important carcinogenic changes.

  8. Human Y Chromosome Haplogroup N: A Non-trivial Time-Resolved Phylogeography that Cuts across Language Families.

    PubMed

    Ilumäe, Anne-Mai; Reidla, Maere; Chukhryaeva, Marina; Järve, Mari; Post, Helen; Karmin, Monika; Saag, Lauri; Agdzhoyan, Anastasiya; Kushniarevich, Alena; Litvinov, Sergey; Ekomasova, Natalya; Tambets, Kristiina; Metspalu, Ene; Khusainova, Rita; Yunusbayev, Bayazit; Khusnutdinova, Elza K; Osipova, Ludmila P; Fedorova, Sardana; Utevska, Olga; Koshel, Sergey; Balanovska, Elena; Behar, Doron M; Balanovsky, Oleg; Kivisild, Toomas; Underhill, Peter A; Villems, Richard; Rootsi, Siiri

    2016-07-07

    The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET = 200 keV/μm, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies.

  10. Mitotic chromosome condensation in vertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in themore » localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  11. Investigating chromosome damage and gammaH2AX response in human lymphocytes and lymphocyte subsets as potential biomarkers of radiation sensitivity

    NASA Astrophysics Data System (ADS)

    Beaton, Lindsay A.

    This thesis examines in vitro irradiated blood samples from prostate cancer patients exhibiting late normal tissue damage after receiving radiotherapy, for lymphocyte response. Chromosomal aberrations, translocations and proliferation rate are measured, as well as gammaH2AX response in lymphocytes and lymphocyte subsets. The goal of this thesis is to determine whether the lymphocyte response to in vitro radiation could be used as a marker for radiosensitivity. Patients were selected from a randomized clinical trial evaluating the optimal timing of Dose Escalated Radiation and short course Androgen Deprivation Therapy. Of 438 patients, 3% developed Grade 3 late radiation proctitis and were considered to be radiosensitive. Blood was drawn from 10 of these patients along with 20 matched samples from patients with grade 0 proctitis. The samples were irradiated and were analyzed for dicentric chromosomes, excess fragments and proliferation rates (at 6 Gy), translocations, stable and unstable damage (at 4 Gy), and dose response (up to 10 Gy), along with time response after 2 Gy (0 -- 24 h). Chromosome aberrations, excess fragments per cell, translocations per cell and proliferation rates were analyzed by brightfield and fluorescent microscopy, while the gammaH2AX response in lymphocytes and lymphocyte subsets was analyzed by flow cytometry. Both groups were statistically similar for all endpoints at 0 Gy. At 6 Gy, there were statistically significant differences between the radiosensitive and control cohorts for three endpoints; the mean number of dicentric chromosomes per cell, the mean number of excess fragments per cell and the proportion of cells in second metaphase. At 4 Gy, there were statistically significant differences between the two cohorts for three endpoints; the mean number of translocations per cell, the mean number of dicentric chromosomes per cell and the mean number of deletions per cell. There were no significant differences between the gammaH2AX

  12. Familial Isolated Clubfoot Is Associated with Recurrent Chromosome 17q23.1q23.2 Microduplications Containing TBX4

    PubMed Central

    Alvarado, David M.; Aferol, Hyuliya; McCall, Kevin; Huang, Jason B.; Techy, Matthew; Buchan, Jillian; Cady, Janet; Gonzales, Patrick R.; Dobbs, Matthew B.; Gurnett, Christina A.

    2010-01-01

    Clubfoot is a common musculoskeletal birth defect for which few causative genes have been identified. To identify the genes responsible for isolated clubfoot, we screened for genomic copy-number variants with the Affymetrix Genome-wide Human SNP Array 6.0. A recurrent chromosome 17q23.1q23.2 microduplication was identified in 3 of 66 probands with familial isolated clubfoot. The chromosome 17q23.1q23.2 microduplication segregated with autosomal-dominant clubfoot in all three families but with reduced penetrance. Mild short stature was common and one female had developmental hip dysplasia. Subtle skeletal abnormalities consisted of broad and shortened metatarsals and calcanei, small distal tibial epiphyses, and thickened ischia. Several skeletal features were opposite to those described in the reciprocal chromosome 17q23.1q23.2 microdeletion syndrome associated with developmental delay and cardiac and limb abnormalities. Of note, during our study, we also identified a microdeletion at the locus in a sibling pair with isolated clubfoot. The chromosome 17q23.1q23.2 region contains the T-box transcription factor TBX4, a likely target of the bicoid-related transcription factor PITX1 previously implicated in clubfoot etiology. Our result suggests that this chromosome 17q23.1q23.2 microduplication is a relatively common cause of familial isolated clubfoot and provides strong evidence linking clubfoot etiology to abnormal early limb development. PMID:20598276

  13. Identification and characterization of human GUKH2 gene in silico.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  14. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans.

    PubMed

    Inagaki, Hidehito; Ohye, Tamae; Kogo, Hiroshi; Kato, Takema; Bolor, Hasbaira; Taniguchi, Mariko; Shaikh, Tamim H; Emanuel, Beverly S; Kurahashi, Hiroki

    2009-02-01

    Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.

  15. The SIDER2 elements, interspersed repeated sequences that populate the Leishmania genomes, constitute subfamilies showing chromosomal proximity relationship.

    PubMed

    Requena, Jose M; Folgueira, Cristina; López, Manuel C; Thomas, M Carmen

    2008-06-02

    Protozoan parasites of the genus Leishmania are causative agents of a diverse spectrum of human diseases collectively known as leishmaniasis. These eukaryotic pathogens that diverged early from the main eukaryotic lineage possess a number of unusual genomic, molecular and biochemical features. The completion of the genome projects for three Leishmania species has generated invaluable information enabling a direct analysis of genome structure and organization. By using DNA macroarrays, made with Leishmania infantum genomic clones and hybridized with total DNA from the parasite, we identified a clone containing a repeated sequence. An analysis of the recently completed genome sequence of L. infantum, using this repeated sequence as bait, led to the identification of a new class of repeated elements that are interspersed along the different L. infantum chromosomes. These elements turned out to be homologues of SIDER2 sequences, which were recently identified in the Leishmania major genome; thus, we adopted this nomenclature for the Leishmania elements described herein. Since SIDER2 elements are very heterogeneous in sequence, their precise identification is rather laborious. We have characterized 54 LiSIDER2 elements in chromosome 32 and 27 ones in chromosome 20. The mean size for these elements is 550 bp and their sequence is G+C rich (mean value of 66.5%). On the basis of sequence similarity, these elements can be grouped in subfamilies that show a remarkable relationship of proximity, i.e. SIDER2s of a given subfamily locate close in a chromosomal region without intercalating elements. For comparative purposes, we have identified the SIDER2 elements existing in L. major and Leishmania braziliensis chromosomes 32. While SIDER2 elements are highly conserved both in number and location between L. infantum and L. major, no such conservation exists when comparing with SIDER2s in L. braziliensis chromosome 32. SIDER2 elements constitute a relevant piece in the Leishmania

  16. Small Supernumerary Marker Chromosome May Provide Information on Dosage-insensitive Pericentric Regions in Human.

    PubMed

    Al-Rikabi, Ahmed B Hamid; Pekova, Sona; Fan, Xioabo; Jančušková, Tereza; Liehr, Thomas

    2018-04-01

    Cytogenetically visible chromosomal imbalances in humans are deleterious and adverse in the majority of the cases. However, healthy persons living with chromosomal imbalances in the range of several megabasepairs (Mbps) in size, like carriers of small Supernumerary Marker Chromosomes (sSMCs) exist. The identification of healthy sSMC carriers with euchromatic centromere-near (ECN) imbalances led to the following proposal: ECN-regions do not contain any dosage sensitive genes. Due to own previous work, dosage-insensitive pericentric ECN-regions were already determined with an accuracy of 0.3 and 5 Mbp. Based on this data we established 43 new pericentromeric probe sets spanning about 3-5 Mbp of each euchromatic human chromosome arm starting from the known insensitive regions towards distal. Such so called pericentromeric-critical region fluorescence in situ hybridization (PeCR-FISH) probe sets were applied exemplarily and successful here in 15 sSMC cases as available from the Else Kröner-Fresenius-sSMC-cellbank . Most of the involved sSMC breakpoints could be characterized as a higher resolution than before. An unexpected result was that in 5/15 cases cryptic mosaicism was characterized. The latter is also to be considered to have potentially an influence on the clinical outcome in these so-called discontinuous sSMCs. Overall, the suitability of PeCR-FISH to characterize sSMCs was proven; the potential of this probe set to further delineate sizes of dosage insensitive pericentric regions is obvious but dependent on suited cases. Furthermore, discontinuous sSMCs can be identified by this approach and this new subtype of sSMC needs to be studied in more detail in future.

  17. M-FISH Analysis of Chromosome Aberrations in Human Fibroblast Cells After In Vitro Exposure to Low- and High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis

    2002-01-01

    The recently commercialized multiplex fluorescence in situ hybridization (m-FISH) technique, which allows human chromosomes to be painted in 24 different colors, was used to analyze chromosome aberrations in diploid human fibroblast cells after in vitro radiation exposure. Confluent flasks of a normal primary fibroblast cell line (AG 1522) were irradiated at high dose rates with either gamma rays or 200 MeV/nucleon Fe ions (LET = 440 keV/micron), incubated at 37 C for 24 hours after exposure, and subsequently subcultured. A chemically induced premature chromosome condensation technique was used to collect chromosome samples 32 hours after subculture. Results showed that the fraction of exchanges which were identified as complex, i.e. involving misrejoining of three or more DSB, were higher in the Fe-irradiated samples compared with the gamma-irradiated samples, as has been shown previously using FISH with one or two painted chromosomes . The ratios of complex/simple type exchanges were similar for samples irradiated with 0.7 Gy and 3 Gy of Fe ions, although exchanges involving five or more breaks were found only in 3 Gy irradiated samples. The fraction of incomplete exchanges was also higher in Fe- than gamma-irradiated samples. Data on the distribution of individual chromosome involvement in interchromosomal exchanges will be presented.

  18. Trans-acting epigenetic effects of chromosomal aneuploidies: lessons from Down syndrome and mouse models

    PubMed Central

    Do, Catherine; Xing, Zhuo; Yu, Y Eugene; Tycko, Benjamin

    2017-01-01

    An important line of postgenomic research seeks to understand how genetic factors can influence epigenetic patterning. Here we review epigenetic effects of chromosomal aneuploidies, focusing on findings in Down syndrome (DS, trisomy 21). Recent work in human DS and mouse models has shown that the extra chromosome 21 acts in trans to produce epigenetic changes, including differential CpG methylation (DS-DM), in specific sets of downstream target genes, mostly on other chromosomes. Mechanistic hypotheses emerging from these data include roles of chromosome 21-linked methylation pathway genes (DNMT3L and others) and transcription factor genes (RUNX1, OLIG2, GABPA, ERG and ETS2) in shaping the patterns of DS-DM. The findings may have broader implications for trans-acting epigenetic effects of chromosomal and subchromosomal aneuploidies in other human developmental and neuropsychiatric disorders, and in cancers. PMID:27911079

  19. Complete nucleotide sequence of the gene for human heparin cofactor II and mapping to chromosomal band 22q11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, R.; Lutz, S.; Blin, N.

    1991-02-05

    Heparin cofactor II (HCII) is a 66-kDa plasma glycoprotein that inhibits thrombin rapidly in the presence of dermatan sulfate or heparin. Clones comprising the entire HCII gene were isolated from a human leukocyte genomic library in EMBL-3 {lambda} phage. The sequence of the gene was determined on both strands of DNA (15,849 bp) and included 1,749 bp of 5{prime}-flanking sequence, five exons, four introns, and 476 bp of DNA 3{prime} to the polyadenylation site. Ten complete and one partial Alu repeats were identified in the introns and 5{prime}-flanking region. The HCII gene was regionally mapped on chromosome 22 using rodent-humanmore » somatic cell hybrids, carrying only parts of human chromosome 22, and the chronic myelogenous leukemia cell line K562. With the cDNA probe HCII7.2, containing the entire coding region of the gene, the HCII gene was shown to be amplified 10-20-fold in K562 cells by Southern analysis and in situ hybridization. From these data, the authors concluded that the HCII gene is localized on the chromosomal band 22q11 proximal to the breakpoint cluster region (BCR). Analysis by pulsed-field gel electrophoresis indicated that the amplified HCII gene in K562 cells maps at least 2 Mbp proximal to BCR-1. Furthermore, the HCII7.2 cDNA probe detected two frequent restriction fragment length polymorphisms with the restriction enzymes BamHI and Hind III.« less

  20. A radiation hybrid map of the distal short arm of human chromosome II, containing the Beckwith-Weidemann and associated embroyonal tumor disease loci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, C.W. III; Berg, D.J.; Meeker, T.C.

    1993-05-01

    The authors describe a high-resolution radiation hybrid (RH) map of the distal short arm of human chromosome 11 containing the Beckwith-Weidemann gene and the associated embryonal tumor disease loci. Thirteen human 11p15 genes and 17 new anonymous probes were mapped by a statistical analysis of the cosegregation of markers in 102 rodent-human radiation hybrids retaining fragments of human chromosome 11. The 17 anonymous probes were generated from lambda phage containing human 11p15.5 inserts, by using ALU-PCR. A comprehensive map of all 30 loci and a framework map of nine clusters of loci ordered at odds of 1,000:1 were constructed bymore » a multipoint maximum-likelihood approach by using the computer program RHMAP. This RH map localizes one new gene to chromosome 11p15 (WEE1), provides more precise order information for several 11p15 genes (CTSD, H19, HPX,.ST5, RNH, and SMPD1), confirms previous map orders for other 11p15 genes (CALCA, PTH, HBBC, TH, HRAS, and DRD4), and maps 17 new anonymous probes within the 11p15.5 region. This RH map should prove useful in better defining the positions of the Beckwith-Weidemann and associated embryonal tumor disease-gene loci. 41 refs., 1 fig., 2 tabs.« less

  1. Early and Late Chromosome Damages in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  2. Moderate Ovarian Stimulation Does Not Increase the Incidence of Human Embryo Chromosomal Abnormalities in in Vitro Fertilization Cycles

    PubMed Central

    Bosch, Ernesto; Alamá, Pilar; Rubio, Carmen; Rodrigo, Lorena; Pellicer, Antonio

    2012-01-01

    Context: A high chromosomal abnormalities rate has been observed in human embryos derived from in vitro fertilization (IVF) treatments. The real incidence in natural cycles has been poorly studied, so whether this frequency may be induced by external factors, such as use of gonadotropins for ovarian stimulation, remains unknown. Design: We conducted a prospective cohort study in a University-affiliated private infertility clinic with a comparison between unstimulated and stimulated ovarian cycles in the same women. Preimplantation genetic screening by fluorescence in situ hybridization was performed in all viable d 3 embryos. Objective: The primary objective was to compare the incidence of embryo chromosomal abnormalities in an unstimulated cycle and in an ulterior moderate ovarian stimulated cycle. Secondary outcome measures were embryo quality, blastocyst rate of biopsied embryos, number of normal blastocysts per donor, type of chromosomal abnormalities, and clinical outcome. Results: One hundred eighty-five oocyte donors were initially recruited for the unstimulated cycle, and preimplantation genetic screening could be performed in 51 of them, showing 35.3% of embryo chromosomal abnormalities. Forty-six of them later completed a stimulated cycle. The sperm donor sample was the same for both cycles. The proportion of embryos displaying abnormalities in the unstimulated cycle was 34.8% (16 of 46), whereas it was 40.6% (123 of 303) in the stimulated cycle with risk difference = 5.8 [95% confidence interval (CI) = −20.6–9.0], and relative risk = 1.17 (95% CI = 0.77–1.77) (P = 0.45). When an intrasubject comparison was made, the abnormalities rate was 34.8% (95% CI = 20.5–49.1) in the unstimulated cycle and 38.2% (95% CI = 30.5–45.8) in the stimulated cycle [risk difference = 3.4 (95% CI = −17.9–11.2); P = 0.64]. No differences were observed for embryo quality and type of chromosomal abnormalities. Conclusions: Moderate ovarian stimulation in young

  3. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome.

    PubMed

    Navarro-Costa, Paulo

    2012-12-01

    It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Construction of human artificial chromosome vectors by recombineering.

    PubMed

    Kotzamanis, George; Cheung, Wing; Abdulrazzak, Hassan; Perez-Luz, Sara; Howe, Steven; Cooke, Howard; Huxley, Clare

    2005-05-23

    Human artificial chromosomes (HACs) can be formed de novo by transfection of large fragments of cloned alphoid DNA into human HT1080 cells in tissue culture. In order to generate HACs carrying a gene of interest, one can either co-transfect the alphoid DNA and the gene of interest, or one can clone both into a single vector prior to transfection. Here we describe linking approximately 70 kb of alphoid DNA onto a 156-kb BAC carrying the human HPRT gene using Red homologous recombination in the EL350 Escherichia coli host [Lee et al., Genomics 73 (2001) 56-65]. A selectable marker and EGFP marker were then added by loxP/Cre recombination using the arabinose inducible cre gene in the EL350 bacteria. The final construct generates minichromosomes in HT1080 cells and the HPRT gene is expressed. The retrofitting vector can be used to add the approximately 70 kb of alphoid DNA to any BAC carrying a gene of interest to generate a HAC vector. The method can also be used to link any unrelated BAC or PAC insert onto another BAC clone. The EL350 bacteria are an excellent host for building up complex vectors by a combination of homologous and loxP/Cre recombination.

  5. Distribution of Chromosome Breakpoints in Human Epithelial Cells Exposed to Low- and High-LET Radiations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is not only its ability to identify simultaneously both inter- and intrachromosome exchanges, but also the ability to measure the breakpoint location along the length of the chromosome in a precision that is unmatched with other traditional banding techniques. Breakpoints on specific regions of a chromosome have been known to associate with specific cancers. The breakpoint distribution in cells after low- and high-LET radiation exposures will also provide the data for biophysical modeling of the chromatin structure, as well as the data for the modeling the formation of radiation-induced chromosome aberrations. In a series of experiments, we studied low- and high-LET radiation-induced chromosome aberrations using the mBAND technique with chromosome 3 painted in 23 different colored bands. Human epithelial cells (CH1 84B5F5/M10) were exposed in vitro to Cs- 137 rays at both low and high dose rates, secondary neutrons with a broad energy spectrum at a low dose rate and 600 MeV/u Fe ions at a high dose rate. The data of both inter- and intrachromosome aberrations involving the painted chromosome have been reported previously. Here we present data of the location of the chromosome breaks along the length of chromosome 3 in the cells after exposures to each of the four radiation scenarios. In comparison to the expected breakpoint distribution based on the length of the bands, the observed distribution appeared to be non-random for both the low- and high-LET radiations. In particular, hot spots towards both ends of the chromosome were found after low-LET irradiations of either low or high dose rates. For both high-LET radiation types (Fe ions and neutrons), the breakpoint distributions were similar, and were much smoother than that for low-LET radiation. The dependence of the breakpoint distribution on the radiation quality requires further investigations.

  6. [Chromosomal instability in carcinogenesis of cervical cancer.

    PubMed

    de Los Santos-Munive, Victoria; Alonso-Avelino, Juan Angel

    2013-01-01

    In order to spot common chromosomal imbalances in early and late lesions of cervical cancer that might be used as progression biomarkers, we made a search of literature in PubMed from 1996 to 2011. The medical subject headings employed were chromosomal alterations, loss of heterozygosis, cervical cancer, cervical tumorigenesis, chromosomal aberrations, cervical intraepithelial neoplasm and low-grade squamous intraepithelial lesion. The common chromosomal imbalances were gains in 8q24 (77.7 %), 20q13 (66.9 %), 3q26 (47.1 %), Xp22 (43.8 %), and 5p15 (60 %), principally. On the other hand, integration of the high-risk human papillomavirus genome into the host chromosome has been associated with the development of neoplasia, but the chromosomal imbalances seem to precede and promote such integration. Chromosomal imbalances in 8q24, 20q13, 3q21-26 and 5p15-Xp22, determined by fluorescent in situ hybridization assay or comparative genomic hybridization assay for early detection of the presence of high-risk human papillomavirus, are promising markers of cervical cancer progression.

  7. Chromosome 2 short arm translocations revealed by M-FISH analysis of neuroblastoma cell lines.

    PubMed

    Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Laureys, G; De Paepe, A; Speleman, F

    2000-12-01

    M-FISH analysis was performed on 18 neuroblastoma cell lines, which were previously studied with cytogenetic, standard FISH and CGH data. One of the most striking findings of this study was the detection of chromosome 2 short arm rearrangements in 61% of the investigated cell lines. These rearrangements resulted from translocations with various partner chromosomes. All translocations, except one were unbalanced, leading to the consistent gain of chromosome segment 2pter-p22. A cryptic balanced translocation t(2;4) was observed with a breakpoint located in the vicinity of MYCN in cell line NBL-S. Combination of M-FISH results together with cytogenetic, standard FISH and CGH data yielded the most comprehensive description of chromosome 2 short arm rearrangements, leading to a consistent gain of chromosome 2 short arm material. Copyright 2000 Wiley-Liss, Inc.

  8. X chromosome inactivation in a female carrier of a 1.28 Mb deletion encompassing the human X inactivation centre.

    PubMed

    de Hoon, B; Splinter, Erik; Eussen, B; Douben, J C W; Rentmeester, E; van de Heijning, M; Laven, J S E; de Klein, J E M M; Liebelt, J; Gribnau, J

    2017-11-05

    X chromosome inactivation (XCI) is a mechanism specifically initiated in female cells to silence one X chromosome, thereby equalizing the dose of X-linked gene products between male and female cells. XCI is regulated by a locus on the X chromosome termed the X-inactivation centre (XIC). Located within the XIC is XIST , which acts as a master regulator of XCI. During XCI, XIST is upregulated on the inactive X chromosome and chromosome-wide cis spreading of XIST leads to inactivation. In mouse, the Xic comprises Xist and all cis -regulatory elements and genes involved in Xist regulation. The activity of the XIC is regulated by trans -acting factors located elsewhere in the genome: X-encoded XCI activators positively regulating XCI, and autosomally encoded XCI inhibitors providing the threshold for XCI initiation. Whether human XCI is regulated through a similar mechanism, involving trans -regulatory factors acting on the XIC has remained elusive so far. Here, we describe a female individual with ovarian dysgenesis and a small X chromosomal deletion of the XIC. SNP-array and targeted locus amplification (TLA) analysis defined the deletion to a 1.28 megabase region, including XIST and all elements and genes that perform cis -regulatory functions in mouse XCI. Cells carrying this deletion still initiate XCI on the unaffected X chromosome, indicating that XCI can be initiated in the presence of only one XIC. Our results indicate that the trans -acting factors required for XCI initiation are located outside the deletion, providing evidence that the regulatory mechanisms of XCI are conserved between mouse and human.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Authors.

  9. Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backcross.

    PubMed

    Buckwalter, M S; Katz, R W; Camper, S A

    1991-07-01

    Ames dwarf (df) is an autosomal recessive mutation characterized by severe dwarfism and infertility. This mutation provides a mouse model for panhypopituitarism. The dwarf phenotype results from failure in the differentiation of the cells which produce growth hormone, prolactin, and thyroid stimulating hormone. Using the backcross (DF/B-df/df X CASA/Rk) X DF/B-df/df, we confirmed the assignment of df to mouse chromosome 11 and demonstrated recombination between df and the growth hormone gene. This backcross is an invaluable resource for screening candidate genes for the df mutation. The df locus maps to less than 1 cM distal to Pad-1 (0.85 +/- 0.85 cM). Two new genes localized on mouse chromosome 11, Rpo2-1, and Edp-1, map to a region of conserved synteny with human chromosome 17. The localization of the alpha 1 adrenergic receptor, Adra-1, extends a known region of synteny conservation between mouse chromosome 11 and human chromosome 5, and suggests that a human counterpart to df would map to human chromosome 5.

  10. Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9.

    PubMed

    Stapleton, P; Weith, A; Urbánek, P; Kozmik, Z; Busslinger, M

    1993-04-01

    In the human paired box-containing (PAX) gene family, only two members, PAX-3 and PAX-6, which are associated with Waardenburg's syndrome and aniridia, respectively have been mapped to human chromosomes. We have now isolated cosmids for six additional human PAX genes (PAX-1,-2,-5,-7,-8,-9) and a polymerase chain reaction fragment for PAX-4. PAX-9 is a novel family member which is closely related in its paired domain to PAX-1. The chromosomal location of all cloned PAX genes was determined by analysis of somatic cell hybrids and (except PAX-4) by fluorescence in situ hybridization to metaphase chromosomes. PAX-1 and PAX-7 map to chromosomal regions containing previously assigned disease loci.

  11. An Automated System for Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Melnyk, J. H.

    1976-01-01

    The design, construction, and testing of a complete system to produce karyotypes and chromosome measurement data from human blood samples, and to provide a basis for statistical analysis of quantitative chromosome measurement data are described.

  12. M-Band Analysis of Chromosome Aberrations in Human Epithelial Cells Induced By Low- and High-Let Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Gersey, B.; Saganti, P. B.; Wilkins, R.; Gonda, S. R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Energetic primary and secondary particles pose a health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET radiation is much more effective than low-LET radiation in the induction of various biological effects, including cell inactivation, genetic mutations, cataracts and cancer. Most of these biological endpoints are closely correlated to chromosomal damage, which can be utilized as a biomarker for radiation insult. In this study, human epithelial cells were exposed in vitro to gamma rays, 1 GeV/nucleon Fe ions and secondary neutrons whose spectrum is similar to that measured inside the Space Station. Chromosomes were condensed using a premature chromosome condensation technique and chromosome aberrations were analyzed with the multi-color banding (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of both interchromosomal (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Results of the study confirmed the observation of higher incidence of inversions for high-LET irradiation. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Half of the inversions observed in the low-LET irradiated samples were accompanied by other types of intrachromosome aberrations, but few inversions were accompanied by interchromosome aberrations. In contrast, Fe ions induced a significant fraction of inversions that involved complex rearrangements of both the inter- and intrachromosome exchanges.

  13. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative

  14. Comparison of repair of DNA double-strand breaks in identical sequences in primary human fibroblast and immortal hamster-human hybrid cells harboring a single copy of human chromosome 11

    NASA Technical Reports Server (NTRS)

    Fouladi, B.; Waldren, C. A.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    We have optimized a pulsed-field gel electrophoresis assay that measures induction and repair of double-strand breaks (DSBs) in specific regions of the genome (Lobrich et al., Proc. Natl. Acad. Sci. USA 92, 12050-12054, 1995). The increased sensitivity resulting from these improvements makes it possible to analyze the size distribution of broken DNA molecules immediately after the introduction of DSBs and after repair incubation. This analysis shows that the distribution of broken DNA pieces after exposure to sparsely ionizing radiation is consistent with the distribution expected from randomly induced DSBs. It is apparent from the distribution of rejoined DNA pieces after repair incubation that DNA ends continue to rejoin between 3 and 24 h postirradiation and that some of these rejoining events are in fact misrejoining events, since novel restriction fragments both larger and smaller than the original fragment are generated after repair. This improved assay was also used to study the kinetics of DSB rejoining and the extent of misrejoining in identical DNA sequences in human GM38 cells and human-hamster hybrid A(L) cells containing a single human chromosome 11. Despite the numerous differences between these cells, which include species and tissue of origin, levels of TP53, expression of telomerase, and the presence or absence of a homologous chromosome for the restriction fragments examined, the kinetics of rejoining of radiation-induced DSBs and the extent of misrejoining were similar in the two cell lines when studied in the G(1) phase of the cell cycle. Furthermore, DSBs were removed from the single-copy human chromosome in the hamster A(L) cells with similar kinetics and misrejoining frequency as at a locus on this hybrid's CHO chromosomes.

  15. Role of DNA secondary structures in fragile site breakage along human chromosome 10

    PubMed Central

    Dillon, Laura W.; Pierce, Levi C. T.; Ng, Maggie C. Y.; Wang, Yuh-Hwa

    2013-01-01

    The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease. PMID:23297364

  16. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelini, S.; Urbanek, M.; Goldman, D.

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two allelesmore » occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.« less

  17. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells

    PubMed Central

    Jia, Pingping; Chastain, Megan; Zou, Ying; Her, Chengtao

    2017-01-01

    Abstract Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability. PMID:28180301

  18. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells

    PubMed Central

    Janssen, Aniek; Kops, Geert J. P. L.; Medema, René H.

    2009-01-01

    The mitotic checkpoint has evolved to prevent chromosome mis-segregations by delaying mitosis when unattached chromosomes are present. Inducing severe chromosome segregation errors by ablating the mitotic checkpoint causes cell death. Here we have analyzed the consequences of gradual increases in chromosome segregation errors on the viability of tumor cells and normal human fibroblasts. Partial reduction of essential mitotic checkpoint components in four tumor cell lines caused mild chromosome mis-segregations, but no lethality. These cells were, however, remarkably more sensitive to low doses of taxol, which enhanced the amount and severity of chromosome segregation errors. Sensitization to taxol was achieved by reducing levels of Mps1 or BubR1, proteins having dual roles in checkpoint activation and chromosome alignment, but not by reducing Mad2, functioning solely in the mitotic checkpoint. Moreover, we find that untransformed human fibroblasts with reduced Mps1 levels could not be sensitized to sublethal doses of taxol. Thus, targeting the mitotic checkpoint and chromosome alignment simultaneously may selectively kill tumor cells by enhancing chromosome mis-segregations. PMID:19855003

  19. Phylogeography of Y-chromosome haplogroup O3a2b2-N6 reveals patrilineal traces of Austronesian populations on the eastern coastal regions of Asia

    PubMed Central

    Teo, Yik-Ying; Huang, Yun-Zhi; Wang, Ling-Xiang; Yu, Ge; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Lu, Yan; Zhang, Chao; Xu, Shu-Hua; Jin, Li; Li, Hui

    2017-01-01

    Austronesian diffusion is considered one of the greatest dispersals in human history; it led to the peopling of an extremely vast region, ranging from Madagascar in the Indian Ocean to Easter Island in Remote Oceania. The Y-chromosome haplogroup O3a2b*-P164(xM134), a predominant paternal lineage of Austronesian populations, is found at high frequencies in Polynesian populations. However, the internal phylogeny of this haplogroup remains poorly investigated. In this study, we analyzed -seventeen Y-chromosome sequences of haplogroup O3a2b*-P164(xM134) and generated a revised phylogenetic tree of this lineage based on 310 non-private Y-chromosome polymorphisms. We discovered that all available O3a2b*-P164(xM134) samples belong to the newly defined haplogroup O3a2b2-N6 and samples from Austronesian populations belong to the sublineage O3a2b2a2-F706. Additionally, we genotyped a series of Y-chromosome polymorphisms in a large collection of samples from China. We confirmed that the sublineage O3a2b2a2b-B451 is unique to Austronesian populations. We found that O3a2b2-N6 samples are widely distributed on the eastern coastal regions of Asia, from Korea to Vietnam. Furthermore, we propose- that the O3a2b2a2b-B451 lineage represents a genetic connection between ancestors of Austronesian populations and ancient populations in North China, where foxtail millet was domesticated about 11,000 years ago. The large number of newly defined Y-chromosome polymorphisms and the revised phylogenetic tree of O3a2b2-N6 will be helpful to explore the origin of proto-Austronesians and the early diffusion process of Austronesian populations. PMID:28380021

  20. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.

    PubMed

    Darrow, Emily M; Huntley, Miriam H; Dudchenko, Olga; Stamenova, Elena K; Durand, Neva C; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P; Lander, Eric S; Chadwick, Brian P; Aiden, Erez Lieberman

    2016-08-02

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

  1. Why the Y Chromosome?--A Look at Male Lineage and Ancestry

    ERIC Educational Resources Information Center

    Elwess, Nancy L.; Edwards, Felecia; Latourelle, Sandra M.

    2006-01-01

    Up until a short time ago the Y chromosome played the role of the juvenile delinquent within human chromosomes. It was considered to be rich in junk, short on genes, and rapidly degenerating. Now the Y chromosome is growing up by providing a means for investigating human migration. Through the use of genetic markers on the Y chromosomes, students…

  2. MECP2 duplications in six patients with complex sex chromosome rearrangements

    PubMed Central

    Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai

    2011-01-01

    Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712

  3. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains

    PubMed Central

    Cotton, Allison M.; Chen, Chih-Yu; Lam, Lucia L.; Wasserman, Wyeth W.; Kobor, Michael S.; Brown, Carolyn J.

    2014-01-01

    X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853

  4. Cytogenetic analysis of CpG-oligonucleotide DSP30 plus Interleukin-2-Stimulated canine B-Cell lymphoma cells reveals the loss of one X Chromosome as the sole abnormality.

    PubMed

    Reimann-Berg, N; Murua Escobar, H; Kiefer, Y; Mischke, R; Willenbrock, S; Eberle, N; Nolte, I; Bullerdiek, J

    2011-01-01

    Human and canine lymphoid neoplasms are characterized by non-random cytogenetic abnormalities. However, due to the low mitotic activity of the B cells, cytogenetic analyses of B-cell lymphoid proliferations are difficult to perform. In the present study we stimulated canine B-cell lymphoma cells with the immunostimulatory CpG-oligonucleotide DSP30 in combination with interleukin-2 (IL-2) and obtained an adequate number of metaphases. Cytogenetic analyses revealed the loss of one X chromosome as the sole cytogenetic aberration. Chromosome analysis of the corresponding blood showed a normal female karyotype. Monosomy X as the sole clonal chromosomal abnormality is found in human hematopoietic malignancies as well, thus the dog may serve as a promising animal model. Copyright © 2011 S. Karger AG, Basel.

  5. Narrowing the wingless-2 mutation to a 227 kb candidate region on chicken chromosome 12

    PubMed Central

    Webb, A E; Youngworth, I A; Kaya, M; Gitter, C L; O’Hare, E A; May, B; Cheng, H H; Delany, M E

    2018-01-01

    ABSTRACT Wingless-2 (wg-2) is an autosomal recessive mutation in chicken that results in an embryonic lethal condition. Affected individuals exhibit a multisystem syndrome characterized by absent wings, truncated legs, and craniofacial, kidney, and feather malformations. Previously, work focused on phenotype description, establishing the autosomal recessive pattern of Mendelian inheritance and placing the mutation on an inbred genetic background to create the congenic line UCD Wingless-2.331. The research described in this paper employed the complementary tools of breeding, genetics, and genomics to map the chromosomal location of the mutation and successively narrow the size of the region for analysis of the causative element. Specifically, the wg-2 mutation was initially mapped to a 7 Mb region of chromosome 12 using an Illumina 3 K SNP array. Subsequent SNP genotyping and exon sequencing combined with analysis from improved genome assemblies narrowed the region of interest to a maximum size of 227 kb. Within this region, 3 validated and 3 predicted candidate genes are found, and these are described. The wg-2 mutation is a valuable resource to contribute to an improved understanding of the developmental pathways involved in chicken and avian limb development as well as serving as a model for human development, as the resulting syndrome shares features with human congenital disorders. PMID:29562287

  6. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    PubMed

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  7. Chromosomal localization of three repair genes: The xeroderma pigmentosum group C gene and two human homologs of yeast RAD23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spek, P.J. van der; Smit, E.M.E.; Beverloo, H.B.

    1994-10-01

    The nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) is characterized by sun (UV) sensitivity, predisposition to skin cancer, and extensive genetic heterogeneity. Recently, we reported the cloning and analysis of three human NER genes, XPC, HHR23A, and HHR23B. The previously cloned XPC gene is involved in the common XP complementation group C, which is defective in excision repair of nontranscribed sequences in the genome. The XPC protein was found to be complexed with the product of HHR23B, one of the two human homologs of the Saccharomyes cerevisiae NER gene RAD23. Here we present the chromosomal localization by in situmore » hybridization using haptenized probes of all three genes. The HHR23A gene was assigned to chromosome 19p13.2. Interestingly, the HHR23B and XPC genes, the product of which forms a tight complex, were found to colocalize on band 3p25.1. Pulsed-field gel electrophoresis revealed that the HHR23B and XPC genes possibly share a MluI restriction fragment of about 625 kb. Potential involvement of the HHR23 genes in human genetic disorders is discussed. 53 refs., 4 figs., 2 tabs.« less

  8. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  9. Quantification and clinical relevance of gene amplification at chromosome 17q12-q21 in human epidermal growth factor receptor 2-amplified breast cancers

    PubMed Central

    2011-01-01

    Introduction Human epidermal growth factor receptor 2 (HER2)-amplified breast cancers represent a tumor subtype with chromosome 17q rearrangements that lead to frequent gene amplifications. The aim of this study was to quantify the amplification of genes located on chromosome 17q and to analyze the relations between the pattern of gene amplifications and the patients' characteristics and survival. Methods Patients with HER2-positive breast tumors (HER2 score of 3+ by immunohistochemistry or positive for HER2 amplification by fluorescence in situ hybridization (FISH)) (n = 86) and with HER2-negative breast tumors (n = 40) (negative controls) were included in this study. Using a quantitative polymerase chain reaction method and DNA extracted from frozen tumor specimens, 11 genes (MED1, STARD3, HER2, GRB7, THRA, RARA, TOP2A, IGFBP4, CCR7, KRT20, KRT19 and GAS), which are localized within Chr17q12-q21 and have a putative role in breast cancer development, were quantified. Relapse-free and overall survival rates were estimated from the date of surgery to the date of the event of interest (recurrence or death) using the Kaplan-Meier method. Results Gene amplification was observed only in HER2-positive tumors, and the frequency of amplification decreased with the distance of the gene from HER2. HER2 presented the highest level of amplification. TOP2A was not included in the smallest region of amplification involving HER2. Amplification of RARA, KRT20 and KRT19 was significantly associated with node-positive breast cancer (P = 0.030, P = 0.002 and P = 0.033, respectively). During a median follow-up period of 55 months (range, 6 to 81 months), the subgroup of patients with hormone receptor-negative cancer and without TOP2A amplification showed the worst survival (relapse-free survival: hazard ratio (HR) = 0.29, 95% confidence interval (95% CI), 0.13 to 0.65, P = 0.001; and overall survival: HR = 0.28, 95% CI, 0.10 to 0.76, P = 0.008). Conclusions HER2 amplification seems to

  10. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.

    PubMed

    Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

  11. Detection of chromosomal aberrations by fluorescence in situ hybridization in cervicovaginal biopsies from women exposed to diethylstilbestrol in utero.

    PubMed

    Hajek, R A; King, D W; Hernández-Valero, M A; Kaufman, R H; Liang, J C; Chilton, J A; Edwards, C L; Wharton, J T; Jones, L A

    2006-01-01

    Epidemiologic studies have associated estrogens with human neoplasms such as those in the endometrium, cervix, vagina, breast, and liver. Perinatal exposure to natural (17beta-estradiol [17beta-E(2)]) and synthetic (diethylstilbestrol [DES]) estrogens induces neoplastic changes in humans and rodents. Previous studies demonstrated that neonatal 17beta-E(2) treatment of mice results in increased nuclear DNA content of cervicovaginal epithelium that precedes histologically evident neoplasia. In order to determine whether this effect was associated with chromosomal changes in humans, the frequencies of trisomy of chromosomes 1, 7, 11, and 17 were evaluated by the fluorescence in situ hybridization (FISH) technique in cervicovaginal tissue from 19 DES-exposed and 19 control women. The trisomic frequencies were significantly elevated in 4 of the 19 (21%) DES-exposed patients. One patient presented with trisomy of chromosomes 1, 7, and 11, while trisomy of chromosome 7 was observed in one patient. There were two patients with trisomy of chromosome 1. Trisomy of chromosomes 1, 7, 11, and 17 was not observed in the cervicovaginal tissue taken from control patients. These data suggest that DES-induced chromosomal trisomy may be an early event in the development of cervicovaginal neoplasia in humans.

  12. Chromosomal localization of the mouse Src-like adapter protein (Slap) gene and its putative human homolog SLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angrist, M.; Chakravarti, A.; Wells, D.E.

    1995-12-10

    Molecules containing Src-homology 2 (SH2) and Src-homology 3 (SH3) domains are critical components of signal transduction pathways that serve to relay signals originating from the cell surface to the interior of the cell. Src-like adapter protein (SLAP) is a recently described adapter protein that binds activated the Eck receptor protein-tyrosine kinase. Although SLAP bears a striking homology to the SH3 and SH2 domains of the Src family of nonreceptor tyrosine kinases, it does not contain a tyrosine kinase catalytic domain. In this report, the Slap gene was mapped by linkage analysis to mouse chromosome 15, while its putative human homologmore » (SLA) was identified and mapped to human 8q22.3-qter using a panel of somatic cell hybrids. 10 refs., 2 figs.« less

  13. Is classic pericentric inversion of chromosome 2 inv(2)(p11q13) associated with an increased risk of unbalanced chromosomes?

    PubMed

    Ferfouri, Fatma; Clement, Patrice; Gomes, Denise Molina; Minz, Marie; Amar, Edouard; Selva, Jacqueline; Vialard, François

    2009-10-01

    To study pericentric inversion segregation and interchromosomal effect on sperm for men heterozygous for inv(2)(p11q13), to assess the risk of miscarriage. Case report. Department of reproductive biology, cytogenetics, gynecology, and obstetrics. Seven patients heterozygous for inv(2)(p11q13) and five patients with normal karyotype with experience of recurrent spontaneous miscarriage. Fluorescence in situ hybridization on sperm with 2 p and 2q subtelomeric probes to screen for inversion segregation, and X, Y, and 18 centromeric probes to study interchromosomal effects. One thousand sperm were analyzed per experiment and per patient. Rate of unbalanced chromosomes and aneuploid sperm. The inv(2)(p11q13) patients showed a 0.3% rate of sperm with unbalanced chromosomes. For interchromosomal effects, a 0.6% aneuploid sperm rate was observed for patients heterozygous for inv(2)(p11q13). This is similar to the 0.5% rate observed for control patients. Inv(2)(p11q13) seems not to increase miscarriage for couples with men heterozygous for this inversion.

  14. Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration.

    PubMed

    Gilbert-Girard, Shella; Gravel, Annie; Artusi, Sara; Richter, Sara N; Wallaschek, Nina; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency ( P < 0.002); in contrast, BRACO-19 had no effect on HHV-6 integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A. IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a

  15. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko

    2008-05-09

    Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-{beta}-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 daysmore » after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells.« less

  16. Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage Measured in Metaphase and Interphase Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    George, Kerry; Durante, Marco; Willingham, Veronica; Wu, Honglu; Yang, Tracy C.; Cucinotta, Francis A.

    2003-01-01

    Chromosome aberrations were investigated in human lymphocytes after in vitro exposure to 1H-, 3He-, 12C-, 40Ar-, 28Si-, 56Fe-, or 197Au-ion beams, with LET ranging from approximately 0.4-1393 keV/microm in the dose range of 0.075-3 Gy. Dose-response curves for chromosome exchanges, measured at the first mitosis postirradiation using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosomal damage with respect to low- or high-dose-rate gamma rays. Estimates of RBEmax values for mitotic spreads, which ranged from near 0.7 to 11.1 for total exchanges, increased with LET, reaching a maximum at about 150 keV/microm, and decreased with further increase in LET. RBEs for complex aberrations are undefined due to the lack of an initial slope for gamma rays. Additionally, the effect of mitotic delay on RBE values was investigated by measuring chromosome aberrations in interphase after chemically induced premature chromosome condensation (PCC), and values were up to threefold higher than for metaphase analysis.

  17. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.

    PubMed

    Coombe, Lauren; Zhang, Jessica; Vandervalk, Benjamin P; Chu, Justin; Jackman, Shaun D; Birol, Inanc; Warren, René L

    2018-06-20

    The long-range sequencing information captured by linked reads, such as those available from 10× Genomics (10xG), helps resolve genome sequence repeats, and yields accurate and contiguous draft genome assemblies. We introduce ARKS, an alignment-free linked read genome scaffolding methodology that uses linked reads to organize genome assemblies further into contiguous drafts. Our approach departs from other read alignment-dependent linked read scaffolders, including our own (ARCS), and uses a kmer-based mapping approach. The kmer mapping strategy has several advantages over read alignment methods, including better usability and faster processing, as it precludes the need for input sequence formatting and draft sequence assembly indexing. The reliance on kmers instead of read alignments for pairing sequences relaxes the workflow requirements, and drastically reduces the run time. Here, we show how linked reads, when used in conjunction with Hi-C data for scaffolding, improve a draft human genome assembly of PacBio long-read data five-fold (baseline vs. ARKS NG50 = 4.6 vs. 23.1 Mbp, respectively). We also demonstrate how the method provides further improvements of a megabase-scale Supernova human genome assembly (NG50 = 14.74 Mbp vs. 25.94 Mbp before and after ARKS), which itself exclusively uses linked read data for assembly, with an execution speed six to nine times faster than competitive linked read scaffolders (~ 10.5 h compared to 75.7 h, on average). Following ARKS scaffolding of a human genome 10xG Supernova assembly (of cell line NA12878), fewer than 9 scaffolds cover each chromosome, except the largest (chromosome 1, n = 13). ARKS uses a kmer mapping strategy instead of linked read alignments to record and associate the barcode information needed to order and orient draft assembly sequences. The simplified workflow, when compared to that of our initial implementation, ARCS, markedly improves run time performances on experimental human genome

  18. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus.

    PubMed

    Shao, Renfu; Kirkness, Ewen F; Barker, Stephen C

    2009-05-01

    The mitochondrial (mt) genomes of animals typically consist of a single circular chromosome that is approximately 16-kb long and has 37 genes. Our analyses of the sequence reads from the Human Body Louse Genome Project and the patterns of gel electrophoresis and Southern hybridization revealed a novel type of mt genome in the sucking louse, Pediculus humanus. Instead of having all mt genes on a single chromosome, the 37 mt genes of this louse are on 18 minicircular chromosomes. Each minicircular chromosome is 3-4 kb long and has one to three genes. Minicircular mt chromosomes are also present in the four other species of sucking lice that we investigated, but not in chewing lice nor in the Psocoptera, to which sucking lice are most closely related. We also report unequivocal evidence for recombination between minicircular mt chromosomes in P. humanus and for sequence variation in mt genes generated by recombination. The advantages of a fragmented mt genome, if any, are currently unknown. Fragmentation of mt genome, however, has coevolved with blood feeding in the sucking lice. It will be of interest to explore whether or not life history features are associated with the evolution of fragmented chromosomes.

  19. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cellmore » embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.« less

  20. Frequency of satellite association of human chromosomes is correlated with amount of Ag-staining of the nucleolus organizer region.

    PubMed Central

    Miller, D A; Tantravahi, R; Dev, V G; Miller, O J

    1977-01-01

    Methaphase chromosomes from karyotypically normal adult humans (three males, six females) and one male with a 13p - chromosome were stained by quinacrine and then by the Ag-AS silver staining method to reveal nucleolus organizer regions (NORs). Each person had a characteristic number of Ag-stained chromosomes per cell, always fewer than 10. Determination of the mean Ag-size of each chromosome showed that each of the 10 individuals had a unique distribution of Ag-stain. Within each individual, there was some variation from cell to cell in the number of acrocentric chromosomes that were Ag-stained; this was not random, and the same chromosomes (those that had at most a small amount of Ag-stain) tended to be unstained in every cell. Satellite associations were scored on the same cells. Chromosomes that had no Ag-stain were involved in satellite association less than 20% as often as those that had some Ag-stain. Chromosomes that had a small amount of Ag-stain were involved in association about 50% as often as those that had a large amount of stain. Regression analysis of the 50 (of a total of 100) acrocentric chromosomes which could be individually identified by quinacrine markers showed that the frequency with which a chromosome was involved in satellite association was strongly correlated with the amount of Ag-stained material in the NOR. Images Fig. 1 Fig. 3 PMID:70995

  1. Characterization and chromosomal localization of the gene for human rhodopsin kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, S.C.; Yamamoto, S.; Dryja, T.P.

    1996-08-01

    G-protein-dependent receptor kinases (GRKs) play a key role in the adapatation of receptors to persistent stimuli. In rod photoreceptors rhodopsin kinase (RK) mediates rapid densensitization of rod photoreceptors to light by catalyzing phosphorylation of the visual pigment rhodopsin. To study the structure and mechanism of FRKs in human photoreceptors, we have isolated and characterized cDNA and genomic clones derived from the human RK locus using a bovine rhodopsin kinase cDNA fragment as a probe. The RK locus, assigned to chromosome 13 band q34, is composed of seven exons that encode a protein 92% identical in amino acid sequence to bovinemore » rhodopsin kinase. The marked difference between the structure of this gene and that of another recently clone human GRK gene suggests the existence of a wide evolutionary gap between members of the GRK gene family. 39 refs., 3 figs.« less

  2. Prediction of a rare chromosomal aberration simultaneously with next generation sequencing-based comprehensive chromosome screening in human preimplantation embryos for recurrent pregnancy loss.

    PubMed

    Lee, Yi-Xuan; Chen, Chien-Wen; Lin, Yi-Hui; Tzeng, Chii-Ruey; Chen, Chi-Huang

    2018-01-01

    Preimplantation genetic testing has been used widely in recent years as a part of assisted reproductive technology (ART) owing to the breakthrough development of deoxyribonucleic acid (DNA) sequencing. With the advancement of technology and increased resolution of next generation sequencing (NGS), extensive comprehensive chromosome screening along with small clinically significant deletions and duplications can possibly be performed simultaneously. Here, we present a case of rare chromosomal aberrations: 46,XY,dup(15)(q11.2q13),t(16;18)(q23;p11.2), which resulted in a normally developed adult but abnormal gametes leading to recurrent pregnancy loss (RPL). To our best knowledge, this is the first report of t(16;18) translocation with such a small exchanged segment detected by NGS platform of MiSeq system in simultaneous 24-chromosome aneuploidy screening.

  3. Chromosome3D: reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing.

    PubMed

    Adhikari, Badri; Trieu, Tuan; Cheng, Jianlin

    2016-11-07

    Reconstructing three-dimensional structures of chromosomes is useful for visualizing their shapes in a cell and interpreting their function. In this work, we reconstruct chromosomal structures from Hi-C data by translating contact counts in Hi-C data into Euclidean distances between chromosomal regions and then satisfying these distances using a structure reconstruction method rigorously tested in the field of protein structure determination. We first evaluate the robustness of the overall reconstruction algorithm on noisy simulated data at various levels of noise by comparing with some of the state-of-the-art reconstruction methods. Then, using simulated data, we validate that Spearman's rank correlation coefficient between pairwise distances in the reconstructed chromosomal structures and the experimental chromosomal contact counts can be used to find optimum conversion rules for transforming interaction frequencies to wish distances. This strategy is then applied to real Hi-C data at chromosome level for optimal transformation of interaction frequencies to wish distances and for ranking and selecting structures. The chromosomal structures reconstructed from a real-world human Hi-C dataset by our method were validated by the known two-compartment feature of the human chromosome organization. We also show that our method is robust with respect to the change of the granularity of Hi-C data, and consistently produces similar structures at different chromosomal resolutions. Chromosome3D is a robust method of reconstructing chromosome three-dimensional models using distance restraints obtained from Hi-C interaction frequency data. It is available as a web application and as an open source tool at http://sysbio.rnet.missouri.edu/chromosome3d/ .

  4. Haplotype analysis of the apolipoprotein gene cluster on human chromosome 11

    PubMed Central

    Olivier, Michael; Wang, Xujing; Cole, Regina; Gau, Brian; Kim, Jessica; Rubin, Edward M.; Pennacchio, Len A.

    2009-01-01

    Members of the apolipoprotein gene cluster (APOA1/C3/A4/A5) on human chromosome 11q23 play an important role in lipid metabolism. Polymorphisms in both APOA5 and APOC3 are strongly associated with plasma triglyceride concentrations. The close genomic locations of these two genes as well as their functional similarity have hindered efforts to define whether each gene independently influences human triglyceride concentrations. In this study, we examined the linkage disequilibrium and haplotype structure of 49 SNPs in a 150-kb region spanning the gene cluster. We identified a total of five common APOA5 haplotypes with a frequency of greater than 8% in samples of northern European origin. The APOA5 haplotype block did not extend past the 7 SNPs in the gene and was separated from the other apolipoprotein gene in the cluster by a region of significantly increased recombination. Furthermore, one previously identified triglyceride risk haplotype of APOA5 (APOA5*3) showed no association with three APOC3 SNPs previously associated with triglyceride concentrations, in contrast to the other risk haplotype (APOA5*2), which was associated with all three minor APOC3 SNP alleles. These results highlight the complex genetic relationship between APOA5 and APOC3 and support the notion that APOA5 represents an independent risk gene affecting plasma triglyceride concentrations in humans. PMID:15081120

  5. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture

    PubMed Central

    Darrow, Emily M.; Huntley, Miriam H.; Dudchenko, Olga; Stamenova, Elena K.; Durand, Neva C.; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L.; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P.; Lander, Eric S.; Chadwick, Brian P.; Aiden, Erez Lieberman

    2016-01-01

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the “Barr body.” Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called “superdomains,” such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called “superloops.” DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4. We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging. PMID:27432957

  6. The active gene that encodes human High Mobility Group 1 protein (HMG1) contains introns and maps to chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, S.; Finelli, P.; Rocchi, M.

    The human genome contains a large number of sequences related to the cDNA for High Mobility Group 1 protein (HMG1), which so far has hampered the cloning and mapping of the active HMG1 gene. We show that the human HMG1 gene contains introns, while the HMG1-related sequences do not and most likely are retrotransposed pseudogenes. We identified eight YACs from the ICI and CEPH libraries that contain the human HMG1 gene. The HMG1 gene is similar in structure to the previously characterized murine homologue and maps to human chromosome 13 and q12, as determined by in situ hybridization. The mousemore » Hmg1 gene maps to the telomeric region of murine Chromosome 5, which is syntenic to the human 13q12 band. 18 refs., 3 figs.« less

  7. The gametocidal chromosome as a tool for chromosome manipulation in wheat.

    PubMed

    Endo, T R

    2007-01-01

    Many alien chromosomes have been introduced into common wheat (the genus Triticum) from related wild species (the genus Aegilops). Some alien chromosomes have unique genes that secure their existence in the host by causing chromosome breakage in the gametes lacking them. Such chromosomes or genes, called gametocidal (Gc) chromosomes or Gc genes, are derived from different genomes (C, S, S(l) and M(g)) and belong to three different homoeologous groups 2, 3 and 4. The Gc genes of the C and M(g) genomes induce mild, or semi-lethal, chromosome mutations in euploid and alien addition lines of common wheat. Thus, induced chromosomal rearrangements have been identified and established in wheat stocks carrying deletions of wheat and alien (rye and barley) chromosomes or wheat-alien translocations. The gametocidal chromosomes isolated in wheat to date are reviewed here, focusing on their feature as a tool for chromosome manipulation.

  8. Evidence for human meiotic recombination interference obtained through construction of a short tandem repeat-polymorphism linkage map of chromosome 19

    PubMed Central

    Weber, James L.; Wang, Zhenyuan; Hansen, Kevin; Stephenson, Matt; Kappel, Clarisse; Salzman, Sherry; Wilkie, Patricia J.; Keats, Bronya; Dracopoli, Nicholas C.; Brandriff, Brigitte F.; Olsen, Anne S.

    1993-01-01

    An improved linkage map for human chromosome 19 containing 35 short tandem repeat polymorphisms (STRPs) and one VNTR (D19S20) was constructed. The map included 12 new (GATA)n tetranucleotide STRPs. Although total lengths of the male (114 cM) and female (128 cM) maps were similar, at both ends of the chromosome male recombination exceeded female recombination, while in the interior portion of the map female recombination was in excess. Cosmid clones containing the STRP sequences were identified and were positioned along the chromosome by fluorescent in situ hybridization. Four rounds of careful checking and removal of genotyping errors allowed biologically relevant conclusions to be made concerning the numbers and distributions of recombination events on chromosome 19. The average numbers of recombinations per chromosome matched closely the lengths of the genetic maps computed by using the program CRIMAP. Significant numbers of chromosomes with zero, one, two, or three recombinations were detected as products of both female and male meioses. On the basis of the total number of observed pairs of recombination events in which only a single informative marker was situated between the two recombinations, a maximal estimate for the rate of meiotic STRP “gene” conversion without recombination was calculated as 3 × 10−4/meiosis. For distances up to 30 cM between recombinations, many fewer chromosomes which had undergone exactly two recombinations were observed than were expected on the basis of the assumption of independent recombination locations. This strong new evidence for human meiotic interference will help to improve the accuracy of interpretation of clinical DNA test results involving polymorphisms flanking a genetic abnormality. PMID:8213834

  9. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of aberrations in human chromosome 5 by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/μ m, doses 1 or 4 Gy) 56Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture, and slides were painted by mBAND (MetaSystems). We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 Gy and 4 Gy Fe-ions, respectively. The distribution per unit length were similar in the p- and q-arm of chromosome 5, and >50% of the observed fragments measured <30% of the whole chromosome length. Only small fragments (<40% of the chromosome size) were involved in intra-chromosomal exchanges (interstitial deletions or inversions), whereas fragments up to 75% of the whole chromosome 5 were found in inter-chromosomal exchanges. We measured more inter-changes than intra-changes, and more intra-arm than inter-arm exchanges at both doses. No significant differences in the ratios of these aberrations were detected with respect to X-rays. On the other hand, Fe-ions induced a significantly higher fraction of complex-type exchanges when compared to sparsely ionizing radiation. Work supported by DLR, BMBF, INTAS and NIRS-HIMAC.

  10. Replication domains are self-interacting structural chromatin units of human chromosomes

    NASA Astrophysics Data System (ADS)

    Arneodo, Alain

    2011-03-01

    In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into

  11. Fertile offspring from sterile sex chromosome trisomic mice§

    PubMed Central

    Hirota, Takayuki; Ohta, Hiroshi; Powell, Benjamin E.; Mahadevaiah, Shantha K.; Ojarikre, Obah A.; Saitou, Mitinori; Turner, James M. A.

    2017-01-01

    Having the correct number of chromosomes is vital for normal development and health. Sex chromosome trisomy (SCT) affects 0.1% of the human population and is associated with infertility. We show that during reprogramming to induced pluripotent stem cells (iPSC), fibroblasts from sterile trisomic XXY and XYY mice lose the extra sex chromosome, by a phenomenon we term trisomy-biased chromosome loss (TCL). Resulting euploid XY iPSCs can be differentiated into the male germ cell lineage and functional sperm that can be used in intracytoplasmic sperm injection to produce chromosomally normal, fertile offspring. Sex chromosome loss is comparatively infrequent during mouse XX and XY iPSC generation. TCL also applies to other chromosomes, generating euploid iPSCs from cells of a Down syndrome mouse model. It can also create euploid iPSCs from human trisomic patient fibroblasts. The findings have relevance to overcoming infertility and other trisomic phenotypes. PMID:28818972

  12. Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health.

    PubMed

    Wood, Michael L; Royle, Nicola J

    2017-07-12

    Human herpesvirus 6A and 6B, alongside some other herpesviruses, have the striking capacity to integrate into telomeres, the terminal repeated regions of chromosomes. The chromosomally integrated forms, ciHHV-6A and ciHHV-6B, are proposed to be a state of latency and it has been shown that they can both be inherited if integration occurs in the germ line. The first step in full viral reactivation must be the release of the integrated viral genome from the telomere and here we propose various models of this release involving transcription of the viral genome, replication fork collapse, and t-circle mediated release. In this review, we also discuss the relationship between ciHHV-6 and the telomere carrying the insertion, particularly how the presence and subsequent partial or complete release of the ciHHV-6 genome may affect telomere dynamics and the risk of disease.

  13. mBAND Analysis of Early and Late Damages in the Chromosome of Human Lymphocytes after Exposures to Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2013-01-01

    Stable type chromosome aberrations that survive multiple generations of cell division include translocation and inversions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. At the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Detailed analysis of breaks participating in total chromosome exchanges within the first cell cycle post irradiation revealed a common hotspot located in the 3p21 region, which is a known fragile site corresponding to the band 6 in the mBand analysis. The breakpoint distribution in chromosomes collected at 7 days, but not at 14 days, post irradiation appeared similar to the distribution in cells collected within the first cell cycle post irradiation. The breakpoint distribution for human lymphocytes after radiation exposure was different from the previously published distribution for human

  14. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus

    PubMed Central

    Shao, Renfu; Kirkness, Ewen F.; Barker, Stephen C.

    2009-01-01

    The mitochondrial (mt) genomes of animals typically consist of a single circular chromosome that is ∼16-kb long and has 37 genes. Our analyses of the sequence reads from the Human Body Louse Genome Project and the patterns of gel electrophoresis and Southern hybridization revealed a novel type of mt genome in the sucking louse, Pediculus humanus. Instead of having all mt genes on a single chromosome, the 37 mt genes of this louse are on 18 minicircular chromosomes. Each minicircular chromosome is 3–4 kb long and has one to three genes. Minicircular mt chromosomes are also present in the four other species of sucking lice that we investigated, but not in chewing lice nor in the Psocoptera, to which sucking lice are most closely related. We also report unequivocal evidence for recombination between minicircular mt chromosomes in P. humanus and for sequence variation in mt genes generated by recombination. The advantages of a fragmented mt genome, if any, are currently unknown. Fragmentation of mt genome, however, has coevolved with blood feeding in the sucking lice. It will be of interest to explore whether or not life history features are associated with the evolution of fragmented chromosomes. PMID:19336451

  15. Physical mapping of the torsion dystonia region of human chromosome 9q34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozelius, L.J.; Hewett, J.; Shalish, C.

    1994-09-01

    Torsion dystonia is a syndrome characterized by loss of voluntary movements appearing as sustained muscle contractions and/or abnormal postures. The DYT1 gene is responsible for a subtype of torsion dystonia in which onset of symptoms tends to occur in a limb at an early age (mean 13 years) and to progress to a generalized state. Expression of the disease gene follows an autosomal dominant mode of inheritance with reduced penetrance. We initially mapped this gene to human chromosome 9q34 and have now defined its location to a < 1 cM region near the ASS locus based on historic recombination eventsmore » around a founder mutation in the Ashkenazic Jewish population. Using the CEPH YAC library and a chromosome 9 flow-sorted YAC library, we have generated a YAC contig spanning about 500 kb of this region. These YACs are being used to identify cosmids by direct hybridization to chromosome 9-specific cosmid libraries. Cosmids are being aligned by restriction digest patterns and by hybridization with oligonucleotide repeat probes. In addition, the cosmids are being {open_quotes}trapped{close_quotes} by exon amplification and these exons used to screen cDNA libraries. Thus far we have identified several candidate transcripts in this region.« less

  16. [Cosmid libraries containing DNA from human chromosome 13].

    PubMed

    Kapanadze, B I; Brodianskiĭ, V M; Baranova, A V; Sevat'ianov, S Iu; Fedorova, N D; Kurskov, M M; Kostina, M A; Mironov, A A; Sineokiĭ, S P; Zakhar'ev, V M; Grafodatskiĭ, A S; Modianov, N N; Iankovskiĭ, N K

    1996-03-01

    We characterized two cosmid libraries constructed from flow-sorted chromosome 13 at the Imperial Cancer Research Fund (ICRF), UK (13,000 clones) and Los Alamos National Laboratory (LANL), USA (17,000 clones). After storage for two years, clones showed high viability (95%) and structural stability. EcoR I and Hind III restriction patterns were studied in more than 500 ICRF and 200 LANL cosmids. The average size of inserts was shown to be 35-37 kb in both the libraries. Most cosmids (83% and 93% of ICRF and LANL libraries, respectively) exceed the lower size limit of DNA fragments that can be packaged and represent a good source for physical mapping of chromosome 13. Total length of inserts is four and five genome equivalents in the ICRF and LANL libraries, respectively. ICRF cosmids showed hybridization to 22 of 24 unique probes tested, which corresponds to a 90% probability of having any DNA fragment represented in the library. More than 1 Mb of chromosome 13 is overlapped by 90 cosmids of 22 groups revealed. A chromosomal region of more than 150 kb, containing the ATP1AL1 gene for alpha-1 peptide of Na+, K(+)-ATPase, is covered by 12 cosmids forming a contig. The results of restriction and hybridization analyses are stored in a CLONE database. These data and all the cosmids described are publicly available.

  17. [Analysis of fragments of intergenome spacers of human body observed in chromosomes containing no nuclear organization].

    PubMed

    Kupriyanova, N S; Nechvolodov, K K; Korsunenko, A V

    2014-01-01

    Tandem repetitions of rDNA provide so-called nuclear organizations (NOR). On the other hand, rDNA-structures are observed in some NOR chromosomes. It was demonstrated that, in addition to ribosome biogenesis, nucleoli provided a number of functions: cell cycle regulation, stress-induced response, transcription regulation, which often induced cell cascades. The mechanisms of the induction of rDNA segments in NOR chromosomes are obscure and require further research. About 1/3 repetitions are associated with nucleoli and SINE/Alu repetitions, homogeneous repetition, and tandem repetition. Perhaps, relative position of nucleoli and chromosomes may facilitate/prevent interaction of chromosomes with rDNA clusters. The variability of two larger repetitions in the central part of rMGS, LR1, and LR2 similar by -90% and separated by several hundred pairs of bases from each other was studied in our previous works. This work was devoted to the search for the LR1-LR2 segments in other chromosomes, characterization of their terminal tips at rupture points and genome areas of incorporation of the LR1-LR2 segments.

  18. The effect of magnesium ions on chromosome structure as observed by helium ion microscopy.

    PubMed

    Dwiranti, Astari; Hamano, Tohru; Takata, Hideaki; Nagano, Shoko; Guo, Hongxuan; Onishi, Keiko; Wako, Toshiyuki; Uchiyama, Susumu; Fukui, Kiichi

    2014-02-01

    One of the few conclusions known about chromosome structure is that Mg2+ is required for the organization of chromosomes. Scanning electron microscopy is a powerful tool for studying chromosome morphology, but being nonconductive, chromosomes require metal/carbon coating that may conceal information about the detailed surface structure of the sample. Helium ion microscopy (HIM), which has recently been developed, does not require sample coating due to its charge compensation system. Here we investigated the structure of isolated human chromosomes under different Mg2+ concentrations by HIM. High-contrast and resolution images from uncoated samples obtained by HIM enabled investigation on the effects of Mg2+ on chromosome structure. Chromatin fiber information was obtained more clearly with uncoated than coated chromosomes. Our results suggest that both overall features and detailed structure of chromatin are significantly affected by different Mg2+ concentrations. Chromosomes were more condensed and a globular structure of chromatin with 30 nm diameter was visualized with 5 mM Mg2+ treatment, while 0 mM Mg2+ resulted in a less compact and more fibrous structure 11 nm in diameter. We conclude that HIM is a powerful tool for investigating chromosomes and other biological samples without requiring metal/carbon coating.

  19. Satellite DNA-based artificial chromosomes for use in gene therapy.

    PubMed

    Hadlaczky, G

    2001-04-01

    Satellite DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian species. These artificially generated accessory chromosomes are composed of predictable DNA sequences and they contain defined genetic information. Prototype human SATACs have been successfully constructed in different cell types from 'neutral' endogenous DNA sequences from the short arm of the human chromosome 15. SATACs have already passed a number of hurdles crucial to their further development as gene therapy vectors, including: large-scale purification; transfer of purified artificial chromosomes into different cells and embryos; generation of transgenic animals and germline transmission with purified SATACs; and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals.

  20. A gene (ETM) for essential tremor maps to chromosome 2p22-p25.

    PubMed

    Higgins, J J; Pho, L T; Nee, L E

    1997-11-01

    We report the results of linkage analysis in a large American family of Czech descent with dominantly inherited "pure" essential tremor (ET) and genetic anticipation. Genetic loci on chromosome 2p22-p25 establish linkage to this region with a maximum LOD score (Zmax) = 5.92 for the locus, D2S272. Obligate recombinant events place the ETM gene in a 15-cM candidate interval between the genetic loci D2S168 and D2S224. Repeat expansion detection analysis suggests that expanded CAG trinucleotide sequences are associated with ET. These findings will facilitate the search for an ETM gene and may further our understanding of the human motor system.

  1. The Biological Effectiveness of Silicon Ions is Significantly Higher than Iron Ions for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, or Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET Si ions ranged from 48 to 158 keV/micron. Doses delivered were in the 10 to 200 cGy range. Dose response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600 Mev/u beam and 170 MeV/u beam produced the highest RBE(sub max) value for Si ions. For both ions the RBE(sub max) values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreased with further increase in LET.

  2. Maternal Gametic Transmission of Translocations or Inversions of Human Chromosome 11p15.5 Results in Regional DNA Hypermethylation and Downregulation of CDKN1C Expression

    PubMed Central

    Smith, Adam C.; Suzuki, Masako; Thompson, Reid; Choufani, Sanaa; Higgins, Michael J.; Chiu, Idy W.; Squire, Jeremy A.; Greally, John M.; Weksberg, Rosanna

    2015-01-01

    Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome associated with genetic or epigenetic alterations in one of two imprinted domains on chromosome 11p15.5. Rarely, chromosomal translocations or inversions of chromosome 11p15.5 are associated with BWS but the molecular pathophysiology in such cases is not understood. In our series of 3 translocation and 2 inversion patients with BWS, the chromosome 11p15.5 breakpoints map within the centromeric imprinted domain, 2. We hypothesized that either microdeletions/microduplications adjacent to the breakpoints could disrupt genomic sequences important for imprinted gene regulation. An alternate hypothesis was that epigenetic alterations of as yet unknown regulatory DNA sequences, result in the BWS phenotype. A high resolution Nimblegen custom microarray was designed representing all non-repetitive sequences in the telomeric 33 MB of the short arm of human chromosome 11. For the BWS-associated chromosome 11p15.5 translocations and inversions, we found no evidence of microdeletions/microduplications. DNA methylation was also tested on this microarray using the HpaII tiny fragment enrichment by ligation-mediated PCR (HELP) assay. This high-resolution DNA methylation microarray analysis revealed a gain of DNA methylation in the translocation/inversion patients affecting the p-ter segment of chromosome 11p15, including both imprinted domains. BWS patients that inherited a maternal translocation or inversion also demonstrated reduced expression of the growth suppressing imprinted gene, CDKN1C in Domain 2. In summary, our data demonstrate that translocations and inversions involving imprinted domain 2 on chromosome 11p15.5, alter regional DNA methylation patterns and imprinted gene expression in cis, suggesting that these epigenetic alterations are generated by an alteration in “chromatin context”. PMID:22079941

  3. Localization of the human tripeptidyl peptidase II gene (TPP2) to 13q32-q33 by nonradioactive in situ hybridization and somatic cell hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinsson, T.; Vujic, M.; Tomkinson, B.

    1993-08-01

    The authors have assigned the human tripeptidyl peptidase II (TPP2) gene to chromosome region 13q32-q33 using two different methods. First, a full-length TPP2 cDNA was used as a probe on Southern blots of DNA from a panel of human/rodent somatic cell hybrids. The TPP2 sequences were found to segregate with the human chromosome 13. Second, fluorescence in situ hybridization analysis was performed with the same probe. This analysis supported the chromosome 13 localization and further refined it to region 13q32-q33. 20 refs., 2 figs.

  4. Chromosomal instability in women with primary ovarian insufficiency.

    PubMed

    Katari, Sunita; Aarabi, Mahmoud; Kintigh, Angela; Mann, Susan; Yatsenko, Svetlana A; Sanfilippo, Joseph S; Zeleznik, Anthony J; Rajkovic, Aleksandar

    2018-02-07

    What is the prevalence of somatic chromosomal instability among women with idiopathic primary ovarian insufficiency (POI)? A subset of women with idiopathic POI may have functional impairment in DNA repair leading to chromosomal instability in their soma. The formation and repair of DNA double-strand breaks during meiotic recombination are fundamental processes of gametogenesis. Oocytes with compromised DNA integrity are susceptible to apoptosis which could trigger premature ovarian aging and accelerated wastage of the human follicle reserve. Genomewide association studies, as well as whole exome sequencing, have implicated multiple genes involved in DNA damage repair. However, the prevalence of defective DNA damage repair in the soma of women with POI is unknown. In total, 46 women with POI and 15 family members were evaluated for excessive mitomycin-C (MMC)-induced chromosome breakage. Healthy fertile females (n = 20) and two lymphoblastoid cell lines served as negative and as positive controls, respectively. We performed a pilot functional study utilizing MMC to assess chromosomal instability in the peripheral blood of participants. A high-resolution array comparative genomic hybridization (aCGH) was performed on 16 POI patients to identify copy number variations (CNVs) for a set of 341 targeted genes implicated in DNA repair. Array CGH revealed three POI patients (3/16, 18.8%) with pathogenic CNVs. Excessive chromosomal breakage suggestive of a constitutional deficiency in DNA repair was detected in one POI patient with the 16p12.3 duplication. In two patients with negative chromosome breakage analysis, aCGH detected a Xq28 deletion comprising the Centrin EF-hand Protein 2 (CETN2) and HAUS Augmin Like Complex Subunit 7 (HAUS7) genes essential for meiotic DNA repair, and a duplication in the 3p22.2 region comprising a part of the ATPase domain of the MutL Homolog 1 (MLH1) gene. Peripheral lymphocytes, used as a surrogate tissue to quantify induced chromosome

  5. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    PubMed

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli .

  6. Gene encoding the collagen type I and thrombospondin receptor CD36 is located on chromosome 7q11. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Ruiz, E.; Armesilla, A.L.; Sanchez-Madrid, F.

    The human CD36 is a member of a gene family of structurally related glycoproteins and functions as a receptor for collagen type I and thrombospondin. CD36 also binds to red blood cells infected with the human malaria parasite Plasmodium falciparum. In the present study, the CD36 gene was assigned to chromosome 7 by using the polymerase chain reaction with DNA from human-hamster somatic cell hybrids. Furthermore, the use of a CD36 genomic probe has allowed the localization of the CD36 locus to the 7q11.2 band by fluorescence in situ hybridization coupled with GTG-banding. 14 refs., 2 figs.

  7. High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli

    PubMed Central

    van Koningsbruggen, Silvana; Gierliński, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J.; Ariyurek, Yavuz; den Dunnen, Johan T.

    2010-01-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope. PMID:20826608

  8. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli.

    PubMed

    van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I

    2010-11-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.

  9. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomfohrde, J.; Barnes, R.; Bowcock, A.

    1994-05-20

    A gene involved in psoriasis susceptibility was localized to the distal region of human chromosomes 17q as a result of a genome-wide linkage analysis with polymorphic microsatellites and eight multiply affected psoriasis kindreds. In the family which showed the strongest evidence for linkage, the recombination fraction between a psoriasis susceptibility locus and D17S784 was 0.04 with a maximum two-point lod score of 5.33. There was also evidence for genetic heterogeneity and although none of the linked families showed any association with HLA-Cw6, two unlinked families showed weak levels of association. This study demonstrates that is some families, psoriasis susceptibility ismore » due to variation at a single major genetic locus other than the human lymphocyte antigen locus. 28 refs., 2 figs., 1 tab.« less

  10. Chromosomal evolution among leaf-nosed nectarivorous bats--evidence from cross-species chromosome painting (Phyllostomidae, Chiroptera).

    PubMed

    Sotero-Caio, Cibele G; Volleth, Marianne; Gollahon, Lauren S; Fu, Beiyuan; Cheng, William; Ng, Bee L; Yang, Fengtang; Baker, Robert J

    2013-12-26

    New World leaf-nosed bats, Phyllostomidae, represent a lineage of Chiroptera marked by unprecedented morphological/ecological diversity and extensive intergeneric chromosomal reorganization. There are still disagreements regarding their systematic relationships due to morphological convergence among some groups. Their history of karyotypic evolution also remains to be documented. To better understand the evolutionary relationships within Phyllostomidae, we developed chromosome paints from the bat species Macrotus californicus. We tested the potential of these paints as phylogenetic tools by looking for chromosomal signatures in two lineages of nectarivorous phyllostomids whose independent origins have been statistically supported by molecular phylogenies. By examining the chromosomal homologies defined by chromosome painting among two representatives of the subfamily Glossophaginae (Glossophaga soricina and Anoura cultrata) and one species from the subfamily Lonchophyllinae (Lonchophylla concava), we found chromosomal correspondence in regions not previously detected by other comparative cytogenetic techniques. We proposed the corresponding human chromosomal segments for chromosomes of the investigated species and found two syntenic associations shared by G. soricina and A. cultrata. Comparative painting with whole chromosome-specific paints of M. californicus demonstrates an extensive chromosomal reorganization within the two lineages of nectarivorous phyllostomids, with a large number of chromosomes shared between M. californicus and G. soricina. We show that the evolution of nectar-feeding bats occurs mainly by reshuffling of chiropteran Evolutionarily Conserved Units (ECUs). Robertsonian fusions/fissions and inversions seem to be important modifiers of phyllostomid karyotypes, and autapomorphic character states are common within species. Macrotus californicus chromosome paints will be a valuable tool for documenting the pattern of karyotypic evolution within

  11. Currently recognized clinically relevant and known genes for human reproduction and related infertility with representation on high-resolution chromosome ideograms.

    PubMed

    Butler, Merlin G; Rafi, Syed K; McGuire, Austen; Manzardo, Ann M

    2016-01-01

    To provide an update of currently recognized clinically relevant candidate and known genes for human reproduction and related infertility plotted on high resolution chromosome ideograms (850 band level) and represented alphabetically in tabular form. Descriptive authoritative computer-based website and peer-reviewed medical literature searches used pertinent keywords representing human reproduction and related infertility along with genetics and gene mutations. A master list of genes associated with human reproduction and related infertility was generated with a visual representation of gene locations on high resolution chromosome ideograms. GeneAnalytics pathway analysis was carried out on the resulting list of genes to assess underlying genetic architecture for infertility. Advances in genetic technology have led to the discovery of genes responsible for reproduction and related infertility. Genes identified (N=371) in our search primarily impact ovarian steroidogenesis through sex hormone biology, germ cell production, genito-urinary or gonadal development and function, and related peptide production, receptors and regulatory factors. The location of gene symbols plotted on high resolution chromosome ideograms forms a conceptualized image of the distribution of human reproduction genes. The updated master list can be used to promote better awareness of genetics of reproduction and related infertility and advance discoveries on genetic causes and disease mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. On the Structural Plasticity of the Human Genome: Chromosomal Inversions Revisited

    PubMed Central

    Alves, Joao M; Lopes, Alexandra M; Chikhi, Lounès; Amorim, António

    2012-01-01

    With the aid of novel and powerful molecular biology techniques, recent years have witnessed a dramatic increase in the number of studies reporting the involvement of complex structural variants in several genomic disorders. In fact, with the discovery of Copy Number Variants (CNVs) and other forms of unbalanced structural variation, much attention has been directed to the detection and characterization of such rearrangements, as well as the identification of the mechanisms involved in their formation. However, it has long been appreciated that chromosomes can undergo other forms of structural changes - balanced rearrangements - that do not involve quantitative variation of genetic material. Indeed, a particular subtype of balanced rearrangement – inversions – was recently found to be far more common than had been predicted from traditional cytogenetics. Chromosomal inversions alter the orientation of a specific genomic sequence and, unless involving breaks in coding or regulatory regions (and, disregarding complex trans effects, in their close vicinity), appear to be phenotypically silent. Such a surprising finding, which is difficult to reconcile with the classical interpretation of inversions as a mechanism causing subfertility (and ultimately reproductive isolation), motivated a new series of theoretical and empirical studies dedicated to understand their role in human genome evolution and to explore their possible association to complex genetic disorders. With this review, we attempt to describe the latest methodological improvements to inversions detection at a genome wide level, while exploring some of the possible implications of inversion rearrangements on the evolution of the human genome. PMID:23730202

  13. mBAND Analysis of Late Chromosome Aberrations in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  14. A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons

    PubMed Central

    Capozzi, Oronzo; Carbone, Lucia; Stanyon, Roscoe R.; Marra, Annamaria; Yang, Fengtang; Whelan, Christopher W.; de Jong, Pieter J.; Rocchi, Mariano; Archidiacono, Nicoletta

    2012-01-01

    Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human–gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans. PMID:22892276

  15. Aneuploidy detection for chromosomes 1, X and Y by fluorescence in situ hybridization in human sperm from oligoasthenoteratozoospermic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, M.G.; Zackowski, J.L.; Acosta, A.A.

    1994-09-01

    Oligoasthenoteratozoospermic males (n=15) were investigated for infertility as compared with proven fertile donors. The oligoasthenoteratozoospermic population showed a mean sperm concentration of 9.7 x 10{sup 6}/ml (Range 4.2-19.7), mean motility of 38.5% (Range 10.6-76.8) and morphology (measured by the percentage of normal forms evaluated by strict criteria) with a mean of 3.49% (Range 1.5-5.0). Fluorescence in situ hybridization (FISH) using satellite DNA probes specific for chromosomes 1 (puc 1.77), X (alpha satellite), and Y (satellite-III at Yqh) was performed on human interphase sperm nuclei. DNA probes were either directly labelled with rhodamine-dUTP, FITC-dUTP, or biotinylated by nick translation. Hybridization andmore » signal detection were done by routine laboratory protocols. Microscopic analysis was performed using a cooled CCD camera attached to an epi-fluorescent microscope. After hybridization, fertile donors yielded a frequency of 0.96% (n=12) nullisomic, 98.5% (n=1231) monosomic and 0.96% (n=12) disomic for chromosome 1, whereas oligoasthenoteratozoospermic males yielded a frequency of 16% (n=600) nullisomic, 74.5% (n=2792) monosomic and 9.9% (n=370) disomic. In addition, fertile donors yielded a frequency of 45.7% (n=633) monosomic and 0.7% (n=11) disomic for chromosome X, whereas oligoasthenoteratozoospermic males yielded a frequency of 38.7% (n=760) monosomic and 0.8% (n=13) disomic. Chromosome Y frequencies for fertile donors showed 44.6% (n=614) monosomic and 0.6% (n=2) disomic, whereas oligoasthenoteratozoospermic males yielded a frequency of 33.2% (n=701) monosomic and 0.8% (n=15) disomic. This suggests that the frequency of nullisomy for chromosome 1 is significantly higher (p<0.001) in sperm from oligoasthenoteratozoospermic makes versus sperm from our fertile donors. We conclude that FISH is a powerful tool to determine the frequency of aneuploidy in sperm from oligoasthenoteratozoospermic patients.« less

  16. The Sex Chromosomes in Evolution and in Medicine

    PubMed Central

    Barr, Murray L.

    1966-01-01

    The recent emergence of human cytogenetics has a firm foundation in studies on other forms of life. Historical highlights are Mendel's studies on the garden pea (published in 1865 but lost in an obscure journal until 1900); formulation of cytogenic postulates by Sutton and Boveri (1902-1903); Bridges' discovery of chromosome abnormalities in Drosophila (1916), followed by numerous similar studies in plants; and demonstration of the chromosomal basis of the syndromes of Down, Klinefelter and Turner in man (1959). The sex chromosomes (XX and XY) evolved from a pair of undifferentiated autosomes of a premammalian ancestor, the X chromosome changing less than the Y as they evolved. Eleven numerical abnormalities of the sex chromosomes are known in man, and knowledge of their effects on development is accumulating. The abnormal complexes range in size from the XO error of Turner's syndrome to the XXXXY error of a variant of Klinefelter's syndrome. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8 PMID:4224254

  17. Molecular Cytogenetics Guides Massively Parallel Sequencing of a Radiation-Induced Chromosome Translocation in Human Cells.

    PubMed

    Cornforth, Michael N; Anur, Pavana; Wang, Nicholas; Robinson, Erin; Ray, F Andrew; Bedford, Joel S; Loucas, Bradford D; Williams, Eli S; Peto, Myron; Spellman, Paul; Kollipara, Rahul; Kittler, Ralf; Gray, Joe W; Bailey, Susan M

    2018-05-11

    Chromosome rearrangements are large-scale structural variants that are recognized drivers of oncogenic events in cancers of all types. Cytogenetics allows for their rapid, genome-wide detection, but does not provide gene-level resolution. Massively parallel sequencing (MPS) promises DNA sequence-level characterization of the specific breakpoints involved, but is strongly influenced by bioinformatics filters that affect detection efficiency. We sought to characterize the breakpoint junctions of chromosomal translocations and inversions in the clonal derivatives of human cells exposed to ionizing radiation. Here, we describe the first successful use of DNA paired-end analysis to locate and sequence across the breakpoint junctions of a radiation-induced reciprocal translocation. The analyses employed, with varying degrees of success, several well-known bioinformatics algorithms, a task made difficult by the involvement of repetitive DNA sequences. As for underlying mechanisms, the results of Sanger sequencing suggested that the translocation in question was likely formed via microhomology-mediated non-homologous end joining (mmNHEJ). To our knowledge, this represents the first use of MPS to characterize the breakpoint junctions of a radiation-induced chromosomal translocation in human cells. Curiously, these same approaches were unsuccessful when applied to the analysis of inversions previously identified by directional genomic hybridization (dGH). We conclude that molecular cytogenetics continues to provide critical guidance for structural variant discovery, validation and in "tuning" analysis filters to enable robust breakpoint identification at the base pair level.

  18. Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration.

    PubMed

    Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Gilbert-Girard, Shella; Collin, Vanessa; Hall-Sedlak, Ruth; Jerome, Keith R; Mori, Yasuko; Carbonneau, Julie; Boivin, Guy; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39 , U90 , and U100 , without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state. IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the

  19. Modeling of the Human Alveolar Rhabdomyosarcoma Pax3-Foxo1 Chromosome Translocation in Mouse Myoblasts Using CRISPR-Cas9 Nuclease

    PubMed Central

    Lagutina, Irina V.; Valentine, Virginia; Picchione, Fabrizio; Harwood, Frank; Valentine, Marcus B.; Villarejo-Balcells, Barbara; Carvajal, Jaime J.; Grosveld, Gerard C.

    2015-01-01

    Many recurrent chromosome translocations in cancer result in the generation of fusion genes that are directly implicated in the tumorigenic process. Precise modeling of the effects of cancer fusion genes in mice has been inaccurate, as constructs of fusion genes often completely or partially lack the correct regulatory sequences. The reciprocal t(2;13)(q36.1;q14.1) in human alveolar rhabdomyosarcoma (A-RMS) creates a pathognomonic PAX3-FOXO1 fusion gene. In vivo mimicking of this translocation in mice is complicated by the fact that Pax3 and Foxo1 are in opposite orientation on their respective chromosomes, precluding formation of a functional Pax3-Foxo1 fusion via a simple translocation. To circumvent this problem, we irreversibly inverted the orientation of a 4.9 Mb syntenic fragment on chromosome 3, encompassing Foxo1, by using Cre-mediated recombination of two pairs of unrelated oppositely oriented LoxP sites situated at the borders of the syntenic region. We tested if spatial proximity of the Pax3 and Foxo1 loci in myoblasts of mice homozygous for the inversion facilitated Pax3-Foxo1 fusion gene formation upon induction of targeted CRISPR-Cas9 nuclease-induced DNA double strand breaks in Pax3 and Foxo1. Fluorescent in situ hybridization indicated that fore limb myoblasts show a higher frequency of Pax3/Foxo1 co-localization than hind limb myoblasts. Indeed, more fusion genes were generated in fore limb myoblasts via a reciprocal t(1;3), which expressed correctly spliced Pax3-Foxo1 mRNA encoding Pax3-Foxo1 fusion protein. We conclude that locus proximity facilitates chromosome translocation upon induction of DNA double strand breaks. Given that the Pax3-Foxo1 fusion gene will contain all the regulatory sequences necessary for precise regulation of its expression, we propose that CRISPR-Cas9 provides a novel means to faithfully model human diseases caused by chromosome translocation in mice. PMID:25659124

  20. Chromosomal disorders and male infertility

    PubMed Central

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility. PMID:22120929

  1. Chromosomal disorders and male infertility.

    PubMed

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  2. Genotoxicity of mercury used in chromosome aberration tests.

    PubMed

    Akiyama, M; Oshima, H; Nakamura, M

    2001-01-01

    The purpose of this study was to investigate the genotoxic effects of Hg released from dental amalgams. The chromosome aberration test was conducted using original extracts and their diluted solutions of conventional type amalgam and high copper amalgam. The concentrations of Hg, Cu and Ag in the original extract of high copper amalgam were 17.64, 7.97 and 43.90 microM, respectively. Those in the original extract of conventional type amalgam were 20.63, 7.87 and 14.79 microM, respectively. 10 and 30 microM Hg(2+) were also used for comparison. The frequency of chromosome aberrations was below 5% with 0 microM Hg(2+) and with a triple dilution of high copper amalgam extract, containing 5.88 microM Hg, 14.63 microM Cu and 2.65 microM Ag. However, 9.5% of the cells showed chromosome aberrations with a quadruple dilution of conventional type amalgam, containing 5.15 microM Hg, 3.69 microM Cu and 1.96 microM Ag. The amount of Hg in the quadruple dilution of conventional type amalgam was less than that in the triple dilution of high copper amalgam extract and 10 microM Hg(2+). A concentration of 30 microM Hg(2+) caused 34.5% of the cells to show chromosome aberrations while with a two-thirds dilution of high copper amalgam extract, containing 11.76 microM Hg, 29.26 microM Cu and 5.31 microM Ag, 58.5% of the cells showed chromosome aberrations. A two-thirds dilution of high copper amalgam extract induced more chromosome aberrations than 30 microM Hg(2+), although the amount of Hg was less than 30 microM Hg(2+). A triple dilution of conventional type amalgam extract, original extracts of conventional type amalgam and high copper amalgam and 100 microM Hg(2+) were induced few metaphases. It was revealed that the conventional type amalgam induced chromosome aberrations with quadruple dilution where cell viability was about 80% and that the high copper amalgam induced a high level of chromosome aberrations with the two-thirds dilution. The effects of low level Hg on humans

  3. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription.

    PubMed

    Gómez-Herreros, Fernando; Zagnoli-Vieira, Guido; Ntai, Ioanna; Martínez-Macías, María Isabel; Anderson, Rhona M; Herrero-Ruíz, Andrés; Caldecott, Keith W

    2017-08-10

    DNA double-strand breaks (DSBs) induced by abortive topoisomerase II (TOP2) activity are a potential source of genome instability and chromosome translocation. TOP2-induced DNA double-strand breaks are rejoined in part by tyrosyl-DNA phosphodiesterase 2 (TDP2)-dependent non-homologous end-joining (NHEJ), but whether this process suppresses or promotes TOP2-induced translocations is unclear. Here, we show that TDP2 rejoins DSBs induced during transcription-dependent TOP2 activity in breast cancer cells and at the translocation 'hotspot', MLL. Moreover, we find that TDP2 suppresses chromosome rearrangements induced by TOP2 and reduces TOP2-induced chromosome translocations that arise during gene transcription. Interestingly, however, we implicate TDP2-dependent NHEJ in the formation of a rare subclass of translocations associated previously with therapy-related leukemia and characterized by junction sequences with 4-bp of perfect homology. Collectively, these data highlight the threat posed by TOP2-induced DSBs during transcription and demonstrate the importance of TDP2-dependent non-homologous end-joining in protecting both gene transcription and genome stability.DNA double-strand breaks (DSBs) induced by topoisomerase II (TOP2) are rejoined by TDP2-dependent non-homologous end-joining (NHEJ) but whether this promotes or suppresses translocations is not clear. Here the authors show that TDP2 suppresses chromosome translocations from DSBs introduced during gene transcription.

  4. Clinal patterns of human Y chromosomal diversity in continental Italy and Greece are dominated by drift and founder effects.

    PubMed

    Di Giacomo, F; Luca, F; Anagnou, N; Ciavarella, G; Corbo, R M; Cresta, M; Cucci, F; Di Stasi, L; Agostiano, V; Giparaki, M; Loutradis, A; Mammi', C; Michalodimitrakis, E N; Papola, F; Pedicini, G; Plata, E; Terrenato, L; Tofanelli, S; Malaspina, P; Novelletto, A

    2003-09-01

    We explored the spatial distribution of human Y chromosomal diversity on a microgeographic scale, by typing 30 population samples from closely spaced locations in Italy and Greece for 9 haplogroups and their internal microsatellite variation. We confirm a significant difference in the composition of the Y chromosomal gene pools of the two countries. However, within each country, heterogeneity is not organized along the lines of clinal variation deduced from studies on larger spatial scales. Microsatellite data indicate that local increases of haplogroup frequencies can be often explained by a limited number of founders. We conclude that local founder or drift effects are the main determinants in shaping the microgeographic Y chromosomal diversity.

  5. Technique of laser chromosome welding for chromosome repair and artificial chromosome creation.

    PubMed

    Huang, Yao-Xiong; Li, Lin; Yang, Liu; Zhang, Yi

    2018-04-01

    Here we report a technique of laser chromosome welding that uses a violet pulse laser micro-beam for welding. The technique can integrate any size of a desired chromosome fragment into recipient chromosomes by combining with other techniques of laser chromosome manipulation such as chromosome cutting, moving, and stretching. We demonstrated that our method could perform chromosomal modifications with high precision, speed and ease of use in the absence of restriction enzymes, DNA ligases and DNA polymerases. Unlike the conventional methods such as de novo artificial chromosome synthesis, our method has no limitation on the size of the inserted chromosome fragment. The inserted DNA size can be precisely defined and the processed chromosome can retain its intrinsic structure and integrity. Therefore, our technique provides a high quality alternative approach to directed genetic recombination, and can be used for chromosomal repair, removal of defects and artificial chromosome creation. The technique may also have applicability on the manipulation and extension of large pieces of synthetic DNA.

  6. Assignment of chromosomal locus and evidence for alternatively spliced mRNAs of a human sperm membrane protein (hSMP-1).

    PubMed

    Wang, H; Miao, S; Chen, D; Wang, L; Koide, S S

    1999-10-06

    The gene (HSD-1) coding a human sperm membrane protein (hSMP-1) was isolated from a human testis cDNA expression library using antibodies found in the serum of an infertile woman. HSD-1 was localized to a single locus on chromosome 9 and assigned to band 9p12-p13 by fluorescent in situ hybridization (FISH) mapping and DAPI (4,6-diamidino-2-phenylindole) banding, using rat/human somatic cell hybrids and metaphase chromosomes of human lymphocytes. In rescreening a testis lambdagt10 cDNA expression library, the full-length cDNA (HSD-1) and several truncated cDNAs with heterologous regions were isolated from positive clones. The heterology consisted of deletion, insertion and alteration of the 5'-end. These heterologous truncated fragments may be produced by alternative splicing of mRNAs. Two recombinant prokaryotic expression vectors were constructed with one of the heterologous fragment (clone #26) with and without the alternative 5'-end. Escherichia coli transfected with the construct containing the alternative 5'-end failed to produce the recombinant product, whereas those transfected with the vector lacking the 5'-end produced hSMP-1. DNASIS analysis of the structure of #26 mRNA suggests that the 5'-end has a stable secondary configuration that may maintain the mRNA in an inactivated state, whereby hindering its translation and preventing the expression of the gene.

  7. Mapping of the chromosome of bacteria Erwinia carotovora subsp. atroseptica 3-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaichik, E.A.; Pesnyakevich, A.G.

    1995-07-01

    Two Hfr-like donor strains of bacteria Erwinia carotovora subsp. atroseptica (Eca) 3-2 were developed by integration into the chromosome of the conjugative plasmid R471a via homology with transposon Tn9. Using these and two donor strains created earlier, we constructed the genetic map of a fragment of the chromosome of strain Eca 3-2. The location of 14 loci is shown in this map. 15 refs., 3 figs., 1 tab.

  8. High-resolution mapping of D16Led-1, Gart, Gas-r, Cbr, Pcp-4, and Erg on distal mouse chromosome 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mjaatvedt, A.E.; Citron, M.P.; Reeves, R.H.

    1993-08-01

    More than 500 backcross progeny from four inter-subspecific backcrosses were typed for six markers on distal mouse chromosome 16. Five of these represented genes that mapped within the Sod-1 to Ets-2 interval, which was shown previously to contain the weaver (wv) gene. The map order, including previously mapped reference markers, is (cen)-D16H21S16-D16Led-1-App-Sod-1-Gart-Gas-4-Cbr-wv-Pep-4-Erg-Ets-2. This gene order recapitulates the order of the genes on human chromosome 21 where known. Two of these markers further define the region containing the weaver gene to a 3.9-cM segment between Cbr and Pcp-4. In addition, Pep-4 was localized to human chromosome 21 by the presence ofmore » a human-specific restriction fragment in WAV-17, a mouse-human somatic cell hybrid with human chromosome 31 as the only human contribution. 26 refs., 3 figs., 3 tabs.« less

  9. Are chromosomal instabilities induced by exposure of cultured normal human cells to low- or high-LET radiation?

    NASA Technical Reports Server (NTRS)

    Dugan, Lawrence C.; Bedford, Joel S.

    2003-01-01

    Radiation-induced genomic instability has been proposed as a very early, if not an initiating, step in radiation carcinogenesis. Numerous studies have established the occurrence of radiation-induced chromosomal instability in various cells of both human and rodent origin. In many of these studies, however, the cells were not "normal" initially, and in many cases they involved tumor-derived cell lines. The phenomenon clearly would be of even greater interest if it were shown to occur generally in cells that are normal at the outset, rather than cells that may have been "selected" because of a pre-existing susceptibility to induced instability. As a test of the generality of the phenomenon, we studied low-passage normal diploid human fibroblasts (AG1521A) to determine whether they are susceptible to the induction of chromosomal instability in the progeny of surviving cells after exposure in G(0) to low- and high-LET radiation. Cytogenetic assays for instability were performed on both mixed populations of cells and clones of cells surviving exposure. We found no evidence for the induction of such instability as a result of radiation exposure, though we observed a senescence-related chromosomal instability in the progeny of both irradiated and unirradiated cell populations. Copyright 2003 by Radiation Research Society.

  10. Non-pathological complete paternal uniparental isodisomy of chromosome 2 revealed in a maternity testing case.

    PubMed

    Chen, Man; Jiang, Jian; Li, Chen; Ren, He; Chen, Wei; Liu, Zhiyong; Cheng, Feng; Zhao, Jing; Chen, Tong; Chen, Chuguang; Yan, Jiangwei

    2018-05-25

    We present a duo paternity test case to assess the biological relationship between a woman and her female child. After analyzing 57 autosomal and 19 X-chromosomal short tandem repeat loci, mother-daughter exclusions were discovered at four loci, which were all located on chromosome 2. Further testing of whole-genome single nucleotide polymorphisms confirmed that the daughter had complete uniparental disomy (UPD) of chromosome 2. This study presents a cautionary case demonstrating that hasty decisions of parentage exclusion should not be made when genetic markers on the same chromosome do not conform to Mendel's laws due to UPD.

  11. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3–Scc1 gate

    PubMed Central

    Buheitel, Johannes; Stemmann, Olaf

    2013-01-01

    Faithful transmission of chromosomes during eukaryotic cell division requires sister chromatids to be paired from their generation in S phase until their separation in M phase. Cohesion is mediated by the cohesin complex, whose Smc1, Smc3 and Scc1 subunits form a tripartite ring that entraps both DNA double strands. Whereas centromeric cohesin is removed in late metaphase by Scc1 cleavage, metazoan cohesin at chromosome arms is displaced already in prophase by proteolysis-independent signalling. Which of the three gates is triggered by the prophase pathway to open has remained enigmatic. Here, we show that displacement of human cohesin from early mitotic chromosomes requires dissociation of Smc3 from Scc1 but no opening of the other two gates. In contrast, loading of human cohesin onto chromatin in telophase occurs through the Smc1–Smc3 hinge. We propose that the use of differently regulated gates for loading and release facilitates unidirectionality of DNA's entry into and exit from the cohesin ring. PMID:23361318

  12. Flow cytogenetics and chromosome sorting.

    PubMed

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  13. Mutagenicity and human chromosomal effect of stevioside, a sweetener from Stevia rebaudiana Bertoni.

    PubMed Central

    Suttajit, M; Vinitketkaumnuen, U; Meevatee, U; Buddhasukh, D

    1993-01-01

    Leaves of Stevia rebaudiana Bertoni have been popularly used as a sweetener in foods and beverages for diabetics and obese people due to their potent sweetener stevioside. In this report, stevioside and steviol were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 and for chromosomal effects on cultured human lymphocytes. Stevioside was not mutagenic at concentrations up to 25 mg/plate, but showed direct mutagenicity to only TA98 at 50 mg/plate. However, steviol did not exhibit mutagenicity in either TA98 or TA100, with or without metabolic activation. No significant chromosomal effect of stevioside and steviol was observed in cultured blood lymphocytes from healthy donors (n = 5). This study indicates that stevioside and steviol are neither mutagenic nor clastogenic in vitro at the limited doses; however, in vivo genotoxic tests and long-term effects of stevioside and steviol are yet to be investigated. PMID:8143647

  14. Chromosomal locations of mouse immunoglobulin genes.

    PubMed Central

    Valbuena, O; Marcu, K B; Croce, C M; Huebner, K; Weigert, M; Perry, R P

    1978-01-01

    The chromosomal locations of the structural genes coding for the constant portions of mouse heavy (H) and light chain immunoglobulins were studied by molecular hybridization techniques. Complementary DNA probes containing the constant-region sequences of kappa and lambdaI light chain and alpha, gamma2b, and mu heavy chain mRNAs were annealed to a large excess of DNA from a series of eight mouse-human hybrid cell lines that are deficient for various mouse chromosomes. The lines were scored as positive when a high proportion of a probe annealed and negative when an insignificant proportion annealed. Some lines were clearly negative for H and lambda and clearly positive for kappa. Others were positive or intermediate for lambda, positive for kappa and negative for H. Still others, including a line that was selected for the absence of the mouse X chromosome, were positive for all immunoglobulin species. These results demonstrate that the Clambda, Ckappa, and CH genes are located on different autosomes in the mouse. In contrast, the three heavy-chain families exhibited consistently uniform hybridization results, suggesting that the genes for Calpha, Cgamma, and Cmu are located on the same chromosome. A comparison of karyotypic data with hybridization data has limited the possible locations of the Ig genes to only a few chromosomes. PMID:96442

  15. [Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome inactivation center of human and mouse].

    PubMed

    Kolesnikov, N N; Elisafenko, E A

    2010-10-01

    After the radiation of primates and rodents, the evolution of X-chromosome inactivation centers in human and mouse (XIC/Xic) followed two different directions. Human XIC followed the pathway towards transposon accumulation (the repeat proportion in the center constitutes 72%), especially LINEs, which prevail in the center. On the contrary, mouse Xic eliminated long repeats and accumulated species-specific SIN Es (the repeat proportion in the center constitutes 35%). The mechanism underlying inactivation of one of the X chromosomes in female mammals appeared on the basis of trasnsposons. The key gene of the inactivation process, XIST/Xist, similarly to other long noncoding RNA genes, like TSIX/Tsix, JPX/Jpx, and FTX/Ftx, was formed with the involvement of different transposon sequences. Furthermore, two clusters ofmicroRNA genes from inactivation center originated from L2 [1]. In mouse, one of such clusters has been preserved in the form of microRNA pseudogenes. Thus, long ncRNA genes and microRNAs appeared during the period of transposable elements expansion in this locus, 140 to 105 Myr ago, after the radiation of marsupials and placental mammal lineages.

  16. Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste.

    PubMed

    Liu, Qiang; Cao, Jia; Li, Ke Qiu; Miao, Xu Hong; Li, Guang; Fan, Fei Yue; Zhao, Yong Cheng

    2009-05-01

    It has been known that the pollutants of electronic wastes (E-wastes) can lead to severe pollution to the environment. It has been reported that about 50% to 80% of E-wastes from developed countries are exported to Asia and Africa. It has become a major global environmental problem to deal with 'E-wastes'. E-waste recycling has remained primitive in Jinghai, China. This not only produces enormous environmental pollution but also can bring about toxic or genotoxic effects on the human body, threatening the health of both current residents and future generations living in the local environment. The concentration of lead in the blood of children in the E-waste polluted area in China is higher than that of the control area. But little is known about the cytogenetic effect to human beings caused by the pollution of E-wastes. In the present study, experiments have been performed to investigate the genetics of permanent residents of three villages with numerous E-waste disposal sites and to analyze the harmful effects of exposure to E-wastes. In total, 171 villagers (exposed group) were randomly selected from permanent residents of three villages located in Jinghai County of Tianjin, China, where there has been massive disposal of E-wastes. Thirty villagers were selected from the neighboring towns without E-waste disposal sites to serve as controls. Chromosomal aberrations and cytokinesis blocking micronucleus were performed to detect the cytogenetic effect, dic + r (dicentric and ring chromosome), monomer, fragments (acentric fragments, minute chromosomes, and acentric rings), translocation, satellite, quadriradial, total aberrations, and micronuclear rate were scored for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes. The total chromosome aberration rates (5.50%) and micronuclear rates (16.99%) of the exposure group

  17. Chromosome integrity at a double-strand break requires exonuclease 1 and MRX

    PubMed Central

    Nakai, Wataru; Westmoreland, Jim; Yeh, Elaine; Bloom, Kerry; Resnick, Michael A.

    2010-01-01

    The continuity of duplex DNA is generally considered a prerequisite for chromosome continuity. However, as previously shown in yeast as well as human cells, the introduction of a double-strand break (DSB) does not generate a chromosome break (CRB) in yeast or human cells. The transition from DSB to CRB was found to be under limited control by the tethering function of the RAD50/MRE11/XRS2 (MRX) complex. Using a system for differential fluorescent marking of both sides of an endonuclease-induced DSB in single cells, we found that nearly all DSBs are converted to CRBs in cells lacking both exonuclease 1 (EXO1) activity and MRX complex. Thus, it appears that some feature of exonuclease processing or resection at a DSB is critical for maintaining broken chromosome ends in close proximity. In addition, we discovered a thermal sensitive (cold) component to CRB formation in an MRX mutant that has implications for chromosome end mobility and/or end-processing. PMID:21115410

  18. Screening for specific chromosome involvement in hematological malignancies using a set of seven chromosome painting probes. An alternative approach for chromosome analysis using standard FISH instrumentation.

    PubMed

    Nacheva, E P; Gribble, S; Andrews, K; Wienberg, J; Grace, C D

    2000-10-15

    We report the application of multi-color fluorescence in situ hydribidization (FISH) for bone marrow metaphase cell analysis of hematological malignancies using a sub-set of the human karyotype for chromosome painting. A combination of chromosome probes labeled with three haptens enabled the construction of a "painting probe" which detects seven different chromosomes. The probe was used to screen three chronic myeloid leukemia (CML) derived cell lines and ten CML patient bone marrow samples for aberrations, additional to the Ph rearrangement, that are associated with the onset of blast crisis of CML. This approach was shown to identify karyotype changes commonly seen by conventional karyotyping, and in addition revealed chromosome changes unresolved or undetected by conventional cytogenetic analysis. The seven-color painting probe provides a useful, fast, and reliable complementary tool for chromosome analysis, especially in cases with poor chromosome morphology. This is a simple approach, since the probes can be displayed in a standard red/green/blue format accessible to standard fluorescence microscopes and image-processing software. The proposed approach using panels of locus-specific probes as well as chromosome paints will be useful in all diagnostic routine environments where analysis is directed towards screening for genetic rearrangements and/or specific patterns of chromosome involvement with diagnostic/prognostic value.

  19. Genetic linkage studies in familial partial epilepsy: Exclusion of the human chromosome regions syntenic to the El-1 mouse locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes-Cendes, I.; Mulley, J.C.; Andermann, E.

    1994-09-01

    Recently, six families with a familial form of partial epilepsy were described. All pedigrees showed autosomal dominant inheritance with incomplete penetrance. Affected individuals present with predominantly nocturnal seizures with frontal lobe semiology. In 1959, a genetic mouse model for partial epilepsy, the El mouse, was reported. In the El mouse, a major seizure susceptibility gene, El-1, segregates in an autosomal dominant fashion and has been localized to a region distal to the centromere of mouse chromosome 9. Comparative genetic maps between man and mouse have been used for prediction of localization of several human disease genes. Because the region ofmore » mouse chromosome 9 that is the most likely to contain the El-1 locus is syntenic to regions on human chromosomes 3q21-p22, 3q21-q23.3, 6q12 and 15q24, we adopted the candidate gene approach as an initial linkage strategy. Twenty-two polymorphic microsatellite markers covering these regions were used for genotyping individuals in the three larger families ascertained, two of which are Australian and one French-Canadian. Negative two-point lod scores were obtained separately for each family. The analysis of all three families combined significantly excludes the candidate regions on chromosomes 3, 6 and 15.« less

  20. Chromosome microduplication in somatic cells decreases the genetic stability of human reprogrammed somatic cells and results in pluripotent stem cells.

    PubMed

    Yu, Yang; Chang, Liang; Zhao, Hongcui; Li, Rong; Fan, Yong; Qiao, Jie

    2015-05-12

    Human pluripotent stem cells, including cloned embryonic and induced pluripotent stem cells, offer a limitless cellular source for regenerative medicine. However, their derivation efficiency is limited, and a large proportion of cells are arrested during reprogramming. In the current study, we explored chromosome microdeletion/duplication in arrested and established reprogrammed cells. Our results show that aneuploidy induced by somatic cell nuclear transfer technology is a key factor in the developmental failure of cloned human embryos and primary colonies from implanted cloned blastocysts and that expression patterns of apoptosis-related genes are dynamically altered. Overall, ~20%-53% of arrested primary colonies in induced plurpotent stem cells displayed aneuploidy, and upregulation of P53 and Bax occurred in all arrested primary colonies. Interestingly, when somatic cells with pre-existing chromosomal mutations were used as donor cells, no cloned blastocysts were obtained, and additional chromosomal mutations were detected in the resulting iPS cells following long-term culture, which was not observed in the two iPS cell lines with normal karyotypes. In conclusion, aneuploidy induced by the reprogramming process restricts the derivation of pluripotent stem cells, and, more importantly, pre-existing chromosomal mutations enhance the risk of genome instability, which limits the clinical utility of these cells.

  1. X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells.

    PubMed

    Ho, Bianca; Greenlaw, Keelin; Al Tuwaijri, Abeer; Moussette, Sanny; Martínez, Francisco; Giorgio, Elisa; Brusco, Alfredo; Ferrero, Giovanni Battista; Linhares, Natália D; Valadares, Eugênia R; Svartman, Marta; Kalscheuer, Vera M; Rodríguez Criado, Germán; Laprise, Catherine; Greenwood, Celia M T; Naumova, Anna K

    2018-02-20

    Sexual dimorphism in DNA methylation levels is a recurrent epigenetic feature in different human cell types and has been implicated in predisposition to disease, such as psychiatric and autoimmune disorders. To elucidate the genetic origins of sex-specific DNA methylation, we examined DNA methylation levels in fibroblast cell lines and blood cells from individuals with different combinations of sex chromosome complements and sex phenotypes focusing on a single autosomal region--the differentially methylated region (DMR) in the promoter of the zona pellucida binding protein 2 (ZPBP2) as a reporter. Our data show that the presence of the sex determining region Y (SRY) was associated with lower methylation levels, whereas higher X chromosome dosage in the absence of SRY led to an increase in DNA methylation levels at the ZPBP2 DMR. We mapped the X-linked modifier of DNA methylation to the long arm of chromosome X (Xq13-q21) and tested the impact of mutations in the ATRX and RLIM genes, located in this region, on methylation levels. Neither ATRX nor RLIM mutations influenced ZPBP2 methylation in female carriers. We conclude that sex-specific methylation differences at the autosomal locus result from interaction between a Y-linked factor SRY and at least one X-linked factor that acts in a dose-dependent manner.

  2. Reflections and meditations upon complex chromosomal exchanges.

    PubMed

    Savage, John R K

    2002-12-01

    The application of FISH chromosome painting techniques, especially the recent mFISH (and its equivalents) where all 23 human chromosome pairs can be distinguished, has demonstrated that many chromosome-type structural exchanges are much more complicated (involving more "break-rejoins" and arms) than has hitherto been assumed. It is clear that we have been greatly under-estimating the damage produced in chromatin by such agents as ionising radiation. This article gives a brief historical summary of observations leading up to this conclusion, and after outlining some of the problems surrounding the formation of complex chromosomes exchanges, speculates about possible solutions currently being proposed.

  3. RBE of quasi-monoenergetic 60 MeV neutron radiation for induction of dicentric chromosomes in human lymphocytes.

    PubMed

    Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E

    2005-12-01

    The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.

  4. Genetic control of chromosome behaviour: Implications in evolution, crop improvement, and human biology

    USDA-ARS?s Scientific Manuscript database

    Chromosomes and chromosome pairing are pivotal to all biological sciences. The study of chromosomes helps unravel several aspects of an organism. Although the foundation of genetics occurred with the formulation of the laws of heredity in 1865, long before the discovery of chromosomes, their subsequ...

  5. Micromechanical study of mitotic chromosome structure

    NASA Astrophysics Data System (ADS)

    Marko, John

    2011-03-01

    Our group has developed micromanipulation techniques for study of the highly compacted mitotic form of chromosome found in eukaryote cells during cell division. Each metaphase chromosome contains two duplicate centimeter-long DNA molecules, folded up by proteins into cylindrical structures several microns in length. Native chromosomes display linear and reversible stretching behavior over a wide range of extensions (up to 5x native length for amphibian chromosomes), described by a Young modulus of about 300 Pa. Studies using DNA-cutting and protein-cutting enzymes have revealed that metaphase chromosomes behave as a network of chromatin fibers held together by protein-based isolated crosslinks. Our results are not consistent with the more classical model of loops of chromatin attached to a protein-based structural organizer or ``scaffold". In short, our experiments indicate that metaphase chromosomes can be considered to be ``gels" of chromatin; the stretching modulus of a whole chromosome is consistent with stretching of the chromatin fibers contained within it. Experiments using topoisomerases suggest that topological constraints may play an appreciable role in confining chromatin in the metaphase chromosome. Finally, recent experiments on human chromosomes will be reviewed, including results of experiments where chromosome-folding proteins are specifically depleted using siRNA methods. Supported by NSF-MCB-1022117, DMR-0715099, PHY-0852130, DMR-0520513, NCI 1U54CA143869-01 (NU-PS-OC), and the American Heart Association.

  6. The gene for creatine kinase, mitochondrial 2 (sarcomeric; CKMT2), maps to chromosome 5q13. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, I.; Devaud, C.; Cherif, D.

    1993-10-01

    YAC clones for the creatine kinase, mitochrondial 2 (sarcomeric; CKMT2), gene were isolated. One of these YACs was localized on chromosome 5q13.3 by fluorescence in situ hybridization. A polymorphic dinucleotide repeat (heterozygosity 0.77) was identified within the seventh intron of the CKMT2 gene. Genotyping of CEPH families allowed positioning of CKMT2 on the multipoint map of chromosome 5 between D5S424 and D5S428, distal to spinal muscular atrophy (SMA) (5q12-q14). 8 refs., 1 fig., 2 tabs.

  7. Candidate genes on murine chromosome 8 are associated with susceptibility to Staphylococcus aureus infection in mice and are involved with Staphylococcus aureus septicemia in humans

    PubMed Central

    Yan, Qin; Ahn, Sun Hee; Medie, Felix Mba; Park, Lawrence P.; Scott, William K.; Deshmukh, Hitesh; Cyr, Derek D.; Woods, Christopher W.; Yu, Chen-Hsin Albert; Adams, Carlton; Hansen, Brenda; Fowler, Vance G.

    2017-01-01

    We previously showed that chromosome 8 of A/J mice was associated with susceptibility to S. aureus infection. However, the specific genes responsible for this susceptibility are unknown. Chromosome substitution strain 8 (CSS8) mice, which have chromosome 8 from A/J but an otherwise C57BL/6J genome, were used to identify the genetic determinants of susceptibility to S. aureus on chromosome 8. Quantitative trait loci (QTL) mapping of S. aureus-infected N2 backcross mice (F1 [C8A] × C57BL/6J) identified a locus 83180780–88103009 (GRCm38/mm10) on A/J chromosome 8 that was linked to S. aureus susceptibility. All genes on the QTL (n~ 102) were further analyzed by three different strategies: 1) different expression in susceptible (A/J) and resistant (C57BL/6J) mice only in response to S. aureus, 2) consistently different expression in both uninfected and infected states between the two strains, and 3) damaging non-synonymous SNPs in either strain. Eleven candidate genes from the QTL region were significantly differently expressed in patients with S. aureus infection vs healthy human subjects. Four of these 11 genes also exhibited significantly different expression in S. aureus-challenged human neutrophils: Ier2, Crif1, Cd97 and Lyl1. CD97 ligand binding was evaluated within peritoneal neutrophils from A/J and C57BL/6J. CD97 from A/J had stronger CD55 but weaker integrin α5β1 ligand binding as compared with C57BL/6J. Because CD55/CD97 binding regulates immune cell activation and cytokine production, and integrin α5β1 is a membrane receptor for fibronectin, which is also bound by S. aureus, strain-specific differences could contribute to susceptibility to S. aureus. Down-regulation of Crif1 with siRNA was associated with increased host cell apoptosis among both naïve and S. aureus-infected bone marrow-derived macrophages. Specific genes in A/J chromosome 8, including Cd97 and Crif1, may play important roles in host defense against S. aureus. PMID:28594911

  8. Y-chromosome polymorphism: Possible largest Y chromosome in man?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, D.S.K.; Al-Awadi, S.A.; Bastaki, L.

    The role of variations (inversions/deletion or duplication) in the heterochromatin in gonadal development and function, reproductive fitness, and malignant disease has been extensively studied. However, the causal-relationship of large Y (Yqh+) and repeated fetal loss has not been established unequivocally. An Arab couple (?Bedouin origin) with a history of repeated abortions were investigated. Karyotype analysis of the husband showed a very large Y chromosome, confirmed by GTG-, QFQ- and CBG-banding techniques. C-banding showed discontinuous distribution of the heterochromatin blocks separated by pale bands. The origin of the large heterochromatin segment could be due to tandem duplication of the Yq regionmore » or translocation (Yq:Yq). No other relatives (males) of the propositus have been available for investigation. Polymorphism of the Y chromosome could be attributed to evolutionary changes from an ancestral type, either by deletion or duplication of the heterochromatin segment. More detailed studies on isolated, aboriginal/tribal human populations will enable us to better understand the significance of the Y chromosome polymorphism.« less

  9. Dicentric chromosomes: unique models to study centromere function and inactivation.

    PubMed

    Stimpson, Kaitlin M; Matheny, Justyne E; Sullivan, Beth A

    2012-07-01

    Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation.

  10. Dicentric chromosomes: unique models to study centromere function and inactivation

    PubMed Central

    Stimpson, Kaitlin M.; Matheny, Justyne E.

    2013-01-01

    Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well under-stood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation. PMID:22801777

  11. 21 CFR 864.2260 - Chromosome culture kit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Chromosome culture kit. 864.2260 Section 864.2260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2260 Chromosome...

  12. 21 CFR 864.2260 - Chromosome culture kit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Chromosome culture kit. 864.2260 Section 864.2260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2260 Chromosome...

  13. 21 CFR 864.2260 - Chromosome culture kit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Chromosome culture kit. 864.2260 Section 864.2260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2260 Chromosome...

  14. 21 CFR 864.2260 - Chromosome culture kit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chromosome culture kit. 864.2260 Section 864.2260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2260 Chromosome...

  15. 21 CFR 864.2260 - Chromosome culture kit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chromosome culture kit. 864.2260 Section 864.2260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2260 Chromosome...

  16. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system

    PubMed Central

    Maddalo, Danilo; Manchado, Eusebio; Concepcion, Carla P.; Bonetti, Ciro; Vidigal, Joana A.; Han, Yoon-Chi; Ogrodowski, Paul; Crippa, Alessandra; Rekhtman, Natasha; de Stanchina, Elisa; Lowe, Scott W.; Ventura, Andrea

    2014-01-01

    Chromosomal rearrangements play a central role in the pathogenesis of human cancers and often result in the expression of therapeutically actionable gene fusions1. A recently discovered example is a fusion between the Echinoderm Microtubule-associated Protein-like 4 (EML4) and the Anaplastic Lymphoma Kinase (ALK) genes, generated by an inversion on the short arm of chromosome 2: inv(2)(p21p23). The EML4-ALK oncogene is detected in a subset of human non-small cell lung cancers (NSCLC)2 and is clinically relevant because it confers sensitivity to ALK inhibitors3. Despite their importance, modeling such genetic events in mice has proven challenging and requires complex manipulation of the germline. Here we describe an efficient method to induce specific chromosomal rearrangements in vivo using viral-mediated delivery of the CRISPR/Cas9 system to somatic cells of adult animals. We apply it to generate a mouse model of Eml4-Alk-driven lung cancer. The resulting tumors invariably harbor the Eml4-Alkinversion, express the Eml4-Alk fusion gene, display histo-pathologic and molecular features typical of ALK+ human NSCLCs, and respond to treatment with ALK-inhibitors. The general strategy described here substantially expands our ability to model human cancers in mice and potentially in other organisms. PMID:25337876

  17. Generation of a complete set of human telomeric band painting probes by chromosome microdissection.

    PubMed

    Hu, Liang; Sham, Jonathan S T; Tjia, Wai Mui; Tan, Yue-qiu; Lu, Guang-xiu; Guan, Xin-Yuan

    2004-02-01

    Chromosomal rearrangements involving telomeric bands have been frequently detected in many malignancies and congenital diseases. To develop a useful tool to study chromosomal rearrangements within the telomeric band effectively and accurately, a whole set of telomeric band painting probes (TBP) has been generated by chromosome microdissection. The intensity and specificity of these TBPs have been tested by fluorescence in situ hybridization and all TBPs showed strong and specific signals to target regions. TBPs of 6q and 17p were successfully used to detect the loss of the terminal band of 6q in a hepatocellular carcinoma cell line and a complex translocation involving the 17p terminal band in a melanoma cell line. Meanwhile, the TBP of 21q was used to detect a de novo translocation, t(12;21), and the breakpoint at 21q was located at 21q22.2. Further application of these TBPs should greatly facilitate the cytogenetic analysis of complex chromosome rearrangements involving telomeric bands.

  18. An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster.

    PubMed Central

    Weber, K; Eisman, R; Higgins, S; Morey, L; Patty, A; Tausek, M; Zeng, Z B

    2001-01-01

    Genetic effects on an index of wing shape on chromosome 2 of Drosophila melanogaster were mapped using isogenic recombinants with transposable element markers. At least 10 genes with small additive effects are dispersed evenly along the chromosome. Many interactions exist, with only small net effects in homozygous recombinants and little effect on phenotypic variance. Heterozygous chromosome segments show almost no dominance. Pleiotropic effects on leg shape are only minor. At first view, wing shape genes form a rather homogeneous class, but certain complexities remain unresolved. PMID:11729152

  19. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Gyoyeon; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon; Lee, Hansol

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Ptmore » conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.« less

  20. Advances in understanding paternally transmitted Chromosomal Abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less