Science.gov

Sample records for human computer interaction

  1. Human Computer Interaction

    NASA Astrophysics Data System (ADS)

    Bhagwani, Akhilesh; Sengar, Chitransh; Talwaniper, Jyotsna; Sharma, Shaan

    2012-08-01

    The paper basically deals with the study of HCI (Human computer interaction) or BCI(Brain-Computer-Interfaces) Technology that can be used for capturing brain signals and translating them into commands that allow humans to control (just by thinking) devices such as computers, robots, rehabilitation technology and virtual reality environments. The HCI is based as a direct communication pathway between the brain and an external device. BCIs are often aimed at assisting, augmenting, or repairing human cognitive or sensory-motor functions.The paper also deals with many advantages of BCI Technology along with some of its applications and some major drawbacks.

  2. Human-computer interaction in multitask situations

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1977-01-01

    Human-computer interaction in multitask decisionmaking situations is considered, and it is proposed that humans and computers have overlapping responsibilities. Queueing theory is employed to model this dynamic approach to the allocation of responsibility between human and computer. Results of simulation experiments are used to illustrate the effects of several system variables including number of tasks, mean time between arrivals of action-evoking events, human-computer speed mismatch, probability of computer error, probability of human error, and the level of feedback between human and computer. Current experimental efforts are discussed and the practical issues involved in designing human-computer systems for multitask situations are considered.

  3. Enhancing Learning through Human Computer Interaction

    ERIC Educational Resources Information Center

    McKay, Elspeth, Ed.

    2007-01-01

    Enhancing Learning Through Human Computer Interaction is an excellent reference source for human computer interaction (HCI) applications and designs. This "Premier Reference Source" provides a complete analysis of online business training programs and e-learning in the higher education sector. It describes a range of positive outcomes for linking…

  4. Human-Computer Interaction. Second Edition.

    ERIC Educational Resources Information Center

    Dix, Alan J.; Finlay, Janet E.; Abowd, Gregory D.; Beale, Russell

    This book examines human-computer interaction (HCI), with a focus on designing computer technology to be more usable by people. The book provides a multi-disciplinary approach to the subject through a synthesis of computer science, cognitive science, psychology, and sociology, and stresses a principled approach to interactive systems design that…

  5. Human-Computer Interaction and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    1995-01-01

    The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.

  6. Language evolution and human-computer interaction

    NASA Technical Reports Server (NTRS)

    Grudin, Jonathan; Norman, Donald A.

    1991-01-01

    Many of the issues that confront designers of interactive computer systems also appear in natural language evolution. Natural languages and human-computer interfaces share as their primary mission the support of extended 'dialogues' between responsive entities. Because in each case one participant is a human being, some of the pressures operating on natural languages, causing them to evolve in order to better support such dialogue, also operate on human-computer 'languages' or interfaces. This does not necessarily push interfaces in the direction of natural language - since one entity in this dialogue is not a human, this is not to be expected. Nonetheless, by discerning where the pressures that guide natural language evolution also appear in human-computer interaction, we can contribute to the design of computer systems and obtain a new perspective on natural languages.

  7. Computer Human Interaction for Image Information Systems.

    ERIC Educational Resources Information Center

    Beard, David Volk

    1991-01-01

    Presents an approach to developing viable image computer-human interactions (CHI) involving user metaphors for comprehending image data and methods for locating, accessing, and displaying computer images. A medical-image radiology workstation application is used as an example, and feedback and evaluation methods are discussed. (41 references) (LRW)

  8. Human-Computer Interaction in Smart Environments

    PubMed Central

    Paravati, Gianluca; Gatteschi, Valentina

    2015-01-01

    Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  9. New Perspectives on Human-Computer Interaction.

    ERIC Educational Resources Information Center

    Moran, Thomas P., Ed.; And Others

    1985-01-01

    Individual papers discussing various facets of human relationships with interactive computer systems present an analysis of direct manipulation interfaces; discuss notion of conceptual models shared by system and user and propose a design methodology for delivering models to users; and address the intelligibility of systems and importance of…

  10. On the Rhetorical Contract in Human-Computer Interaction.

    ERIC Educational Resources Information Center

    Wenger, Michael J.

    1991-01-01

    An exploration of the rhetorical contract--i.e., the expectations for appropriate interaction--as it develops in human-computer interaction revealed that direct manipulation interfaces were more likely to establish social expectations. Study results suggest that the social nature of human-computer interactions can be examined with reference to the…

  11. Ergonomics of Human-Computer Interaction.

    ERIC Educational Resources Information Center

    Helander, Martin G.; Palanivel, Thiagarajan

    1992-01-01

    Addresses research results and controversies concerning the ergonomic design of computer work stations ranging from the traditional concerns with anthropometric fashions, work posture, and visual performance to the recent considerations about human information processing capacities and awareness of problem-solving strategies. (eight references)…

  12. Computers in the Human Interaction Loop

    NASA Astrophysics Data System (ADS)

    Waibel, Alex; Steusloff, Hartwig; Stiefelhagen, Rainer; Watson, Kym

    It is a common experience in our modern world for humans to be overwhelmed by the complexities of technological artifacts around us and by the attention they demand. While technology provides wonderful support and helpful assistance, it also gives rise to an increased preoccupation with technology itself and with a related fragmentation of attention. But, as humans, we would rather attend to a meaningful dialog and interaction with other humans than to control the operations of machines that serve us. The cause for such complexity and distraction, however, is a natural consequence of the flexibility and choices of functions and features that the technology has to offer.

  13. Computers in the Human Interaction Loop

    NASA Astrophysics Data System (ADS)

    Waibel, A.; Stiefelhagen, R.; Carlson, R.; Casas, J.; Kleindienst, J.; Lamel, L.; Lanz, O.; Mostefa, D.; Omologo, M.; Pianesi, F.; Polymenakos, L.; Potamianos, G.; Soldatos, J.; Sutschet, G.; Terken, J.

    It is a common experience in our modern world, for us humans to be overwhelmed by the complexities of technological artifacts around us, and by the attention they demand. While technology provides wonderful support and helpful assistance, it also causes an increased preoccupation with technology itself and a related fragmentation of attention. But as humans, we would rather attend to a meaningful dialog and interaction with other humans, than to control the operations of machines that serve us. The cause for such complexity and distraction, however, is a natural consequence of the flexibility and choice of functions and features that technology has to offer. Thus flexibility of choice and the availability of desirable functions are in conflict with ease of use and our very ability to enjoy their benefits.

  14. New Theoretical Approaches for Human-Computer Interaction.

    ERIC Educational Resources Information Center

    Rogers, Yvonne

    2004-01-01

    Presents a critique of recent theoretical developments in the field of human-computer interaction (HCI) together with an overview of HCI practice. This chapter discusses why theoretically based approaches have had little impact on the practice of interaction design and suggests mechanisms to enable designers and researchers to better articulate…

  15. The GOURD model of human-computer interaction

    SciTech Connect

    Goldbogen, G.

    1996-12-31

    This paper presents a model, the GOURD model, that can be used to measure the goodness of {open_quotes}interactivity{close_quotes} of an interface design and qualifies how to improve the design. The GOURD model describes what happens to the computer and to the human during a human-computer interaction. Since the interaction is generally repeated, the traversal of the model repeatedly is similar to a loop programming structure. Because the model measures interaction over part or all of the application, it can also be used as a classifier of the part or the whole application. But primarily, the model is used as a design guide and a predictor of effectiveness.

  16. Applied human factors research at the NASA Johnson Space Center Human-Computer Interaction Laboratory

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne; Mckay, Timothy D.

    1990-01-01

    The applied human factors research program performed at the NASA Johnson Space Center's Human-Computer Interaction Laboratory is discussed. Research is conducted to advance knowledge in human interaction with computer systems during space crew tasks. In addition, the Laboratory is directly involved in the specification of the human-computer interface (HCI) for space systems in development (e.g., Space Station Freedom) and is providing guidelines and support for HCI design to current and future space missions.

  17. User stress detection in human-computer interactions.

    PubMed

    Zhai, Jing; Barreto, Armando B; Chin, Craig; Li, Chao

    2005-01-01

    The emerging research area of Affective Computing seeks to advance the field of Human-Computer Interaction (HCI) by enabling computers to interact with users in ways appropriate to their affective states. Affect recognition, including the use of psychophysiologcal measures (e.g. heart rate), facial expressions, speech recognition etc. to derive an assessment of user affective state based on factors from the current task context, is an important foundation required for the development of Affective Computing. Our research focuses on the use of three physiological signals: Blood Volume Pulse (BVP), Galvanic Skin Response (GSR) and Pupil Diameter (PD), to automatically monitor the level of stress in computer users. This paper reports on the hardware and software instrumentation development and signal processing approach used to detect the stress level of a subject interacting with a computer, within the framework of a specific experimental task, which is called the 'Stroop Test'. For this experiment, a computer game was implemented and adapted to make the subject experience the Stroop Effect, evoked by the mismatch between the font color and the meaning of a certain word (name of a color) displayed, while his/her BVP, GSR and PD signals were continuously recorded. Several data processing techniques were applied to extract effective attributes of the stress level of the subjects throughout the experiment. Current results indicate that there exists interesting similarity among changes in those three signals and the shift in the emotional states when stress stimuli are applied to the interaction environment. PMID:15850118

  18. Human-Computer Interaction, Tourism and Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Cipolla Ficarra, Francisco V.

    We present a state of the art of the human-computer interaction aimed at tourism and cultural heritage in some cities of the European Mediterranean. In the work an analysis is made of the main problems deriving from training understood as business and which can derail the continuous growth of the HCI, the new technologies and tourism industry. Through a semiotic and epistemological study the current mistakes in the context of the interrelations of the formal and factual sciences will be detected and also the human factors that have an influence on the professionals devoted to the development of interactive systems in order to safeguard and boost cultural heritage.

  19. Applications of airborne ultrasound in human-computer interaction.

    PubMed

    Dahl, Tobias; Ealo, Joao L; Bang, Hans J; Holm, Sverre; Khuri-Yakub, Pierre

    2014-09-01

    Airborne ultrasound is a rapidly developing subfield within human-computer interaction (HCI). Touchless ultrasonic interfaces and pen tracking systems are part of recent trends in HCI and are gaining industry momentum. This paper aims to provide the background and overview necessary to understand the capabilities of ultrasound and its potential future in human-computer interaction. The latest developments on the ultrasound transducer side are presented, focusing on capacitive micro-machined ultrasonic transducers, or CMUTs. Their introduction is an important step toward providing real, low-cost multi-sensor array and beam-forming options. We also provide a unified mathematical framework for understanding and analyzing algorithms used for ultrasound detection and tracking for some of the most relevant applications. PMID:24974162

  20. Human-Computer Interaction (HCI) in Educational Environments: Implications of Understanding Computers as Media.

    ERIC Educational Resources Information Center

    Berg, Gary A.

    2000-01-01

    Reviews literature in the field of human-computer interaction (HCI) as it applies to educational environments. Topics include the origin of HCI; human factors; usability; computer interface design; goals, operations, methods, and selection (GOMS) models; command language versus direct manipulation; hypertext; visual perception; interface…

  1. Human-computer interface including haptically controlled interactions

    DOEpatents

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  2. Program Predicts Time Courses of Human/Computer Interactions

    NASA Technical Reports Server (NTRS)

    Vera, Alonso; Howes, Andrew

    2005-01-01

    CPM X is a computer program that predicts sequences of, and amounts of time taken by, routine actions performed by a skilled person performing a task. Unlike programs that simulate the interaction of the person with the task environment, CPM X predicts the time course of events as consequences of encoded constraints on human behavior. The constraints determine which cognitive and environmental processes can occur simultaneously and which have sequential dependencies. The input to CPM X comprises (1) a description of a task and strategy in a hierarchical description language and (2) a description of architectural constraints in the form of rules governing interactions of fundamental cognitive, perceptual, and motor operations. The output of CPM X is a Program Evaluation Review Technique (PERT) chart that presents a schedule of predicted cognitive, motor, and perceptual operators interacting with a task environment. The CPM X program allows direct, a priori prediction of skilled user performance on complex human-machine systems, providing a way to assess critical interfaces before they are deployed in mission contexts.

  3. Wearable joystick for gloves-on human/computer interaction

    NASA Astrophysics Data System (ADS)

    Bae, Jaewook; Voyles, Richard M.

    2006-05-01

    In this paper, we present preliminary work on a novel wearable joystick for gloves-on human/computer interaction in hazardous environments. Interacting with traditional input devices can be clumsy and inconvenient for the operator in hazardous environments due to the bulkiness of multiple system components and troublesome wires. During a collapsed structure search, for example, protective clothing, uneven footing, and "snag" points in the environment can render traditional input devices impractical. Wearable computing has been studied by various researchers to increase the portability of devices and to improve the proprioceptive sense of the wearer's intentions. Specifically, glove-like input devices to recognize hand gestures have been developed for general-purpose applications. But, regardless of their performance, prior gloves have been fragile and cumbersome to use in rough environments. In this paper, we present a new wearable joystick to remove the wires from a simple, two-degree of freedom glove interface. Thus, we develop a wearable joystick that is low cost, durable and robust, and wire-free at the glove. In order to evaluate the wearable joystick, we take into consideration two metrics during operator tests of a commercial robot: task completion time and path tortuosity. We employ fractal analysis to measure path tortuosity. Preliminary user test results are presented that compare the performance of both a wearable joystick and a traditional joystick.

  4. Human-Computer Interaction with Medical Decisions Support Systems

    NASA Technical Reports Server (NTRS)

    Adolf, Jurine A.; Holden, Kritina L.

    1994-01-01

    Decision Support Systems (DSSs) have been available to medical diagnosticians for some time, yet their acceptance and use have not increased with advances in technology and availability of DSS tools. Medical DSSs will be necessary on future long duration space missions, because access to medical resources and personnel will be limited. Human-Computer Interaction (HCI) experts at NASA's Human Factors and Ergonomics Laboratory (HFEL) have been working toward understanding how humans use DSSs, with the goal of being able to identify and solve the problems associated with these systems. Work to date consists of identification of HCI research areas, development of a decision making model, and completion of two experiments dealing with 'anchoring'. Anchoring is a phenomenon in which the decision maker latches on to a starting point and does not make sufficient adjustments when new data are presented. HFEL personnel have replicated a well-known anchoring experiment and have investigated the effects of user level of knowledge. Future work includes further experimentation on level of knowledge, confidence in the source of information and sequential decision making.

  5. Evidence Report: Risk of Inadequate Human-Computer Interaction

    NASA Technical Reports Server (NTRS)

    Holden, Kritina; Ezer, Neta; Vos, Gordon

    2013-01-01

    Human-computer interaction (HCI) encompasses all the methods by which humans and computer-based systems communicate, share information, and accomplish tasks. When HCI is poorly designed, crews have difficulty entering, navigating, accessing, and understanding information. HCI has rarely been studied in an operational spaceflight context, and detailed performance data that would support evaluation of HCI have not been collected; thus, we draw much of our evidence from post-spaceflight crew comments, and from other safety-critical domains like ground-based power plants, and aviation. Additionally, there is a concern that any potential or real issues to date may have been masked by the fact that crews have near constant access to ground controllers, who monitor for errors, correct mistakes, and provide additional information needed to complete tasks. We do not know what types of HCI issues might arise without this "safety net". Exploration missions will test this concern, as crews may be operating autonomously due to communication delays and blackouts. Crew survival will be heavily dependent on available electronic information for just-in-time training, procedure execution, and vehicle or system maintenance; hence, the criticality of the Risk of Inadequate HCI. Future work must focus on identifying the most important contributing risk factors, evaluating their contribution to the overall risk, and developing appropriate mitigations. The Risk of Inadequate HCI includes eight core contributing factors based on the Human Factors Analysis and Classification System (HFACS): (1) Requirements, policies, and design processes, (2) Information resources and support, (3) Allocation of attention, (4) Cognitive overload, (5) Environmentally induced perceptual changes, (6) Misperception and misinterpretation of displayed information, (7) Spatial disorientation, and (8) Displays and controls.

  6. Human-Computer Interaction: A Review of the Research on Its Affective and Social Aspects.

    ERIC Educational Resources Information Center

    Deaudelin, Colette; Dussault, Marc; Brodeur, Monique

    2003-01-01

    Discusses a review of 34 qualitative and non-qualitative studies related to affective and social aspects of student-computer interactions. Highlights include the nature of the human-computer interaction (HCI); the interface, comparing graphic and text types; and the relation between variables linked to HCI, mainly trust, locus of control,…

  7. Implementations of the CC'01 Human-Computer Interaction Guidelines Using Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Manaris, Bill; Wainer, Michael; Kirkpatrick, Arthur E.; Stalvey, RoxAnn H.; Shannon, Christine; Leventhal, Laura; Barnes, Julie; Wright, John; Schafer, J. Ben; Sanders, Dean

    2007-01-01

    In today's technology-laden society human-computer interaction (HCI) is an important knowledge area for computer scientists and software engineers. This paper surveys existing approaches to incorporate HCI into computer science (CS) and such related issues as the perceived gap between the interests of the HCI community and the needs of CS…

  8. Proceedings of the topical meeting on advances in human factors research on man/computer interactions

    SciTech Connect

    Not Available

    1990-01-01

    This book discusses the following topics: expert systems and knowledge engineering-I; verification and validation of software; methods for modeling UMAN/computer performance; MAN/computer interaction problems in producing procedures -1-2; progress and problems with automation-1-2; experience with electronic presentation of procedures-2; intelligent displays and monitors; modeling user/computer interface; and computer-based human decision-making aids.

  9. Not the Computer but Human Interaction Is the Basis for Cognitive Development and Education.

    ERIC Educational Resources Information Center

    Nielsen, Janni

    1986-01-01

    Describes a research project with teen-aged students in Denmark to illustrate the cognitive processes involved in learning computer programing and discusses the difficulties students encounter when learning to program. The use of home computers is briefly examined in the context of the need for human interaction in learning programing. (Author/LRW)

  10. Design Science in Human-Computer Interaction: A Model and Three Examples

    ERIC Educational Resources Information Center

    Prestopnik, Nathan R.

    2013-01-01

    Humanity has entered an era where computing technology is virtually ubiquitous. From websites and mobile devices to computers embedded in appliances on our kitchen counters and automobiles parked in our driveways, information and communication technologies (ICTs) and IT artifacts are fundamentally changing the ways we interact with our world.…

  11. Enhancing Human-Computer Interaction Design Education: Teaching Affordance Design for Emerging Mobile Devices

    ERIC Educational Resources Information Center

    Faiola, Anthony; Matei, Sorin Adam

    2010-01-01

    The evolution of human-computer interaction design (HCID) over the last 20 years suggests that there is a growing need for educational scholars to consider new and more applicable theoretical models of interactive product design. The authors suggest that such paradigms would call for an approach that would equip HCID students with a better…

  12. Integrating HCI into IDT: Charting the Human Computer Interaction Competencies Necessary for Instructional Media Production Coursework

    ERIC Educational Resources Information Center

    Brown, Abbie; Sugar, William

    2004-01-01

    A report on the efforts made to describe the range of human-computer interaction skills necessary to complete a program of study in Instructional Design Technology. Educators responsible for instructional media production courses have not yet articulated which among the wide range of possible interactions students must master for instructional…

  13. The Human-Computer Interaction of Cross-Cultural Gaming Strategy

    ERIC Educational Resources Information Center

    Chakraborty, Joyram; Norcio, Anthony F.; Van Der Veer, Jacob J.; Andre, Charles F.; Miller, Zachary; Regelsberger, Alexander

    2015-01-01

    This article explores the cultural dimensions of the human-computer interaction that underlies gaming strategies. The article is a desktop study of existing literature and is organized into five sections. The first examines the cultural aspects of knowledge processing. The social constructs technology interaction is discussed. Following this, the…

  14. Volumetric Video Motion Detection for Unobtrusive Human-Computer Interaction

    SciTech Connect

    SMALL, DANIEL E.; LUCK, JASON P.; CARLSON, JEFFREY J.

    2002-04-01

    The computer vision field has undergone a revolution of sorts in the past five years. Moore's law has driven real-time image processing from the domain of dedicated, expensive hardware, to the domain of commercial off-the-shelf computers. This thesis describes their work on the design, analysis and implementation of a Real-Time Shape from Silhouette Sensor (RT S{sup 3}). The system produces time-varying volumetric data at real-time rates (10-30Hz). The data is in the form of binary volumetric images. Until recently, using this technique in a real-time system was impractical due to the computational burden. In this thesis they review the previous work in the field, and derive the mathematics behind volumetric calibration, silhouette extraction, and shape-from-silhouette. For the sensor implementation, they use four color camera/framegrabber pairs and a single high-end Pentium III computer. The color cameras were configured to observe a common volume. This hardware uses the RT S{sup 3} software to track volumetric motion. Two types of shape-from-silhouette algorithms were implemented and their relative performance was compared. They have also explored an application of this sensor to markerless motion tracking. In his recent review of work done in motion tracking Gavrila states that results of markerless vision based 3D tracking are still limited. The method proposed in this paper not only expands upon the previous work but will also attempt to overcome these limitations.

  15. Appearance-based human gesture recognition using multimodal features for human computer interaction

    NASA Astrophysics Data System (ADS)

    Luo, Dan; Gao, Hua; Ekenel, Hazim Kemal; Ohya, Jun

    2011-03-01

    The use of gesture as a natural interface plays an utmost important role for achieving intelligent Human Computer Interaction (HCI). Human gestures include different components of visual actions such as motion of hands, facial expression, and torso, to convey meaning. So far, in the field of gesture recognition, most previous works have focused on the manual component of gestures. In this paper, we present an appearance-based multimodal gesture recognition framework, which combines the different groups of features such as facial expression features and hand motion features which are extracted from image frames captured by a single web camera. We refer 12 classes of human gestures with facial expression including neutral, negative and positive meanings from American Sign Languages (ASL). We combine the features in two levels by employing two fusion strategies. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, and LDA is used to choose the most discriminative elements by projecting the feature on a discriminative expression space. The second strategy is applied on decision level. Weighted decisions from single modalities are fused in a later stage. A condensation-based algorithm is adopted for classification. We collected a data set with three to seven recording sessions and conducted experiments with the combination techniques. Experimental results showed that facial analysis improve hand gesture recognition, decision level fusion performs better than feature level fusion.

  16. Human-computer interaction in distributed supervisory control tasks

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1989-01-01

    An overview of activities concerned with the development and applications of the Operator Function Model (OFM) is presented. The OFM is a mathematical tool to represent operator interaction with predominantly automated space ground control systems. The design and assessment of an intelligent operator aid (OFMspert and Ally) is particularly discussed. The application of OFM to represent the task knowledge in the design of intelligent tutoring systems, designated OFMTutor and ITSSO (Intelligent Tutoring System for Satellite Operators), is also described. Viewgraphs from symposia presentations are compiled along with papers addressing the intent inferencing capabilities of OFMspert, the OFMTutor system, and an overview of intelligent tutoring systems and the implications for complex dynamic systems.

  17. Interacting with a Computer-Simulated Pet: Factors Influencing Children's Humane Attitudes and Empathy

    ERIC Educational Resources Information Center

    Tsai, Yueh-Feng; Kaufman, David

    2014-01-01

    Previous research by Tsai and Kaufman (2010a, 2010b) has suggested that computer-simulated virtual pet dogs can be used as a potential medium to enhance children's development of empathy and humane attitudes toward animals. To gain a deeper understanding of how and why interacting with a virtual pet dog might influence children's social and…

  18. A Framework and Implementation of User Interface and Human-Computer Interaction Instruction

    ERIC Educational Resources Information Center

    Peslak, Alan

    2005-01-01

    Researchers have suggested that up to 50 % of the effort in development of information systems is devoted to user interface development (Douglas, Tremaine, Leventhal, Wills, & Manaris, 2002; Myers & Rosson, 1992). Yet little study has been performed on the inclusion of important interface and human-computer interaction topics into a current…

  19. A Project-Based Learning Setting to Human-Computer Interaction for Teenagers

    ERIC Educational Resources Information Center

    Geyer, Cornelia; Geisler, Stefan

    2012-01-01

    Knowledge of fundamentals of human-computer interaction resp. usability engineering is getting more and more important in technical domains. However this interdisciplinary field of work and corresponding degree programs are not broadly known. Therefore at the Hochschule Ruhr West, University of Applied Sciences, a program was developed to give…

  20. Interactions among human behavior, social networks, and societal infrastructures: A Case Study in Computational Epidemiology

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.

    Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.

  1. Human-computer interaction in freeform object design and simultaneous manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lin, Heng; Ma, Liang; Chen, Delin

    2004-03-01

    Freeform object design and simultaneous manufacturing is a novel virtual design and manufacturing method that aims to enable creative and individualized product geometry design and rapid manufacturing of the designed model. The geometry is defined through the process of "virtual sculpting" during which the designer can touch and visualize the designed object in a virtual environment. Natural human-computer interaction is a key issue for this method. This paper first briefly reviewed the principle of the method, including the system configuration, data flow, and fundamental algorithm. Then an input/output device was developed to achieve natural human-computer interaction. Structure of the device and algorithms of calculating the input coordinates and output force were presented. Finally a feedback model was proposed and discussed to apply force feedback during virtual sculpting design.

  2. SIG -- The Role of Human-Computer Interaction in Next-Generation Control Rooms

    SciTech Connect

    Ronald L. Boring; Jacques Hugo; Christian Richard; Donald D. Dudenhoeffer

    2005-04-01

    The purpose of this CHI Special Interest Group (SIG) is to facilitate the convergence between human-computer interaction (HCI) and control room design. HCI researchers and practitioners actively need to infuse state-of-the-art interface technology into control rooms to meet usability, safety, and regulatory requirements. This SIG outlines potential HCI contributions to instrumentation and control (I&C) and automation in control rooms as well as to general control room design.

  3. The experience of agency in human-computer interactions: a review

    PubMed Central

    Limerick, Hannah; Coyle, David; Moore, James W.

    2014-01-01

    The sense of agency is the experience of controlling both one’s body and the external environment. Although the sense of agency has been studied extensively, there is a paucity of studies in applied “real-life” situations. One applied domain that seems highly relevant is human-computer-interaction (HCI), as an increasing number of our everyday agentive interactions involve technology. Indeed, HCI has long recognized the feeling of control as a key factor in how people experience interactions with technology. The aim of this review is to summarize and examine the possible links between sense of agency and understanding control in HCI. We explore the overlap between HCI and sense of agency for computer input modalities and system feedback, computer assistance, and joint actions between humans and computers. An overarching consideration is how agency research can inform HCI and vice versa. Finally, we discuss the potential ethical implications of personal responsibility in an ever-increasing society of technology users and intelligent machine interfaces. PMID:25191256

  4. Human-Computer Interaction and Sociological Insight: A Theoretical Examination and Experiment in Building Affinity in Small Groups

    ERIC Educational Resources Information Center

    Oren, Michael Anthony

    2011-01-01

    The juxtaposition of classic sociological theory and the, relatively, young discipline of human-computer interaction (HCI) serves as a powerful mechanism for both exploring the theoretical impacts of technology on human interactions as well as the application of technological systems to moderate interactions. It is the intent of this dissertation…

  5. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  6. Design of a new human-computer interactive device for projection display

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Liu, Xiangdong; Meng, Xiao

    2005-02-01

    Projection displays are widely applied as tools for multimedia in conference room presentation, education center, R&D center and more places. To provide a more interactive environment, a new kind of human-computer interactive device is designed and presented. A two-dimensional CCD is the sensor of the unit. Through optical filter, CCD exports full video signal including a series of isolated positive pulse caused by the specific light-spot target generated from a specific light-pen. Through a video sync separator, combinational logic and sequential logic process of the full video signal, the target image's two-dimensional position on the light sensitive layer of CCD can be gained. The specific light-pen also sends the function logic message to the controller part through wireless communication. A microcontroller will combine the position information and function message, and then send it to computer through RS-232 of USB interface. The software in computer will process these messages. The specific light-spot's relative coordinates in the projection screen is gained. With the coordinate and the function message, the software will drive the computer to implement certain functions. With the specific light-pen, one can control the computer, take notes and shape his desire in the screen. Now the device is applied in LCD projection displays and it also can be applied in any large screen display. With the improvement of the system and the software, the function will be more powerful and provide a more interactive human computer interface (HCI).

  7. Computational prediction of virus-human protein-protein interactions using embedding kernelized heterogeneous data.

    PubMed

    Nourani, Esmaeil; Khunjush, Farshad; Durmuş, Saliha

    2016-05-24

    Pathogenic microorganisms exploit host cellular mechanisms and evade host defense mechanisms through molecular pathogen-host interactions (PHIs). Therefore, comprehensive analysis of these PHI networks should be an initial step for developing effective therapeutics against infectious diseases. Computational prediction of PHI data is gaining increasing demand because of scarcity of experimental data. Prediction of protein-protein interactions (PPIs) within PHI systems can be formulated as a classification problem, which requires the knowledge of non-interacting protein pairs. This is a restricting requirement since we lack datasets that report non-interacting protein pairs. In this study, we formulated the "computational prediction of PHI data" problem using kernel embedding of heterogeneous data. This eliminates the abovementioned requirement and enables us to predict new interactions without randomly labeling protein pairs as non-interacting. Domain-domain associations are used to filter the predicted results leading to 175 novel PHIs between 170 human proteins and 105 viral proteins. To compare our results with the state-of-the-art studies that use a binary classification formulation, we modified our settings to consider the same formulation. Detailed evaluations are conducted and our results provide more than 10 percent improvements for accuracy and AUC (area under the receiving operating curve) results in comparison with state-of-the-art methods. PMID:27072625

  8. Human-computer interaction for alert warning and attention allocation systems of the multimodal watchstation

    NASA Astrophysics Data System (ADS)

    Obermayer, Richard W.; Nugent, William A.

    2000-11-01

    The SPAWAR Systems Center San Diego is currently developing an advanced Multi-Modal Watchstation (MMWS); design concepts and software from this effort are intended for transition to future United States Navy surface combatants. The MMWS features multiple flat panel displays and several modes of user interaction, including voice input and output, natural language recognition, 3D audio, stylus and gestural inputs. In 1999, an extensive literature review was conducted on basic and applied research concerned with alerting and warning systems. After summarizing that literature, a human computer interaction (HCI) designer's guide was prepared to support the design of an attention allocation subsystem (AAS) for the MMWS. The resultant HCI guidelines are being applied in the design of a fully interactive AAS prototype. An overview of key findings from the literature review, a proposed design methodology with illustrative examples, and an assessment of progress made in implementing the HCI designers guide are presented.

  9. GridIMAGE: a novel use of grid computing to support interactive human and computer-assisted detection decision support.

    PubMed

    Gurcan, Metin N; Pan, Tony; Sharma, Ashish; Kurc, Tahsin; Oster, Scott; Langella, Stephen; Hastings, Shannon; Siddiqui, Khan M; Siegel, Eliot L; Saltz, Joel

    2007-06-01

    This paper describes a Grid-aware image reviewing system (GridIMAGE) that allows practitioners to (a) select images from multiple geographically distributed digital imaging and communication in medicine (DICOM) servers, (b) send those images to a specified group of human readers and computer-assisted detection (CAD) algorithms, and (c) obtain and compare interpretations from human readers and CAD algorithms. The currently implemented system was developed using the National Cancer Institute caGrid infrastructure and is designed to support the identification of lung nodules on thoracic computed tomography. However, the infrastructure is general and can support any type of distributed review. caGrid data and analytical services are used to link DICOM image databases and CAD systems and to interact with human readers. Moreover, the service-oriented and distributed structure of the GridIMAGE framework enables a flexible system, which can be deployed in an institution (linking multiple DICOM servers and CAD algorithms) and in a Grid environment (linking the resources of collaborating research groups). GridIMAGE provides a framework that allows practitioners to obtain interpretations from one or more human readers or CAD algorithms. It also provides a mechanism to allow cooperative imaging groups to systematically perform image interpretation tasks associated with research protocols. PMID:17318701

  10. Evolutionary adaptive eye tracking for low-cost human computer interaction applications

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Shin, Hak Chul; Sung, Won Jun; Khim, Sarang; Kim, Honglak; Rhee, Phill Kyu

    2013-01-01

    We present an evolutionary adaptive eye-tracking framework aiming for low-cost human computer interaction. The main focus is to guarantee eye-tracking performance without using high-cost devices and strongly controlled situations. The performance optimization of eye tracking is formulated into the dynamic control problem of deciding on an eye tracking algorithm structure and associated thresholds/parameters, where the dynamic control space is denoted by genotype and phenotype spaces. The evolutionary algorithm is responsible for exploring the genotype control space, and the reinforcement learning algorithm organizes the evolved genotype into a reactive phenotype. The evolutionary algorithm encodes an eye-tracking scheme as a genetic code based on image variation analysis. Then, the reinforcement learning algorithm defines internal states in a phenotype control space limited by the perceived genetic code and carries out interactive adaptations. The proposed method can achieve optimal performance by compromising the difficulty in the real-time performance of the evolutionary algorithm and the drawback of the huge search space of the reinforcement learning algorithm. Extensive experiments were carried out using webcam image sequences and yielded very encouraging results. The framework can be readily applied to other low-cost vision-based human computer interactions in solving their intrinsic brittleness in unstable operational environments.

  11. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    NASA Astrophysics Data System (ADS)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  12. Investigation of interaction of nuclear fast red with human serum albumin by experimental and computational approaches.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C; Omidi, Mehdi

    2013-11-01

    For the first time, interaction of nuclear fast red (NFR) with human serum albumin (HSA) was studied by experimental and computational approaches. Firstly, experimental measurements including fluorescence spectroscopy (F), UVvis spectrophotometry (UVvis), cyclic voltammetry (CV), differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) were separately used to investigate the interaction of NFR with HSA and interesting thermodynamics information was obtained from these studies. Secondly, new information including electrochemical behavior of NFR-HSA complex species, relative concentrations of the various reacting species and effects of NFR on the sub-structure of HSA was obtained by applying multivariate curve resolution-alternating least squares (MCR-ALS). In this case, a row- and column-wise augmented matrix was built with DPV, LSV, F and UVvis sub-matrices and resolved by MCR-ALS. Surprisingly, by this method two NFR-HSA complex species with different stoichiometries and different electrochemical behaviors were found. Furthermore, by the use of the recorded voltammetric and spectroscopic data the binding constants of complex species were computed by EQUISPEC (a hard-modeling algorithm). Finally, the binding of NFR to HSA was modeled by molecular modeling and molecular dynamics (MD) simulations methods. Excellent agreement was found between experimental and computational results. Both experimental and computational results suggested that the NFR binds mainly to the sub-domain IIA of HSA. PMID:23871980

  13. Real-time non-invasive eyetracking and gaze-point determination for human-computer interaction and biomedicine

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Morookian, John-Michael; Monacos, S.; Lam, R.; Lebaw, C.; Bond, A.

    2004-01-01

    Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals.

  14. Computational protein design suggests that human PCNA-partner interactions are not optimized for affinity.

    PubMed

    Fridman, Yearit; Gur, Eyal; Fleishman, Sarel J; Aharoni, Amir

    2013-02-01

    Increasing the affinity of binding proteins is invaluable for basic and applied biological research. Currently, directed protein evolution experiments are the main approach for generating such proteins through the construction and screening of large mutant libraries. Proliferating cell nuclear antigen (PCNA) is an essential hub protein that interacts with many different partners to tightly regulate DNA replication and repair in all eukaryotes. Here, we used computational design to generate human PCNA mutants with enhanced affinity for several different partners. We identified double mutations in PCNA, outside the main partner binding site, that were predicted to increase PCNA-partner binding affinities compared to the wild-type protein by forming additional hydrophobic interactions with conserved residues in the PCNA partners. Affinity increases were experimentally validated with four different PCNA partners, demonstrating that computational design can reveal unexpected regions where affinity enhancements in natural systems are possible. The designed PCNA mutants can be used as a valuable tool for further examination of the regulation of PCNA-partner interactions during DNA replication and repair both in vitro and in vivo. More broadly, the ability to engineer affinity increases toward several PCNA partners suggests that interaction affinity is not an evolutionarily optimized trait of this system. PMID:23011891

  15. Categorisation of visualisation methods to support the design of Human-Computer Interaction Systems.

    PubMed

    Li, Katie; Tiwari, Ashutosh; Alcock, Jeffrey; Bermell-Garcia, Pablo

    2016-07-01

    During the design of Human-Computer Interaction (HCI) systems, the creation of visual artefacts forms an important part of design. On one hand producing a visual artefact has a number of advantages: it helps designers to externalise their thought and acts as a common language between different stakeholders. On the other hand, if an inappropriate visualisation method is employed it could hinder the design process. To support the design of HCI systems, this paper reviews the categorisation of visualisation methods used in HCI. A keyword search is conducted to identify a) current HCI design methods, b) approaches of selecting these methods. The resulting design methods are filtered to create a list of just visualisation methods. These are then categorised using the approaches identified in (b). As a result 23 HCI visualisation methods are identified and categorised in 5 selection approaches (The Recipient, Primary Purpose, Visual Archetype, Interaction Type, and The Design Process). PMID:26995039

  16. Multi-step EMG Classification Algorithm for Human-Computer Interaction

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Barreto, Armando; Adjouadi, Malek

    A three-electrode human-computer interaction system, based on digital processing of the Electromyogram (EMG) signal, is presented. This system can effectively help disabled individuals paralyzed from the neck down to interact with computers or communicate with people through computers using point-and-click graphic interfaces. The three electrodes are placed on the right frontalis, the left temporalis and the right temporalis muscles in the head, respectively. The signal processing algorithm used translates the EMG signals during five kinds of facial movements (left jaw clenching, right jaw clenching, eyebrows up, eyebrows down, simultaneous left & right jaw clenching) into five corresponding types of cursor movements (left, right, up, down and left-click), to provide basic mouse control. The classification strategy is based on three principles: the EMG energy of one channel is typically larger than the others during one specific muscle contraction; the spectral characteristics of the EMG signals produced by the frontalis and temporalis muscles during different movements are different; the EMG signals from adjacent channels typically have correlated energy profiles. The algorithm is evaluated on 20 pre-recorded EMG signal sets, using Matlab simulations. The results show that this method provides improvements and is more robust than other previous approaches.

  17. Integrated multimodal human-computer interface and augmented reality for interactive display applications

    NASA Astrophysics Data System (ADS)

    Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.

    2000-08-01

    We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.

  18. A wearable, wireless gaze tracker with integrated selection command source for human-computer interaction.

    PubMed

    Rantanen, Ville; Vanhala, Toni; Tuisku, Outi; Niemenlehto, Pekka-Henrik; Verho, Jarmo; Surakka, Veikko; Juhola, Martti; Lekkala, Jukka

    2011-09-01

    A light-weight, wearable, wireless gaze tracker with integrated selection command source for human-computer interaction is introduced. The prototype system combines head-mounted, video-based gaze tracking with capacitive facial movement detection that enable multimodal interaction by gaze pointing and making selections with facial gestures. The system is targeted mainly to disabled people with limited mobility over their hands. The hardware was made wireless to remove the need to take off the device when moving away from the computer, and to allow future use in more mobile contexts. The algorithms responsible for determining the eye and head orientations to map gaze direction to on-screen coordinates are presented together with the one to detect movements from the measured capacitance signal. Point-and-click experiments were conducted to assess the performance of the multimodal system. The results show decent performance in laboratory and office conditions. The overall point-and-click accuracy in the multimodal experiments is comparable to the errors in previous research on head-mounted, single modality gaze tracking that does not compensate for changes in head orientation. PMID:21632308

  19. Human interaction with wearable computer systems: a look at glasses-mounted displays

    NASA Astrophysics Data System (ADS)

    Revels, Allen R.; Quill, Laurie L.; Kancler, David E.; Masquelier, Barbara L.

    1998-09-01

    With the advancement of technology and the information explosion, integration of the two into performance aiding systems can have a significant impact on operational and maintenance environments. The Department of Defense and commercial industry have made great strides in digitizing and automating technical manuals and data to be presented on performance aiding systems. These performance aides are computerized interactive systems that provide procedures on how to operate and maintain fielded systems. The idea is to provide the end-user a system which is compatible with their work environment. The purpose of this paper is to show, historically, the progression of wearable computer aiding systems for maintenance environments, and then highlight the work accomplished in the design and development of glasses- mounted displays (GMD). The paper reviews work performed over the last seven years, then highlights, through review of a usability study, the advances made with GMDs. The use of portable computing systems, such as laptop and notebook, computers, does not necessarily increase the accessibility of the displayed information while accomplishing a given task in a hands-busy, mobile work environment. The use of a GMD increases accessibility of the information by placing it in eye sight of the user without obstructing the surrounding environment. Although the potential utility for this type of display is great, hardware and human integration must be refined. Results from the usability study show the usefulness and usability of the GMD in a mobile, hands-free environment.

  20. An Overview of a Decade of Journal Publications about Culture and Human-Computer Interaction (HCI)

    NASA Astrophysics Data System (ADS)

    Clemmensen, Torkil; Roese, Kerstin

    In this paper, we analyze the concept of human-computer interaction in cultural and national contexts. Building and extending upon the framework for understanding research in usability and culture by Honold [3], we give an overview of publications in culture and HCI between 1998 and 2008, with a narrow focus on high-level journal publications only. The purpose is to review current practice in how cultural HCI issues are studied, and to analyse problems with the measures and interpretation of this studies. We find that Hofstede's cultural dimensions has been the dominating model of culture, participants have been picked because they could speak English, and most studies have been large scale quantitative studies. In order to balance this situation, we recommend that more researchers and practitioners do qualitative, empirical work studies.

  1. "Don't" Do This--Pitfalls in Using Anti-Patterns in Teaching Human-Computer Interaction Principles

    ERIC Educational Resources Information Center

    Kotze, Paula; Renaud, Karen; van Biljon, Judy

    2008-01-01

    This paper explores the use of design patterns and anti-patterns in teaching human-computer interaction principles. Patterns are increasingly popular and are seen as an efficient knowledge transfer mechanism in many fields, including software development in the field of software engineering, and more recently in the field of human-computer…

  2. Designing the user interface: strategies for effective human-computer interaction

    NASA Astrophysics Data System (ADS)

    Shneiderman, B.

    1998-03-01

    In revising this popular book, Ben Shneiderman again provides a complete, current and authoritative introduction to user-interface design. The user interface is the part of every computer system that determines how people control and operate that system. When the interface is well designed, it is comprehensible, predictable, and controllable; users feel competent, satisfied, and responsible for their actions. Shneiderman discusses the principles and practices needed to design such effective interaction. Based on 20 years experience, Shneiderman offers readers practical techniques and guidelines for interface design. He also takes great care to discuss underlying issues and to support conclusions with empirical results. Interface designers, software engineers, and product managers will all find this book an invaluable resource for creating systems that facilitate rapid learning and performance, yield low error rates, and generate high user satisfaction. Coverage includes the human factors of interactive software (with a new discussion of diverse user communities), tested methods to develop and assess interfaces, interaction styles such as direct manipulation for graphical user interfaces, and design considerations such as effective messages, consistent screen design, and appropriate color.

  3. Eye center localization and gaze gesture recognition for human-computer interaction.

    PubMed

    Zhang, Wenhao; Smith, Melvyn L; Smith, Lyndon N; Farooq, Abdul

    2016-03-01

    This paper introduces an unsupervised modular approach for accurate and real-time eye center localization in images and videos, thus allowing a coarse-to-fine, global-to-regional scheme. The trajectories of eye centers in consecutive frames, i.e., gaze gestures, are further analyzed, recognized, and employed to boost the human-computer interaction (HCI) experience. This modular approach makes use of isophote and gradient features to estimate the eye center locations. A selective oriented gradient filter has been specifically designed to remove strong gradients from eyebrows, eye corners, and shadows, which sabotage most eye center localization methods. A real-world implementation utilizing these algorithms has been designed in the form of an interactive advertising billboard to demonstrate the effectiveness of our method for HCI. The eye center localization algorithm has been compared with 10 other algorithms on the BioID database and six other algorithms on the GI4E database. It outperforms all the other algorithms in comparison in terms of localization accuracy. Further tests on the extended Yale Face Database b and self-collected data have proved this algorithm to be robust against moderate head poses and poor illumination conditions. The interactive advertising billboard has manifested outstanding usability and effectiveness in our tests and shows great potential for benefiting a wide range of real-world HCI applications. PMID:26974900

  4. Delays in Human-Computer Interaction and Their Effects on Brain Activity

    PubMed Central

    Kohrs, Christin; Angenstein, Nicole; Brechmann, André

    2016-01-01

    The temporal contingency of feedback is an essential requirement of successful human-computer interactions. The timing of feedback not only affects the behavior of a user but is also accompanied by changes in psychophysiology and neural activity. In three fMRI experiments we systematically studied the impact of delayed feedback on brain activity while subjects performed an auditory categorization task. In the first fMRI experiment, we analyzed the effects of rare and thus unexpected delays of different delay duration on brain activity. In the second experiment, we investigated if users can adapt to frequent delays. Therefore, delays were presented as often as immediate feedback. In a third experiment, the influence of interaction outage was analyzed by measuring the effect of infrequent omissions of feedback on brain activity. The results show that unexpected delays in feedback presentation compared to immediate feedback stronger activate inter alia bilateral the anterior insular cortex, the posterior medial frontal cortex, the left inferior parietal lobule and the right inferior frontal junction. The strength of this activation increases with the duration of the delay. Thus, delays interrupt the course of an interaction and trigger an orienting response that in turn activates brain regions of action control. If delays occur frequently, users can adapt, delays become expectable, and the brain activity in the observed network diminishes over the course of the interaction. However, introducing rare omissions of expected feedback reduces the system’s trustworthiness which leads to an increase in brain activity not only in response to such omissions but also following frequently occurring and thus expected delays. PMID:26745874

  5. Delays in Human-Computer Interaction and Their Effects on Brain Activity.

    PubMed

    Kohrs, Christin; Angenstein, Nicole; Brechmann, André

    2016-01-01

    The temporal contingency of feedback is an essential requirement of successful human-computer interactions. The timing of feedback not only affects the behavior of a user but is also accompanied by changes in psychophysiology and neural activity. In three fMRI experiments we systematically studied the impact of delayed feedback on brain activity while subjects performed an auditory categorization task. In the first fMRI experiment, we analyzed the effects of rare and thus unexpected delays of different delay duration on brain activity. In the second experiment, we investigated if users can adapt to frequent delays. Therefore, delays were presented as often as immediate feedback. In a third experiment, the influence of interaction outage was analyzed by measuring the effect of infrequent omissions of feedback on brain activity. The results show that unexpected delays in feedback presentation compared to immediate feedback stronger activate inter alia bilateral the anterior insular cortex, the posterior medial frontal cortex, the left inferior parietal lobule and the right inferior frontal junction. The strength of this activation increases with the duration of the delay. Thus, delays interrupt the course of an interaction and trigger an orienting response that in turn activates brain regions of action control. If delays occur frequently, users can adapt, delays become expectable, and the brain activity in the observed network diminishes over the course of the interaction. However, introducing rare omissions of expected feedback reduces the system's trustworthiness which leads to an increase in brain activity not only in response to such omissions but also following frequently occurring and thus expected delays. PMID:26745874

  6. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    ERIC Educational Resources Information Center

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  7. Rethinking Human-Centered Computing: Finding the Customer and Negotiated Interactions at the Airport

    NASA Technical Reports Server (NTRS)

    Wales, Roxana; O'Neill, John; Mirmalek, Zara

    2003-01-01

    The breakdown in the air transportation system over the past several years raises an interesting question for researchers: How can we help improve the reliability of airline operations? In offering some answers to this question, we make a statement about Huuman-Centered Computing (HCC). First we offer the definition that HCC is a multi-disciplinary research and design methodology focused on supporting humans as they use technology by including cognitive and social systems, computational tools and the physical environment in the analysis of organizational systems. We suggest that a key element in understanding organizational systems is that there are external cognitive and social systems (customers) as well as internal cognitive and social systems (employees) and that they interact dynamically to impact the organization and its work. The design of human-centered intelligent systems must take this outside-inside dynamic into account. In the past, the design of intelligent systems has focused on supporting the work and improvisation requirements of employees but has often assumed that customer requirements are implicitly satisfied by employee requirements. Taking a customer-centric perspective provides a different lens for understanding this outside-inside dynamic, the work of the organization and the requirements of both customers and employees In this article we will: 1) Demonstrate how the use of ethnographic methods revealed the important outside-inside dynamic in an airline, specifically the consequential relationship between external customer requirements and perspectives and internal organizational processes and perspectives as they came together in a changing environment; 2) Describe how taking a customer centric perspective identifies places where the impact of the outside-inside dynamic is most critical and requires technology that can be adaptive; 3) Define and discuss the place of negotiated interactions in airline operations, identifying how these

  8. Using minimal human-computer interfaces for studying the interactive development of social awareness

    PubMed Central

    Froese, Tom; Iizuka, Hiroyuki; Ikegami, Takashi

    2014-01-01

    According to the enactive approach to cognitive science, perception is essentially a skillful engagement with the world. Learning how to engage via a human-computer interface (HCI) can therefore be taken as an instance of developing a new mode of experiencing. Similarly, social perception is theorized to be primarily constituted by skillful engagement between people, which implies that it is possible to investigate the origins and development of social awareness using multi-user HCIs. We analyzed the trial-by-trial objective and subjective changes in sociality that took place during a perceptual crossing experiment in which embodied interaction between pairs of adults was mediated over a minimalist haptic HCI. Since that study required participants to implicitly relearn how to mutually engage so as to perceive each other's presence, we hypothesized that there would be indications that the initial developmental stages of social awareness were recapitulated. Preliminary results reveal that, despite the lack of explicit feedback about task performance, there was a trend for the clarity of social awareness to increase over time. We discuss the methodological challenges involved in evaluating whether this trend was characterized by distinct developmental stages of objective behavior and subjective experience. PMID:25309490

  9. Redesign of a computerized clinical reminder for colorectal cancer screening: a human-computer interaction evaluation

    PubMed Central

    2011-01-01

    Background Based on barriers to the use of computerized clinical decision support (CDS) learned in an earlier field study, we prototyped design enhancements to the Veterans Health Administration's (VHA's) colorectal cancer (CRC) screening clinical reminder to compare against the VHA's current CRC reminder. Methods In a controlled simulation experiment, 12 primary care providers (PCPs) used prototypes of the current and redesigned CRC screening reminder in a within-subject comparison. Quantitative measurements were based on a usability survey, workload assessment instrument, and workflow integration survey. We also collected qualitative data on both designs. Results Design enhancements to the VHA's existing CRC screening clinical reminder positively impacted aspects of usability and workflow integration but not workload. The qualitative analysis revealed broad support across participants for the design enhancements with specific suggestions for improving the reminder further. Conclusions This study demonstrates the value of a human-computer interaction evaluation in informing the redesign of information tools to foster uptake, integration into workflow, and use in clinical practice. PMID:22126324

  10. How should Fitts' Law be applied to human-computer interaction?

    NASA Technical Reports Server (NTRS)

    Gillan, D. J.; Holden, K.; Adam, S.; Rudisill, M.; Magee, L.

    1992-01-01

    The paper challenges the notion that any Fitts' Law model can be applied generally to human-computer interaction, and proposes instead that applying Fitts' Law requires knowledge of the users' sequence of movements, direction of movement, and typical movement amplitudes as well as target sizes. Two experiments examined a text selection task with sequences of controlled movements (point-click and point-drag). For the point-click sequence, a Fitts' Law model that used the diagonal across the text object in the direction of pointing (rather than the horizontal extent of the text object) as the target size provided the best fit for the pointing time data, whereas for the point-drag sequence, a Fitts' Law model that used the vertical size of the text object as the target size gave the best fit. Dragging times were fitted well by Fitts' Law models that used either the vertical or horizontal size of the terminal character in the text object. Additional results of note were that pointing in the point-click sequence was consistently faster than in the point-drag sequence, and that pointing in either sequence was consistently faster than dragging. The discussion centres around the need to define task characteristics before applying Fitts' Law to an interface design or analysis, analyses of pointing and of dragging, and implications for interface design.

  11. Human-computer interface

    DOEpatents

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  12. Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kenwright, David

    2000-01-01

    Aerospace data analysis tools that significantly reduce the time and effort needed to analyze large-scale computational fluid dynamics simulations have emerged this year. The current approach for most postprocessing and visualization work is to explore the 3D flow simulations with one of a dozen or so interactive tools. While effective for analyzing small data sets, this approach becomes extremely time consuming when working with data sets larger than one gigabyte. An active area of research this year has been the development of data mining tools that automatically search through gigabyte data sets and extract the salient features with little or no human intervention. With these so-called feature extraction tools, engineers are spared the tedious task of manually exploring huge amounts of data to find the important flow phenomena. The software tools identify features such as vortex cores, shocks, separation and attachment lines, recirculation bubbles, and boundary layers. Some of these features can be extracted in a few seconds; others take minutes to hours on extremely large data sets. The analysis can be performed off-line in a batch process, either during or following the supercomputer simulations. These computations have to be performed only once, because the feature extraction programs search the entire data set and find every occurrence of the phenomena being sought. Because the important questions about the data are being answered automatically, interactivity is less critical than it is with traditional approaches.

  13. A truly human interface: interacting face-to-face with someone whose words are determined by a computer program

    PubMed Central

    Corti, Kevin; Gillespie, Alex

    2015-01-01

    We use speech shadowing to create situations wherein people converse in person with a human whose words are determined by a conversational agent computer program. Speech shadowing involves a person (the shadower) repeating vocal stimuli originating from a separate communication source in real-time. Humans shadowing for conversational agent sources (e.g., chat bots) become hybrid agents (“echoborgs”) capable of face-to-face interlocution. We report three studies that investigated people’s experiences interacting with echoborgs and the extent to which echoborgs pass as autonomous humans. First, participants in a Turing Test spoke with a chat bot via either a text interface or an echoborg. Human shadowing did not improve the chat bot’s chance of passing but did increase interrogators’ ratings of how human-like the chat bot seemed. In our second study, participants had to decide whether their interlocutor produced words generated by a chat bot or simply pretended to be one. Compared to those who engaged a text interface, participants who engaged an echoborg were more likely to perceive their interlocutor as pretending to be a chat bot. In our third study, participants were naïve to the fact that their interlocutor produced words generated by a chat bot. Unlike those who engaged a text interface, the vast majority of participants who engaged an echoborg did not sense a robotic interaction. These findings have implications for android science, the Turing Test paradigm, and human–computer interaction. The human body, as the delivery mechanism of communication, fundamentally alters the social psychological dynamics of interactions with machine intelligence. PMID:26042066

  14. Composite pattern structured light projection for human computer interaction in space

    NASA Astrophysics Data System (ADS)

    Guan, Chun; Hassebrook, Laurence G.; Lau, Daniel L.; Yalla, Veera Ganesh

    2005-05-01

    Interacting with computer technology while wearing a space suit is difficult at best. We present a sensor that can interpret body gestures in 3-Dimensions. Having the depth dimension allows simple thresholding to isolate the hands as well as use their positioning and orientation as input controls to digital devices such as computers and/or robotic devices. Structured light pattern projection is a well known method of accurately extracting 3-Dimensional information of a scene. Traditional structured light methods require several different patterns to recover the depth, without ambiguity and albedo sensitivity, and are corrupted by object motion during the projection/capture process. The authors have developed a methodology for combining multiple patterns into a single composite pattern by using 2-Dimensional spatial modulation techniques. A single composite pattern projection does not require synchronization with the camera so the data acquisition rate is only limited by the video rate. We have incorporated dynamic programming to greatly improve the resolution of the scan. Other applications include machine vision, remote controlled robotic interfacing in space, advanced cockpit controls and computer interfacing for the disabled. We will present performance analysis, experimental results and video examples.

  15. Virtual tomography: a new approach to efficient human-computer interaction for medical imaging

    NASA Astrophysics Data System (ADS)

    Teistler, Michael; Bott, Oliver J.; Dormeier, Jochen; Pretschner, Dietrich P.

    2003-05-01

    By utilizing virtual reality (VR) technologies the computer system virtusMED implements the concept of virtual tomography for exploring medical volumetric image data. Photographic data from a virtual patient as well as CT or MRI data from real patients are visualized within a virtual scene. The view of this scene is determined either by a conventional computer mouse, a head-mounted display or a freely movable flat panel. A virtual examination probe is used to generate oblique tomographic images which are computed from the given volume data. In addition, virtual models can be integrated into the scene such as anatomical models of bones and inner organs. virtusMED has shown to be a valuable tool to learn human anaotomy and to udnerstand the principles of medical imaging such as sonography. Furthermore its utilization to improve CT and MRI based diagnosis is very promising. Compared to VR systems of the past, the standard PC-based system virtusMED is a cost-efficient and easily maintained solution providing a highly intuitive time-saving user interface for medical imaging.

  16. HCI and mobile health interventions: How human-computer interaction can contribute to successful mobile health interventions.

    PubMed

    Poole, Erika S

    2013-12-01

    Advances in mobile computing offer the potential to change when, where, and how health interventions are delivered. Rather than relying on occasional in-clinic interactions, mobile health (mHealth) interventions may overcome constraints due to limited clinician time, poor patient adherence, and inability to provide meaningful interventions at the most appropriate time. Technological capability, however, does not equate with user acceptance and adoption. How then can we ensure that mobile technologies for behavior change meet the needs of their target audience? In this paper, we argue that overcoming acceptance and adoption barriers requires interdisciplinary collaborations, bringing together not only technologists and health researchers but also human-computer interaction (HCI) experts. We discuss the value of human-computer interaction research to the nascent field of mHealth and demonstrate how research from HCI can offer complementary insights on the creation of mobile health interventions. We conclude with a discussion of barriers to interdisciplinary collaborations in mobile health and suggest ways to overcome them. PMID:24294328

  17. The effects of syntactic complexity on the human-computer interaction

    NASA Technical Reports Server (NTRS)

    Chechile, R. A.; Fleischman, R. N.; Sadoski, D. M.

    1986-01-01

    Three divided-attention experiments were performed to evaluate the effectiveness of a syntactic analysis of the primary task of editing flight route-way-point information. For all editing conditions, a formal syntactic expression was developed for the operator's interaction with the computer. In terms of the syntactic expression, four measures of syntactic were examined. Increased syntactic complexity did increase the time to train operators, but once the operators were trained, syntactic complexity did not influence the divided-attention performance. However, the number of memory retrievals required of the operator significantly accounted for the variation in the accuracy, workload, and task completion time found on the different editing tasks under attention-sharing conditions.

  18. Human-computer dialogue: Interaction tasks and techniques. Survey and categorization

    NASA Technical Reports Server (NTRS)

    Foley, J. D.

    1983-01-01

    Interaction techniques are described. Six basic interaction tasks, requirements for each task, requirements related to interaction techniques, and a technique's hardware prerequisites affective device selection are discussed.

  19. HCI∧2 framework: a software framework for multimodal human-computer interaction systems.

    PubMed

    Shen, Jie; Pantic, Maja

    2013-12-01

    This paper presents a novel software framework for the development and research in the area of multimodal human-computer interface (MHCI) systems. The proposed software framework, which is called the HCI∧2 Framework, is built upon publish/subscribe (P/S) architecture. It implements a shared-memory-based data transport protocol for message delivery and a TCP-based system management protocol. The latter ensures that the integrity of system structure is maintained at runtime. With the inclusion of bridging modules, the HCI∧2 Framework is interoperable with other software frameworks including Psyclone and ActiveMQ. In addition to the core communication middleware, we also present the integrated development environment (IDE) of the HCI∧2 Framework. It provides a complete graphical environment to support every step in a typical MHCI system development process, including module development, debugging, packaging, and management, as well as the whole system management and testing. The quantitative evaluation indicates that our framework outperforms other similar tools in terms of average message latency and maximum data throughput under a typical single PC scenario. To demonstrate HCI∧2 Framework's capabilities in integrating heterogeneous modules, we present several example modules working with a variety of hardware and software. We also present an example of a full system developed using the proposed HCI∧2 Framework, which is called the CamGame system and represents a computer game based on hand-held marker(s) and low-cost camera(s). PMID:24235258

  20. Interactive computer graphics

    NASA Astrophysics Data System (ADS)

    Purser, K.

    1980-08-01

    Design layouts have traditionally been done on a drafting board by drawing a two-dimensional representation with section cuts and side views to describe the exact three-dimensional model. With the advent of computer graphics, a three-dimensional model can be created directly. The computer stores the exact three-dimensional model, which can be examined from any angle and at any scale. A brief overview of interactive computer graphics, how models are made and some of the benefits/limitations are described.

  1. Study of interaction between human serum albumin and three phenanthridine derivatives: Fluorescence spectroscopy and computational approach

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Yue, Yuanyuan; Wang, Jing; Yan, Xuyang; Liu, Ren; Sun, Yangyang; Li, Xiaoge

    2015-06-01

    Over the past decades, phenanthridine derivatives have captured the imagination of many chemists due to their wide applications. In the present work, the interaction between phenanthridine derivatives benzo [4,5]imidazo[1,2-a]thieno[2,3-c]quinoline (BTQ), benzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (BFQ), 5,6-dimethylbenzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (DFQ) and human serum albumin (HSA) were investigated by molecular modeling techniques and spectroscopic methods. The results of molecular modeling simulations revealed that the phenanthridine derivatives could bind on both site I in HSA. Fluorescence data revealed that the fluorescence quenching of HSA by phenanthridine derivatives were the result of the formation of phenanthridine derivatives-HSA complex, and the binding intensity between three phenanthridine derivatives and HSA was BTQ > BFQ > DFQ. Thermodynamics confirmed that the interaction were entropy driven with predominantly hydrophobic forces. The effects of some biological metal ions and toxic ions on the binding affinity between phenanthridine derivatives and HSA were further examined.

  2. Making intelligent systems team players: Case studies and design issues. Volume 1: Human-computer interaction design

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.

    1991-01-01

    Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.

  3. A Comprehensive Computational Study of the Interaction between Human Serum Albumin and Fullerenes.

    PubMed

    Leonis, Georgios; Avramopoulos, Aggelos; Papavasileiou, Konstantinos D; Reis, Heribert; Steinbrecher, Thomas; Papadopoulos, Manthos G

    2015-12-01

    Human serum albumin (HSA) is the most abundant blood plasma protein, which transports fatty acids, hormones, and drugs. We consider nanoparticle-HSA interactions by investigating the binding of HSA with three fullerene analogs. Long MD simulations, quantum mechanical (fragment molecular orbital, energy decomposition analysis, atoms-in-molecules), and free energy methods elucidated the binding mechanism in these complexes. Such a systematic study is valuable due to the lack of comprehensive theoretical approaches to date. The main elements of the mechanism include the following: binding to IIA site results in allosteric modulation of the IIIA and heme binding sites with an increase in α-helical structure of IIIA. Fullerenes displayed high binding affinities for HSA; therefore, HSA can be used as a fullerene carrier, facilitating any toxic function the fullerene may exert. Complex formation is driven by hydrogen bonding, van der Waals, nonpolar, charge transfer, and dispersion energy contributions. Proper functionalization of C60 has enhanced its binding to HSA by more than an order of magnitude. This feature may be important for biological applications (e.g., photodynamic therapy of cancer). Satisfactory agreement with relevant experimental and theoretical data has been obtained. PMID:26523956

  4. Study of Button Theory in Structuring Human-Computer Interaction in a Multimedia System.

    ERIC Educational Resources Information Center

    Looi, Chee-Kit; And Others

    When students feel that their learning needs are not being met by computer-aided instruction, learning becomes passive, often resulting in boredom, frustration or a dislike for learning with computers. "Button Theory" allows the student to express his feelings and questions to the computer at the touch of a button, thus enhancing control over the…

  5. Human Computers 1947

    NASA Technical Reports Server (NTRS)

    1947-01-01

    Langley's human computers at work in 1947. The female presence at Langley, who performed mathematical computations for male staff. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 48), by James Schultz.

  6. Using Tablet PCs in Classroom for Teaching Human-Computer Interaction: An Experience in High Education

    ERIC Educational Resources Information Center

    da Silva, André Constantino; Marques, Daniela; de Oliveira, Rodolfo Francisco; Noda, Edgar

    2014-01-01

    The use of computers in the teaching and learning process is investigated by many researches and, nowadays, due the available diversity of computing devices, tablets are become popular in classroom too. So what are the advantages and disadvantages to use tablets in classroom? How can we shape the teaching and learning activities to get the best of…

  7. An Investigation of Human-Computer Interaction Approaches Beneficial to Weak Learners in Complex Animation Learning

    ERIC Educational Resources Information Center

    Yeh, Yu-Fang

    2016-01-01

    Animation is one of the useful contemporary educational technologies in teaching complex subjects. There is a growing interest in proper use of learner-technology interaction to promote learning quality for different groups of learner needs. The purpose of this study is to investigate if an interaction approach supports weak learners, who have…

  8. Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction

    NASA Technical Reports Server (NTRS)

    Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.

    2001-01-01

    Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.

  9. Visualizing Humans by Computer.

    ERIC Educational Resources Information Center

    Magnenat-Thalmann, Nadia

    1992-01-01

    Presents an overview of the problems and techniques involved in visualizing humans in a three-dimensional scene. Topics discussed include human shape modeling, including shape creation and deformation; human motion control, including facial animation and interaction with synthetic actors; and human rendering and clothing, including textures and…

  10. Capacitive facial movement detection for human-computer interaction to click by frowning and lifting eyebrows: assistive technology.

    PubMed

    Rantanen, Ville; Niemenlehto, Pekka-Henrik; Verho, Jarmo; Lekkala, Jukka

    2010-01-01

    A capacitive facial movement detection method designed for human-computer interaction is presented. Some point-and-click interfaces use facial electromyography for clicking. The presented method provides a contactless alternative. Electrodes with no galvanic coupling to the face are used to form electric fields. Changes in the electric fields due to facial movements are detected by measuring capacitances between the electrodes. A prototype device for measuring a capacitance signal affected by frowning and lifting eyebrows was constructed. A commercial integrated circuit for capacitive touch sensors is used in the measurement. The applied movement detection algorithm uses an adaptive approach to provide operation capability in noisy and dynamic environments. Experimentation with 10 test subjects proved that, under controlled circumstances, the movements are detected with good efficiency, but characterizing the movements into frowns and eyebrow lifts is more problematic. Integration with a two-dimensional (2D) pointing solution and further experiments are still required. PMID:20016948

  11. A depth camera for natural human-computer interaction based on near-infrared imaging and structured light

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Wang, Liqiang; Yuan, Bo; Liu, Hao

    2015-08-01

    Designing of a novel depth camera is presented, which targets close-range (20-60cm) natural human-computer interaction especially for mobile terminals. In order to achieve high precision through the working range, a two-stepping method is employed to match the near infrared intensity image to absolute depth in real-time. First, we use structured light achieved by an 808nm laser diode and a Dammann grating to coarsely quantize the output space of depth values into discrete bins. Then use a learning-based classification forest algorithm to predict the depth distribution over these bins for each pixel in the image. The quantitative experimental results show that this depth camera has 1% precision over range of 20-60cm, which show that the camera suit resource-limited and low-cost application.

  12. Human interaction with an intelligent computer in multi-task situations

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1975-01-01

    A general formulation of human decision making in multiple task situations is presented. It includes a description of the state, event, and action space in which the multiple task supervisor operates. A specific application to a failure detection and correction situation is discussed and results of a simulation experiment presented. Issues considered include static vs. dynamic allocation of responsibility and competitive vs. cooperative intelligence.

  13. The Importance of Human-Computer Interaction in Radiology E-learning.

    PubMed

    den Harder, Annemarie M; Frijlingh, Marissa; Ravesloot, Cécile J; Oosterbaan, Anne E; van der Gijp, Anouk

    2016-04-01

    With the development of cross-sectional imaging techniques and transformation to digital reading of radiological imaging, e-learning might be a promising tool in undergraduate radiology education. In this systematic review of the literature, we evaluate the emergence of image interaction possibilities in radiology e-learning programs and evidence for effects of radiology e-learning on learning outcomes and perspectives of medical students and teachers. A systematic search in PubMed, EMBASE, Cochrane, ERIC, and PsycInfo was performed. Articles were screened by two authors and included when they concerned the evaluation of radiological e-learning tools for undergraduate medical students. Nineteen articles were included. Seven studies evaluated e-learning programs with image interaction possibilities. Students perceived e-learning with image interaction possibilities to be a useful addition to learning with hard copy images and to be effective for learning 3D anatomy. Both e-learning programs with and without image interaction possibilities were found to improve radiological knowledge and skills. In general, students found e-learning programs easy to use, rated image quality high, and found the difficulty level of the courses appropriate. Furthermore, they felt that their knowledge and understanding of radiology improved by using e-learning. In conclusion, the addition of radiology e-learning in undergraduate medical education can improve radiological knowledge and image interpretation skills. Differences between the effect of e-learning with and without image interpretation possibilities on learning outcomes are unknown and should be subject to future research. PMID:26464115

  14. Human-machine interactions

    DOEpatents

    Forsythe, J. Chris; Xavier, Patrick G.; Abbott, Robert G.; Brannon, Nathan G.; Bernard, Michael L.; Speed, Ann E.

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  15. Why E-Business Must Evolve beyond Market Orientation: Applying Human Interaction Models to Computer-Mediated Corporate Communications.

    ERIC Educational Resources Information Center

    Johnston, Kevin McCullough

    2001-01-01

    Considers the design of corporate communications for electronic business and discusses the increasing importance of corporate interaction as companies work in virtual environments. Compares sociological and psychological theories of human interaction and relationship formation with organizational interaction theories of corporate relationship…

  16. A mobile Nursing Information System based on human-computer interaction design for improving quality of nursing.

    PubMed

    Su, Kuo-Wei; Liu, Cheng-Li

    2012-06-01

    A conventional Nursing Information System (NIS), which supports the role of nurse in some areas, is typically deployed as an immobile system. However, the traditional information system can't response to patients' conditions in real-time, causing delays on the availability of this information. With the advances of information technology, mobile devices are increasingly being used to extend the human mind's limited capacity to recall and process large numbers of relevant variables and to support information management, general administration, and clinical practice. Unfortunately, there have been few studies about the combination of a well-designed small-screen interface with a personal digital assistant (PDA) in clinical nursing. Some researchers found that user interface design is an important factor in determining the usability and potential use of a mobile system. Therefore, this study proposed a systematic approach to the development of a mobile nursing information system (MNIS) based on Mobile Human-Computer Interaction (M-HCI) for use in clinical nursing. The system combines principles of small-screen interface design with user-specified requirements. In addition, the iconic functions were designed with metaphor concept that will help users learn the system more quickly with less working-memory. An experiment involving learnability testing, thinking aloud and a questionnaire investigation was conducted for evaluating the effect of MNIS on PDA. The results show that the proposed MNIS is good on learning and higher satisfaction on symbol investigation, terminology and system information. PMID:20827569

  17. Ubiquitous human computing.

    PubMed

    Zittrain, Jonathan

    2008-10-28

    Ubiquitous computing means network connectivity everywhere, linking devices and systems as small as a drawing pin and as large as a worldwide product distribution chain. What could happen when people are so readily networked? This paper explores issues arising from two possible emerging models of ubiquitous human computing: fungible networked brainpower and collective personal vital sign monitoring. PMID:18672463

  18. Computational modeling of the N-terminus of the human dopamine transporter and its interaction with PIP2-containing membranes

    PubMed Central

    Khelashvili, George; Doktorova, Milka; Sahai, Michelle A.; Johner, Niklaus; Shi, Lei; Weinstein, Harel

    2015-01-01

    The dopamine transporter (DAT) is a transmembrane protein belonging to the family of Neurotransmitter:Sodium Symporters (NSS). Members of the NSS are responsible for the clearance of neurotransmitters from the synaptic cleft, and for their translocation back into the presynaptic nerve terminal. The DAT contains long intracellular N- and C-terminal domains that are strongly implicated in the transporter function. The N-terminus (N-term), in particular, regulates the reverse transport (efflux) of the substrate through DAT. Currently, the molecular mechanisms of the efflux remain elusive in large part due to lack of structural information on the N-terminal segment. Here we report a computational model of the N-term of the human DAT (hDAT), obtained through an ab initio structure prediction, in combination with extensive atomistic molecular dynamics (MD) simulations in the context of a lipid membrane. Our analysis reveals that whereas the N-term is a highly dynamic domain, it contains secondary structure elements that remain stable in the long MD trajectories of interactions with the bilayer (totaling >2.2 µs). Combining MD simulations with continuum mean-field modeling we found that the N-term engages with lipid membranes through electrostatic interactions with the charged lipids PIP2 (phosphatidylinositol 4,5-Biphosphate) or PS (phosphatidylserine) that are present in these bilayers. We identify specific motifs along the N-term implicated in such interactions and show that differential modes of N-term/membrane association result in differential positioning of the structured segments on the membrane surface. These results will inform future structure-based studies that will elucidate the mechanistic role of the N-term in DAT function. PMID:25739722

  19. Computational modeling of the N-terminus of the human dopamine transporter and its interaction with PIP2 -containing membranes.

    PubMed

    Khelashvili, George; Doktorova, Milka; Sahai, Michelle A; Johner, Niklaus; Shi, Lei; Weinstein, Harel

    2015-05-01

    The dopamine transporter (DAT) is a transmembrane protein belonging to the family of neurotransmitter:sodium symporters (NSS). Members of the NSS are responsible for the clearance of neurotransmitters from the synaptic cleft, and for their translocation back into the presynaptic nerve terminal. The DAT contains long intracellular N- and C-terminal domains that are strongly implicated in the transporter function. The N-terminus (N-term), in particular, regulates the reverse transport (efflux) of the substrate through DAT. Currently, the molecular mechanisms of the efflux remain elusive in large part due to lack of structural information on the N-terminal segment. Here we report a computational model of the N-term of the human DAT (hDAT), obtained through an ab initio structure prediction, in combination with extensive atomistic molecular dynamics (MD) simulations in the context of a lipid membrane. Our analysis reveals that whereas the N-term is a highly dynamic domain, it contains secondary structure elements that remain stable in the long MD trajectories of interactions with the bilayer (totaling >2.2 μs). Combining MD simulations with continuum mean-field modeling we found that the N-term engages with lipid membranes through electrostatic interactions with the charged lipids PIP2 (phosphatidylinositol 4,5-Biphosphate) or PS (phosphatidylserine) that are present in these bilayers. We identify specific motifs along the N-term implicated in such interactions and show that differential modes of N-term/membrane association result in differential positioning of the structured segments on the membrane surface. These results will inform future structure-based studies that will elucidate the mechanistic role of the N-term in DAT function. PMID:25739722

  20. Comparison of Interactive Computer-Based and Classroom Training on Human Rights Awareness in Persons with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Tardif-Williams, Christine Y.; Owen, Frances; Feldman, Maurice; Tarulli, Donato; Griffiths, Dorothy; Sales, Carol; McQueen-Fuentes, Glenys; Stoner, Karen

    2007-01-01

    We tested the effectiveness of an interactive, video CD-ROM in teaching persons with intellectual disabilities (ID) about their human rights. Thirty-nine participants with ID were trained using both a classroom activity-based version of the training program and the interactive CD-ROM in a counterbalanced presentation. All individuals were pre- and…

  1. A robust Kalman algorithm to facilitate human-computer interaction for people with cerebral palsy, using a new interface based on inertial sensors.

    PubMed

    Raya, Rafael; Rocon, Eduardo; Gallego, Juan A; Ceres, Ramón; Pons, Jose L

    2012-01-01

    This work aims to create an advanced human-computer interface called ENLAZA for people with cerebral palsy (CP). Although there are computer-access solutions for disabled people in general, there are few evidences from motor disabled community (e.g., CP) using these alternative interfaces. The proposed interface is based on inertial sensors in order to characterize involuntary motion in terms of time, frequency and range of motion. This characterization is used to design a filtering technique that reduces the effect of involuntary motion on person-computer interaction. This paper presents a robust Kalman filter (RKF) design to facilitate fine motor control based on the previous characterization. The filter increases mouse pointer directivity and the target acquisition time is reduced by a factor of ten. The interface is validated with CP users who were unable to control the computer using other interfaces. The interface ENLAZA and the RKF enabled them to use the computer. PMID:22736992

  2. A Robust Kalman Algorithm to Facilitate Human-Computer Interaction for People with Cerebral Palsy, Using a New Interface Based on Inertial Sensors

    PubMed Central

    Raya, Rafael; Rocon, Eduardo; Gallego, Juan A.; Ceres, Ramón; Pons, Jose L.

    2012-01-01

    This work aims to create an advanced human-computer interface called ENLAZA for people with cerebral palsy (CP). Although there are computer-access solutions for disabled people in general, there are few evidences from motor disabled community (e.g., CP) using these alternative interfaces. The proposed interface is based on inertial sensors in order to characterize involuntary motion in terms of time, frequency and range of motion. This characterization is used to design a filtering technique that reduces the effect of involuntary motion on person-computer interaction. This paper presents a robust Kalman filter (RKF) design to facilitate fine motor control based on the previous characterization. The filter increases mouse pointer directivity and the target acquisition time is reduced by a factor of ten. The interface is validated with CP users who were unable to control the computer using other interfaces. The interface ENLAZA and the RKF enabled them to use the computer. PMID:22736992

  3. GT-MSOCC - A domain for research on human-computer interaction and decision aiding in supervisory control systems. [Georgia Tech - Multisatellite Operations Control Center

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1987-01-01

    The Georgia Tech-Multisatellite Operations Control Center (GT-MSOCC), a real-time interactive simulation of the operator interface to a NASA ground control system for unmanned earth-orbiting satellites, is described. The GT-MSOCC program for investigating a range of modeling, decision aiding, and workstation design issues related to the human-computer interaction is discussed. A GT-MSOCC operator function model is described in which operator actions, both cognitive and manual, are represented as the lowest level discrete control network nodes, and operator action nodes are linked to information needs or system reconfiguration commands.

  4. Computing human image annotation.

    PubMed

    Channin, David S; Mongkolwat, Pattanasak; Kleper, Vladimir; Rubin, Daniel L

    2009-01-01

    An image annotation is the explanatory or descriptive information about the pixel data of an image that is generated by a human (or machine) observer. An image markup is the graphical symbols placed over the image to depict an annotation. In the majority of current, clinical and research imaging practice, markup is captured in proprietary formats and annotations are referenced only in free text radiology reports. This makes these annotations difficult to query, retrieve and compute upon, hampering their integration into other data mining and analysis efforts. This paper describes the National Cancer Institute's Cancer Biomedical Informatics Grid's (caBIG) Annotation and Image Markup (AIM) project, focusing on how to use AIM to query for annotations. The AIM project delivers an information model for image annotation and markup. The model uses controlled terminologies for important concepts. All of the classes and attributes of the model have been harmonized with the other models and common data elements in use at the National Cancer Institute. The project also delivers XML schemata necessary to instantiate AIMs in XML as well as a software application for translating AIM XML into DICOM S/R and HL7 CDA. Large collections of AIM annotations can be built and then queried as Grid or Web services. Using the tools of the AIM project, image annotations and their markup can be captured and stored in human and machine readable formats. This enables the inclusion of human image observation and inference as part of larger data mining and analysis activities. PMID:19964202

  5. Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herb-drug interaction reports, computational analysis and experimental studies.

    PubMed

    Shao, Xin; Ai, Ni; Xu, Donghang; Fan, Xiaohui

    2016-05-15

    Human serum albumin (HSA) binding is one of important pharmacokinetic properties of drug, which is closely related to in vivo distribution and may ultimately influence its clinical efficacy. Compared to conventional drug, limited information on this transportation process is available for medicinal herbs, which significantly hampers our understanding on their pharmacological effects, particularly when herbs and drug are co-administrated as polytherapy to the ailment. Several lines of evidence suggest the existence of Salvia miltiorrhiza-Warfarin interaction. Since Warfarin is highly HSA bound in the plasma with selectivity to site I, it is critical to evaluate the possibility of HSA-related herb-drug interaction. Herein an integrated approach was employed to analyze the binding of chemicals identified in S. miltiorrhiza to HSA. Molecular docking simulations revealed filtering criteria for HSA site I compounds that include docking score and key molecular determinants for binding. For eight representative ingredients from the herb, their affinity and specificity to HSA site I was measured and confirmed fluorometrically, which helps to improve the knowledge of interaction mechanisms between this herb and HSA. Our results indicated that several compounds in S. miltiorrhiza were capable of decreasing the binding constant of Warfarin to HSA site I significantly, which may increase free drug concentration in vivo, contributing to the herb-drug interaction observed clinically. Furthermore, the significance of HSA mediated herb-drug interactions was further implied by manual mining on the published literatures on S. miltiorrhiza. PMID:26926393

  6. Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herb-drug interaction reports, computational analysis and experimental studies

    NASA Astrophysics Data System (ADS)

    Shao, Xin; Ai, Ni; Xu, Donghang; Fan, Xiaohui

    2016-05-01

    Human serum albumin (HSA) binding is one of important pharmacokinetic properties of drug, which is closely related to in vivo distribution and may ultimately influence its clinical efficacy. Compared to conventional drug, limited information on this transportation process is available for medicinal herbs, which significantly hampers our understanding on their pharmacological effects, particularly when herbs and drug are co-administrated as polytherapy to the ailment. Several lines of evidence suggest the existence of Salvia miltiorrhiza-Warfarin interaction. Since Warfarin is highly HSA bound in the plasma with selectivity to site I, it is critical to evaluate the possibility of HSA-related herb-drug interaction. Herein an integrated approach was employed to analyze the binding of chemicals identified in S. miltiorrhiza to HSA. Molecular docking simulations revealed filtering criteria for HSA site I compounds that include docking score and key molecular determinants for binding. For eight representative ingredients from the herb, their affinity and specificity to HSA site I was measured and confirmed fluorometrically, which helps to improve the knowledge of interaction mechanisms between this herb and HSA. Our results indicated that several compounds in S. miltiorrhiza were capable of decreasing the binding constant of Warfarin to HSA site I significantly, which may increase free drug concentration in vivo, contributing to the herb-drug interaction observed clinically. Furthermore, the significance of HSA mediated herb-drug interactions was further implied by manual mining on the published literatures on S. miltiorrhiza.

  7. Experimental Tests of Normative Group Influence and Representation Effects in Computer-Mediated Communication: When Interacting Via Computers Differs from Interacting With Computers.

    ERIC Educational Resources Information Center

    Lee, Eun-Ju; Nass, Clifford

    2002-01-01

    Presents two experiments to address the questions of if and how normative social influence operates in anonymous computer-mediated communication and human-computer interaction. Finds that the perception of interaction partner (human vs. computer) moderated the group conformity effect such that the undergraduate student subjects expressed greater…

  8. Computational Study on Full-length Human Ku70 with Double Stranded DNA: Dynamics, Interactions and Functional Implications

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2009-01-01

    The Ku70/80 heterodimer is the first repair protein in the initial binding of double-strand break (DSB) ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. In this study we constructed a full-length human Ku70 structure based on its crystal structure, and performed 20 ns conventional molecular dynamic (CMD) simulations on this protein and several other complexes with short DNA duplexes of different sequences. The trajectories of these simulations indicated that, without the topological support of Ku80, the residues in the bridge and C-terminal arm of Ku70 are more flexible than other experimentally identified domains. We studied the two missing loops in the crystal structure and predicted that they are also very flexible. Simulations revealed that they make an important contribution to the Ku70 interaction with DNA. Dislocation of the previously studied SAP domain was observed in several systems, implying its role in DNA binding. Targeted molecular dynamic (TMD) simulation was also performed for one system with a far-away 14bp DNA duplex. The TMD trajectory and energetic analysis disclosed detailed interactions of the DNA-binding residues during the DNA dislocation, and revealed a possible conformational transition for a DSB end when encountering Ku70 in solution. Compared to experimentally based analysis, this study identified more detailed interactions between DNA and Ku70. Free energy analysis indicated Ku70 alone is able to bind DNA with relatively high affinity, with consistent contributions from various domains of Ku70 in different systems. The functional implications of these domains in the processes of Ku heterodimerization and DNA damage recognition and repair can be characterized in detail based upon this analysis.

  9. Supporting collaborative computing and interaction

    SciTech Connect

    Agarwal, Deborah; McParland, Charles; Perry, Marcia

    2002-05-22

    To enable collaboration on the daily tasks involved in scientific research, collaborative frameworks should provide lightweight and ubiquitous components that support a wide variety of interaction modes. We envision a collaborative environment as one that provides a persistent space within which participants can locate each other, exchange synchronous and asynchronous messages, share documents and applications, share workflow, and hold videoconferences. We are developing the Pervasive Collaborative Computing Environment (PCCE) as such an environment. The PCCE will provide integrated tools to support shared computing and task control and monitoring. This paper describes the PCCE and the rationale for its design.

  10. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  11. Making IBM's Computer, Watson, Human

    ERIC Educational Resources Information Center

    Rachlin, Howard

    2012-01-01

    This essay uses the recent victory of an IBM computer (Watson) in the TV game, "Jeopardy," to speculate on the abilities Watson would need, in addition to those it has, to be human. The essay's basic premise is that to be human is to behave as humans behave and to function in society as humans function. Alternatives to this premise are considered…

  12. Humanities Computing 25 Years Later.

    ERIC Educational Resources Information Center

    Raben, Joseph

    1991-01-01

    Provides an overview of the development of humanities computing during the past 25 years. Mentions the major applications of the computer to humanities disciplines including the generation of concordances, attempts at dating works of major authors, proving authorship, defining style, and compiling indexes. Discusses lexicographical uses and…

  13. Genotoxic effects of the antimalarial drug lumefantrine in human lymphocytes in vitro and computational prediction of the mechanism associated with its interaction with DNA.

    PubMed

    de Lucca, Renato M R; Batista Júnior, João; Fontes, Cor J Fernandes; Bahia, Marcelo de Oliveira; Bassi-Branco, Carmen L

    2015-07-01

    Lumefantrine (LF) is an aryl-amino alcohol antimalarial drug used in artemisinin-based combination therapies against malaria worldwide. In this study, we investigated the genotoxic effects of LF in human lymphocytes in vitro, and the potential noncovalent interaction of LF with DNA using a 3D DNA-docking model. The number of DNA breaks and the frequency of nuclear buds (NBUDS) was significantly increased (P < 0.01 and P < 0. 05, respectively) at LF concentrations of 60, 80, and 100 µg/mL (LF60, LF80, and LF100, respectively). Frequency (‰) of micronuclei (MN) formation also increased after LF treatments. However, this was only significant for LF100 (P = 0.01) and LF80 (P = 0.001). LF did not affect the frequency of nucleoplasmic bridges (NPBs) (P = 0.12) or the nuclear division index (NDI) (P = 0.32). Computational analysis suggests that LF may interact noncovalently with DNA via the DNA minor groove surface with a predicted binding affinity energy of -7.2 kcal/mol and showing a favorable shape complementary to this groove. Our results suggest that LF has clastogenic effects in human lymphocytes in vitro due to noncovalent interaction with the minor groove of DNA. PMID:25821123

  14. Human computer interface guide, revision A

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Human Computer Interface Guide, SSP 30540, is a reference document for the information systems within the Space Station Freedom Program (SSFP). The Human Computer Interface Guide (HCIG) provides guidelines for the design of computer software that affects human performance, specifically, the human-computer interface. This document contains an introduction and subparagraphs on SSFP computer systems, users, and tasks; guidelines for interactions between users and the SSFP computer systems; human factors evaluation and testing of the user interface system; and example specifications. The contents of this document are intended to be consistent with the tasks and products to be prepared by NASA Work Package Centers and SSFP participants as defined in SSP 30000, Space Station Program Definition and Requirements Document. The Human Computer Interface Guide shall be implemented on all new SSFP contractual and internal activities and shall be included in any existing contracts through contract changes. This document is under the control of the Space Station Control Board, and any changes or revisions will be approved by the deputy director.

  15. Determination of Perceptions of the Teacher Candidates Studying in the Computer and Instructional Technology Department towards Human-Computer Interaction and Related Basic Concepts

    ERIC Educational Resources Information Center

    Kiyici, Mubin

    2011-01-01

    HCI is a field which has an increasing popularity by virtue of the spread of the computers and internet and gradually contributes to the production of the user-friendlier software and hardware with the contribution of the scientists from different disciplines. Teacher candidates studying at the computer and instructional technologies department…

  16. Functional Assessment for Human-Computer Interaction: A Method for Quantifying Physical Functional Capabilities for Information Technology Users

    ERIC Educational Resources Information Center

    Price, Kathleen J.

    2011-01-01

    The use of information technology is a vital part of everyday life, but for a person with functional impairments, technology interaction may be difficult at best. Information technology is commonly designed to meet the needs of a theoretical "normal" user. However, there is no such thing as a "normal" user. A user's capabilities will vary over…

  17. Using Human Interactive Proofs to Secure Human-Machine Interactions via Untrusted Intermediaries

    NASA Astrophysics Data System (ADS)

    Mitchell, Chris J.

    This paper explores ways in which Human Interactive Proofs (HIPs), i.e. problems which are easy for humans to solve but are intractable for computers, can be used to improve the security of human-machine interactions. The particular focus of this paper is the case where these interactions take place via an untrusted intermediary device, and where the use of HIPs can be used to establish a secure channel between the human and target machine. A number of application scenarios of this general type are considered, and in each case the possible use of HIPs to improve interaction security is explored.

  18. Computer Laboratory Assistant Interactions with Communication Students.

    ERIC Educational Resources Information Center

    O'Donnell, Karen

    Although numerous studies focus upon computer attitudes and computer anxiety, relatively few studies analyze the interaction between a computer laboratory assistant and the individual who is asking the question. This paper begins with a brief overview of the literature that discusses attitudes towards computers, computer anxiety, and computer…

  19. Secure Distributed Human Computation

    NASA Astrophysics Data System (ADS)

    Gentry, Craig; Ramzan, Zulfikar; Stubblebine, Stuart

    In Peha’s Financial Cryptography 2004 invited talk, he described the Cyphermint PayCash system (see www.cyphermint.com), which allows people without bank accounts or credit cards (a sizeable segment of the U.S. population) to automatically and instantly cash checks, pay bills, or make Internet transactions through publicly-accessible kiosks. Since PayCash offers automated financial transactions and since the system uses (unprotected) kiosks, security is critical. The kiosk must decide whether a person cashing a check is really the person to whom the check was made out, so it takes a digital picture of the person cashing the check and transmits this picture electronically to a central office, where a human worker compares the kiosk’s picture to one that was taken when the person registered with Cyphermint. If both pictures are of the same person, then the human worker authorizes the transaction.

  20. Computer simulations of the interaction of human immunodeficiency virus (HIV) aspartic protease with spherical gold nanoparticles: implications in acquired immunodeficiency syndrome (AIDS)

    NASA Astrophysics Data System (ADS)

    Whiteley, Chris G.; Lee, Duu-Jong

    2016-09-01

    The interaction of gold nanoparticles (AuNP) with human immune-deficiency virus aspartic protease (HIVPR) is modelled using a regime of molecular dynamics simulations. The simulations of the ‘docking’, first as a rigid-body complex, and eventually through flexible-fit analysis, creates 36 different complexes from four initial orientations of the nanoparticle strategically positioned around the surface of the enzyme. The structural deviations of the enzymes from the initial x-ray crystal structure during each docking simulation are assessed by comparative analysis of secondary structural elements, root mean square deviations, B-factors, interactive bonding energies, dihedral angles, radius of gyration (R g), circular dichroism (CD), volume occupied by C α , electrostatic potentials, solvation energies and hydrophobicities. Normalisation of the data narrows the selection from the initial 36 to one ‘final’ probable structure. It is concluded that, after computer simulations on each of the 36 initial complexes incorporating the 12 different biophysical techniques, the top five complexes are the same no matter which technique is explored. The significance of the present work is an expansion of an earlier study on the molecular dynamic simulation for the interaction of HIVPR with silver nanoparticles. This work is supported by experimental evidence since the initial ‘orientation’ of the AgNP with the enzyme is the same as the ‘final’ AuNP-HIVPR complex generated in the present study. The findings will provide insight into the forces of the binding of the HIVPR to AuNP. It is anticipated that the protocol developed in this study will act as a standard process for the interaction of any nanoparticle with any biomedical target.

  1. Computer simulations of the interaction of human immunodeficiency virus (HIV) aspartic protease with spherical gold nanoparticles: implications in acquired immunodeficiency syndrome (AIDS).

    PubMed

    Whiteley, Chris G; Lee, Duu-Jong

    2016-09-01

    The interaction of gold nanoparticles (AuNP) with human immune-deficiency virus aspartic protease (HIVPR) is modelled using a regime of molecular dynamics simulations. The simulations of the 'docking', first as a rigid-body complex, and eventually through flexible-fit analysis, creates 36 different complexes from four initial orientations of the nanoparticle strategically positioned around the surface of the enzyme. The structural deviations of the enzymes from the initial x-ray crystal structure during each docking simulation are assessed by comparative analysis of secondary structural elements, root mean square deviations, B-factors, interactive bonding energies, dihedral angles, radius of gyration (R g), circular dichroism (CD), volume occupied by C α , electrostatic potentials, solvation energies and hydrophobicities. Normalisation of the data narrows the selection from the initial 36 to one 'final' probable structure. It is concluded that, after computer simulations on each of the 36 initial complexes incorporating the 12 different biophysical techniques, the top five complexes are the same no matter which technique is explored. The significance of the present work is an expansion of an earlier study on the molecular dynamic simulation for the interaction of HIVPR with silver nanoparticles. This work is supported by experimental evidence since the initial 'orientation' of the AgNP with the enzyme is the same as the 'final' AuNP-HIVPR complex generated in the present study. The findings will provide insight into the forces of the binding of the HIVPR to AuNP. It is anticipated that the protocol developed in this study will act as a standard process for the interaction of any nanoparticle with any biomedical target. PMID:27483476

  2. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view.

    PubMed

    Masone, Diego; Chanforan, Céline

    2015-06-01

    Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health. PMID:25935119

  3. Human/computer control of undersea teleoperators

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.; Verplank, W. L.; Brooks, T. L.

    1978-01-01

    The potential of supervisory controlled teleoperators for accomplishment of manipulation and sensory tasks in deep ocean environments is discussed. Teleoperators and supervisory control are defined, the current problems of human divers are reviewed, and some assertions are made about why supervisory control has potential use to replace and extend human diver capabilities. The relative roles of man and computer and the variables involved in man-computer interaction are next discussed. Finally, a detailed description of a supervisory controlled teleoperator system, SUPERMAN, is presented.

  4. Computer Assistance for Writing Interactive Programs: TICS

    ERIC Educational Resources Information Center

    Kaplow, Ray; And Others

    1973-01-01

    A description of an on-line and interactive programing system (TICS - Teacher-Interactive-Computer-System), which is aimed at facilitating the authoring of interactive, instructional computer programs by persons who are experts on the subject matter being addressed, but not necessarily programers. (Author)

  5. Interactive computer-enhanced remote viewing system

    SciTech Connect

    Tourtellott, J.A.; Wagner, J.F.

    1995-10-01

    Remediation activities such as decontamination and decommissioning (D&D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths are clear of obstacles. This report describes the development of an Interactive Computer-Enhanced Remote Viewing System (ICERVS), a software system to provide a reliable geometric description of a robotic task space, and enable robotic remediation to be conducted more effectively and more economically.

  6. Making IBM's Computer, Watson, Human

    PubMed Central

    Rachlin, Howard

    2012-01-01

    This essay uses the recent victory of an IBM computer (Watson) in the TV game, Jeopardy, to speculate on the abilities Watson would need, in addition to those it has, to be human. The essay's basic premise is that to be human is to behave as humans behave and to function in society as humans function. Alternatives to this premise are considered and rejected. The viewpoint of the essay is that of teleological behaviorism. Mental states are defined as temporally extended patterns of overt behavior. From this viewpoint (although Watson does not currently have them), essential human attributes such as consciousness, the ability to love, to feel pain, to sense, to perceive, and to imagine may all be possessed by a computer. Most crucially, a computer may possess self-control and may act altruistically. However, the computer's appearance, its ability to make specific movements, its possession of particular internal structures (e.g., whether those structures are organic or inorganic), and the presence of any nonmaterial “self,” are all incidental to its humanity. PMID:22942530

  7. SHIC--An Interactive Hypothetical Computer

    ERIC Educational Resources Information Center

    Grillo, John P.; Gensler, Philip J.

    1975-01-01

    Describes an interactive simulated hypothetical instructional computer that significantly improves the student's understanding of how a computer works and how high-level language constraints are handled by essentially simple machines. (Author/IRT)

  8. Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    PubMed Central

    Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.

    2015-01-01

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092

  9. What is the Value of Embedding Artificial Emotional Prosody in Human-Computer Interactions? Implications for Theory and Design in Psychological Science.

    PubMed

    Mitchell, Rachel L C; Xu, Yi

    2015-01-01

    In computerized technology, artificial speech is becoming increasingly important, and is already used in ATMs, online gaming and healthcare contexts. However, today's artificial speech typically sounds monotonous, a main reason for this being the lack of meaningful prosody. One particularly important function of prosody is to convey different emotions. This is because successful encoding and decoding of emotions is vital for effective social cognition, which is increasingly recognized in human-computer interaction contexts. Current attempts to artificially synthesize emotional prosody are much improved relative to early attempts, but there remains much work to be done due to methodological problems, lack of agreed acoustic correlates, and lack of theoretical grounding. If the addition of synthetic emotional prosody is not of sufficient quality, it may risk alienating users instead of enhancing their experience. So the value of embedding emotion cues in artificial speech may ultimately depend on the quality of the synthetic emotional prosody. However, early evidence on reactions to synthesized non-verbal cues in the facial modality bodes well. Attempts to implement the recognition of emotional prosody into artificial applications and interfaces have perhaps been met with greater success, but the ultimate test of synthetic emotional prosody will be to critically compare how people react to synthetic emotional prosody vs. natural emotional prosody, at the behavioral, socio-cognitive and neural levels. PMID:26617563

  10. Human computer interactions in next-generation of aircraft smart navigation management systems: task analysis and architecture under an agent-oriented methodological approach.

    PubMed

    Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B

    2015-01-01

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092

  11. Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques.

    PubMed

    Durdagi, Serdar; Salmas, Ramin Ekhteiari; Stein, Matthias; Yurtsever, Mine; Seeman, Philip

    2016-02-17

    We have recently reported G-protein coupled receptor (GPCR) model structures for the active and inactive states of the human dopamine D2 receptor (D2R) using adrenergic crystal structures as templates. Since the therapeutic concentrations of dopamine agonists that suppress the release of prolactin are the same as those that act at the high-affinity state of the D2 receptor (D2High), D2High in the anterior pituitary gland is considered to be the functional state of the receptor. In addition, the therapeutic concentrations of anti-Parkinson drugs are also related to the dissociation constants in the D2High form of the receptor. The discrimination between the high- and low-affinity (D2Low) components of the D2R is not obvious and requires advanced computer-assisted structural biology investigations. Therefore, in this work, the derived D2High and D2Low receptor models (GPCR monomer and dimer three-dimensional structures) are used as drug-binding targets to investigate binding interactions of dopamine and apomorphine. The study reveals a match between the experimental dissociation constants of dopamine and apomorphine at their high- and low-affinity sites of the D2 receptor in monomer and dimer and their calculated dissociation constants. The allosteric receptor-receptor interaction for dopamine D2R dimer is associated with the accessibility of adjacent residues of transmembrane region 4. The measured negative cooperativity between agonist ligand at dopamine D2 receptor is also correctly predicted using the D2R homodimerization model. PMID:26645629

  12. Systematic prediction of human membrane receptor interactions

    PubMed Central

    Qi, Yanjun; Dhiman, Harpreet K.; Bhola, Neil; Budyak, Ivan; Kar, Siddhartha; Man, David; Dutta, Arpana; Tirupula, Kalyan; Carr, Brian I.; Grandis, Jennifer; Bar-Joseph, Ziv; Klein-Seetharaman, Judith

    2010-01-01

    Membrane receptor-activated signal transduction pathways are integral to cellular functions and disease mechanisms in humans. Identification of the full set of proteins interacting with membrane receptors by high throughput experimental means is difficult because methods to directly identify protein interactions are largely not applicable to membrane proteins. Unlike prior approaches that attempted to predict the global human interactome we used a computational strategy that only focused on discovering the interacting partners of human membrane receptors leading to improved results for these proteins. We predict specific interactions based on statistical integration of biological data containing highly informative direct and indirect evidences together with feedback from experts. The predicted membrane receptor interactome provides a system-wide view, and generates new biological hypotheses regarding interactions between membrane receptors and other proteins. We have experimentally validated a number of these interactions. The results suggest that a framework of systematically integrating computational predictions, global analyses, biological experimentation and expert feedback is a feasible strategy to study the human membrane receptor interactome. PMID:19798668

  13. The Human Computer Interaction Certificate Program at Rensselaer Polytechnic Institute: A Case Study in the Benefits and Costs of a Joint Industry/University Designed Program Featuring Integrated Delivery Methods.

    ERIC Educational Resources Information Center

    Jewett, Frank I.

    This case study presents information about a graduate-level certificate program in human computer interaction that was added to the Rensselaer Polytechnic Institute (New York) satellite video program in 1996, as a cooperative program between the institution and the IBM Corporation. The program was designed for individuals who work in computer…

  14. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Rochlis-Zumbado, Jennifer; Sandor, Aniko; Ezer, Neta

    2012-01-01

    Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is a new Human Research Program (HRP) risk. HRI is a research area that seeks to understand the complex relationship among variables that affect the way humans and robots work together to accomplish goals. The DRP addresses three major HRI study areas that will provide appropriate information for navigation guidance to a teleoperator of a robot system, and contribute to the closure of currently identified HRP gaps: (1) Overlays -- Use of overlays for teleoperation to augment the information available on the video feed (2) Camera views -- Type and arrangement of camera views for better task performance and awareness of surroundings (3) Command modalities -- Development of gesture and voice command vocabularies

  15. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The

  16. Live interactive computer music performance practice

    NASA Astrophysics Data System (ADS)

    Wessel, David

    2002-05-01

    A live-performance musical instrument can be assembled around current lap-top computer technology. One adds a controller such as a keyboard or other gestural input device, a sound diffusion system, some form of connectivity processor(s) providing for audio I/O and gestural controller input, and reactive real-time native signal processing software. A system consisting of a hand gesture controller; software for gesture analysis and mapping, machine listening, composition, and sound synthesis; and a controllable radiation pattern loudspeaker are described. Interactivity begins in the set up wherein the speaker-room combination is tuned with an LMS procedure. This system was designed for improvisation. It is argued that software suitable for carrying out an improvised musical dialog with another performer poses special challenges. The processes underlying the generation of musical material must be very adaptable, capable of rapid changes in musical direction. Machine listening techniques are used to help the performer adapt to new contexts. Machine learning can play an important role in the development of such systems. In the end, as with any musical instrument, human skill is essential. Practice is required not only for the development of musically appropriate human motor programs but for the adaptation of the computer-based instrument as well.

  17. CosmicPy: Interactive cosmology computations

    NASA Astrophysics Data System (ADS)

    Lanusse, Francois; Rassat, Anais; Starck, Jean-Luc

    2016-01-01

    CosmicPy performs simple and interactive cosmology computations for forecasting cosmological parameters constraints; it computes tomographic and 3D Spherical Fourier-Bessel power spectra as well as Fisher matrices for galaxy clustering. Written in Python, it relies on a fast C++ implementation of Fourier-Bessel related computations, and requires NumPy, SciPy, and Matplotlib.

  18. Computer Assistance for Writing Interactive Programs: TICS.

    ERIC Educational Resources Information Center

    Kaplow, Roy; And Others

    1973-01-01

    Investigators developed an on-line, interactive programing system--the Teacher-Interactive Computer System (TICS)--to provide assistance to those who were not programers, but nevertheless wished to write interactive instructional programs. TICS had two components: an author system and a delivery system. Underlying assumptions were that…

  19. The Quantum Human Computer (QHC) Hypothesis

    ERIC Educational Resources Information Center

    Salmani-Nodoushan, Mohammad Ali

    2008-01-01

    This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…

  20. Human systems dynamics: Toward a computational model

    NASA Astrophysics Data System (ADS)

    Eoyang, Glenda H.

    2012-09-01

    A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.

  1. A non-contact mouse for surgeon-computer interaction.

    PubMed

    Grätzel, C; Fong, T; Grange, S; Baur, C

    2004-01-01

    We have developed a system that uses computer vision to replace standard computer mouse functions with hand gestures. The system is designed to enable non-contact human-computer interaction (HCI), so that surgeons will be able to make more effective use of computers during surgery. In this paper, we begin by discussing the need for non-contact computer interfaces in the operating room. We then describe the design of our non-contact mouse system, focusing on the techniques used for hand detection, tracking, and gesture recognition. Finally, we present preliminary results from testing and planned future work. PMID:15328453

  2. Predicting microbial interactions through computational approaches.

    PubMed

    Li, Chenhao; Lim, Kun Ming Kenneth; Chng, Kern Rei; Nagarajan, Niranjan

    2016-06-01

    Microorganisms play a vital role in various ecosystems and characterizing interactions between them is an essential step towards understanding the organization and function of microbial communities. Computational prediction has recently become a widely used approach to investigate microbial interactions. We provide a thorough review of emerging computational methods organized by the type of data they employ. We highlight three major challenges in inferring interactions using metagenomic survey data and discuss the underlying assumptions and mathematics of interaction inference algorithms. In addition, we review interaction prediction methods relying on metabolic pathways, which are increasingly used to reveal mechanisms of interactions. Furthermore, we also emphasize the importance of mining the scientific literature for microbial interactions - a largely overlooked data source for experimentally validated interactions. PMID:27025964

  3. From human-machine interaction to human-machine cooperation.

    PubMed

    Hoc, J M

    2000-07-01

    Since the 1960s, the rapid growth of information systems has led to the wide development of research on human-computer interaction (HCI) that aims at the designing of human-computer interfaces presenting ergonomic properties, such as friendliness, usability, transparency, etc. Various work situations have been covered--clerical work, computer programming, design, etc. However, they were mainly static in the sense that the user fully controls the computer. More recently, public and private organizations have engaged themselves in the enterprise of managing more and more complex and coupled systems by the means of automation. Modern machines not only process information, but also act on dynamic situations as humans have done in the past, managing stock exchange, industrial plants, aircraft, etc. These dynamic situations are not fully controlled and are affected by uncertain factors. Hence, degrees of freedom must be maintained to allow the humans and the machine to adapt to unforeseen contingencies. A human-machine cooperation (HMC) approach is necessary to address the new stakes introduced by this trend. This paper describes the possible improvement of HCI by HMC, the need for a new conception of function allocation between humans and machines, and the main problems encountered within the new forms of human-machine relationship. It proposes a conceptual framework to study HMC from a cognitive point of view in highly dynamic situations like aircraft piloting or air-traffic control, and concludes on the design of 'cooperative' machines. PMID:10929820

  4. Gendered Interactions in Computer-Mediated Computer Conferencing

    ERIC Educational Resources Information Center

    Lawlor, Carmen

    2006-01-01

    Computer mediated conferencing (CMC) has been widely viewed as a valuable forum for providing opportunities for interaction among learners in a distance education setting. Interaction in distance contexts; however, is not well understood, and it has been argued that social markers are cued in online communications and that gender influences…

  5. Computational modeling of laser-tissue interaction

    SciTech Connect

    London, R.A.; Amendt, P.; Bailey, D.S.; Eder, D.C.; Maitland, D.J.; Glinsky, M.E.; Strauss, M.; Zimmerman, G.B.

    1996-05-01

    Computational modeling can play an important role both in designing laser-tissue interaction experiments and in understanding the underlying mechanisms. This can lead to more rapid and less expensive development if new procedures and instruments, and a better understanding of their operation. We have recently directed computer programs and associated expertise developed over many years to model high intensity laser-matter interactions for fusion research towards laser-tissue interaction problem. A program called LATIS is being developed to specifically treat laser-tissue interaction phenomena, such as highly scattering light transport, thermal coagulation, and hydrodynamic motion.

  6. Computes Generalized Electromagnetic Interactions Between Structures

    Energy Science and Technology Software Center (ESTSC)

    1999-02-20

    Object oriented software for computing generalized electromagnetic interactions between structures in the frequency domains. The software is based on integral equations. There is also a static integral equation capability.

  7. Interactive computer-enhanced remote viewing system

    SciTech Connect

    Tourtellott, J.A.; Wagner, J.F.

    1995-12-01

    Remediation activities such as decontamination and decommissioning (D&D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths am clear of obstacles. This need for a task space model is most pronounced in the remediation of obsolete production facilities and underground storage tanks. Production facilities at many sites contain compact process machinery and systems that were used to produce weapons grade material. For many such systems, a complex maze of pipes (with potentially dangerous contents) must be removed, and this represents a significant D&D challenge. In an analogous way, the underground storage tanks at sites such as Hanford represent a challenge because of their limited entry and the tumbled profusion of in-tank hardware. In response to this need, the Interactive Computer-Enhanced Remote Viewing System (ICERVS) is being designed as a software system to: (1) Provide a reliable geometric description of a robotic task space, and (2) Enable robotic remediation to be conducted more effectively and more economically than with available techniques. A system such as ICERVS is needed because of the problems discussed below.

  8. BaffleText: a Human Interactive Proof

    NASA Astrophysics Data System (ADS)

    Chew, Monica; Baird, Henry S.

    2003-01-01

    Internet services designed for human use are being abused by programs. We present a defense against such attacks in the form of a CAPTCHA (Completely Automatic Public Turing test to tell Computers and Humans Apart) that exploits the difference in ability between humans and machines in reading images of text. CAPTCHAs are a special case of 'human interactive proofs,' a broad class of security protocols that allow people to identify themselves over networks as members of given groups. We point out vulnerabilities of reading-based CAPTCHAs to dictionary and computer-vision attacks. We also draw on the literature on the psychophysics of human reading, which suggests fresh defenses available to CAPTCHAs. Motivated by these considerations, we propose BaffleText, a CAPTCHA which uses non-English pronounceable words to defend against dictionary attacks, and Gestalt-motivated image-masking degradations to defend against image restoration attacks. Experiments on human subjects confirm the human legibility and user acceptance of BaffleText images. We have found an image-complexity measure that correlates well with user acceptance and assists in engineering the generation of challenges to fit the ability gap. Recent computer-vision attacks, run independently by Mori and Jitendra, suggest that BaffleText is stronger than two existing CAPTCHAs.

  9. Interactive Video: A Cross Curriculum Computer Project.

    ERIC Educational Resources Information Center

    Grimm, Floyd M., III; And Others

    Responding to the rapid development and often prohibitive costs of new classroom instruction technology, a group of interested faculty at Harford Community College (HCC), in Maryland, formed three Interactive Video (IV) Teams to explore the possibilities of using existing computer hardware and software at the college for interactive video…

  10. Human Expertise Helps Computer Classify Images

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E.

    1991-01-01

    Two-domain method of computational classification of images requires less computation than other methods for computational recognition, matching, or classification of images or patterns. Does not require explicit computational matching of features, and incorporates human expertise without requiring translation of mental processes of classification into language comprehensible to computer. Conceived to "train" computer to analyze photomicrographs of microscope-slide specimens of leucocytes from human peripheral blood to distinguish between specimens from healthy and specimens from traumatized patients.

  11. Computer analysis of human esophageal peristalsis and lower esophageal sphincter pressure. II. An interactive system for on-line data collection and analysis.

    PubMed

    Castell, J A; Castell, D O

    1986-11-01

    A computer program has been written to directly read and analyze esophageal manometric tracings on-line using low-cost off-the-shelf microcomputer hardware. The system consists of an Apple IIe microcomputer and an Interactive Microwave Inc. ADALAB Data Acquisition System with an AI13 fast A/D Multiplexer. The primary program is in BASIC with ASSEMBLY language subroutines for data collection. Data are collected through the voltage output of a Hewlett-Packard recorder at 30 points per second on four channels for lower esophageal sphincter pressures (LESP) and three channels for peristaltic waves. Computer-determined values for LESP and wave parameters showed excellent correlation with mean values as read by five individuals experienced in esophageal manometry. PMID:3769705

  12. Plaque and arterial vulnerability investigation in a three-layer atherosclerotic human coronary artery using computational fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-08-01

    Coronary artery disease is the common form of cardiovascular diseases and known to be the main reason of deaths in the world. Fluid-Structure Interaction (FSI) simulations can be employed to assess the interactions of artery/plaque and blood to provide a more precise anticipation for rupture of arterial tissue layers and plaque tissues inside an atherosclerotic artery. To date, the arterial tissue in computational FSI simulations has been considered as a one-layer structure. However, a single layer assumption might have deeply bounded the results and, consequently, more computational simulation is needed by considering the arterial tissue as a three-layer structure. In this study, a three-dimensional computational FSI model of an atherosclerotic artery with a three-layer structure and different plaque types was established to perform a more accurate arterial wall/plaque tissue vulnerability assessment. The hyperelastic material coefficients of arterial layers were calculated and implemented in the computational model. The fully coupled fluid and structure models were solved using the explicit dynamics finite element code LS-DYNA. The results revealed the significant role of plaque types in the normal and shear stresses induced within the arterial tissue layers. The highest von Mises and shear stresses were observed on the stiffest calcified plaque with 3.59 and 3.27 MPa, while the lowest von Mises and shear stresses were seen on the hypocellular plaque with 1.15 and 0.63 MPa, respectively. Regardless of plaque types, the media and adventitia layers were played protective roles by displaying less stress on their wall, whilst the intima layer was at a high risk of rupture. The findings of this study have implications not only for determining the most vulnerable arterial layer/plaque tissue inside an atherosclerotic coronary artery but also for balloon-angioplasty, stenting, and bypass surgeries.

  13. Computational Methods to Predict Protein Interaction Partners

    NASA Astrophysics Data System (ADS)

    Valencia, Alfonso; Pazos, Florencio

    In the new paradigm for studying biological phenomena represented by Systems Biology, cellular components are not considered in isolation but as forming complex networks of relationships. Protein interaction networks are among the first objects studied from this new point of view. Deciphering the interactome (the whole network of interactions for a given proteome) has been shown to be a very complex task. Computational techniques for detecting protein interactions have become standard tools for dealing with this problem, helping and complementing their experimental counterparts. Most of these techniques use genomic or sequence features intuitively related with protein interactions and are based on "first principles" in the sense that they do not involve training with examples. There are also other computational techniques that use other sources of information (i.e. structural information or even experimental data) or are based on training with examples.

  14. SPSS Beginner's Handbook for the Interactive Computer.

    ERIC Educational Resources Information Center

    Morland, Richard B.

    This handbook lists step-by-step the procedures for making Statistical Package for the Social Sciences (SPSS) runs on the interactive computer. The programs follow the Loma Linda University Revision 2.1 as adapted for the Data General Eclipse Systems. The four-step process includes instructions for developing the codebook, building the data and…

  15. The Particle Beam Optics Interactive Computer Laboratory

    SciTech Connect

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C. |

    1997-02-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. {copyright} {ital 1997 American Institute of Physics.}

  16. The Particle Beam Optics Interactive Computer Laboratory

    NASA Astrophysics Data System (ADS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-02-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab.

  17. LANDSAT data and interactive computer mapping

    NASA Technical Reports Server (NTRS)

    Grady, R. K.

    1984-01-01

    The integration of image processing capabilities with interactive computer mapping systems is discussed. It is noted that the accomplishment of this integration will result in powerful geographic information systems which will enhance the applicatons of LANDSAT and other types of remotely sensed data in solving problems in the resource planning and management domain.

  18. Salesperson Ethics: An Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  19. Computer Applications in Teaching International Political Interaction.

    ERIC Educational Resources Information Center

    Sadow, Jeffrey D.; And Others

    1989-01-01

    Describes a computer simulation for teaching diplomacy that has been used at the University of New Orleans (Louisiana). The program enables students to examine the interaction of war with diplomacy by addressing the subject both historically and socio-psychologically. Discusses the results and makes recommendations for modifications. (KO)

  20. Using Interactive Computer Technology to Enhance Learning

    ERIC Educational Resources Information Center

    Pemberton, Joy R.; Borrego, Joaquin, Jr.; Cohen, Lee M.

    2006-01-01

    We assessed the effects of using LearnStar[TM], an interactive, computer-based teaching tool, as an in-class exam review method. Students with higher LearnStar review scores had higher grades. Furthermore, students' satisfaction ratings indicated that LearnStar reviews were more enjoyable and conducive to participation than traditional reviews.…

  1. Computer Security: The Human Element.

    ERIC Educational Resources Information Center

    Guynes, Carl S.; Vanacek, Michael T.

    1981-01-01

    The security and effectiveness of a computer system are dependent on the personnel involved. Improved personnel and organizational procedures can significantly reduce the potential for computer fraud. (Author/MLF)

  2. Pseudo-interactive monitoring in distributed computing

    SciTech Connect

    Sfiligoi, I.; Bradley, D.; Livny, M.; /Wisconsin U., Madison

    2009-05-01

    Distributed computing, and in particular Grid computing, enables physicists to use thousands of CPU days worth of computing every day, by submitting thousands of compute jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and network problems to bugs in the user code. A subset of these failures result in jobs being stuck for long periods of time. In order to debug such failures, interactive monitoring is highly desirable; users need to browse through the job log files and check the status of the running processes. Batch systems typically don't provide such services; at best, users get job logs at job termination, and even this may not be possible if the job is stuck in an infinite loop. In this paper we present a novel approach of using regular batch system capabilities of Condor to enable users to access the logs and processes of any running job. This does not provide true interactive access, so commands like vi are not viable, but it does allow operations like ls, cat, top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor Grid jobs in a glidein-based environment. We further believe that the same mechanism could be applied to many other batch systems.

  3. Interactive computer graphics - Why's, wherefore's and examples

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Carmichael, R. L.

    1983-01-01

    The benefits of using computer graphics in design are briefly reviewed. It is shown that computer graphics substantially aids productivity by permitting errors in design to be found immediately and by greatly reducing the cost of fixing the errors and the cost of redoing the process. The possibilities offered by computer-generated displays in terms of information content are emphasized, along with the form in which the information is transferred. The human being is ideally and naturally suited to dealing with information in picture format, and the content rate in communication with pictures is several orders of magnitude greater than with words or even graphs. Since science and engineering involve communicating ideas, concepts, and information, the benefits of computer graphics cannot be overestimated.

  4. Designing Interaction for Next Generation Personal Computing

    NASA Astrophysics Data System (ADS)

    de Michelis, Giorgio; Loregian, Marco; Moderini, Claudio; Marti, Patrizia; Colombo, Cesare; Bannon, Liam; Storni, Cristiano; Susani, Marco

    Over two decades of research in the field of Interaction Design and Computer Supported Cooperative Work convinced us that the current design of workstations no longer fits users’ needs. It is time to design new personal computers based on metaphors alternative to the desktop one. With this SIG, we are seeking to involve international HCI professionals into the challenges of designing products that are radically new and tackling the many different issues of modern knowledge workers. We would like to engage a wider cross-section of the community: our focus will be on issues of development and participation and the impact of different values in our work.

  5. Systematic computational prediction of protein interaction networks.

    PubMed

    Lees, J G; Heriche, J K; Morilla, I; Ranea, J A; Orengo, C A

    2011-06-01

    Determining the network of physical protein associations is an important first step in developing mechanistic evidence for elucidating biological pathways. Despite rapid advances in the field of high throughput experiments to determine protein interactions, the majority of associations remain unknown. Here we describe computational methods for significantly expanding protein association networks. We describe methods for integrating multiple independent sources of evidence to obtain higher quality predictions and we compare the major publicly available resources available for experimentalists to use. PMID:21572181

  6. Unsupervised Synchrony Discovery in Human Interaction

    PubMed Central

    Chu, Wen-Sheng; Zeng, Jiabei; De la Torre, Fernando; Cohn, Jeffrey F.; Messinger, Daniel S.

    2016-01-01

    People are inherently social. Social interaction plays an important and natural role in human behavior. Most computational methods focus on individuals alone rather than in social context. They also require labelled training data. We present an unsupervised approach to discover interpersonal synchrony, referred as to two or more persons preforming common actions in overlapping video frames or segments. For computational efficiency, we develop a branch-and-bound (B&B) approach that affords exhaustive search while guaranteeing a globally optimal solution. The proposed method is entirely general. It takes from two or more videos any multi-dimensional signal that can be represented as a histogram. We derive three novel bounding functions and provide efficient extensions, including multi-synchrony detection and accelerated search, using a warm-start strategy and parallelism. We evaluate the effectiveness of our approach in multiple databases, including human actions using the CMU Mocap dataset [1], spontaneous facial behaviors using group-formation task dataset [37] and parent-infant interaction dataset [28]. PMID:27346988

  7. Feature Selection for Speech Emotion Recognition in Spanish and Basque: On the Use of Machine Learning to Improve Human-Computer Interaction

    PubMed Central

    Arruti, Andoni; Cearreta, Idoia; Álvarez, Aitor; Lazkano, Elena; Sierra, Basilio

    2014-01-01

    Study of emotions in human–computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested. PMID:25279686

  8. A Perspective on Computational Human Performance Models as Design Tools

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  9. Five Papers on Human-Machine Interaction.

    ERIC Educational Resources Information Center

    Norman, Donald A.

    Different aspects of human-machine interaction are discussed in the five brief papers that comprise this report. The first paper, "Some Observations on Mental Models," discusses the role of a person's mental model in the interaction with systems. The second paper, "A Psychologist Views Human Processing: Human Errors and Other Phenomena Suggest…

  10. Multiyear Interactive Computer Almanac 1800-2050

    NASA Astrophysics Data System (ADS)

    Oliversen, N. A.; Harris, W. T.; Puatua, W. K.; Tangren, W. J.; Bangert, J. A.; Kaplan, G. H.; Janiczek, P. M.

    2005-12-01

    The Multiyear Interactive Computer Almanac (MICA) is a software system for Windows and Mac OS computers that provides high-precision astronomical data in tabular form for a wide variety of celestial objects. MICA was designed primarily for professional applications, and provides essential data for use by astronomers, surveyors, meteorologists, navigators and others who regularly need accurate information on the positions, motions, and phenomena of celestial objects. MICA computes many of the astronomical quantities tabulated in The Astronomical Almanac. However, MICA can compute this information for specific locations and specific times, thus eliminating the need for table look-ups and additional hand calculations. MICA was first released in 1993. A major update, MICA 2.0, was released in summer 2005. MICA 2.0 provides all the data available in earlier versions of the software. Several new features have been added to the new version, including: extended date coverage from 1800 to 2050; a redesigned user interface; a graphical sky map; a phenomena calculator (eclipses, transits, equinoxes, solstices, conjunctions, oppositions, elongations), ephemerides of Jupiter's Galilean satellites and selected asteroids; the JPL DE405 lunar and planetary ephemerides; and updated catalogs of celestial objects, including a new astrometric catalog containing about 230,000 stars. The MICA 2.0 software was developed by the U.S. Naval Observatory's Astronomical Applications Department. The software and a user manual are distributed by Willmann-Bell, Inc. For more information see: http://aa.usno.navy.mil/software/mica/micainfo.html.

  11. Interactive computer graphics applications for compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  12. Computer simulation of spacecraft/environment interaction.

    PubMed

    Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-10-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language. PMID:11542669

  13. Are Children with Autism More Responsive to Animated Characters? A Study of Interactions with Humans and Human-Controlled Avatars

    ERIC Educational Resources Information Center

    Carter, Elizabeth J.; Williams, Diane L.; Hodgins, Jessica K.; Lehman, Jill F.

    2014-01-01

    Few direct comparisons have been made between the responsiveness of children with autism to computer-generated or animated characters and their responsiveness to humans. Twelve 4-to 8-year-old children with autism interacted with a human therapist; a human-controlled, interactive avatar in a theme park; a human actor speaking like the avatar; and…

  14. Layered protocols in voice interaction with computers

    NASA Astrophysics Data System (ADS)

    Taylor, M. M.

    1987-02-01

    The Layered Protocol model for human computer interfaces is described, with special reference to the problems of voice input and output. In a layered protocol, each level passes virtual messages back and forth between human and computer. These virtual messages are realized in the form of interchanges at the level below. The protocol at a level is analogous to the syntax of a sentence, in that it is the method by which the content of a message can be given an agreed interpretation. Each protocol can be designed or evaluated independently of all the others in an interface. The stability of a protocol is determined by its response delays and by the channel capacity of the lower level protocols that support its messages. Sometimes an unstable protocol can be stabilized and speeded by reducing the message rate of the supporting protocols. Users have been observed to do this intuitively. Voice input provides special problems because of the relatively high error probability inherent in the recognizer: errors in other modalities are likely to be due to operator fault. This tends to lead to unwarranted distrust of voice input, and to demands for types of feedback that are probably inappropriate to the level of protocol to which the recognizer is suited. Voice output can be used by the computer to initiate protocols, or to provide a response channel for protocols under conditions where the user's eyes are otherwise occupied. Consideration of protocol demands helps to clarify the requirements for precision in recognition, and for the characteristics of computer responses to voice input; it helps also in judging appropriate conditions for the use of voice output.

  15. Formal specification of human-computer interfaces

    NASA Technical Reports Server (NTRS)

    Auernheimer, Brent

    1990-01-01

    A high-level formal specification of a human computer interface is described. Previous work is reviewed and the ASLAN specification language is described. Top-level specifications written in ASLAN for a library and a multiwindow interface are discussed.

  16. Integrating interactive computational modeling in biology curricula.

    PubMed

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology. PMID:25790483

  17. CFD Computation of Broadband Fan Interaction Noise

    NASA Technical Reports Server (NTRS)

    Grace, Sheryl M.; Sondak, Douglas L.; Dorney, Daniel J.

    2007-01-01

    In this study, a 3-D, unsteady, Reynolds Averaged Navier Stokes CFD code coupled to an acoustic calculation is used to predict the contribution of the exit guide vanes to broadband fan noise. The configuration investigated is that corresponding to the NASA Source Diagnostic Test (SDT) 22-in fan rig. Then an acoustic model introduced by Nallasamy which is based on 2-D strip theory is used to compute the broadband rotor-stator interaction noise. One configuration from the SDT matrix is considered here: the fan speed correlating to approach, and outlet guide vane count designed for cut-off of the blade passage frequency. Thus, in the chosen configuration, there are 22 rotor blades and 54 stator blades. The stators are located 2.5 tip chords downstream of the rotor trailing edge. The RANS computations are used to obtain the spectra of the unsteady surface pressure on the exit guide vanes. This surface pressure is then integrated together with the Green's function for and infinite cylindrical duct to obtain the acoustic field. The results from this investigation validate the use of the CFD code along with the acoustic model for broadband fan noise predictions. The validation enables future investigations such as the determination of rotor tip clearance and stator solidity effects on fan rotor-stator interaction noise.

  18. Combining human and computer interpretation capabilities to analyze ERTS imagery

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.

    1973-01-01

    The human photointerpreter and the computer have complementary capabilities that are exploited in a computer-based data analysis system developed at the Forestry Remote Sensing Laboratory, University of California. This system is designed to optimize the process of extracting resource information from ERTS images. The human has the ability to quickly delineate gross differences in land classes, such as wildland, urban, and agriculture on appropriate ERTS images, and to further break these gross classes into meaningful subclasses. The computer, however, can more efficiently analyze point-by-point spectral information and localized textural information which can result in a much more detailed agricultural or wildland classification based on species composition and/or plant association. These human and computer capabilities have been integrated through the use of an inexpensive small scale computer dedicated to the interactive preprocessing of the human inputs and the display of raw ERTS images and computer classified images. The small computer is linked to a large scale computer system wherein the bulk of the statistical work and the automatic point-by-point classification is done.

  19. The Human-Robot Interaction Operating System

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  20. Exploring human inactivity in computer power consumption

    NASA Astrophysics Data System (ADS)

    Candrawati, Ria; Hashim, Nor Laily Binti

    2016-08-01

    Managing computer power consumption has become an important challenge in computer society and this is consistent with a trend where a computer system is more important to modern life together with a request for increased computing power and functions continuously. Unfortunately, previous approaches are still inadequately designed to handle the power consumption problem due to unpredictable workload of a system caused by unpredictable human behaviors. This is happens due to lack of knowledge in a software system and the software self-adaptation is one approach in dealing with this source of uncertainty. Human inactivity is handled by adapting the behavioral changes of the users. This paper observes human inactivity in the computer usage and finds that computer power usage can be reduced if the idle period can be intelligently sensed from the user activities. This study introduces Control, Learn and Knowledge model that adapts the Monitor, Analyze, Planning, Execute control loop integrates with Q Learning algorithm to learn human inactivity period to minimize the computer power consumption. An experiment to evaluate this model was conducted using three case studies with same activities. The result show that the proposed model obtained those 5 out of 12 activities shows the power decreasing compared to others.

  1. Computer modeling of human decision making

    NASA Technical Reports Server (NTRS)

    Gevarter, William B.

    1991-01-01

    Models of human decision making are reviewed. Models which treat just the cognitive aspects of human behavior are included as well as models which include motivation. Both models which have associated computer programs, and those that do not, are considered. Since flow diagrams, that assist in constructing computer simulation of such models, were not generally available, such diagrams were constructed and are presented. The result provides a rich source of information, which can aid in construction of more realistic future simulations of human decision making.

  2. The Human Brain Project and neuromorphic computing

    PubMed Central

    Calimera, Andrea; Macii, Enrico; Poncino, Massimo

    Summary Understanding how the brain manages billions of processing units connected via kilometers of fibers and trillions of synapses, while consuming a few tens of Watts could provide the key to a completely new category of hardware (neuromorphic computing systems). In order to achieve this, a paradigm shift for computing as a whole is needed, which will see it moving away from current “bit precise” computing models and towards new techniques that exploit the stochastic behavior of simple, reliable, very fast, low-power computing devices embedded in intensely recursive architectures. In this paper we summarize how these objectives will be pursued in the Human Brain Project. PMID:24139655

  3. Nanoparticle interaction potentials constructed by multiscale computation

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.

    2010-06-01

    The van der Waals (vdW) potentials governing macroscopic objects have long been formulated in the context of classical theories, such as Hamaker's microscopic theory and Lifshitz's continuum theory. This work addresses the possibility of constructing the vdW interaction potentials of nanoparticle species using multiscale simulation schemes. Amorphous silica nanoparticles were considered as a benchmark example for which a series of (SiO2)n (n being an integer) has been systematically surveyed as the potential candidates of the packing units that reproduce known bulk material properties in atomistic molecular dynamics simulations. This strategy led to the identification of spherical Si6O12 molecules, later utilized as the elementary coarse-grained (CG) particles to compute the pair interaction potentials of silica nanoparticles ranging from 0.62 to 100 nm in diameter. The model nanoparticles so built may, in turn, serve as the children CG particles to construct nanoparticles assuming arbitrary sizes and shapes. Major observations are as follows. The pair interaction potentials for all the investigated spherical silica nanoparticles can be cast into a semiempirical, generalized Lennard-Jones 2α-α potential (α being a size-dependent, large integral number). In its reduced form, we discuss the implied universalities for the vdW potentials governing a certain range of amorphous nanoparticle species as well as how thermodynamic transferability can be fulfilled automatically. In view of future applications with colloidal suspensions, we briefly evaluated the vdW potential in the presence of a "screening" medium mimicking the effects of electrical double layers or grafting materials atop the nanoparticle core. The general observations shed new light on strategies to attain a microscopic control over interparticle attractions. In future perspectives, the proposed multiscale computation scheme shall help bridge the current gap between the modeling of polymer chains and

  4. Aeroacoustic computation of gust-blade interaction

    NASA Technical Reports Server (NTRS)

    Martin, James E.

    1994-01-01

    To better understand and address the challenges faced in computing the acoustics of flow fields, test problems must be considered. In the present study, the sound radiated by the interaction of a flat plate with an oncoming gust containing a two component, mean velocity is computed. The gust has a uniform mean flow in x with Mach number M(infinity) equal to 0.5. The gust's mean velocity in y is of smaller amplitude and is given by: v = 0.1 sin(pi/8(x/M(sub infinity) - t)). This problem has been posed for an upcoming ICASE/LaRC workshop on benchmark problems in computational aeroacoustics. A plate with a length of 30 units in x is used. The plate is assumed to be infinitesimally thin and is centered at the origin. All variables are made dimensionless using the scales specified. Acoustic quantities are obtained by numerically integrating the linearized Euler equations. Integration is performed on the computational domain -100.0 less than or equal to x less than or equal to 100.0, -100.0 less than or equal to y less than or equal to 100.0, using unit length grid spacing in x and in y. An integration scheme is sought which will provide accurate solution to the small quantities of interest at a minimal computational expense. Results indicate that with the given discretization a scheme of minimal fourth order accuracy might be adequate to approximate the waves within the given flow. Thus, a variation of the MacCormack scheme with fourth order accuracy in space and second order accuracy in time was chosen. A scheme with sixth order accuracy in space has also been implemented and results compared with those of the fourth order accurate scheme. To ensure no mass flux, zero normal velocity is assigned at the plate. This condition will induce a discontinuity in the pressure across the plate location. Values for the perturbation pressure p' along the surface of the plate are obtained using a one-sided, third order Taylor expansion, such that p'(sub y) = O. In accordance with

  5. Pilots of the future - Human or computer?

    NASA Technical Reports Server (NTRS)

    Chambers, A. B.; Nagel, D. C.

    1985-01-01

    In connection with the occurrence of aircraft accidents and the evolution of the air-travel system, questions arise regarding the computer's potential for making fundamental contributions to improving the safety and reliability of air travel. An important result of an analysis of the causes of aircraft accidents is the conclusion that humans - 'pilots and other personnel' - are implicated in well over half of the accidents which occur. Over 70 percent of the incident reports contain evidence of human error. In addition, almost 75 percent show evidence of an 'information-transfer' problem. Thus, the question arises whether improvements in air safety could be achieved by removing humans from control situations. In an attempt to answer this question, it is important to take into account also certain advantages which humans have in comparison to computers. Attention is given to human error and the effects of technology, the motivation to automate, aircraft automation at the crossroads, the evolution of cockpit automation, and pilot factors.

  6. Developing the human-computer interface for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Holden, Kritina L.

    1991-01-01

    For the past two years, the Human-Computer Interaction Laboratory (HCIL) at the Johnson Space Center has been involved in prototyping and prototype reviews of in support of the definition phase of the Space Station Freedom program. On the Space Station, crew members will be interacting with multi-monitor workstations where interaction with several displays at one time will be common. The HCIL has conducted several experiments to begin to address design issues for this complex system. Experiments have dealt with design of ON/OFF indicators, the movement of the cursor across multiple monitors, and the importance of various windowing capabilities for users performing multiple tasks simultaneously.

  7. Parallel structures in human and computer memory

    NASA Astrophysics Data System (ADS)

    Kanerva, Pentti

    1986-08-01

    If we think of our experiences as being recorded continuously on film, then human memory can be compared to a film library that is indexed by the contents of the film strips stored in it. Moreover, approximate retrieval cues suffice to retrieve information stored in this library: We recognize a familiar person in a fuzzy photograph or a familiar tune played on a strange instrument. This paper is about how to construct a computer memory that would allow a computer to recognize patterns and to recall sequences the way humans do. Such a memory is remarkably similar in structure to a conventional computer memory and also to the neural circuits in the cortex of the cerebellum of the human brain. The paper concludes that the frame problem of artificial intelligence could be solved by the use of such a memory if we were able to encode information about the world properly.

  8. Parallel structures in human and computer memory

    NASA Technical Reports Server (NTRS)

    Kanerva, P.

    1986-01-01

    If one thinks of our experiences as being recorded continuously on film, then human memory can be compared to a film library that is indexed by the contents of the film strips stored in it. Moreover, approximate retrieval cues suffice to retrieve information stored in this library. One recognizes a familiar person in a fuzzy photograph or a familiar tune played on a strange instrument. A computer memory that would allow a computer to recognize patterns and to recall sequences the way humans do is constructed. Such a memory is remarkably similiar in structure to a conventional computer memory and also to the neural circuits in the cortex of the cerebellum of the human brain. It is concluded that the frame problem of artificial intelligence could be solved by the use of such a memory if one were able to encode information about the world properly.

  9. Reliability of cephalometric analysis using manual and interactive computer methods.

    PubMed

    Davis, D N; Mackay, F

    1991-05-01

    This study compares the results of cephalometric analyses using manual and interactive computer graphics methods. Results are statistically in favour of the interactive computer system. This study provides a basis for ongoing research into alternative methods of cephalometric analyses, such as digitization and automatic landmark identification using sophisticated computer vision systems. PMID:1911687

  10. Computational analysis of protein interaction networks for infectious diseases.

    PubMed

    Pan, Archana; Lahiri, Chandrajit; Rajendiran, Anjana; Shanmugham, Buvaneswari

    2016-05-01

    Infectious diseases caused by pathogens, including viruses, bacteria and parasites, pose a serious threat to human health worldwide. Frequent changes in the pattern of infection mechanisms and the emergence of multidrug-resistant strains among pathogens have weakened the current treatment regimen. This necessitates the development of new therapeutic interventions to prevent and control such diseases. To cater to the need, analysis of protein interaction networks (PINs) has gained importance as one of the promising strategies. The present review aims to discuss various computational approaches to analyse the PINs in context to infectious diseases. Topology and modularity analysis of the network with their biological relevance, and the scenario till date about host-pathogen and intra-pathogenic protein interaction studies were delineated. This would provide useful insights to the research community, thereby enabling them to design novel biomedicine against such infectious diseases. PMID:26261187

  11. Applying Human Computation Methods to Information Science

    ERIC Educational Resources Information Center

    Harris, Christopher Glenn

    2013-01-01

    Human Computation methods such as crowdsourcing and games with a purpose (GWAP) have each recently drawn considerable attention for their ability to synergize the strengths of people and technology to accomplish tasks that are challenging for either to do well alone. Despite this increased attention, much of this transformation has been focused on…

  12. Early NACA human computers at work

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The women of the Computer Department at NACA High-Speed Flight Research Station are shown busy with test flight calculations. The computers under the direction of Roxanah Yancey were responsible for accurate calculations on the research test flights made at the Station. There were no mechanical computers at the station in 1949, but data was reduced by human computers. Shown in this photograph starting at the left are: Geraldine Mayer and Mary (Tut) Hedgepeth with Friden calculators on the their desks; Emily Stephens conferring with engineer John Mayer; Gertrude (Trudy) Valentine is working on an oscillograph recording reducing the data from a flight. Across the desk is Dorothy Clift Hughes using a slide rule to complete data calculations. Roxanah Yancey completes the picture as she fills out engineering requests for further data.

  13. Shared resource control between human and computer

    NASA Technical Reports Server (NTRS)

    Hendler, James; Wilson, Reid

    1989-01-01

    The advantages of an AI system of actively monitoring human control of a shared resource (such as a telerobotic manipulator) are presented. A system is described in which a simple AI planning program gains efficiency by monitoring human actions and recognizing when the actions cause a change in the system's assumed state of the world. This enables the planner to recognize when an interaction occurs between human actions and system goals, and allows maintenance of an up-to-date knowledge of the state of the world and thus informs the operator when human action would undo a goal achieved by the system, when an action would render a system goal unachievable, and efficiently replans the establishment of goals after human intervention.

  14. Host-Salmonella interaction: human trials.

    PubMed

    Levine, M M; Tacket, C O; Sztein, M B

    2001-01-01

    Human clinical trials, including experimental challenges of volunteers with pathogenic Salmonella enterica serovar Typhi, small phase I and II trials that monitor the immune responses to vaccines, and large-scale controlled field trials that assess vaccine efficacy under conditions of natural challenge, have helped elucidate the interactions between Salmonella typhi and human hosts. PMID:11755415

  15. The Science of Human Interaction and Teaching

    ERIC Educational Resources Information Center

    Yano, Kazuo

    2013-01-01

    There is a missing link between our understanding of teaching as high-level social phenomenon and teaching as a physiological phenomenon of brain activity. We suggest that the science of human interaction is the missing link. Using over one-million days of human-behavior data, we have discovered that "collective activenes" (CA), which indicates…

  16. Interactively human: Sharing time, constructing materiality.

    PubMed

    Roepstorff, Andreas

    2013-06-01

    Predictive processing models of cognition are promising an elegant way to unite action, perception, and learning. However, in the current formulations, they are species-unspecific and have very little particularly human about them. I propose to examine how, in this framework, humans can be able to massively interact and to build shared worlds that are both material and symbolic. PMID:23663865

  17. Neural correlate of human reciprocity in social interactions

    PubMed Central

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions

  18. Progress in computational studies of host-pathogen interactions.

    PubMed

    Zhou, Hufeng; Jin, Jingjing; Wong, Limsoon

    2013-04-01

    Host-pathogen interactions are important for understanding infection mechanism and developing better treatment and prevention of infectious diseases. Many computational studies on host-pathogen interactions have been published. Here, we review recent progress and results in this field and provide a systematic summary, comparison and discussion of computational studies on host-pathogen interactions, including prediction and analysis of host-pathogen protein-protein interactions; basic principles revealed from host-pathogen interactions; and database and software tools for host-pathogen interaction data collection, integration and analysis. PMID:23600809

  19. Interactive Computer Programs for Geographic Education.

    ERIC Educational Resources Information Center

    Lougeay, Cheryl

    Examples of computer programs illustrate how instructors can introduce students to geographic concepts and models while creating a thinking environment in the classroom. The programs are designed to assist students in computational tasks and to provide both graphic and numeric output which will be stimulating. A population pyramid program…

  20. Interaction and Cognition in Asynchronous Computer Conferencing

    ERIC Educational Resources Information Center

    Schrire, Sarah

    2004-01-01

    This paper is based on a multiple-case study of the learning process in three asynchronous computer conferences. The conferences were part of the distance learning component in doctoral degree courses in computing technology in education offered at an American university. The conferences were analyzed from a number of perspectives, the emphasis in…

  1. Optimization of an interactive distributive computer network

    NASA Technical Reports Server (NTRS)

    Frederick, V.

    1985-01-01

    The activities under a cooperative agreement for the development of a computer network are briefly summarized. Research activities covered are: computer operating systems optimization and integration; software development and implementation of the IRIS (Infrared Imaging of Shuttle) Experiment; and software design, development, and implementation of the APS (Aerosol Particle System) Experiment.

  2. Interactive graphical computer-aided design system

    NASA Technical Reports Server (NTRS)

    Edge, T. M.

    1975-01-01

    System is used for design, layout, and modification of large-scale-integrated (LSI) metal-oxide semiconductor (MOS) arrays. System is structured around small computer which provides real-time support for graphics storage display unit with keyboard, slave display unit, hard copy unit, and graphics tablet for designer/computer interface.

  3. Sample Computer Assisted Instruction Student Interactions.

    ERIC Educational Resources Information Center

    Hall, Keith A.; And Others

    To convey to those who have had no experience with computer-assisted instruction an impression of the experience that students have in a CAI course, this report presents in print the sequence of instruction that one student received from one chapter of the course, Computer Assisted Remedial Education (CARE 1): Introduction to the Education of…

  4. Human Centered Computing for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2005-01-01

    The science objectives are to determine the aqueous, climatic, and geologic history of a site on Mars where conditions may have been favorable to the preservation of evidence of prebiotic or biotic processes. Human Centered Computing is a development process that starts with users and their needs, rather than with technology. The goal is a system design that serves the user, where the technology fits the task and the complexity is that of the task not of the tool.

  5. Computational models of human vision with applications

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.

    1985-01-01

    Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.

  6. Human brain mapping: Experimental and computational approaches

    SciTech Connect

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J.; Sanders, J.; Belliveau, J.

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  7. Analysis of human emotion in human-robot interaction

    NASA Astrophysics Data System (ADS)

    Blar, Noraidah; Jafar, Fairul Azni; Abdullah, Nurhidayu; Muhammad, Mohd Nazrin; Kassim, Anuar Muhamed

    2015-05-01

    There is vast application of robots in human's works such as in industry, hospital, etc. Therefore, it is believed that human and robot can have a good collaboration to achieve an optimum result of work. The objectives of this project is to analyze human-robot collaboration and to understand humans feeling (kansei factors) when dealing with robot that robot should adapt to understand the humans' feeling. Researches currently are exploring in the area of human-robot interaction with the intention to reduce problems that subsist in today's civilization. Study had found that to make a good interaction between human and robot, first it is need to understand the abilities of each. Kansei Engineering in robotic was used to undergo the project. The project experiments were held by distributing questionnaire to students and technician. After that, the questionnaire results were analyzed by using SPSS analysis. Results from the analysis shown that there are five feelings which significant to the human in the human-robot interaction; anxious, fatigue, relaxed, peaceful, and impressed.

  8. Multimodal interaction for human-robot teams

    NASA Astrophysics Data System (ADS)

    Burke, Dustin; Schurr, Nathan; Ayers, Jeanine; Rousseau, Jeff; Fertitta, John; Carlin, Alan; Dumond, Danielle

    2013-05-01

    Unmanned ground vehicles have the potential for supporting small dismounted teams in mapping facilities, maintaining security in cleared buildings, and extending the team's reconnaissance and persistent surveillance capability. In order for such autonomous systems to integrate with the team, we must move beyond current interaction methods using heads-down teleoperation which require intensive human attention and affect the human operator's ability to maintain local situational awareness and ensure their own safety. This paper focuses on the design, development and demonstration of a multimodal interaction system that incorporates naturalistic human gestures, voice commands, and a tablet interface. By providing multiple, partially redundant interaction modes, our system degrades gracefully in complex environments and enables the human operator to robustly select the most suitable interaction method given the situational demands. For instance, the human can silently use arm and hand gestures for commanding a team of robots when it is important to maintain stealth. The tablet interface provides an overhead situational map allowing waypoint-based navigation for multiple ground robots in beyond-line-of-sight conditions. Using lightweight, wearable motion sensing hardware either worn comfortably beneath the operator's clothing or integrated within their uniform, our non-vision-based approach enables an accurate, continuous gesture recognition capability without line-of-sight constraints. To reduce the training necessary to operate the system, we designed the interactions around familiar arm and hand gestures.

  9. Imaging Models of Valuation During Social Interaction in Humans

    PubMed Central

    Kishida, Kenneth T.; Montague, P. Read

    2012-01-01

    The role of dopamine neurons in value-guided behavior has been described in computationally explicit terms. These developments have motivated new model-based probes of reward processing in healthy humans, and in recent years these same models have also been used to design and understand neural responses during simple social exchange. These latter applications have opened up the possibility of identifying new endophenotypes characteristic of biological substrates underlying psychiatric disease. In this report, we review model-based approaches to functional magnetic resonance imaging in healthy individuals and the application of these paradigms to psychiatric disorders. We show early results from the application of model-based human interaction at three disparate levels: 1) interaction with a single human, 2) interaction within small groups, and 3) interaction with signals generated by large groups. In each case, we show how reward-prediction circuitry is engaged by abstract elements of each paradigm with blood oxygen level– dependent imaging as a read-out; and, in the last case (i.e., signals generated by large groups) we report on direct electrochemical dopamine measurements during decision making in humans. Lastly, we discuss how computational approaches can be used to objectively assess and quantify elements of complex and hidden social decision-making processes. PMID:22507699

  10. Simulating human behavior for national security human interactions.

    SciTech Connect

    Bernard, Michael Lewis; Hart, Dereck H.; Verzi, Stephen J.; Glickman, Matthew R.; Wolfenbarger, Paul R.; Xavier, Patrick Gordon

    2007-01-01

    This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humans were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.

  11. Interactions between human behaviour and ecological systems

    PubMed Central

    Milner-Gulland, E. J.

    2012-01-01

    Research on the interactions between human behaviour and ecological systems tends to focus on the direct effects of human activities on ecosystems, such as biodiversity loss. There is also increasing research effort directed towards ecosystem services. However, interventions to control people's use of the environment alter the incentives that natural resource users face, and therefore their decisions about resource use. The indirect effects of conservation interventions on biodiversity, modulated through human decision-making, are poorly studied but are likely to be significant and potentially counterintuitive. This is particularly so where people are dependent on multiple natural resources for their livelihoods, when both poverty and biodiversity loss are acute. An inter-disciplinary approach is required to quantify these interactions, with an understanding of human decision-making at its core; otherwise, predictions about the impacts of conservation policies may be highly misleading. PMID:22144389

  12. A Human-Information Interaction Perspective on Augmented Cognition

    SciTech Connect

    Greitzer, Frank L.; Griffith, Douglas

    2006-10-15

    Nearly a half-century ago, J.C.R. Licklider expressed a vision for “man-machine symbiosis,” coupling human brains and computing machines in a partnership that “will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today.” Until relatively recently, this vision was largely left idle by human factors engineering (HFE) research that grew over the decades from an initial focus on design of equipment to accommodate human limitations to cognitive systems engineering research to a more recent perspective focusing on design of human-information interaction. These perspective shifts and insights have brought a degree of success to the field in design efforts aimed at enhancing human-system performance. In recent years, the research area of augmented cognition has begun to shift the focus once more not only to enhancing the interaction environment, but also the cognitive abilities of the human operators and decision makers themselves. Ambitious goals of increasing total cognitive capacity through augmented cognition technologies are still on the horizon of this research program. This paper describes a framework within which augmented cognition research may identify requirements that compensate for human information processing shortcomings and augment human potential.

  13. Computer aided systems human engineering: A hypermedia tool

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R.; Monk, Donald L.; Cody, William J.

    1992-01-01

    The Computer Aided Systems Human Engineering (CASHE) system, Version 1.0, is a multimedia ergonomics database on CD-ROM for the Apple Macintosh II computer, being developed for use by human system designers, educators, and researchers. It will initially be available on CD-ROM and will allow users to access ergonomics data and models stored electronically as text, graphics, and audio. The CASHE CD-ROM, Version 1.0 will contain the Boff and Lincoln (1988) Engineering Data Compendium, MIL-STD-1472D and a unique, interactive simulation capability, the Perception and Performance Prototyper. Its features also include a specialized data retrieval, scaling, and analysis capability and the state of the art in information retrieval, browsing, and navigation.

  14. Human Pacman: A Mobile Augmented Reality Entertainment System Based on Physical, Social, and Ubiquitous Computing

    NASA Astrophysics Data System (ADS)

    Cheok, Adrian David

    This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.

  15. Designing Online Scaffolds for Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan

    2013-01-01

    The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high…

  16. General aviation design synthesis utilizing interactive computer graphics

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.; Smith, M. R.

    1976-01-01

    Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.

  17. Adapting GOMS to Model Human-Robot Interaction

    SciTech Connect

    Drury, Jill; Scholtz, Jean; Kieras, David

    2007-03-09

    Human-robot interaction (HRI) has been maturing in tandem with robots’ commercial success. In the last few years HRI researchers have been adopting—and sometimes adapting—human-computer interaction (HCI) evaluation techniques to assess the efficiency and intuitiveness of HRI designs. For example, Adams (2005) used Goal Directed Task Analysis to determine the interaction needs of officers from the Nashville Metro Police Bomb Squad. Scholtz et al. (2004) used Endsley’s (1988) Situation Awareness Global Assessment Technique to determine robotic vehicle supervisors’ awareness of when vehicles were in trouble and thus required closer monitoring or intervention. Yanco and Drury (2004) employed usability testing to determine (among other things) how well a search-andrescue interface supported use by first responders. One set of HCI tools that has so far seen little exploration in the HRI domain, however, is the class of modeling and evaluation techniques known as formal methods.

  18. Computational adaptive optics of the human retina

    NASA Astrophysics Data System (ADS)

    South, Fredrick A.; Liu, Yuan-Zhi; Carney, P. Scott; Boppart, Stephen A.

    2016-03-01

    It is well known that patient-specific ocular aberrations limit imaging resolution in the human retina. Previously, hardware adaptive optics (HAO) has been employed to measure and correct these aberrations to acquire high-resolution images of various retinal structures. While the resulting aberration-corrected images are of great clinical importance, clinical use of HAO has not been widespread due to the cost and complexity of these systems. We present a technique termed computational adaptive optics (CAO) for aberration correction in the living human retina without the use of hardware adaptive optics components. In CAO, complex interferometric data acquired using optical coherence tomography (OCT) is manipulated in post-processing to adjust the phase of the optical wavefront. In this way, the aberrated wavefront can be corrected. We summarize recent results in this technology for retinal imaging, including aberration-corrected imaging in multiple retinal layers and practical considerations such as phase stability and image optimization.

  19. Computational Poromechanics of Human Knee Joint

    NASA Astrophysics Data System (ADS)

    Kazemi, Mojtaba; Li, LePing

    2012-02-01

    Extensive computer modeling has been performed in the recent decade to investigate the mechanical response of the healthy and repaired knee joints. Articular cartilages and menisci have been commonly modeled as single-phase elastic materials in the previous 3D simulations. A comprehensive study considering the interplay of the collagen fibers and fluid pressurization in the tissues in situ remains challenging. We have developed a 3D model of the human knee accounting for the mechanical function of collagen fibers and fluid flow in the cartilages and menisci. An anatomically accurate structure of the human knee was used for this purpose including bones, articular cartilages, menisci and ligaments. The fluid pressurization in the femoral cartilage and menisci under combined creep loading was investigated. Numerical results showed that fluid flow and pressure in the tissues played an important role in the mechanical response of the knee joint. The load transfer in the joint was clearly seen when the fluid pressure was considered.

  20. Computational Analysis of Towed Ballute Interactions

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Anderson, Brian P.

    2002-01-01

    A ballute (balloon-parachute) is an inflatable, aerodynamic drag device for application to planetary entry vehicles. Ballutes may be directly attached to a vehicle, increasing its cross-sectional area upon inflation, or towed behind the vehicle as a semi-independent device that can be quickly cut free when the requisite change in velocity is achieved. The aerothermodynamics of spherical and toroidal towed ballutes are considered in the present study. A limiting case of zero towline length (clamped system) is also considered. A toroidal system can be designed (ignoring influence of the tethers) such that all flow processed by the bow shock of the towing spacecraft passes through the hole in the toroid. For a spherical ballute, towline length is a critical parameter that affects aeroheating on the ballute being towed through the spacecraft wake. In both cases, complex and often unsteady interactions ensue in which the spacecraft and its wake resemble an aero spike situated in front of the ballute. The strength of the interactions depends upon system geometry and Reynolds number. We show how interactions may envelope the base of the towing spacecraft or impinge on the ballute surface with adverse consequences to its thermal protection system. Geometric constraints to minimize or eliminate such adverse interactions are discussed. The towed, toroidal system and the clamped, spherical system show greatest potential for a baseline design approach.

  1. FPNA: interaction between FPGA and neural computation.

    PubMed

    Girau, B

    2000-06-01

    Neural networks are usually considered as naturally parallel computing models. But the number of operators and the complex connection graph of standard neural models can not be directly handled by digital hardware devices. More particularly, several works show that programmable digital hardware is a real opportunity for flexible hardware implementations of neural networks. And yet many area and topology problems arise when standard neural models are implemented onto programmable circuits such as FPGAs, so that the fast FPGA technology improvements can not be fully exploited. Therefore neural network hardware implementations need to reconcile simple hardware topologies with complex neural architectures. The theoretical and practical framework developed, allows this combination thanks to some principles of configurable hardware that are applied to neural computation: Field Programmable Neural Arrays (FPNA) lead to powerful neural architectures that are easy to map onto FPGAs, thanks to a simplified topology and an original data exchange scheme. This paper shows how FPGAs have led to the definition of the FPNA computation paradigm. Then it shows how FPNAs contribute to current and future FPGA-based neural implementations by solving the general problems that are raised by the implementation of complex neural networks onto FPGAs. PMID:11011795

  2. Interactive Relationships with Computers in Teaching Reading.

    ERIC Educational Resources Information Center

    Doublier, Rene M.

    This study summarizes recent achievements in the expanding development of man/machine communications and reviews current technological hurdles associated with the development of artificial intelligence systems which can generate and recognize human speech patterns. With the development of such systems, one potential application would be the…

  3. Computers vs. Humans in Galaxy Classification

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    In this age of large astronomical surveys, one major scientific bottleneck is the analysis of enormous data sets. Traditionally, this task requires human input but could computers eventually take over? A pair of scientists explore this question by testing whether computers can classify galaxies as well as humans.Examples of disagreement: galaxies that Galaxy-Zoo humans classified as spirals with 95% agreement, but the computer algorithm classified as ellipticals with 70% certainty. Most are cases where the computer got it wrong but not all of them. [Adapted from Kuminski et al. 2016]Limits of Citizen ScienceGalaxy Zoo is an internet-based citizen science project that uses non-astronomer volunteers to classify galaxy images. This is an innovative way to provide more manpower, but its still only practical for limited catalog sizes. How do we handle the data from upcoming surveys like the Large Synoptic Survey Telescope (LSST), which will produce billions of galaxy images when it comes online?In a recent study by Evan Kuminski and Lior Shamir, two computer scientists at Lawrence Technological University in Michigan, a machine learning algorithm known as Wndchrm was used to classify a dataset of Sloan Digital Sky Survey (SDSS) galaxies into ellipticals and spirals. The authors goal is to determine whether their algorithm can classify galaxies as accurately as the human volunteers for Galaxy Zoo.Automatic ClassificationAfter training their classifier on a small set of spiral and elliptical galaxies, Kuminski and Shamir set it loose on a catalog of ~3 million SDSS galaxies. The classifier first computes a set of 2,885 numerical descriptors (like textures, edges, and shapes) for each galaxy image, and then uses these descriptors to categorize the galaxy as spiral or elliptical.Rate of agreement of the computer classification with human classification (for the Galaxy Zoo superclean subset) for different ranges of computed classification certainties. For certainties above

  4. Policy Interactions in Human-Landscape Systems

    NASA Astrophysics Data System (ADS)

    Gerlak, Andrea K.

    2014-01-01

    Given the heightened pace and extent of human interactions with landscapes, there is increasing recognition of the interdependence of hydrogeomorphological, ecological, and human systems in understanding human-landscape interactions. There is also widespread agreement for greater integration across disciplinary boundaries to generate new knowledge urgently needed for theory building to understand, predict, and respond to rapidly changing human-landscape systems. The development of new conceptual frameworks, methods, tools, and collaborations linking across the natural and social sciences are key elements to such integration. In an effort to contribute to a broader conceptual framework for human-landscape systems, this paper describes how environmental policy research has contributed to four integrative themes—thresholds and tipping points; spatial scales and boundaries; feedback loops; and time scales and lags—developed by participants in an NSF-sponsored interdisciplinary workshop. As a broad and heterogeneous body of literature, environmental policy research reflects a diversity of methodological and theoretical approaches around institutions, actors, processes, and ideas. We integrate across multiple subfields and research programs to help identify complementarities in research that may support future interdisciplinary collaborative work. We conclude with a discussion of future research questions to help advance greater interdisciplinary research around human-landscape systems.

  5. Patient-Specific Computational Modeling of Human Phonation

    NASA Astrophysics Data System (ADS)

    Xue, Qian; Zheng, Xudong; University of Maine Team

    2013-11-01

    Phonation is a common biological process resulted from the complex nonlinear coupling between glottal aerodynamics and vocal fold vibrations. In the past, the simplified symmetric straight geometric models were commonly employed for experimental and computational studies. The shape of larynx lumen and vocal folds are highly three-dimensional indeed and the complex realistic geometry produces profound impacts on both glottal flow and vocal fold vibrations. To elucidate the effect of geometric complexity on voice production and improve the fundamental understanding of human phonation, a full flow-structure interaction simulation is carried out on a patient-specific larynx model. To the best of our knowledge, this is the first patient-specific flow-structure interaction study of human phonation. The simulation results are well compared to the established human data. The effects of realistic geometry on glottal flow and vocal fold dynamics are investigated. It is found that both glottal flow and vocal fold dynamics present a high level of difference from the previous simplified model. This study also paved the important step toward the development of computer model for voice disease diagnosis and surgical planning. The project described was supported by Grant Number ROlDC007125 from the National Institute on Deafness and Other Communication Disorders (NIDCD).

  6. Assessment of a human computer interface prototyping environment

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1993-01-01

    A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance.

  7. Interaction of Citrinin with Human Serum Albumin

    PubMed Central

    Poór, Miklós; Lemli, Beáta; Bálint, Mónika; Hetényi, Csaba; Sali, Nikolett; Kőszegi, Tamás; Kunsági-Máté, Sándor

    2015-01-01

    Citrinin (CIT) is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA) is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3) and its primary binding site is located in subdomain IIA (Sudlow’s Site I). In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions. PMID:26633504

  8. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer; Ezer, Neta; Sandor, Aniko

    2011-01-01

    Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed

  9. User Localization During Human-Robot Interaction

    PubMed Central

    Alonso-Martín, F.; Gorostiza, Javi F.; Malfaz, María; Salichs, Miguel A.

    2012-01-01

    This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented. PMID:23012577

  10. IPython: components for interactive and parallel computing across disciplines. (Invited)

    NASA Astrophysics Data System (ADS)

    Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.

    2013-12-01

    Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.

  11. Computer-Based Interaction Analysis with DEGREE Revisited

    ERIC Educational Resources Information Center

    Barros, B.; Verdejo, M. F.

    2016-01-01

    We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…

  12. Mental Models in Human-Computer Interaction. Research Issues about What the User of Software Knows. Workshop on Software Human Factors: Users' Mental Models (Washington, District of Columbia, May 15-16, 1984).

    ERIC Educational Resources Information Center

    Carroll, John M., Ed.; Olson, Judith Reitman, Ed.

    This report incorporates a literature review, a workshop paper, and discussion by workshop participants on the current status of research on what the users of computer systems know, and how these different forms of knowledge fit together in learning and performance. It is noted that such research is important to the problem of designing systems…

  13. Interaction of Human Hemoglobin with Methotrexate

    NASA Astrophysics Data System (ADS)

    Zaharia, M.; Gradinaru, R.

    2015-05-01

    This study focuses on the interaction between methotrexate and human hemoglobin using steady-state ultraviolet-visible and fluorescence quenching methods. Fluorescence quenching was found to be valuable in assessing drug binding to hemoglobin. The quenching of methotrexate is slightly smaller than the quenching observed with related analogs (dihydrofolate and tetrahydrofolate). The quenching studies were performed at four different temperatures and various pH values. The number of binding sites for tryptophan is ~1. Parameter-dependent assays revealed that electrostatic forces play an essential role in the methotrexate-hemoglobin interaction. Furthermore, the complex was easily eluted using gel filtration chromatography.

  14. Computer-Mediated Negotiated Interaction and Lexical Acquisition

    ERIC Educational Resources Information Center

    Smith, Bryan

    2004-01-01

    This paper reports a paired-groups experimental study, which tests the Interaction Hypothesis in a computer-mediated communicative environment. Pairs of intermediate-level nonnative speakers of English (n = 24) interacted with one another in a synchronous mode over a local area network while attempting to jointly complete jigsaw and…

  15. Computation of blast wave-obstacle interactions

    NASA Technical Reports Server (NTRS)

    Champney, J. M.; Chaussee, D. S.; Kutler, P.

    1982-01-01

    Numerical simulations of the interaction of a planar blast wave with various obstacles are presented. These obstacles are either ground structures or vehicles flying in the atmosphere. For a structure on the ground, the blast wave encounter is side-on, while for the flying vehicles the encounter is either head-on or oblique. Second-order accurate, finite-difference, and shock-capturing procedures are employed to solve the two-dimensional, axisymmetric, and three-dimensional unsteady Euler equations. Results are presented for the flow field consisting of blast wave striking obstacles that are at rest, moving subsonically and moving supersonically. Comparison of the numerical results with experimental data for a configuration at rest substantiates the validity of this approach and its potential as a flow analysis tool.

  16. Supporting Negotiation Behavior with Haptics-Enabled Human-Computer Interfaces.

    PubMed

    Oguz, S O; Kucukyilmaz, A; Sezgin, Tevfik Metin; Basdogan, C

    2012-01-01

    An active research goal for human-computer interaction is to allow humans to communicate with computers in an intuitive and natural fashion, especially in real-life interaction scenarios. One approach that has been advocated to achieve this has been to build computer systems with human-like qualities and capabilities. In this paper, we present insight on how human-computer interaction can be enriched by employing the computers with behavioral patterns that naturally appear in human-human negotiation scenarios. For this purpose, we introduce a two-party negotiation game specifically built for studying the effectiveness of haptic and audio-visual cues in conveying negotiation related behaviors. The game is centered around a real-time continuous two-party negotiation scenario based on the existing game-theory and negotiation literature. During the game, humans are confronted with a computer opponent, which can display different behaviors, such as concession, competition, and negotiation. Through a user study, we show that the behaviors that are associated with human negotiation can be incorporated into human-computer interaction, and the addition of haptic cues provides a statistically significant increase in the human-recognition accuracy of machine-displayed behaviors. In addition to aspects of conveying these negotiation-related behaviors, we also focus on and report game-theoretical aspects of the overall interaction experience. In particular, we show that, as reported in the game-theory literature, certain negotiation strategies such as tit-for-tat may generate maximum combined utility for the negotiating parties, providing an excellent balance between the energy spent by the user and the combined utility of the negotiating parties. PMID:26964113

  17. Holonomic quantum computation on microwave photons with all resonant interactions

    NASA Astrophysics Data System (ADS)

    Dong, Ping; Yu, Long-Bao; Zhou, Jian

    2016-08-01

    The intrinsic difficulties of holonomic quantum computation on superconducting circuits are originated from the use of three levels in superconducting transmon qubits and the complicated dispersive interaction between them. Due to the limited anharmonicity of transmon qubits, the experimental realization seems to be very challenging. However, with recent experimental progress, coherent control over microwave photons in superconducting circuit cavities is well achieved, and thus provides a promising platform for quantum information processing with photonic qubits. Here, with all resonant inter-cavity photon–photon interactions, we propose a scheme for implementing scalable holonomic quantum computation on a circuit QED lattice. In our proposal, three cavities, connected by a SQUID, are used to encode a logical qubit. By tuning the inter-cavity photon–photon interaction, we can construct all the holonomies needed for universal quantum computation in a non-adiabatic way. Therefore, our scheme presents a promising alternative for robust quantum computation with microwave photons.

  18. Common Metrics for Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Steinfeld, Aaron; Lewis, Michael; Fong, Terrence; Scholtz, Jean; Schultz, Alan; Kaber, David; Goodrich, Michael

    2006-01-01

    This paper describes an effort to identify common metrics for task-oriented human-robot interaction (HRI). We begin by discussing the need for a toolkit of HRI metrics. We then describe the framework of our work and identify important biasing factors that must be taken into consideration. Finally, we present suggested common metrics for standardization and a case study. Preparation of a larger, more detailed toolkit is in progress.

  19. Exploring host–microbiota interactions in animal models and humans

    PubMed Central

    Kostic, Aleksandar D.; Howitt, Michael R.; Garrett, Wendy S.

    2013-01-01

    The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host–microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host–microbiota interactions and explore recent human microbiome studies. PMID:23592793

  20. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G.

    2004-04-20

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  1. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G.

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  2. An Interdisciplinary Bibliography for Computers and the Humanities Courses.

    ERIC Educational Resources Information Center

    Ehrlich, Heyward

    1991-01-01

    Presents an annotated bibliography of works related to the subject of computers and the humanities. Groups items into textbooks and overviews; introductions; human and computer languages; literary and linguistic analysis; artificial intelligence and robotics; social issue debates; computers' image in fiction; anthologies; writing and the…

  3. Designers' models of the human-computer interface

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Breedin, Sarah D.

    1993-01-01

    Understanding design models of the human-computer interface (HCI) may produce two types of benefits. First, interface development often requires input from two different types of experts: human factors specialists and software developers. Given the differences in their backgrounds and roles, human factors specialists and software developers may have different cognitive models of the HCI. Yet, they have to communicate about the interface as part of the design process. If they have different models, their interactions are likely to involve a certain amount of miscommunication. Second, the design process in general is likely to be guided by designers' cognitive models of the HCI, as well as by their knowledge of the user, tasks, and system. Designers do not start with a blank slate; rather they begin with a general model of the object they are designing. The author's approach to a design model of the HCI was to have three groups make judgments of categorical similarity about the components of an interface: human factors specialists with HCI design experience, software developers with HCI design experience, and a baseline group of computer users with no experience in HCI design. The components of the user interface included both display components such as windows, text, and graphics, and user interaction concepts, such as command language, editing, and help. The judgments of the three groups were analyzed using hierarchical cluster analysis and Pathfinder. These methods indicated, respectively, how the groups categorized the concepts, and network representations of the concepts for each group. The Pathfinder analysis provides greater information about local, pairwise relations among concepts, whereas the cluster analysis shows global, categorical relations to a greater extent.

  4. Mother–Pup Interactions: Rodents and Humans

    PubMed Central

    Lucion, Aldo B.; Bortolini, Maria Cátira

    2014-01-01

    In order to survive after birth, mammalian infants need a caretaker, usually the mother. Several behavioral strategies have evolved to guarantee the transition from a period of intense caregiving to offspring independence. Here, we examine a selection of literature on the genetic, epigenetic, physiological, and behavioral factors relating to development and mother–infant interactions. We intend to show the utility of comparisons between rodent and human models for deepening knowledge regarding this key relationship. Particular attention is paid to the following factors: the distinct developmental stages of the mother–pup relationship as relating to behavior; examples of key genetic components of mammalian mother–infant interactions, specifically those coding for the hormones oxytocin and vasopressin; and the possible functions of gene imprinting in mediating interactions between genetics and environment in the mother–infant relationship. As early mother–infant attachment seems to establish the basic parameters for later social interactions, ongoing investigations in this area are essential. We propose the importance of interdisciplinary collaboration in order to better understand the network of genes, gene regulation, neuropeptide action, physiological processes, and feedback loops essential to understand the complex behaviors of mother–infant interaction. PMID:24616713

  5. Mother-pup interactions: rodents and humans.

    PubMed

    Lucion, Aldo B; Bortolini, Maria Cátira

    2014-01-01

    In order to survive after birth, mammalian infants need a caretaker, usually the mother. Several behavioral strategies have evolved to guarantee the transition from a period of intense caregiving to offspring independence. Here, we examine a selection of literature on the genetic, epigenetic, physiological, and behavioral factors relating to development and mother-infant interactions. We intend to show the utility of comparisons between rodent and human models for deepening knowledge regarding this key relationship. Particular attention is paid to the following factors: the distinct developmental stages of the mother-pup relationship as relating to behavior; examples of key genetic components of mammalian mother-infant interactions, specifically those coding for the hormones oxytocin and vasopressin; and the possible functions of gene imprinting in mediating interactions between genetics and environment in the mother-infant relationship. As early mother-infant attachment seems to establish the basic parameters for later social interactions, ongoing investigations in this area are essential. We propose the importance of interdisciplinary collaboration in order to better understand the network of genes, gene regulation, neuropeptide action, physiological processes, and feedback loops essential to understand the complex behaviors of mother-infant interaction. PMID:24616713

  6. Interactive visualization of Earth and Space Science computations

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.; Paul, Brian E.; Santek, David A.; Dyer, Charles R.; Battaiola, Andre L.; Voidrot-Martinez, Marie-Francoise

    1994-01-01

    Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.

  7. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    NASA Astrophysics Data System (ADS)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.

  8. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  9. Examining human-system interactions: The HSYS (Human SYStem) methodology

    SciTech Connect

    Hill, S.G.; Harbour, J.L.; Sullivan, C.; Hallbert, B.P. )

    1990-01-01

    HSYS is a model-based methodology developed to examine the many factors which influence Human-SYStem interactions. HSYS is built around a linear model of human performance, called the Input-Action model, which describes five sequential steps: Input Detection, Input Understanding, Action Selection, Action Planning, and Action Execution. HSYS is structured in an hierarchical tree which presents a logical structure for examining potential areas where human performance, hardware or other system components are less than adequate. The HSYS tree consists of five major branches which correspond to the five major components of the Input-Action model. Initial validation was begun by studying accident reports via HSYS and identifying sources of error. The validation process has continued with accident investigations in operational settings. 9 refs., 3 figs.

  10. Interactive analysis of thermal imagery. [computer graphics terminal for photointerpretation

    NASA Technical Reports Server (NTRS)

    Madding, R. P.; Fisher, L. T.

    1976-01-01

    Necessary knowledge is presented on data acquisition and preparation for analysis of thermal imagery of power plant heated discharges remotely sensed from an aircraft, with special emphasis on analog to digital conversion of analog tapes acquired during scanning and to geometrical scaling. The central element in the interactive analysis of thermal imagery is an interactive graphics computer terminal which allows an interpreter to effectively interact with a large-scale computer, providing decisions or data as computations are carried out. A temperature calibration is performed, which the interpreter may test anywhere on the image. When satisfied that calibration is correct, the portion of the image to be analyzed is outlined. Printed and microfiche analyses of the plume are produced. The flow chart of programs for analysis of thermal imagery is presented and discussed in some detail.

  11. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    PubMed Central

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  12. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    ERIC Educational Resources Information Center

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  13. Relaxing passivity for human-robot interaction.

    SciTech Connect

    Buerger, Stephen P. (Massachusetts Institute of Technology, Cambridge, MA.); Hogan, Neville

    2007-03-01

    Robots for high-force interaction with humans face particular challenges to achieve performance and coupled stability. Because available actuators are unable to provide sufficiently high force density and low impedance, controllers for such machines often attempt to mask the robots physical dynamics, though this threatens stability. Controlling for passivity, the state-of-the-art means of ensuring coupled stability, inherently limits performance to levels that are often unacceptable. A controller that imposes passivity is compared to a controller designed by a new method that uses limited knowledge of human dynamics to improve performance. Both controllers were implemented on a testbed, and coupled stability and performance were tested. Results show that the new controller can improve both stability and performance. The different structures of the controllers yield key differences in physical behavior, and guidelines are provided to assist in choosing the appropriate approach for specific applications.

  14. Interactive-Boundary-Layer Computations For Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Carr, L. W.; Cebeci, T.; Jang, Hong-Ming

    1993-01-01

    Interactive-boundary-layer method developed for computations of steady flow, extended under assumption of quasi-steady flow, to computations of evolution of two-dimensional flow about oscillating airfoil under light-dynamic-stall conditions. Represents advance toward ability to compute unsteady flows at even greater angles of attack with solutions of equations normally used for description of boundary-layer flows on airfoils prior to stall. Important in practical studies of flow on blades of helicopter rotors, axial compressors, and turbines.

  15. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, Ernest V., II; Chang, M. L.

    2014-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of

  16. Brain-Computer Interfaces: A Neuroscience Paradigm of Social Interaction? A Matter of Perspective

    PubMed Central

    Mattout, Jérémie

    2012-01-01

    A number of recent studies have put human subjects in true social interactions, with the aim of better identifying the psychophysiological processes underlying social cognition. Interestingly, this emerging Neuroscience of Social Interactions (NSI) field brings up challenges which resemble important ones in the field of Brain-Computer Interfaces (BCI). Importantly, these challenges go beyond common objectives such as the eventual use of BCI and NSI protocols in the clinical domain or common interests pertaining to the use of online neurophysiological techniques and algorithms. Common fundamental challenges are now apparent and one can argue that a crucial one is to develop computational models of brain processes relevant to human interactions with an adaptive agent, whether human or artificial. Coupled with neuroimaging data, such models have proved promising in revealing the neural basis and mental processes behind social interactions. Similar models could help BCI to move from well-performing but offline static machines to reliable online adaptive agents. This emphasizes a social perspective to BCI, which is not limited to a computational challenge but extends to all questions that arise when studying the brain in interaction with its environment. PMID:22675291

  17. Toward the Computational Prediction of Muon Sites and Interaction Parameters

    NASA Astrophysics Data System (ADS)

    Bonfà, Pietro; De Renzi, Roberto

    2016-09-01

    The rapid developments of computational quantum chemistry methods and supercomputing facilities motivate the renewed interest in the analysis of the muon/electron interactions in μSR experiments with ab initio approaches. Modern simulation methods seem to be able to provide the answers to the frequently asked questions of many μSR experiments: where is the muon? Is it a passive probe? What are the interaction parameters governing the muon-sample interaction? In this review we describe some of the approaches used to provide quantitative estimations of the aforementioned quantities and we provide the reader with a short discussion on the current developments in this field.

  18. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, Ernest V., II; Chang, Mai Lee

    2014-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of

  19. Developing Computer-Based Interactive Video Simulations on Questioning Strategies.

    ERIC Educational Resources Information Center

    Rogers, Randall; Rieff, Judith

    1989-01-01

    This article presents a rationale for development and implementation of computer based interactive videotape (CBIV) in preservice teacher education; identifies advantages of CBIV simulations over other practice exercises; describes economical production procedures; discusses implications and importance of these simulations; and makes…

  20. Speech Development of Autistic Children by Interactive Computer Games

    ERIC Educational Resources Information Center

    Rahman, Mustafizur; Ferdous, S. M.; Ahmed, Syed Ishtiaque; Anwar, Anika

    2011-01-01

    Purpose: Speech disorder is one of the most common problems found with autistic children. The purpose of this paper is to investigate the introduction of computer-based interactive games along with the traditional therapies in order to help improve the speech of autistic children. Design/methodology/approach: From analysis of the works of Ivar…

  1. A Complete Interactive Graphical Computer-Aided Instruction System.

    ERIC Educational Resources Information Center

    Abrams, Steven Selby

    The use of interactive graphics in computer-aided instruction systems is discussed with emphasis placed on two requirements of such a system. The first is the need to provide the teacher with a useful tool with which to design and modify teaching sessions tailored to the individual needs and capabilities of the students. The second is the…

  2. Computers and Teaching; An Interactive Newsletter. Number Two.

    ERIC Educational Resources Information Center

    Northwestern Univ., Evanston, IL.

    Details relating to the daily operation of the Computer Aids to Teaching project are provided, along with some feedback from readers of the previous issue of the newsletter. Following this are a brief article which discusses the possibility of making man-machine interactions more personal and a review of two seminars which dealt with the…

  3. A Functional Analytic Approach to Computer-Interactive Mathematics

    ERIC Educational Resources Information Center

    Ninness, Chris; Rumph, Robin; McCuller, Glen; Harrison, Carol; Ford, Angela M.; Ninness, Sharon K.

    2005-01-01

    Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on…

  4. Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom

    ERIC Educational Resources Information Center

    Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.

    2014-01-01

    Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of…

  5. Computation of the magnetostatic interaction between linearly magnetized polyhedrons

    NASA Astrophysics Data System (ADS)

    Chernyshenko, Dmitri; Fangohr, Hans

    2016-08-01

    In this paper we present a method to accurately compute the energy of the magnetostatic interaction between linearly (or uniformly, as a special case) magnetized polyhedrons. The method has applications in finite element micromagnetics, or more generally in computing the magnetostatic interaction when the magnetization is represented using the finite element method (FEM). The magnetostatic energy is described by a six-fold integral that is singular when the interaction regions overlap, making direct numerical evaluation problematic. To resolve the singularity, we evaluate four of the six iterated integrals analytically resulting in a 2d integral over the surface of a polyhedron, which is nonsingular and can be integrated numerically. This provides a more accurate and efficient way of computing the magnetostatic energy integral compared to existing approaches. The method was developed to facilitate the evaluation of the demagnetizing interaction between neighbouring elements in finite-element micromagnetics and provides a possibility to compute the demagnetizing field using efficient fast multipole or tree code algorithms.

  6. KINPLOT: An Interactive Pharmacokinetics Graphics Program for Digital Computers.

    ERIC Educational Resources Information Center

    Wilson, Robert C.; And Others

    1982-01-01

    Inability to see the relevance of mathematics to understanding the time course of drugs in the body may discourage interest in pharmacokinetics. A UNC-developed computer graphics simulation program helps visualize the nature of pharmacokinetic-patient interactions, generates classroom handouts, and is used in the pharmaceuticals industry to…

  7. Computational prediction of the human-microbial oral interactome

    PubMed Central

    2014-01-01

    Background The oral cavity is a complex ecosystem where human chemical compounds coexist with a particular microbiota. However, shifts in the normal composition of this microbiota may result in the onset of oral ailments, such as periodontitis and dental caries. In addition, it is known that the microbial colonization of the oral cavity is mediated by protein-protein interactions (PPIs) between the host and microorganisms. Nevertheless, this kind of PPIs is still largely undisclosed. To elucidate these interactions, we have created a computational prediction method that allows us to obtain a first model of the Human-Microbial oral interactome. Results We collected high-quality experimental PPIs from five major human databases. The obtained PPIs were used to create our positive dataset and, indirectly, our negative dataset. The positive and negative datasets were merged and used for training and validation of a naïve Bayes classifier. For the final prediction model, we used an ensemble methodology combining five distinct PPI prediction techniques, namely: literature mining, primary protein sequences, orthologous profiles, biological process similarity, and domain interactions. Performance evaluation of our method revealed an area under the ROC-curve (AUC) value greater than 0.926, supporting our primary hypothesis, as no single set of features reached an AUC greater than 0.877. After subjecting our dataset to the prediction model, the classified result was filtered for very high confidence PPIs (probability ≥ 1-10−7), leading to a set of 46,579 PPIs to be further explored. Conclusions We believe this dataset holds not only important pathways involved in the onset of infectious oral diseases, but also potential drug-targets and biomarkers. The dataset used for training and validation, the predictions obtained and the network final network are available at http://bioinformatics.ua.pt/software/oralint. PMID:24576332

  8. Identification of Protein–Excipient Interaction Hotspots Using Computational Approaches

    PubMed Central

    Barata, Teresa S.; Zhang, Cheng; Dalby, Paul A.; Brocchini, Steve; Zloh, Mire

    2016-01-01

    Protein formulation development relies on the selection of excipients that inhibit protein–protein interactions preventing aggregation. Empirical strategies involve screening many excipient and buffer combinations using force degradation studies. Such methods do not readily provide information on intermolecular interactions responsible for the protective effects of excipients. This study describes a molecular docking approach to screen and rank interactions allowing for the identification of protein–excipient hotspots to aid in the selection of excipients to be experimentally screened. Previously published work with Drosophila Su(dx) was used to develop and validate the computational methodology, which was then used to determine the formulation hotspots for Fab A33. Commonly used excipients were examined and compared to the regions in Fab A33 prone to protein–protein interactions that could lead to aggregation. This approach could provide information on a molecular level about the protective interactions of excipients in protein formulations to aid the more rational development of future formulations. PMID:27258262

  9. Computational learning on specificity-determining residue-nucleotide interactions

    PubMed Central

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Moses, Alan M.; Zhang, Zhaolei

    2015-01-01

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families. PMID:26527718

  10. Human Interactive Analysis Using Video: Mapping the Dynamics of Complex Work Environments.

    ERIC Educational Resources Information Center

    Terrell, William R.; And Others

    1992-01-01

    Explains human interactive analysis as an architecture for using computer interactive technologies in the analysis of complex work environments. A project at the Naval Training Systems Center that used video-audio data to develop a multimedia database is described; the analysis and management of data are discussed; and decision processes are…

  11. Loving Machines: Theorizing Human and Sociable-Technology Interaction

    NASA Astrophysics Data System (ADS)

    Shaw-Garlock, Glenda

    Today, human and sociable-technology interaction is a contested site of inquiry. Some regard social robots as an innovative medium of communication that offer new avenues for expression, communication, and interaction. Other others question the moral veracity of human-robot relationships, suggesting that such associations risk psychological impoverishment. What seems clear is that the emergence of social robots in everyday life will alter the nature of social interaction, bringing with it a need for new theories to understand the shifting terrain between humans and machines. This work provides a historical context for human and sociable robot interaction. Current research related to human-sociable-technology interaction is considered in relation to arguments that confront a humanist view that confine 'technological things' to the nonhuman side of the human/nonhuman binary relation. Finally, it recommends a theoretical approach for the study of human and sociable-technology interaction that accommodates increasingly personal relations between human and nonhuman technologies.

  12. Computing in the Humanities: An Interdisciplinary Partnership in Undergraduate Education

    ERIC Educational Resources Information Center

    Bunde, Janet; Engel, Deena

    2010-01-01

    "Computing in the Humanities," an undergraduate course for Computer Science Department majors and minors and Web Programming minors at New York University, represents a unique collaboration between the Computer Science Department and the University Archives. The course's final assignment required students to select, digitize, and contextualize…

  13. Limits of Free Energy Computation for Protein-Ligand Interactions

    PubMed Central

    Merz, Kenneth M.

    2010-01-01

    A detailed error analysis is presented for the computation of protein-ligand interaction energies. In particular, we show that it is probable that even highly accurate computed binding free energies have errors that represent a large percentage of the target free energies of binding. This is due to the observation that the error for computed energies quasi-linearly increases with the increasing number of interactions present in a protein-ligand complex. This principle is expected to hold true for any system that involves an ever increasing number of inter or intra-molecular interactions (e.g. ab initio protein folding). We introduce the concept of best-case scenario errors (BCSerrors) that can be routinely applied to docking and scoring exercises and used to provide errors bars for the computed binding free energies. These BCSerrors form a basis by which one can evaluate the outcome of a docking and scoring exercise. Moreover, the resultant error analysis enables the formation of an hypothesis that defines the best direction to proceed in order to improve scoring functions used in molecular docking studies. PMID:20467461

  14. Exploring the Issues: Humans and Computers.

    ERIC Educational Resources Information Center

    Walsh, Huber M.

    This presentation addresses three basic social issues generated by the computer revolution. The first section, "Money Matters," focuses on the economic effects of computer technology. These include the replacement of workers by fully automated machines, the threat to professionals posed by expanded access to specialized information, and the…

  15. The Vesalius Project: Interactive Computers in Anatomical Instruction.

    ERIC Educational Resources Information Center

    McCracken, Thomas O.; Spurgeon, Thomas L.

    1991-01-01

    Described is a high-resolution, interactive 3-D atlas of human/animal anatomy that students will use to learn the structure of the body and to understand their own bodies in health and disease. This system can be used to reinforce cadaver study or to serve as a substitute for institutions where it is not practical to use cadavers. (KR)

  16. Safety Metrics for Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  17. New activity pattern in human interactive dynamics

    NASA Astrophysics Data System (ADS)

    Formentin, Marco; Lovison, Alberto; Maritan, Amos; Zanzotto, Giovanni

    2015-09-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new pattern for how the reactive dynamics of individuals is distributed across the set of each agent’s contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We furthermore show that this new behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one’s environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns might be universal, being present in other general interactive environments, and constrain future models of communication and interaction networks, affecting their architecture and evolution.

  18. Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction

    PubMed Central

    Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.

    2015-01-01

    This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047

  19. Computer constructed imagery of distant plasma interaction boundaries

    NASA Astrophysics Data System (ADS)

    Greenstadt, E. W.; Schurr, H. D.; Tsugawa, R. K.

    Computer constructed sketches of plasma boundaries arising from the interaction between the solar wind and the magnetosphere can serve as both didactic and research tools. In particular, the structure of the earth's bow shock can be represented as a nonuniform surfce according to the instantaneous orientation of the IMF, and temporal changes in structural distribution can be modeled as a sequence of sketches based on observed sequences of spacecraft-based measurements. Viewed rapidly, such a sequence of sketches can be the basis for representation of plasma processes by computer animation.

  20. Interactions of human neutrophils with leukotoxic streptococci.

    PubMed Central

    Sullivan, G W; Mandell, G L

    1980-01-01

    Most strains of Streptococcus pyogenes contain a toxin which can kill neutrophils. Previous workers failed to show any correlation between leukotoxin content and virulence of animals or humans. We examined the in vitro interactions of a leukotoxic streptococcus and a nonleukotoxic variant with human neutrophils. At ratios of 200 streptococcal colony-forming units per neutrophil, the toxic strain killed 92.8 +/- 2.0% of neutrophils, and the nontoxic strain killed only 9.0 +/- 1.2%. Despite this, ingestion of the two strains was equal. Postphagocytic oxidative metabolism was equivalent with low numbers of either toxic or nontoxic streptococci but depressed with high numbers of leukotoxic streptococci. At 20 min, neutrophils were able to kill leukotoxic (99.6 +/- 0.3% killed) and nonleukotoxic streptococci (99.5 +/- 0.2% killed) equally efficiently (P = 0.42). Thus, leukotoxicity does not interfere with the ability of neutrophils to destroy streptococci. This may explain why leukotoxicity does not appear to be an important factor in streptococcal virulence. Images Fig. 1 PMID:7002789

  1. Human performance models for computer-aided engineering

    NASA Technical Reports Server (NTRS)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  2. Exploiting Expert Knowledge of Protein-Protein Interactions in a Computational Evolution System for Detecting Epistasis

    NASA Astrophysics Data System (ADS)

    Pattin, Kristine A.; Payne, Joshua L.; Hill, Douglas P.; Caldwell, Thomas; Fisher, Jonathan M.; Moore, Jason H.

    The etiology of common human disease often involves a complex genetic architecture, where numerous points of genetic variation interact to influence disease susceptibility. Automating the detection of such epistatic genetic risk factors poses a major computational challenge, as the number of possible gene-gene interactions increases combinatorially with the number of sequence variations. Previously, we addressed this challenge with the development of a computational evolution system (CES) that incorporates greater biological realism than traditional artificial evolution methods. Our results demonstrated that CES is capable of efficiently navigating these large and rugged epistatic landscapes toward the discovery of biologically meaningful genetic models of disease predisposition. Further, we have shown that the efficacy of CES is improved dramatically when the system is provided with statistical expert knowledge. We anticipate that biological expert knowledge, such as genetic regulatory or protein-protein interaction maps, will provide complementary information, and further improve the ability of CES to model the genetic architectures of common human disease. The goal of this study is to test this hypothesis, utilizing publicly available protein-protein interaction information. We show that by incorporating this source of expert knowledge, the system is able to identify functional interactions that represent more concise models of disease susceptibility with improved accuracy. Our ability to incorporate biological knowledge into learning algorithms is an essential step toward the routine use of methods such as CES for identifying genetic risk factors for common human diseases.

  3. HIV-1, human interaction database: current status and new features

    PubMed Central

    Ako-Adjei, Danso; Fu, William; Wallin, Craig; Katz, Kenneth S.; Song, Guangfeng; Darji, Dakshesh; Brister, J. Rodney; Ptak, Roger G.; Pruitt, Kim D.

    2015-01-01

    The ‘Human Immunodeficiency Virus Type 1 (HIV-1), Human Interaction Database’, available through the National Library of Medicine at http://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions, serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. Each HIV-1 human protein interaction can be retrieved without restriction by web-based downloads and ftp protocols and includes: Reference Sequence (RefSeq) protein accession numbers, National Center for Biotechnology Information Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. In addition to specific HIV-1 protein–human protein interactions, included are interaction effects upon HIV-1 replication resulting when individual human gene expression is blocked using siRNA. A total of 3142 human genes are described participating in 12 786 protein–protein interactions, along with 1316 replication interactions described for each of 1250 human genes identified using small interfering RNA (siRNA). Together the data identifies 4006 human genes involved in 14 102 interactions. With the inclusion of siRNA interactions we introduce a redesigned web interface to enhance viewing, filtering and downloading of the combined data set. PMID:25378338

  4. Learning, Interactional, and Motivational Outcomes in One-to-One Synchronous Computer-Mediated versus Face-to-Face Tutoring

    ERIC Educational Resources Information Center

    Siler, Stephanie Ann; VanLehn, Kurt

    2009-01-01

    Face-to-face (FTF) human-human tutoring has ranked among the most effective forms of instruction. However, because computer-mediated (CM) tutoring is becoming increasingly common, it is instructive to evaluate its effectiveness relative to face-to-face tutoring. Does the lack of spoken, face-to-face interaction affect learning gains and…

  5. Computers in the Library: The Human Element.

    ERIC Educational Resources Information Center

    Magrath, Lynn L.

    1982-01-01

    Discusses library staff and public reaction to the computerization of library operations at the Pikes Peak Library District in Colorado Springs. An outline of computer applications implemented since the inception of the program in 1975 is included. (EJS)

  6. Development of the cardiovascular system: an interactive video computer program.

    PubMed

    Smolen, A J; Zeiset, G E; Beaston-Wimmer, P

    1992-01-01

    The major aim of this project is to provide interactive video computer based courseware that can be used by the medical student and others to supplement his or her learning of this very important aspect of basic biomedical education. Embryology is a science that depends on the ability of the student to visualize dynamic changes in structure which occur in four dimensions--X, Y, Z, and time. Traditional didactic methods, including lectures employing photographic slides and laboratories employing histological sections, are limited to two dimensions--X and Y. The third spatial dimension and the dimension of time cannot be readily illustrated using these methods. Computer based learning, particularly when used in conjunction with interactive video, can be used effectively to illustrate developmental processes in all four dimensions. This methodology can also be used to foster the critical skills of independent learning and problem solving. PMID:1483013

  7. Soil and Human Interactions in Maya Wetlands

    NASA Astrophysics Data System (ADS)

    Beach, Timothy; Luzzadder-Beach, Sheryl

    2013-04-01

    Since the early 1990s, we have studied Maya interaction with soils in Mexico, Belize, Guatemala, and elsewhere. We studied upland and lowland soils, but here we focus on seasonal or 'Bajo' wetlands and perennial wetlands for different reasons. Around the bajos, the ancient Maya focused on intensive agriculture and habitation despite the difficulties their Vertisol soils posed. For the perennial wetlands, small populations spread diffusely through Mollisol and Histisol landscapes with large scale, intensive agro-ecosystems. These wetlands also represent important repositories for both environmental change and how humans responded in situ to environmental changes. Work analyzing bajo soils has recorded significant diversity but the soil and sediment record shows two main eras of soil instability: the Pleistocene-Holocene transition as rainfall fluctuated and increased and tropical forest pulsed through the region, and the Maya Preclassic to Classic 3000 to 1000 BP as deforestation, land use intensity, and drying waxed and waned. The ancient Maya adapted their bajo soil ecosystems successfully through agro-engineering but they also withdrew in many important places in the Late Preclassic about 2000 BP and Terminal Classic about 1200 BP. We continue to study and debate the importance of perennial wetland agro-ecosystems, but it is now clear that Maya interaction with these soil landscapes was significant and multifaceted. Based on soil excavation and coring with a broad toolkit of soil stratigraphy, chemistry, and paleoecology from 2001 to 2013, our results show the ancient Maya interacted with their wetland soils to maintain cropland for maize, tree crops, arrow root, and cassava against relative sea level rise, increased flooding, and aggradation by gypsum precipitation and sedimentation. We have studied these interactions across an area of 2000 km2 in Northern Belize to understand how Maya response varied and how these soil environments varied over time and distance

  8. Pedagogical Strategies for Human and Computer Tutoring.

    ERIC Educational Resources Information Center

    Reiser, Brian J.

    The pedagogical strategies of human tutors in problem solving domains are described and the possibility of incorporating these techniques into computerized tutors is examined. GIL (Graphical Instruction in LISP), an intelligent tutoring system for LISP programming, is compared to human tutors teaching the same material in order to identify how the…

  9. The convergence of robotics, vision, and computer graphics for user interaction

    SciTech Connect

    Hollerback, J.M.; Thompson, W.B.; Shirley, P.

    1999-11-01

    Mechanical interfaces to virtual environments and the creation of virtual environments represent important and relatively new application areas for robotics. The creation of immersive interfaces will require codevelopment of visual displays that complement mechanical stimuli with appropriate visual cues, ultimately determined from human psychophysics. Advances in interactive rendering and geometric modeling form computer graphics will play a key role. Examples are drawn from haptic and locomotion interface projects.

  10. Are children with autism more responsive to animated characters? A study of interactions with humans and human-controlled avatars.

    PubMed

    Carter, Elizabeth J; Williams, Diane L; Hodgins, Jessica K; Lehman, Jill F

    2014-10-01

    Few direct comparisons have been made between the responsiveness of children with autism to computer-generated or animated characters and their responsiveness to humans. Twelve 4- to 8-year-old children with autism interacted with a human therapist; a human-controlled, interactive avatar in a theme park; a human actor speaking like the avatar; and cartoon characters who sought social responses. We found superior gestural and verbal responses to the therapist; intermediate response levels to the avatar and the actor; and poorest responses to the cartoon characters, although attention was equivalent across conditions. These results suggest that even avatars that provide live, responsive interactions are not superior to human therapists in eliciting verbal and non-verbal communication from children with autism in this age range. PMID:24859047

  11. Computational drug design targeting protein-protein interactions.

    PubMed

    Bienstock, Rachelle J

    2012-01-01

    Novel discoveries in molecular disease pathways within the cell, combined with increasing information regarding protein binding partners has lead to a new approach in drug discovery. There is interest in designing drugs to modulate protein-protein interactions as opposed to solely targeting the catalytic active site within a single enzyme or protein. There are many challenges in this new approach to drug discovery, particularly since the protein-protein interface has a larger surface area, can comprise a discontinuous epitope, and is more amorphous and less well defined than the typical drug design target, a small contained enzyme-binding pocket. Computational methods to predict modes of protein-protein interaction, as well as protein interface hot spots, have garnered significant interest, in order to facilitate the development of drugs to successfully disrupt and inhibit protein-protein interactions. This review summarizes some current methods available for computational protein-protein docking, as well as tabulating some examples of the successful design of antagonists and small molecule inhibitors for protein-protein interactions. Several of these drugs are now beginning to appear in the clinic. PMID:22316151

  12. The Particle Beam Optics Interactive Computer Laboratory for Personal Computers and Workstations

    NASA Astrophysics Data System (ADS)

    Gillespie, G. H.; Hill, B.; Brown, N.; Martono, H.; Moore, J.; Babcock, C.

    1997-05-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is a new software concept to aid both students and professionals in modeling charged particle beams and particle beam optical systems. The PBO Lab has been designed to run on several computer platforms and includes four key elements: a graphic user interface shell; (2) a knowledge database on electric and magnetic optics elements, including interactive tutorials on the physics of charged particle optics and on the technology used in particle optics hardware; (3) a graphic construction kit for users to interactively and visually construct optical beam lines; and (4) a set of charged particle optics computational engines that compute transport matrices, beam envelopes and trajectories, fit parameters to optical constraints, and carry out similar calculations for the graphically-defined beam lines. The primary computational engines in the first generation PBO Lab are the third-order TRANSPORT code, the multiple ray tracing program TURTLE, and a new first-order matrix code that includes an envelope space charge model with support for calculating single trajectories in the presence of the beam space charge. Progress on the PBO Lab development is described and a demonstration will be given.

  13. 'It's all good': children's personality attributions after repeated success and failure in peer and computer interactions.

    PubMed

    Boseovski, Janet J; Shallwani, Sadaf; Lee, Kang

    2009-11-01

    The present study examined children's use of behavioural outcome information to make personality attributions in social and non-social contexts. One hundred and twenty-eight 3- to 6-year-olds were told about a story actor who engaged in primarily successful or primarily unsuccessful interactions with several different people (social context) or several different computers (non-social context). Subsequently, children made behavioural predictions and trait attributions about the actor. Findings indicated that participants were more likely to use past information to make behavioural predictions and trait attributions when hearing about primarily successful than primarily unsuccessful interactions, although there were age-related differences in trait attribution as a function of success and trait type. There was no support for differential use of information across contexts, as participants' predictions and attributions were similar regardless of hearing about interactions with computers or humans. Factors involved in the development of impression formation are discussed. PMID:19994479

  14. Agent Interaction with Human Systems in Complex Environments: Requirements for Automating the Function of CapCom in Apollo 17

    NASA Technical Reports Server (NTRS)

    Clancey, William J.

    2003-01-01

    A human-centered approach to computer systems design involves reframing analysis in terms of people interacting with each other, not only human-machine interaction. The primary concern is not how people can interact with computers, but how shall we design computers to help people work together? An analysis of astronaut interactions with CapCom on Earth during one traverse of Apollo 17 shows what kind of information was conveyed and what might be automated today. A variety of agent and robotic technologies are proposed that deal with recurrent problems in communication and coordination during the analyzed traverse.

  15. Gerrymander: An interactive musical composition for clarinet and computer

    NASA Astrophysics Data System (ADS)

    Pinkston, Russell

    2003-10-01

    While compositions involving traditional musical instruments and pre-recorded electronic sounds have been around since the 1960's, it is only recently that the technology has advanced sufficiently to allow such sounds to be generated in real-time and under the direct control of a the performing musician. Gerrymander is a composition for solo clarinet and computer in which the computer processes and manipulates the sound of a clarinet in real-time to generate a dynamic musical accompaniment to the live performer. The performer is also able to interact with the computer to control various aspects of the accompaniment, including the timing of passages played by the computer and the overall pacing of the composition. The computer accompaniment is controlled primarily by tracking the fundamental pitch of the live clarinet and using it to follow a pre-recorded musical score. Granular synthesizers, pitch shifting delays, and contrapuntal harmonization algorithms, as well as a polyphonic sampler and all the necessary mixing and control logic were implemented in MAX/MSP on a Macintosh G4 powerbook. The paper will consist of a demo performance of the composition using a pre-recorded clarinet part, followed by a detailed description of the software using a video projector.

  16. Can Computer Translation Replace Human Translation?

    ERIC Educational Resources Information Center

    Schairer, Karen

    1996-01-01

    Evaluates three commercial computer-based language translation programs' translation of a university social sciences telephone survey from English to Spanish. The three programs, "Spanish Scholar,""Spanish Assistant," and "Spanish Amigo," were rated as unacceptable in their quality of translations by native and near-native Spanish speakers. (nine…

  17. Human Resource Management, Computers, and Organization Theory.

    ERIC Educational Resources Information Center

    Garson, G. David

    In an attempt to provide a framework for research and theory building in public management information systems (PMIS), state officials responsible for computing in personnel operations were surveyed. The data were applied to hypotheses arising from a recent model by Bozeman and Bretschneider, attempting to relate organization theory to management…

  18. Overview of the human brain as a distributed computing network

    SciTech Connect

    Gevins, A.S.

    1983-01-01

    The hierarchically organized human brain is viewed as a prime example of a massively parallel, adaptive information processing and process control system. A brief overview of the human brain is provided for computer architects, in hopes that the principles of massive parallelism, dense connectivity and self-organization of assemblies of processing elements will prove relevant to the design of fifth generation VLSI computing networks. 6 references.

  19. Human-computer symbiosis in cyberspace environments

    NASA Astrophysics Data System (ADS)

    Carter, J.; Levin, E.; Sergeyev, A.

    2012-06-01

    The main goal of a cyberspace environment is to support decision makers with relevant information on time for operational use. Cyberspace environments depend on geospatial data including terrestrial, aerial/UAV, satellite and other multi-sensor data obtained in electro-optical and other imaging domains. Despite advances in automated geospatial image processing, the "human in the loop" is still necessary because current applications depend upon complex algorithms and adequate classification rules that can only be provided by skilled geospatial professionals. Signals extracted from humans may become an element of a cyberspace system. This paper describes research experiments on integrating an EEG device within geospatial technology.

  20. Advances in Computationally Modeling Human Oral Bioavailability

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2015-01-01

    Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307

  1. Advances in computationally modeling human oral bioavailability.

    PubMed

    Wang, Junmei; Hou, Tingjun

    2015-06-23

    Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307

  2. Improving scientists' interaction with complex computational-visualization environments based on a distributed grid infrastructure.

    PubMed

    Kalawsky, R S; O'Brien, J; Coveney, P V

    2005-08-15

    The grid has the potential to transform collaborative scientific investigations through the use of closely coupled computational and visualization resources, which may be geographically distributed, in order to harness greater power than is available at a single site. Scientific applications to benefit from the grid include visualization, computational science, environmental modelling and medical imaging. Unfortunately, the diversity, scale and location of the required resources can present a dilemma for the scientific worker because of the complexity of the underlying technology. As the scale of the scientific problem under investigation increases so does the nature of the scientist's interaction with the supporting infrastructure. The increased distribution of people and resources within a grid-based environment can make resource sharing and collaborative interaction a critical factor to their success. Unless the technological barriers affecting user accessibility are reduced, there is a danger that the only scientists to benefit will be those with reasonably high levels of computer literacy. This paper examines a number of important human factors of user interaction with the grid and expresses this in the context of the science undertaken by RealityGrid, a project funded by the UK e-Science programme. Critical user interaction issues will also be highlighted by comparing grid computational steering with supervisory control systems for local and remote access to the scientific environment. Finally, implications for future grid developers will be discussed with a particular emphasis on how to improve the scientists' access to what will be an increasingly important resource. PMID:16099754

  3. Some computational techniques for estimating human operator describing functions

    NASA Technical Reports Server (NTRS)

    Levison, W. H.

    1986-01-01

    Computational procedures for improving the reliability of human operator describing functions are described. Special attention is given to the estimation of standard errors associated with mean operator gain and phase shift as computed from an ensemble of experimental trials. This analysis pertains to experiments using sum-of-sines forcing functions. Both open-loop and closed-loop measurement environments are considered.

  4. Computers and the Humanities Courses: Philosophical Bases and Approach.

    ERIC Educational Resources Information Center

    Ide, Nancy M.

    1987-01-01

    Discusses a Vassar College workshop and the debate it generated over the depth and breadth of computer knowledge needed by humanities students. Describes two positions: the "Holistic View," which emphasizes the understanding of the formal methods of computer implementation; and the "Expert Users View," which sees the humanist as a "user" of…

  5. Novel computational methods to design protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Alice Qinhua; O'Hern, Corey; Regan, Lynne

    2014-03-01

    Despite the abundance of structural data, we still cannot accurately predict the structural and energetic changes resulting from mutations at protein interfaces. The inadequacy of current computational approaches to the analysis and design of protein-protein interactions has hampered the development of novel therapeutic and diagnostic agents. In this work, we apply a simple physical model that includes only a minimal set of geometrical constraints, excluded volume, and attractive van der Waals interactions to 1) rank the binding affinity of mutants of tetratricopeptide repeat proteins with their cognate peptides, 2) rank the energetics of binding of small designed proteins to the hydrophobic stem region of the influenza hemagglutinin protein, and 3) predict the stability of T4 lysozyme and staphylococcal nuclease mutants. This work will not only lead to a fundamental understanding of protein-protein interactions, but also to the development of efficient computational methods to rationally design protein interfaces with tunable specificity and affinity, and numerous applications in biomedicine. NSF DMR-1006537, PHY-1019147, Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences, and Howard Hughes Medical Institute.

  6. Computational Study of Flow Interactions in Coaxial Rotors

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    account for multiple real-world constraints up front in design nor possible to know what performance is possible with a given design. Since unmanned vehicles are sized and optimized for the particular mission, a modern low-fidelity conceptual design and sizing tool that has been used for the design of large helicopters can be used for design of small coaxial rotorcraft. However, unlike most helicopters with single main rotor, the interactions between the upper and lower rotors emerge as an important factor to consider in design because an increase in performance of a multi-rotor system is not proportional to the number of rotors. Interference losses and differences in thrusts between the upper and lower rotors were investigated by theoretical methods as well as a computational fluid dynamics (CFD) method using the Reynolds-Averaged Navier-Stokes (RANS) equations. In this work, hybrid turbulence models are used to investigate the physics of interactions between coaxial rotors and a fuselage that are not well understood. Present study covers not only small-scale drones but also large-scale coaxial rotors for heavy-lifting missions. Considering the recently proposed FAA drone rules that require the flight only in visual line-of-sight, a large multirotor might be used as an airborne carrier for launch and recovery of unmanned aircraft systems with a human operator onboard. For applications to civil operations, their aerodynamic performance and noise levels need to be assessed. Noise is one of the largest limiting factors to rotorcraft operations in urban area. Since the high-frequency noise of multi-rotors may increase the annoyance, noise may turn out to be a key issue that must be addressed for market acceptability. One of the objectives of the present work is to study the effects of inter-rotor spacing and collectives on the performance, efficiency, and acoustics of coaxial rotor systems.

  7. Interaction of intuitive physics with computer-simulated physics

    NASA Astrophysics Data System (ADS)

    Flick, Lawrence B.

    How do children solve force and motion problems in computer simulations without explicit knowledge of the underlying physics? This question was addressed by saving the keystroke input of 19 sixth-grade children in computer memory as each interacted with a simulated, frictionless object using Logo turtle-graphics. The keystroke sequences were first used to determine subject performance on the gamelike features of the simulation. A second analysis used the Newtonian structure of the program to investigate alternative methods for controlling turtle velocity. Five boys and five girls were interviewed during the simulation concerning the perceived relationship between keyboard input and turtle behavior. Subjects who could clearly state some keyboard effects did not score high on either computer analysis, yet achieved the most general solutions of the computer problem. They did so by exploring turtle behavior under a greater variety of conditions than the subjects who achieved partial solutions. For the successful subjects, the turtle was related by analogy to useful information from existing conceptions of motion.

  8. An interactive computer program for sizing spacecraft momentum storage devices

    NASA Technical Reports Server (NTRS)

    Wilcox, F. J., Jr.

    1980-01-01

    An interactive computer program was developed which computes the sizing requirements for nongimbled reaction wheels, control moment gyros (CMG), and dual momentum control devices (DMCD) used in Earth-orbiting spacecraft. The program accepts as inputs the spacecraft's environmental disturbance torques, rotational inertias, maneuver rates, and orbital data. From these inputs, wheel weights are calculated for a range of radii and rotational speeds. The shape of the momentum wheel may be chosen to be either a hoop, solid cylinder, or annular cylinder. The program provides graphic output illustrating the trade-off potential between the weight, radius, and wheel speed. A number of the intermediate calculations such as the X-, Y-, and Z-axis total momentum, the momentum absorption requirements for reaction wheels, CMG's, DMCD's, and basic orbit analysis information are also provided as program output.

  9. Computer-Aided Diagnosis Utilizing Interactive Fuzzy Pattern Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Ismail, M. A.

    1984-08-01

    Interactive or display-oriented pattern recognition algorithms can be utilized with advantage in the design of efficient computer-aided diagnostic systems. These visual methods may provide a powerful alternative to the pure numerical approach of data analysis for diagnostic and prognostic purposes. Functional as well as pictorial representation techniques are discussed in conjunction with some newly developed semi-fuzzy classification techniques. The blend between the two methodologies leads to the design of a very flexible, yet powerful diagnostic system. Results obtained when applying the proposed system on a group of patients representing several classes of liver dysfunction are also reported, to demonstrate the effectiveness of the proposed methodology.

  10. [Multiparticle computer simulation of protein interactions in the photosynthetic membrane].

    PubMed

    Riznichenko, G Iu; Kovalenko, I B; Abaturova, A M; D'iakonova, A N; Kniazeva, O S; Ustinin, D M; Khrushchev, S S; Rubin, A B

    2011-01-01

    The basic principles of the design of direct multiparticle models and the results of multiparticle computer simulation of electron transfer by mobile protein carriers in the photosynthetic membrane of a chloroplast thylakoid are presented. The reactions of complex formation of the protein plastocyanin with the protein cytochrome f and the pigment-protein complex of photosystem I, as well as of the protein ferredoxin with the protein FNR and photosystem 1 are considered. The role of diffusion and electrostatic interactions is discussed, and the effect of the shape of the reaction volume and ionic strength on the rate of electron transport are discussed. PMID:22117434

  11. Semantic Interaction for Visual Analytics: Toward Coupling Cognition and Computation

    SciTech Connect

    Endert, Alexander

    2014-07-01

    The dissertation discussed in this article [1] was written in the midst of an era of digitization. The world is becoming increasingly instrumented with sensors, monitoring, and other methods for generating data describing social, physical, and natural phenomena. Thus, data exist with the potential of being analyzed to uncover, or discover, the phenomena from which it was created. However, as the analytic models leveraged to analyze these data continue to increase in complexity and computational capability, how can visualizations and user interaction methodologies adapt and evolve to continue to foster discovery and sensemaking?

  12. Computational models of neuron-astrocyte interaction in epilepsy

    PubMed Central

    Volman, Vladislav; Bazhenov, Maxim; Sejnowski, Terrence J.

    2012-01-01

    Astrocytes actively shape the dynamics of neurons and neuronal ensembles by affecting several aspects critical to neuronal function, such as regulating synaptic plasticity, modulating neuronal excitability, and maintaining extracellular ion balance. These pathways for astrocyte-neuron interaction can also enhance the information-processing capabilities of brains, but in other circumstances may lead the brain on the road to pathological ruin. In this article, we review the existing computational models of astrocytic involvement in epileptogenesis, focusing on their relevance to existing physiological data. PMID:23060780

  13. Computational modeling of RNA 3D structures and interactions.

    PubMed

    Dawson, Wayne K; Bujnicki, Janusz M

    2016-04-01

    RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling. PMID:26689764

  14. Structural mode significance using INCA. [Interactive Controls Analysis computer program

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1990-01-01

    Structural finite element models are often too large to be used in the design and analysis of control systems. Model reduction techniques must be applied to reduce the structural model to manageable size. In the past, engineers either performed the model order reduction by hand or used distinct computer programs to retrieve the data, to perform the significance analysis and to reduce the order of the model. To expedite this process, the latest version of INCA has been expanded to include an interactive graphical structural mode significance and model order reduction capability.

  15. Computer-assisted visual interactive recognition and its prospects of implementation over the Internet

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Gattani, Abhishek

    2005-01-01

    When completely automated systems don't yield acceptable accuracy, many practical pattern recognition systems involve the human either at the beginning (pre-processing) or towards the end (handling rejects). We believe that it may be more useful to involve the human throughout the recognition process rather than just at the beginning or end. We describe a methodology of interactive visual recognition for human-centered low-throughput applications, Computer Assisted Visual InterActive Recognition (CAVIAR), and discuss the prospects of implementing CAVIAR over the Internet. The novelty of CAVIAR is image-based interaction through a domain-specific parameterized geometrical model, which reduces the semantic gap between humans and computers. The user may interact with the computer anytime that she considers its response unsatisfactory. The interaction improves the accuracy of the classification features by improving the fit of the computer-proposed model. The computer makes subsequent use of the parameters of the improved model to refine not only its own statistical model-fitting process, but also its internal classifier. The CAVIAR methodology was applied to implement a flower recognition system. The principal conclusions from the evaluation of the system include: 1) the average recognition time of the CAVIAR system is significantly shorter than that of the unaided human; 2) its accuracy is significantly higher than that of the unaided machine; 3) it can be initialized with as few as one training sample per class and still achieve high accuracy; and 4) it demonstrates a self-learning ability. We have also implemented a Mobile CAVIAR system, where a pocket PC, as a client, connects to a server through wireless communication. The motivation behind a mobile platform for CAVIAR is to apply the methodology in a human-centered pervasive environment, where the user can seamlessly interact with the system for classifying field-data. Deploying CAVIAR to a networked mobile

  16. Computer-assisted visual interactive recognition and its prospects of implementation over the Internet

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Gattani, Abhishek

    2004-12-01

    When completely automated systems don't yield acceptable accuracy, many practical pattern recognition systems involve the human either at the beginning (pre-processing) or towards the end (handling rejects). We believe that it may be more useful to involve the human throughout the recognition process rather than just at the beginning or end. We describe a methodology of interactive visual recognition for human-centered low-throughput applications, Computer Assisted Visual InterActive Recognition (CAVIAR), and discuss the prospects of implementing CAVIAR over the Internet. The novelty of CAVIAR is image-based interaction through a domain-specific parameterized geometrical model, which reduces the semantic gap between humans and computers. The user may interact with the computer anytime that she considers its response unsatisfactory. The interaction improves the accuracy of the classification features by improving the fit of the computer-proposed model. The computer makes subsequent use of the parameters of the improved model to refine not only its own statistical model-fitting process, but also its internal classifier. The CAVIAR methodology was applied to implement a flower recognition system. The principal conclusions from the evaluation of the system include: 1) the average recognition time of the CAVIAR system is significantly shorter than that of the unaided human; 2) its accuracy is significantly higher than that of the unaided machine; 3) it can be initialized with as few as one training sample per class and still achieve high accuracy; and 4) it demonstrates a self-learning ability. We have also implemented a Mobile CAVIAR system, where a pocket PC, as a client, connects to a server through wireless communication. The motivation behind a mobile platform for CAVIAR is to apply the methodology in a human-centered pervasive environment, where the user can seamlessly interact with the system for classifying field-data. Deploying CAVIAR to a networked mobile

  17. Human-Bat Interactions in Rural West Africa.

    PubMed

    Anti, Priscilla; Owusu, Michael; Agbenyega, Olivia; Annan, Augustina; Badu, Ebenezer Kofi; Nkrumah, Evans Ewald; Tschapka, Marco; Oppong, Samuel; Adu-Sarkodie, Yaw; Drosten, Christian

    2015-08-01

    Because some bats host viruses with zoonotic potential, we investigated human-bat interactions in rural Ghana during 2011-2012. Nearly half (46.6%) of respondents regularly visited bat caves; 37.4% had been bitten, scratched, or exposed to bat urine; and 45.6% ate bat meat. Human-bat interactions in rural Ghana are frequent and diverse. PMID:26177344

  18. Parallel Computation of Airflow in the Human Lung Model

    NASA Astrophysics Data System (ADS)

    Lee, Taehun; Tawhai, Merryn; Hoffman, Eric. A.

    2005-11-01

    Parallel computations of airflow in the human lung based on domain decomposition are performed. The realistic lung model is segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-04368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. Because of the large number of the airway generation and the sheer complexity of the geometry, massively parallel computation of pulmonary airflow is carried out. We present the parallel algorithm implemented in the custom-developed characteristic-Galerkin finite element method, evaluate the speed-up and scalability of the scheme, and estimate the computing resources needed to simulate the airflow in the conducting airways of the human lungs. It is found that the special tree-like geometry enables the inter-processor communications to occur among only three or four processors for optimal parallelization irrespective of the number of processors involved in the computation.

  19. [Affective computing--a mysterious tool to explore human emotions].

    PubMed

    Li, Xin; Li, Honghong; Dou, Yi; Hou, Yongjie; Li, Changwu

    2013-12-01

    Perception, affection and consciousness are basic psychological functions of human being. Affection is the subjective reflection of different kinds of objects. The foundation of human being's thinking is constituted by the three basic functions. Affective computing is an effective tool of revealing the affectiveness of human being in order to understand the world. Our research of affective computing focused on the relation, the generation and the influent factors among different affections. In this paper, the affective mechanism, the basic theory of affective computing, is studied, the method of acquiring and recognition of affective information is discussed, and the application of affective computing is summarized as well, in order to attract more researchers into this working area. PMID:24645628

  20. Computational models of human vision with applications

    NASA Technical Reports Server (NTRS)

    Wandell, Brian A.

    1987-01-01

    The research program supported by this grant was initiated in l977 by the Joint Institute for Aeronautics and Acoustics of the Department of Aeronautics and Astronautics at Stanford University. The purpose of the research was to study human performance with the goal of improving the design of flight instrumentation. By mutual agreement between the scientists at NASA-Ames and Stanford, all research activities in this area were consolidated into a single funding mechanism, NCC 2-307 (Center of Excellence Grant, 7/1/84 - present). This is the final report on this research grant.

  1. Modeling the performance of the human (pilot) interaction in a synthetic flight domain: Information theoretic approach

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    Current advances in computing technology are devoid of formal methods that describe the theories of how information is shared between humans and machines. Specifically, in the domain of human-machine interaction, a common mathematical foundation is lacking. The aim of this paper is to propose a formal method of human-machine (H-M) interaction paradigm from the information view point. The methods presented are interpretation- and context-free and can be used both in experimental analysis as well as in modeling problems.

  2. Computer based human-centered display system

    NASA Technical Reports Server (NTRS)

    Still, David L. (Inventor); Temme, Leonard A. (Inventor)

    2002-01-01

    A human centered informational display is disclosed that can be used with vehicles (e.g. aircraft) and in other operational environments where rapid human centered comprehension of an operational environment is required. The informational display integrates all cockpit information into a single display in such a way that the pilot can clearly understand with a glance, his or her spatial orientation, flight performance, engine status and power management issues, radio aids, and the location of other air traffic, runways, weather, and terrain features. With OZ the information is presented as an integrated whole, the pilot instantaneously recognizes flight path deviations, and is instinctively drawn to the corrective maneuvers. Our laboratory studies indicate that OZ transfers to the pilot all of the integrated display information in less than 200 milliseconds. The reacquisition of scan can be accomplished just as quickly. Thus, the time constants for forming a mental model are near instantaneous. The pilot's ability to keep up with rapidly changing and threatening environments is tremendously enhanced. OZ is most easily compatible with aircraft that has flight path information coded electronically. With the correct sensors (which are currently available) OZ can be installed in essentially all current aircraft.

  3. Studying Collective Human Decision Making and Creativity with Evolutionary Computation.

    PubMed

    Sayama, Hiroki; Dionne, Shelley D

    2015-01-01

    We report a summary of our interdisciplinary research project "Evolutionary Perspective on Collective Decision Making" that was conducted through close collaboration between computational, organizational, and social scientists at Binghamton University. We redefined collective human decision making and creativity as evolution of ecologies of ideas, where populations of ideas evolve via continual applications of evolutionary operators such as reproduction, recombination, mutation, selection, and migration of ideas, each conducted by participating humans. Based on this evolutionary perspective, we generated hypotheses about collective human decision making, using agent-based computer simulations. The hypotheses were then tested through several experiments with real human subjects. Throughout this project, we utilized evolutionary computation (EC) in non-traditional ways-(1) as a theoretical framework for reinterpreting the dynamics of idea generation and selection, (2) as a computational simulation model of collective human decision-making processes, and (3) as a research tool for collecting high-resolution experimental data on actual collaborative design and decision making from human subjects. We believe our work demonstrates untapped potential of EC for interdisciplinary research involving human and social dynamics. PMID:26280078

  4. Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.

    PubMed

    Longmuir, Kenneth J

    2014-03-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction. PMID:24585467

  5. Development of a body motion interactive system with a weight voting mechanism and computer vision technology

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien

    2012-09-01

    This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.

  6. Drum-mate: interaction dynamics and gestures in human-humanoid drumming experiments

    NASA Astrophysics Data System (ADS)

    Kose-Bagci, Hatice; Dautenhahn, Kerstin; Syrdal, Dag S.; Nehaniv, Chrystopher L.

    2010-06-01

    This article investigates the role of interaction kinesics in human-robot interaction (HRI). We adopted a bottom-up, synthetic approach towards interactive competencies in robots using simple, minimal computational models underlying the robot's interaction dynamics. We present two empirical, exploratory studies investigating a drumming experience with a humanoid robot (KASPAR) and a human. In the first experiment, the turn-taking behaviour of the humanoid is deterministic and the non-verbal gestures of the robot accompany its drumming to assess the impact of non-verbal gestures on the interaction. The second experiment studies a computational framework that facilitates emergent turn-taking dynamics, whereby the particular dynamics of turn-taking emerge from the social interaction between the human and the humanoid. The results from the HRI experiments are presented and analysed qualitatively (in terms of the participants' subjective experiences) and quantitatively (concerning the drumming performance of the human-robot pair). The results point out a trade-off between the subjective evaluation of the drumming experience from the perspective of the participants and the objective evaluation of the drumming performance. A certain number of gestures was preferred as a motivational factor in the interaction. The participants preferred the models underlying the robot's turn-taking which enable the robot and human to interact more and provide turn-taking closer to 'natural' human-human conversations, despite differences in objective measures of drumming behaviour. The results are consistent with the temporal behaviour matching hypothesis previously proposed in the literature which concerns the effect that the participants adapt their own interaction dynamics to the robot's.

  7. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  8. Simulation of human gait using computed torque control.

    PubMed

    Unver, N F; Tümer, S T; Ozgören, M K

    2000-01-01

    This paper presents a method for the mathematical modeling of both the single and double support phases of the human gait. The governing equations are obtained by considering the linkage model to be in a floating state and the foot-ground interaction is imposed in the form of geometric constraints. Two stages for the single support phase and one stage for the double support phase are considered, each described by a different foot-ground constraint. Feedback controller functioning according to the computed torque control method is used to achieve the normal gait described by the hip and ankle trajectories. Weighted least square optimization is used to solve the redundancy of control torques during the double support phase. The geometric simulation indicates that the imposed trajectories can be realized by the proposed model with some deviations in joint motions. The control strategy is tested by artificially perturbing the trajectories. The corrective actions are able to resume the desired pattern within half cycle, but with control torque magnitudes considerably away from reasonable limits. This is attributed to the insufficiency of the planar kinematic model and the assumption that the joint torques are unbounded. PMID:10942991

  9. A low cost human computer interface based on eye tracking.

    PubMed

    Hiley, Jonathan B; Redekopp, Andrew H; Fazel-Rezai, Reza

    2006-01-01

    This paper describes the implementation of a human computer interface based on eye tracking. Current commercially available systems exist, but have limited use due mainly to their large cost. The system described in this paper was designed to be a low cost and unobtrusive. The technique was video-oculography assisted by corneal reflections. An off-the shelf CCD webcam was used to capture images. The images were analyzed in software to extract key features of the eye. The users gaze point was then calculated based on the relative position of these features. The system is capable of calculating eye-gaze in real-time to provide a responsive interaction. A throughput of eight gaze points per second was achieved. The accuracy of the fixations based on the calculated eye-gazes were within 1 cm of the on-screen gaze location. By developing a low-cost system, this technology is made accessible to a wider range of applications. PMID:17946167

  10. Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: Experimental, molecular docking and ONIOM computational study.

    PubMed

    Kazemi, Zahra; Rudbari, Hadi Amiri; Sahihi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Gharaghani, Sajjad

    2016-09-01

    Novel metal-based drug candidate including VOL2, NiL2, CuL2 and PdL2 have been synthesized from 2-hydroxy-1-allyliminomethyl-naphthalen ligand and have been characterized by means of elemental analysis (CHN), FT-IR and UV-vis spectroscopies. In addition, (1)H and (13)C NMR techniques were employed for characterization of the PdL2 complex. Single-crystal X-ray diffraction technique was utilized to characterise the structure of the complexes. The Cu(II), Ni(II) and Pd(II) complexes show a square planar trans-coordination geometry, while in the VOL2, the vanadium center has a distorted tetragonal pyramidal N2O3 coordination sphere. The HSA-binding was also determined, using fluorescence quenching, UV-vis spectroscopy, and circular dichroism (CD) titration method. The obtained results revealed that the HSA affinity for binding the synthesized compounds follows as PdL2>CuL2>VOL2>NiL2, indicating the effect of metal ion on binding constant. The distance between these compounds and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Furthermore, computational methods including molecular docking and our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) were carried out to investigate the HSA-binding of the compounds. Molecular docking calculation indicated the existence of hydrogen bond between amino acid residues of HSA and all synthesized compounds. The formation of the hydrogen bond in the HSA-compound systems leads to their stabilization. The ONIOM method was utilized in order to investigate HSA binding of compounds more precisely in which molecular mechanics method (UFF) and semi empirical method (PM6) were selected for the low layer and the high layer, respectively. The results show that the structural parameters of the compounds changed along with binding to HSA, indicating the strong interaction between the compounds and HSA. The value of binding constant depends on the extent of the resultant changes. This

  11. Some aspects of optimal human-computer symbiosis in multisensor geospatial data fusion

    NASA Astrophysics Data System (ADS)

    Levin, E.; Sergeyev, A.

    Nowadays vast amount of the available geospatial data provides additional opportunities for the targeting accuracy increase due to possibility of geospatial data fusion. One of the most obvious operations is determining of the targets 3D shapes and geospatial positions based on overlapped 2D imagery and sensor modeling. 3D models allows for the extraction of such information about targets, which cannot be measured directly based on single non-fused imagery. Paper describes ongoing research effort at Michigan Tech attempting to combine advantages of human analysts and computer automated processing for efficient human computer symbiosis for geospatial data fusion. Specifically, capabilities provided by integration into geospatial targeting interfaces novel human-computer interaction method such as eye-tracking and EEG was explored. Paper describes research performed and results in more details.

  12. Human computers: the first pioneers of the information age.

    PubMed

    Grier, D A

    2001-03-01

    Before computers were machines, they were people. They were men and women, young and old, well educated and common. They were the workers who convinced scientists that large-scale calculation had value. Long before Presper Eckert and John Mauchly built the ENIAC at the Moore School of Electronics, Philadelphia, or Maurice Wilkes designed the EDSAC for Manchester University, human computers had created the discipline of computation. They developed numerical methodologies and proved them on practical problems. These human computers were not savants or calculating geniuses. Some knew little more than basic arithmetic. A few were near equals of the scientists they served and, in a different time or place, might have become practicing scientists had they not been barred from a scientific career by their class, education, gender or ethnicity. PMID:11314458

  13. Interaction of human diferric transferrin with reticulocytes.

    PubMed Central

    Huebers, H; Csiba, E; Josephson, B; Huebers, E; Finch, C

    1981-01-01

    Methods have been devised for preparing human transferrin with a different isotope of iron selectively labeling each of the two iron binding sites and for determining the distribution of radioiron among transferrin molecules. When diferric human transferrin was exposed to human or animal reticulocytes, there was an equal contribution of radioiron from the acid-stable and acid-labile sites. In this delivery, both atoms of iron were removed simultaneously from the diferric transferrin molecule, converting it to apotransferrin. At similar iron concentrations the amount of iron delivered by diferric transferrin was twice that delivered by monoferric transferrin. PMID:6264452

  14. Teaching chemistry using guided discovery and an interactive computer tool

    NASA Astrophysics Data System (ADS)

    Khan, Samia A.

    An initial test of scientific inquiry skills revealed that students enrolled in a computer enhanced introductory college chemistry class using a guided discovery approach produced significantly larger gains after class instruction compared with two other introductory chemistry classes at the same institution and three introductory science classes at two other college institutions. The purpose of this study was to analyze the instructional strategy in this class to understand how it may have contributed to gains in inquiry skills. Classroom observations of the computer enhanced guided discovery class and two other lecture based chemistry classes, uncovered a pattern of instruction in the guided discovery case that was markedly different from the other two classes, yet more similar to model construction processes of scientists. The central pattern of instruction in the primary case was referred to as the guided discovery approach and was characterized by instructional strategies designed to trigger generate, evaluate, and modify or GEM cycles, other teacher guidance strategies, and the integration of an interactive computer tool. Analysis of classroom observation data and student surveys confirmed a higher frequency of students' generating ideas about chemistry, constructing explanations, and quantitative problem solving in the guided discovery case than the lecture-based classes and a higher rate of teacher requests for students to engage in several of these processes. Small group observations revealed students' reasoning processes as they interacted with their teacher and the computer during instruction. Overall, compared with more traditional forms of chemistry instruction, the evidence suggests that the instructional strategies in the guided discovery case were successful in sustaining student engagement with several fundamental processes of scientific inquiry and may have led to the development of important inquiry skills. The guided discovery case used

  15. Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.

  16. A Research Roadmap for Computation-Based Human Reliability Analysis

    SciTech Connect

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey; Smith, Curtis; Groth, Katrina

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  17. Adaptive allocation of decisionmaking responsibility between human and computer in multitask situations

    NASA Technical Reports Server (NTRS)

    Chu, Y.-Y.; Rouse, W. B.

    1979-01-01

    As human and computer come to have overlapping decisionmaking abilities, a dynamic or adaptive allocation of responsibilities may be the best mode of human-computer interaction. It is suggested that the computer serve as a backup decisionmaker, accepting responsibility when human workload becomes excessive and relinquishing responsibility when workload becomes acceptable. A queueing theory formulation of multitask decisionmaking is used and a threshold policy for turning the computer on/off is proposed. This policy minimizes event-waiting cost subject to human workload constraints. An experiment was conducted with a balanced design of several subject runs within a computer-aided multitask flight management situation with different task demand levels. It was found that computer aiding enhanced subsystem performance as well as subjective ratings. The queueing model appears to be an adequate representation of the multitask decisionmaking situation, and to be capable of predicting system performance in terms of average waiting time and server occupancy. Server occupancy was further found to correlate highly with the subjective effort ratings.

  18. Turbulent reacting flow computations including turbulence-chemistry interactions

    NASA Technical Reports Server (NTRS)

    Narayan, J. R.; Girimaji, S. S.

    1992-01-01

    A two-equation (k-epsilon) turbulence model has been extended to be applicable for compressible reacting flows. A compressibility correction model based on modeling the dilatational terms in the Reynolds stress equations has been used. A turbulence-chemistry interaction model is outlined. In this model, the effects of temperature and species mass concentrations fluctuations on the species mass production rates are decoupled. The effect of temperature fluctuations is modeled via a moment model, and the effect of concentration fluctuations is included using an assumed beta-pdf model. Preliminary results obtained using this model are presented. A two-dimensional reacting mixing layer has been used as a test case. Computations are carried out using the Navier-Stokes solver SPARK using a finite rate chemistry model for hydrogen-air combustion.

  19. An intelligent multi-media human-computer dialogue system

    NASA Technical Reports Server (NTRS)

    Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.

    1988-01-01

    Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.

  20. Human diagnostic reasoning by computer: an illustration from financial analysis

    SciTech Connect

    Bouwman, M.J.

    1983-06-01

    A major complaint of people who use decision-making computer programs is that these programs merely provide a final decision, and fail to present the supporting argumentation, in terms the user can understand. The article presents an approach that makes computer programs more human-like by basing them on human decision making behaviour. Decision making processes of student financial analysts are captured by asking them to think aloud during their evaluation. These verbal traces, called protocols, are analysed at various levels of detail, resulting in specific models of the decision making processes involved, the strategies used, and the task-specific (financial) knowledge that is required to perform the task. The models and strategies are translated into executable computer programs. Extensive comparisons between human behaviour and model simulation output are provided, assessing the extent that the computer program thinks and talks like a human decision maker. Although the model clearly suffers from linguistic rigidity, it does appear to perform the evaluation in a similar manner as the human decision maker, examining the same information in the same order, making the same inferences, and reporting the same conclusions. 19 references.

  1. Gene-Environment Interactions in Human Disease: Nuisance or Opportunity?

    PubMed Central

    Ober, Carole; Vercelli, Donata

    2010-01-01

    Many environmental risk factors for common, complex human diseases have been revealed by epidemiologic studies, but how genotypes at specific loci modulate individual responses to environmental risk factors is largely unknown. Gene-environment interactions will be missed in genome-wide association studies and may account for some of the ‘missing heritability’ for these diseases. In this review, we focus on asthma as a model disease for studying gene-environment interactions because of relatively large numbers of candidate gene-environment interactions with asthma risk in the literature. Identifying these interactions using genome-wide approaches poses formidable methodological problems and elucidating molecular mechanisms for these interactions has been challenging. We suggest that studying gene-environment interactions in animal models, while more tractable, is not likely to shed light on the genetic architecture of human diseases. Lastly, we propose avenues for future studies to find gene-environment interactions. PMID:21216485

  2. Socially intelligent robots: dimensions of human-robot interaction.

    PubMed

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them. PMID:17301026

  3. Learning with interactive computer graphics in the undergraduate neuroscience classroom.

    PubMed

    Pani, John R; Chariker, Julia H; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E

    2014-10-01

    Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of adaptive exploration, in which exploration in a high fidelity graphical environment is integrated with immediate testing and feedback in repeated cycles of learning. The results of this study were that students considered the graphical learning environment to be superior to typical classroom materials used for learning neuroanatomy. Students managed the frequency and duration of study, test, and feedback in an efficient and adaptive manner. For example, the number of tests taken before reaching a minimum test performance of 90 % correct closely approximated the values seen in more regimented experimental studies. There was a wide range of student opinion regarding the choice between a simpler and a more graphically compelling program for learning sectional anatomy. Course outcomes were predicted by individual differences in the use of the software that reflected general work habits of the students, such as the amount of time committed to testing. The results of this introduction into the classroom are highly encouraging for development of computer-based instruction in biomedical disciplines. PMID:24449123

  4. Flow-Structure-Acoustic Interaction Computational Modeling of Voice Production inside an Entire Airway

    NASA Astrophysics Data System (ADS)

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2015-11-01

    Human voice quality is directly determined by the interplay of dynamic behavior of glottal flow, vibratory characteristics of VFs and acoustic characteristics of upper airway. These multiphysics constituents are tightly coupled together and precisely coordinate to produce understandable sound. Despite many years' research effort, the direct relationships among the detailed flow features, VF vibration and aeroacoustics still remains elusive. This study utilizes a first-principle based, flow-structure-acoustics interaction computational modeling approach to study the process of voice production inside an entire human airway. In the current approach, a sharp interface immersed boundary method based incompressible flow solver is utilized to model the glottal flow; A finite element based solid mechanics solver is utilized to model the vocal vibration; A high-order immersed boundary method based acoustics solver is utilized to directly compute sound. These three solvers are fully coupled to mimic the complex flow-structure-acoustic interaction during voice production. The geometry of airway is reconstructed based on the in-vivo MRI measurement reported by Story et al. (1995) and a three-layer continuum based vocal fold model is taken from Titze and Talkin (1979). Results from these simulations will be presented and further analyzed to get new insight into the complex flow-structure-acoustic interaction during voice production. This study is expected to improve the understanding of fundamental physical mechanism of voice production and to help to build direct cause-effect relationship between biomechanics and voice sound.

  5. A computational model of the human hand 93-ERI-053

    SciTech Connect

    Hollerbach, K.; Axelrod, T.

    1996-03-01

    The objectives of the Computational Hand Modeling project were to prove the feasibility of the Laboratory`s NIKE3D finite element code to orthopaedic problems. Because of the great complexity of anatomical structures and the nonlinearity of their behavior, we have focused on a subset of joints of the hand and lower extremity and have developed algorithms to model their behavior. The algorithms developed here solve fundamental problems in computational biomechanics and can be expanded to describe any other joints of the human body. This kind of computational modeling has never successfully been attempted before, due in part to a lack of biomaterials data and a lack of computational resources. With the computational resources available at the National Laboratories and the collaborative relationships we have established with experimental and other modeling laboratories, we have been in a position to pursue our innovative approach to biomechanical and orthopedic modeling.

  6. Language, Perceptual Categories and their Interaction: Insights from Computational Modelling

    NASA Astrophysics Data System (ADS)

    Belpaeme, Tony; Bleys, Joris

    How do humans acquire perceptual categories? This question is far from being resolved. Specifically the balance between the influence of nature and nurture on perceptual categories remains the topic of heated debate. We present a computational model and take as case study colour categories to study two issues in perceptual category acquisition. The first issue is the effect of linguistic communication on categories during their acquisition: we demonstrate how categories can become coordinated under the influence of language. The second issue concerns the amount of coordination needed between the categories of individuals in order to achieve unambiguous communication. We show that, depending on how strictly linguistic utterances are interpreted, coordination of the individuals' categories is not always a prerequisite for successful communication.

  7. Structure and interactions of human respiratory mucin

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin; Sheehan, John; Rubinstein, Michael; Wong, Gerard

    2006-03-01

    Human respiratory mucin plays a crucial role in the pathology of Cystic Fibrosis lung infections. Mucin is a flexible, linear polyelectrolyte, characterized by its many charged oligo-carbohydrate side chains that give it its bottle-brush structure. The macroscopic properties of a mucin suspension are known to change drastically with changes in ion concentration and solution pH, but little is known about the effect of these variables on individual mucin structure. We present preliminary results on the structural response of individual human respiratory mucin molecules to variations in concentration of ions of different valences via small angle x-ray diffraction.

  8. Motor Contagion during Human-Human and Human-Robot Interaction

    PubMed Central

    Bisio, Ambra; Sciutti, Alessandra; Nori, Francesco; Metta, Giorgio; Fadiga, Luciano; Sandini, Giulio; Pozzo, Thierry

    2014-01-01

    Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of “mutual understanding” that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner. PMID:25153990

  9. Motor contagion during human-human and human-robot interaction.

    PubMed

    Bisio, Ambra; Sciutti, Alessandra; Nori, Francesco; Metta, Giorgio; Fadiga, Luciano; Sandini, Giulio; Pozzo, Thierry

    2014-01-01

    Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner. PMID:25153990

  10. A Human View Model for Socio-Technical Interactions

    NASA Technical Reports Server (NTRS)

    Handley, Holly A.; Tolk, Andreas

    2012-01-01

    The Human View was developed as an additional architectural viewpoint to focus on the human part of a system. The Human View can be used to collect and organize data in order to understand how human operators interact and impact the other elements of a system. This framework can also be used to develop a model to describe how humans interact with each other in network enabled systems. These socio-technical interactions form the foundation of the emerging area of Human Interoperability. Human Interoperability strives to understand the relationships required between human operators that impact collaboration across networked environments, including the effect of belonging to different organizations. By applying organizational relationship concepts from network theory to the Human View elements, and aligning these relationships with a model developed to identify layers of coalition interoperability, the conditions for different levels for Human Interoperability for network enabled systems can be identified. These requirements can then be captured in the Human View products to improve the overall network enabled system.

  11. The protein interaction landscape of the human CMGC kinase group.

    PubMed

    Varjosalo, Markku; Keskitalo, Salla; Van Drogen, Audrey; Nurkkala, Helka; Vichalkovski, Anton; Aebersold, Ruedi; Gstaiger, Matthias

    2013-04-25

    Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present a global proteomic analysis of complexes of the human CMGC kinase group. In addition to subgroup-specific functional enrichment and modularity, the identified 652 high-confidence kinase-protein interactions provide a specific biochemical context for many poorly studied CMGC kinases. Furthermore, the analysis revealed a kinase-kinase subnetwork and candidate substrates for CMGC kinases. Finally, the presented interaction proteome uncovered a large set of interactions with proteins genetically linked to a range of human diseases, including cancer, suggesting additional routes for analyzing the role of CMGC kinases in controlling human disease pathways. PMID:23602568

  12. Human - Ecosystem Interactions: The Case of Mercury

    EPA Science Inventory

    Human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in mercu...

  13. Explicit modeling of human-object interactions in realistic videos.

    PubMed

    Prest, Alessandro; Ferrari, Vittorio; Schmid, Cordelia

    2013-04-01

    We introduce an approach for learning human actions as interactions between persons and objects in realistic videos. Previous work typically represents actions with low-level features such as image gradients or optical flow. In contrast, we explicitly localize in space and track over time both the object and the person, and represent an action as the trajectory of the object w.r.t. to the person position. Our approach relies on state-of-the-art techniques for human detection, object detection, and tracking. We show that this results in human and object tracks of sufficient quality to model and localize human-object interactions in realistic videos. Our human-object interaction features capture the relative trajectory of the object w.r.t. the human. Experimental results on the Coffee and Cigarettes dataset, the video dataset of, and the Rochester Daily Activities dataset show that 1) our explicit human-object model is an informative cue for action recognition; 2) it is complementary to traditional low-level descriptors such as 3D--HOG extracted over human tracks. We show that combining our human-object interaction features with 3D-HOG improves compared to their individual performance as well as over the state of the art. PMID:22889819

  14. A robust approach to human-computer interface design using the Taguchi method

    SciTech Connect

    Reed, B.M.

    1991-01-01

    The application of Dr. Genichi Taguchi's approach for design optimization, called Robust Design, to the design of human-computer interface software is investigated. The taguchi method is used to select a near optimum set of interface design alternatives to improve user acceptance of the resulting interface software product with minimum sensitivity to uncontrollable noise caused by human behavioral characteristics. Design alternatives for interaction with personal micro-computers are identified. Several important and representative alternatives are chosen as design parameters for the Taguchi matrix experiment. A noise field with three human behavioral characteristics as noise factors were chosen as a representative noise array. Task accomplishment scenarios were developed for demonstration of the design parameters on an interactive human-computer interface. Experimentation was conducted using selected human subjects to study the effect of the various settings of the design parameters on user acceptance of the interface. Using the results of the matrix experiment, a near optimum set of design parameter values was selected.

  15. [Attempt at computer modeling of evolution of human society].

    PubMed

    Levchenko, V F; Menshutkin, V V

    2009-01-01

    A model of evolution of human society and biosphere, which is based on the concepts of V. I. Vernadskii about noosphere and of L. N. Gumilev about ethnogenesis is developed and studied. The mathematical apparatus of the model is composition of finite stochastic automata. By using this model, a possibility of the global ecological crisis is demonstrated in the case of preservation of the current tendencies of interaction of the biosphere and the human civilization. PMID:19435269

  16. The Human-Computer Interface for Information Retrieval.

    ERIC Educational Resources Information Center

    Shaw, Debora

    1991-01-01

    Discusses the human-computer interface as it relates to information technology and retrieval. Principles of interface design are examined, including visual display features and help messages; information retrieval applications are described, including online searching, CD-ROM, online public access catalogs (OPACs), and full-text databases; and…

  17. Learning Machine, Vietnamese Based Human-Computer Interface.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    The sixth session of IT@EDU98 consisted of seven papers on the topic of the learning machine--Vietnamese based human-computer interface, and was chaired by Phan Viet Hoang (Informatics College, Singapore). "Knowledge Based Approach for English Vietnamese Machine Translation" (Hoang Kiem, Dinh Dien) presents the knowledge base approach, which…

  18. Plants and Human Affairs: Educational Enhancement Via a Computer.

    ERIC Educational Resources Information Center

    Crovello, Theodore J.; Smith, W. Nelson

    To enhance both teaching and learning in an advanced undergraduate elective course on the interrelationships of plants and human affairs, the computer was used for information retrieval, multiple choice course review, and the running of three simulation models--plant related systems (e.g., the rise in world coffee prices after the 1975 freeze in…

  19. Computer and Human Understanding in Intelligent Retrieval Assistance.

    ERIC Educational Resources Information Center

    Marcus, Richard S.

    1991-01-01

    Discusses general issues of computer and human understanding; contrasts three paradigms of information retrieval methodology, including statistical, deep semantic or natural language, and smart Boolean; describes CONIT, a knowledge-based intermediary retrieval assistance system; and examines system evaluation procedures, including a…

  20. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  1. The human dynamic clamp as a paradigm for social interaction.

    PubMed

    Dumas, Guillaume; de Guzman, Gonzalo C; Tognoli, Emmanuelle; Kelso, J A Scott

    2014-09-01

    Social neuroscience has called for new experimental paradigms aimed toward real-time interactions. A distinctive feature of interactions is mutual information exchange: One member of a pair changes in response to the other while simultaneously producing actions that alter the other. Combining mathematical and neurophysiological methods, we introduce a paradigm called the human dynamic clamp (HDC), to directly manipulate the interaction or coupling between a human and a surrogate constructed to behave like a human. Inspired by the dynamic clamp used so productively in cellular neuroscience, the HDC allows a person to interact in real time with a virtual partner itself driven by well-established models of coordination dynamics. People coordinate hand movements with the visually observed movements of a virtual hand, the parameters of which depend on input from the subject's own movements. We demonstrate that HDC can be extended to cover a broad repertoire of human behavior, including rhythmic and discrete movements, adaptation to changes of pacing, and behavioral skill learning as specified by a virtual "teacher." We propose HDC as a general paradigm, best implemented when empirically verified theoretical or mathematical models have been developed in a particular scientific field. The HDC paradigm is powerful because it provides an opportunity to explore parameter ranges and perturbations that are not easily accessible in ordinary human interactions. The HDC not only enables to test the veracity of theoretical models, it also illuminates features that are not always apparent in real-time human social interactions and the brain correlates thereof. PMID:25114256

  2. Computer-integrated finite element modeling of human middle ear.

    PubMed

    Sun, Q; Gan, R Z; Chang, K-H; Dormer, K J

    2002-10-01

    The objective of this study was to produce an improved finite element (FE) model of the human middle ear and to compare the model with human data. We began with a systematic and accurate geometric modeling technique for reconstructing the middle ear from serial sections of a freshly frozen temporal bone. A geometric model of a human middle ear was constructed in a computer-aided design (CAD) environment with particular attention to geometry and microanatomy. Using the geometric model, a working FE model of the human middle ear was created using previously published material properties of middle ear components. This working FE model was finalized by a cross-calibration technique, comparing its predicted stapes footplate displacements with laser Doppler interferometry measurements from fresh temporal bones. The final FE model was shown to be reasonable in predicting the ossicular mechanics of the human middle ear. PMID:14595544

  3. Monitoring and modeling human interactions with ecosystems

    NASA Astrophysics Data System (ADS)

    Milesi, Cristina

    With rapidly increasing consumption rates and global population, there is a growing interest in understanding how to balance human activities with the other components of the Earth system. Humans alter ecosystem functioning with land cover changes, greenhouse gas emissions and overexploitation of natural resources. On the other side, climate and its inherent interannual variability drive global Net Primary Productivity (NPP), the base of energy for all trophic levels, shaping humans' distribution on the land surface and their sensitivity to natural and accelerated patterns of variation in ecosystem processes. In this thesis, I analyzed anthropogenic influences on ecosystems and ecosystems impacts on humans through a multi-scale approach. Anthropogenic influences were analyzed with a special focus on urban ecosystems, the living environment of nearly half of the global population and almost 90% of the population in the industrialized countries. A poorly quantified aspect of urban ecosystems is the biogeochemistry of urban vegetation, intensively managed through fertilization and irrigation. In chapter 1, adapting the ecosystem model Biome-BGC, I simulated the growth of turf grasses across the United States, and estimated their potential impact on the continental water and carbon budget. Using a remote sensing-based approach, I also developed a methodology to estimate the impact of land cover changes due to urbanization on the regional photosynthetic capacity (chapter 2), finding that low-density urbanization can retain high levels of net primary productivity, although at the expense of inefficient sprawl. One of the feedbacks of urbanization is the urban heat island effect, which I analyzed in conjunction with a remote sensing based estimate of fractional impervious surface area, showing how this is related to increases in land surface temperatures, independently from geographic location and population density (chapter 3). Finally, in chapter 4, I described the

  4. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  5. Social Interactions through the Eyes of Macaques and Humans

    PubMed Central

    McFarland, Richard; Roebuck, Hettie; Yan, Yin; Majolo, Bonaventura; Li, Wu; Guo, Kun

    2013-01-01

    Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys’ gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention

  6. Social interactions through the eyes of macaques and humans.

    PubMed

    McFarland, Richard; Roebuck, Hettie; Yan, Yin; Majolo, Bonaventura; Li, Wu; Guo, Kun

    2013-01-01

    Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys' gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention

  7. Conveying Lava Flow Hazards Through Interactive Computer Models

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Edwards, H. K.; Harnish, E. P.

    2007-12-01

    As part of an Information Sciences senior class project, a software package of an interactive version of the FLOWGO model was developed for the Island of Hawaii. The software is intended for use in an ongoing public outreach and hazards awareness program that educates the public about lava flow hazards on the island. The design parameters for the model allow an unsophisticated user to initiate a lava flow anywhere on the island and allow it to flow down-slope to the shoreline while displaying a timer to show the rate of advance of the flow. The user is also able to modify a range of input parameters including eruption rate, the temperature of the lava at the vent, and crystal fraction present in the lava at the source. The flow trajectories are computed using a 30 m digital elevation model for the island and the rate of advance of the flow is estimated using the average slope angle and the computed viscosity of the lava as it cools in either a channel (high heat loss) or lava tube (low heat loss). Even though the FLOWGO model is not intended to, and cannot, accurately predict the rate of advance of a tube- fed or channel-fed flow, the relative rates of flow advance for steep or flat-lying terrain convey critically important hazard information to the public: communities located on the steeply sloping western flanks of Mauna Loa may have no more than a few hours to evacuate in the face of a threatened flow from Mauna Loa's southwest rift whereas communities on the more gently sloping eastern flanks of Mauna Loa and Kilauea may have weeks to months to prepare for evacuation. Further, the model also can show the effects of loss of critical infrastructure with consequent impacts on access into and out of communities, loss of electrical supply, and communications as a result of lava flow implacement. The interactive model has been well received in an outreach setting and typically generates greater involvement by the participants than has been the case with static maps

  8. Feedback-based, muLti-dimensional Interface as a General Human-Computer Tech.

    SciTech Connect

    Anderson, Tom

    2002-05-13

    FLIGHT is a 3D human-computer interface and application development software that can be used by both end users and programmers. It is based on advanced feedback and a multi-dimensional nature that more closely resembles real life interactions. The software uses a craft metaphor and allows multimodal feedback for advanced tools and navigation techniques. Overall, FLIGHT is a software that is based on the principle that as the human-computer interface is strengthened through the use of more intuitive inputs and more effective feedback, the computer itself will be for more valuable. FLIGHT has been used to visualize scientific data sets in 3D graphics at Sandia National Laboratories.

  9. Feedback-based, muLti-dimensional Interface as a General Human-Computer Tech.

    Energy Science and Technology Software Center (ESTSC)

    2002-05-13

    FLIGHT is a 3D human-computer interface and application development software that can be used by both end users and programmers. It is based on advanced feedback and a multi-dimensional nature that more closely resembles real life interactions. The software uses a craft metaphor and allows multimodal feedback for advanced tools and navigation techniques. Overall, FLIGHT is a software that is based on the principle that as the human-computer interface is strengthened through the use ofmore » more intuitive inputs and more effective feedback, the computer itself will be for more valuable. FLIGHT has been used to visualize scientific data sets in 3D graphics at Sandia National Laboratories.« less

  10. Computation of multi-material interactions using point method

    SciTech Connect

    Zhang, Duan Z; Ma, Xia; Giguere, Paul T

    2009-01-01

    Calculations of fluid flows are often based on Eulerian description, while calculations of solid deformations are often based on Lagrangian description of the material. When the Eulerian descriptions are used to problems of solid deformations, the state variables, such as stress and damage, need to be advected, causing significant numerical diffusion error. When Lagrangian methods are used to problems involving large solid deformat ions or fluid flows, mesh distortion and entanglement are significant sources of error, and often lead to failure of the calculation. There are significant difficulties for either method when applied to problems involving large deformation of solids. To address these difficulties, particle-in-cell (PIC) method is introduced in the 1960s. In the method Eulerian meshes stay fixed and the Lagrangian particles move through the Eulerian meshes during the material deformation. Since its introduction, many improvements to the method have been made. The work of Sulsky et al. (1995, Comput. Phys. Commun. v. 87, pp. 236) provides a mathematical foundation for an improved version, material point method (MPM) of the PIC method. The unique advantages of the MPM method have led to many attempts of applying the method to problems involving interaction of different materials, such as fluid-structure interactions. These problems are multiphase flow or multimaterial deformation problems. In these problems pressures, material densities and volume fractions are determined by satisfying the continuity constraint. However, due to the difference in the approximations between the material point method and the Eulerian method, erroneous results for pressure will be obtained if the same scheme used in Eulerian methods for multiphase flows is used to calculate the pressure. To resolve this issue, we introduce a numerical scheme that satisfies the continuity requirement to higher order of accuracy in the sense of weak solutions for the continuity equations

  11. Polymicrobial Interactions: Impact on Pathogenesis and Human Disease

    PubMed Central

    Peters, Brian M.; Jabra-Rizk, Mary Ann; O'May, Graeme A.; Costerton, J. William

    2012-01-01

    Summary: Microorganisms coexist in a complex milieu of bacteria, fungi, archaea, and viruses on or within the human body, often as multifaceted polymicrobial biofilm communities at mucosal sites and on abiotic surfaces. Only recently have we begun to appreciate the complicated biofilm phenotype during infection; moreover, even less is known about the interactions that occur between microorganisms during polymicrobial growth and their implications in human disease. Therefore, this review focuses on polymicrobial biofilm-mediated infections and examines the contribution of bacterial-bacterial, bacterial-fungal, and bacterial-viral interactions during human infection and potential strategies for protection against such diseases. PMID:22232376

  12. Interactive Perceptual Psychology: The Human Psychology That Mirrors the Naturalness of Human Behavior.

    ERIC Educational Resources Information Center

    Russell, Gary F.; Shoare, Linda

    This study presents results of research on the impact of Interactive Perceptual Psychology (IPP) on teachers. IPP is the psychology showing human behavior as the sum of internal energy derived from thinking, feeling, and acting. This energy comes from the interaction among 10 receptors found within each human being: (1) "man's" will; (2) internal…

  13. Modeling Human Dynamics of Face-to-Face Interaction Networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2013-04-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of interconversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents that perform a random walk in a two-dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks.

  14. Formal Aspects of Human-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Heymann, Michael; Moodi, Michael; Remington, Roger (Technical Monitor)

    1998-01-01

    While new versions of automated control systems such as flight guidance systems are introduced at a rapid pace, it is widely recognized that user interaction with these machines is increasingly problematic. One cause for this difficulty that is commonly cited in the literature, is the discrepancy between the machine's behavior and the operator's (e.g., pilot) expectations. This paper discusses a formal approach to the analysis of operator's interaction with complex automated control systems. We focus attention on the issue of interface correctness; that is, on the question whether the display provides adequate information about the machine's configurations (states, modes, and associated parameters) and transitions, so as to enable the operator to successfully perform the specified set of tasks. To perform the analysis several assumptions are made: (1) A complete formal model of the machine's behavior is available (e.g., as a state transition system, or as a hybrid-machine); (2) A specification of operator's tasks is available and can be formally described (e.g., the reliable and predictable transition between activities involved in executing a climb to a new altitude); (3) The pilot is well trained and has a correct 'mental' model of the machine's response-map. By 'comparing' the machine's model with the set of operator's tasks we formally (i.e., mathematically) evaluate two questions: 1) does the machine's output interface (display) enable the operator to determine, unambiguously, what the current configuration (e.g., mode) of the machine is, and 2) does the display enable the operator to determine, unambiguously, what the next configuration of the machine will be, in response to a specified interaction by the operator (e.g., engaging a mode or changing a parameter such as a speed or target altitude). This paper describes a methodology for conducting such an evaluation using examples from automated flight control systems of modem 'glass cockpit' jetliners

  15. Self-Powered Human-Interactive Transparent Nanopaper Systems.

    PubMed

    Zhong, Junwen; Zhu, Hongli; Zhong, Qize; Dai, Jiaqi; Li, Wenbo; Jang, Soo-Hwan; Yao, Yonggang; Henderson, Doug; Hu, Qiyi; Hu, Liangbing; Zhou, Jun

    2015-07-28

    Self-powered human-interactive but invisible electronics have many applications in anti-theft and anti-fake systems for human society. In this work, for the first time, we demonstrate a transparent paper-based, self-powered, and human-interactive flexible system. The system is based on an electrostatic induction mechanism with no extra power system appended. The self-powered, transparent paper device can be used for a transparent paper-based art anti-theft system in museums or for a smart mapping anti-fake system in precious packaging and documents, by virtue of the advantages of adding/removing freely, having no impairment on the appearance of the protected objects, and being easily mass manufactured. This initial study bridges the transparent nanopaper with a self-powered and human-interactive electronic system, paving the way for the development of smart transparent paper electronics. PMID:26118467

  16. Collaborative Filtering for Brain-Computer Interaction Using Transfer Learning and Active Class Selection

    PubMed Central

    Wu, Dongrui; Lance, Brent J.; Parsons, Thomas D.

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing. PMID:23437188

  17. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    PubMed

    Wu, Dongrui; Lance, Brent J; Parsons, Thomas D

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing. PMID:23437188

  18. A Functional Analytic Approach To Computer-Interactive Mathematics

    PubMed Central

    2005-01-01

    Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on particular formula-to-formula and formula-to-graph relations as these formulas pertain to reflections and vertical and horizontal shifts. In training A-B, standard formulas served as samples and factored formulas served as comparisons. In training B-C, factored formulas served as samples and graphs served as comparisons. Subsequently, the program assessed for mutually entailed B-A and C-B relations as well as combinatorially entailed C-A and A-C relations. After all participants demonstrated mutual entailment and combinatorial entailment, we employed a test of novel relations to assess 40 different and complex variations of the original training formulas and their respective graphs. Six of 10 participants who completed training demonstrated perfect or near-perfect performance in identifying novel formula-to-graph relations. Three of the 4 participants who made more than three incorrect responses during the assessment of novel relations showed some commonality among their error patterns. Derived transfer of stimulus control using mathematical relations is discussed. PMID:15898471

  19. LigandRNA: computational predictor of RNA–ligand interactions

    PubMed Central

    Philips, Anna; Milanowska, Kaja; Łach, Grzegorz; Bujnicki, Janusz M.

    2013-01-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. PMID:24145824

  20. Reliability of an interactive computer program for advance care planning.

    PubMed

    Schubart, Jane R; Levi, Benjamin H; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-06-01

    Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83-0.95, and 0.86-0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830

  1. Reliability of an Interactive Computer Program for Advance Care Planning

    PubMed Central

    Levi, Benjamin H.; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-01-01

    Abstract Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83–0.95, and 0.86–0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830

  2. A computational model of the human visual cortex

    NASA Astrophysics Data System (ADS)

    Albus, James S.

    2008-04-01

    The brain is first and foremost a control system that is capable of building an internal representation of the external world, and using this representation to make decisions, set goals and priorities, formulate plans, and control behavior with intent to achieve its goals. The computational model proposed here assumes that this internal representation resides in arrays of cortical columns. More specifically, it models each cortical hypercolumn together with its underlying thalamic nuclei as a Fundamental Computational Unit (FCU) consisting of a frame-like data structure (containing attributes and pointers) plus the computational processes and mechanisms required to maintain it. In sensory-processing areas of the brain, FCUs enable segmentation, grouping, and classification. Pointers stored in FCU frames link pixels and signals to objects and events in situations and episodes that are overlaid with meaning and emotional values. In behavior-generating areas of the brain, FCUs make decisions, set goals and priorities, generate plans, and control behavior. Pointers are used to define rules, grammars, procedures, plans, and behaviors. It is suggested that it may be possible to reverse engineer the human brain at the FCU level of fidelity using nextgeneration massively parallel computer hardware and software. Key Words: computational modeling, human cortex, brain modeling, reverse engineering the brain, image processing, perception, segmentation, knowledge representation

  3. Human capabilities in space. [man machine interaction

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.

    1984-01-01

    Man's ability to live and perform useful work in space was demonstrated throughout the history of manned space flight. Current planning envisions a multi-functional space station. Man's unique abilities to respond to the unforeseen and to operate at a level of complexity exceeding any reasonable amount of previous planning distinguish him from present day machines. His limitations, however, include his inherent inability to survive without protection, his limited strength, and his propensity to make mistakes when performing repetitive and monotonous tasks. By contrast, an automated system does routine and delicate tasks, exerts force smoothly and precisely, stores, and recalls large amounts of data, and performs deductive reasoning while maintaining a relative insensitivity to the environment. The establishment of a permanent presence of man in space demands that man and machines be appropriately combined in spaceborne systems. To achieve this optimal combination, research is needed in such diverse fields as artificial intelligence, robotics, behavioral psychology, economics, and human factors engineering.

  4. Customizable Computer-Based Interaction Analysis for Coaching and Self-Regulation in Synchronous CSCL Systems

    ERIC Educational Resources Information Center

    Lonchamp, Jacques

    2010-01-01

    Computer-based interaction analysis (IA) is an automatic process that aims at understanding a computer-mediated activity. In a CSCL system, computer-based IA can provide information directly to learners for self-assessment and regulation and to tutors for coaching support. This article proposes a customizable computer-based IA approach for a…

  5. Interactive Computer Visualization in the Introductory Chemistry Curriculum

    NASA Astrophysics Data System (ADS)

    Bragin, Victoria M.

    1996-08-01

    determine acid/base dissociation constants. Several curves may be superimposed to enable visual comparison and emphasize the effect of acid/base strength on overall curve shape. At the simplest level, the user determines the equivalents of an unknown acid or base using an indicator, and titration curves are not shown. When an inappropriate indicator is chosen and the student discovers, for example, that a color change occurs even when significantly less than the equivalent amount of titrant is added, this becomes a point of departure for explaining the chemical functioning of an indicator and how to select the proper one for a particular analysis. The student interfaces with TitrationLab through interactive representations of traditional laboratory apparatus displayed on the screen so as to simulate actual laboratory manipulations, and the student is made aware of the consequences of mistakes common among novices in the laboratory, such as forgetting to add the indicator, allowing the buret contents to fall below the zero level, etc. Comprehension of abstract concepts is facilitated by the use of computer- generated displays. It'sAGas! is a newly developed hard-sphere simulation of the behavior of gas molecules demonstrating the basic principles of the kinetic molecular theory of gases. The concept of pressure as the rate of component particle collisions is made more vivid by having sound accompany collisions. The effect of changing conditions such as temperature on molecular properties, such as velocity, or of changing container size on the frequency of particle collisions is vividly illustrated. RasMol, shareware by Roger Sayle, allows the user to manipulate the computer representation of a molecule with intuitive mouse commands in a way that facilitates exploration of concepts such as the relationship between symmetry and dipole moment. The multitasking capability of the operating system used in the project allows simultaneous execution of software like RasMol and

  6. Affordances of computers in teacher-student interactions: The case of interactive physicsTM

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    The study reported here is part of a larger project designed to understand student learning during conversations with their teacher over and about a computer-based Newtonian microworld (Interactive PhysicsTM). At the focus of this report are affordances of the microworld to a teacher who engaged his students in conversations about representations of phenomenal objects and conceptual entities that constitute the microworld. The study shows how the teacher used the context of Interactive PhysicsTM to identify students' ways of seeing and talking science. He then implemented a series of strategies to make forces visible to students. Data are provided to illustrate that students' learning was not local but persistent, so that they used appropriate canonical science talk without teacher support. The conclusion focuses on Interactive PhysicsTM as a tool that does not embed meaning as such, but takes on meaning as part of the specific (scientific) practices in the context of which it was used.This view of science as a discourse helps us to see scientific literacy not as the acquisition of specific facts and procedures or even as the refinement of a mental model, but as a socially and culturally produced way to thinking and knowing, with its own ways of talking, reasoning, and acting; its own norms, beliefs, and values; its own institutions; its shared history; and even its shared mythologies (Roseberry, Warren, & Conant, 1992, p. 65).Received: 2 February 1994; Revised: 8 July 1994;

  7. A computer simulation approach to measurement of human control strategy

    NASA Technical Reports Server (NTRS)

    Green, J.; Davenport, E. L.; Engler, H. F.; Sears, W. E., III

    1982-01-01

    Human control strategy is measured through use of a psychologically-based computer simulation which reflects a broader theory of control behavior. The simulation is called the human operator performance emulator, or HOPE. HOPE was designed to emulate control learning in a one-dimensional preview tracking task and to measure control strategy in that setting. When given a numerical representation of a track and information about current position in relation to that track, HOPE generates positions for a stick controlling the cursor to be moved along the track. In other words, HOPE generates control stick behavior corresponding to that which might be used by a person learning preview tracking.

  8. PIPs: human protein–protein interaction prediction database

    PubMed Central

    McDowall, Mark D.; Scott, Michelle S.; Barton, Geoffrey J.

    2009-01-01

    The PIPs database (http://www.compbio.dundee.ac.uk/www-pips) is a resource for studying protein–protein interactions in human. It contains predictions of >37 000 high probability interactions of which >34 000 are not reported in the interaction databases HPRD, BIND, DIP or OPHID. The interactions in PIPs were calculated by a Bayesian method that combines information from expression, orthology, domain co-occurrence, post-translational modifications and sub-cellular location. The predictions also take account of the topology of the predicted interaction network. The web interface to PIPs ranks predictions according to their likelihood of interaction broken down by the contribution from each information source and with easy access to the evidence that supports each prediction. Where data exists in OPHID, HPRD, DIP or BIND for a protein pair this is also reported in the output tables returned by a search. A network browser is included to allow convenient browsing of the interaction network for any protein in the database. The PIPs database provides a new resource on protein–protein interactions in human that is straightforward to browse, or can be exploited completely, for interaction network modelling. PMID:18988626

  9. Computer-Modelling of Metal Speciation in Human Blood Serum

    NASA Astrophysics Data System (ADS)

    Letkeman, Peter

    1996-02-01

    This paper briefly describes two computer programs, BEST and ECCLES, both available on disc, that can generate distribution diagrams for various metal-complexes in human blood plasma. Two heavy metals, lead and mercury, are used as examples. The species distribution vs pH diagrams are based on formation constants obtained from our own potentiometric study of the mercury-glutathione system. The efficacy of a chelating agent for mobilizing a metal ion from the liable metal-protein complex portion of blood, PMI index, is discussed as well. The paper points out that computer modelling of metal speciation in human blood plasma has led to the design of important new therapeutic chelating agents.

  10. Interactive, Computer-Based Training Program for Radiological Workers

    SciTech Connect

    Trinoskey, P.A.; Camacho, P.I.; Wells, L.

    2000-01-18

    Lawrence Livermore National Laboratory (LLNL) is redesigning its Computer-Based Training (CBT) program for radiological workers. The redesign represents a major effort to produce a single, highly interactive and flexible CBT program that will meet the training needs of a wide range of radiological workers--from researchers and x-ray operators to individuals working in tritium, uranium, plutonium, and accelerator facilities. The new CBT program addresses the broad diversity of backgrounds found at a national laboratory. When a training audience is homogeneous in terms of education level and type of work performed, it is difficult to duplicate the effectiveness of a flexible, technically competent instructor who can tailor a course to the express needs and concerns of a course's participants. Unfortunately, such homogeneity is rare. At LLNL, they have a diverse workforce engaged in a wide range of radiological activities, from the fairly common to the quite exotic. As a result, the Laboratory must offer a wide variety of radiological worker courses. These include a general contamination-control course in addition to radioactive-material-handling courses for both low-level laboratory (i.e., bench-top) activities as well as high-level work in tritium, uranium, and plutonium facilities. They also offer training courses for employees who work with radiation-generating devices--x-ray, accelerator, and E-beam operators, for instance. However, even with the number and variety of courses the Laboratory offers, they are constrained by the diversity of backgrounds (i.e., knowledge and experience) of those to be trained. Moreover, time constraints often preclude in-depth coverage of site- and/or task-specific details. In response to this situation, several years ago LLNL began moving toward computer-based training for radiological workers. Today, that CBT effort includes a general radiological safety course developed by the Department of Energy's Hanford facility and a

  11. Belavkin-Kolokoltsov watchdog effects in interactively controlled stochastic computer-graphic dynamic systems

    NASA Astrophysics Data System (ADS)

    Juriev, D. V.

    1996-02-01

    The results of investigating the stochastic properties of the long-term behavior of a continuously observed (and interactively controlled) quantum-field top are reported. Applications for interactively controlled stochastic dynamic computer-graphics systems are discussed.

  12. COMPUTATIONAL METHODS FOR STUDYING THE INTERACTION BETWEEN POLYCYCLIC AROMATIC HYDROCARBONS AND BIOLOGICAL MACROMOLECULES

    EPA Science Inventory

    Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .

    The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...

  13. Interactive evolutionary computation with minimum fitness evaluation requirement and offline algorithm design.

    PubMed

    Ishibuchi, Hisao; Sudo, Takahiko; Nojima, Yusuke

    2016-01-01

    In interactive evolutionary computation (IEC), each solution is evaluated by a human user. Usually the total number of examined solutions is very small. In some applications such as hearing aid design and music composition, only a single solution can be evaluated at a time by a human user. Moreover, accurate and precise numerical evaluation is difficult. Based on these considerations, we formulated an IEC model with the minimum requirement for fitness evaluation ability of human users under the following assumptions: They can evaluate only a single solution at a time, they can memorize only a single previous solution they have just evaluated, their evaluation result on the current solution is whether it is better than the previous one or not, and the best solution among the evaluated ones should be identified after a pre-specified number of evaluations. In this paper, we first explain our IEC model in detail. Next we propose a ([Formula: see text])ES-style algorithm for our IEC model. Then we propose an offline meta-level approach to automated algorithm design for our IEC model. The main feature of our approach is the use of a different mechanism (e.g., mutation, crossover, random initialization) to generate each solution to be evaluated. Through computational experiments on test problems, our approach is compared with the ([Formula: see text])ES-style algorithm where a solution generation mechanism is pre-specified and fixed throughout the execution of the algorithm. PMID:27026888

  14. Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1975-01-01

    An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.

  15. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    ERIC Educational Resources Information Center

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  16. Computer Literacy and Social Stratification. Interactive Technology Laboratory Report #9.

    ERIC Educational Resources Information Center

    Mehan, Hugh

    As schools acquire and use computers for educational purposes, two major questions arise: (1) whether students from different strata of society will obtain equal access to computers, and (2) whether students from different strata of society will be taught similar or different uses of the computer. To explore the relationship between the…

  17. [The interaction of human alpha 1-antitrypsin with human plasmin].

    PubMed

    Sakurama, S

    1984-01-01

    The interaction of alpha 1-antitrypsin (alpha 1-AT) with plasmin was investigated, and the molecular weight of the inhibitor was also re-evaluated. The value of molecular weight of alpha 1-AT determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) method showed a difference depending on the presence or absence of the reducing agent, resulting in 72,000 dalton before reduction and 59,000 dalton after reduction. Conclusively, the molecular weight of alpha 1-AT was appropriate to be 59,000 dalton from considering the molecular shape of the protein. The interaction of alpha 1-AT with plasmin was analysed by SDS-PAGE method. Unreduced analysis revealed that two kinds of complexes with different molecular weight (the major of 155,000 dalton and the minor of 140,000 dalton) were formed time dependently, suggesting that the former was a native complex and the latter was a degraded product. Reduced analysis disclosed that the light chain of plasmin involved the complex formation with the inhibitor, and a peptide of 16,000 dalton appeared during the reaction. From these observations, the mechanism of action was summarized as follows. First, alpha 1-AT inhibited all of the plasmin activities by forming a 1: 1 stoichiometric complex with the enzyme, presumably with the active center of the enzyme, whose complex is undissociable in the presence of denaturing or reducing agents or both. Secondly, the native complex broke into a degraded product and a released peptide by limited proteolysis with the free plasmin which existed in the reaction mixture even with an excess of alpha 1-AT due to the reaction of complex formation being time consuming. The clinical significance of alpha 1-AT on fibrinolysis was also subject for discussion. PMID:6232193

  18. Interactive Computer Visualization in the Introductory Chemistry Curriculum

    NASA Astrophysics Data System (ADS)

    Bragin, Victoria M.

    1996-08-01

    determine acid/base dissociation constants. Several curves may be superimposed to enable visual comparison and emphasize the effect of acid/base strength on overall curve shape. At the simplest level, the user determines the equivalents of an unknown acid or base using an indicator, and titration curves are not shown. When an inappropriate indicator is chosen and the student discovers, for example, that a color change occurs even when significantly less than the equivalent amount of titrant is added, this becomes a point of departure for explaining the chemical functioning of an indicator and how to select the proper one for a particular analysis. The student interfaces with TitrationLab through interactive representations of traditional laboratory apparatus displayed on the screen so as to simulate actual laboratory manipulations, and the student is made aware of the consequences of mistakes common among novices in the laboratory, such as forgetting to add the indicator, allowing the buret contents to fall below the zero level, etc. Comprehension of abstract concepts is facilitated by the use of computer- generated displays. It'sAGas! is a newly developed hard-sphere simulation of the behavior of gas molecules demonstrating the basic principles of the kinetic molecular theory of gases. The concept of pressure as the rate of component particle collisions is made more vivid by having sound accompany collisions. The effect of changing conditions such as temperature on molecular properties, such as velocity, or of changing container size on the frequency of particle collisions is vividly illustrated. RasMol, shareware by Roger Sayle, allows the user to manipulate the computer representation of a molecule with intuitive mouse commands in a way that facilitates exploration of concepts such as the relationship between symmetry and dipole moment. The multitasking capability of the operating system used in the project allows simultaneous execution of software like RasMol and

  19. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    SciTech Connect

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.; Hyduke, Daniel R.

    2011-12-01

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactions is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.

  20. Analysis of Human-Spacesuit Interaction

    NASA Technical Reports Server (NTRS)

    Thomas, Neha

    2015-01-01

    Astronauts sustain injuries of various natures such as finger delamination, joint pain, and redness due to their interaction with the space suit. The role of the Anthropometry and Biomechanics Facility is to understand the biomechanics, environmental variables, and ergonomics of the suit. This knowledge is then used to make suggestions for improvement in future iterations of the space suit assembly to prevent injuries while allowing astronauts maneuverability, comfort, and tactility. The projects I was involved in were the Extravehicular Mobility Unit (EMU) space suit stiffness study and the glove feasibility study. The EMU project looked at the forces exerted on the shoulder, arm, and wrist when subjects performed kinematic tasks with and without a pressurized suit. The glove study consisted of testing three conditions - the Series 4000 glove, the Phase VI glove, and the no glove condition. With more than forty channels of sensor data total, it was critical to develop programs that could analyze data with basic descriptive statistics and generate relevant graphs to help understand what happens within the space suit and glove. In my project I created a Graphical User Interface (GUI) in MATLAB that would help me visualize what each sensor was doing within a task. The GUI is capable of displaying overlain plots and can be synchronized with video. This was helpful during the stiffness testing to visualize how the forces on the arm acted while the subject performed tasks such as shoulder adduction/abduction and bicep curls. The main project of focus, however, was the glove comparison study. I wrote MATLAB programs which generated movies of the strain vectors during specific tasks. I also generated graphs that summarized the differences between each glove for the strain, shear and FSR sensors. Preliminary results indicate that the Phase VI glove places less strain and shear on the hand. Future work includes continued data analysis of surveys and sensor data. In the end

  1. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  2. Developing a computational model of human hand kinetics using AVS

    SciTech Connect

    Abramowitz, Mark S.

    1996-05-01

    As part of an ongoing effort to develop a finite element model of the human hand at the Institute for Scientific Computing Research (ISCR), this project extended existing computational tools for analyzing and visualizing hand kinetics. These tools employ a commercial, scientific visualization package called AVS. FORTRAN and C code, originally written by David Giurintano of the Gillis W. Long Hansen`s Disease Center, was ported to a different computing platform, debugged, and documented. Usability features were added and the code was made more modular and readable. When the code is used to visualize bone movement and tendon paths for the thumb, graphical output is consistent with expected results. However, numerical values for forces and moments at the thumb joints do not yet appear to be accurate enough to be included in ISCR`s finite element model. Future work includes debugging the parts of the code that calculate forces and moments and verifying the correctness of these values.

  3. Human operator identification model and related computer programs

    NASA Technical Reports Server (NTRS)

    Kessler, K. M.; Mohr, J. N.

    1978-01-01

    Four computer programs which provide computational assistance in the analysis of man/machine systems are reported. The programs are: (1) Modified Transfer Function Program (TF); (2) Time Varying Response Program (TVSR); (3) Optimal Simulation Program (TVOPT); and (4) Linear Identification Program (SCIDNT). The TV program converts the time domain state variable system representative to frequency domain transfer function system representation. The TVSR program computes time histories of the input/output responses of the human operator model. The TVOPT program is an optimal simulation program and is similar to TVSR in that it produces time histories of system states associated with an operator in the loop system. The differences between the two programs are presented. The SCIDNT program is an open loop identification code which operates on the simulated data from TVOPT (or TVSR) or real operator data from motion simulators.

  4. Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity

    NASA Technical Reports Server (NTRS)

    Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.

  5. Interactive Computer Graphics for Performance-Structure-Oriented CAI. Technical Report No. 73.

    ERIC Educational Resources Information Center

    Rigney, Joseph W.; And Others

    Two different uses of interactive graphics in computer-assisted instruction are described. Interactive graphics may be used as substitutes for physical devices and operations. An example is simulation of operating on man/machine interfaces, substituting interactive graphics for controls, indicators, and indications. Interactive graphics may also…

  6. Music notation: a new method for visualizing social interaction in animals and humans

    PubMed Central

    Chase, Ivan D

    2006-01-01

    Background Researchers have developed a variety of techniques for the visual presentation of quantitative data. These techniques can help to reveal trends and regularities that would be difficult to see if the data were left in raw form. Such techniques can be of great help in exploratory data analysis, making apparent the organization of data sets, developing new hypotheses, and in selecting effects to be tested by statistical analysis. Researchers studying social interaction in groups of animals and humans, however, have few tools to present their raw data visually, and it can be especially difficult to perceive patterns in these data. In this paper I introduce a new graphical method for the visual display of interaction records in human and animal groups, and I illustrate this method using data taken on chickens forming dominance hierarchies. Results This new method presents data in a way that can help researchers immediately to see patterns and connections in long, detailed records of interaction. I show a variety of ways in which this new technique can be used: (1) to explore trends in the formation of both group social structures and individual relationships; (2) to compare interaction records across groups of real animals and between real animals and computer-simulated animal interactions; (3) to search for and discover new types of small-scale interaction sequences; and (4) to examine how interaction patterns in larger groups might emerge from those in component subgroups. In addition, I discuss how this method can be modified and extended for visualizing a variety of different kinds of social interaction in both humans and animals. Conclusion This method can help researchers develop new insights into the structure and organization of social interaction. Such insights can make it easier for researchers to explain behavioural processes, to select aspects of data for statistical analysis, to design further studies, and to formulate appropriate mathematical

  7. Self-Concept, Computer Anxiety, Gender and Attitude towards Interactive Computer Technologies: A Predictive Study among Nigerian Teachers

    ERIC Educational Resources Information Center

    Agbatogun, Alaba Olaoluwakotansibe

    2010-01-01

    Interactive Computer Technologies (ICTs) have crept into education industry, thus dramatically causing transformation in instructional process. This study examined the relative and combined contributions of computer anxiety, self-concept and gender to teachers' attitude towards the use of ICT(s). 454 Nigerian teachers constituted the sample. Three…

  8. Teacher's Guide to Using Computer Networks for Written Interaction: Classroom Activities for Collaborative Learning with Networked Computers.

    ERIC Educational Resources Information Center

    Beil, Don, Ed.

    Intended for a broad spectrum of teachers using or considering using computers networks for written interaction, this teacher's guide presents techniques and behaviors that encourage and support learning on a computer classroom environment. The 21 essays that make up the book are written by people involved in the ENFI (Electronic Networks For…

  9. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants' mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99% in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text "chat" communications, manipulation of procedures/checklists, cataloguing/annotating images, scientific note taking, human-robot interaction, and control of suit and/or other EVA systems.

  10. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  11. Computer-based personality judgments are more accurate than those made by humans

    PubMed Central

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-01

    Judging others’ personalities is an essential skill in successful social living, as personality is a key driver behind people’s interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants’ Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy. PMID:25583507

  12. Computer-based personality judgments are more accurate than those made by humans.

    PubMed

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-27

    Judging others' personalities is an essential skill in successful social living, as personality is a key driver behind people's interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants' Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy. PMID:25583507

  13. Human Interaction during Teacher Training Courses Delivered via the Internet.

    ERIC Educational Resources Information Center

    Box, Katherine

    The Internet consists of several services that, when combined, can recreate and enhance the interaction possible in teacher education. This paper discusses the strengths and limitations of several computer mediated communication (CMC) technologies available through the Internet, in three categories: (1) one-way CMC (World Wide Web, graphics,…

  14. The human dynamic clamp as a paradigm for social interaction

    PubMed Central

    Dumas, Guillaume; de Guzman, Gonzalo C.; Tognoli, Emmanuelle; Kelso, J. A. Scott

    2014-01-01

    Social neuroscience has called for new experimental paradigms aimed toward real-time interactions. A distinctive feature of interactions is mutual information exchange: One member of a pair changes in response to the other while simultaneously producing actions that alter the other. Combining mathematical and neurophysiological methods, we introduce a paradigm called the human dynamic clamp (HDC), to directly manipulate the interaction or coupling between a human and a surrogate constructed to behave like a human. Inspired by the dynamic clamp used so productively in cellular neuroscience, the HDC allows a person to interact in real time with a virtual partner itself driven by well-established models of coordination dynamics. People coordinate hand movements with the visually observed movements of a virtual hand, the parameters of which depend on input from the subject’s own movements. We demonstrate that HDC can be extended to cover a broad repertoire of human behavior, including rhythmic and discrete movements, adaptation to changes of pacing, and behavioral skill learning as specified by a virtual “teacher.” We propose HDC as a general paradigm, best implemented when empirically verified theoretical or mathematical models have been developed in a particular scientific field. The HDC paradigm is powerful because it provides an opportunity to explore parameter ranges and perturbations that are not easily accessible in ordinary human interactions. The HDC not only enables to test the veracity of theoretical models, it also illuminates features that are not always apparent in real-time human social interactions and the brain correlates thereof. PMID:25114256

  15. Human Factors Principles in Design of Computer-Mediated Visualization for Robot Missions

    SciTech Connect

    David I Gertman; David J Bruemmer

    2008-12-01

    With increased use of robots as a resource in missions supporting countermine, improvised explosive devices (IEDs), and chemical, biological, radiological nuclear and conventional explosives (CBRNE), fully understanding the best means by which to complement the human operator’s underlying perceptual and cognitive processes could not be more important. Consistent with control and display integration practices in many other high technology computer-supported applications, current robotic design practices rely highly upon static guidelines and design heuristics that reflect the expertise and experience of the individual designer. In order to use what we know about human factors (HF) to drive human robot interaction (HRI) design, this paper reviews underlying human perception and cognition principles and shows how they were applied to a threat detection domain.

  16. Researching Computer-Based Collaborative Learning in Inclusive Classrooms in Cyprus: The Role of the Computer in Pupils' Interaction

    ERIC Educational Resources Information Center

    Mavrou, Katerina; Lewis, Ann; Douglas, Graeme

    2010-01-01

    This paper discusses the results of a study of the role of the computer in scaffolding pupils' interaction and its effects on the disabled (D) pupils' participation and inclusion in the context of socio-cultural theories and the ideals of inclusive education. The study investigated the interactions of pairs of D and non-disabled (ND) pupils…

  17. Issues in human/computer control of dexterous remote hands

    NASA Technical Reports Server (NTRS)

    Salisbury, K.

    1987-01-01

    Much research on dexterous robot hands has been aimed at the design and control problems associated with their autonomous operation, while relatively little research has addressed the problem of direct human control. It is likely that these two modes can be combined in a complementary manner yielding more capability than either alone could provide. While many of the issues in mixed computer/human control of dexterous hands parallel those found in supervisory control of traditional remote manipulators, the unique geometry and capabilities of dexterous hands pose many new problems. Among these are the control of redundant degrees of freedom, grasp stabilization and specification of non-anthropomorphic behavior. An overview is given of progress made at the MIT AI Laboratory in control of the Salisbury 3 finger hand, including experiments in grasp planning and manipulation via controlled slip. It is also suggested how we might introduce human control into the process at a variety of functional levels.

  18. Motivating forces of human actions. Neuroimaging reward and social interaction.

    PubMed

    Walter, Henrik; Abler, Birgit; Ciaramidaro, Angela; Erk, Susanne

    2005-11-15

    In neuroeconomics, reward and social interaction are central concepts to understand what motivates human behaviour. Both concepts are investigated in humans using neuroimaging methods. In this paper, we provide an overview about these results and discuss their relevance for economic behaviour. For reward it has been shown that a system exists in humans that is involved in predicting rewards and thus guides behaviour, involving a circuit including the striatum, the orbitofrontal cortex and the amygdala. Recent studies on social interaction revealed a mentalizing system representing the mental states of others. A central part of this system is the medial prefrontal cortex, in particular the anterior paracingulate cortex. The reward as well as the mentalizing system is engaged in economic decision-making. We will discuss implications of this study for neuromarketing as well as general implications of these results that may help to provide deeper insights into the motivating forces of human behaviour. PMID:16216683

  19. Best practices for planning events encouraging human-animal interactions.

    PubMed

    Erdozain, G; KuKanich, K; Chapman, B; Powell, D

    2015-03-01

    Educational events encouraging human-animal interaction include the risk of zoonotic disease transmission. It is estimated that 14% of all disease in the USA caused by Campylobacter spp., Cryptosporidium spp., Shiga toxin-producing Escherichia coli (STEC) O157, non-O157 STECs, Listeria monocytogenes, non-typhoidal Salmonella enterica and Yersinia enterocolitica were attributable to animal contact. This article reviews best practices for organizing events where human-animal interactions are encouraged, with the objective of lowering the risk of zoonotic disease transmission. PMID:24751220

  20. Large-scale protein-protein interactions detection by integrating big biosensing data with computational model.

    PubMed

    You, Zhu-Hong; Li, Shuai; Gao, Xin; Luo, Xin; Ji, Zhen

    2014-01-01

    Protein-protein interactions are the basis of biological functions, and studying these interactions on a molecular level is of crucial importance for understanding the functionality of a living cell. During the past decade, biosensors have emerged as an important tool for the high-throughput identification of proteins and their interactions. However, the high-throughput experimental methods for identifying PPIs are both time-consuming and expensive. On the other hand, high-throughput PPI data are often associated with high false-positive and high false-negative rates. Targeting at these problems, we propose a method for PPI detection by integrating biosensor-based PPI data with a novel computational model. This method was developed based on the algorithm of extreme learning machine combined with a novel representation of protein sequence descriptor. When performed on the large-scale human protein interaction dataset, the proposed method achieved 84.8% prediction accuracy with 84.08% sensitivity at the specificity of 85.53%. We conducted more extensive experiments to compare the proposed method with the state-of-the-art techniques, support vector machine. The achieved results demonstrate that our approach is very promising for detecting new PPIs, and it can be a helpful supplement for biosensor-based PPI data detection. PMID:25215285

  1. Interaction between Locale and Taxon Strategies in Human Spatial Learning

    ERIC Educational Resources Information Center

    Redhead, Edward S.; Hamilton, Derek A.

    2007-01-01

    Three computer-based experiments which tested human participants in a non-immersive virtual watermaze task sought to determine factors which dictate whether the presence of a visual platform disrupts locale learning and taxon learning. In Experiment 1, the visible platform disrupted locale but not taxon learning based on viewpoint-independent and…

  2. Brightness–Color Interactions in Human Early Visual Cortex

    PubMed Central

    Ouni, Ahmed; Chen, Stephanie; Sahmoud, Hinde; Gordon, James; Shapley, Robert

    2015-01-01

    The interaction between brightness and color causes there to be different color appearance when one and the same object is viewed against surroundings of different brightness. Brightness contrast causes color to be desaturated, as has been found in perceptual experiments on color induction and color-gamut expansion in human vision. However, it is not clear yet where in the cerebral cortex the brightness–color interaction that causes these major perceptual effects is located. One hypothesis is that brightness and color signals are processed separately and in parallel within the primary visual cortex V1 and only interact in extrastriate cortex. Another hypothesis is that color and brightness contrast interact strongly already within V1. We localized the brightness–color interaction in human V1 by means of recording the chromatic visual-evoked potential. The chromatic visual-evoked potential measurements decisively support the idea that brightness–color interaction arises in a recurrent inhibitory network in V1. Furthermore, our results show that the inhibitory signal for brightness–color interaction is generated by local brightness contrast at the boundary between target and surround, instead of by the luminance difference between the interior of the color target and its large background. PMID:25653377

  3. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  4. Academic Help Seeking and Peer Interactions of High School Girls in Computer Science Classes.

    ERIC Educational Resources Information Center

    Oberman, Paul S.

    Through interviews and classroom observations, this study investigated the academic help-seeking and interactions of high school girls with their computer science classmates in both a private school and a public school setting. The study explored five aspects of this help-seeking interaction: (1) females as a gender minority in computer science;…

  5. Interactive Classroom Management/Extension through the Use of Computers.

    ERIC Educational Resources Information Center

    Watson, Claude M.

    The staff of the Mathematics and Computer Science Department at Lansing Community College (LCC), in Michigan, has developed a unique combination of techniques for course support. These techniques have been incorporated into an 11-week course, "Introduction to Computers," which meets for 4 hours of lecture each week, and provides hands-on…

  6. Coached, Interactive Computer Simulations: A New Technology for Training.

    ERIC Educational Resources Information Center

    Hummel, Thomas J.

    This paper provides an overview of a prototype simulation-centered intelligent computer-based training (CBT) system--implemented using expert system technology--which provides: (1) an environment in which trainees can learn and practice complex skills; (2) a computer-based coach or mentor to critique performance, suggest improvements, and provide…

  7. Explaining human uniqueness: genome interactions with environment, behaviour and culture

    PubMed Central

    Varki, Ajit; Geschwind, Daniel H.; Eichler, Evan E.

    2009-01-01

    What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, ‘anthropogeny’ (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any ‘genes versus environment’ dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture — perhaps relaxing allowable thresholds for large-scale genomic diversity. PMID:18802414

  8. Computer-aided design of the human aortic root.

    PubMed

    Ovcharenko, E A; Klyshnikov, K U; Vlad, A R; Sizova, I N; Kokov, A N; Nushtaev, D V; Yuzhalin, A E; Zhuravleva, I U

    2014-11-01

    The development of computer-based 3D models of the aortic root is one of the most important problems in constructing the prostheses for transcatheter aortic valve implantation. In the current study, we analyzed data from 117 patients with and without aortic valve disease and computed tomography data from 20 patients without aortic valvular diseases in order to estimate the average values of the diameter of the aortic annulus and other aortic root parameters. Based on these data, we developed a 3D model of human aortic root with unique geometry. Furthermore, in this study we show that by applying different material properties to the aortic annulus zone in our model, we can significantly improve the quality of the results of finite element analysis. To summarize, here we present four 3D models of human aortic root with unique geometry based on computational analysis of ECHO and CT data. We suggest that our models can be utilized for the development of better prostheses for transcatheter aortic valve implantation. PMID:25238567

  9. Human aging alters the neural computation and representation of space.

    PubMed

    Schuck, Nicolas W; Doeller, Christian F; Polk, Thad A; Lindenberger, Ulman; Li, Shu-Chen

    2015-08-15

    The hippocampus and striatum are core neural circuits involved in spatial learning and memory. Although both neural systems support spatial navigation, experimental and theoretical evidence indicate that they play different roles. In particular, whereas hippocampal place cells generate allocentric neural representations of space that are sensitive to geometric information, striatum-dependent learning is influenced by local landmarks. How human aging affects these different neural representations, however, is still not well understood. In this paper, we combined virtual reality, computational modeling, and neuroimaging to investigate the effects of age upon the neural computation and representation of space in humans. We manipulated the geometry and local landmarks of a virtual environment and examined the effects on memory performance and brain activity during spatial learning. In younger adults, both behavior and brain activity in the medial-temporal lobe were consistent with predictions of a computational model of hippocampus-dependent boundary processing. In contrast, older adults' behavior and medial-temporal lobe activity were primarily influenced by local cue information, and spatial learning was more associated with activity in the caudate nucleus rather than the hippocampus. Together these results point to altered spatial representations and information processing in the hippocampal-striatal circuitry with advancing adult age, which may contribute to spatial learning and memory deficits associated with normal and pathological aging. PMID:26003855

  10. Close Human Interaction Recognition Using Patch-Aware Models.

    PubMed

    Yu Kong; Yun Fu

    2016-01-01

    This paper addresses the problem of recognizing human interactions with close physical contact from videos. Due to ambiguities in feature-to-person assignments and frequent occlusions in close interactions, it is difficult to accurately extract the interacting people. This degrades the recognition performance. We, therefore, propose a hierarchical model, which recognizes close interactions and infers supporting regions for each interacting individual simultaneously. Our model associates a set of hidden variables with spatiotemporal patches and discriminatively infers their states, which indicate the person that the patches belong to. This patch-aware representation explicitly models and accounts for discriminative supporting regions for individuals, and thus overcomes the problem of ambiguities in feature assignments. Moreover, we incorporate the prior for the patches to deal with frequent occlusions during interactions. Using the discriminative supporting regions, our model builds cleaner features for individual action recognition and interaction recognition. Extensive experiments are performed on the BIT-Interaction data set and the UT-Interaction data set set #1 and set #2, and validate the effectiveness of our approach. PMID:26561435

  11. Perceiving emotions in human-human and human-animal interactions: Hemodynamic prefrontal activity (fNIRS) and empathic concern.

    PubMed

    Vanutelli, Maria Elide; Balconi, Michela

    2015-09-25

    In the last years social neuroscience research attempted to identify the neural networks underlying the human ability to perceive others' emotions, a core process in establishing meaningful social bonds. A large amount of papers arose and identified common and specific empathy-based networks with respect to stimulus type and task. Despite the great majority of studies focused on human-human contexts, we do not establish relations with only other humans, but also with non-human animals. The aim of the present work was to explore the brain mechanisms involved in empathic concern for people who interacts with both peers and other species. Participants have been assessed by functional near-infrared spectroscopy (fNIRS) while viewing pictures depicting humans interacting with both other men and women (human-human condition: HH), or with dogs and cats (human-animal: HA). Results showed that aggressive HH interactions elicited greater prefrontal activity (PFC) than HA ones while, when considering HA interactions, friendly ones were related to higher cortical activity. Finally, oxy (O2Hb) and deoxyhemoglobin (HHb) increasing related to the processing of aggressive interactions positively correlated with different empathic measures, within more specific brain regions. Results were elucidated with respect to available evidence on emotion perception, empathic neural mechanisms and their functional meaning for human-animal contexts. PMID:26272301

  12. Using Interactive Simulations in Assessment: The Use of Computer-Based Interactive Simulations in the Assessment of Statistical Concepts

    ERIC Educational Resources Information Center

    Neumann, David L.

    2010-01-01

    Interactive computer-based simulations have been applied in several contexts to teach statistical concepts in university level courses. In this report, the use of interactive simulations as part of summative assessment in a statistics course is described. Students accessed the simulations via the web and completed questions relating to the…

  13. Intermittent control: a computational theory of human control.

    PubMed

    Gawthrop, Peter; Loram, Ian; Lakie, Martin; Gollee, Henrik

    2011-02-01

    The paradigm of continuous control using internal models has advanced understanding of human motor control. However, this paradigm ignores some aspects of human control, including intermittent feedback, serial ballistic control, triggered responses and refractory periods. It is shown that event-driven intermittent control provides a framework to explain the behaviour of the human operator under a wider range of conditions than continuous control. Continuous control is included as a special case, but sampling, system matched hold, an intermittent predictor and an event trigger allow serial open-loop trajectories using intermittent feedback. The implementation here may be described as "continuous observation, intermittent action". Beyond explaining unimodal regulation distributions in common with continuous control, these features naturally explain refractoriness and bimodal stabilisation distributions observed in double stimulus tracking experiments and quiet standing, respectively. Moreover, given that human control systems contain significant time delays, a biological-cybernetic rationale favours intermittent over continuous control: intermittent predictive control is computationally less demanding than continuous predictive control. A standard continuous-time predictive control model of the human operator is used as the underlying design method for an event-driven intermittent controller. It is shown that when event thresholds are small and sampling is regular, the intermittent controller can masquerade as the underlying continuous-time controller and thus, under these conditions, the continuous-time and intermittent controller cannot be distinguished. This explains why the intermittent control hypothesis is consistent with the continuous control hypothesis for certain experimental conditions. PMID:21327829

  14. Computer-Enhanced Instructional Materials for Interactive Fortran.

    ERIC Educational Resources Information Center

    Eilers, James E.; And Others

    1982-01-01

    Strategies for incorporating a calculator made within FORTRAN programs and a Response Analysis Scheme during interactive sessions are described highlighting salient features of the programs. (Author/SK)

  15. Toward virtual anatomy: a stereoscopic 3-D interactive multimedia computer program for cranial osteology.

    PubMed

    Trelease, R B

    1996-01-01

    Advances in computer visualization and user interface technologies have enabled development of "virtual reality" programs that allow users to perceive and to interact with objects in artificial three-dimensional environments. Such technologies were used to create an image database and program for studying the human skull, a specimen that has become increasingly expensive and scarce. Stereoscopic image pairs of a museum-quality skull were digitized from multiple views. For each view, the stereo pairs were interlaced into a single, field-sequential stereoscopic picture using an image processing program. The resulting interlaced image files are organized in an interactive multimedia program. At run-time, gray-scale 3-D images are displayed on a large-screen computer monitor and observed through liquid-crystal shutter goggles. Users can then control the program and change views with a mouse and cursor to point-and-click on screen-level control words ("buttons"). For each view of the skull, an ID control button can be used to overlay pointers and captions for important structures. Pointing and clicking on "hidden buttons" overlying certain structures triggers digitized audio spoken word descriptions or mini lectures. PMID:8793223

  16. Quantifying Engagement: Measuring Player Involvement in Human-Avatar Interactions

    PubMed Central

    Norris, Anne E.; Weger, Harry; Bullinger, Cory; Bowers, Alyssa

    2014-01-01

    This research investigated the merits of using an established system for rating behavioral cues of involvement in human dyadic interactions (i.e., face-to-face conversation) to measure involvement in human-avatar interactions. Gameplay audio-video and self-report data from a Feasibility Trial and Free Choice study of an effective peer resistance skill building simulation game (DRAMA-RAMA™) were used to evaluate reliability and validity of the rating system when applied to human-avatar interactions. The Free Choice study used a revised game prototype that was altered to be more engaging. Both studies involved girls enrolled in a public middle school in Central Florida that served a predominately Hispanic (greater than 80%), low-income student population. Audio-video data were coded by two raters, trained in the rating system. Self-report data were generated using measures of perceived realism, predictability and flow administered immediately after game play. Hypotheses for reliability and validity were supported: Reliability values mirrored those found in the human dyadic interaction literature. Validity was supported by factor analysis, significantly higher levels of involvement in Free Choice as compared to Feasibility Trial players, and correlations between involvement dimension sub scores and self-report measures. Results have implications for the science of both skill-training intervention research and game design. PMID:24748718

  17. Interaction of Staphylococcus aureus toxin "superantigens" with human T cells.

    PubMed Central

    Choi, Y W; Kotzin, B; Herron, L; Callahan, J; Marrack, P; Kappler, J

    1989-01-01

    A modification of the polymerase chain reaction has been used to establish the fact that a collection of Staphylococcus aureus toxins are "superantigens," each of which interacts with the T-cell alpha beta receptor of human T cells by means of a specific set of V beta elements. Images PMID:2479030

  18. Fast computation of genetic likelihoods on human pedigree data.

    PubMed

    Goradia, T M; Lange, K; Miller, P L; Nadkarni, P M

    1992-01-01

    Gene mapping and genetic epidemiology require large-scale computation of likelihoods based on human pedigree data. Although computation of such likelihoods has become increasingly sophisticated, fast calculations are still impeded by complex pedigree structures, by models with many underlying loci and by missing observations on key family members. The current paper 'introduces' a new method of array factorization that substantially accelerates linkage calculations with large numbers of markers. This method is not limited to nuclear families or to families with complete phenotyping. Vectorization and parallelization are two general-purpose hardware techniques for accelerating computations. These techniques can assist in the rapid calculation of genetic likelihoods. We describe our experience using both of these methods with the existing program MENDEL. A vectorized version of MENDEL was run on an IBM 3090 supercomputer. A parallelized version of MENDEL was run on parallel machines of different architectures and on a network of workstations. Applying these revised versions of MENDEL to two challenging linkage problems yields substantial improvements in computational speed. PMID:1555846

  19. Computed tomography of human joints and radioactive waste drums

    SciTech Connect

    Martz, Harry E.; Roberson, G. Patrick; Hollerbach, Karin; Logan, Clinton M.; Ashby, Elaine; Bernardi, Richard

    1999-12-02

    X- and gamma-ray imaging techniques in nondestructive evaluation (NDE) and assay (NDA) have seen increasing use in an array of industrial, environmental, military, and medical applications. Much of this growth in recent years is attributed to the rapid development of computed tomography (CT) and the use of NDE throughout the life-cycle of a product. Two diverse examples of CT are discussed, 1.) Our computational approach to normal joint kinematics and prosthetic joint analysis offers an opportunity to evaluate and improve prosthetic human joint replacements before they are manufactured or surgically implanted. Computed tomography data from scanned joints are segmented, resulting in the identification of bone and other tissues of interest, with emphasis on the articular surfaces. 2.) We are developing NDE and NDA techniques to analyze closed waste drums accurately and quantitatively. Active and passive computed tomography (A and PCT) is a comprehensive and accurate gamma-ray NDA method that can identify all detectable radioisotopes present in a container and measure their radioactivity.

  20. Computed tomography of human joints and radioactive waste drums

    SciTech Connect

    Ashby, E; Bernardi, R; Hollerbach, K; Logan, C; Martz, H; Roberson, G P

    1999-06-01

    X- and gamma-ray imaging techniques in nondestructive evaluation (NDE) and assay (NDA) have been increasing use in an array of industrial, environmental, military, and medical applications. Much of this growth in recent years is attributed to the rapid development of computed tomography (CT) and the use of NDE throughout the life-cycle of a product. Two diverse examples of CT are discussed. (1) The computational approach to normal joint kinematics and prosthetic joint analysis offers an opportunity to evaluate and improve prosthetic human joint replacements before they are manufactured or surgically implanted. Computed tomography data from scanned joints are segmented, resulting in the identification of bone and other tissues of interest, with emphasis on the articular surfaces. (2) They are developing NDE and NDE techniques to analyze closed waste drums accurately and quantitatively. Active and passive computed tomography (A and PCT) is a comprehensive and accurate gamma-ray NDA method that can identify all detectable radioisotopes present in a container and measure their radioactivity.

  1. Characterization of human-dog social interaction using owner report.

    PubMed

    Lit, Lisa; Schweitzer, Julie B; Oberbauer, Anita M

    2010-07-01

    Dog owners were surveyed for observations of social behaviors in their dogs, using questions adapted from the human Autism Diagnostic Observation Schedule (ADOS) pre-verbal module. Using 939 responses for purebred and mixed-breed dogs, three factors were identified: initiation of reciprocal social behaviors (INIT), response to social interactions (RSPNS), and communication (COMM). There were small or no effects of sex, age, breed group or training. For six breeds with more than 35 responses (Border Collie, Rough Collie, German Shepherd, Golden Retriever, Labrador Retriever, Standard Poodle), the behaviors eye contact with humans, enjoyment in interactions with human interaction, and name recognition demonstrated little variability across breeds, while asking for objects, giving/showing objects to humans, and attempts to direct humans' attention showed higher variability across these breeds. Breeds with genetically similar backgrounds had similar response distributions for owner reports of dog response to pointing. When considering these breeds according to the broad categories of "herders" and "retrievers," owners reported that the "herders" used more eye contact and vocalization, while the "retrievers" used more body contact. Information regarding social cognitive abilities in dogs provided by owner report suggest that there is variability across many social cognitive abilities in dogs and offers direction for further experimental investigations. PMID:20438815

  2. Patterns of Interaction in a Computer Conference Transcript.

    ERIC Educational Resources Information Center

    Fahy, Patrick J.; Crawford, Gail; Ally, Mohamed

    2001-01-01

    Interactional features of an online graduate course conference were analyzed using the Transcript Analysis Tool (TAT) and structural elements using social network theory. Intensity and persistence of participation were unequal. The TAT showed the proportions of five modes of interaction (questions, statements, reflections, engaging comments, and…

  3. Vicarious Interaction: A Learning Theory for Computer-Mediated Communications.

    ERIC Educational Resources Information Center

    Sutton, Leah A.

    Prior research has identified four kinds of interaction that affect the learning process in distance education (D. Hillman, D. Willis, and C. Gunawardena, 1994; M. Moore, 1989). This paper defines, characterizes, and describes a fifth form of interaction of particular importance to certain learners, especially within the context of…

  4. General purpose computer program for interacting supersonic configurations: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Crill, W.; Dale, B.

    1977-01-01

    The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing.

  5. Inferring high-confidence human protein-protein interactions

    PubMed Central

    2012-01-01

    Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs), aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83%) of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134%) than either ranking based on the hypergeometric test (~109%) or occurrence ranking (~46%). Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high-confidence protein interactions

  6. Molecular interactions of graphene oxide with human blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  7. Computational prediction of human metabolic pathways from the complete human genome

    PubMed Central

    Romero, Pedro; Wagg, Jonathan; Green, Michelle L; Kaiser, Dale; Krummenacker, Markus; Karp, Peter D

    2005-01-01

    Background We present a computational pathway analysis of the human genome that assigns enzymes encoded therein to predicted metabolic pathways. Pathway assignments place genes in their larger biological context, and are a necessary first step toward quantitative modeling of metabolism. Results Our analysis assigns 2,709 human enzymes to 896 bioreactions; 622 of the enzymes are assigned roles in 135 predicted metabolic pathways. The predicted pathways closely match the known nutritional requirements of humans. This analysis identifies probable omissions in the human genome annotation in the form of 203 pathway holes (missing enzymes within the predicted pathways). We have identified putative genes to fill 25 of these holes. The predicted human metabolic map is described by a Pathway/Genome Database called HumanCyc, which is available at . We describe the generation of HumanCyc, and present an analysis of the human metabolic map. For example, we compare the predicted human metabolic pathway complement to the pathways of Escherichia coli and Arabidopsis thaliana and identify 35 pathways that are shared among all three organisms. Conclusions Our analysis elucidates a significant portion of the human metabolic map, and also indicates probable unidentified genes in the genome. HumanCyc provides a genome-based view of human nutrition that associates the essential dietary requirements of humans with a set of metabolic pathways whose existence is supported by the human genome. The database places many human genes in a pathway context, thereby facilitating analysis of gene expression, proteomics, and metabolomics datasets through a publicly available online tool called the Omics Viewer. PMID:15642094

  8. Enhancement of Student Learning through the Use of a Hinting Computer E-Learning System and Comparison with Human Teachers

    ERIC Educational Resources Information Center

    Munoz-Merino, P. J.; Kloos, C. D.; Munoz-Organero, M.

    2011-01-01

    This paper reports the results of an experiment in a Computer Architecture Laboratory course classroom session, in which students were divided into two groups for interaction both with a hinting e-learning system and with human teachers generating hints. The results show that there were high learning gains for both groups, demonstrating the…

  9. A computational study on the interaction between a vortex and a shock wave

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Kumar, Ajay; Hussaini, M. Y.

    1989-01-01

    A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.

  10. Code system to compute radiation dose in human phantoms

    SciTech Connect

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods. (LEW)

  11. Computer simulations of human interferon gamma mutated forms

    NASA Astrophysics Data System (ADS)

    Lilkova, E.; Litov, L.; Petkov, P.; Petkov, P.; Markov, S.; Ilieva, N.

    2010-01-01

    In the general framework of the computer-aided drug design, the method of molecular-dynamics simulations is applied for investigation of the human interferon-gamma (hIFN-γ) binding to its two known ligands (its extracellular receptor and the heparin-derived oligosaccharides). A study of 100 mutated hIFN-γ forms is presented, the mutations encompassing residues 86-88. The structural changes are investigated by comparing the lengths of the α-helices, in which these residues are included, in the native hIFN-γ molecule and in the mutated forms. The most intriguing cases are examined in detail.

  12. Computational analysis of difenoconazole interaction with soil chitinases

    NASA Astrophysics Data System (ADS)

    Vlǎdoiu, D. L.; Filimon, M. N.; Ostafe, V.; Isvoran, A.

    2015-01-01

    This study focusses on the investigation of the potential binding of the fungicide difenoconazole to soil chitinases using a computational approach. Computational characterization of the substrate binding sites of Serratia marcescens and Bacillus cereus chitinases using Fpocket tool reflects the role of hydrophobic residues for the substrate binding and the high local hydrophobic density of both sites. Molecular docking study reveals that difenoconazole is able to bind to Serratia marcescens and Bacillus cereus chitinases active sites, the binding energies being comparable.

  13. A Computer Graphics Human Figure Application Of Biostereometrics

    NASA Astrophysics Data System (ADS)

    Fetter, William A.

    1980-07-01

    A study of improved computer graphic representation of the human figure is being conducted under a National Science Foundation grant. Special emphasis is given biostereometrics as a primary data base from which applications requiring a variety of levels of detail may be prepared. For example, a human figure represented by a single point can be very useful in overview plots of a population. A crude ten point figure can be adequate for queuing theory studies and simulated movement of groups. A one hundred point figure can usefully be animated to achieve different overall body activities including male and female figures. A one thousand point figure si-milarly animated, begins to be useful in anthropometrics and kinesiology gross body movements. Extrapolations of this order-of-magnitude approach ultimately should achieve very complex data bases and a program which automatically selects the correct level of detail for the task at hand. See Summary Figure 1.

  14. A qualitative model of human interaction with complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  15. A Qualitative Model of Human Interaction with Complex Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  16. Computational Prediction of Protein–Protein Interaction Networks: Algo-rithms and Resources

    PubMed Central

    Zahiri, Javad; Bozorgmehr, Joseph Hannon; Masoudi-Nejad, Ali

    2013-01-01

    Protein interactions play an important role in the discovery of protein functions and pathways in biological processes. This is especially true in case of the diseases caused by the loss of specific protein-protein interactions in the organism. The accuracy of experimental results in finding protein-protein interactions, however, is rather dubious and high throughput experimental results have shown both high false positive beside false negative information for protein interaction. Computational methods have attracted tremendous attention among biologists because of the ability to predict protein-protein interactions and validate the obtained experimental results. In this study, we have reviewed several computational methods for protein-protein interaction prediction as well as describing major databases, which store both predicted and detected protein-protein interactions, and the tools used for analyzing protein interaction networks and improving protein-protein interaction reliability. PMID:24396273

  17. Perceptual Annotation: Measuring Human Vision to Improve Computer Vision.

    PubMed

    Scheirer, Walter J; Anthony, Samuel E; Nakayama, Ken; Cox, David D

    2014-08-01

    For many problems in computer vision, human learners are considerably better than machines. Humans possess highly accurate internal recognition and learning mechanisms that are not yet understood, and they frequently have access to more extensive training data through a lifetime of unbiased experience with the visual world. We propose to use visual psychophysics to directly leverage the abilities of human subjects to build better machine learning systems. First, we use an advanced online psychometric testing platform to make new kinds of annotation data available for learning. Second, we develop a technique for harnessing these new kinds of information-"perceptual annotations"-for support vector machines. A key intuition for this approach is that while it may remain infeasible to dramatically increase the amount of data and high-quality labels available for the training of a given system, measuring the exemplar-by-exemplar difficulty and pattern of errors of human annotators can provide important information for regularizing the solution of the system at hand. A case study for the problem face detection demonstrates that this approach yields state-of-the-art results on the challenging FDDB data set. PMID:26353347

  18. In vitro interaction between ceruloplasmin and human serum transferrin.

    PubMed

    Ha-Duong, Nguyêt-Thanh; Eid, Chantal; Hémadi, Miryana; El Hage Chahine, Jean-Michel

    2010-12-01

    The thermodynamics of the interactions of serum apotransferrin (T) and holotransferrin (TFe(2)) with ceruloplasmin (Cp), as well as those of human lactoferrin (Lf), were assessed by fluorescence emission spectroscopy. Cp interacts with two Lf molecules. The first interaction depends on pH and μ, whereas the second does not. Dissociation constants were as follows: K(11Lf) = 1.5 ± 0.2 μM, and K(12Lf) = 11 ± 2 μM. Two slightly different interactions of T or TFe(2) with Cp are detected for the first time. They are both independent of pH and μ and occur with 1:1 stoichiometry: K(1T) = 19 ± 7 μM, and K(1TFe2) = 12 ± 4 μM. These results can improve our understanding of the probable process of the transfer of iron from Cp to T in iron and copper transport and homeostasis. PMID:21049900

  19. A review of in silico approaches for analysis and prediction of HIV-1-human protein-protein interactions.

    PubMed

    Bandyopadhyay, Sanghamitra; Ray, Sumanta; Mukhopadhyay, Anirban; Maulik, Ujjwal

    2015-09-01

    The computational or in silico approaches for analysing the HIV-1-human protein-protein interaction (PPI) network, predicting different host cellular factors and PPIs and discovering several pathways are gaining popularity in the field of HIV research. Although there exist quite a few studies in this regard, no previous effort has been made to review these works in a comprehensive manner. Here we review the computational approaches that are devoted to the analysis and prediction of HIV-1-human PPIs. We have broadly categorized these studies into two fields: computational analysis of HIV-1-human PPI network and prediction of novel PPIs. We have also presented a comparative assessment of these studies and proposed some methodologies for discussing the implication of their results. We have also reviewed different computational techniques for predicting HIV-1-human PPIs and provided a comparative study of their applicability. We believe that our effort will provide helpful insights to the HIV research community. PMID:25479794

  20. Simulation-based computation of dose to humans in radiological environments

    SciTech Connect

    Breazeal, N.L.; Davis, K.R.; Watson, R.A.; Vickers, D.S.; Ford, M.S.

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

  1. Subject-specific computational modeling of human phonation

    PubMed Central

    Xue, Qian; Zheng, Xudong; Mittal, Rajat; Bielamowicz, Steven

    2014-01-01

    A direct numerical simulation of flow-structure interaction is carried out in a subject-specific larynx model to study human phonation under physiological conditions. The simulation results compare well to the established human data. The resulting glottal flow and waveform are found to be within the normal physiological ranges. The effects of realistic geometry on the vocal fold dynamics and the glottal flow are extensively examined. It is found that the asymmetric anterior-posterior laryngeal configuration produces strong anterior-posterior asymmetries in both vocal fold vibration and glottal flow which has not been captured in the simplified models. It needs to be pointed out that the observations from the current numerical simulation are only valid for the flow conditions investigated. The limitations of the study are also discussed. PMID:24606281

  2. Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    PubMed Central

    Doolittle, Janet M.; Gomez, Shawn M.

    2011-01-01

    Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811

  3. The epigenetic lorax: gene–environment interactions in human health

    PubMed Central

    Latham, Keith E; Sapienza, Carmen; Engel, Nora

    2012-01-01

    Over the last decade, we have witnessed an explosion of information on genetic factors underlying common human diseases and disorders. This ‘human genomics’ information revolution has occurred as a backdrop to a rapid increase in the rates of many human disorders and diseases. For example, obesity, Type 2 diabetes, asthma, autism spectrum disorder and attention deficit hyperactivity disorder have increased at rates that cannot be due to changes in the genetic structure of the population, and are difficult to ascribe to changes in diagnostic criteria or ascertainment. A likely cause of the increased incidence of these disorders is increased exposure to environmental factors that modify gene function. Many environmental factors that have epidemiological association with common human disorders are likely to exert their effects through epigenetic alterations. This general mechanism of gene–environment interaction poses special challenges for individuals, educators, scientists and public policy makers in defining, monitoring and mitigating exposures. PMID:22920179

  4. Human-Computer Interactions: Are There Adverse Health Consequences?

    ERIC Educational Resources Information Center

    Emurian, Henry H.

    1989-01-01

    Discusses the hypothesis that similarities may exist between laboratory research paradigms evoking elevated blood pressure during task performance by normal subjects and video display terminal (VDT) work done by data clerks and college students. Type A behavior and the development of coronary heart disease are discussed, and further research needs…

  5. Computational molecular biology approaches to ligand-target interactions

    PubMed Central

    Lupieri, Paola; Nguyen, Chuong Ha Hung; Bafghi, Zhaleh Ghaemi; Giorgetti, Alejandro; Carloni, Paolo

    2009-01-01

    Binding of small molecules to their targets triggers complex pathways. Computational approaches are keys for predictions of the molecular events involved in such cascades. Here we review current efforts at characterizing the molecular determinants in the largest membrane-bound receptor family, the G-protein-coupled receptors (GPCRs). We focus on odorant receptors, which constitute more than half GPCRs. The work presented in this review uncovers structural and energetic aspects of components of the cellular cascade. Finally, a computational approach in the context of radioactive boron-based antitumoral therapies is briefly described. PMID:20119480

  6. Closed-loop bird-computer interactions: a new method to study the role of bird calls.

    PubMed

    Lerch, Alexandre; Roy, Pierre; Pachet, François; Nagle, Laurent

    2011-03-01

    In the field of songbird research, many studies have shown the role of male songs in territorial defense and courtship. Calling, another important acoustic communication signal, has received much less attention, however, because calls are assumed to contain less information about the emitter than songs do. Birdcall repertoire is diverse, and the role of calls has been found to be significant in the area of social interaction, for example, in pair, family, and group cohesion. However, standard methods for studying calls do not allow precise and systematic study of their role in communication. We propose herein a new method to study bird vocal interaction. A closed-loop computer system interacts with canaries, Serinus canaria, by (1) automatically classifying two basic types of canary vocalization, single versus repeated calls, as they are produced by the subject, and (2) responding with a preprogrammed call type recorded from another bird. This computerized animal-machine interaction requires no human interference. We show first that the birds do engage in sustained interactions with the system, by studying the rate of single and repeated calls for various programmed protocols. We then show that female canaries differentially use single and repeated calls. First, they produce significantly more single than repeated calls, and second, the rate of single calls is associated with the context in which they interact, whereas repeated calls are context independent. This experiment is the first illustration of how closed-loop bird-computer interaction can be used productively to study social relationships. PMID:21052754

  7. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  8. Athletic equipment microbiota are shaped by interactions with human skin

    SciTech Connect

    Wood, Mariah; Gibbons, Sean M.; Lax, Simon; Eshoo-Anton, Tifani W.; Owens, Sarah M.; Kennedy, Suzanne; Gilbert, Jack A.; Hampton-Marcell, Jarrad T.

    2015-06-19

    Background: Americans spend the vast majority of their lives in built environments. Even traditionally outdoor pursuits, such as exercising, are often now performed indoors. Bacteria that colonize these indoor ecosystems are primarily derived from the human microbiome. The modes of human interaction with indoor surfaces and the physical conditions associated with each surface type determine the steady-state ecology of the microbial community. Results: Bacterial assemblages associated with different surfaces in three athletic facilities, including floors, mats, benches, free weights, and elliptical handles, were sampled every other hour (8 am to 6 pm) for 2 days. Surface and equipment type had a stronger influence on bacterial community composition than the facility in which they were housed. Surfaces that were primarily in contact with human skin exhibited highly dynamic bacterial community composition and non-random co-occurrence patterns, suggesting that different host microbiomes—shaped by selective forces—were being deposited on these surfaces through time. Bacterial assemblages found on the floors and mats changed less over time, and species co-occurrence patterns appeared random, suggesting more neutral community assembly. Conclusions: These longitudinal patterns highlight the dramatic turnover of microbial communities on surfaces in regular contact with human skin. By uncovering these longitudinal patterns, this study promotes a better understanding of microbe-human interactions within the built environment.

  9. Athletic equipment microbiota are shaped by interactions with human skin

    DOE PAGESBeta

    Wood, Mariah; Gibbons, Sean M.; Lax, Simon; Eshoo-Anton, Tifani W.; Owens, Sarah M.; Kennedy, Suzanne; Gilbert, Jack A.; Hampton-Marcell, Jarrad T.

    2015-06-19

    Background: Americans spend the vast majority of their lives in built environments. Even traditionally outdoor pursuits, such as exercising, are often now performed indoors. Bacteria that colonize these indoor ecosystems are primarily derived from the human microbiome. The modes of human interaction with indoor surfaces and the physical conditions associated with each surface type determine the steady-state ecology of the microbial community. Results: Bacterial assemblages associated with different surfaces in three athletic facilities, including floors, mats, benches, free weights, and elliptical handles, were sampled every other hour (8 am to 6 pm) for 2 days. Surface and equipment type hadmore » a stronger influence on bacterial community composition than the facility in which they were housed. Surfaces that were primarily in contact with human skin exhibited highly dynamic bacterial community composition and non-random co-occurrence patterns, suggesting that different host microbiomes—shaped by selective forces—were being deposited on these surfaces through time. Bacterial assemblages found on the floors and mats changed less over time, and species co-occurrence patterns appeared random, suggesting more neutral community assembly. Conclusions: These longitudinal patterns highlight the dramatic turnover of microbial communities on surfaces in regular contact with human skin. By uncovering these longitudinal patterns, this study promotes a better understanding of microbe-human interactions within the built environment.« less

  10. Predicting disease-related genes by topological similarity in human protein-protein interaction network

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hu, Ke; Tang, Yi

    2010-08-01

    Predicting genes likely to be involved in human diseases is an important task in bioinformatics field. Nowadays, the accumulation of human protein-protein interactions (PPIs) data provides us an unprecedented opportunity to gain insight into human diseases. In this paper, we adopt the topological similarity in human protein-protein interaction network to predict disease-related genes. As a computational algorithm to speed up the identification of disease-related genes, the topological similarity has substantial advantages over previous topology-based algorithms. First of all, it provides a global measurement of similarity between two vertices. Secondly, quantity which can measure new topological feature has been integrated into the notion of topological similarity. Our method is specially designed for predicting disease-related genes of single disease-gene family. The proposed method is applied to human protein-protein interaction and hepatocellular carcinoma (HCC) data. The results show a significant enrichment of disease-related genes that are characterized by higher topological similarity than other genes.

  11. Emotional contagion and proto-organizing in human interaction dynamics.

    PubMed

    Hazy, James K; Boyatzis, Richard E

    2015-01-01

    This paper combines the complexity notions of phase transitions and tipping points with recent advances in cognitive neuroscience to propose a general theory of human proto-organizing. It takes as a premise that a necessary prerequisite for organizing, or "proto-organizing," occurs through emotional contagion in subpopulations of human interaction dynamics in complex ecosystems. Emotional contagion is posited to engender emotional understanding and identification with others, a social process that acts as a mechanism that enables (or precludes) cooperative responses to opportunities and risks. Propositions are offered and further research is suggested. PMID:26124736

  12. Ultrastructural interaction between spermatozoon and human oviductal cells in vitro.

    PubMed

    Vigil, Pilar; Salgado, Ana María; Cortés, Manuel E

    2012-04-01

    The oviduct is an important organ for successful mammalian reproduction. In this work, human oviducts were inseminated and their explants analyzed using scanning electron microscopy in order to study, at a finer ultrastructual level, the interaction between spermatozoon and oviduct in vitro. Results show unequivocally a spermatozoon tightly attached through the acrosomal region of its head to several cilia of the human tubal epithelial cells. This finding proves that spermatozoa do indeed adhere to the endosalpinx, a fact of utmost relevance for the physiology of the reproductive process, since it supports the idea of a spermatozoa reservoir being formed in the oviduct, which is also briefly discussed. PMID:22355149

  13. Modelling of electromagnetic wave interactions with the human body

    NASA Astrophysics Data System (ADS)

    Wong, Man-Faï; Wiart, Joe

    2005-07-01

    Electromagnetic modelling plays a more and more important role in the study of complex systems involving Maxwell phenomena, such as the interactions of radiowaves with the human body. Simulation then becomes a credible means in decision making, related to the engineering of complex electromagnetic systems. To increase confidence in the models with respect to reality, validation and uncertainty estimation methods are needed. The different dimensions of model validation are illustrated through dosimetry, i.e., quantification of human exposure to electromagnetic waves. To cite this article: M.-F. Wong, J. Wiart, C. R. Physique 6 (2005).

  14. Emotional contagion and proto-organizing in human interaction dynamics

    PubMed Central

    Hazy, James K.; Boyatzis, Richard E.

    2015-01-01

    This paper combines the complexity notions of phase transitions and tipping points with recent advances in cognitive neuroscience to propose a general theory of human proto-organizing. It takes as a premise that a necessary prerequisite for organizing, or “proto-organizing,” occurs through emotional contagion in subpopulations of human interaction dynamics in complex ecosystems. Emotional contagion is posited to engender emotional understanding and identification with others, a social process that acts as a mechanism that enables (or precludes) cooperative responses to opportunities and risks. Propositions are offered and further research is suggested. PMID:26124736

  15. Instructors' Integration of Computer Technology: Examining the Role of Interaction

    ERIC Educational Resources Information Center

    Kim, Hoe Kyeung; Rissel, Dorothy

    2008-01-01

    Computer technology has the potential to provide rich resources for language teaching and learning. However, it continues to be underutilized, even though its availability, familiarity, and sophistication are steadily increasing. This case study explored the way in which three language instructors' beliefs about language teaching and learning…

  16. Interactive Geometry in the B.C. (Before Computers) Era

    ERIC Educational Resources Information Center

    Whittaker, Heather; Johnson, Iris DeLoach

    2005-01-01

    A 3-by-5 card is used to represent two or more sets of parallel lines, four right angles, opposite sides congruent and to investigate the Pythagorean theorem, similar triangles, and the tangent ratio before the introduction of computers. Students were asked to draw two parallel lines, cross them with a transversal and label the angles, which…

  17. TRAINING RESEARCH UTILIZING MAN-COMPUTER INTERACTIONS, PROMISE AND REALITY.

    ERIC Educational Resources Information Center

    MCCLELLAND, WILLIAM A.

    THE PAPER WAS PRESENTED AS PART OF THE AVIONICS PANEL PROGRAM ON NATURAL AND ARTIFICIAL LOGIC PROCESSORS, SPONSORED BY THE ADVISORY GROUP FOR AERONAUTICAL RESEARCH AND DEVELOPMENT, NATO. SEVERAL CONCEPTUAL PROPOSITIONS IN REGARD TO MAN AND THE COMPUTER ARE OFFERED. THE NATURE OF TRAINING RESEARCH IS EXAMINED. THERE IS ALSO A BRIEF CATEGORIZATION…

  18. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1997-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  19. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1996-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  20. Computers and Teaching; An Interactive Newsletter. Number One.

    ERIC Educational Resources Information Center

    Northwestern Univ., Evanston, IL.

    A brief overview of the Computer Aids to Teaching Project is first presented. The workshops, seminars, demonstrations and open house events conducted in the course of the project are described, and the information services provided are discussed. An outline of the project's first workshop designed to introduce users to the PLATO IV…

  1. Teaching Introductory Sociology: Paradigms, Methodologies, and Interactive Computing.

    ERIC Educational Resources Information Center

    Kervin, John B.; Gates, Albert S.

    The paper describes a computer-based project designed to help college instructors teach introductory sociology. The project combines a variety of orientations to expose students to basic sociological concepts, classic theories, and the breadth of the discipline. Two traditional methods of teaching sociology include relying on different instructors…

  2. Interaction of Intuitive Physics with Computer-Simulated Physics.

    ERIC Educational Resources Information Center

    Flick, Lawrence B.

    1990-01-01

    The question of how children solve force and motion problems in computer simulations without explicit knowledge of the underlying physics was investigated. Keystroke sequences made by children were saved and analyzed, and children were interviewed to understand their perception of the relationship between keyboard input and on-screen action. (CW)

  3. A Qualitative Examination of Social Interaction during Cooperative Computer Activities

    ERIC Educational Resources Information Center

    Hsu, I-Chen; Geist, Eugene A.

    2012-01-01

    This article reports the findings of a study to examine the practicality and efficacy of using tablet computers in the Higher Education classroom. Students in a senior level teacher preparation class were provided with Apple iPads for 10 weeks to aid in their studies. The iPads were preloaded with selected software but students were encouraged to…

  4. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    ERIC Educational Resources Information Center

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  5. EDP: A computer program for analysis of biotic interactions

    NASA Astrophysics Data System (ADS)

    Gibson, Michael A.; Bolton, James C.

    1992-07-01

    Analyzing fossils for evidence of biotic interactions such as parasitism, commensalism, and predation can be accomplished using skeletal relationships (e.g. overlapping growth) on individual specimens and statistical information on populations of specimens. The latter approach provides information for use in larger scale paleocommunity analyses. This approach requires a large data set and extensive amounts of information management. The types of information that are needed include data concerning the identity of host and epibiont species, orientation of epibionts on hosts, position of encrustation, growth directions, region of occurrence, and associated fauna. We have written the Epibiont Digitizing Program (EDP) to collect the data necessary to study biotic interactions in the fossil record. The program is operator-interactive at all stages and versatile enough to allow modification depending upon the specific needs of the researcher.

  6. Visual exploration and analysis of human-robot interaction rules

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Boyles, Michael J.

    2013-01-01

    We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming

  7. Interactive computer graphic surface modeling of three-dimensional solid domains for boundary element analysis

    NASA Technical Reports Server (NTRS)

    Perucchio, R.; Ingraffea, A. R.

    1984-01-01

    The establishment of the boundary element method (BEM) as a valid tool for solving problems in structural mechanics and in other fields of applied physics is discussed. The development of an integrated interactive computer graphic system for the application of the BEM to three dimensional problems in elastostatics is described. The integration of interactive computer graphic techniques and the BEM takes place at the preprocessing and postprocessing stages of the analysis process, when, respectively, the data base is generated and the results are interpreted. The interactive computer graphic modeling techniques used for generating and discretizing the boundary surfaces of a solid domain are outlined.

  8. Interactive computer graphics and its role in control system design of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  9. Psychophysiological effects of human-animal interaction: theoretical issues and long-term interaction effects.

    PubMed

    Virués-Ortega, Javier; Buela-Casal, Gualberto

    2006-01-01

    This paper reviews literature published on the psychophysiological effects of long-term human-animal interaction (i.e., pet ownership, pet adoption). A literature search was conducted using PsycInfo and Medline databases. Although the available evidence is far from being consistent, it can be concluded that, in some cases, long-term relationships with animals may moderate baseline physiological variables, particularly blood pressure. Results proved more coherent in studies where animals were adopted by owners as part of the procedure. This paper examines existing hypotheses seeking to account for these effects and the supporting evidence. Two major hypotheses have been suggested to explain the psychophysiological effects of long-term interaction, namely (1) stress-buffering effects of noncritical social support provided by pets; and (2) classical conditioning of relaxation. These mechanisms may partially account for the long-term health outcomes observed in a number of human-animal interaction studies. PMID:16462556

  10. (Artificial intelligence, human factors, robotics, and computer simulation)

    SciTech Connect

    Spelt, P.F.

    1990-09-06

    Traveler was invited to participate in information exchange between Oak Ridge National Laboratory (ORNL) and CISC/JAERI on four topics: Artificial Intelligence, Human Factors, robotics, and computer simulation. This exchange took the form of 9 (2-hour) lectures presented by traveler on work done in CS HF Group, and four presentations by Japanese for traveler's edification. Seven of traveler's lectures were to CISC/JAERI, one to Toshiba Corporation, and one to the AI Steering Committee of JAERI. There was also a presentation by Toshiba Corporation on HF work connected with their Boiling Water Reactor (BWR) control room. Final discussion between traveler and JAERI personnel concerned an umbrella agreement with the US Department of Energy (DOE) permitting researcher exchange similar to nuclear researchers. Conclusions are: the US has definite advantages in most areas of AI progress; the Japanese are creating a Monte Carlo radiation dose calculation simulation which will operate at the level of radiating particles (neutrons) with doses calculated for all major organ systems of humans, and major circuits for robots; they are gaining experience in creating major integrated simulations of human/robot activity in a nuclear reactor; and that it would be advantageous for us to have a formal agreement permitting scientists to visit there for more than 15 days at a time.

  11. Computation of wing-vortex interaction in transonic flow using implicit finite difference algorithm

    NASA Technical Reports Server (NTRS)

    Srinivasan, G.; Steger, J. L.

    1981-01-01

    An implicit delta form finite difference algorithm for Euler equations in conservation law form was used in preliminary calculations of three dimensional wing vortex interaction. Both steady and unsteady transonic flow wing vortex interactions are computed. The computations themselves are meant to guide upcoming wind tunnel experiments of the same flow field. Various modifications to the numerical method that are intended to improve computational efficiency are also described and tested in both two and three dimensions. Combination of these methods can reduce the overall computational time by a factor of 4.

  12. Interaction of extremely low-frequency electromagnetic fields with humans

    SciTech Connect

    Tenforde, T.S.

    1990-04-01

    Public concern has grown in recent years concerning the possible health effects of extremely low-frequency (ELF) electromagnetic fields to which we are exposed in all aspects of everyday life. By definition ELF refers to the range of electromagnetic field frequencies below 300 Hz, which includes the power transmission and distribution frequencies used throughout the world. In materials with the electrical and magnetic properties of living tissues, these fields have a long wavelength (5000 m) and skin depth (150 m). As a consequence, in their interactions with humans and other living organisms ELF fields behave as though they are composed of independent electric and magnetic fields components. This paper discusses ELF fields and their interactions with humans and other living organisms as well as their biological effects.

  13. Program MASTERCALC: an interactive computer program for radioanalytical computations. Description and operating instructions

    SciTech Connect

    Goode, W.

    1980-10-01

    MASTERCALC is a computer program written to support radioanalytical computations in the Los Alamos Scientific Laboratory (LASL) Environmental Surveillance Group. Included in the program are routines for gross alpha and beta, /sup 3/H, gross gamma, /sup 90/Sr and alpha spectroscopic determinations. A description of MASTERCALC is presented and its source listing is included. Operating instructions and example computing sessions are given for each type of analysis.

  14. A validation study of a stochastic model of human interaction

    NASA Astrophysics Data System (ADS)

    Burchfield, Mitchel Talmadge

    The purpose of this dissertation is to validate a stochastic model of human interactions which is part of a developmentalism paradigm. Incorporating elements of ancient and contemporary philosophy and science, developmentalism defines human development as a progression of increasing competence and utilizes compatible theories of developmental psychology, cognitive psychology, educational psychology, social psychology, curriculum development, neurology, psychophysics, and physics. To validate a stochastic model of human interactions, the study addressed four research questions: (a) Does attitude vary over time? (b) What are the distributional assumptions underlying attitudes? (c) Does the stochastic model, {-}N{intlimitssbsp{-infty}{infty}}varphi(chi,tau)\\ Psi(tau)dtau, have utility for the study of attitudinal distributions and dynamics? (d) Are the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein theories applicable to human groups? Approximately 25,000 attitude observations were made using the Semantic Differential Scale. Positions of individuals varied over time and the logistic model predicted observed distributions with correlations between 0.98 and 1.0, with estimated standard errors significantly less than the magnitudes of the parameters. The results bring into question the applicability of Fisherian research designs (Fisher, 1922, 1928, 1938) for behavioral research based on the apparent failure of two fundamental assumptions-the noninteractive nature of the objects being studied and normal distribution of attributes. The findings indicate that individual belief structures are representable in terms of a psychological space which has the same or similar properties as physical space. The psychological space not only has dimension, but individuals interact by force equations similar to those described in theoretical physics models. Nonlinear regression techniques were used to estimate Fermi-Dirac parameters from the data. The model explained a high degree

  15. Excimer laser interaction with dentin of the human tooth

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  16. A computational model of blast loading on the human eye.

    PubMed

    Bhardwaj, Rajneesh; Ziegler, Kimberly; Seo, Jung Hee; Ramesh, K T; Nguyen, Thao D

    2014-01-01

    Ocular injuries from blast have increased in recent wars, but the injury mechanism associated with the primary blast wave is unknown. We employ a three-dimensional fluid-structure interaction computational model to understand the stresses and deformations incurred by the globe due to blast overpressure. Our numerical results demonstrate that the blast wave reflections off the facial features around the eye increase the pressure loading on and around the eye. The blast wave produces asymmetric loading on the eye, which causes globe distortion. The deformation response of the globe under blast loading was evaluated, and regions of high stresses and strains inside the globe were identified. Our numerical results show that the blast loading results in globe distortion and large deviatoric stresses in the sclera. These large deviatoric stresses may be indicator for the risk of interfacial failure between the tissues of the sclera and the orbit. PMID:23591604

  17. Global Mapping of Human RNA-RNA Interactions.

    PubMed

    Sharma, Eesha; Sterne-Weiler, Tim; O'Hanlon, Dave; Blencowe, Benjamin J

    2016-05-19

    The majority of the human genome is transcribed into non-coding (nc)RNAs that lack known biological functions or else are only partially characterized. Numerous characterized ncRNAs function via base pairing with target RNA sequences to direct their biological activities, which include critical roles in RNA processing, modification, turnover, and translation. To define roles for ncRNAs, we have developed a method enabling the global-scale mapping of RNA-RNA duplexes crosslinked in vivo, "LIGation of interacting RNA followed by high-throughput sequencing" (LIGR-seq). Applying this method in human cells reveals a remarkable landscape of RNA-RNA interactions involving all major classes of ncRNA and mRNA. LIGR-seq data reveal unexpected interactions between small nucleolar (sno)RNAs and mRNAs, including those involving the orphan C/D box snoRNA, SNORD83B, that control steady-state levels of its target mRNAs. LIGR-seq thus represents a powerful approach for illuminating the functions of the myriad of uncharacterized RNAs that act via base-pairing interactions. PMID:27184080

  18. Genotype × age interaction in human transcriptional ageing

    PubMed Central

    Kent, Jack W.; Göring, Harald H. H.; Charlesworth, Jac C.; Drigalenko, Eugene; Diego, Vincent P.; Curran, Joanne E.; Johnson, Matthew P.; Dyer, Thomas D.; Cole, Shelley A.; Jowett, Jeremy B. M.; Mahaney, Michael C.; Comuzzie, Anthony G.; Almasy, Laura; Moses, Eric K.; Blangero, John; Williams-Blangero, Sarah

    2012-01-01

    Individual differences in biological ageing (i.e., the rate of physiological response to the passage of time) may be due in part to genotype-specific variation in gene action. However, the sources of heritable variation in human age-related gene expression profiles are largely unknown. We have profiled genome-wide expression in peripheral blood mononuclear cells from 1,240 individuals in large families and found 4,472 human autosomal transcripts, representing ~4,349 genes, significantly correlated with age. We identified 623 transcripts that show genotype by age interaction in addition to a main effect of age, defining a large set of novel candidates for characterization of the mechanisms of differential biological ageing. We applied a novel SNP genotype×age interaction test to one of these candidates, the ubiquilin-like gene UBQLNL, and found evidence of joint cis-association and genotype by age interaction as well as trans-genotype by age interaction for UBQLNL expression. Both UBQLNL expression levels at recruitment and cis genotype are associated with longitudinal cancer risk in our study cohort. PMID:22871458

  19. Effect of leaflet-to-chordae contact interaction on computational mitral valve evaluation

    PubMed Central

    2014-01-01

    Background Computational simulation using numerical analysis methods can help to assess the complex biomechanical and functional characteristics of the mitral valve (MV) apparatus. It is important to correctly determine physical contact interaction between the MV apparatus components during computational MV evaluation. We hypothesize that leaflet-to-chordae contact interaction plays an important role in computational MV evaluation, specifically in quantitating the degree of leaflet coaptation directly related to the severity of mitral regurgitation (MR). In this study, we have performed dynamic finite element simulations of MV function with and without leaflet-to-chordae contact interaction, and determined the effect of leaflet-to-chordae contact interaction on the computational MV evaluation. Methods Computational virtual MV models were created using the MV geometric data in a patient with normal MV without MR and another with pathologic MV with MR obtained from 3D echocardiography. Computational MV simulation with full contact interaction was specified to incorporate entire physically available contact interactions between the leaflets and chordae tendineae. Computational MV simulation without leaflet-to-chordae contact interaction was specified by defining the anterior and posterior leaflets as the only contact inclusion. Results Without leaflet-to-chordae contact interaction, the computational MV simulations demonstrated physically unrealistic contact interactions between the leaflets and chordae. With leaflet-to-chordae contact interaction, the anterior marginal chordae retained the proper contact with the posterior leaflet during the entire systole. The size of the non-contact region in the simulation with leaflet-to-chordae contact interaction was much larger than for the simulation with only leaflet-to-leaflet contact. Conclusions We have successfully demonstrated the effect of leaflet-to-chordae contact interaction on determining leaflet coaptation in

  20. Atoms of recognition in human and computer vision.

    PubMed

    Ullman, Shimon; Assif, Liav; Fetaya, Ethan; Harari, Daniel

    2016-03-01

    Discovering the visual features and representations used by the brain to recognize objects is a central problem in the study of vision. Recently, neural network models of visual object recognition, including biological and deep network models, have shown remarkable progress and have begun to rival human performance in some challenging tasks. These models are trained on image examples and learn to extract features and representations and to use them for categorization. It remains unclear, however, whether the representations and learning processes discovered by current models are similar to those used by the human visual system. Here we show, by introducing and using minimal recognizable images, that the human visual system uses features and processes that are not used by current models and that are critical for recognition. We found by psychophysical studies that at the level of minimal recognizable images a minute change in the image can have a drastic effect on recognition, thus identifying features that are critical for the task. Simulations then showed that current models cannot explain this sensitivity to precise feature configurations and, more generally, do not learn to recognize minimal images at a human level. The role of the features shown here is revealed uniquely at the minimal level, where the contribution of each feature is essential. A full understanding of the learning and use of such features will extend our understanding of visual recognition and its cortical mechanisms and will enhance the capacity of computational models to learn from visual experience and to deal with recognition and detailed image interpretation. PMID:26884200