Science.gov

Sample records for human facilitative nucleobase

  1. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity.

    PubMed

    Rathi, Preeti; Maurer, Sara; Kubik, Grzegorz; Summerer, Daniel

    2016-08-10

    We report the direct isolation of user-defined DNA sequences from the human genome with programmable selectivity for both canonical and epigenetic nucleobases. This is enabled by the use of engineered transcription-activator-like effectors (TALEs) as DNA major groove-binding probes in affinity enrichment. The approach provides the direct quantification of 5-methylcytosine (5mC) levels at single genomic nucleotide positions in a strand-specific manner. We demonstrate the simple, multiplexed typing of a variety of epigenetic cancer biomarker 5mC with custom TALE mixes. Compared to antibodies as the most widely used affinity probes for 5mC analysis, i.e., employed in the methylated DNA immunoprecipitation (MeDIP) protocol, TALEs provide superior sensitivity, resolution and technical ease. We engineer a range of size-reduced TALE repeats and establish full selectivity profiles for their binding to all five human cytosine nucleobases. These provide insights into their nucleobase recognition mechanisms and reveal the ability of TALEs to isolate genomic target sequences with selectivity for single 5-hydroxymethylcytosine and, in combination with sodium borohydride reduction, single 5-formylcytosine nucleobases. PMID:27429302

  2. A Transition-State Interaction Shifts Nucleobase Ionization Toward Neutrality to Facilitate Small Ribozyme Catalysis

    PubMed Central

    Liberman, Joseph A.; Guo, Man; Jenkins, Jermaine L.; Krucinska, Jolanta; Chen, Yuanyuan; Carey, Paul R.; Wedekind, Joseph E.

    2012-01-01

    One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pKa values for the Ade38 N1-imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pKa value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pKa we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pKa values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pKa >0.8 log units relative to the precatalytic state. The agreement of the microscopic and macroscopic pKa values and the accompanying structural analysis support a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity. PMID:22989273

  3. Microhydration of Deprotonated Nucleobases

    NASA Astrophysics Data System (ADS)

    Wincel, Henryk

    2016-05-01

    Hydration reactions of deprotonated nucleobases (uracil, thymine, 5-fluorouracil,2-thiouracil, cytosine, adenine, and hypoxanthine) produced by electrospray have been experimentally studied in the gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH o , ΔS o , and ΔG o , for the monohydrated systems were determined. The hydration enthalpies were found to be similar for all studied systems and varied between 39.4 and 44.8 kJ/mol. A linear correlation was found between water binding energies in the hydrated complexes and the corresponding acidities of the most acidic site of nucleobases. The structural and energetic aspects of the precursors for the hydrated complexes are discussed in conjunction with available literature data.

  4. Microhydration of Deprotonated Nucleobases

    NASA Astrophysics Data System (ADS)

    Wincel, Henryk

    2016-08-01

    Hydration reactions of deprotonated nucleobases (uracil, thymine, 5-fluorouracil,2-thiouracil, cytosine, adenine, and hypoxanthine) produced by electrospray have been experimentally studied in the gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH o , ΔS o , and ΔG o , for the monohydrated systems were determined. The hydration enthalpies were found to be similar for all studied systems and varied between 39.4 and 44.8 kJ/mol. A linear correlation was found between water binding energies in the hydrated complexes and the corresponding acidities of the most acidic site of nucleobases. The structural and energetic aspects of the precursors for the hydrated complexes are discussed in conjunction with available literature data.

  5. Oxidation of DNA: damage to nucleobases.

    PubMed

    Kanvah, Sriram; Joseph, Joshy; Schuster, Gary B; Barnett, Robert N; Cleveland, Charles L; Landman, Uzi

    2010-02-16

    All organisms store the information necessary to maintain life in their DNA. Any process that damages DNA, causing a loss or corruption of that information, jeopardizes the viability of the organism. One-electron oxidation is such a process. In this Account, we address three of the central features of one-electron oxidation of DNA: (i) the migration of the radical cation away from the site of its formation; (ii) the electronic and structural factors that determine the nucleobases at which irreversible reactions most readily occur; (iii) the mechanism of reaction for nucleobase radical cations. The loss of an electron (ionization) from DNA generates an electron "hole" (a radical cation), located most often on its nucleobases, that migrates reversibly through duplex DNA by hopping until it is trapped in an irreversible chemical reaction. The particular sequence of nucleobases in a DNA oligomer determines both the efficiency of hopping and the specific location and nature of the damaging chemical reaction. In aqueous solution, DNA is a polyanion because of the negative charge carried by its phosphate groups. Counterions to the phosphate groups (typically Na(+)) play an important role in facilitating both hopping and the eventual reaction of the radical cation with H(2)O. Irreversible reaction of a radical cation with H(2)O in duplex DNA occurs preferentially at the most reactive site. In normal DNA, comprising the four common DNA nucleobases G, C, A, and T, reaction occurs most commonly at a guanine, resulting in its conversion primarily to 8-oxo-7,8-dihydroguanine (8-OxoG). Both electronic and steric effects control the outcome of this process. If the DNA oligomer does not contain a suitable guanine, then reaction of the radical cation occurs at the thymine of a TT step, primarily by a tandem process. The oxidative damage of DNA is a complex process, influenced by charge transport and reactions that are controlled by a combination of enthalpic, entropic, steric, and

  6. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    Nucleobases in Carbonaceous Chondrites Z. Martins (1), O. Botta (2), M. L. Fogel (3), M. A. Sephton (4), D. P. Glavin (2), J. S. Watson (5), J. P. Dworkin (2), A. W. Schwartz (6) and P. Ehrenfreund (1,6). (1) Astrobiology Laboratory, Leiden Institute of Chemistry, Leiden, The Netherlands, (2) NASA Goddard Space Flight Center, Goddard Center for Astrobiology, Greenbelt, MD, USA, (3) GL, Carnegie Institution of Washington, Washington DC, USA, (4) Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London, UK, (5) Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, UK, (6) Radboud University Nijmegen, Nijmegen, The Netherlands. E-mail: z.martins@chem.leidenuniv.nl/Phone:+31715274440 Nucleobases are crucial compounds in terrestrial biochemistry, because they are key components of DNA and RNA. Carbonaceous meteorites have been analyzed for nucleobases by different research groups [1-5]. However, significant quantitative and qualitative differences were observed, leading to the controversial about the origin of these nucleobases. In order to establish the origin of these compounds in carbonaceous chondrites and to assess the plausibility of their exogenous delivery to the early Earth, we have performed formic acid extraction of samples of the Murchison meteorite [6], followed by an extensive purification procedure, analysis and quantification by high-performance liquid chromatography with UV absorption detection and gas chromatography-mass spectrometry. Our results were qualitatively consistent with previous results [3, 4], but showed significant quantitative differences. Compound specific carbon isotope values were obtained, using gas chromatography-combustion- isotope ratio mass spectrometry. A soil sample collected in the proximity of the Murchison meteorite fall site was subjected to the same extraction, purification and analysis procedure

  7. Content variations of triterpenic acid, nucleoside, nucleobase, and sugar in jujube (Ziziphus jujuba) fruit during ripening.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Qian, Dawei; Tang, Yuping; Wu, Dawei; Su, Shulan; Wang, Hanqing; Zhao, Yunan

    2015-01-15

    Jujube (Ziziphus jujuba) fruit is widely consumed as food and traditional Chinese medicine in Asian countries due to its potential effects for human health. To facilitate selection of the maturity stage providing optimum health benefits, jujube fruits were analysed at six stages of growth (S1-6) for triterpenic acids, nucleosides, nucleobases, and sugars by UHPLC-MS/MS or HPLC-ELSD methods. The content levels of most triterpenic acids and sugars increased with ripening, and reached the highest at S5 and S6, respectively. The accumulation of the cyclic nucleotides (cAMP and cGMP) was mainly in the later stage of ripening (S5-6). Therefore, if taking triterpenic acids as the major quality indicator, S5 should be the ideal time to harvest jujube fruit, and the full ripen stage (S6) maybe the best choice when taking sugars and cyclic nucleotides as the most important components. PMID:25149013

  8. Proton Transfer in Nucleobases is Mediated by Water

    SciTech Connect

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  9. Characterization of poly(N-isopropylacrylamide)-nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds.

    PubMed

    Yang, Hsiu-Wen; Lee, Ai-Wei; Huang, Chi-Hsien; Chen, Jem-Kun

    2014-11-01

    In this study we employed poly(N-isopropylacrylamide) (PNIPAAm) as a matrix that we hybridized with five different nucleobase units (adenine, thymine, uracil, guanine, cytosine) to generate PNIPAAm-nucleobase supramolecular complexes (PNSCs) stabilized through bio-multiple hydrogen bonds (BMHBs). These nucleobase units interacted with PNIPAAm through BMHBs of various strengths, leading to competition between the BMHBs and the intramolecular hydrogen bonds (HBs) of PNIPAAm. The changes in morphology, crystalline structure, and thermoresponsive behavior of PNIPAAm were related to the strength of its BMHBs with the nucleobases. The strengths of the BMHBs followed the order guanine > adenine > thymine > cytosine > uracil, as verified through analyses of Fourier transform infrared spectra, lower critical solution temperatures, and inter-association equilibrium constants. The PNSCs also exhibited remarkable improvements in conductivity upon the formation of BMHBs, which facilitated proton transport. The neat PNIPAAm film was an insulator, but it transformed into a semiconductor after hybridizing with the nucleobases. In particular, the resistivity of the PNIPAAm-guanine supramolecular complex decreased to 1.35 × 10(5) ohm cm. The resistivity of the PNIPAAm-cytosine supramolecular complex increased significantly from 5.83 × 10(6) to 3 × 10(8) ohm cm upon increasing the temperature from 40 to 50 °C, suggesting that this material might have applicability in thermo-sensing. The ability to significantly improve the conductivity of hydrogels through such a simple approach involving BMHBs might facilitate their use as novel materials in bioelectronics. PMID:25196131

  10. Spectroscopy of Isolated Prebiotic Nucleobases

    NASA Technical Reports Server (NTRS)

    Svadlenak, Nathan; Callahan, Michael P.; Ligare, Marshall; Gulian, Lisa; Gengeliczki, Zsolt; Nachtigallova, Dana; Hobza, Pavel; deVries, Mattanjah

    2011-01-01

    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions.

  11. Does urbanization facilitate individual recognition of humans by house sparrows?

    PubMed

    Vincze, Ernő; Papp, Sándor; Preiszner, Bálint; Seress, Gábor; Liker, András; Bókony, Veronika

    2015-01-01

    Wild animals living in proximity to humans may benefit from recognizing people individually and adjusting their behaviour to the potential risk or gain expected from each person. Although several urban-dwelling species exhibit such skills, it is unclear whether this is due to pre-existing advanced cognitive abilities of taxa predisposed for city life or arises specifically in urban populations either by selection or through ontogenetic changes facilitated by exposure to humans. To test these alternatives, we studied populations of house sparrows (Passer domesticus) along the urbanization gradient. We manipulated the birds' experience (hostile or not) associated with humans with different faces (masks) and measured their behavioural responses to the proximity of each person. Contrary to our expectations, we found that while rural birds showed less fear of the non-hostile than of the hostile or an unfamiliar person, urban birds made no distinction. These results indicate that house sparrows are less able to recognize individual humans or less willing to behaviourally respond to them in more urbanized habitats with high human population density. We propose several mechanisms that may explain this difference, including reduced pay-off of discrimination due to a low chance of repeated interactions with city people, or a higher likelihood that city people will ignore them. PMID:25164623

  12. Facilitated early cortical processing of nude human bodies.

    PubMed

    Alho, Jussi; Salminen, Nelli; Sams, Mikko; Hietanen, Jari K; Nummenmaa, Lauri

    2015-07-01

    Functional brain imaging has identified specialized neural systems supporting human body perception. Responses to nude vs. clothed bodies within this system are amplified. However, it remains unresolved whether nude and clothed bodies are processed by same cerebral networks or whether processing of nude bodies recruits additional affective and arousal processing areas. We recorded simultaneous MEG and EEG while participants viewed photographs of clothed and nude bodies. Global field power revealed a peak ∼145ms after stimulus onset to both clothed and nude bodies, and ∼205ms exclusively to nude bodies. Nude-body-sensitive responses were centered first (100-200ms) in the extrastriate and fusiform body areas, and subsequently (200-300ms) in affective-motivational areas including insula and anterior cingulate cortex. We conclude that visibility of sexual features facilitates early cortical processing of human bodies, the purpose of which is presumably to trigger sexual behavior and ultimately ensure reproduction. PMID:25960070

  13. Chemoenzymatic synthesis and utilization of a SAM analog with an isomorphic nucleobase.

    PubMed

    Vranken, C; Fin, A; Tufar, P; Hofkens, J; Burkart, M D; Tor, Y

    2016-07-14

    SalL, an enzyme that catalyzes the synthesis of SAM from l-methionine and 5'-chloro-5'-deoxyoadenosine, is shown to accept 5'-chloro-5'-deoxythienoadenosine as a substrate and facilitate the synthesis of a synthetic SAM analog with an unnatural nucleobase. This synthetic cofactor is demonstrated to replace SAM in the DNA methylation reaction with M.TaqI. PMID:27270873

  14. Nucleobase-functionalized ABC triblock copolymers: self-assembly of supramolecular architectures.

    PubMed

    Zhang, Keren; Fahs, Gregory B; Aiba, Motohiro; Moore, Robert B; Long, Timothy E

    2014-08-21

    RAFT polymerization afforded acrylic ABC triblock copolymers with self-complementary nucleobase-functionalized external blocks and a low-Tg soft central block. ABC triblock copolymers self-assembled into well-defined lamellar microphase-separated morphologies for potential applications as thermoplastic elastomers. Complementary hydrogen bonding within the hard phase facilitated self-assembly and enhanced mechanical performance. PMID:24984613

  15. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals.

    PubMed

    Furukawa, Junji; Inoue, Katsuhisa; Maeda, Junya; Yasujima, Tomoya; Ohta, Kinya; Kanai, Yoshikatsu; Takada, Tappei; Matsuo, Hirotaka; Yuasa, Hiroaki

    2015-01-01

    The purine salvage pathway plays a major role in the nucleotide production, relying on the supply of nucleobases and nucleosides from extracellular sources. Although specific transporters have been suggested to be involved in facilitating their transport across the plasma membrane in mammals, those which are specifically responsible for utilization of extracellular nucleobases remain unknown. Here we present the molecular and functional characterization of SLC43A3, an orphan transporter belonging to an amino acid transporter family, as a purine-selective nucleobase transporter. SLC43A3 was highly expressed in the liver, where it was localized to the sinusoidal membrane of hepatocytes, and the lung. In addition, SLC43A3 expressed in MDCKII cells mediated the uptake of purine nucleobases such as adenine, guanine, and hypoxanthine without requiring typical driving ions such as Na(+) and H(+), but it did not mediate the uptake of nucleosides. When SLC43A3 was expressed in APRT/HPRT1-deficient A9 cells, adenine uptake was found to be low. However, it was markedly enhanced by the introduction of SLC43A3 with APRT. In HeLa cells, knock-down of SLC43A3 markedly decreased adenine uptake. These data suggest that SLC43A3 is a facilitative and purine-selective nucleobase transporter that mediates the cellular uptake of extracellular purine nucleobases in cooperation with salvage enzymes. PMID:26455426

  16. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals

    PubMed Central

    Furukawa, Junji; Inoue, Katsuhisa; Maeda, Junya; Yasujima, Tomoya; Ohta, Kinya; Kanai, Yoshikatsu; Takada, Tappei; Matsuo, Hirotaka; Yuasa, Hiroaki

    2015-01-01

    The purine salvage pathway plays a major role in the nucleotide production, relying on the supply of nucleobases and nucleosides from extracellular sources. Although specific transporters have been suggested to be involved in facilitating their transport across the plasma membrane in mammals, those which are specifically responsible for utilization of extracellular nucleobases remain unknown. Here we present the molecular and functional characterization of SLC43A3, an orphan transporter belonging to an amino acid transporter family, as a purine-selective nucleobase transporter. SLC43A3 was highly expressed in the liver, where it was localized to the sinusoidal membrane of hepatocytes, and the lung. In addition, SLC43A3 expressed in MDCKII cells mediated the uptake of purine nucleobases such as adenine, guanine, and hypoxanthine without requiring typical driving ions such as Na+ and H+, but it did not mediate the uptake of nucleosides. When SLC43A3 was expressed in APRT/HPRT1-deficient A9 cells, adenine uptake was found to be low. However, it was markedly enhanced by the introduction of SLC43A3 with APRT. In HeLa cells, knock-down of SLC43A3 markedly decreased adenine uptake. These data suggest that SLC43A3 is a facilitative and purine-selective nucleobase transporter that mediates the cellular uptake of extracellular purine nucleobases in cooperation with salvage enzymes. PMID:26455426

  17. Target Cell Cyclophilins Facilitate Human Papillomavirus Type 16 Infection

    PubMed Central

    Sapp, Martin

    2009-01-01

    Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV–induced diseases. PMID:19629175

  18. Cannabinoid facilitation of fear extinction memory recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  19. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  20. Cannabinoid facilitation of fear extinction memory recall in humans.

    PubMed

    Rabinak, Christine A; Angstadt, Mike; Sripada, Chandra S; Abelson, James L; Liberzon, Israel; Milad, Mohammed R; Phan, K Luan

    2013-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 h prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 h after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 h after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. This article is part of a Special Issue entitled 'Cognitive Enhancers'. PMID:22796109

  1. RNA fragment modeling with a nucleobase discrete-state model

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Bian, Yunqiang; Lin, Hui; Wang, Wei

    2012-02-01

    In this work we develop an approach for predicting the tertiary structures of RNA fragments by combining an RNA nucleobase discrete state (RNAnbds) model, a sequential Monte Carlo method, and a statistical potential. The RNAnbds model is designed for optimizing the configuration of nucleobases with respect to their preceding ones along the sequence and their spatial neighbors, in contrast to previous works that focus on RNA backbones. The tests of our approach with the fragments taken from a small RNA pseudoknot and a 23S ribosome RNA show that for short fragments (<10 nucleotides), the root mean square deviations (RMSDs) between the predicted and the experimental ones are generally smaller than 3 Å; for slightly longer fragments (10-15 nucleotides), most RMSDs are smaller than 4 Å. The comparison of our method with another physics-based predictor with a testing set containing nine loops shows that ours is superior in both accuracy and efficiency. Our approach is useful in facilitating RNA three-dimensional structure prediction as well as loop modeling. It also holds the promise of providing insight into the structural ensembles of RNA loops.

  2. Oxidative stress modulates nucleobase transport in microvascular endothelial cells.

    PubMed

    Bone, Derek B J; Antic, Milica; Vilas, Gonzalo; Hammond, James R

    2014-09-01

    Purine nucleosides and nucleobases play key roles in the physiological response to vascular ischemia/reperfusion events. The intra- and extracellular concentrations of these compounds are controlled, in part, by equilibrative nucleoside transporter subtype 1 (ENT1; SLC29A1) and by equilibrative nucleobase transporter subtype 1 (ENBT1). These transporters are expressed at the membranes of numerous cell types including microvascular endothelial cells. We studied the impact of reactive oxygen species on the function of ENT1 and ENBT1 in primary (CMVEC) and immortalized (HMEC-1) human microvascular endothelial cells. Both cell types displayed similar transporter expression profiles, with the majority (>90%) of 2-chloro[(3)H]adenosine (nucleoside) uptake mediated by ENT1 and [(3)H]hypoxanthine (nucleobase) uptake mediated by ENBT1. An in vitro mineral oil-overlay model of ischemia/reperfusion had no effect on ENT1 function, but significantly reduced ENBT1 Vmax in both cell types. This decrease in transport function was mimicked by the intracellular superoxide generator menadione and could be reversed by the superoxide dismutase mimetic MnTMPyP. In contrast, neither the extracellular peroxide donor TBHP nor the extracellular peroxynitrite donor 3-morpholinosydnonimine (SIN-1) affected ENBT1-mediated [(3)H]hypoxanthine uptake. SIN-1 did, however, enhance ENT1-mediated 2-chloro[(3)H]adenosine uptake. Our data establish HMEC-1 as an appropriate model for study of purine transport in CMVEC. Additionally, these data suggest that the generation of intracellular superoxide in ischemia/reperfusion leads to the down-regulation of ENBT1 function. Modification of purine transport by oxidant stress may contribute to ischemia/reperfusion induced vascular damage and should be considered in the development of therapeutic strategies. PMID:24976360

  3. Pain facilitates tactile processing in human somatosensory cortices.

    PubMed

    Ploner, Markus; Pollok, Bettina; Schnitzler, Alfons

    2004-09-01

    Touch and pain are intimately related modalities. Despite a substantial overlap in their cortical representations interactions between both modalities are largely unknown at the cortical level. We therefore used magnetoencephalography and selective nociceptive cutaneous laser stimulation to investigate the effects of brief painful stimuli on cortical processing of touch. Using a conditioning test stimulus paradigm, our results show that painful conditioning stimuli facilitate processing of tactile test stimuli applied 500 ms later. This facilitation applies to cortical responses later than 40 ms originating from primary (S1) and secondary (S2) somatosensory cortices but not to earlier S1 responses. By contrast, tactile conditioning stimuli yield a decrease of early as well as late responses to tactile test stimuli. Control experiments show that pain-induced facilitation of tactile processing is not restricted to the site of the painful conditioning stimulus, whereas auditory conditioning does not yield a comparable facilitation. Apart from a lack of spatial specificity, the facilitating effect of pain closely resembles attentional effects on cortical processing of tactile stimuli. Thus these findings may represent a physiological correlate of an alerting function of pain as a change in the internal state to prepare for processing signals of particular relevance. PMID:15115788

  4. Multifunctional, Biocompatible Supramolecular Hydrogelators Consist Only of Nucleobase, Amino Acid, and Glycoside

    PubMed Central

    Li, Xinming; Kuang, Yi; Shi, Junfeng; Gao, Yuan; Lin, Hsin-Chieh; Xu, Bing

    2011-01-01

    The integration of nucleobase, amino acid, and glycoside into a single molecule results in a novel class of supramolecular hydrogelators, which not only exhibit biocompatibility and biostability, but also facilitate the entry of nucleic acids into cytosol and nuclei of cells. This work illustrates a simple way to generate an unprecedented molecular architecture from the basic biological building blocks for the development of sophisticated soft nanomaterials, including supramolecular hydrogels. PMID:21928792

  5. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Dessent, Caroline E. H. E-mail: xuebin.wang@pnnl.gov; Hou, Gao-Lei; Wang, Xue-Bin E-mail: xuebin.wang@pnnl.gov

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl{sub 6}{sup 2−} dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl{sub 6}{sup 2−} ⋅ thymine and PtCl{sub 6}{sup 2−} ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl{sub 6}{sup 2−} ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to

  6. Communication: Photoactivation of nucleobase bound platinum(II) metal complexes: probing the influence of the nucleobase.

    PubMed

    Sen, Ananya; Dessent, Caroline E H

    2014-12-28

    We present UV laser action spectra (220-300 nm) of isolated nucleobase-bound Pt(II)(CN)4(2-) complexes, i.e., Pt(CN)4(2-)⋅M, where M = uracil, thymine, cytosine, and adenine. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photophysical and photochemical processes occurring in photodynamic platinum (II) drug therapies that target DNA. This is the first study to explore the specific role of the nucleobase in the photophysics of the aggregate complex. Each of the complexes studied displays a broadly similar absorption spectra, with a strong λmax ∼ 4.7 eV absorption band (nucleobase localized chromophore) and a subsequent increase in the absorption intensity towards higher spectral-energy (Pt(CN)4(2-) localized chromophore). However, strikingly different band widths are observed across the series of complexes, decreasing in the order Pt(CN)4(2-)⋅Thymine > Pt(CN)4(2-)⋅Uracil > Pt(CN)4(2-)⋅Adenine > Pt(CN)4(2-)⋅Cytosine. Changes in the bandwidth of the ∼4.7 eV band are accompanied by distinctive changes in the photofragment product ions observed following photoexcitation, with the narrower-bandwidth complexes showing a greater propensity to decay via electron detachment decay. We discuss these observations in the context of the distinctive nucleobase-dependent excited state lifetimes. PMID:25554122

  7. Pan-Pathway Based Interaction Profiling of FDA-Approved Nucleoside and Nucleobase Analogs with Enzymes of the Human Nucleotide Metabolism

    PubMed Central

    Egeblad, Louise; Welin, Martin; Flodin, Susanne; Gräslund, Susanne; Wang, Liya; Balzarini, Jan; Eriksson, Staffan; Nordlund, Pär

    2012-01-01

    To identify interactions a nucleoside analog library (NAL) consisting of 45 FDA-approved nucleoside analogs was screened against 23 enzymes of the human nucleotide metabolism using a thermal shift assay. The method was validated with deoxycytidine kinase; eight interactions known from the literature were detected and five additional interactions were revealed after the addition of ATP, the second substrate. The NAL screening gave relatively few significant hits, supporting a low rate of “off target effects.” However, unexpected ligands were identified for two catabolic enzymes guanine deaminase (GDA) and uridine phosphorylase 1 (UPP1). An acyclic guanosine prodrug analog, valaciclovir, was shown to stabilize GDA to the same degree as the natural substrate, guanine, with a ΔTagg around 7°C. Aciclovir, penciclovir, ganciclovir, thioguanine and mercaptopurine were also identified as ligands for GDA. The crystal structure of GDA with valaciclovir bound in the active site was determined, revealing the binding of the long unbranched chain of valaciclovir in the active site of the enzyme. Several ligands were identified for UPP1: vidarabine, an antiviral nucleoside analog, as well as trifluridine, idoxuridine, floxuridine, zidovudine, telbivudine, fluorouracil and thioguanine caused concentration-dependent stabilization of UPP1. A kinetic study of UPP1 with vidarabine revealed that vidarabine was a mixed-type competitive inhibitor with the natural substrate uridine. The unexpected ligands identified for UPP1 and GDA imply further metabolic consequences for these nucleoside analogs, which could also serve as a starting point for future drug design. PMID:22662200

  8. Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James, II; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nuc1eobases in meteorites has been debated for over 50 y. So far, the few nuc1eobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs; purine, 2,6-diminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analoge were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  9. Controlled English to facilitate human/machine analytical processing

    NASA Astrophysics Data System (ADS)

    Braines, Dave; Mott, David; Laws, Simon; de Mel, Geeth; Pham, Tien

    2013-06-01

    Controlled English is a human-readable information representation format that is implemented using a restricted subset of the English language, but which is unambiguous and directly accessible by simple machine processes. We have been researching the capabilities of CE in a number of contexts, and exploring the degree to which a flexible and more human-friendly information representation format could aid the intelligence analyst in a multi-agent collaborative operational environment; especially in cases where the agents are a mixture of other human users and machine processes aimed at assisting the human users. CE itself is built upon a formal logic basis, but allows users to easily specify models for a domain of interest in a human-friendly language. In our research we have been developing an experimental component known as the "CE Store" in which CE information can be quickly and flexibly processed and shared between human and machine agents. The CE Store environment contains a number of specialized machine agents for common processing tasks and also supports execution of logical inference rules that can be defined in the same CE language. This paper outlines the basic architecture of this approach, discusses some of the example machine agents that have been developed, and provides some typical examples of the CE language and the way in which it has been used to support complex analytical tasks on synthetic data sources. We highlight the fusion of human and machine processing supported through the use of the CE language and CE Store environment, and show this environment with examples of highly dynamic extensions to the model(s) and integration between different user-defined models in a collaborative setting.

  10. Self-motion facilitates echo-acoustic orientation in humans

    PubMed Central

    Wallmeier, Ludwig; Wiegrebe, Lutz

    2014-01-01

    The ability of blind humans to navigate complex environments through echolocation has received rapidly increasing scientific interest. However, technical limitations have precluded a formal quantification of the interplay between echolocation and self-motion. Here, we use a novel virtual echo-acoustic space technique to formally quantify the influence of self-motion on echo-acoustic orientation. We show that both the vestibular and proprioceptive components of self-motion contribute significantly to successful echo-acoustic orientation in humans: specifically, our results show that vestibular input induced by whole-body self-motion resolves orientation-dependent biases in echo-acoustic cues. Fast head motions, relative to the body, provide additional proprioceptive cues which allow subjects to effectively assess echo-acoustic space referenced against the body orientation. These psychophysical findings clearly demonstrate that human echolocation is well suited to drive precise locomotor adjustments. Our data shed new light on the sensory–motor interactions, and on possible optimization strategies underlying echolocation in humans. PMID:26064556

  11. Making Gazes Explicit: Facilitating Epistemic Access in the Humanities

    ERIC Educational Resources Information Center

    Luckett, Kathy; Hunma, Aditi

    2014-01-01

    This paper addresses the problem of curriculum design in the Humanities and Social Sciences, and more specifically the challenge of designing foundation courses for first-generation or "disadvantaged" learners. Located in the social realist school of the sociology of education studies that builds on the legacy of Basil Bernstein, we…

  12. Reward association facilitates distractor suppression in human visual search.

    PubMed

    Gong, Mengyuan; Yang, Feitong; Li, Sheng

    2016-04-01

    Although valuable objects are attractive in nature, people often encounter situations where they would prefer to avoid such distraction while focusing on the task goal. Contrary to the typical effect of attentional capture by a reward-associated item, we provide evidence for a facilitation effect derived from the active suppression of a high reward-associated stimulus when cuing its identity as distractor before the display of search arrays. Selection of the target is shown to be significantly faster when the distractors were in high reward-associated colour than those in low reward-associated or non-rewarded colours. This behavioural reward effect was associated with two neural signatures before the onset of the search display: the increased frontal theta oscillation and the strengthened top-down modulation from frontal to anterior temporal regions. The former suggests an enhanced working memory representation for the reward-associated stimulus and the increased need for cognitive control to override Pavlovian bias, whereas the latter indicates that the boost of inhibitory control is realized through a frontal top-down mechanism. These results suggest a mechanism in which the enhanced working memory representation of a reward-associated feature is integrated with task demands to modify attentional priority during active distractor suppression and benefit behavioural performance. PMID:26797805

  13. Identification and Functional Characterization of the First Nucleobase Transporter in Mammals

    PubMed Central

    Yamamoto, Syunsuke; Inoue, Katsuhisa; Murata, Tomoaki; Kamigaso, Syunsuke; Yasujima, Tomoya; Maeda, Jun-ya; Yoshida, Yukihiro; Ohta, Kin-ya; Yuasa, Hiroaki

    2010-01-01

    Nucleobases are important compounds that constitute nucleosides and nucleic acids. Although it has long been suggested that specific transporters are involved in their intestinal absorption and uptake in other tissues, none of their molecular entities have been identified in mammals to date. Here we describe identification of rat Slc23a4 as the first sodium-dependent nucleobase transporter (rSNBT1). The mRNA of rSNBT1 was expressed highly and only in the small intestine. When transiently expressed in HEK293 cells, rSNBT1 could transport uracil most efficiently. The transport of uracil mediated by rSNBT1 was sodium-dependent and saturable with a Michaelis constant of 21.2 μm. Thymine, guanine, hypoxanthine, and xanthine were also transported, but adenine was not. It was also suggested by studies of the inhibitory effect on rSNBT1-mediated uracil transport that several nucleobase analogs such as 5-fluorouracil are recognized by rSNBT1, but cytosine and nucleosides are not or only poorly recognized. Furthermore, rSNBT1 fused with green fluorescent protein was mainly localized at the apical membrane, when stably expressed in polarized Madin-Darby canine kidney II cells. These characteristics of rSNBT1 were almost fully in agreement with those of the carrier-mediated transport system involved in intestinal uracil uptake. Therefore, it is likely that rSNBT1 is its molecular entity or at least in part responsible for that. It was also found that the gene orthologous to the rSNBT1 gene is genetically defective in humans. This may have a biological and evolutional meaning in the transport and metabolism of nucleobases. The present study provides novel insights into the specific transport and metabolism of nucleobases and their analogs for therapeutic use. PMID:20042597

  14. Molecular crowding enhances facilitated diffusion of two human DNA glycosylases.

    PubMed

    Cravens, Shannen L; Schonhoft, Joseph D; Rowland, Meng M; Rodriguez, Alyssa A; Anderson, Breeana G; Stivers, James T

    2015-04-30

    Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA. PMID:25845592

  15. Molecular crowding enhances facilitated diffusion of two human DNA glycosylases

    PubMed Central

    Cravens, Shannen L.; Schonhoft, Joseph D.; Rowland, Meng M.; Rodriguez, Alyssa A.; Anderson, Breeana G.; Stivers, James T.

    2015-01-01

    Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA. PMID:25845592

  16. Hydrogen bond formation between the naturally modified nucleobase and phosphate backbone

    PubMed Central

    Sheng, Jia; Zhang, Wen; Hassan, Abdalla E. A.; Gan, Jianhua; Soares, Alexei S.; Geng, Song; Ren, Yi; Huang, Zhen

    2012-01-01

    Natural RNAs, especially tRNAs, are extensively modified to tailor structure and function diversities. Uracil is the most modified nucleobase among all natural nucleobases. Interestingly, >76% of uracil modifications are located on its 5-position. We have investigated the natural 5-methoxy (5-O-CH3) modification of uracil in the context of A-form oligonucleotide duplex. Our X-ray crystal structure indicates first a H-bond formation between the uracil 5-O-CH3 and its 5′-phosphate. This novel H-bond is not observed when the oxygen of 5-O-CH3 is replaced with a larger atom (selenium or sulfur). The 5-O-CH3 modification does not cause significant structure and stability alterations. Moreover, our computational study is consistent with the experimental observation. The investigation on the uracil 5-position demonstrates the importance of this RNA modification at the atomic level. Our finding suggests a general interaction between the nucleobase and backbone and reveals a plausible function of the tRNA 5-O-CH3 modification, which might potentially rigidify the local conformation and facilitates translation. PMID:22641848

  17. Facilitated transport of amino acids across organic phases and the human erythrocyte membrane.

    PubMed Central

    Hider, R C; McCormack, W

    1980-01-01

    1. An artificial facilitated amino-acid-transfer process operating across a chloroform phase is reported. 2. This process utilizes a family of bis(salicylamidato)copper(II) complexes. 3. A mechanism is proposed for this process and for its sensitivity towards cyanide and bathophenanthroline sulphonate. 4. Facilitated transfer of L-leucine in human erythrocytes has been shown to be inhibited by bathophenanthroline sulphonate. PMID:7396879

  18. Facilitation from flexor digitorum superficialis to extensor carpi radialis in humans.

    PubMed

    Nito, Mitsuhiro; Hashizume, Wataru; Miyasaka, Takuji; Suzuki, Katsuhiko; Sato, Toshiaki; Fujii, Hiromi; Shindo, Masaomi; Naito, Akira

    2016-08-01

    Effects of low-threshold afferents from the flexor digitorum superficialis (FDS) to the extensor carpi radialis (ECR) motoneurons were examined using a post-stimulus time-histogram (PSTH) and electromyogram-averaging (EMG-A) methods in eight healthy human subjects. In the PSTH study in five of the eight subjects, electrical conditioning stimuli (ES) to the median nerve branch innervating FDS with the intensity below the motor threshold induced excitatory effects (facilitation) in 39 out of 92 ECR motor units. In 11 ECR motor units, the central synaptic delay of the facilitation was -0.1 ± 0.3 ms longer than that of the homonymous facilitation of ECR. Mechanical conditioning stimuli (MS) to FDS with the intensity below the threshold of the tendon(T)-wave-induced facilitation in 51 out of 51 ECR motor units. With the EMG-A method, early and significant peaks were produced by ES and MS in all the eight subjects. The difference between latencies of the peaks by ES and MS was almost equivalent to that of the Hoffmann- and T-waves of FDS by ES and MS. The peak was diminished by tonic vibration stimuli to FDS. These findings suggest that a facilitation from FDS to ECR exists in humans and group Ia afferents mediate the facilitation through a monosynaptic path. PMID:27010723

  19. Latest advances in biomaterials: from deoxyribonucleic acid to nucleobases

    NASA Astrophysics Data System (ADS)

    Ouchen, Fahima; Gomez, Eliot; Joyce, Donna; Williams, Adrienne; Kim, Steve; Heckman, Emily; Johnson, Lewis; Yaney, Perry; Venkat, Narayanan; Steckl, Andrew; Kajzar, François; Rau, Ileana; Pawlicka, Agnieszka; Prasad, Paras; Grote, James

    2014-03-01

    This paper is a review of the recent research in bio-based materials for photonics and electronics applications. Materials that we have been working with include: deoxyribonucleic acid (DNA)-based biopolymers and nucleobases. We will highlight work on increasing the ionic conductivity of DNA-based membranes, enhancing the direct (DC) current and photoconductivity of DNA-based biopolymers, crosslinking of DNA-based biopolymers and promising applications for DNA nucleobases. Key

  20. Tutorial Facilitation in the Humanities Based on the Tenets of Carl Rogers

    ERIC Educational Resources Information Center

    Heim, Caroline

    2012-01-01

    This article introduces a model for group facilitation in the humanities based on Carl Rogers' model for group psychotherapy. Certain aspects of Carl Rogers' reflective learning strategies are reappraised and principles, specific only to psychotherapy, are introduced. Five of Rogers' axioms are applied to the tutorial discussion model: a…

  1. STELLA Facilitates Differentiation of Germ Cell and Endodermal Lineages of Human Embryonic Stem Cells

    PubMed Central

    Wongtrakoongate, Patompon; Jones, Mark; Gokhale, Paul J.; Andrews, Peter W.

    2013-01-01

    Stella is a developmentally regulated gene highly expressed in mouse embryonic stem (ES) cells and in primordial germ cells (PGCs). In human, the gene encoding the STELLA homologue lies on chromosome 12p, which is frequently amplified in long-term cultured human ES cells. However, the role played by STELLA in human ES cells has not been reported. In the present study, we show that during retinoic acid (RA)-induced differentiation of human ES cells, expression of STELLA follows that of VASA, a marker of germline differentiation. By contrast, human embryonal carcinoma cells express STELLA at a higher level compared with both karyotypically normal and abnormal human ES cell lines. We found that over-expression of STELLA does not interfere with maintenance of the stem cell state of human ES cells, but following retinoic acid induction it leads to up-regulation of germline- and endodermal-associated genes, whereas neural markers PAX6 and NEUROD1 are down-regulated. Further, STELLA over-expression facilitates the differentiation of human ES cells into BE12-positive cells, in which the expression of germline- and endodermal-associated genes is enriched, and suppresses differentiation of the neural lineage. Taken together, this finding suggests a role for STELLA in facilitating germline and endodermal differentiation of human ES cells. PMID:23457636

  2. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P.

    PubMed

    Chen, F H; Dong, G H; Zhang, D J; Liu, X Y; Jia, X; An, C B; Ma, M M; Xie, Y W; Barton, L; Ren, X Y; Zhao, Z J; Wu, X H; Jones, M K

    2015-01-16

    Our understanding of when and how humans adapted to living on the Tibetan Plateau at altitudes above 2000 to 3000 meters has been constrained by a paucity of archaeological data. Here we report data sets from the northeastern Tibetan Plateau indicating that the first villages were established only by 5200 calendar years before the present (cal yr B.P.). Using these data, we tested the hypothesis that a novel agropastoral economy facilitated year-round living at higher altitudes since 3600 cal yr B.P. This successful subsistence strategy facilitated the adaptation of farmers-herders to the challenges of global temperature decline during the late Holocene. PMID:25593179

  3. Facilitators and barriers in the humanization of childbirth practice in Japan

    PubMed Central

    2010-01-01

    Background Humanizing birth means considering women's values, beliefs, and feelings and respecting their dignity and autonomy during the birthing process. Reducing over-medicalized childbirths, empowering women and the use of evidence-based maternity practice are strategies that promote humanized birth. Nevertheless, the territory of birth and its socio-cultural values and beliefs concerning child bearing can deeply affect birthing practices. The present study aims to explore the Japanese child birthing experience in different birth settings where the humanization of childbirth has been indentified among the priority goals of the institutions concerned, and also to explore the obstacles and facilitators encountered in the practice of humanized birth in those centres. Methods A qualitative field research design was used in this study. Forty four individuals and nine institutions were recruited. Data was collected through observation, field notes, focus groups, informal and semi-structured interviews. A qualitative content analysis was performed. Results All the settings had implemented strategies aimed at reducing caesarean sections, and keeping childbirth as natural as possible. The barriers and facilitators encountered in the practice of humanized birth were categorized into four main groups: rules and strategies, physical structure, contingency factors, and individual factors. The most important barriers identified in humanized birth care were the institutional rules and strategies that restricted the presence of a birth companion. The main facilitators were women's own cultural values and beliefs in a natural birth, and institutional strategies designed to prevent unnecessary medical interventions. Conclusions The Japanese birthing institutions which have identified as part of their mission to instate humanized birth have, as a whole, been successful in improving care. However, barriers remain to achieving the ultimate goal. Importantly, the cultural values and

  4. A murine-ES like state facilitates transgenesis and homologous recombination in human pluripotent stem cells

    PubMed Central

    Buecker, Christa; Chen, Hsu-Hsin; Polo, Jose; Daheron, Laurence; Bu, Lei; Barakat, Tahsin Stefan; Okwieka, Patricia; Porter, Andrew; Gribnau, Joost; Hochedlinger, Konrad; Geijsen, Niels

    2010-01-01

    Murine embryonic stem cells have been shown to exist in two functionally distinct pluripotent states, embryonic stem cells (ES cell)- and epiblast stem cells (EpiSCs), which are defined by the culture growth factor conditions. Human ES cells appear to exist in an epiblast-like state, which in comparison to their murine counterparts, is relatively difficult to propagate and manipulate. As a result, gene targeting is difficult and to-date only a handful of human knock-in or knock-out cell lines exist. We explored whether an alternative stem cell state exists for human stem cells as well, and demonstrate that manipulation of the growth factor milieu allows the derivation of a novel human stem cell type that displays morphological, molecular and functional properties of murine ES cells and facilitates gene targeting. As such, the murine ES-like state provides a powerful tool for the generation of recombinant human pluripotent stem cell lines. PMID:20569691

  5. Excitation of nucleobases from a computational perspective I: reaction paths.

    PubMed

    Giussani, Angelo; Segarra-Martí, Javier; Roca-Sanjuán, Daniel; Merchán, Manuela

    2015-01-01

    The main intrinsic photochemical events in nucleobases can be described on theoretical grounds within the realm of non-adiabatic computational photochemistry. From a static standpoint, the photochemical reaction path approach (PRPA), through the computation of the respective minimum energy path (MEP), can be regarded as the most suitable strategy in order to explore the electronically excited isolated nucleobases. Unfortunately, the PRPA does not appear widely in the studies reported in the last decade. The main ultrafast decay observed experimentally for the gas-phase excited nucleobases is related to the computed barrierless MEPs from the bright excited state connecting the initial Franck-Condon region and a conical intersection involving the ground state. At the highest level of theory currently available (CASPT2//CASPT2), the lowest excited (1)(ππ*) hypersurface for cytosine has a shallow minimum along the MEP deactivation pathway. In any case, the internal conversion processes in all the natural nucleobases are attained by means of interstate crossings, a self-protection mechanism that prevents the occurrence of photoinduced damage of nucleobases by ultraviolet radiation. Many alternative and secondary paths have been proposed in the literature, which ultimately provide a rich and constructive interplay between experimentally and theoretically oriented research. PMID:24264958

  6. HMGB1 interacts with XPA to facilitate the processing of DNA interstrand crosslinks in human cells

    PubMed Central

    Mukherjee, Anirban; Vasquez, Karen M.

    2016-01-01

    Many effective agents used in cancer chemotherapy cause DNA interstrand crosslinks (ICLs), which covalently link both strands of the double helix together resulting in cytotoxicity. ICLs are thought to be processed by proteins from a variety of DNA repair pathways; however, a clear understanding of ICL recognition and repair processing in human cells is lacking. Previously, we found that the high mobility group box 1 (HMGB1) protein bound to triplex-directed psoralen ICLs (TFO-ICLs) in vitro, cooperatively with NER damage recognition proteins, promoted removal of UVC-induced lesions and facilitated error-free repair of TFO-ICLs in mouse fibroblasts. Here, we demonstrate that HMGB1 recognizes TFO-ICLs in human cells, and its depletion increases ICL-induced mutagenesis in human cells without altering the mutation spectra. In contrast, HMGB1 depletion in XPA-deficient human cells significantly altered the ICL-induced mutation spectrum from predominantly T→A to T→G transversions. Moreover, the recruitment of XPA and HMGB1 to the ICLs is co-dependent. Finally, we show that HMGB1 specifically introduces negative supercoils in ICL-containing plasmids in HeLa cell extracts. Taken together, our data suggest that in human cells, HMGB1 functions in association with XPA on ICLs and facilitates the formation of a favorable architectural environment for ICL repair processing. PMID:26578599

  7. HMGB1 interacts with XPA to facilitate the processing of DNA interstrand crosslinks in human cells.

    PubMed

    Mukherjee, Anirban; Vasquez, Karen M

    2016-02-18

    Many effective agents used in cancer chemotherapy cause DNA interstrand crosslinks (ICLs), which covalently link both strands of the double helix together resulting in cytotoxicity. ICLs are thought to be processed by proteins from a variety of DNA repair pathways; however, a clear understanding of ICL recognition and repair processing in human cells is lacking. Previously, we found that the high mobility group box 1 (HMGB1) protein bound to triplex-directed psoralen ICLs (TFO-ICLs) in vitro, cooperatively with NER damage recognition proteins, promoted removal of UVC-induced lesions and facilitated error-free repair of TFO-ICLs in mouse fibroblasts. Here, we demonstrate that HMGB1 recognizes TFO-ICLs in human cells, and its depletion increases ICL-induced mutagenesis in human cells without altering the mutation spectra. In contrast, HMGB1 depletion in XPA-deficient human cells significantly altered the ICL-induced mutation spectrum from predominantly T→A to T→G transversions. Moreover, the recruitment of XPA and HMGB1 to the ICLs is co-dependent. Finally, we show that HMGB1 specifically introduces negative supercoils in ICL-containing plasmids in HeLa cell extracts. Taken together, our data suggest that in human cells, HMGB1 functions in association with XPA on ICLs and facilitates the formation of a favorable architectural environment for ICL repair processing. PMID:26578599

  8. Recognition of DNA sequencing through binding of nucleobases to graphene

    NASA Astrophysics Data System (ADS)

    Zaffino, Valentina

    Graphene is one of the most promising materials in nanotechnology. Its large surface to volume ratio, high conductivity and electron mobility at room temperature are outstanding properties for use in DNA sensors. For this study, we used Density Functional Theory (DFT), ?with and without the inclusion of van der Waals (vdW) interactions, ?to investigate the adsorption of nucleobases (cytosine, guanine, adenine, thymine, and uracil) on pristine graphene and graphene with defects (Divacancy and Stone-Wales). We investigated the performance of two types of vdW-DF functional (optB86b-vdW and rPW86-vdW), as well as the PBE functional, and their description of the adsorption geometry and electronic structure of the nucleobase-graphene systems.The inclusion of defects results in an increase in binding energy, closer adsorption of the molecule to graphene and greater buckling in both the graphene structure and nucleobase.

  9. Intracortical inhibition and facilitation in different representations of the human motor cortex.

    PubMed

    Chen, R; Tam, A; Bütefisch, C; Corwell, B; Ziemann, U; Rothwell, J C; Cohen, L G

    1998-12-01

    Intracortical inhibition and facilitation in different representations of the human motor cortex. J. Neurophysiol. 80: 2870-2881, 1998. Intracortical inhibition (ICI) and intracortical facilitation (ICF) of the human motor cortex can be studied with paired transcranial magnetic stimulation (TMS). Plastic changes and some neurological disorders in humans are associated with changes in ICI and ICF. Although well characterized in the hand representation, it is not known if ICI and ICF vary across different body part representations. Therefore we studied ICI and ICF in different motor representations of the human motor cortex. The target muscles were rectus abdominus (RA), biceps brachii (BB), abductor pollicis brevis (APB), quadriceps femoris (QF), and abductor hallucis (AH). For each muscle, we measured the rest and active motor thresholds (MTs), the motor-evoked potential (MEP) stimulus-response curve (MEP recruitment), ICI, and ICF. The effects of different interstimulus intervals (ISIs) were studied with a conditioning stimulus (CS) intensity of 80% active MT. The effects of different CS intensities were studied at ISI of 2 ms for ICI and ISI of 15 ms for ICF. MT was lowest for APB, followed by BB, AH, and QF, and was highest for RA. Except for BB, MEP recruitment was generally steeper for muscles with lower MT. ICI and ICF were present in all the motor representations tested. The stimulus intensity necessary to elicit ICI was consistently lower than that required to elicit ICF, suggesting that they are mediated by separate mechanisms. Despite wide differences in MT and MEP recruitment, the absolute CS intensities (expressed as percentage of the stimulator's output) required to elicit ICI and ICF appear unrelated to MT and MEP recruitment in the different muscles tested. These findings suggest that the intracortical mechanisms for inhibition and facilitation in different motor representations are not related to the strength of corticospinal projections. PMID

  10. Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles.

    PubMed

    Chandrasekaran, Navin Chandrakanth; Sanchez, Washington Y; Mohammed, Yousuf H; Grice, Jeffrey E; Roberts, Michael S; Barnard, Ross T

    2016-06-01

    Magnesium is an important micronutrient essential for various biological processes and its deficiency has been linked to several inflammatory disorders in humans. Topical magnesium delivery is one of the oldest forms of therapy for skin diseases, for example Dead Sea therapy and Epsom salt baths. Some anecdotal evidence and a few published reports have attributed amelioration of inflammatory skin conditions to the topical application of magnesium. On the other hand, transport of magnesium ions across the protective barrier of skin, the stratum corneum, is contentious. Our primary aim in this study was to estimate the extent of magnesium ion permeation through human skin and the role of hair follicles in facilitating the permeation. Upon topical application of magnesium solution, we found that magnesium penetrates through human stratum corneum and it depends on concentration and time of exposure. We also found that hair follicles make a significant contribution to magnesium penetration. PMID:27624531

  11. Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking

    PubMed Central

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A.

    2014-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a “do-it-yourself” basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide. PMID:24646489

  12. A tool to facilitate clinical biomarker studies - a tissue dictionary based on the Human Protein Atlas

    PubMed Central

    2012-01-01

    The complexity of tissue and the alterations that distinguish normal from cancer remain a challenge for translating results from tumor biological studies into clinical medicine. This has generated an unmet need to exploit the findings from studies based on cell lines and model organisms to develop, validate and clinically apply novel diagnostic, prognostic and treatment predictive markers. As one step to meet this challenge, the Human Protein Atlas project has been set up to produce antibodies towards human protein targets corresponding to all human protein coding genes and to map protein expression in normal human tissues, cancer and cells. Here, we present a dictionary based on microscopy images created as an amendment to the Human Protein Atlas. The aim of the dictionary is to facilitate the interpretation and use of the image-based data available in the Human Protein Atlas, but also to serve as a tool for training and understanding tissue histology, pathology and cell biology. The dictionary contains three main parts, normal tissues, cancer tissues and cells, and is based on high-resolution images at different magnifications of full tissue sections stained with H & E. The cell atlas is centered on immunofluorescence and confocal microscopy images, using different color channels to highlight the organelle structure of a cell. Here, we explain how this dictionary can be used as a tool to aid clinicians and scientists in understanding the use of tissue histology and cancer pathology in diagnostics and biomarker studies. PMID:22971420

  13. Photochemical etiology of promising ancestors of the RNA nucleobases.

    PubMed

    Brister, M M; Pollum, M; Crespo-Hernández, C E

    2016-07-27

    RNA is a product of chemical and biological evolution and the identification of its heterocyclic ancestors is essential for understanding the molecular origins of life. Among a diverse array of selection pressures thought to have shaped the composition of the nucleobases on prebiotic Earth, protection against intense ultraviolet radiation must have been essential. In this contribution, a detailed spectroscopic and photophysical investigation of barbituric acid and 2,4,6-triaminopyrimidine, two promising candidates for the prebiotic ancestors of RNA nucleobases, is presented in aqueous solution. It is shown that although these pyrimidine derivatives absorb ultraviolet radiation strongly, both compounds possess efficient electronic relaxation mechanisms for dissipating most of the absorbed ultraviolet energy to their aqueous environment as heat within hundreds of femtoseconds, thus safeguarding their chemical integrity. In fact, these two heterocyclic compounds rival the photostability observed in the canonical nucleobases in aqueous solution, thus supporting the recent proposal that both barbituric acid and 2,4,6-triaminopyrimidine are promising ancestors of the RNA nucleobases. PMID:26898746

  14. Direct Gene Transfer into Human Cultured Cells Facilitated by Laser Micropuncture of the Cell Membrane

    NASA Astrophysics Data System (ADS)

    Tao, Wen; Wilkinson, Joyce; Stanbridge, Eric J.; Berns, Michael W.

    1987-06-01

    The selective alteration of the cellular genome by laser microbeam irradiation has been extensively applied in cell biology. We report here the use of the third harmonic (355 nm) of an yttrium-aluminum garnet laser to facilitate the direct transfer of the neo gene into cultured human HT1080-6TG cells. The resultant transformants were selected in medium containing an aminoglycoside antibiotic, G418. Integration of the neo gene into individual human chromosomes and expression of the gene were demonstrated by Southern blot analyses, microcell-mediated chromosome transfer, and chromosome analyses. The stability of the integrated neo gene in the transformants was shown by a comparative growth assay in selective and nonselective media. Transformation and incorporation of the neo gene into the host genome occurred at a frequency of 8 × 10-4-3 × 10-3. This method appears to be 100-fold more efficient than the standard calcium phosphate-mediated method of DNA transfer.

  15. Subcortical Structures in Humans Can Be Facilitated by Transcranial Direct Current Stimulation

    PubMed Central

    Nonnekes, Jorik; Arrogi, Anass; Munneke, Moniek A. M.; van Asseldonk, Edwin H. F.; Oude Nijhuis, Lars B.; Geurts, Alexander C.; Weerdesteyn, Vivian

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability. Interestingly, in recent animal studies facilitatory effects of tDCS have also been observed on subcortical structures. Here, we sought to provide evidence for the potential of tDCS to facilitate subcortical structures in humans as well. Subjects received anodal-tDCS and sham-tDCS on two separate testing days in a counterbalanced order. After stimulation, we assessed the effect of tDCS on two responses that arise from subcortical structures; (1) wrist and ankle responses to an imperative stimulus combined with a startling acoustic stimulus (SAS), and (2) automatic postural responses to external balance perturbations with and without a concurrent SAS. During all tasks, response onsets were significantly faster following anodal-tDCS compared to sham-tDCS, both in trials with and without a SAS. The effect of tDCS was similar for the dominant and non-dominant leg. The SAS accelerated the onsets of ankle and wrist movements and the responses to backward, but not forward perturbations. The faster onsets of SAS-induced wrist and ankle movements and automatic postural responses following stimulation provide strong evidence that, in humans, subcortical structures - in particular the reticular formation - can be facilitated by tDCS. This effect may be explained by two mechanisms that are not mutually exclusive. First, subcortical facilitation may have resulted from enhanced cortico-reticular drive. Second, the applied current may have directly stimulated the reticular formation. Strengthening reticulospinal output by tDCS may be of interest to neurorehabilitation, as there is evidence for reticulospinal compensation after corticospinal lesions. PMID:25233458

  16. The Renaissance of Metal-Pyrimidine Nucleobase Coordination Chemistry.

    PubMed

    Lippert, Bernhard; Sanz Miguel, Pablo J

    2016-08-16

    The significance of metal ions for the function and properties of DNA and RNA, long seen primarily under biological aspects and medicinal uses, has recently gained a renewed momentum. This is a consequence of the advent of novel applications in the fields of materials science, biotechnology, and analytical sensor chemistry that relate to the designed incorporation of transition metal ions into nucleic acid base pairs. Ag(+) and Hg(2+) ions, binding to pyrimidine (pym) nucleobases, represent major players in this development. Interestingly, these metal ions were the ones that some 60 years ago started the field! At the same time, the mentioned metal ions had demonstrated a "special relationship" with the pym nucleobases cytosine, thymine, and uracil! Parallel work conducted with oligonucleotides and model nucleobases fostered numerous significant details of these interactions, in particular when X-ray crystallography was involved, correcting earlier views occasionally. Our own activities during the past three to four decades have focused on, among others, the coordination chemistry of transition and main-group metal ions with pym model nucleobases, with an emphasis on Pt(II) and Pd(II). It has always been our goal to deduce, if possible, the potential relevance of our findings for biological processes. It is interesting to put our data, in particular for trans-a2Pt(II) (a = NH3 or amine), into perspective with those of other metal ions, notably Ag(+) and Hg(2+). Irrespective of major differences in kinetics and lability/inertness between d(8) and d(10) metal ions, there is also a lot of similarity in structural aspects as a result of the preferred linear coordination geometry of these species. Moreover, the apparent clustering of metal ions to the pym nucleobases, which is presumably essential for the formation of nanoclusters on oligonucleotide scaffolds, is impressively reflected in model systems, as are reasons for inter-nucleobase cross-links containing more

  17. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol) into human erythrocytes.

    PubMed

    Kurlbaum, Max; Mülek, Melanie; Högger, Petra

    2013-01-01

    Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1), that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated. PMID:23646194

  18. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

    PubMed

    Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H

    2016-04-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences. PMID:26950095

  19. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  20. Communication: Photoactivation of nucleobase bound platinum{sup II} metal complexes: Probing the influence of the nucleobase

    SciTech Connect

    Sen, Ananya; Dessent, Caroline E. H.

    2014-12-28

    We present UV laser action spectra (220-300 nm) of isolated nucleobase-bound Pt{sup II}(CN){sub 4}{sup 2−} complexes, i.e., Pt(CN){sub 4}{sup 2−}⋅M, where M = uracil, thymine, cytosine, and adenine. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photophysical and photochemical processes occurring in photodynamic platinum (II) drug therapies that target DNA. This is the first study to explore the specific role of the nucleobase in the photophysics of the aggregate complex. Each of the complexes studied displays a broadly similar absorption spectra, with a strong λ{sub max} ∼ 4.7 eV absorption band (nucleobase localized chromophore) and a subsequent increase in the absorption intensity towards higher spectral-energy (Pt(CN){sub 4}{sup 2−} localized chromophore). However, strikingly different band widths are observed across the series of complexes, decreasing in the order Pt(CN){sub 4}{sup 2−}⋅Thymine > Pt(CN){sub 4}{sup 2−}⋅Uracil > Pt(CN){sub 4}{sup 2−}⋅Adenine > Pt(CN){sub 4}{sup 2−}⋅Cytosine. Changes in the bandwidth of the ∼4.7 eV band are accompanied by distinctive changes in the photofragment product ions observed following photoexcitation, with the narrower-bandwidth complexes showing a greater propensity to decay via electron detachment decay. We discuss these observations in the context of the distinctive nucleobase-dependent excited state lifetimes.

  1. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    PubMed Central

    Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse

    2015-01-01

    Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595

  2. Analogous corticocortical inhibition and facilitation in ipsilateral and contralateral human motor cortex representations of the tongue.

    PubMed

    Muellbacher, W; Boroojerdi, B; Ziemann, U; Hallett, M

    2001-11-01

    How the human brain controls activation of the ipsilateral part of midline muscles is unknown. We studied corticospinal and corticocortical network excitability of both ipsilateral and contralateral motor representations of the tongue to determine whether they are under analogous or disparate inhibitory and facilitatory corticocortical control. Motor evoked potentials (MEPs) to unilateral focal transcranial magnetic stimulation (TMS) of the tongue primary motor cortex were recorded simultaneously from the ipsilateral and contralateral lingual muscles. Single-pulse TMS was used to assess motor threshold (MT) and MEP recruitment. Paired-pulse TMS was used to study intracortical inhibition (ICI) and intracortical facilitation (ICF) at various interstimulus intervals (ISIs) between the conditioning stimulus (CS) and the test stimulus (TS), and at different CS and TS intensities, respectively. Focal TMS invariably produced MEPs in both ipsilateral and contralateral lingual muscles. MT was lower and MEP recruitment was steeper when recorded from the contralateral muscle group. ICI and ICF were identical in the ipsilateral and contralateral representations, with inhibition occurring at short ISIs (2 and 3 ms) and facilitation occurring at longer ISIs (10 and 15 ms). Moreover, changing one stimulus parameter regularly produced analogous changes in MEP size bilaterally, revealing strong linear correlations between ipsilateral and contralateral ICI and ICF (P < 0.0001). These findings indicate that the ipsilateral and contralateral representations of the tongue are under analogous inhibitory and facilitatory control, possibly by a common intracortical network. PMID:11779968

  3. Inspiratory resistances facilitate the diaphragm response to transcranial stimulation in humans

    PubMed Central

    Locher, Chrystèle; Raux, Mathieu; Fiamma, Marie-Noelle; Morélot-Panzini, Capucine; Zelter, Marc; Derenne, Jean-Philippe; Similowski, Thomas; Straus, Christian

    2006-01-01

    Background Breathing in humans is dually controlled for metabolic (brainstem commands) and behavioral purposes (suprapontine commands) with reciprocal modulation through spinal integration. Whereas the ventilatory response to chemical stimuli arises from the brainstem, the compensation of mechanical loads in awake humans is thought to involve suprapontine mechanisms. The aim of this study was to test this hypothesis by examining the effects of inspiratory resistive loading on the response of the diaphragm to transcranial magnetic stimulation. Results Six healthy volunteers breathed room air without load (R0) and then against inspiratory resistances (5 and 20 cmH2O/L/s, R5 and R20). Ventilatory variables were recorded. Transcranial magnetic stimulation (TMS) was performed during early inspiration (I) or late expiration (E), giving rise to motor evoked potentials (MEPs) in the diaphragm (Di) and abductor pollicis brevis (APB). Breathing frequency significantly decreased during R20 without any other change. Resistive breathing had no effect on the amplitude of Di MEPs, but shortened their latency (R20: -0.903 ms, p = 0.03) when TMS was superimposed on inspiration. There was no change in APB MEPs. Conclusion Inspiratory resistive breathing facilitates the diaphragm response to TMS while it does not increase the automatic drive to breathe. We interpret these findings as a neurophysiological substratum of the suprapontine nature of inspiratory load compensation in awake humans. PMID:16875504

  4. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease

    PubMed Central

    Eppig, Janan T.; Blake, Judith A.; Bult, Carol J.; Kadin, James A.; Richardson, Joel E.

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse–human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human–Mouse: Disease Connection, allows users to explore gene–phenotype–disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  5. Parallel workflow tools to facilitate human brain MRI post-processing

    PubMed Central

    Cui, Zaixu; Zhao, Chenxi; Gong, Gaolang

    2015-01-01

    Multi-modal magnetic resonance imaging (MRI) techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues. PMID:26029043

  6. Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane

    SciTech Connect

    Tao, W.; Wilkinson, J.; Stanbridge, E.J.; Berns, M.W.

    1987-06-01

    The selective alteration of the cellular genome by laser microbeam irradiation has been extensively applied in cell biology. We report here the use of the third harmonic (355 nm) of an yttrium-aluminum garnet laser to facilitate the direct transfer of the neo gene into cultured human HT1080-6TG cells. The resultant transformants were selected in media containing an aminoglycoside antibiotic, G418. Integration of the neo gene into individual chromosomes and expression of the gene were demonstrated by Southern blot analyses, microcell-mediated chromosome transfer, and chromosome analyses. The stability of the integrated neo gene in the transformants was shown by a comparative growth assay in selective and nonselective media. Transformation and incorporation of the neo gene into the host genome occurred at a frequency of 8x10-4-3x10-3. This method appears to be 100-fold more efficient than the standard calcium phosphate-mediated method of DNA transfer.

  7. FUN26 (Function Unknown Now 26) Protein from Saccharomyces cerevisiae Is a Broad Selectivity, High Affinity, Nucleoside and Nucleobase Transporter*

    PubMed Central

    Boswell-Casteel, Rebba C.; Johnson, Jennifer M.; Duggan, Kelli D.; Roe-Žurž, Zygy; Schmitz, Hannah; Burleson, Carter; Hays, Franklin A.

    2014-01-01

    Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that transport nucleosides and, to a lesser extent, nucleobases across cell membranes. ENTs modulate efficacy for a range of human therapeutics and function in a diffusion-controlled bidirectional manner. A detailed understanding of ENT function at the molecular level has remained elusive. FUN26 (function unknown now 26) is a putative ENT homolog from S. cerevisiae that is expressed in vacuole membranes. In the present system, proteoliposome studies of purified FUN26 demonstrate robust nucleoside and nucleobase uptake into the luminal volume for a broad range of substrates. This transport activity is sensitive to nucleoside modifications in the C(2′)- and C(5′)-positions on the ribose sugar and is not stimulated by a membrane pH differential. [3H]Adenine nucleobase transport efficiency is increased ∼4-fold relative to nucleosides tested with no observed [3H]adenosine or [3H]UTP transport. FUN26 mutational studies identified residues that disrupt (G463A or G216A) or modulate (F249I or L390A) transporter function. These results demonstrate that FUN26 has a unique substrate transport profile relative to known ENT family members and that a purified ENT can be reconstituted in proteoliposomes for functional characterization in a defined system. PMID:25035431

  8. FUN26 (function unknown now 26) protein from saccharomyces cerevisiae is a broad selectivity, high affinity, nucleoside and nucleobase transporter.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Duggan, Kelli D; Roe-Žurž, Zygy; Schmitz, Hannah; Burleson, Carter; Hays, Franklin A

    2014-08-29

    Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that transport nucleosides and, to a lesser extent, nucleobases across cell membranes. ENTs modulate efficacy for a range of human therapeutics and function in a diffusion-controlled bidirectional manner. A detailed understanding of ENT function at the molecular level has remained elusive. FUN26 (function unknown now 26) is a putative ENT homolog from S. cerevisiae that is expressed in vacuole membranes. In the present system, proteoliposome studies of purified FUN26 demonstrate robust nucleoside and nucleobase uptake into the luminal volume for a broad range of substrates. This transport activity is sensitive to nucleoside modifications in the C(2')- and C(5')-positions on the ribose sugar and is not stimulated by a membrane pH differential. [(3)H]Adenine nucleobase transport efficiency is increased ∼4-fold relative to nucleosides tested with no observed [(3)H]adenosine or [(3)H]UTP transport. FUN26 mutational studies identified residues that disrupt (G463A or G216A) or modulate (F249I or L390A) transporter function. These results demonstrate that FUN26 has a unique substrate transport profile relative to known ENT family members and that a purified ENT can be reconstituted in proteoliposomes for functional characterization in a defined system. PMID:25035431

  9. Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells

    PubMed Central

    Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian

    2015-01-01

    ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural

  10. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays

    PubMed Central

    VanDussen, Kelli L; Marinshaw, Jeffrey M; Shaikh, Nurmohammad; Miyoshi, Hiroyuki; Moon, Clara; Tarr, Phillip I; Ciorba, Matthew A; Stappenbeck, Thaddeus S

    2014-01-01

    Objective The technology for the growth of human intestinal epithelial cells is rapidly progressing. An exciting possibility is that this system could serve as a platform for individualized medicine and research. However, to achieve this goal, human epithelial culture must be enhanced so that biopsies from individuals can be used to reproducibly generate cell lines in a short time frame so that multiple, functional assays can be performed (i.e., barrier function and host-microbial interactions). Design We created a large panel of human gastrointestinal epithelial cell lines (n = 65) from patient biopsies taken during routine upper and lower endoscopy procedures. Proliferative stem/progenitor cells were rapidly expanded using a high concentration of conditioned media containing the factors critical for growth (Wnt3a, R-spondin and Noggin). A combination of lower conditioned media concentration and Notch inhibition was used to differentiate these cells for additional assays. Results We obtained epithelial lines from all accessible tissue sites within two weeks of culture. The intestinal cell lines were enriched for stem cell markers and rapidly grew as spheroids that required passage at 1:3–1:4 every 3 days. Under differentiation conditions, intestinal epithelial spheroids showed region-specific development of mature epithelial lineages. These cells formed functional, polarized monolayers covered by a secreted mucus layer when grown on Transwell membranes. Using two-dimensional culture, these cells also demonstrated novel adherence phenotypes with various strains of pathogenic Escherichia coli. Conclusion This culture system will facilitate the study of inter-individual, functional studies of human intestinal epithelial cells, including host-microbial interactions. PMID:25007816

  11. Local piezoresponse and polarization switching in nucleobase thymine microcrystals

    NASA Astrophysics Data System (ADS)

    Bdikin, Igor; Heredia, Alejandro; Neumayer, Sabine M.; Bystrov, Vladimir S.; Gracio, José; Rodriguez, Brian J.; Kholkin, Andrei L.

    2015-08-01

    Thymine (2-oxy-4-oxy-5 methyl pyrimidine) is one of the four nucleobases of deoxyribonucleic acid (DNA). In the DNA molecule, thymine binds to adenine via two hydrogen bonds, thus stabilizing the nucleic acid structure and is involved in pairing and replication. Here, we show that synthetic thymine microcrystals grown from the solution exhibit local piezoelectricity and apparent ferroelectricity, as evidenced by nanoscale electromechanical measurements via Piezoresponse Force Microscopy. Our experimental results demonstrate significant electromechanical activity and polarization switchability of thymine, thus opening a pathway for piezoelectric and ferroelectric-based applications of thymine and, perhaps, of other DNA nucleobase materials. The results are supported by molecular modeling of polarization switching under an external electric field.

  12. Glucose-Nucleobase Pseudo Base Pairs: Biomolecular Interactions within DNA.

    PubMed

    Vengut-Climent, Empar; Gómez-Pinto, Irene; Lucas, Ricardo; Peñalver, Pablo; Aviñó, Anna; Fonseca Guerra, Célia; Bickelhaupt, F Matthias; Eritja, Ramón; González, Carlos; Morales, Juan C

    2016-07-18

    Noncovalent forces rule the interactions between biomolecules. Inspired by a biomolecular interaction found in aminoglycoside-RNA recognition, glucose-nucleobase pairs have been examined. Deoxyoligonucleotides with a 6-deoxyglucose insertion are able to hybridize with their complementary strand, thus exhibiting a preference for purine nucleobases. Although the resulting double helices are less stable than natural ones, they present only minor local distortions. 6-Deoxyglucose stays fully integrated in the double helix and its OH groups form two hydrogen bonds with the opposing guanine. This 6-deoxyglucose-guanine pair closely resembles a purine-pyrimidine geometry. Quantum chemical calculations indicate that glucose-purine pairs are as stable as a natural T-A pair. PMID:27328804

  13. Nucleobase appended viologens: Building blocks for new optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Ciobanu, Marius; Asaftei, Simona

    2015-04-01

    We describe here the fabrication, characterization and possible applications of a new type of optical material - consisting of 4,4‧-bipyridinium core ("viologen") and nucleobases i.e. adenine and/or thymine made by H-bonding. The viologen-nucleobase derivatives were used to construct supramolecular structures in a "biomimetic way" with complementary oligonucleotides (ssDNA) and peptide nucleic acids (ssPNA) as templates. The new nanostructured materials are expected to exhibit enhanced optical and optoelectronic properties with application in the field of supramolecular electronics. Such viologen derivatives could be significant in the design of new 2D and 3D materials with potentially application in optoelectronics, molecular electronics or sensoric.

  14. Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs.

    PubMed

    Peters, Gretchen Marie; Davis, Jeffery T

    2016-06-01

    Supramolecular or molecular gels are attractive for various applications, including diagnostics, tissue scaffolding and targeted drug release. Gelators derived from natural products are of particular interest for biomedical purposes, as they are generally biocompatible and stimuli-responsive. The building blocks of nucleic acids (i.e. nucleobases, nucleosides, and nucleotides) are desirable candidates for supramolecular gelation as they readily engage in reversible, noncovalent interactions. In this review, we describe a number of organo- and hydrogels formed through the assembly of nucleosides, nucleotides, and their derivatives. While natural nucleosides and nucleotides generally require derivatization to induce gelation, guanosine and its corresponding nucleotides are well known gelators. This unique gelating ability is due to propensity of the guanine nucleobase to self-associate into stable higher-order assemblies, such as G-ribbons, G4-quartets, and G-quadruplexes. PMID:27146863

  15. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood.

    PubMed

    Venugopalan, Pooyath Lekshmy; Sai, Ranajit; Chandorkar, Yashoda; Basu, Bikramjit; Shivashankar, Srinivasrao; Ghosh, Ambarish

    2014-01-01

    Controlled motion of artificial nanomotors in biological environments, such as blood, can lead to fascinating biomedical applications, ranging from targeted drug delivery to microsurgery and many more. In spite of the various strategies used in fabricating and actuating nanomotors, practical issues related to fuel requirement, corrosion, and liquid viscosity have limited the motion of nanomotors to model systems such as water, serum, or biofluids diluted with toxic chemical fuels, such as hydrogen peroxide. As we demonstrate here, integrating conformal ferrite coatings with magnetic nanohelices offer a promising combination of functionalities for having controlled motion in practical biological fluids, such as chemical stability, cytocompatibility, and the generated thrust. These coatings were found to be stable in various biofluids, including human blood, even after overnight incubation, and did not have significant influence on the propulsion efficiency of the magnetically driven nanohelices, thereby facilitating the first successful "voyage" of artificial nanomotors in human blood. The motion of the "nanovoyager" was found to show interesting stick-slip dynamics, an effect originating in the colloidal jamming of blood cells in the plasma. The system of magnetic "nanovoyagers" was found to be cytocompatible with C2C12 mouse myoblast cells, as confirmed using MTT assay and fluorescence microscopy observations of cell morphology. Taken together, the results presented in this work establish the suitability of the "nanovoyager" with conformal ferrite coatings toward biomedical applications. PMID:24641110

  16. DNA-mediated strand displacement facilitates sensitive electronic detection of antibodies in human serums.

    PubMed

    Dou, Baoting; Yang, Jianmei; Shi, Kai; Yuan, Ruo; Xiang, Yun

    2016-09-15

    We describe here the development of a sensitive and convenient electronic sensor for the detection of antibodies in human serums. The sensor is constructed by self-assembly formation of a mixed monolayer containing the small molecule epitope conjugated double stranded DNA probes on gold electrode. The target antibody binds the epitope on the dsDNA probe and lowers the melting temperature of the duplex, which facilitates the displacement of the antibody-linked strand of the duplex probe by an invading methylene blue-tagged single stranded DNA (MB-ssDNA) through the strand displacement reaction and leads to the capture of many MB-ssDNA on the sensor surface. Subsequent electrochemical oxidation of the methylene blue labels results in amplified current response for sensitive monitoring of the antibodies. The antibody assay conditions are optimized and the sensor exhibits a linear range between 1.0 and 25.0nM with a detection limit of 0.67nM for the target antibody. The sensor is also selective and can be employed to detect the target antibodies in human serum samples. With the advantages of using small molecule epitope as the antibody recognition element over traditional antigen, the versatile manipulability of the DNA probes and the unique properties of the electrochemical transduction technique, the developed sensor thus hold great potential for simple and sensitive detection of different antibodies and other proteins in real samples. PMID:27111124

  17. Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane

    SciTech Connect

    Tao, W.; Wilkinson, J.; Stanbridge, E.J.; Berns, M.W.

    1987-06-01

    The selective alteration of the cellular genome by laser microbeam irradiation has been extensively applied in cell biology. The authors report here the use of the third harmonic (355 nm) of an yttrium-aluminum garnet laser to facilitate the direct transfer of the neo gene into cultured human HT1080-6TG cells. The resultant transformants were selected in medium containing an aminoglycoside antibiotic, G418. Integration of the neo gene into individual human chromosomes and expression of the gene were demonstrated by Southern blot analyses, microcell-mediated chromosome transfer, and chromosome analyses. The stability of the integrated neo gene in the transformants was shown by a comparative growth assay in selective and nonselective media. Transformation and incorporation of the neo gene into the host genome occurred at a frequency of 8 x 10 /sup -4/-3 x 10/sup -3/. This method appears to be 100-fold more efficient than the standard calcium phosphate-mediated method of DNA transfer.

  18. Facilitating job retention for chronically ill employees: perspectives of line managers and human resource managers

    PubMed Central

    2011-01-01

    Background Chronic diseases are a leading contributor to work disability and job loss in Europe. Recent EU policies aim to improve job retention among chronically ill employees. Disability and occupational health researchers argue that this requires a coordinated and pro-active approach at the workplace by occupational health professionals, line managers (LMs) and human resource managers (HRM). Little is known about the perspectives of LMs an HRM on what is needed to facilitate job retention among chronically ill employees. The aim of this qualitative study was to explore and compare the perspectives of Dutch LMs and HRM on this issue. Methods Concept mapping methodology was used to elicit and map statements (ideas) from 10 LMs and 17 HRM about what is needed to ensure continued employment for chronically ill employees. Study participants were recruited through a higher education and an occupational health services organization. Results Participants generated 35 statements. Each group (LMs and HRM) sorted these statements into six thematic clusters. LMs and HRM identified four similar clusters: LMs and HRM must be knowledgeable about the impact of chronic disease on the employee; employees must accept responsibility for work retention; work adaptations must be implemented; and clear company policy. Thematic clusters identified only by LMs were: good manager/employee cooperation and knowledge transfer within the company. Unique clusters identified by HRM were: company culture and organizational support. Conclusions There were both similarities and differences between the views of LMs and HRM on what may facilitate job retention for chronically ill employees. LMs perceived manager/employee cooperation as the most important mechanism for enabling continued employment for these employees. HRM perceived organizational policy and culture as the most important mechanism. The findings provide information about topics that occupational health researchers and planners should

  19. Nucleobase and nucleoside transport and integration into plant metabolism

    PubMed Central

    Girke, Christopher; Daumann, Manuel; Niopek-Witz, Sandra; Möhlmann, Torsten

    2014-01-01

    Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level. PMID:25250038

  20. Long-term facilitation of genioglossus activity is present in normal humans during NREM sleep

    PubMed Central

    Chowdhuri, Susmita; Pierchala, Lisa; Aboubakr, Salah E.; Shkoukani, Mahdi; Badr, M. Safwan

    2008-01-01

    Episodic hypoxia (EH) is followed by increased ventilatory motor output in the recovery period indicative of long-term facilitation (LTF). We hypothesized that episodic hypoxia evokes LTF of genioglossus (GG) muscle activity in humans during non-rapid eye movement sleep (NREM) sleep. We studied 12 normal non-flow limited humans during stable NREM sleep. We induced 10 brief (3 minute) episodes of isocapnic hypoxia followed by 5 minutes of room air. Measurements were obtained during control, hypoxia, and at 5, 10, 20, 30 and 40 minutes of recovery, respectively, for minute ventilation (V̇I), supraglottic pressure (PSG), upper airway resistance (RUA) and phasic GG electromyogram (EMGGG). In addition, sham studies were conducted on room air. During hypoxia there was a significant increase in phasic EMGGG (202.7±24.1% of control, p<0.01) and in V̇I (123.0±3.3% of control, p<0.05); however, only phasic EMGGG demonstrated a significant persistent increase throughout recovery (198.9±30.9%, 203.6±29.9% and 205.4±26.4% of control, at 5, 10, and 20 minutes of recovery, respectively, p<0.01). In multivariate regression analysis, age and phasic EMGGG activity during hypoxia were significant predictors of EMGGG at recovery 20 minutes. No significant changes in any of the measured parameters were noted during sham studies. Conclusion: 1) EH elicits LTF of GG in normal non-flow limited humans during NREM sleep, without ventilatory or mechanical LTF. 2) GG activity during the recovery period correlates with the magnitude of GG activation during hypoxia, and inversely with age. PMID:17945544

  1. Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius

    PubMed Central

    FOUNTAIN, TOBY; DUVAUX, LUDOVIC; HORSBURGH, GAVIN; REINHARDT, KLAUS; BUTLIN, ROGER K

    2014-01-01

    The number and demographic history of colonists can have dramatic consequences for the way in which genetic diversity is distributed and maintained in a metapopulation. The bed bug (Cimex lectularius) is a re-emerging pest species whose close association with humans has led to frequent local extinction and colonization, that is, to metapopulation dynamics. Pest control limits the lifespan of subpopulations, causing frequent local extinctions, and human-facilitated dispersal allows the colonization of empty patches. Founder events often result in drastic reductions in diversity and an increased influence of genetic drift. Coupled with restricted migration, this can lead to rapid population differentiation. We therefore predicted strong population structuring. Here, using 21 newly characterized microsatellite markers and approximate Bayesian computation (ABC), we investigate simplified versions of two classical models of metapopulation dynamics, in a coalescent framework, to estimate the number and genetic composition of founders in the common bed bug. We found very limited diversity within infestations but high degrees of structuring across the city of London, with extreme levels of genetic differentiation between infestations (FST = 0.59). ABC results suggest a common origin of all founders of a given subpopulation and that the numbers of colonists were low, implying that even a single mated female is enough to found a new infestation successfully. These patterns of colonization are close to the predictions of the propagule pool model, where all founders originate from the same parental infestation. These results show that aspects of metapopulation dynamics can be captured in simple models and provide insights that are valuable for the future targeted control of bed bug infestations. PMID:24446663

  2. Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius.

    PubMed

    Fountain, Toby; Duvaux, Ludovic; Horsburgh, Gavin; Reinhardt, Klaus; Butlin, Roger K

    2014-03-01

    The number and demographic history of colonists can have dramatic consequences for the way in which genetic diversity is distributed and maintained in a metapopulation. The bed bug (Cimex lectularius) is a re-emerging pest species whose close association with humans has led to frequent local extinction and colonization, that is, to metapopulation dynamics. Pest control limits the lifespan of subpopulations, causing frequent local extinctions, and human-facilitated dispersal allows the colonization of empty patches. Founder events often result in drastic reductions in diversity and an increased influence of genetic drift. Coupled with restricted migration, this can lead to rapid population differentiation. We therefore predicted strong population structuring. Here, using 21 newly characterized microsatellite markers and approximate Bayesian computation (ABC), we investigate simplified versions of two classical models of metapopulation dynamics, in a coalescent framework, to estimate the number and genetic composition of founders in the common bed bug. We found very limited diversity within infestations but high degrees of structuring across the city of London, with extreme levels of genetic differentiation between infestations (FST  = 0.59). ABC results suggest a common origin of all founders of a given subpopulation and that the numbers of colonists were low, implying that even a single mated female is enough to found a new infestation successfully. These patterns of colonization are close to the predictions of the propagule pool model, where all founders originate from the same parental infestation. These results show that aspects of metapopulation dynamics can be captured in simple models and provide insights that are valuable for the future targeted control of bed bug infestations. PMID:24446663

  3. Human Papillomavirus L2 facilitates viral escape from late endosomes via Sorting Nexin 17

    PubMed Central

    Marušič, Martina Bergant; Ozbun, Michelle A; Campos, Samuel K; Myers, Michael P; Banks, Lawrence

    2011-01-01

    The Human Papillomavirus (HPV) L2 capsid protein plays an essential role during the early stages of viral infection, but the molecular mechanisms underlying its mode of action remain obscure. Using a proteomic approach we have identified the adaptor protein, Sorting Nexin 17 (SNX17) as a strong interacting partner of HPV L2. This interaction occurs through a highly conserved SNX17 consensus binding motif, which is present in the majority of HPV L2 proteins analysed. Using mutants of L2 defective for SNX17 interaction, or siRNA ablation of SNX17 expression we demonstrate that the interaction between L2 and SNX17 is essential for viral infection. Furthermore, loss of the L2-SNX17 interaction results in enhanced turnover of the L2 protein and decreased stability of the viral capsids, and concomitantly there is a dramatic decrease in the efficiency with which viral genomes transit to the nucleus. Indeed, using a range of endosomal and lysosomal markers we show that capsids defective in their capacity to bind SNX17 transit much more rapidly to the lysosomal compartment. These results demonstrate that the L2-SNX17 interaction is essential for viral infection and facilitates the escape of the L2-DNA complex from the late endosomal/lysosomal compartments. PMID:22151726

  4. Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses.

    PubMed

    Wallace, Nicholas A; Galloway, Denise A

    2014-06-01

    In general, the interplay among viruses and DNA damage repair (DDR) pathways can be divided based on whether the interaction promotes or inhibits the viral lifecycle. The propagation of human papillomaviruses is both promoted and inhibited by DDR proteins. As a result, HPV proteins both activate repair pathways, such as the ATM and ATR pathways, and inhibit other pathways, most notably the p53 signaling pathway. Indeed, the role of HPV proteins, with regard to the DDR pathways, can be divided into two broad categories. The first set of viral proteins, HPV E1 and E2 activate a DNA damage response and recruit repair proteins to viral replication centers, where these proteins are likely usurped to replicate the viral genome. Because the activation of the DDR response typically elicits a cell cycle arrest that would impeded the viral lifecycle, the second set of HPV proteins, HPV E6 and E7, prevents the DDR response from pausing cell cycle progression or inducing apoptosis. This review provides a detailed account of the interactions among HPV proteins and DDR proteins that facilitate HPV propagation. PMID:24412279

  5. Human Frataxin Activates Fe–S Cluster Biosynthesis by Facilitating Sulfur Transfer Chemistry

    PubMed Central

    2015-01-01

    Iron–sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe–S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe–S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe–S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich’s ataxia. Previous in vitro results revealed a role for human FXN in activating the cysteine desulfurase and Fe–S cluster biosynthesis activities of the Fe–S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe–S clusters. Additional mutagenesis, enzyme kinetic, UV–visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe–S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe–S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe–S cluster biosynthesis. PMID:24971490

  6. Examination of Glycan Profiles from IgG-Depleted Human Immunoglobulins Facilitated by Microscale Affinity Chromatography

    PubMed Central

    Svoboda, Martin; Mann, Benjamin F.; Goetz, John A.; Novotny, Milos V.

    2012-01-01

    Among the most important proteins involved in the disease and healing processes are the immunoglobulins (Igs). Although many of the Igs have been studied through proteomics, aside from IgG, immunoglobulin carbohydrates have not been extensively characterized in different states of health. It seems valuable to develop techniques that permit us to understand changes in the structures and abundances of Ig glycans in the context of disease onset and progression. We have devised a strategy for characterization of the glycans for the Ig classes other than IgG (i.e. A, D, E, and M) that contain kappa light chains, while using only a few microliters of biological material. First, we designed a microcolumn containing the recombinant Protein L that was immobilized on macroporous silica particles. A similarly designed Protein G microcolumn was utilized to first perform an on-line depletion of the IgG from the sample, human blood serum, and thereby facilitate enrichment of the other Igs. While only 3 μL of serum were used in these analyses, we were able to recover a significantly-enriched fraction of non-IgG immunoglobulins. The enrichment properties of the Protein L column were characterized using a highly sensitive label-free quantitative proteomics LC-MS/MS approach, and the glycomic profiles of enriched immunoglobulins were measured by MALDI-TOF-MS. As a proof-of-principle, a comparative study was conducted using blood serum from a small group of lung cancer patients and a group of age-matched cancer-free individuals to demonstrate that the method is suitable for investigation of glycosylation changes in disease. The results were in agreement with a glycomic investigation of whole blood serum from a much larger lung cancer cohort. PMID:22360417

  7. Polymer microfiber meshes facilitate cardiac differentiation of c-kit(+) human cardiac stem cells.

    PubMed

    Kan, Lijuan; Thayer, Patrick; Fan, Huimin; Ledford, Benjamin; Chen, Miao; Goldstein, Aaron; Cao, Guohua; He, Jia-Qiang

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit(+) human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5µm) elastomeric meshes consisting of aligned 1.7µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. PMID:27481582

  8. Facilitation between extensor carpi radialis and pronator teres in humans: a study using a post-stimulus time histogram method.

    PubMed

    Nakano, Haruki; Miyasaka, Takuji; Ogino, Toshihiko; Naito, Akira

    2014-12-01

    Group I muscle afferents modulate the excitability of motor neurons through excitatory and inhibitory spinal reflexes. Spinal reflex relationships between various muscle pairs are well described in experimental animals but not in the human upper limb, which exhibits a fine control of movement. In the present study, spinal reflexes between the extensor carpi radialis (ECR) and pronator teres (PT) muscles were examined in healthy human subjects using a post-stimulus time histogram method. Electrical stimulation of low-threshold afferents of ECR nerves increased the motor neuron excitability in 31 of 76 PT motor units (MUs) in all eight subjects tested, while stimulation of low-threshold afferents of PT nerves increased the motor neuron excitability in 36 of 102 ECR MUs in all 10 subjects. The estimated central synaptic delay was almost equivalent to that of homonymous facilitation. Mechanical stimulation (MS) of ECR facilitated 16 of 30 PT MUs in all five subjects tested, while MS of PT facilitated 17 of 30 ECR MUs in all six subjects. These results suggest excitatory reflex (facilitation) between PT and ECR. Group I afferents should mediate the facilitation through a monosynaptic path. PMID:25026240

  9. A Re-Examination of Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; de Vries, M.; Becker, L.; Ehrenfreund, E.

    The biomolecular building blocks of life, as we know it, are amino acids, purines and pyrimidines. The latter two form the bases of DNA and RNA, molecules that are used in the storage, transcription and translation of genetic information in all terrestrial organisms. A dedicated search for these compounds in meteorites can shed light on the origins of life in two ways: (i) Results can help assess the plausibility of extraterrestrial formation of prebiotic molecules followed by their meteoritic delivery to the early Earth. (ii) Such studies can also provide insights into possible prebiotic synthetic routes. We will search for these compounds in selected carbonaceous chondrites using formic acid extraction and reverse phase high performance liquid chromatography (HPLC) to isolate specific nucleobases from the bulk meteorite material as previously reported [1,2,3]. We will also use a new technique, resonant two-photon ionization mass spectrometry (R2PI) that can, not only identify organic compounds by their mass, but at the same time by their vibronic spectroscopy [4]. R2PI dramatically enhances the specificity for certain compounds (e.g. amino acids, nucleobases) and allows for distinction of structural isomers, tautomers and enantiomers as well as providing additional information due to isotope shifts. The optical spectroscopy can thus help us to further discriminate between terrestrial and extraterrestrial nucleobases. References: [1] Van Der Velden, W. and Schwarts, A. W. (1977) Geochim. Cosmochim. Acta, 41, 961-968. [2] Stoks, P. G. and Schwartz, A. W. (1979a) Nature, 282, 709-10. [3] Glavin, D. P. and Bada, J. L. (2004) In Lunar and Planetary Science XXXV, Abstract # 1022, Houston. [4] Nir, E., Grace, L. I., Brauer, B. and de Vries, M. S. (1999) Journal of the American Chemical Society, 121, 4896-4897.

  10. Fluorescent 2-Aminopyridine Nucleobases for Triplex-Forming Peptide Nucleic Acids.

    PubMed

    Cheruiyot, Samwel K; Rozners, Eriks

    2016-08-17

    Development of new fluorescent peptide nucleic acids (PNAs) is important for fundamental research and practical applications. The goal of this study was the design of fluorogenic nucleobases for incorporation in triplex-forming PNAs. The underlying design principle was the use of a protonation event that accompanied binding of a 2-aminopyridine (M) nucleobase to a G-C base pair as an on switch for a fluorescence signal. Two fluorogenic nucleobases, 3-(1-phenylethynyl)-M and phenylpyrrolo-M, were designed, synthesized and studied. The new M derivatives provided modest enhancement of fluorescence upon protonation but showed reduced RNA binding affinity and quenching of fluorescence signal upon triple-helix formation with cognate double-stranded RNA. Our study illustrates the principal challenges of design and provides guidelines for future improvement of fluorogenic PNA nucleobases. The 3-(1-phenylethynyl)-M may be used as a fluorescent nucleobase to study PNA-RNA triple-helix formation. PMID:27223320

  11. Probing nucleobase photo protection with soft x-rays

    NASA Astrophysics Data System (ADS)

    Gühr, Markus

    2013-05-01

    We [1] present a new method for ultrafast spectroscopy of molecular photoexcited dynamics. The technique uses a pair of femtosecond pulses: a photoexcitation pulse initiating excited state dynamics followed by a soft x-ray (SXR) probe pulse that core ionizes certain atoms inside the molecule. We observe the Auger decay of the core hole as a function of delay between the photoexcitation and SXR pulses. The core hole decay is particularly sensitive to the local valence electrons near the core and shows new types of propensity rules, compared to dipole selection rules in SXR absorption or emission spectroscopy. We apply the delayed ultrafast x-ray Auger probing (DUXAP) method to the specific problem of nucleobase photoprotection to demonstrate its potential. The ultraviolet photoexcited ππ * states of nucleobases are prone to chemical reactions with neighboring bases. To avoid this, the single molecules funnel the ππ * population to lower lying electronic states on an ultrafast timescale under violation of the Born-Oppenheimer approximation. The new type of propensity rule, which is confirmed by Auger decay simulations, allows us to have increased sensitivity on the direct relaxation from the ππ * state to the vibrationally hot electronic ground state. For the nucleobase thymine, we measure a decay of the ππ * state and a subsequent filling of the vibrationally hot ground state in 300 fs. This work was supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Other portions of this research were carried out at the Advanced Light Source, which is supported by the Director, Office of

  12. Adeninealkylresorcinol, the first alkylresorcinol tethered with nucleobase from Lasiodiplodia sp.

    PubMed

    Gao, Yu-Meng; Sun, Tian-Yu; Ma, Min; Chen, Guo-Dong; Zhou, Zheng-Qun; Wang, Chuan-Xi; Hu, Dan; Chen, Li-Guo; Yao, Xin-Sheng; Gao, Hao

    2016-07-01

    Adeninealkylresorcinol (1), an unusual alkylresorcinol with adenine-alkylresorcinol conjoined skeleton, was isolated from an endophytic fungus Lasiodiplodia sp. obtained from a traditional Chinese medicine Houttuynia cordata Thunb., together with three new biogenetically related compounds (2-4). Their structures were elucidated by comprehensive spectroscopic analysis, and the absolute configuration of 4 was determined by the modified Mosher's method and quantum chemical calculation. Among them, adeninealkylresorcinol (1) is the first alkylresorcinol tethered with nucleobase. In addition, the antioxidant, cytotoxic, and antimicrobial activities of 1-3 were evaluated. PMID:27343368

  13. A Versatile Approach Towards Nucleobase-Modified Aptamers.

    PubMed

    Tolle, Fabian; Brändle, Gerhard M; Matzner, Daniel; Mayer, Günter

    2015-09-01

    A novel and versatile method has been developed for modular expansion of the chemical space of nucleic acid libraries, thus enabling the generation of nucleobase-modified aptamers with unprecedented recognition properties. Reintroduction of the modification after enzymatic replication gives broad access to many chemical modifications. This wide applicability, which is not limited to a single modification, will rapidly advance the application of in vitro selection approaches beyond what is currently feasible and enable the generation of aptamers to many targets that have so far not been addressable. PMID:26224087

  14. Spinal cord injury affects I-wave facilitation in human motor cortex.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Bathke, Arne C; Orioli, Andrea; Schwenker, Kerstin; Frey, Vanessa; Golaszewski, Stefan; Brigo, Francesco; Trinka, Eugen

    2015-07-01

    Transcranial magnetic stimulation (TMS) is a useful non-invasive approach for studying cortical physiology. To further clarify the mechanisms of cortical reorganization after spinal cord injury (SCI), we used a non-invasive paired TMS protocol for the investigation of the corticospinal I-waves, the so-called I-wave facilitation, in eight patients with cervical SCI. We found that the pattern of I-wave facilitation significantly differs between SCI patients with normal and abnormal central motor conduction (CMCT), and healthy controls. The group with normal CMCT showed increased I-wave facilitation, while the group with abnormal CMCT showed lower I-wave facilitation compared to a control group. The facilitatory I-wave interaction occurs at the level of the motor cortex, and the mechanisms responsible for the production of I-waves are under control of GABA-related inhibition. Therefore, the findings of our small sample preliminary study provide further physiological evidence of increased motor cortical excitability in patients with preserved corticospinal projections. This is possibly due to decreased GABAergic intracortical inhibition. The excitability of networks producing short-interval intracortical facilitation could increase after SCI as a mechanism to enhance activation of residual corticospinal tract pathways and thus compensate for the impaired ability of the motor cortex to generate appropriate voluntary movements. Finally, the I-wave facilitation technique could be used in clinical neurorehabilitation as an additional method of assessing and monitoring function in SCI. PMID:26151771

  15. Structural requirements of glycosaminoglycans for facilitating amyloid fibril formation of human serum amyloid A.

    PubMed

    Takase, Hiroka; Tanaka, Masafumi; Yamamoto, Aki; Watanabe, Shiori; Takahashi, Sanae; Nadanaka, Satomi; Kitagawa, Hiroshi; Yamada, Toshiyuki; Mukai, Takahiro

    2016-06-01

    Serum amyloid A (SAA) is a precursor protein of amyloid fibrils. Given that heparan sulfate (HS), a glycosaminoglycan (GAG), is detected in amyloid deposits, it has been suggested that GAG is a key component of amyloid fibril formation. We previously reported that heparin (an analog of HS) facilitates the fibril formation of SAA, but the structural requirements remain unknown. In the present study, we investigated the structural requirements of GAGs for facilitating the amyloid fibril formation of SAA. Spectroscopic analyses using structurally diverse GAG analogs suggested that the fibril formation of SAA was facilitated irrespective of the backbone structure of GAGs; however, the facilitating effect was strongly correlated with the degree of sulfation. Microscopic analyses revealed that the morphologies of SAA aggregates were modulated by the GAGs. The HS molecule, which is less sulfated than heparin but contains highly sulfated domains, exhibited a relatively high potential to facilitate fibril formation compared to other GAGs. The length dependence of fragmented heparins on the facilitating effect suggested that a high density of sulfate groups is also required. These results indicate that not only the degree of sulfation but also the lengths of sulfated domains in GAG play important roles in fibril formation of SAA. PMID:27097047

  16. Developing and Evaluating Medical Humanities Problem-Based Learning Classes Facilitated by the Teaching Assistants Majored in the Liberal Arts

    PubMed Central

    Tseng, Fen-Yu; Shieh, Jeng-Yi; Kao, Tze-Wah; Wu, Chau-Chung; Chu, Tzong-Shinn; Chen, Yen-Yuan

    2016-01-01

    Abstract Although medical humanities courses taught by teachers from nonmedical backgrounds are not unusual now, few studies have compared the outcome of medical humanities courses facilitated by physicians to that by teaching assistants majored in the liberal arts. The objectives of this study were to (1) analyze the satisfaction of medical students with medical humanities problem-based learning (PBL) classes facilitated by nonmedical teaching assistants (TAF) majored in the liberal arts, and those facilitated by the attending physicians (APF) and (2) examine the satisfaction of medical students with clinical medicine-related and clinical medicine-unrelated medical humanities PBL classes. A total of 123 medical students, randomly assigned to 16 groups, participated in this study. There were 16 classes in the course: 8 of them were TAF classes; and the others were APF classes. Each week, each group rotated from 1 subject of the 16 subjects of PBL to another subject. All of the 16 groups went through all the 16 subjects in the 2013 spring semester. We examined the medical students’ satisfaction with each class, based on a rating score collected after each class was completed, using a scale from 0 (the lowest satisfaction) to 100 (the highest satisfaction). We also conducted multivariate linear regression analysis to examine the association between the independent variables and the students’ satisfaction. Medical students were more satisfied with the TAF (91.35 ± 7.75) medical humanities PBL classes than APF (90.40 ± 8.42) medical humanities PBL classes (P = 0.01). Moreover, medical students were more satisfied with the clinical medicine-unrelated topics (92.00 ± 7.10) than the clinical medicine-related topics (90.36 ± 7.99) in the medical humanities PBL course (P = 0.01). This medical humanities PBL course, including nonmedical subjects and topics, and nonmedical teaching assistants from the liberal arts as class facilitators, was

  17. Behaviourally-inhibited temperament and female sex, two vulnerability factors for anxiety disorders, facilitate conditioned avoidance (also) in humans

    PubMed Central

    Sheynin, Jony; Beck, Kevin D.; Pang, Kevin C.H.; Servatius, Richard J.; Shikari, Saima; Ostovich, Jacqueline; Myers, Catherine E.

    2014-01-01

    Acquisition and maintenance of avoidance behaviour is a key feature of all human anxiety disorders. Animal models have been useful in understanding how anxiety vulnerability could translate into avoidance learning. For example, behaviourally-inhibited temperament and female sex, two vulnerability factors for clinical anxiety, are associated with faster acquisition of avoidance responses in rodents. However, to date, the translation of such empirical data to human populations has been limited since many features of animal avoidance paradigms are not typically captured in human research. Here, using a computer-based task that captures many features of rodent escape-avoidance learning paradigms, we investigated whether avoidance learning would be faster in humans with inhibited temperament and/or female sex and, if so, whether this facilitation would take the same form. Results showed that, as in rats, both vulnerability factors were associated with facilitated acquisition of avoidance behaviour in humans. Specifically, inhibited temperament was specifically associated with higher rate of avoidance responding, while female sex was associated with longer avoidance duration. These findings strengthen the direct link between animal avoidance work and human anxiety vulnerability, further motivating the study of animal models while also providing a simple testbed for a direct human testing. PMID:24412263

  18. Behaviourally inhibited temperament and female sex, two vulnerability factors for anxiety disorders, facilitate conditioned avoidance (also) in humans.

    PubMed

    Sheynin, Jony; Beck, Kevin D; Pang, Kevin C H; Servatius, Richard J; Shikari, Saima; Ostovich, Jacqueline; Myers, Catherine E

    2014-03-01

    Acquisition and maintenance of avoidance behaviour is a key feature of all human anxiety disorders. Animal models have been useful in understanding how anxiety vulnerability could translate into avoidance learning. For example, behaviourally inhibited temperament and female sex, two vulnerability factors for clinical anxiety, are associated with faster acquisition of avoidance responses in rodents. However, to date, the translation of such empirical data to human populations has been limited since many features of animal avoidance paradigms are not typically captured in human research. Here, using a computer-based task that captures many features of rodent escape-avoidance learning paradigms, we investigated whether avoidance learning would be faster in humans with inhibited temperament and/or female sex and, if so, whether this facilitation would take the same form. Results showed that, as in rats, both vulnerability factors were associated with facilitated acquisition of avoidance behaviour in humans. Specifically, inhibited temperament was associated with higher rate of avoidance responding, while female sex was associated with longer avoidance duration. These findings strengthen the direct link between animal avoidance work and human anxiety vulnerability, further motivating the study of animal models while also providing a simple testbed for a direct human testing. PMID:24412263

  19. Distinction of nucleobases – a tip-enhanced Raman approach

    PubMed Central

    Treffer, Regina; Lin, Xiumei; Bailo, Elena; Deckert-Gaudig, Tanja

    2011-01-01

    Summary The development of novel DNA sequencing methods is one of the ongoing challenges in various fields of research seeking to address the demand for sequence information. However, many of these techniques rely on some kind of labeling or amplification steps. Here we investigate the intrinsic properties of tip-enhanced Raman scattering (TERS) towards the development of a novel, label-free, direct sequencing method. It is known that TERS allows the acquisition of spectral information with high lateral resolution and single-molecule sensitivity. In the presented experiments, single stranded adenine and uracil homopolymers were immobilized on different kinds of substrates (mica and gold nanoplates) and TERS experiments were conducted, which demonstrated the reproducibility of the technique. To elucidate the signal contributions from the specific nucleobases, TERS spectra were collected on single stranded calf thymus DNA with arbitrary sequence. The results show that, while the Raman signals with respect to the four nucleobases differ remarkably, specific markers can be determined for each respective base. The combination of sensitivity and reproducibility shows that the crucial demands for a sequencing procedure are met. PMID:22003468

  20. Two-Photon-Induced Fluorescence of Isomorphic Nucleobase Analogs

    PubMed Central

    Lane, Richard S. K.; Jones, Rosemary; Sinkeldam, Renatus W.

    2014-01-01

    Five isomorphic fluorescent uridine mimics have been subjected to two-photon (2P) excitation analysis to investigate their potential applicability as non-perturbing probes for the single-molecule detection of nucleic acids. We find that small structural differences can cause major changes in the two-photon excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both furan-modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure-photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications. PMID:24604669

  1. Click Reaction on Solid Phase Enables High Fidelity Synthesis of Nucleobase-Modified DNA.

    PubMed

    Tolle, Fabian; Rosenthal, Malte; Pfeiffer, Franziska; Mayer, Günter

    2016-03-16

    The post-synthetic functionalization of nucleic acids via click chemistry (CuAAC) has seen tremendous implementation, extending the applicability of nucleobase-modified nucleic acids in fields like fluorescent labeling, nanotechnology, and in vitro selection. However, the production of large quantities of high-density functionalized material via solid phase synthesis has been hampered by oxidative by-product formation associated with the alkaline workup conditions. Herein, we describe a rapid and cost-effective protocol for the high fidelity large-scale production of nucleobase-modified nucleic acids, exemplified with a recently described nucleobase-modified aptamer. PMID:26850226

  2. Modality-specific facilitation and adaptation to painful tonic stimulation in humans.

    PubMed

    Polianskis, Romanas; Graven-Nielsen, Thomas; Arendt-Nielsen, Lars

    2002-01-01

    The study assessed the influence of stimulus modality on adaptation or facilitation of pain during tonic cold and tourniquet pressure stimulation. Experimental set-up for the cold stimulation consisted of a thermo-tank with water, cooled to 3 degrees C, circulation pump, electronic thermometer and an electronic 10 cm visual analogue scale (VAS). Experimental set-up for the tonic pressure stimulation consisted of a pneumatic tourniquet cuff, a computer-controlled air compressor, and an electronic VAS. The first experiment assessed temporal profiles of pain intensity and skin temperature during immersion of the non-dominant hand and lower arm into cold water for 3 min or until the pain tolerance limit was reached. The second experiment assessed temporal profile of cuff pain intensity during constant compressions for 10 min beginning at pain intensities of 2, 4, and 6 cm on the VAS ("VAS 2", "VAS 4" and "VAS 6" sessions). Subjects enduring cold stimulation for less than 3 min were defined as non-adapting to cold and vice versa. The intensity of cold pain in non-adapting subjects increased significantly faster than in adapting subjects and reached significantly higher magnitude. The course of pain intensity during constant compression, estimated by a linear regression line, was increasing or decreasing, representing facilitation or adaptation of pain, respectively. The typical profile of adaptation consisted of an "overshoot" in pain intensity, followed by a decrease in pain intensity. There was significant correlation in VAS slopes between sessions separated by 2-5 days, suggesting consistent pattern in pain responses to tonic pressure stimulation. Adaptation or facilitation rates and the overshoot magnitude were dependent on the initial pain intensity (2, 4, or 6 cm on the VAS). The facilitation rate was highest and the adaptation rate was lowest during the "VAS 2" session, while the facilitation rate was lowest and the adaptation rate was highest during the "VAS 6

  3. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA

    PubMed Central

    Malik, Shuja S.; Coey, Christopher T.; Varney, Kristen M.; Pozharski, Edwin; Drohat, Alexander C.

    2015-01-01

    Thymine DNA Glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation. Initiating base excision repair, TDG removes thymine from mutagenic G·T mispairs caused by 5-methylcytosine (mC) deamination and other lesions including uracil (U) and 5-hydroxymethyluracil (hmU). In DNA demethylation, TDG excises 5-formylcytosine (fC) and 5-carboxylcytosine (caC), which are generated from mC by Tet (ten–eleven translocation) enzymes. Using improved crystallization conditions, we solved high-resolution (up to 1.45 Å) structures of TDG enzyme–product complexes generated from substrates including G·U, G·T, G·hmU, G·fC and G·caC. The structures reveal many new features, including key water-mediated enzyme–substrate interactions. Together with nuclear magnetic resonance experiments, the structures demonstrate that TDG releases the excised base from its tight product complex with abasic DNA, contrary to previous reports. Moreover, DNA-free TDG exhibits no significant binding to free nucleobases (U, T, hmU), indicating a Kd >> 10 mM. The structures reveal a solvent-filled channel to the active site, which might facilitate dissociation of the excised base and enable caC excision, which involves solvent-mediated acid catalysis. Dissociation of the excised base allows TDG to bind the beta rather than the alpha anomer of the abasic sugar, which might stabilize the enzyme–product complex. PMID:26358812

  4. Metal ion mediated nucleobase recognition by the ZTP riboswitch

    PubMed Central

    Trausch, Jeremiah J.; Marcano-Velázquez, Joan G.; Matyjasik, Michal M.; Batey, Robert T.

    2015-01-01

    SUMMARY The ZTP riboswitch is a widespread family of regulatory RNAs that upregulate de novo purine synthesis in response to increased intracellular levels of ZTP or ZMP (AICAR). As an important intermediate in purine biosynthesis, ZMP also serves as a proxy for the concentration of 10-formyltetrahydrofolate, a key component of one carbon metabolism. Here we report the structure of the ZTP riboswitch bound to ZMP at a resolution of 1.80 Å. The RNA contains two subdomains brought together through a long-range pseudoknot further stabilized through helix-helix packing. ZMP is bound at the subdomain interface of the RNA through a set of interactions with the ligand's base, ribose sugar and phosphate moieties. Unique to nucleobase recognition by RNAs, the Z base is inner sphere coordinated to a magnesium cation bound by two backbone phosphates. This interaction, along with steric hindrance by the backbone, imparts specificity over related analogs such as ATP/AMP. PMID:26144884

  5. Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex.

    PubMed

    Ortu, Enzo; Deriu, Franca; Suppa, Antonio; Tolu, Eusebio; Rothwell, John C

    2008-11-01

    Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and short-interval intracortical facilitation (SICF) were assessed in the cortical motor area of the first dorsal interosseous muscle (FDI) of 16 healthy subjects. Paired-pulse TMS was delivered to the left hemisphere at the following interstimulus intervals (ISIs): 2 and 3 ms for SICI, 10 and 15 ms for ICF and 1-5 ms for SICF. Motor-evoked potentials were recorded from the resting and active right FDI. The effects exerted on SICI and ICF by four intensities (60-90% of active motor threshold, AMT) of the conditioning stimulus (S1) and by three levels of muscle contraction (10%, 25%, 50% of maximal voluntary contraction, MVC) were evaluated. The effects exerted on SICF were evaluated with two intensities (90% and 70% of AMT) of the test stimulus (S2) and with the same levels of muscle contraction. Results showed that: (i) during 10% MVC, maximum SICI was observed with S1 = 70% AMT; (ii) the amount of SICI obtained with S1 = 70% AMT was the same at rest as during 10% MVC, but decreased at higher contraction levels; (iii) ICF was observed only at rest with S1 = 90% AMT; (iv) SICF was facilitated at 10% and 25% MVC, but not at 50% MVC. We conclude that during muscle activation, intracortical excitability reflects a balance between activation of SICI and SICF systems. Part of the reduction in SICI during contraction is due to superimposed recruitment of SICF. Low intensity (70% AMT) conditioning stimuli can test SICI independently of effects on SICF at low contraction levels. PMID:18787036

  6. Cytotoxic factor secreted by Escherichia coli associated with sepsis facilitates transcytosis through human umbilical vein endothelial cell monolayers.

    PubMed

    Tibo, Luiz Henrique Soares; Bertol, Jéssica Wildgrube; Bernedo-Navarro, Robert Alvin; Yano, Tomomasa

    2016-01-01

    Culture supernatant of sepsis-associated Escherichia coli (SEPEC) isolated from patients with sepsis caused loss of intercellular junctions and elongation of human umbilical vein endothelial cells (HUVEC). The cytotoxic factor was purified from culture supernatant of SEPEC 15 (serogroup O153) by liquid chromatography process. PAGE (polyacrylamide gel electrophoresis) showed that the purified SEPEC cytotoxic factor had a molecular mass of ∼150kDa and consisted of at least two subunits. At the concentration of 1 CD50 (40μg/mL) did facilitate transcytosis through the HUVEC cells monolayer of SEPEC 15 as much as E. coli K12 within 30min without affecting cell viability. These results suggest that this cytotoxic factor, named as SPF (SEPEC's permeabilizing factor), may be an important SEPEC virulence factor that facilitates bacterial access to the bloodstream. PMID:26963151

  7. Photo-Irradiation of Pyrimidine in Interstellar Ice Analogs: Searching for Nucleobases

    NASA Astrophysics Data System (ADS)

    Milam, S. N.; Nuevo, M.; Sandford, S. A.; Elsila, J. E.; Dworkin, J. P.

    2009-03-01

    Nucleobases have been detected in meteorites and possibly form in space. The functionalization of PAHs from UV photons in mixed ices has proven effective in the lab. Here we investigate how irradiation affects pyrimidine in interstellar ice analogs.

  8. Nucleobases and Other Prebiotic Species from the Ultraviolet Irradiation of Pyrimidine in Astrophysical Ices

    NASA Astrophysics Data System (ADS)

    Sandford, S. A.; Nuevo, M.; Materese, C. K.; Milam, S. N.

    2012-03-01

    We discuss the results of UV irradiation of ices containing pyrimidine and show that such processing efficiently forms the nucleobases uracil and cytosine, but not thymine, a pattern similar to what is seen in carbonaceous meteorites.

  9. Formation of Nucleobases from the UV Photo-Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Astrophysics Data System (ADS)

    Milam, S. N.; Nuevo, M.; Sandford, S. A.; Elsila, J. E.; Dworkin, J. P.

    2010-04-01

    This work shows how pyrimidic nucleobases (uracil, cytosine, etc.) can be formed under abiotic conditions from the UV irradiation of pyrimidine in astrophysical ices. The formation mechanisms and the photo-stability of such compounds are discussed.

  10. Binding Strength of Nucleobases and Nucleosides on Silver Nanoparticles Probed by a Colorimetric Method.

    PubMed

    Yu, Lu; Li, Na

    2016-06-01

    Because of their unique and tunable properties, oligonucleotide-functionalized noble metal nanoparticles have provided a versatile platform for various engineering and biomedical applications. The vast majority of such applications were demonstrated with gold nanoparticles (AuNPs) while only a few were demonstrated with sliver nanoparticles (AgNPs). This is largely due to the lack of robust protocols to functionalize AgNPs with thiol-modified oligonucleotides. Previous studies have revealed strong interactions between nucleobases and AgNPs. This could enable an alternative way to functionalize AgNPs with non-thiolated oligonucleotides. However, there is no quantitative study on the interaction strengths between AgNPs and oligonucleotides. Several methods have been used for quantitative evaluation of the interaction strengths between AuNPs and oligonucleotides. These methods often require specialized equipment that might not be widely accessible or rely on labor-intensive procedures to obtain the adsorption isotherms. Herein, we developed a colorimetric method, as a simple and high-throughput alternative of existing methods, to quantify the binding strength between AgNPs and nucleobases/nucleosides. In this colorimetric method, concentration-dependent destabilizing effects of nucleobase/nucleoside adsorption on AgNPs are utilized to indirectly quantify the amount of nucleobases/nucleosides adsorbed on AgNPs, thus deriving the binding strength between AgNPs and nucleobases/nucleosides. First, the concentration-dependent AgNP aggregation kinetics in the presence of nucleobases/nucleosides were systematically investigated. Then, this colorimetric method was used to determine the binding strengths between AgNPs and various DNA/RNA nucleobases/nucleosides. It was found that the ranking of interaction strengths between AgNPs and DNA/RNA nucleosides (dC < dT < dA, rC < rU < rA) is generally agreed with that between AgNPs and corresponding nucleobases (C < T < U < A). This

  11. RQ-00201894: A motilin receptor agonist causing long-lasting facilitation of human gastric cholinergically-mediated contractions.

    PubMed

    Broad, John; Takahashi, Nobuyuki; Tajimi, Masaomi; Sudo, Masaki; Góralczyk, Adam; Parampalli, Umesh; Mannur, Kesava; Yamamoto, Toshinori; Sanger, Gareth J

    2016-02-01

    The aim was to characterise RQ-00201894, a novel non-macrolide motilin agonist, using human recombinant receptors and then investigate its ability to facilitate cholinergic activity in human stomach. A reporter gene assay assessed motilin receptor function. Selectivity of action was determined using a panel of different receptors, ion channels, transporters and enzymes. Cholinergically-mediated muscle contractions were evoked by electrical field stimulation (EFS) of human gastric antrum. The results showed that RQ-00201894, motilin and erythromycin acted as full motilin receptor agonists (EC50: 0.20, 0.11, 69 nM, respectively). In this function, RQ-00201894 had >90-fold selectivity of action over its ability to activate the human ghrelin receptor (EC50 19 nM) and greater selectivity over all other receptors/mechanisms tested. In human stomach RQ-00201894 0.1-30 μM concentration-dependently increased EFS-evoked contractions (up to 1209%; pEC50 6.0). At 0.1-10 μM this activity was usually prolonged. At higher concentrations (3-30 μM) RQ-00201894 also caused a short-lasting muscle contraction, temporally disconnected from the increase in EFS-evoked contractions. RQ-00201894 10 μM did not consistently affect submaximal contractions evoked by carbachol. In conclusion, RQ-00201894 potently and selectively activates the motilin receptor and causes long-lasting facilitation of cholinergic activity in human stomach, an activity thought to correlate with an ability to increase gastric emptying. PMID:26685754

  12. Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency.

    PubMed

    Diederen, Kelly M J; Spencer, Tom; Vestergaard, Martin D; Fletcher, Paul C; Schultz, Wolfram

    2016-06-01

    Effective error-driven learning benefits from scaling of prediction errors to reward variability. Such behavioral adaptation may be facilitated by neurons coding prediction errors relative to the standard deviation (SD) of reward distributions. To investigate this hypothesis, we required participants to predict the magnitude of upcoming reward drawn from distributions with different SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. In line with the notion of adaptive coding, BOLD response slopes in the Substantia Nigra/Ventral Tegmental Area (SN/VTA) and ventral striatum were steeper for prediction errors occurring in distributions with smaller SDs. SN/VTA adaptation was not instantaneous but developed across trials. Adaptive prediction error coding was paralleled by behavioral adaptation, as reflected by SD-dependent changes in learning rate. Crucially, increased SN/VTA and ventral striatal adaptation was related to improved task performance. These results suggest that adaptive coding facilitates behavioral adaptation and supports efficient learning. PMID:27181060

  13. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.

    PubMed

    Talukder, Poulami; Dedkova, Larisa M; Ellington, Andrew D; Yakovchuk, Petro; Lim, Jaebum; Anslyn, Eric V; Hecht, Sidney M

    2016-09-15

    Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail. PMID:27452282

  14. Adsorption of nucleobase pairs on hexagonal boron nitride sheet: hydrogen bonding versus stacking.

    PubMed

    Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence; Li, Hui

    2013-07-14

    The adsorption of hydrogen-bonded and stacked nucleobase pairs on the hexagonal boron nitride (h-BN) surface was studied by density functional theory and molecular dynamics methods. Eight types of nucleobase pairs (i.e., GG, AA, TT, CC, UU, AT, GC, and AU) were chosen as the adsorbates. The adsorption configurations, interaction energies, and electronic properties of the nucleobase pair on the h-BN surface were obtained and compared. The density of states analysis result shows that both the hydrogen-bonded and stacked nucleobase pairs were physisorbed on h-BN with minimal charge transfer. The hydrogen-bonded base pairs lying on the h-BN surface are significantly more stable than the stacked forms in both the gas and water phase. The molecular dynamics simulation result indicates that h-BN possessed high sensitivity for the nucleobases and the h-BN surface adsorption could revert the base pair interaction from stacking back to hydrogen bonding in aqueous environment. The h-BN surface could immobilize the nucleobases on its surface, which suggests the use of h-BN has good potential in DNA/RNA detection biosensors and self-assembly nanodevices. PMID:23689542

  15. Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study.

    PubMed

    Lin, Qing; Zou, Xiaolong; Zhou, Gang; Liu, Rui; Wu, Jian; Li, Jia; Duan, Wenhui

    2011-07-14

    Our ab initio calculations indicate that the interaction of deoxyribonucleic/ribonucleic acid (DNA/RNA) nucleobases [guanine (G), adenine (A), thymine (T), cytosine (C), and uracil (U)] with the hexagonal boron nitride (h-BN) sheet, a polar but chemically inert surface, is governed by mutual polarization. Unlike the case of graphene, all nucleobases exhibit the same stacking arrangement on the h-BN sheet due to polarization effects: the anions (N and O atoms) of nucleobases prefer to stay on top of cations (B) of the substrate as far as possible, regardless of the biological properties of nucleobases. The adsorption energies, ranging from 0.5 eV to 0.69 eV, increase in the order of U, C, T, A and G, which can be attributed to different side groups or atoms of nucleobases. The fundamental nature of DNA/RNA nucleobases and h-BN sheet remains unchanged upon adsorption, suggesting that the h-BN sheet is a promising template for DNA/RNA-related research, such as self-assembly. PMID:21637870

  16. Which Electronic and Structural Factors Control the Photostability of DNA and RNA Purine Nucleobases?

    NASA Astrophysics Data System (ADS)

    Pollum, Marvin; Reichardt, Christian; Crespo-Hernández, Carlos E.; Martínez-Fernández, Lara; Corral, Inés; Rauer, Clemens; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2015-06-01

    Following ultraviolet excitation, the canonical purine nucleobases, guanine and adenine, are able to efficiently dissipate the absorbed energy within hundreds of femtoseconds. This property affords these nucleobases with great photostability. Conversely, non-canonical purine nucleobases exhibit high fluorescence quantum yields or efficiently populate long-lived triplet excited states from which chemistry can occur. Using femtosecond broadband transient absorption spectroscopy in combination with ab initio static and surface hopping dynamics simulations we have determined the electronic and structural factors that regulate the excited state dynamics of the purine nucleobase derivatives. Importantly, we have uncovered that the photostability of the guanine and adenine nucleobases is not due to the structure of the purine core itself and that the substituent at the C6 position of the purine nucleobase plays a more important role than that at the C2 position in the ultrafast relaxation of deleterious electronic energy. [The authors acknowledge the CAREER program of the National Science Foundation (Grant No. CHE-1255084) for financial support.

  17. Facilitating myoelectric-control with transcranial direct current stimulation: a preliminary study in healthy humans

    PubMed Central

    2014-01-01

    Background Functional Electrical Stimulation (FES) can electrically activate paretic muscles to assist movement for post-stroke neurorehabilitation. Here, sensory-motor integration may be facilitated by triggering FES with residual electromyographic (EMG) activity. However, muscle activity following stroke often suffers from delays in initiation and termination which may be alleviated with an adjuvant treatment at the central nervous system (CNS) level with transcranial direct current stimulation (tDCS) thereby facilitating re-learning and retaining of normative muscle activation patterns. Methods This study on 12 healthy volunteers was conducted to investigate the effects of anodal tDCS of the primary motor cortex (M1) and cerebellum on latencies during isometric contraction of tibialis anterior (TA) muscle for myoelectric visual pursuit with quick initiation/termination of muscle activation i.e. 'ballistic EMG control’ as well as modulation of EMG for 'proportional EMG control’. Results The normalized delay in initiation and termination of muscle activity during post-intervention 'ballistic EMG control’ trials showed a significant main effect of the anodal tDCS target: cerebellar, M1, sham (F(2) = 2.33, p < 0.1), and interaction effect between tDCS target and step-response type: initiation/termination of muscle activation (F(2) = 62.75, p < 0.001), but no significant effect for the step-response type (F(1) = 0.03, p = 0.87). The post-intervention population marginal means during 'ballistic EMG control’ showed two important findings at 95% confidence interval (critical values from Scheffe’s S procedure): 1. Offline cerebellar anodal tDCS increased the delay in initiation of TA contraction while M1 anodal tDCS decreased the same when compared to sham tDCS, 2. Offline M1 anodal tDCS increased the delay in termination of TA contraction when compared to cerebellar anodal tDCS or sham tDCS. Moreover, online cerebellar anodal tDCS decreased the learning rate

  18. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation

    PubMed Central

    Pawlick, Rena L.; Kahana, Meygal; Pepper, Andrew R.; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A. M. James

    2016-01-01

    There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ. PMID:27227978

  19. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation.

    PubMed

    Abualhassan, Nasser; Sapozhnikov, Lena; Pawlick, Rena L; Kahana, Meygal; Pepper, Andrew R; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A M James

    2016-01-01

    There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ. PMID:27227978

  20. Functional characterization of the human facilitative glucose transporter 12 (GLUT12) by electrophysiological methods.

    PubMed

    Pujol-Giménez, Jonai; Pérez, Alejandra; Reyes, Alejandro M; Loo, Donald D F; Lostao, Maria Pilar

    2015-06-15

    GLUT12 is a member of the facilitative family of glucose transporters. The goal of this study was to characterize the functional properties of GLUT12, expressed in Xenopus laevis oocytes, using radiotracer and electrophysiological methods. Our results showed that GLUT12 is a facilitative sugar transporter with substrate selectivity: d-glucose ≥ α-methyl-d-glucopyranoside (α-MG) > 2-deoxy-d-glucose(2-DOG) > d-fructose = d-galactose. α-MG is a characteristic substrate of the Na(+)/glucose (SGLT) family and has not been shown to be a substrate of any of the GLUTs. In the absence of sugar, (22)Na(+) was transported through GLUT12 at a higher rate (40%) than noninjected oocytes, indicating that there is a Na(+) leak through GLUT12. Genistein, an inhibitor of GLUT1, also inhibited sugar uptake by GLUT12. Glucose uptake was increased by the PKA activator 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) but not by the PKC activator phorbol-12-myristate-13-acetate (PMA). In high K(+) concentrations, glucose uptake was blocked. Addition of glucose to the external solution induced an inward current with a reversal potential of approximately -15 mV and was blocked by Cl(-) channel blockers, indicating the current was carried by Cl(-) ions. The sugar-activated Cl(-) currents were unaffected by genistein. In high external K(+) concentrations, sugar-activated Cl(-) currents were also blocked, indicating that GLUT12 activity is voltage dependent. Furthermore, glucose-induced current was increased by the PKA activator 8-Br-cAMP but not by the PKC activator PMA. These new features of GLUT12 are very different from those described for other GLUTs, indicating that GLUT12 must have a specific physiological role within glucose homeostasis, still to be discovered. PMID:25855082

  1. Inhibition of Mycoplasma pneumoniae growth by FDA-approved anticancer and antiviral nucleoside and nucleobase analogs

    PubMed Central

    2013-01-01

    Background Mycoplasma pneumoniae (Mpn) is a human pathogen that causes acute and chronic respiratory diseases and has been linked to many extrapulmonary diseases. Due to the lack of cell wall, Mpn is resistant to antibiotics targeting cell wall synthesis such as penicillin. During the last 10 years macrolide-resistant Mpn strains have been frequently reported in Asian countries and have been spreading to Europe and the United States. Therefore, new antibiotics are needed. In this study, 30 FDA-approved anticancer or antiviral drugs were screened for inhibitory effects on Mpn growth and selected analogs were further characterized by inhibition of target enzymes and metabolism of radiolabeled substrates. Results Sixteen drugs showed varying inhibitory effects and seven showed strong inhibition of Mpn growth. The anticancer drug 6-thioguanine had a MIC (minimum inhibitory concentration required to cause 90% of growth inhibition) value of 0.20 μg ml-1, whereas trifluorothymidine, gemcitabine and dipyridamole had MIC values of approximately 2 μg ml-1. In wild type Mpn culture the presence of 6-thioguanine and dipyridamole strongly inhibited the uptake and metabolism of hypoxanthine and guanine while gemcitabine inhibited the uptake and metabolism of all nucleobases and thymidine. Trifluorothymidine and 5-fluorodeoxyuridine, however, stimulated the uptake and incorporation of radiolabeled thymidine and this stimulation was due to induction of thymidine kinase activity. Furthermore, Mpn hypoxanthine guanine phosphoribosyl transferase (HPRT) was cloned, expressed, and characterized. The 6-thioguanine, but not other purine analogs, strongly inhibited HPRT, which may in part explain the observed growth inhibition. Trifluorothymidine and 5-fluorodeoxyuridine were shown to be good substrates and inhibitors for thymidine kinase from human and Mycoplasma sources. Conclusion We have shown that several anticancer and antiviral nucleoside and nucleobase analogs are potent

  2. Understanding and changing human behaviour—antibiotic mainstreaming as an approach to facilitate modification of provider and consumer behaviour

    PubMed Central

    Tamhankar, Ashok J.

    2014-01-01

    This paper addresses: 1) Situations where human behaviour is involved in relation to antibiotics, focusing on providers and consumers; 2) Theories about human behaviour and factors influencing behaviour in relation to antibiotics; 3) How behaviour in relation to antibiotics can change; and, 4) Antibiotic mainstreaming as an approach to facilitate changes in human behaviour as regards antibiotics. Influencing human behaviour in relation to antibiotics is a complex process which includes factors like knowledge, attitudes, social norms, socio-economic conditions, peer pressure, experiences, and bio-physical and socio-behavioural environment. Further, key concepts are often perceived in different ways by different individuals. While designing and implementing projects or programmes for behavioural change with respect to antibiotics for professionals or consumers it is helpful to consider theories or models of behaviour change, e.g. the ‘stages of change model’, including pre-contemplation, contemplation, preparation, action, and maintenance. People in different stages of change are susceptible to different behaviour modification strategies. Application of marketing principles to ‘global good’, so-called ‘social marketing’, to improve ‘welfare of the individual and society’ is gaining increased attention in public health. In conclusion, just providing correct knowledge is not sufficient although it is a pre-requisite for behaviour modification in the desired direction. We can never change the behaviour of any other human, but we can facilitate for others to change their own behaviour. One possibility is to implement ‘antibiotic mainstreaming’ as a potentially effective way for behaviour modification, i.e. to address consequences for maintaining effective antibiotics in all activities and decisions in society. PMID:24735112

  3. Understanding and changing human behaviour--antibiotic mainstreaming as an approach to facilitate modification of provider and consumer behaviour.

    PubMed

    Stålsby Lundborg, Cecilia; Tamhankar, Ashok J

    2014-05-01

    This paper addresses: 1) Situations where human behaviour is involved in relation to antibiotics, focusing on providers and consumers; 2) Theories about human behaviour and factors influencing behaviour in relation to antibiotics; 3) How behaviour in relation to antibiotics can change; and, 4) Antibiotic mainstreaming as an approach to facilitate changes in human behaviour as regards antibiotics. Influencing human behaviour in relation to antibiotics is a complex process which includes factors like knowledge, attitudes, social norms, socio-economic conditions, peer pressure, experiences, and bio-physical and socio-behavioural environment. Further, key concepts are often perceived in different ways by different individuals. While designing and implementing projects or programmes for behavioural change with respect to antibiotics for professionals or consumers it is helpful to consider theories or models of behaviour change, e.g. the 'stages of change model', including pre-contemplation, contemplation, preparation, action, and maintenance. People in different stages of change are susceptible to different behaviour modification strategies. Application of marketing principles to 'global good', so-called 'social marketing', to improve 'welfare of the individual and society' is gaining increased attention in public health. In conclusion, just providing correct knowledge is not sufficient although it is a pre-requisite for behaviour modification in the desired direction. We can never change the behaviour of any other human, but we can facilitate for others to change their own behaviour. One possibility is to implement 'antibiotic mainstreaming' as a potentially effective way for behaviour modification, i.e. to address consequences for maintaining effective antibiotics in all activities and decisions in society. PMID:24735112

  4. Staphylococcus aureus MnhF Mediates Cholate Efflux and Facilitates Survival under Human Colonic Conditions

    PubMed Central

    Sannasiddappa, Thippeswamy H.; Hood, Graham A.; Hanson, Kevan J.; Costabile, Adele; Gibson, Glenn R.

    2015-01-01

    Resistance to the innate defenses of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common colonizer of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent antimicrobial activity. The mechanisms by which S. aureus is able to resist such defenses in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates the efflux of radiolabeled cholic acid both in S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated the survival of S. aureus in an anaerobic three-stage continuous-culture model of the human colon (gut model), which represents different anatomical areas of the large intestine. PMID:25824834

  5. Rare Variation Facilitates Inferences of Fine-Scale Population Structure in Humans

    PubMed Central

    O’Connor, Timothy D.; Fu, Wenqing; Mychaleckyj, Josyf C.; Logsdon, Benjamin; Auer, Paul; Carlson, Christopher S.; Leal, Suzanne M.; Smith, Joshua D.; Rieder, Mark J.; Bamshad, Michael J.; Nickerson, Deborah A.; Akey, Joshua M.

    2015-01-01

    Understanding the genetic structure of human populations has important implications for the design and interpretation of disease mapping studies and reconstructing human evolutionary history. To date, inferences of human population structure have primarily been made with common variants. However, recent large-scale resequencing studies have shown an abundance of rare variation in humans, which may be particularly useful for making inferences of fine-scale population structure. To this end, we used an information theory framework and extensive coalescent simulations to rigorously quantify the informativeness of rare and common variation to detect signatures of fine-scale population structure. We show that rare variation affords unique insights into patterns of recent population structure. Furthermore, to empirically assess our theoretical findings, we analyzed high-coverage exome sequences in 6,515 European and African American individuals. As predicted, rare variants are more informative than common polymorphisms in revealing a distinct cluster of European–American individuals, and subsequent analyses demonstrate that these individuals are likely of Ashkenazi Jewish ancestry. Our results provide new insights into the population structure using rare variation, which will be an important factor to account for in rare variant association studies. PMID:25415970

  6. Serum IgE clearance is facilitated by human FcεRI internalization

    PubMed Central

    Greer, Alexandra M.; Wu, Nan; Putnam, Amy L.; Woodruff, Prescott G.; Wolters, Paul; Kinet, Jean-Pierre; Shin, Jeoung-Sook

    2014-01-01

    The high-affinity IgE receptor FcεRI is constitutively expressed in mast cells and basophils and is required for transmitting stimulatory signals upon engagement of IgE-bound allergens. FcεRI is also constitutively expressed in dendritic cells (DCs) and monocytes in humans; however, the specific functions of the FcεRI expressed by these cells are not completely understood. Here, we found that FcεRI expressed by human blood DC antigen 1–positive (BDCA1+) DCs and monocytes, but not basophils, traffics to endolysosomal compartments under steady-state conditions. Furthermore, IgE bound to FcεRI on BDCA1+ DCs was rapidly endocytosed, transported to the lysosomes, and degraded in vitro. IgE injected into mice expressing human FcεRIα (FCER1A-Tg mice) was endocytosed by conventional DCs and monocytes, and endocytosis was associated with rapid clearance of circulating IgE from these mice. Importantly, this rapid IgE clearance was dependent on monocytes or DCs but not basophils. These findings strongly suggest that constitutive internalization of human FcεRI by DCs and monocytes distinctively contributes to serum IgE clearance. PMID:24569373

  7. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    PubMed

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. PMID:25296660

  8. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease.

    PubMed

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G

    2014-12-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease. PMID:25402615

  9. Human Resource Development to Facilitate Experiential Learning: The Case of Yahoo Japan

    ERIC Educational Resources Information Center

    Matsuo, Makoto

    2015-01-01

    Although work experiences are recognized as important mechanisms for developing leaders in organizations, existing research has focused primarily on work assignments rather than on human resource development (HRD) systems that promote experiential learning of managers. The primary goal of this study was to develop an HRD model for facilitating…

  10. Concept Mapping in the Humanities to Facilitate Reflection: Externalizing the Relationship between Public and Personal Learning

    ERIC Educational Resources Information Center

    Kandiko, Camille; Hay, David; Weller, Saranne

    2013-01-01

    This article discusses how mapping techniques were used in university teaching in a humanities subject. The use of concept mapping was expanded as a pedagogical tool, with a focus on reflective learning processes. Data were collected through a longitudinal study of concept mapping in a university-level Classics course. This was used to explore how…

  11. Facilitating Conceptual Change in Ninth Grade Students' Understanding of Human Circulatory System Concepts

    ERIC Educational Resources Information Center

    Alkhawaldeh, Salem A.

    2007-01-01

    The purpose of this study was to investigate the effectiveness of the conceptual change text oriented instruction over traditionally designed instruction on ninth grade students' understanding of the human circulatory system concepts, and their retention of this understanding. The subjects of this study consist of 73 ninth grade female students…

  12. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease

    PubMed Central

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J.; Tyler, Scott R.; Tisoncik-Go, Jennifer; Brawand, David; Law, G. Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J.; Kelly, Sara M.; Chang, Jean; Thomas, Matthew J.; Johnson, Jeremy; Berlin, Aaron M.; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M.; Tumpey, Terrence M.; Siepel, Adam; Wisely, Samantha M.; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W.; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F.; Palermo, Robert E.; Katze, Michael G.

    2014-01-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the ‘gold standard’ for modeling human influenza virus infection and transmission1–4. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotate 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterize the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time courses, and show distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis (CF) disease progression, we show that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with CF disease. PMID:25402615

  13. Lessons from the Chilean earthquake: how a human rights framework facilitates disaster response.

    PubMed

    Arbour, MaryCatherine; Murray, Kara; Arriet, Felipe; Moraga, Cecilia; Vega, Miguel Cordero

    2011-01-01

    The earthquake of 2010 in Chile holds important lessons about how a rights-based public health system can guide disaster response to protect vulnerable populations. This article tells the story of Chile Grows With You (Chile Crece Contigo), an intersectoral system created three years before the earthquake for protection of child rights and development, and its role in the disaster response. The creation of Chile Grows With You with an explicit rights-oriented mandate established intersectoral mechanisms, relationships, and common understanding between governmental groups at the national and local levels. After the earthquake, Chile Grows With You organized its activities according to its founding principles: it provided universal access and support for all Chilean children, with special attention and services for those at greatest risk. This tiered approach involved public health and education materials for all children and families; epidemiologic data for local planners about children in their municipalities at-risk before the earthquake; and an instrument developed to assist in the assessment and intervention of children put at risk by the earthquake. This disaster response illustrates how a rights-based framework defined and operationalized in times of stability facilitated organization, prioritization, and sustained action to protect and support children and families in the acute aftermath of the earthquake, despite a change in government from a left-wing to a right-wing president, and into the early recovery period. PMID:22772964

  14. Human difference in the genomic era: Facilitating a socially responsible dialogue

    PubMed Central

    2010-01-01

    Background The study of human genetic variation has been advanced by research such as genome-wide association studies, which aim to identify variants associated with common, complex diseases and traits. Significant strides have already been made in gleaning information on susceptibility, treatment, and prevention of a number of disorders. However, as genetic researchers continue to uncover underlying differences between individuals, there is growing concern that observed population-level differences will be inappropriately generalized as inherent to particular racial or ethnic groups and potentially perpetuate negative stereotypes. Discussion We caution that imprecision of language when conveying research conclusions, compounded by the potential distortion of findings by the media, can lead to the stigmatization of racial and ethnic groups. Summary It is essential that the scientific community and with those reporting and disseminating research findings continue to foster a socially responsible dialogue about genetic variation and human difference. PMID:20504336

  15. The measurement and facilitation of cooperative task performance. [reactions of humans to stress exposure

    NASA Technical Reports Server (NTRS)

    Hutchinson, R. R.

    1975-01-01

    Experiments were conducted to determine under what conditions jaw clenching will occur in humans as a response to stress exposure. The method for measuring reactions to stress involves a series of electrical recordings of the masseter and temporalis muscles. A high fixed-ratio response requirement in the first series of experiments shows that jaw clenching in humans occurs in situations analogous to those which produce biting in infrahuman subjects. In the second series, reduction in the amounts of money recieved by subjects is shown to cause increases in the jaw clench response and other negative effect motor behaviors. The third series demonstrates that perception of more favorable conditions existing for another person can increase anger and hostility in the subject.

  16. Facilitation of human osteoblast apoptosis by sulindac and indomethacin under hypoxic injury.

    PubMed

    Liu, Cheng; Tsai, An-Ly; Chen, Yen-Chu; Fan, Shih-Chen; Huang, Chun-Hsien; Wu, Chia-Ching; Chang, Chih-Han

    2012-01-01

    Hypoxic-ischemia injury occurs after trauma causes consequential bone necrosis. Non-steroid anti-inflammatory drugs (NSAIDs) are frequently used in orthopedic clinics for pain relief. However, the underlying mechanism and outcome for usage of NSAIDs is poorly understood. To investigate the damage and loss of osteoblast function in hypoxia, two hypoxia mimetics, cobalt chloride (CoCl(2)) and desferrioxamine (DFO), were used to create an in vitro hypoxic microenvironment. The cell damage was observed by decreases of cell viability and increases in cyclooxygenase-2 and cleaved poly(ADP-ribose) polymerase (PARP). Cell apoptosis was confirmed by WST-1 cytotoxic assays and flow cytometry. The functional expression of osteoblast in alkaline phosphatase (ALP) activity was significantly decreased by CoCl(2) and inhibited when treated with DFO. To simulate the use of NSAID after hypoxic injury, four types of anti-inflammatory drugs, sulindac sulfide (SUL), indomethacin (IND), aspirin (Asp), and sodium salicylate (NaS), were applied to osteoblasts after 1 h of hypoxia mimetic treatment. SUL and IND further enhanced cell death after hypoxia. ALP activity was totally abolished in hypoxic osteoblasts under IND treatment. Facilitation of osteoblast apoptosis occurred regardless of IND dosage under hypoxic conditions. To investigate osteoblast in vivo, local hypoxia was created by fracture of tibia and then treated the injured mice with IND by oral feeding. IND-induced osteoblast apoptosis was confirmed by positive staining of TUNEL assay in fractured mice. Significant delay of fracture healing in bone tissue was also observed with the treatment of IND. These results provide information pertaining to choosing appropriate anti-inflammatory drugs for orthopedic patients. PMID:21882223

  17. Ubiquitous Crossmodal Stochastic Resonance in Humans: Auditory Noise Facilitates Tactile, Visual and Proprioceptive Sensations

    PubMed Central

    Lugo, Eduardo; Doti, Rafael; Faubert, Jocelyn

    2008-01-01

    Background Stochastic resonance is a nonlinear phenomenon whereby the addition of noise can improve the detection of weak stimuli. An optimal amount of added noise results in the maximum enhancement, whereas further increases in noise intensity only degrade detection or information content. The phenomenon does not occur in linear systems, where the addition of noise to either the system or the stimulus only degrades the signal quality. Stochastic Resonance (SR) has been extensively studied in different physical systems. It has been extended to human sensory systems where it can be classified as unimodal, central, behavioral and recently crossmodal. However what has not been explored is the extension of this crossmodal SR in humans. For instance, if under the same auditory noise conditions the crossmodal SR persists among different sensory systems. Methodology/Principal Findings Using physiological and psychophysical techniques we demonstrate that the same auditory noise can enhance the sensitivity of tactile, visual and propioceptive system responses to weak signals. Specifically, we show that the effective auditory noise significantly increased tactile sensations of the finger, decreased luminance and contrast visual thresholds and significantly changed EMG recordings of the leg muscles during posture maintenance. Conclusions/Significance We conclude that crossmodal SR is a ubiquitous phenomenon in humans that can be interpreted within an energy and frequency model of multisensory neurons spontaneous activity. Initially the energy and frequency content of the multisensory neurons' activity (supplied by the weak signals) is not enough to be detected but when the auditory noise enters the brain, it generates a general activation among multisensory neurons of different regions, modifying their original activity. The result is an integrated activation that promotes sensitivity transitions and the signals are then perceived. A physiologically plausible model for

  18. Analysis of cis-elements that facilitate extrachromosomal persistence of human papillomavirus genomes

    SciTech Connect

    Pittayakhajonwut, Daraporn; Angeletti, Peter C.

    2008-05-10

    Human papillomaviruses (HPVs) are maintained latently in dividing epithelial cells as nuclear plasmids. Two virally encoded proteins, E1, a helicase, and E2, a transcription factor, are important players in replication and stable plasmid maintenance in host cells. Recent experiments in yeast have demonstrated that viral genomes retain replication and maintenance function independently of E1 and E2 [Angeletti, P.C., Kim, K., Fernandes, F.J., and Lambert, P.F. (2002). Stable replication of papillomavirus genomes in Saccharomyces cerevisiae. J. Virol. 76(7), 3350-8; Kim, K., Angeletti, P.C., Hassebroek, E.C., and Lambert, P.F. (2005). Identification of cis-acting elements that mediate the replication and maintenance of human papillomavirus type 16 genomes in Saccharomyces cerevisiae. J. Virol. 79(10), 5933-42]. Flow cytometry studies of EGFP-reporter vectors containing subgenomic HPV fragments with or without a human ARS (hARS), revealed that six fragments located in E6-E7, E1-E2, L1, and L2 regions showed a capacity for plasmid stabilization in the absence of E1 and E2 proteins. Interestingly, four fragments within E7, the 3' end of L2, and the 5' end of L1 exhibited stability in plasmids that lacked an hARS, indicating that they possess both replication and maintenance functions. Two fragments lying in E1-E2 and the 3' region of L1 were stable only in the presence of hARS, that they contained only maintenance function. Mutational analyses of HPV16-GFP reporter constructs provided evidence that genomes lacking E1 and E2 could replicate to an extent similar to wild type HPV16. Together these results support the concept that cellular factors influence HPV replication and maintenance, independently, and perhaps in conjunction with E1 and E2, suggesting a role in the persistent phase of the viral lifecycle.

  19. Unified reaction pathways for the prebiotic formation of RNA and DNA nucleobases.

    PubMed

    Jeilani, Yassin Aweis; Williams, Phoenix N; Walton, Sofia; Nguyen, Minh Tho

    2016-07-27

    The reaction pathways for the prebiotic formation of nucleobases are complex and lead to the formation of a mixture of products. In the past 50 years, there has been a concerted effort for identifying a unified mechanism for the abiotic origin of the biomolecules but with little success. In the present theoretical study, we identified two prominent precursors for the building up of RNA and DNA nucleobases under prebiotic conditions: (a) 1,2-diaminomaleonitrile (DAMN), which is a tetramer of hydrogen cyanide (HCN), and (b) formamide, a hydrolysis product of HCN; it is important to emphasize that HCN is the source of both precursors. We find that free radical pathways are potentially appropriate to account for the origin of nucleobases from HCN. The current study unites the formamide pathways with the DAMN pathways. The mechanisms for the formation of the RNA and DNA nucleobases (uracil, adenine, purine, cytosine) were studied by quantum chemical computations using density functional theory at the B3LYP/6-311G(d,p) level. All the routes involved proceed with relatively low energy barriers (within the error margin of DFT methods). We showed that the radical mechanisms for the formation of nucleobases could be unified through common precursors. The results demonstrated that 4-aminoimidazole-5-carbonitrile (AICN), which is a known precursor for nucleobases, is a product of DAMN. The overall mechanisms are internally consistent with the abiotic formation of the nucleobases, namely (a) under a meteoritic impact scenario on the early Earth's surface that generated high internal energy, and/or (b) in the (gas phase) interstellar regions without the presence of catalysts. PMID:27220279

  20. Seeding the Pregenetic Earth: Meteoritic Abundances of Nucleobases and Potential Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Pearce, Ben K. D.; Pudritz, Ralph E.

    2015-07-01

    Carbonaceous chondrites are a class of meteorite known for having high contents of water and organics. In this study, the abundances of the nucleobases, i.e., the building blocks of RNA and DNA, found in carbonaceous chondrites are collated from a variety of published data and compared across various meteorite classes. An extensive review of abiotic chemical reactions producing nucleobases is then performed. These reactions are then reduced to a list of 15 individual reaction pathways that could potentially occur within meteorite parent bodies. The nucleobases guanine, adenine, and uracil are found in carbonaceous chondrites in amounts of 1–500 ppb. It is currently unknown which reaction is responsible for their synthesis within the meteorite parent bodies. One class of carbonaceous meteorite dominates the abundances of both amino acids and nucleobases—the so-called CM2 (e.g., Murchison meteorite). CR2 meteorites (e.g., Graves Nunataks) also dominate the abundances of amino acids, but are the least abundant in nucleobases. The abundances of total nucleobases in these two classes are 330 ± 250 and 16 ± 13 ppb, respectively. Guanine most often has the greatest abundances in carbonaceous chondrites with respect to the other nucleobases, but is 1–2 orders of magnitude less abundant in CM2 meteorites than glycine (the most abundant amino acid). Our survey of the reaction mechanisms for nucleobase formation suggests that Fischer–Tropsch synthesis (i.e., CO, H2, and NH3 gases reacting in the presence of a catalyst such as alumina or silica) is the most likely candidate for conditions that characterize the early states of planetesimals.

  1. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.

    PubMed

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K G; Wiegand, Simone

    2016-04-19

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth. PMID:27044100

  2. Nucleobases in Space: Laboratory Studies of Polycyclic Aromatic Nitrogen Heterocycles

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie; Mattioda, Andy; Bernstein, Max; Sandford, Scott; Hudgins, Doug

    2005-01-01

    Polycyclic Aromatic Nitrogen Heterocycles (PANHs) are heterocyclic aromatics Le., PAHs with carbon atoms replaced by a nitrogen atom. These molecules have been detected in meteorite extracts, and in general these nitrogen heterocycles are of astrobiological interest since this class of molecules include nucleobases, basic components of our nucleic acids. These compounds are predicted to be present in the interstellar medium and in Titan tholin, but have received relatively little attention. We will present spectra and reactions of PANHs, frozen in solid H2O at 12 K, conditions germane to astronomical observations. In contrast to simple PAHs, that do not interact strongly with solid H2O, the nitrogen atoms in PANHs are potentially capable of hydrogen bonding with H20 changing their spectra, complicating their remote detection on the surfaces of icy bodies. Moreover, we have studied the photo-chemistry of these interesting compounds under astrophysical conditions and will use our lab studies to assess a potential interstellar heritage of these compounds in carbonaceous chondrites.

  3. Synthesis and characterization of nucleobase-carbon nanotube hybrids.

    PubMed

    Singh, Prabhpreet; Kumar, Jitendra; Toma, Francesca Maria; Raya, Jesus; Prato, Maurizio; Fabre, Bruno; Verma, Sandeep; Bianco, Alberto

    2009-09-23

    We report the synthesis and characterization of adenine-single-walled carbon nanotube (SWCNT) hybrid materials, where for the first time nucleobases are covalently attached to the exosurface of SWCNTs. The structural properties of all hybrids have been characterized using usual spectroscopic and microscopic techniques. The degree of functional groups for functionalized SWCNTs (f-SWCNTs) 2a and 2b is one adenine group for each 26 and 37 carbon atoms, respectively. Solid-state magic angle spinning (13)C NMR spectroscopy (MAS NMR) and electrochemistry have been also applied for the characterization of these f-SWCNTs. AFM images of f-SWCNT 2b showed an interesting feature of horizontally aligned nanotubes along the surface when deposited on highly oriented pyrolytic graphite surface. Furthermore, we evaluated the coordinating ability of these hybrid materials toward silver ions, and interestingly, we found a pattern of silver nanoparticles localized over the surface of the carbon nanotube network. The presence of aligned and randomly oriented CNTs and their ability to coordinate with metal ions make this class of materials very interesting for applications in the development of novel electronic devices and as new supports for different catalytic transformations. PMID:19673527

  4. Metal Ion-Mediated Nucleobase Recognition by the ZTP Riboswitch.

    PubMed

    Trausch, Jeremiah J; Marcano-Velázquez, Joan G; Matyjasik, Michal M; Batey, Robert T

    2015-07-23

    The ZTP riboswitch is a widespread family of regulatory RNAs that upregulate de novo purine synthesis in response to increased intracellular levels of ZTP or ZMP. As an important intermediate in purine biosynthesis, ZMP also serves as a proxy for the concentration of N10-formyl-tetrahydrofolate, a key component of one-carbon metabolism. Here, we report the structure of the ZTP riboswitch bound to ZMP at a resolution of 1.80 Å. The RNA contains two subdomains brought together through a long-range pseudoknot further stabilized through helix-helix packing. ZMP is bound at the subdomain interface of the RNA through a set of interactions with the base, ribose sugar, and phosphate moieties of the ligand. Unique to nucleobase recognition by RNAs, the Z base is inner-sphere coordinated to a magnesium cation bound by two backbone phosphates. This interaction, along with steric hindrance by the backbone, imparts specificity over chemically similar compounds such as ATP/AMP. PMID:26144884

  5. Anharmonic IR Spectra of Biomolecules: Nucleobases and Their Oligomers

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien; Carnimeo, Ivan; Fornaro, Teresa

    2014-06-01

    Computational spectroscopy techniques have become in the last years effective means to predict and characterize spectra, such as infrared, for molecular systems of increasing dimensions with account for different environments. We are actively developing a comprehensive and robust computational protocol, set within a perturbative vibrational framework [1], aimed at a quantitative reproduction of the spectra of biomolecules. In order to model the vibrational spectra of weakly bound molecular complexes, dispersion interactions should be taken into proper account. In this work, we present critical assessment of dispersion-corrected DFT approaches for anharmonic vibrational frequency calculations. It is shown that fully anharmonic IR spectra, simulated through full and reduced-dimensionality generalized second-order vibrational perturbation theory (GVPT2)[1] with the potential energy surfaces computed with the B3LYP-D3 approach, may be used to interpret experimental data of nucleobases and their complexes[2] by the direct comparison of experimental IR spectra with their theoretical anharmonic counterpart, taking into account also overtones and combination bands. [1] V. Barone, M. Biczysko, J. Bloino, Phys. Chem. Chem. Phys., 2014,16, 1759-1787 [2] T. Fornaro, M. Biczysko, S. Monti, V. Barone, Phys. Chem. Chem. Phys., 2014, DOI: 10.1039/C3CP54724H

  6. Fibroblast growth factor-2 facilitates rapid anastomosis formation between bioengineered human vascular networks and living vasculature

    PubMed Central

    Lin, Ruei-Zeng; Melero-Martin, Juan M.

    2012-01-01

    Many common diseases involve the injury, loss, or death of organ tissues. For these patients, organ transplantation is often the only viable solution. Nonetheless, organ transplantation is seriously limited by the relative scarcity of living and non-living donors, a situation that is worsening with aging of the world population. Tissue Engineering (TE) is a research discipline in regenerative medicine that aims to generate tissues in the laboratory that can replace diseased and damaged tissues in patients. Crucially, engineered tissues must have a vascular network that guarantees adequate nutrient supply, gas exchange, and elimination of waste products. Therefore, the search for clinically relevant sources of vasculogenic cells and the subsequent development of methods to achieve rapid vascularization is of utmost importance. We and others have previously shown that human blood-derived endothelial colony-forming cells (ECFCs) have the required vasculogenic capacity to form functional vascular networks in vivo. These studies demonstrated that, in the presence of an appropriate source of perivascular cells, ECFCs can self-assemble into microvascular networks and connect to the host vasculature, a process that takes approximately 7 days in vivo. The prospect is to incorporate these vascular networks into future engineered tissues. However, engineered tissues must have a functional vasculature immediately after implantation in order to preserve viability and function. Thus, it is critical to further develop strategies for rapid formation of perfused vascular network in vivo. Here, we describe a methodology to deliver ECFCs and bone marrow-derived mesenchymal stem cells (MSCs) subcutaneously into immunodeficient mice in the presence of fibroblast growth factor-2 (FGF-2). This approach significantly reduces the time needed to achieve functional anastomoses between bioengineered human blood vessels and the host vasculature. This methodology includes (1) isolation

  7. Bacterial Peptide Recognition and Immune Activation Facilitated by Human Peptide Transporter PEPT2

    PubMed Central

    Swaan, Peter W.; Bensman, Timothy; Bahadduri, Praveen M.; Hall, Mark W.; Sarkar, Anasuya; Bao, Shengying; Khantwal, Chandra M.; Ekins, Sean; Knoell, Daren L.

    2008-01-01

    Microbial detection requires the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) that are distributed on the cell surface and within the cytosol. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family functions as an intracellular PRR that triggers the innate immune response. The mechanism by which PAMPs enter the cytosol to interact with NLRs, particularly muropeptides derived from the bacterial proteoglycan cell wall, is poorly understood. PEPT2 is a proton-dependent transporter that mediates the active translocation of di- and tripeptides across epithelial tissues, including the lung. Using computational tools, we initially established that bacterial dipeptides, particularly γ-D-glutamyl-meso-diaminopimelic acid (γ-iE-DAP), are suitable substrates for PEPT2. We then determined in primary cultures of human upper airway epithelia and transiently transfected CHO-PEPT2 cell lines that γ-iE-DAP uptake was mediated by PEPT2 with an affinity constant of approximately 193 μM, whereas muramyl dipeptide was not transported. Exposure to γ-iE-DAP at the apical surface of differentiated, polarized cultures resulted in activation of the innate immune response in an NOD1- and RIP2-dependent manner, resulting in release of IL-6 and IL-8. Based on these findings we report that PEPT2 plays a vital role in microbial recognition by NLR proteins, particularly with regard to airborne pathogens, thereby participating in host defense in the lung. PMID:18474668

  8. Incorporation of Radio Frequency Identification Tag in Dentures to Facilitate Recognition and Forensic Human Identification

    PubMed Central

    Nuzzolese, E; Marcario, V; Di Vella, G

    2010-01-01

    Forensic identification using odontology is based on the comparison of ante-mortem and post mortem dental records. The insertion of a radio frequency identification (RFId) tag into dentures could be used as an aid to identify decomposed bodies, by storing personal identification data in a small transponder that can be radio-transmitted to a reader connected to a computer. A small passive, 12 x 2,1 mm, read-only RFId-tag was incorporated into the manufacture of three trial complete upper dentures and tested for a signal. The aim of this article is to demonstrate the feasibility of manufacturing such a dental prosthesis, the technical protocols for its implantation in the denture resin and its working principles. Future research and tests are required in order to verify human compatibility of the tagged denture and also to evaluate any potential deterioration in strength when subjected to high temperatures, or for damage resulting from everyday wear and tear. It should also be able to withstand the extreme conditions resulting from major accidents or mass disasters and procedures used to perform a forensic identification. PMID:20657641

  9. Antiaging Glycopeptide Protects Human Islets Against Tacrolimus-Related Injury and Facilitates Engraftment in Mice.

    PubMed

    Gala-Lopez, Boris L; Pepper, Andrew R; Pawlick, Rena L; O'Gorman, Doug; Kin, Tatsuya; Bruni, Antonio; Abualhassan, Nasser; Bral, Mariusz; Bautista, Austin; Manning Fox, Jocelyn E; Young, Lachlan G; MacDonald, Patrick E; Shapiro, A M James

    2016-02-01

    Clinical islet transplantation has become an established treatment modality for selected patients with type 1 diabetes. However, a large proportion of transplanted islets is lost through multiple factors, including immunosuppressant-related toxicity, often requiring more than one donor to achieve insulin independence. On the basis of the cytoprotective capabilities of antifreeze proteins (AFPs), we hypothesized that supplementation of islets with synthetic AFP analog antiaging glycopeptide (AAGP) would enhance posttransplant engraftment and function and protect against tacrolimus (Tac) toxicity. In vitro and in vivo islet Tac exposure elicited significant but reversible reduction in insulin secretion in both mouse and human islets. Supplementation with AAGP resulted in improvement of islet survival (Tac(+) vs. Tac+AAGP, 31.5% vs. 67.6%, P < 0.01) coupled with better insulin secretion (area under the curve: Tac(+) vs. Tac+AAGP, 7.3 vs. 129.2 mmol/L/60 min, P < 0.001). The addition of AAGP reduced oxidative stress, enhanced insulin exocytosis, improved apoptosis, and improved engraftment in mice by decreasing expression of interleukin (IL)-1β, IL-6, keratinocyte chemokine, and tumor necrosis factor-α. Finally, transplant efficacy was superior in the Tac+AAGP group and was similar to islets not exposed to Tac, despite receiving continuous treatment for a limited time. Thus, supplementation with AAGP during culture improves islet potency and attenuates long-term Tac-induced graft dysfunction. PMID:26581595

  10. Barriers and Facilitators to Engagement and Retention in Care among Transgender Women Living with Human Immunodeficiency Virus

    PubMed Central

    Sevelius, Jae M.; Patouhas, Enzo; Keatley, JoAnne G.; Johnson, Mallory O.

    2014-01-01

    Background Transgender women have 49 times the odds of human immunodeficiency virus (HIV) infection compared to other groups, yet they are disproportionately underserved by current treatment efforts. Purpose To examine culturally unique barriers and facilitators to engagement and retention in HIV care and strengthen efforts to mitigate health disparities, guided by the Models of Gender Affirmation and Health Care Empowerment. Methods Through 20 interviews and 5 focus groups (n=38), transgender women living with HIV discussed their experiences and life contexts of engagement in and adherence to HIV care and treatment. Results Our participants faced substantial challenges to adhering to HIV care and treatment, including avoidance of healthcare due to stigma and past negative experiences, prioritization of hormone therapy, and concerns about adverse interactions between antiretroviral treatment for HIV and hormone therapy. Receiving culturally competent, transgender-sensitive healthcare was a powerful facilitator of healthcare empowerment. Conclusions Recommendations are offered to inform intervention research and guide providers, emphasizing gender affirming HIV care that integrates transition-related healthcare needs. PMID:24317955

  11. Formation of Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Astrophysics Data System (ADS)

    Nuevo, M.; Sandford, S. A.; Milam, S. N.; Materese, C. K.; Elsila, J. E.; Dworkin, J. P.

    2011-05-01

    Nucleobases are N-heterocycles which are the informational subunits of DNA and RNA. Biological nucleobases are divided in two types: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin has been confirmed by isotope measurements, but no N-heterocycle has ever been observed in the ISM. Experiments showed that the UV irradiation of pyrimidine mixed in astrophysical ices such as H_2O, NH_3, CH_3OH, or any combination of these at low temperature (20-30 K) leads to the formation of multiple photo-products derived from pyrimidine including the nucleobases uracil and cytosine. Theoretical studies on the formation of uracil confirmed its experimental formation pathway and demonstrated that the H_2O matrix plays a key role in the chemistry [9]. Thymine, however, was not found in any of the samples, though other pyrimidine derivatives, as well as other species of prebiotic interest such as urea and the amino acid glycine, could be identified [8]. We will extend this study to the formation of nucleobases and other prebiotic species from the UV irradiation of pyrimidine in astrophysically relevant ice mixtures containing H_2O, NH_3, CH_3OH, CO, and CO_2.

  12. Identification of nucleobases using variable currents through graphene nanopores: A first principles study

    NASA Astrophysics Data System (ADS)

    Haraldsen, J. T.; McFarland, H.; Ahmed, T.; Zhu, J.-X.; Balatsky, A. V.

    2015-03-01

    Nanopore-based technology has the potential to be an efficient method for DNA/RNA base sequencing, as well as an identifier of other biomolecules. However, the thickness of the nanopore substrate is critical for the identification of individual nucleobases due to resulting noise and resolution problems. Recently, graphene has been suggested as a possible nanopore substrate due to its single atomic thickness and robust strength. In this study, we examine a possible device mechanism for the voltage dependence of nucleobases passing through a graphene nanopore. We utilize density functional theory with a generalized gradient approach on a graphene ribbon with a nucleobase in order to calculate the transmission spectra for each base. Transmission spectra for each base allows for the calculation of the ballistic current and differential current as a function of voltage. We show that applying various bias voltages across a graphene ribbon for the general, energy-minimized position of the translocated nucleobase, it is possible to distinguish individual bases using the resulting current. Overall, our goal is to improve nanopore device design by helping to further DNA/RNA nucleobase identification and sequencing.

  13. The Formation of Nucleobases from the Irradiation of Purine in Astophysical Ices and Comparisons with Meteorites.

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Materese, C. K.; Nuevo, M.

    2016-01-01

    N-heterocycles have been identified in meteorites and their extraterrestrial origins are suggested by isotopic ratio measurements. Although small N- heterocycles have not been detected in the interstellar medium (ISM), recent experiments in our lab have shown that the irradiation of the aromatic molecules like benzene (C6H6) and naphthalene (C10H8) in mixed molecular ices leads to the formation of O- and N-heterocyclic molecules. Among the class of N-heterocycles are the nucleobases, which are of astrobiological interest because they are the information bearing units of DNA and RNA. Nucleobases have been detected in meteorites [3-5], with isotopic signatures that are also consistent with an extraterrestrial origin. Three of the biologically relevant nucleobases (uracil, cytosine, and guanine) have a pyrimidine core structure while the remaining two (adenine and guanine) possess a purine core. Previous experiments in our lab have demonstrated that all of the bio-logical nucleobases (and numerous other molecules) with a pyrimidine core structure can be produced by irradiating pyrimidine in mixed molecular ices of several compositions [6-8]. In this work, we study the formation of purine-based molecules, including the nucleobases adenine, and guanine, from the ultraviolet (UV) irradiation of purine in ices consisting mixtures of H2O and NH3 at low temperature. The experiments are designed to simulate the astrophysical conditions under which these species may be formed in dense molecular clouds, protoplanetary disks, or on the surfaces of icy bodies in planetary systems.

  14. Human DNA helicase B interacts with the replication initiation protein Cdc45 and facilitates Cdc45 binding onto chromatin

    PubMed Central

    Gerhardt, Jeannine; Guler, Gulfem D.; Fanning, Ellen

    2015-01-01

    The chromosomal DNA replication in eukaryotic cells begins at replication initation sites, which are marked by the assembly of the pre-replication complexes in early G1. At the G1/S transition, recruitment of additional replication initiation proteins enables origin DNA unwinding and loading of DNA polymerases. We found that depletion of the human DNA helicase B (HDHB) inhibits the initiation of DNA replication, suggesting a role of HDHB in the beginning of the DNA synthesis. To gain insight into the function of HDHB during replication initiation, we examined the physical interactions of purified recombinant HDHB with key initiation proteins. HDHB interacts directly with two initiation factors TopBP1 and Cdc45. In addition we found that both, the N-terminus and helicase domain of HDHB bind to the N-terminus of Cdc45. Furthermore depletion of HDHB from human cells diminishes Cdc45 association with chromatin, suggesting that HDHB may facilitate Cdc45 recruitment at G1/S in human cells. PMID:25933514

  15. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells.

    PubMed

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-10-01

    Asymmetric cell division (ACD) is a physiologic process during development and tissue homeostasis. ACD produces two unequal daughter cells: one has stem/progenitor cell activity and the other has potential for differentiation. Recent studies showed that misregulation of the balance between self-renewal and differentiation by ACD may lead to tumorigenesis in Drosophila neuroblasts. However, it is still largely unknown whether human cancer stem-like cells exhibit ACD or not. Here, using human neuroblastoma cells as an ACD model, we found that MYCN accumulates at spindle poles by GSK-3β phosphorylation during mitosis. In parallel, the ACD-related ubiquitin ligase Trim32 was recruited to spindle poles by CDK1/cyclin B-mediated phosphorylation. Trim32 interacted with MYCN at spindle poles during mitosis, facilitating proteasomal degradation of MYCN at spindle poles and inducing ACD. Trim32 also suppressed sphere formation of neuroblastoma-initiating cells, suggesting that the mechanisms of ACD produce differentiated neuroblastoma cells that will eventually die. Thus, Trim32 is a positive regulator of ACD that acts against MYCN and should be considered as a tumor-suppressor candidate. Our findings offer novel insights into the mechanisms of ACD and clarify its contributions to human tumorigenesis. PMID:25100564

  16. Diminished hERG K+ channel activity facilitates strong human labour contractions but is dysregulated in obese women.

    PubMed

    Parkington, Helena C; Stevenson, Janet; Tonta, Mary A; Paul, Jonathan; Butler, Trent; Maiti, Kaushik; Chan, Eng-Cheng; Sheehan, Penelope M; Brennecke, Shaun P; Coleman, Harold A; Smith, Roger

    2014-01-01

    Human ether-a-go-go-related gene (hERG) potassium channels determine cardiac action potential and contraction duration. Human uterine contractions are underpinned by an action potential that also possesses an initial spike followed by prolonged depolarization. Here we show that hERG channel proteins (α-conducting and β-inhibitory subunits) and hERG currents exist in isolated patch-clamped human myometrial cells. We show that hERG channel activity suppresses contraction amplitude and duration before labour, thereby facilitating quiescence. During established labour, expression of β-inhibitory protein is markedly enhanced, resulting in reduced hERG activity that is associated with an increased duration of uterine action potentials and contractions. Thus, changes in hERG channel activity contribute to electrophysiological mechanisms that produce contractions during labour. We also demonstrate that this system fails in women with elevated BMI, who have enhanced hERG activity as a result of low β-inhibitory protein expression, which likely contributes to the weak contractions and poor labour outcomes observed in many obese women necessitating caesarean delivery. PMID:24937480

  17. A TNFR2-Agonist Facilitates High Purity Expansion of Human Low Purity Treg Cells

    PubMed Central

    Landman, Sija; Bauland, Stijn C. G.; van den Dolder, Juliette

    2016-01-01

    Regulatory T cells (Treg) are important for immune homeostasis and are considered of great interest for immunotherapy. The paucity of Treg numbers requires the need for ex vivo expansion. Although therapeutic Treg flow-sorting is feasible, most centers aiming at Treg-based therapy focus on magnetic bead isolation of CD4+CD25+ Treg using a good manufacturing practice compliant closed system that achieves lower levels of cell purity. Polyclonal Treg expansion protocols commonly use anti-CD3 plus anti-CD28 monoclonal antibody (mAb) stimulation in the presence of rhIL-2, with or without rapamycin. However, the resultant Treg population is often heterogeneous and pro-inflammatory cytokines like IFNγ and IL-17A can be produced. Hence, it is crucial to search for expansion protocols that not only maximize ex vivo Treg proliferative rates, but also maintain Treg stability and preserve their suppressive function. Here, we show that ex vivo expansion of low purity magnetic bead isolated Treg in the presence of a TNFR2 agonist mAb (TNFR2-agonist) together with rapamycin, results in a homogenous stable suppressive Treg population that expresses FOXP3 and Helios, shows low expression of CD127 and hypo-methylation of the FOXP3 gene. These cells reveal a low IL-17A and IFNγ producing potential and hardly express the chemokine receptors CCR6, CCR7 and CXCR3. Restimulation of cells in a pro-inflammatory environment did not break the stability of this Treg population. In a preclinical humanized mouse model, the TNFR2-agonist plus rapamycin expanded Treg suppressed inflammation in vivo. Importantly, this Treg expansion protocol enables the use of less pure, but more easily obtainable cell fractions, as similar outcomes were observed using either FACS-sorted or MACS-isolated Treg. Therefore, this protocol is of great interest for the ex vivo expansion of Treg for clinical immunotherapy. PMID:27224512

  18. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines

    SciTech Connect

    Ho, T.-F.; Peng, Y.-T.; Chuang, S.-M.; Lin, S.-C.; Feng, B.-L.; Lu, C.-H.; Yu, W.-J.; Chang, J.-S. Chang, C.-C.

    2009-03-01

    Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.

  19. Tonic central and sensory stimuli facilitate involuntary air-stepping in humans.

    PubMed

    Selionov, V A; Ivanenko, Y P; Solopova, I A; Gurfinkel, V S

    2009-06-01

    Air-stepping can be used as a model for investigating rhythmogenesis and its interaction with sensory input. Here we show that it is possible to entrain involuntary rhythmic movement patterns in healthy humans by using different kinds of stimulation techniques. The subjects lay on their sides with one or both legs suspended, allowing low-friction horizontal rotation of the limb joints. To evoke involuntary stepping of the suspended leg, either we used continuous muscle vibration, electrical stimulation of the superficial peroneal or sural nerves, the Jendrassik maneuver, or we exploited the postcontraction state of neuronal networks (Kohnstamm phenomenon). The common feature across all stimulations was that they were tonic. Air-stepping could be elicited by most techniques in about 50% of subjects and involved prominent movements at the hip and the knee joint (approximately 40-70 degrees). Typically, however, the ankle joint was not involved. Minimal loading forces (4-25 N) applied constantly to the sole (using a long elastic cord) induced noticeable (approximately 5-20 degrees) ankle-joint-angle movements. The aftereffect of a voluntary long-lasting (30-s) contraction in the leg muscles featured alternating rhythmic leg movements that lasted for about 20-40 s, corresponding roughly to a typical duration of the postcontraction activity in static conditions. The Jendrassik maneuver per se did not evoke air-stepping. Nevertheless, it significantly prolonged rhythmic leg movements initiated manually by an experimenter or by a short (5-s) period of muscle vibration. Air-stepping of one leg could be evoked in both forward and backward directions with frequent spontaneous transitions, whereas involuntary alternating two-legged movements were more stable (no transitions). The hypothetical role of tonic influences, contact forces, and bilateral coordination in rhythmogenesis is discussed. The results overall demonstrated that nonspecific tonic drive may cause air

  20. Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function

    PubMed Central

    Jamali, Somayeh; Klier, Michael; Ames, Samantha; Felipe Barros, L.; McKenna, Robert; Deitmer, Joachim W.; Becker, Holger M.

    2015-01-01

    The most aggressive tumour cells, which often reside in hypoxic environments, rely on glycolysis for energy production. Thereby they release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbates extracellular acidification and supports the formation of a hostile environment. We have studied the mechanisms of regulated lactate transport in MCF-7 human breast cancer cells. Under hypoxia, expression of MCT1 and MCT4 remained unchanged, while expression of carbonic anhydrase IX (CAIX) was greatly enhanced. Our results show that CAIX augments MCT1 transport activity by a non-catalytic interaction. Mutation studies in Xenopus oocytes indicate that CAIX, via its intramolecular H+-shuttle His200, functions as a “proton-collecting/distributing antenna” to facilitate rapid lactate flux via MCT1. Knockdown of CAIX significantly reduced proliferation of cancer cells, suggesting that rapid efflux of lactate and H+, as enhanced by CAIX, contributes to cancer cell survival under hypoxic conditions. PMID:26337752

  1. Desialylation of dying cells with catalytically active antibodies possessing sialidase activity facilitate their clearance by human macrophages

    PubMed Central

    Tomin, A; Dumych, T; Tolstyak, Y; Kril, I; Mahorivska, I; Bila, E; Stoika, R; Herrmann, M; Kit, Y; Bilyy, R

    2015-01-01

    Recently we reported the first known incidence of antibodies possessing catalytic sialidase activity (sialidase abzymes) in the serum of patients with multiple myeloma and systemic lupus erythematosus (SLE). These antibodies desialylate biomolecules, such as glycoproteins, gangliosides and red blood cells. Desialylation of dying cells was demonstrated to facilitate apoptotic cell clearance. In this study we assessed the possibility to facilitate dying cell clearance with the use of F(ab)2 fragments of sialidase abzymes. Two sources of sialidase abzymes were used: (i) those isolated from sera of patients with SLE after preliminary screening of a cohort of patients for sialidase activity; and (ii) by creating an induced sialidase abzyme through immunization of a rabbit with synthetic hapten consisting of a non-hydrolysable analogue of sialidase reaction conjugated with bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Antibodies were purified by ammonium sulphate precipitation, protein-G affinity chromatography and size exclusion-high performance liquid chromatography (HPLC-SEC). Effect of desialylation on efferocytosis was studied using human polymorphonuclear leucocytes (PMN), both viable and aged, as prey, and human monocyte-derived macrophages (MoMa). Treatment of apoptotic and viable prey with both disease-associated (purified from blood serum of SLE patients) and immunization-induced (obtained by immunization of rabbits) sialidase abzymes, its F(ab)2 fragment and bacterial neuraminidase (as positive control) have significantly enhanced the clearance of prey by macrophages. We conclude that sialidase abzyme can serve as a protective agent in autoimmune patients and that artificial abzymes may be of potential therapeutic value. PMID:24580640

  2. Low-Intensity Pulsed Ultrasound Stimulation Facilitates Osteogenic Differentiation of Human Periodontal Ligament Cells

    PubMed Central

    Hu, Bo; Zhang, Yuanyuan; Zhou, Jie; Li, Jing; Deng, Feng; Wang, Zhibiao; Song, Jinlin

    2014-01-01

    Human periodontal ligament cells (hPDLCs) possess stem cell properties, which play a key role in periodontal regeneration. Physical stimulation at appropriate intensities such as low-intensity pulsed ultrasound (LIPUS) enhances cell proliferation and osteogenic differentiation of mesechymal stem cells. However, the impacts of LIPUS on osteogenic differentiation of hPDLCs in vitro and its molecular mechanism are unknown. This study was undertaken to investigate the effects of LIPUS on osteogenic differentiation of hPDLCs. HPDLCs were isolated from premolars of adolescents for orthodontic reasons, and exposed to LIPUS at different intensities to determine an optimal LIPUS treatment dosage. Dynamic changes of alkaline phosphatase (ALP) activities in the cultured cells and supernatants, and osteocalcin production in the supernatants after treatment were analyzed. Runx2 and integrin β1 mRNA levels were assessed by reverse transcription polymerase chain reaction analysis after LIPUS stimulation. Blocking antibody against integrinβ1 was used to assess the effects of integrinβ1 inhibitor on LIPUS-induced ALP activity, osteocalcin production as well as calcium deposition. Our data showed that LIPUS at the intensity of 90 mW/cm2 with 20 min/day was more effective. The ALP activities in lysates and supernatants of LIPUS-treated cells started to increase at days 3 and 7, respectively, and peaked at day 11. LIPUS treatment significantly augmented the production of osteocalcin after day 5. LIPUS caused a significant increase in the mRNA expression of Runx2 and integrin β1, while a significant decline when the integrinβ1 inhibitor was used. Moreover, ALP activity, osteocalcin production as well as calcium nodules of cells treated with both daily LIPUS stimulation and integrinβ1 antibody were less than those in the LIPUS-treated group. In conclusion, LIPUS promotes osteogenic differentiation of hPDLCs, which is associated with upregulation of Runx2 and integrin β1, which

  3. Biodegradable Gelatin Microcarriers Facilitate Re-Epithelialization of Human Cutaneous Wounds - An In Vitro Study in Human Skin.

    PubMed

    Lönnqvist, Susanna; Rakar, Jonathan; Briheim, Kristina; Kratz, Gunnar

    2015-01-01

    The possibility to use a suspended tridimensional matrix as scaffolding for re-epithelialization of in vitro cutaneous wounds was investigated with the aid of a human in vitro wound healing model based on viable full thickness skin. Macroporous gelatin microcarriers, CultiSpher-S, were applied to in vitro wounds and cultured for 21 days. Tissue sections showed incorporation of wound edge keratinocytes into the microcarriers and thicker neoepidermis in wounds treated with microcarriers. Thickness of the neoepidermis was measured digitally, using immunohistochemical staining of keratins as epithelial demarcation. Air-lifting of wounds enhanced stratification in control wounds as well as wounds with CultiSpher-S. Immunohistochemical staining revealed expression of keratin 5, keratin 10, and laminin 5 in the neoepidermal component. We conclude that the CultiSpher-S microcarriers can function as tissue guiding scaffold for re-epithelialization of cutaneous wounds. PMID:26061630

  4. Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Materese, Christopher; Nuevo, Michel

    2012-01-01

    Nucleobases are aromatic N-heterocycles that constitute the informational subunits of DNA and RNA and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no N-heterocycles have been individually identified in the ISM, the 6.2-micron interstellar emission feature seen towards many astronomical objects suggests a population of such molecules is likely present. We report on a study of the formation of pyrimidine-based molecules, including nucleobases and other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in low temperature ices containing H2O, NH3, C3OH, and CH4, to simulate the astrophysical conditions under which prebiotic species may be formed in the Solar System.

  5. An application of the van der Waals density functional: Hydrogen bonding and stacking interactions between nucleobases.

    PubMed

    Cooper, Valentino R; Thonhauser, T; Langreth, David C

    2008-05-28

    We apply the van der Waals density functional (vdW-DF) to study hydrogen bonding and stacking interactions between nucleobases. The excellent agreement of our results with high level quantum chemical calculations highlights the value of the vdW-DF for first-principles investigations of biologically important molecules. Our results suggest that, in the case of hydrogen-bonded nucleobase pairs, dispersion interactions reduce the cost of propeller twists while having a negligible effect on buckling. Furthermore, the efficient scaling of DFT methods allowed for the easy optimization of separation distance between nucleobase stacks, indicating enhancements in the interaction energy of up to 3 kcalmol over previous fixed distance calculations. We anticipate that these results are significant for extending the vdW-DF method to model larger vdW complexes and biological molecules. PMID:18513005

  6. A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases.

    PubMed

    Dontschuk, Nikolai; Stacey, Alastair; Tadich, Anton; Rietwyk, Kevin J; Schenk, Alex; Edmonds, Mark T; Shimoni, Olga; Pakes, Chris I; Prawer, Steven; Cervenka, Jiri

    2015-01-01

    Fast and reliable DNA sequencing is a long-standing target in biomedical research. Recent advances in graphene-based electrical sensors have demonstrated their unprecedented sensitivity to adsorbed molecules, which holds great promise for label-free DNA sequencing technology. To date, the proposed sequencing approaches rely on the ability of graphene electric devices to probe molecular-specific interactions with a graphene surface. Here we experimentally demonstrate the use of graphene field-effect transistors (GFETs) as probes of the presence of a layer of individual DNA nucleobases adsorbed on the graphene surface. We show that GFETs are able to measure distinct coverage-dependent conductance signatures upon adsorption of the four different DNA nucleobases; a result that can be attributed to the formation of an interface dipole field. Comparison between experimental GFET results and synchrotron-based material analysis allowed prediction of the ultimate device sensitivity, and assessment of the feasibility of single nucleobase sensing with graphene. PMID:25800494

  7. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA

    NASA Astrophysics Data System (ADS)

    Deck, Christopher; Jauker, Mario; Richert, Clemens

    2011-08-01

    The transition from inanimate materials to the earliest forms of life must have involved multiplication of a catalytically active polymer that is able to replicate. The semiconservative replication that is characteristic of genetic information transfer requires strands that contain more than one type of nucleobase. Short strands of RNA can act as catalysts, but attempts to induce efficient self-copying of mixed sequences (containing four different nucleobases) have been unsuccessful with ribonucleotides. Here we show that inhibition by spent monomers, formed by the hydrolysis of the activated nucleotides, is the cause for incomplete extension of growing daughter strands on RNA templates. Immobilization of strands and periodic displacement of the solution containing the activated monomers overcome this inhibition. Any of the four nucleobases (A/C/G/U) is successfully copied in the absence of enzymes. We conclude therefore that in a prebiotic world, oligoribonucleotides may have formed and undergone self-copying on surfaces.

  8. Understanding Stacking Interactions between an Aromatic Ring and Nucleobases in Aqueous Solution: Experimental and Theoretical Study.

    PubMed

    Kataev, Evgeny A; Shumilova, Tatiana A; Fiedler, Benjamin; Anacker, Tony; Friedrich, Joachim

    2016-08-01

    Stacking interactions between aromatic compounds and nucleobases are crucial in recognition of nucleotides and nucleic acids, but a comprehensive understanding of the strength and selectivity of these interactions in aqueous solution has been elusive. To this end, model complexes have been designed and analyzed by experiment and theory. For the first time, stacking free energies between five nucleobases and anthracene were determined experimentally from thermodynamic double mutant cycles. Three different experimental methods were proposed and evaluated. The dye prefers to bind nucleobases in the order (kcal/mol): G (1.3) > T (0.9) > U (0.8) > C (0.5) > A (0.3). The respective trend of interaction free energies extracted from DFT calculations correlates to that obtained experimentally. Analysis of the data suggests that stacking interactions dominate over hydrophobic effects in an aqueous solution and can be predicted with DFT calculations. PMID:27314892

  9. A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases

    NASA Astrophysics Data System (ADS)

    Dontschuk, Nikolai; Stacey, Alastair; Tadich, Anton; Rietwyk, Kevin J.; Schenk, Alex; Edmonds, Mark T.; Shimoni, Olga; Pakes, Chris I.; Prawer, Steven; Cervenka, Jiri

    2015-03-01

    Fast and reliable DNA sequencing is a long-standing target in biomedical research. Recent advances in graphene-based electrical sensors have demonstrated their unprecedented sensitivity to adsorbed molecules, which holds great promise for label-free DNA sequencing technology. To date, the proposed sequencing approaches rely on the ability of graphene electric devices to probe molecular-specific interactions with a graphene surface. Here we experimentally demonstrate the use of graphene field-effect transistors (GFETs) as probes of the presence of a layer of individual DNA nucleobases adsorbed on the graphene surface. We show that GFETs are able to measure distinct coverage-dependent conductance signatures upon adsorption of the four different DNA nucleobases; a result that can be attributed to the formation of an interface dipole field. Comparison between experimental GFET results and synchrotron-based material analysis allowed prediction of the ultimate device sensitivity, and assessment of the feasibility of single nucleobase sensing with graphene.

  10. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    NASA Astrophysics Data System (ADS)

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-04-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ˜85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of 10-310-3 wt % that is typical for concentrations in shallow lakes on early Earth.

  11. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  12. Synthesis of novel conjugates of a saccharide, amino acids, nucleobase and the evaluation of their cell compatibility.

    PubMed

    Yuan, Dan; Du, Xuewen; Shi, Junfeng; Zhou, Ning; Baoum, Abdulgader Ahmed; Xu, Bing

    2014-01-01

    This article reports the synthesis of a novel type of conjugate of three fundamental biological build blocks (i.e., saccharide, amino acids, and nucleobase) and their cell compatibility. The facile synthesis starts with the synthesis of nucleobase and saccharide derivatives, then uses solid-phase peptide synthesis (SPPS) to build the peptide segment (Phe-Arg-Gly-Asp or naphthAla-Phe-Arg-Gly-Asp with fully protected groups), and later, an amidation reaction in liquid phase connects these three parts together. The overall yield of these multiple step synthesis is about 34%. Besides exhibiting excellent solubility, these conjugates of saccharide-amino acids-nucleobase (SAN), like the previously reported conjugates of nucleobase-amino acids-saccharide (NAS) and nucleobase-saccharide-amino acids (NSA), are mammalian cell compatible. PMID:25383110

  13. Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks.

    PubMed

    Burbulla, Lena F; Beaumont, Kristin G; Mrksich, Milan; Krainc, Dimitri

    2016-08-01

    The discovery of induced pluripotent stem cells (iPSCs) and their application to patient-specific disease models offers new opportunities for studying the pathophysiology of neurological disorders. However, current methods for culturing iPSC-derived neuronal cells result in clustering of neurons, which precludes the analysis of individual neurons and defined neuronal networks. To address this challenge, cultures of human neurons on micropatterned surfaces are developed that promote neuronal survival over extended periods of time. This approach facilitates studies of neuronal development, cellular trafficking, and related mechanisms that require assessment of individual neurons and specific network connections. Importantly, micropatterns support the long-term stability of cultured neurons, which enables time-dependent analysis of cellular processes in living neurons. The approach described in this paper allows mechanistic studies of human neurons, both in terms of normal neuronal development and function, as well as time-dependent pathological processes, and provides a platform for testing of new therapeutics in neuropsychiatric disorders. PMID:27108930

  14. Epigenetic Modulation of miR-122 Facilitates Human Embryonic Stem Cell Self-Renewal and Hepatocellular Carcinoma Proliferation

    PubMed Central

    Jung, Christine J.; Iyengar, Sushma; Blahnik, Kimberly R.; Ajuha, Tijess P.; Jiang, Joy X.; Farnham, Peggy J.; Zern, Mark

    2011-01-01

    The self-renewal capacity ascribed to hESCs is paralleled in cancer cell proliferation, suggesting that a common network of genes may facilitate the promotion of these traits. However, the molecular mechanisms that are involved in regulating the silencing of these genes as stem cells differentiate into quiescent cellular lineages remain poorly understood. Here, we show that a differentiated cell specific miR-122 exemplifies this regulatory attribute by suppressing the translation of a gene, Pkm2, which is commonly enriched in hESCs and liver cancer cells (HCCs), and facilitates self-renewal and proliferation. Through a series of gene expression analysis, we show that miR-122 expression is highly elevated in quiescent human primary hepatocytes (hPHs) but lost or attenuated in hESCs and HCCs, while an opposing expression pattern is observed for Pkm2. Depleting hESCs and HCCs of Pkm2, or overexpressing miR-122, leads to a common deficiency in self-renewal and proliferation. Likewise, during the differentiation process of hESCs into hepatocytes, a reciprocal expression pattern is observed between miR-122 and Pkm2. An examination of the genomic region upstream of miR-122 uncovered hyper-methylation in hESCs and HCCs, while the same region is de-methylated and occupied by a transcription initiating protein, RNA polymerase II (RNAPII), in hPHs. These findings indicate that one possible mechanism by which hESC self-renewal is modulated in quiescent hepatic derivatives of hESCs is through the regulatory activity of a differentiated cell-specific miR-122, and that a failure to properly turn “on” this miRNA is observed in uncontrollably proliferating HCCs. PMID:22140464

  15. CHEMICAL SELECTIVITY OF NUCLEOBASE ADDUCTION RELATIVE TO IN VIVO MUTATION SITES ON EXON 7 FRAGMENT OF P53 TUMOR SUPPRESSOR GENE

    PubMed Central

    Malla, Spundana; Kadimisetty, Karteek; Fu, You-Jun; Choudhary, Dharamainder; Jansson, Ingela; Schenkman, John B.; Rusling, James F.

    2015-01-01

    Damage to p53 tumor suppressor gene is found in half of all human cancers. Databases integrating studies of large numbers of tumors and cancer cell cultures show that mutation sites of specific p53 codons are correlated with specific types of cancers. If the most frequently damaged p53 codons in vivo correlate with the most frequent chemical damage sites in vitro, predictions of organ-specific cancer risks might result. Herein, we describe LC-MS/MS methodology to reveal codons with metabolite-adducted nucleobases by LC-MS/MS for oligonucleotides longer than 20 base pairs. Specifically, we used a known carcinogen, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) to determine the most frequently adducted nucleobases within codons. We used a known sequence of 32 base pairs (bp) representing part of p53 exon 7 with 5 possible reactive hot spots. This is the first nucleobase reactivity study of a double stranded DNA p53 fragment featuring more than 20 base pairs with multiple reactive sites. We reacted the 32 bp fragment with benzo[a]pyrene metabolite BPDE that undergoes nucleophilic substitution by DNA bases. Liquid chromatography-mass spectrometry (LC-MS/MS) was used for sequencing of oligonucleotide products from the reacted 32 bp fragment after fragmentation by a restriction endonuclease. Analysis of the adducted p53 fragment compared with unreacted fragment revealed guanines of codons 248 and 244 as most frequently targeted, which are also mutated with high frequency in human tumors. Codon 248 is mutated in non-small cell and small cell lung, head and neck, colorectal and skin cancer, while codon 244 is mutated in small cell lung cancer, all of which involve possible BDPE exposure. Results suggest the utility of this approach for screening of adducted p53 gene by drugs and environmental chemicals to predict risks for organ specific cancers. PMID:26417421

  16. DNA Stains as Surrogate Nucleobases in Fluorogenic Hybridization Probes.

    PubMed

    Hövelmann, Felix; Seitz, Oliver

    2016-04-19

    The increasing importance assigned to RNA dynamics in cells and tissues calls for probe molecules that enable fluorescence microscopy imaging in live cells. To achieve this goal, fluorescence dyes are conjugated with oligonucleotides so as to provide strong emission upon hybridization with the target molecule. The impressive 10(3)-fold fluorescence intensification observed when DNA stains such as thiazole orange (TO) interact with double-stranded DNA is intriguing and prompted the exploration of oligonucleotide conjugates. However, nonspecific interactions of DNA stains with polynucleotides tend to increase background, which would affect the contrast achievable in live-cell imaging. This Account describes the development of DNA-stain-labeled hybridization probes that provide high signal-to-background. We focus on our contributions in context with related advances from other laboratories. The emphasis will be on the requirements of RNA imaging in live cells. To reduce background, intercalator dyes such as TO were appended to peptide nucleic acid (PNA), which is less avidly recognized by DNA stains than DNA/RNA. Constraining the TO dye as a nucleobase surrogate in "forced intercalation (FIT) probes" improved the target specificity, presumably by helping to prevent unspecific interactions. The enforcement of TO intercalation between predetermined base pairs upon formation of the probe-target duplex provided for high brightness and enabled match/mismatch selectivity beyond stringency of hybridization. We show examples that highlight the use of PNA FIT probes in the imaging of mRNA, miRNA, and lncRNA in living cells. The "FIT approach" was recently extended to DNA probes. Signal brightness can become limiting when low-abundance targets ought to be visualized over cellular autofluorescence. We discuss strategies that further the brightness of signaling by FIT probes. Multilabeling with identical dyes does not solve the brightness issue. To avoid self-quenching, we

  17. Fibronectin fibrillogenesis facilitates mechano-dependent cell spreading, force generation, and nuclear size in human embryonic fibroblasts.

    PubMed

    Scott, Lewis E; Mair, Devin B; Narang, Jiten D; Feleke, Kirubel; Lemmon, Christopher A

    2015-11-01

    Cells respond to mechanical cues from the substrate to which they are attached. These mechanical cues drive cell migration, proliferation, differentiation, and survival. Previous studies have highlighted three specific mechanisms through which substrate stiffness directly alters cell function: increasing stiffness drives (1) larger contractile forces; (2) increased cell spreading and size; and (3) altered nuclear deformation. While studies have shown that substrate mechanics are an important cue, the role of the extracellular matrix (ECM) has largely been ignored. The ECM is a crucial component of the mechanosensing system for two reasons: (1) many ECM fibrils are assembled by application of cell-generated forces, and (2) ECM proteins have unique mechanical properties that will undoubtedly alter the local stiffness sensed by a cell. We specifically focused on the role of the ECM protein fibronectin (FN), which plays a critical role in de novo tissue production. In this study, we first measured the effects of substrate stiffness on human embryonic fibroblasts by plating cells onto microfabricated pillar arrays (MPAs) of varying stiffness. Cells responded to increasing substrate stiffness by generating larger forces, spreading to larger sizes, and altering nuclear geometry. These cells also assembled FN fibrils across all stiffnesses, with optimal assembly occurring at approximately 6 kPa. We then inhibited FN assembly, which resulted in dramatic reductions in contractile force generation, cell spreading, and nuclear geometry across all stiffnesses. These findings suggest that FN fibrils play a critical role in facilitating cellular responses to substrate stiffness. PMID:26412391

  18. Oral intake of encapsulated dried ginger root powder hardly affects human thermoregulatory function, but appears to facilitate fat utilization.

    PubMed

    Miyamoto, Mayumi; Matsuzaki, Kentaro; Katakura, Masanori; Hara, Toshiko; Tanabe, Yoko; Shido, Osamu

    2015-10-01

    The present study investigated the impact of a single oral ingestion of ginger on thermoregulatory function and fat oxidation in humans. Morning and afternoon oral intake of 1.0 g dried ginger root powder did not alter rectal temperature, skin blood flow, O2 consumption, CO2 production, and thermal sensation and comfort, or induce sweating at an ambient temperature of 28 °C. Ginger ingestion had no effect on threshold temperatures for skin blood flow or thermal sweating. Serum levels of free fatty acids were significantly elevated at 120 min after ginger ingestion in both the morning and afternoon. Morning ginger intake significantly reduced respiratory exchange ratios and elevated fat oxidation by 13.5 % at 120 min after ingestion. This was not the case in the afternoon. These results suggest that the effect of a single oral ginger administration on the peripheral and central thermoregulatory function is miniscule, but does facilitate fat utilization although the timing of the administration may be relevant. PMID:25875447

  19. Oral intake of encapsulated dried ginger root powder hardly affects human thermoregulatory function, but appears to facilitate fat utilization

    NASA Astrophysics Data System (ADS)

    Miyamoto, Mayumi; Matsuzaki, Kentaro; Katakura, Masanori; Hara, Toshiko; Tanabe, Yoko; Shido, Osamu

    2015-10-01

    The present study investigated the impact of a single oral ingestion of ginger on thermoregulatory function and fat oxidation in humans. Morning and afternoon oral intake of 1.0 g dried ginger root powder did not alter rectal temperature, skin blood flow, O2 consumption, CO2 production, and thermal sensation and comfort, or induce sweating at an ambient temperature of 28 °C. Ginger ingestion had no effect on threshold temperatures for skin blood flow or thermal sweating. Serum levels of free fatty acids were significantly elevated at 120 min after ginger ingestion in both the morning and afternoon. Morning ginger intake significantly reduced respiratory exchange ratios and elevated fat oxidation by 13.5 % at 120 min after ingestion. This was not the case in the afternoon. These results suggest that the effect of a single oral ginger administration on the peripheral and central thermoregulatory function is miniscule, but does facilitate fat utilization although the timing of the administration may be relevant.

  20. Synthesis of carbocyclic nucleoside analogs with five-membered heterocyclic nucleobases

    PubMed Central

    Cho, Jong hyun; Coats, Steven J.; Schinazi, Raymond F.

    2015-01-01

    New carbocyclic nucleoside analogs with five-membered heterocyclic nucleobases were synthesized and evaluated as potential anti-HIV and anti-HCV agents. Among the synthesized carbocyclic nucleoside analogs, the pyrazole amide 15f exhibited modest selective anti-HIV-1 activity (EC50 = 24 µM). PMID:26028788

  1. The Photochemistry of Pyrimidine in Realistic Astrophysical Ices and the Production of Nucleobases

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2) in H2O-rich ice mixtures that contain NH3, CH3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  2. 6-Pyrazolylpurine as an Artificial Nucleobase for Metal-Mediated Base Pairing in DNA Duplexes

    PubMed Central

    Léon, J. Christian; Sinha, Indranil; Müller, Jens

    2016-01-01

    The artificial nucleobase 6-pyrazol-1-yl-purine (6PP) has been investigated with respect to its usability in metal-mediated base pairing. As was shown by temperature-dependent UV spectroscopy, 6PP may form weakly stabilizing 6PP–Ag(I)–6PP homo base pairs. Interestingly, 6PP can be used to selectively recognize a complementary pyrimidine nucleobase. The addition of Ag(I) to a DNA duplex comprising a central 6PP:C mispair (C = cytosine) leads to a slight destabilization of the duplex. In contrast, a stabilizing 6PP–Ag(I)–T base pair is formed with a complementary thymine (T) residue. It is interesting to note that 6PP is capable of differentiating between the pyrimidine moieties despite the fact that it is not as sterically crowded as 6-(3,5-dimethylpyrazol-1-yl)purine, an artificial nucleobase that had previously been suggested for the recognition of nucleic acid sequences via the formation of a metal-mediated base pair. Hence, the additional methyl groups of 6-(3,5-dimethylpyrazol-1-yl)purine may not be required for the specific recognition of the complementary nucleobase. PMID:27089326

  3. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir

    SciTech Connect

    Santiago, Francisco; Oguma, Junya; Brown, Anthony M.C.; Laurence, Jeffrey

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. Black-Right-Pointing-Pointer Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. Black-Right-Pointing-Pointer Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. Black-Right-Pointing-Pointer Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/{beta}-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of {beta}-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, {beta}-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in

  4. Photochemistry of Pyrimidine in Astrophysical Ices: Formation of Nucleobases and Other Prebiotic Species

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Sandford, Scott A.; Materese, Christopher K.; Milam, Stefanie N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA. They are divided into two molecular groups: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites, and their extraterrestrial origin confirmed by isotopic measurements. Although no N-heterocycles have ever been observed in the ISM, the positions of the 6.2- m interstellar emission features suggest a population of such molecules is likely to be present. However, laboratory experiments have shown that the ultraviolet (UV) irradiation of pyrimidine in ices of astrophysical relevance such as H2O, NH3, CH3OH, CH4, CO, or combinations of these at low temperature (less than or equal to 20 K) leads to the formation of several pyrimidine derivatives including the nucleobases uracil and cytosine, as well as precursors such as 4(3H)-pyrimidone and 4-aminopyrimidine. Quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways.10 In those residues, other species of prebiotic interest such as urea as well as the amino acids glycine and alanine could also be identified. However, only very small amounts of pyrimidine derivatives containing CH3 groups could be detected, suggesting that the addition of methyl groups to pyrimidine is not an efficient process. For this reason, the nucleobase thymine was not observed in any of the samples. In this work, we study the formation of nucleobases and other photo-products of prebiotic interest from the UV irradiation of pyrimidine in ices containing H2O, NH3, CH3OH, and CO, mixed in astrophysical proportions.

  5. Pseudovirion Particles Bearing Native HIV Envelope Trimers Facilitate a Novel Method for Generating Human Neutralizing Monoclonal Antibodies against HIV

    PubMed Central

    Hicar, Mark D.; Chen, Xuemin; Briney, Bryan; Hammonds, Jason; Wang, Jaang-Jiun; Kalams, Spyros; Spearman, Paul W.; Crowe, James E.

    2010-01-01

    Monomeric HIV envelope vaccines fail to elicit broadly neutralizing antibodies or to protect against infection. Neutralizing antibodies against HIV bind to native, functionally active Env trimers on the virion surface. Gag-Env pseudovirions recapitulate the native trimer, and could serve as an effective epitope presentation platform for study of the neutralizing antibody response in HIV-infected individuals. To address if pseudovirions can recapitulate native HIV virion epitope structures, we carefully characterized these particles, concentrating on the antigenic structure of the coreceptor binding site. By blue native gel shift assays, Gag-Env pseudovirions were shown to contain native trimers that were competent for binding to neutralizing monoclonal antibodies. In ELISA, pseudovirions exhibited increased binding of known CD4-induced antibodies following addition of CD4. Using flow cytometric analysis, fluorescently labeled pseudovirions specifically identified a subset of antigen-specific B cells in HIV-infected subjects. Interestingly, the sequence of one of these novel human antibodies, identified during cloning of single HIV-specific B cells and designated 2C6, exhibited homology to mAb 47e, a known anti-CD4-induced coreceptor binding site antibody. The secreted monoclonal antibody 2C6 did not bind monomeric gp120, but specifically bound envelope on pseudovirions. A recombinant form of the antibody 2C6 acted as a CD4-induced epitope-specific antibody in neutralization assays, yet did not bind monomeric gp120. These findings imply specificity against a quaternary epitope presented on the pseudovirion envelope spike. These data demonstrate that Gag-Env pseudovirions recapitulate CD4 and coreceptor binding pocket antigenic structures and can facilitate identification of B cell clones that secrete neutralizing antibodies. PMID:20531016

  6. Developing and Evaluating Medical Humanities Problem-Based Learning Classes Facilitated by the Teaching Assistants Majored in the Liberal Arts: A Longitudinal Crossover Study.

    PubMed

    Tseng, Fen-Yu; Shieh, Jeng-Yi; Kao, Tze-Wah; Wu, Chau-Chung; Chu, Tzong-Shinn; Chen, Yen-Yuan

    2016-02-01

    Although medical humanities courses taught by teachers from nonmedical backgrounds are not unusual now, few studies have compared the outcome of medical humanities courses facilitated by physicians to that by teaching assistants majored in the liberal arts. The objectives of this study were to (1) analyze the satisfaction of medical students with medical humanities problem-based learning (PBL) classes facilitated by nonmedical teaching assistants (TAF) majored in the liberal arts, and those facilitated by the attending physicians (APF) and (2) examine the satisfaction of medical students with clinical medicine-related and clinical medicine-unrelated medical humanities PBL classes.A total of 123 medical students, randomly assigned to 16 groups, participated in this study. There were 16 classes in the course: 8 of them were TAF classes; and the others were APF classes. Each week, each group rotated from 1 subject of the 16 subjects of PBL to another subject. All of the 16 groups went through all the 16 subjects in the 2013 spring semester. We examined the medical students' satisfaction with each class, based on a rating score collected after each class was completed, using a scale from 0 (the lowest satisfaction) to 100 (the highest satisfaction). We also conducted multivariate linear regression analysis to examine the association between the independent variables and the students' satisfaction.Medical students were more satisfied with the TAF (91.35 ± 7.75) medical humanities PBL classes than APF (90.40 ± 8.42) medical humanities PBL classes (P = 0.01). Moreover, medical students were more satisfied with the clinical medicine-unrelated topics (92.00 ± 7.10) than the clinical medicine-related topics (90.36 ± 7.99) in the medical humanities PBL course (P = 0.01).This medical humanities PBL course, including nonmedical subjects and topics, and nonmedical teaching assistants from the liberal arts as class facilitators, was satisfactory. This

  7. Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans

    PubMed Central

    De Bock, K; Richter, EA; Russell, AP; Eijnde, BO; Derave, W; Ramaekers, M; Koninckx, E; Léger, B; Verhaeghe, J; Hespel, P

    2005-01-01

    The effects were compared of exercise in the fasted state and exercise with a high rate of carbohydrate intake on intramyocellular triglyceride (IMTG) and glycogen content of human muscle. Using a randomized crossover study design, nine young healthy volunteers participated in two experimental sessions with an interval of 3 weeks. In each session subjects performed 2 h of constant-load bicycle exercise (∼ 75% ), followed by 4 h of controlled recovery. On one occasion they exercised after an overnight fast (F), and on the other (CHO) they received carbohydrates before (∼ 150 g) and during (1 g (kg bw)−1 h−1) exercise. In both conditions, subjects ingested 5 g carbohydrates per kg body weight during recovery. Fibre type-specific relative IMTG content was determined by Oil red O staining in needle biopsies from m. vastus lateralis before, immediately after and 4 h after exercise. During F but not during CHO, the exercise bout decreased IMTG content in type I fibres from 18 ± 2% to 6 ± 2% (P = 0.007) area lipid staining. Conversely, during recovery, IMTG in type I fibres decreased from 15 ± 2% to 10 ± 2% in CHO, but did not change in F. Neither exercise nor recovery changed IMTG in type IIa fibres in any experimental condition. Exercise-induced net glycogen breakdown was similar in F and CHO. However, compared with CHO (11.0 ± 7.8 mmol kg−1 h−1), mean rate of postexercise muscle glycogen resynthesis was 3-fold greater in F (32.9 ± 2.7 mmol kg−1 h−1, P = 0.01). Furthermore, oral glucose loading during recovery increased plasma insulin markedly more in F (+46.80 μU ml−1) than in CHO (+14.63 μU ml−1, P = 0.02). We conclude that IMTG breakdown during prolonged submaximal exercise in the fasted state takes place predominantly in type I fibres and that this breakdown is prevented in the CHO-fed state. Furthermore, facilitated glucose-induced insulin secretion may contribute to enhanced muscle glycogen resynthesis following exercise in the fasted

  8. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Nuevo, Michel; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.

  9. First-Principles Photoemission Spectroscopy of DNA and RNA Nucleobases from Koopmans-Compliant Functionals.

    PubMed

    Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola

    2016-08-01

    The need to interpret ultraviolet photoemission data strongly motivates the refinement of first-principles techniques that are able to accurately predict spectral properties. In this work, we employ Koopmans-compliant functionals, constructed to enforce piecewise linearity in approximate density functionals, to calculate the structural and electronic properties of DNA and RNA nucleobases. Our results show that not only ionization potentials and electron affinities are accurately predicted with mean absolute errors of <0.1 eV, but also that calculated photoemission spectra are in excellent agreement with experimental ultraviolet photoemission spectra. In particular, the role and contribution of different tautomers to the photoemission spectra are highlighted and discussed in detail. The structural properties of nucleobases are also investigated, showing an improved description with respect to local and semilocal density-functional theory. Methodologically, our results further consolidate the role of Koopmans-compliant functionals in providing, through orbital-density-dependent potentials, accurate electronic and spectral properties. PMID:27267665

  10. Binding of nucleobases with graphene and carbon nanotube: a review of computational studies.

    PubMed

    Chehel Amirani, Morteza; Tang, Tian

    2015-01-01

    Functionalized carbon nanotubes (CNTs) constitute a new class of nanostructured materials that have vast applications in CNT purification and separation, biosensing, drug delivery, etc. Hybrids formed from the functionalization of CNT with biological molecules have shown interesting properties and have attracted great attention in recent years. Of particular interest is the hybridization of single- or double-stranded nucleic acid (NA) with CNT. Nucleobases, as the building blocks of NA, interact with CNT and contribute strongly to the stability of the NA-CNT hybrids and their properties. In this work, we present a thorough review of previous studies on the binding of nucleobases with graphene and CNT, with a focus on the simulation works that attempted to evaluate the structure and strength of binding. Discrepancies among these works are identified, and factors that might contribute to such discrepancies are discussed. PMID:25118044

  11. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    SciTech Connect

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C{sub 4}H{sub 4}N{sub 2}) in H{sub 2}O-rich ice mixtures that contain NH{sub 3}, CH{sub 3}OH, or CH{sub 4} leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H{sub 2}O, CH{sub 3}OH, and NH{sub 3}, with or without CH{sub 4}, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  12. Crystal Structures of Non-Natural Nucleobase Pairs in A- and B-DNA†

    PubMed Central

    Georgiadis, Millie M.; Singh, Isha; Kellett, Whitney F.; Hoshika, Shuichi; Benner, Steven A.; Richards, Nigel G. J.

    2015-01-01

    The extent to which synthetic biology can be used to expand genetic information systems compatible with natural enzymes and cells will depend on the extent to which multiple and contiguous non-natural nucleobase pairs fit within the standard double helical conformations of DNA. Toward this goal, two non-standard nucleobases (Z, 6-amino-5-nitro-2(1H)-pyridone and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one) were designed to form a Z:P pair with a standard “edge on” Watson-Crick geometry, but with rearranged hydrogen bond donor and acceptor groups. Here, we present the crystal structures of two self-complementary 16-mer oligonucleotides containing Z:P pairs. The first contained two consecutive Z:P nucleobase pairs and was found to crystallize within a host-guest complex in B-form. The second contained six consecutive Z:P pairs; it was found to crystallize as an A-form DNA duplex, although it can adopt B-form in solution as inferred from circular dichroism spectra. Although Z:P pairs have some structural properties that are similar to those of G:C pairs, unique features include stacking of the nitro group on Z with the adjacent heterocyclic nucleobase ring in A-DNA. In both B-and A-DNA, major groove widths associated with the Z:P pairs are approximately 1 Å wider than those of comparable G:C pairs potentially due to the presence of the nitro group in Z. Thus, our structural studies suggest that multiple and consecutive Z:P pairs are readily accommodated in DNA duplex structures recognized by natural polymerases, and therefore the GACTZP synthetic genetic system has the requisite properties to expand sequence space. PMID:25961938

  13. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes

    PubMed Central

    Mishra, Sourav; Lahiri, Hiya; Banerjee, Siddhartha; Mukhopadhyay, Rupa

    2016-01-01

    So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for ‘lab-on-a-chip’ type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored. PMID:27025649

  14. Understanding the interaction of DNA-RNA nucleobases with different ZnO nanomaterials.

    PubMed

    Saha, Supriya; Sarkar, Pranab

    2014-08-01

    Due to the potential application of different nanostructure materials in biomedical nanotechnologies, understanding the interaction between the inorganic nanoparticles and biological molecules at the atomic level is of paramount importance. We present here the results of our theoretical investigation of the interaction of different nucleotide bases--adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)--with different ZnO nanoparticles, such as ZnO nanowires (NWs), nanotubes (NTs), surfaces and quantum dots (QDs). As the size of the systems we studied is relatively large, we have used the self-consistent-charge density-functional tight-binding (SCC-DFTB) method to optimize the complex systems. We have studied in detail the site-specific binding nature and the adsorption strength of these nucleobases with different ZnO nanoparticles. The calculated binding energy order and the interaction strength of nucleobases are very much dependent on the nature of the nanoparticle surfaces and are different for different nanostructures. In most of the cases ZnO prefers to bind either through the top site of the nucleobases or with the ring nitrogen atom having a lone pair relative to other binding sites of the bases. PMID:24942064

  15. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Nuevo, Michel; Materese, Christopher K.

    2014-01-01

    Nucleobases are the informational subunits of DNA and RNA. They consist of Nheterocycles that belong to either the pyrimidine-base group (uracil, cytosine, and thymine) or the purinebase group (adenine and guanine). Several nucleobases, mostly purine bases, have been detected in meteorites [1-3], with isotopic signatures consistent with an extraterrestrial origin [4]. Uracil is the only pyrimidine-base compound formally reported in meteorites [2], though the presence of cytosine cannot be ruled out [5,6]. However, the actual process by which the uracil was made and the reasons for the non-detection of thymine in meteorites have yet to be fully explained. Although no N-heterocycles have ever been observed in the ISM [7,8], the positions of the 6.2-µm interstellar emission features suggest a population of such molecules is likely to be present [9]. In this work we study the formation of pyrimidine-based molecules, including the three nucleobases uracil, cytosine, and thymine from the ultraviolet (UV) irradiation of pyrimidine in ices consisting of several combinations of H(sub2)O, NH(sub3), CH(sub3)OH, and CH(sub4) at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium, in the protosolar nebula, and on icy bodies of the Solar System.

  16. Nucleobase and amino acid formation through impacts of meteorites on the early ocean

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Nakazawa, Hiromoto; Sekine, Toshimori; Kobayashi, Takamichi; Kakegawa, Takeshi

    2015-11-01

    The emergence of life's building blocks on the prebiotic Earth was the first crucial step for the origins of life. Extraterrestrial delivery of intact amino acids and nucleobases is the prevailing hypothesis for their availability on prebiotic Earth because of the difficulties associated with the production of these organics from terrestrial carbon and nitrogen sources under plausible prebiotic conditions. However, the variety and amounts of these intact organics delivered by meteorites would have been limited. Previous shock-recovery experiments have demonstrated that meteorite impact reactions could have generated organics on the prebiotic Earth. Here, we report on the simultaneous formation of nucleobases (cytosine and uracil) found in DNA and/or RNA, various proteinogenic amino acids (glycine, alanine, serine, aspartic acid, glutamic acid, valine, leucine, isoleucine, and proline), non-proteinogenic amino acids, and aliphatic amines in experiments simulating reactions induced by extraterrestrial objects impacting on the early oceans. To the best of our knowledge, this is the first report of the formation of nucleobases from inorganic materials by shock conditions. In these experiments, bicarbonate was used as the carbon source. Bicarbonate, which is a common dissolved carbon species in CO2-rich atmospheric conditions, was presumably the most abundant carbon species in the early oceans and in post-impact plumes. Thus, the present results expand the possibility that impact-induced reactions generated various building blocks for life on prebiotic Earth in large quantities through the use of terrestrial carbon reservoirs.

  17. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes.

    PubMed

    Mishra, Sourav; Lahiri, Hiya; Banerjee, Siddhartha; Mukhopadhyay, Rupa

    2016-05-01

    So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for 'lab-on-a-chip' type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored. PMID:27025649

  18. Determination of HDV ribozyme N(-1) nucleobase and functional group specificity using internal competition kinetics

    PubMed Central

    Kellerman, Daniel L; Simmons, Kandice S; Pedraza, Mayra; Piccirilli, Joseph A; York, Darrin M; Harris, Michael E

    2015-01-01

    Biological catalysis involves interactions distant from the site of chemistry that can position the substrate for reaction. Catalysis of RNA 2′-O-transphosphorylation by the HDV ribozyme is sensitive to the identity of the N(-1) nucleotide flanking the reactive phosphoryl group. However, the interactions that affect the conformation of this position, and in turn the 2′O nucleophile, are unclear. Here, we describe the application of multiple substrate internal competition kinetic analyses to understand how the N(-1) nucleobase contributes to HDV catalysis, and to test the utility of this approach for RNA structure-function studies. Internal competition reactions containing all four substrate sequence variants at the N(-1) position in reactions using ribozyme active site mutations at A77 and A78 were used to test a proposed basepairing interaction. Mutants A78U, A78G and A79G retain significant catalytic activity, but do not alter the specificity for the N(-1) nucleobase. Effects of nucleobase analog substitutions at N(-1) indicate that U is preferred due to the ability to donate an H-bond in the Watson-Crick face and avoid minor groove steric clash. The results provide information essential for evaluating models of the HDV active site, and illustrate multiple-substrate kinetic analyses as a practical approach for characterizing structure-function relationships in RNA reactions. PMID:25937290

  19. DNA STRETCHING AND OPTIMISATION OF NUCLEOBASE RECOGNITION FOR ENZYMATIC NANOPORE SEQUENCING

    PubMed Central

    Stoddart, David; Franceschini, Lorenzo; Heron, Andrew; Bayley, Hagan; Maglia, Giovanni

    2015-01-01

    In nanopore sequencing, where single DNA strands are electrophoretically translocated through a nanopore and the resulting ionic signal is used to identify the four DNA bases, an enzyme has been used to ratchet the nucleic acid stepwise through the pore at a controlled speed. In this work, we investigated the ability of αHL nanopores to distinguish the four DNA bases under conditions that are compatible with the activity of DNA-handling enzymes. Our findings suggest that in immobilised strands, the applied potential exerts a force on DNA (~ 10 pN at +160 mV) that increases the distance between nucleobases by about 2.2 Å/V. The four nucleobases can be resolved over wide ranges of applied potentials (from +60 mV to +220 mV in 1 m KCl) and ionic strengths (from 200 mM KCl to 1 M KCl at +160 mV) and nucleobase recognition can be improved when the ionic strength on the side of the DNA-handling enzyme is low, while the ionic strength on the opposite side is high. PMID:25648138

  20. The Politics of Naming: Critiquing "Learner-Centred" and "Teacher as Facilitator" in English Language and Humanities Classrooms

    ERIC Educational Resources Information Center

    Ha, Phan Le

    2014-01-01

    "Learner-centred" and "teacher as facilitator," among the most influential concepts (re)shaping education over the past decades, are often represented as bringing democratic participation, equality, and empowerment to learners and helping transform and liberate societies. At the same time, these concepts are constructed in…

  1. Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans.

    PubMed

    Di Lazzaro, V; Pilato, F; Oliviero, A; Dileone, M; Saturno, E; Mazzone, P; Insola, A; Profice, P; Ranieri, F; Capone, F; Tonali, P A; Rothwell, J C

    2006-10-01

    A magnetic transcranial conditioning stimulus given over the motor cortex at intensities below active threshold for obtaining motor-evoked potentials (MEPs) facilitates EMG responses evoked at rest in hand muscles by a suprathreshold magnetic stimulus given 10-25 ms later. This is known as intracortical facilitation (ICF). We recorded descending volleys produced by single and paired magnetic motor cortex stimulation through high cervical epidural electrodes implanted for pain relief in six conscious patients. At interstimulus intervals (ISIs) of 10 and 15 ms, although MEP was facilitated, there was no change in the amplitude or number of descending volleys. An additional I wave sometimes was observed at 25 ms ISI. In one subject, we also evaluated the effects of reversing the direction of the induced current in the brain. At 10 ms ISI, the facilitation of the MEPs disappeared and was replaced by slight suppression; at 2 ms ISI, there was a pronounced facilitation of epidural volleys. Subsequent experiments on healthy subjects showed that a conditioning stimulus capable of producing ICF of MEPs had no effect on the EMG response evoked by transmastoidal electrical stimulation of corticospinal tract. We conclude that ICF occurs because either 1) the conditioning stimulus has a (thus far undetected) effect on spinal cord excitability that increases its response to the same amplitude test volley or 2) that it can alter the composition (but not the amplitude) of the descending volleys set up by the test stimulus such that a larger proportion of the activity is destined for the target muscle. PMID:16760345

  2. Nucleobases and other Prebiotic Species from the Ultraviolet Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Nuevo, M.; Materese, C. K.; Milam, S. N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA, and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no Nheterocycles have ever been observed in the ISM, the positions of the 6.2-m interstellar emission features suggest a population of such molecules is likely to be present. In this work we study the formation of pyrimidine-based molecules, including nucleobases, as well as other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in combinations of H2O, NH3, CH3OH, and CH4 ices at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium and icy bodies of the Solar System. Experimental: Gas mixtures are prepared in a glass mixing line (background pressure approx. 10(exp -6)-10(exp -5) mbar). Relative proportions between mixture components are determined by their partial pressures. Gas mixtures are then deposited on an aluminum foil attached to a cold finger (15-20 K) and simultaneously irradiated with an H2 lamp emitting UV photons (Lyman and a continuum at approx.160 nm). After irradiation samples are warmed to room temperature, at which time the remaining residues are recovered to be analyzed with liquid and gas chromatographies. Results: These experiments showed that the UV irradiation of pyrimidine mixed in these ices at low temperature leads to the formation of several photoproducts derived from pyrimidine, including the nucleobases uracil and cytosine, as well as their precursors 4(3H)-pyrimidone and 4-aminopyrimidine (Fig. 1). Theoretical quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways. In

  3. Identification of a nucleoside/nucleobase transporter from Plasmodium falciparum, a novel target for anti-malarial chemotherapy.

    PubMed Central

    Parker, M D; Hyde, R J; Yao, S Y; McRobert, L; Cass, C E; Young, J D; McConkey, G A; Baldwin, S A

    2000-01-01

    Plasmodium, the aetiologic agent of malaria, cannot synthesize purines de novo, and hence depends upon salvage from the host. Here we describe the molecular cloning and functional expression in Xenopus oocytes of the first purine transporter to be identified in this parasite. This 422-residue protein, which we designate PfENT1, is predicted to contain 11 membrane-spanning segments and is a distantly related member of the widely distributed eukaryotic protein family the equilibrative nucleoside transporters (ENTs). However, it differs profoundly at the sequence and functional levels from its homologous counterparts in the human host. The parasite protein exhibits a broad substrate specificity for natural nucleosides, but transports the purine nucleoside adenosine with a considerably higher apparent affinity (K(m) 0.32+/-0.05 mM) than the pyrimidine nucleoside uridine (K(m) 3.5+/-1.1 mM). It also efficiently transports nucleobases such as adenine (K(m) 0.32+/-0.10 mM) and hypoxanthine (K(m) 0.41+/-0.1 mM), and anti-viral 3'-deoxynucleoside analogues. Moreover, it is not sensitive to classical inhibitors of mammalian ENTs, including NBMPR [6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, or nitrobenzylthioinosine] and the coronary vasoactive drugs, dipyridamole, dilazep and draflazine. These unique properties suggest that PfENT1 might be a viable target for the development of novel anti-malarial drugs. PMID:10861212

  4. Human Neuron Cultures: Micropatterning Facilitates the Long-Term Growth and Analysis of iPSC-Derived Individual Human Neurons and Neuronal Networks (Adv. Healthcare Mater. 15/2016).

    PubMed

    Burbulla, Lena F; Beaumont, Kristin G; Mrksich, Milan; Krainc, Dimitri

    2016-08-01

    Dimitri Krainc, Milan Mrksich, and co-workers demonstrate the utility of microcontact printing technology for culturing of human neurons in defined patterns over extended periods of time on page 1894. This approach facilitates studies of neuronal development, cellular trafficking, and related mechanisms that require assessment of individual neurons and neuronal networks. PMID:27511952

  5. Intrinsic flexibility of snRNA hairpin loops facilitates protein binding.

    PubMed

    Rau, Michael; Stump, W Tom; Hall, Kathleen B

    2012-11-01

    Stem-loop II of U1 snRNA and Stem-loop IV of U2 snRNA typically have 10 or 11 nucleotides in their loops. The fluorescent nucleobase 2-aminopurine was used as a substitute for the adenines in each loop to probe the local and global structures and dynamics of these unusually long loops. Using steady-state and time-resolved fluorescence, we find that, while the bases in the loops are stacked, they are able to undergo significant local motion on the picosecond/nanosecond timescale. In addition, the loops have a global conformational change at low temperatures that occurs on the microsecond timescale, as determined using laser T-jump experiments. Nucleobase and loop motions are present at temperatures far below the melting temperature of the hairpin stem, which may facilitate the conformational change required for specific protein binding to these RNA loops. PMID:23012481

  6. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    SciTech Connect

    Han, Miaojun; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  7. Probing Nucleobase Interactions and Predicting Mechanisms of Synthetic Interest Using Computational Chemistry, and Furthering the Development of BVI Education in Chemistry

    ERIC Educational Resources Information Center

    Harrison, Jason Gordon

    2013-01-01

    Quantum mechanical (QM) and molecular docking methods are used to probe systems of biological and synthetic interest. Probing interactions of nucleobases within proteins, and properly modeling said interactions toward novel nucleobase development, is extremely difficult, and of great utility in RNA interference (RNAi) therapeutics. The issues in…

  8. The facilitating factors and barriers encountered in the adoption of a humanized birth care approach in a highly specialized university affiliated hospital

    PubMed Central

    2011-01-01

    Background Considering the fact that a significant proportion of high-risk pregnancies are currently referred to tertiary level hospitals; and that a large proportion of low obstetric risk women still seek care in these hospitals, it is important to explore the factors that influence the childbirth experience in these hospitals, particularly, the concept of humanized birth care. The aim of this study was to explore the organizational and cultural factors, which act as barriers or facilitators in the provision of humanized obstetrical care in a highly specialized, university-affiliated hospital in Quebec province, in Canada. Methods A single case study design was chosen. The study sample included 17 professionals and administrators from different disciplines, and 157 women who gave birth in the hospital during the study. The data was collected through semi-structured interviews, field notes, participant observations, a self-administered questionnaire, documents, and archives. Both descriptive and qualitative deductive content analyses were performed and ethical considerations were respected. Results Both external and internal dimensions of a highly specialized hospital can facilitate or be a barrier to the humanization of birth care practices in such institutions, whether independently, or altogether. The greatest facilitating factors found were: caring and family- centered model of care, professionals' and administrators' ambient for the provision of humanized birth care besides the medical interventional care which is tailored to improve safety, assurance, and comfort for women and their children, facilities to provide a pain-free birth, companionship and visiting rules, dealing with the patients' spiritual and religious beliefs. The most cited barriers were: the shortage of health care professionals, the lack of sufficient communication among the professionals, the stakeholders' desire for specialization rather than humanization, over estimation of medical

  9. Reactions of β-Propiolactone with Nucleobase Analogues, Nucleosides, and Peptides

    PubMed Central

    Uittenbogaard, Joost P.; Zomer, Bert; Hoogerhout, Peter; Metz, Bernard

    2011-01-01

    β-Propiolactone is often applied for inactivation of viruses and preparation of viral vaccines. However, the exact nature of the reactions of β-propiolactone with viral components is largely unknown. The purpose of the current study was to elucidate the chemical modifications occurring on nucleotides and amino acid residues caused by β-propiolactone. Therefore, a set of nucleobase analogues was treated with β-propiolactone, and reaction products were identified and quantified. NMR revealed at least one modification in either deoxyguanosine, deoxyadenosine, or cytidine after treatment with β-propiolactone. However, no reaction products were found from thymidine and uracil. The most reactive sides of the nucleobase analogues and nucleosides were identified by NMR. Furthermore, a series of synthetic peptides was used to determine the conversion of reactive amino acid residues by liquid chromatography-mass spectrometry. β-Propiolactone was shown to react with nine different amino acid residues. The most reactive residues are cysteine, methionine, and histidine and, to a lesser degree, aspartic acid, glutamic acid, tyrosine, lysine, serine, and threonine. Remarkably, cystine residues (disulfide groups) do not react with β-propiolactone. In addition, no reaction was observed for β-propiolactone with asparagine, glutamine, and tryptophan residues. β-Propiolactone modifies proteins to a larger extent than expected from current literature. In conclusion, the study determined the reactivity of β-propiolactone with nucleobase analogues, nucleosides, and amino acid residues and elucidated the chemical structures of the reaction products. The study provides detailed knowledge on the chemistry of β-propiolactone inactivation of viruses. PMID:21868382

  10. Ab Initio Inverstagation of the Excited States of Nucleobases and Nucleosides

    NASA Astrophysics Data System (ADS)

    Szalay, Péter G.; Fogarasi, Géza; Watson, Thomas; Perera, Ajith; Lotrich, Victor; Bartlett, Rod J.

    2011-06-01

    Most living bodies are exposed to sunlight, essential life sustaining processes are using this natural radiation. Sunlight has, however, several components (has a broad "spectrum") and in particular the invisible component (UV, ultraviolet) is harmful for living organisms. Scientists around the word are busy to understand what happens in the cell when it is exposed to light: it seems that the building blocks of cells and in particular those carrying the genetic information (DNA and RNA) are highly protected against this exposition. Our research focuses on the spectral properties of the building blocks of DNA and RNA, the so called nucleobases and nucleosides, in order to understand this mechanism. Due to improvement in computer technology both at hardware and software side we are now able to use the most accurate methods of ab initio quantum chemistry to investigate the spectroscopic properties of these building blocks. These calculations provide direct information on the properties of these molecules but also provide important benchmarks for cheaper methods which can be used for even larger systems. We have calculated the excited state properties for the nucleobases (cytosine, guanine and adenine), their complexes with water and with each other (Watson-Crick base pairs and stacks) as well as corresponding nucleosides at the EOM-CCSD(T)/aug-cc-pVDZ level of theory and try to answer the following questions: (1) how the order of excited states varies in different nucleobases; (2) how hydration influences the excitation energy and order of excited states; (3) is there any effect of the sugar substituent; (4) how do close lying other bases change the spectrum. The calculations involve over hundred correlated electrons and up to thousand basis functions. Such calculations are now routinely available with the recently developed ACESIII code and can make use of hundreds or even several thousand of processors. V. Lotrich, N. Flocke, M. Ponton, A. Yau, A. Perera, E. Deumens

  11. Living on Both Sides of the Fence: A Phenomenological Study of Human Resource Development Professionals as Downsizing Survivors and Strategic Human Resource Development Facilitators

    ERIC Educational Resources Information Center

    Nackoney, Claire Kostopulos

    2012-01-01

    This phenomenological study explored how HR professionals who identified themselves as facilitators of strategic HRD (SHRD) perceived the experience of being an organizational agent-downsizing survivor. Criterion and snowball sampling were used to recruit 15 participants for this study. A semi-structured interview guide was used to interview…

  12. Supramolecular hydrogels formed by the conjugates of nucleobases, Arg-Gly-Asp (RGD) peptides, and glucosamine

    PubMed Central

    Li, Xinming; Du, Xuewen; Gao, Yuan; Shi, Junfeng; Kuang, Yi

    2012-01-01

    Here we report the generation of a novel class of supramolecular hydrogelators based on the integration of nucleobase, Arg-Gly-Asp (RGD) peptides, and glucosamine in a single molecule. These novel small molecule hydrogelators self-assemble in water to form stable supramolecular nanofibers/hydrogels and exhibit useful biostability. This approach provides a new opportunity for systematic exploration of the self-assembly of small biomolecules by varying any individual segment to generate a large array of supramolecular hydrogels for biological functions and for biomedical applications. PMID:22844343

  13. Correlation of nucleoside and nucleobase transporter gene expression with antimetabolite drug cytotoxicity.

    PubMed

    Lu, Xin; Gong, Shimei; Monks, Anne; Zaharevitz, Daniel; Moscow, Jeffrey A

    2002-01-01

    Antimetabolite drugs that inhibit nucleic acid metabolism are widely used in cancer chemotherapy. Nucleoside and nucleobase transporters are important for the cellular uptake of nucleic acids and their corresponding anticancer analogue drugs. Thus, these transporters may play a role both in antimetabolite drug sensitivity, by mediating the uptake of nucleoside analogues, and in antimetabolite drug resistance, by mediating the uptake of endogenous nucleosides that may rescue cells from toxicity. Therefore, we examined the relation of the expression of nucleoside and nucleobase transporters to antimetabolite cytotoxicity. We measured the RNA levels of all eight known nucleoside and nucleobase transporters in 50 cell lines included in the National Cancer Institute's Anticancer Drug Screen panel. RNA levels of concentrative nucleoside transporters (CNTs), equilibrative nucleoside transporters (ENTs) and nucleobase transporters (NCBTs) were determined by quantitative RT-PCR using real-time fluorescence acquisition. This method was validated by measuring the expression of the MDR1 gene, and correlating our results with independently determined measurements of MDR1 RNA levels and protein function in these cell lines. We then correlated the pattern of RNA levels to the pattern of cytotoxicity of anticancer drugs in the NCI drug screen database using the COMPARE analysis. Several hypothesized relations between transporter gene expression and cytotoxicity, based upon known interactions between certain nucleoside analogues and transporter proteins, were not observed, suggesting that expression of individual transporters may not be a significant determinant of the cytotoxicity of these drugs. The most closely correlated drug cytotoxicity patterns to transporter gene expression patterns (where increased expression corresponds to increase sensitivity) included those between CNT1 and O6-methylguanine and between ENT2 and hydroxyurea. We also observed that p53 status influenced

  14. Ice world: the origin of nucleobases in ice-liquid water coexistence conditions.

    NASA Astrophysics Data System (ADS)

    Menor Salvan, C.

    2013-09-01

    We could define the ice world as the chemical evolution in the range between freezing point of water and the limit of stability of liquid brines, ≈273 to 210 K. In this environment, the synthesis of nitrogen heterocycles using urea as nitrogen source and methane as precursor of active intermediates is favorable from a prebiotic chemistry standpoint, leading to a mixture dominated by pyrimidines and hydantoins. Hence, the synthesis in ice matrix constitutes an experimental model for the study of origin of nucleobases in Solar System bodies.

  15. MODELING AIR TOXICS AND PM 2.5 CONCENTRATION FIELDS AS A MEANS FOR FACILITATING HUMAN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    The capability of the US EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system is extended to provide gridded ambient air quality concentration fields at fine scales. These fields will drive human exposure to air toxics and fine particulate matter (PM2.5) models...

  16. A Course Wiki: Challenges in Facilitating and Assessing Student-Generated Learning Content for the Humanities Classroom

    ERIC Educational Resources Information Center

    Lazda-Cazers, Rasma

    2010-01-01

    New Web technology allows for the design of traditionally lecture-centered humanities courses by fostering active learning and engaging students as producers of learning content. The article presents the experiences with a student-generated wiki for a Germanic Mythology course. Evaluations indicated an overwhelmingly positive student experience…

  17. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress.

    PubMed

    Chastain, Megan; Zhou, Qing; Shiva, Olga; Whitmore, Leanne; Jia, Pingping; Dai, Xueyu; Huang, Chenhui; Fadri-Moskwik, Maria; Ye, Ping; Chai, Weihang

    2016-08-01

    The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance. PMID:27487043

  18. Glucocorticoid-dependent induction of interleukin-6 receptor expression in human hepatocytes facilitates interleukin-6 stimulation of amino acid transport.

    PubMed Central

    Fischer, C P; Bode, B P; Takahashi, K; Tanabe, K K; Souba, W W

    1996-01-01

    OBJECTIVE: The authors studied the effects of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) on glutamine and alanine transport in isolated human hepatocytes. They also evaluated the role of dexamethasone in modulating this response and its effects on the expression of the plasma membrane high-affinity IL-6 receptor. SUMMARY BACKGROUND DATA: Animal studies indicate that cytokines are important mediators of the increased hepatic amino acid uptake that occurs during cancer and sepsis, but studies in human tissues are lacking. The control of transport by cytokines and cytokine receptor expression in the liver may provide a mechanism by which hepatocytes can modulate amino acid availability during catabolic disease states. METHODS: Human hepatocytes were isolated from wedge biopsy specimens and plated in 24-well trays. Interleukin-6 and TNF-alpha, in combination with the synthetic glucocorticoid dexamethasone, were added to hepatocytes in culture, and the transport of radiolabeled glutamine and alanine was measured. Fluorescent-activated cell sorter (FACS) analysis was used to study the effects of dexamethasone on IL-6 receptor number in the well-differentiated human hepatoma HepG2. RESULTS: Both IL-6 and TNF-alpha exerted a small stimulatory effect on alanine and glutamine transport. Dexamethasone alone did not alter transport rates, but pretreatment of cells augmented the effects of both cytokines on carrier-mediated amino acid uptake. Dexamethasone pretreatment and a combination of IL-6 and TNF-alpha resulted in a greater than twofold increase in transport activity. Fluorescent-activated cell sorter analysis demonstrated that dexamethasone induced a threefold increase in the expression of high-affinity IL-6 receptors. CONCLUSIONS: Interleukin-6 and TNF-alpha work coordinately with glucocorticoids to stimulate amino acid uptake in human hepatocytes. Dexamethasone exerts a permissive effect on cytokine-mediated increases in transport by increasing IL

  19. SUMO fusion system facilitates soluble expression and high production of bioactive human fibroblast growth factor 23 (FGF23).

    PubMed

    Liu, Xiaoju; Chen, Yubin; Wu, Xiaoping; Li, Haiyan; Jiang, Chao; Tian, Haishan; Tang, Lu; Wang, Dezhong; Yu, Ting; Li, Xiaokun

    2012-10-01

    As a key humoral regulator of phosphate homeostasis and its involvement in the pathogenesis of human disease, human fibroblast growth factor 23 (hFGF23) has become a particularly attractive therapeutic target. To prepare soluble and bioactive recombinant human FGF23 to meet the increasing demand in its pharmacological application, small ubiquitin-related modifier (SUMO)-FGF23 fusion gene and FGF23 non-fusion gene were amplified by standard PCR methods and cloned into vector pET-22b and pET-3c, then transformed into Escherichia coli Rosetta (DE3) and BL21 (DE3). The best combination of plasmid and host strain was screened, and only Rosetta (DE3)/pET-SUMO-FGF23 was screened for rhFGF23 protein expressed. The average bacterial yield and the soluble expression level of recombinant hFGF23 of three batches attained 687 ± 18 g and 30 ± 1.5%, respectively, after treatment with 0.4 mM isopropyl-thio-β-galactopyranoside for 19 h at 16 °C in a 30-L fermentor, after which it was purified by DEAE Sepharose FF and nickel nitrilotriacetic acid affinity chromatography. Once cleaved by the SUMO protease, the recombinant human FGF23 was released from the fusion protein. The purity of rFGF23 was shown by high performance liquid chromatography to be greater than 90% and the yield was 60 ± 1.5 mg/L. In vitro data showed that the purified rFGF23 can induce the phosphorylation of mitogen-activated protein kinases in the glioma U251 cell. The results of in vivo animal experiments also showed that rFGF23 could decrease the concentration in the plasma of normal rats fed with a fixed formula diet. PMID:22249722

  20. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    PubMed Central

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  1. Enhanced snoMEN Vectors Facilitate Establishment of GFP–HIF-1α Protein Replacement Human Cell Lines

    PubMed Central

    Bensaddek, Dalila; Afzal, Vackar; Biddlestone, John; Ortmann, Brian; Mudie, Sharon; Boivin, Vincent; Scott, Michelle S.; Rocha, Sonia; Lamond, Angus I.

    2016-01-01

    The snoMEN (snoRNA Modulator of gene ExpressioN) vector technology was developed from a human box C/D snoRNA, HBII-180C, which contains an internal sequence that can be manipulated to make it complementary to RNA targets, allowing knock-down of targeted genes. Here we have screened additional human nucleolar snoRNAs and assessed their application for gene specific knock-downs to improve the efficiency of snoMEN vectors. We identify and characterise a new snoMEN vector, termed 47snoMEN, that is derived from box C/D snoRNA U47, demonstrating its use for knock-down of both endogenous cellular proteins and G/YFP-fusion proteins. Using multiplex 47snoMEM vectors that co-express multiple 47snoMEN in a single transcript, each of which can target different sites in the same mRNA, we document >3-fold increase in knock-down efficiency when compared with the original HBII-180C based snoMEN. The multiplex 47snoMEM vector allowed the construction of human protein replacement cell lines with improved efficiency, including the establishment of novel GFP–HIF-1α replacement cells. Quantitative mass spectrometry analysis confirmed the enhanced efficiency and specificity of protein replacement using the 47snoMEN-PR vectors. The 47snoMEN vectors expand the potential applications for snoMEN technology in gene expression studies, target validation and gene therapy. PMID:27128805

  2. Understanding Prebiotic Chemistry Through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origines) of life on Earth were aided by extrataterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally. we will address the future of meteorite research, including asteroid sample return missions.

  3. Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Photo-Stability of Nucleobases

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Astrochemistry laboratory experiments recently showed that molecules of prebiotic interest can potentially form in space, as supported by the detection of amino acids in organic residues formed by the UV photolysis of ices simulating interstellar and cometary environments (H2O, CO, CO2, CH3OH, NH3, etc.). Although the presence of amino acids in the interstellar medium (ISM) is still under debate, experiments and the detection of amino acids in meteorites both support a scenario in which prebiotic molecules could be of extraterrestrial origin, before they are delivered to planets by comets, asteroids, and interplanetary dust particles. Nucleobases, the informational subunits of DNA and RNA, have also been detected in meteorites, although they have not yet been observed in the ISM. Thus, these molecules constitute another family of prebiotic compounds that can possibly form via abiotical processes in astrophysical environments. Nucleobases are nitrogen-bearing cyclic aromatic species with various functional groups attached, which are divided into two classes: pyrimidines (uracil, cytosine, and thymine) and purines (adenine and guanine). In this work, we study how UV irradiation affects pyrimidine mixed in interstellar ice analogs (H2O, NH3, CH3OH). In particular, we show that the UV irradiation of H2O:pyrimidine mixtures leads to the production of oxidized compounds including uracil, and show that both uracil and cytosine are formed upon irradiation of H2O:NH3:pyrimidine mixtures. We also study the photostability of pyrimidine and its photoproducts formed during these experiments.

  4. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  5. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.

    PubMed

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life. PMID:26758444

  6. The search for and identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    NASA Technical Reports Server (NTRS)

    Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.

    1989-01-01

    An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars.

  7. Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase

    PubMed Central

    Liu, Xinran; Musser, Derek M.; Lee, Cheri A.; Yang, Xiaorong; Arnold, Jamie J.; Cameron, Craig E.; Boehr, David D.

    2015-01-01

    The Sabin I poliovirus live, attenuated vaccine strain encodes for four amino acid changes (i.e., D53N, Y73H, K250E, and T362I) in the RNA-dependent RNA polymerase (RdRp). We have previously shown that the T362I substitution leads to a lower fidelity RdRp, and viruses encoding this variant are attenuated in a mouse model of poliovirus. Given these results, it was surprising that the nucleotide incorporation rate and nucleobase fidelity of the Sabin I RdRp is similar to that of wild-type enzyme, although the Sabin I RdRp is less selective against nucleotides with modified sugar groups. We suggest that the other Sabin amino acid changes (i.e., D53N, Y73H, K250E) help to re-establish nucleotide incorporation rates and nucleotide discrimination near wild-type levels, which may be a requirement for the propagation of the virus and its efficacy as a vaccine strain. These results also suggest that the nucleobase fidelity of the Sabin I RdRp likely does not contribute to viral attenuation. PMID:26516899

  8. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.

    PubMed

    Mudedla, Sathish Kumar; Balamurugan, Kanagasabai; Kamaraj, Manoharan; Subramanian, Venkatesan

    2016-01-01

    The interaction of nucleobases (NBs) with the surface of silicon doped graphene (SiGr) and defective silicon doped graphene (dSiGr) has been studied using electronic structure methods. A systematic comparison of the calculated interaction energies (adsorption strength) of NBs with the surface of SiGr and dSiGr with those of pristine graphene (Gr) has also been made. The doping of graphene with silicon increases the adsorption strength of NBs. The introduction of defects in SiGr further enhances the strength of interaction with NBs. The appreciable stability of complexes (SiGr-NBs and dSiGr-NBs) arises due to the partial electrostatic and covalent (Si···O(N)) interaction in addition to π-π stacking. The interaction energy increases with the size of graphene models. The strong interaction between dSiGr-NBs and concomitant charge transfer causes significant changes in the electronic structure of dSiGr in contrast to Gr and SiGr. Further, the calculated optical properties of all the model systems using time dependent density functional theory (TD-DFT) reveal that absorption spectra of SiGr and dSiGr undergo appreciable changes after adsorption of NBs. Thus, the significant variations in the HOMO-LUMO gap and absorption spectra of dSiGr after interaction with the NBs can be exploited for possible applications in the sensing of DNA nucleobases. PMID:26607270

  9. Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Stability of Nucleobases

    NASA Astrophysics Data System (ADS)

    Milam, Stefanie; Nuevo, Michel; Sandford, Scott; Elsila, Jamie; Dworkin, Jason

    The detection of amino acids in organic residues formed by the UV photolysis of 10 K ices representative of interstellar and cometary environments (H2 O, CO, CO2 , CH3 OH, NH3 , etc.) show that molecules of prebiotic interest could potentially form in space. The detection of amino acids in meteorites supports a scenario where the organic molecules required for life are of extraterrestrial origin. Nucleobases, the informational units of RNA and DNA, have also been detected in meteorites and constitute another family of prebiotic compounds that can possibly form in interstellar environments. These molecules are functionalized heterocyclic aromatic species. There are two classes of nucleobases: pyrimidines (e.g. thymine, uracil, and cytosine) and purines (e.g. adenine and guanine). The functionalization of PAHs from UV photolysis in mixed molecular ices has been proven effective in the laboratory. This work aims at studying how UV irradiation affects pyrimidine in interstellar ice analogs. In particular, we show how H2 O/ pyrimidine mixtures lead to the production of oxidized compounds and study their photostability.

  10. Gas-phase lifetimes of nucleobase analogues by picosecond pumpionization and streak techniques.

    PubMed

    Blaser, Susan; Frey, Hans-Martin; Heid, Cornelia G; Leutwyler, Samuel

    2014-01-01

    The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP˙(H2O)n water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)2, two isomers of its trimer (2PY)3 and its tetramer (2PY)4, which lie in the 7-12 ns range. PMID:24983611

  11. First-principles photoemission spectroscopy in DNA and RNA nucleobases from Koopmans-compliant functionals

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola

    The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.

  12. Physisorption of nucleobases on graphene: a comparative van der Waals study

    NASA Astrophysics Data System (ADS)

    Le, Duy; Kara, Abdelkader; Schröder, Elsebeth; Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The physisorption of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) on graphene is studied using several variants of the density functional theory (DFT): the generalized gradient approximation with the inclusion of van der Waals interaction (vdW) based on the TS approach (Tkatchenko and Scheffer 2009 Phys. Rev. Lett. 102 073005) and our simplified version of this approach (here called sTS), the van der Waals density functional vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401) and vdW-DF2 (Lee et al 2010 Phys. Rev. B 82 081101), and DFT-D2 (Grimme 2006 J. Comput. Chem. 27 1787) and DFT-D3 (Grimme et al 2010 J. Chem. Phys. 132 154104) methods. The binding energies of nucleobases on graphene are found to be in the following order: G > A > T > C > U within TS, sTS, vdW-DF, and DFT-D2, and in the following order: G > A > T ˜ C > U within DFT-D3 and vdW-DF2. The binding separations are found to be different within different methods and in the following order: DFT-D2 < TS < DFT-D3 ˜ vdW-DF2 < vdW-DF. We also comment on the efficiency of combining the DFT-D approach and vdW-DF to study systems with van der Waals interactions.

  13. Meteoritic Input of Amino Acids and Nucleobases: Methodology and Implications for the Origins of Life

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 40 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return mIssIons.

  14. Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase.

    PubMed

    Liu, Xinran; Musser, Derek M; Lee, Cheri A; Yang, Xiaorong; Arnold, Jamie J; Cameron, Craig E; Boehr, David D

    2015-10-01

    The Sabin I poliovirus live, attenuated vaccine strain encodes for four amino acid changes (i.e., D53N, Y73H, K250E, and T362I) in the RNA-dependent RNA polymerase (RdRp). We have previously shown that the T362I substitution leads to a lower fidelity RdRp, and viruses encoding this variant are attenuated in a mouse model of poliovirus. Given these results, it was surprising that the nucleotide incorporation rate and nucleobase fidelity of the Sabin I RdRp is similar to that of wild-type enzyme, although the Sabin I RdRp is less selective against nucleotides with modified sugar groups. We suggest that the other Sabin amino acid changes (i.e., D53N, Y73H, K250E) help to re-establish nucleotide incorporation rates and nucleotide discrimination near wild-type levels, which may be a requirement for the propagation of the virus and its efficacy as a vaccine strain. These results also suggest that the nucleobase fidelity of the Sabin I RdRp likely does not contribute to viral attenuation. PMID:26516899

  15. Macrophage tropism of human immunodeficiency virus type 1 facilitates in vivo escape from cytotoxic T-lymphocyte pressure.

    PubMed

    Schutten, M; van Baalen, C A; Guillon, C; Huisman, R C; Boers, P H; Sintnicolaas, K; Gruters, R A; Osterhaus, A D

    2001-03-01

    Early after seroconversion, macrophage-tropic human immunodeficiency virus type 1 (HIV-1) variants are predominantly found, even when a mixture of macrophage-tropic and non-macrophage-tropic variants was transmitted. For virus contracted by sexual transmission, this is presently explained by selection at the port of entry, where macrophages are infected and T cells are relatively rare. Here we explore an additional mechanism to explain the selection of macrophage-tropic variants in cases where the mucosa is bypassed during transmission, such as blood transfusion, needle-stick accidents, or intravenous drug abuse. With molecularly cloned primary isolates of HIV-1 in irradiated mice that had been reconstituted with a high dose of human peripheral blood mononuclear cells, we found that a macrophage-tropic HIV-1 clone escaped more efficiently from specific cytotoxic T-lymphocyte (CTL) pressure than its non-macrophage-tropic counterpart. We propose that CTLs favor the selective outgrowth of macrophage-tropic HIV-1 variants because infected macrophages are less susceptible to CTL activity than infected T cells. PMID:11222694

  16. Inhibition of apoptosis in human immunodeficiency virus-infected cells enhances virus production and facilitates persistent infection.

    PubMed Central

    Antoni, B A; Sabbatini, P; Rabson, A B; White, E

    1995-01-01

    Apoptosis is one of several mechanisms by which human immunodeficiency virus type 1 (HIV-1) exerts its cytopathic effects. CD4+ Jurkat T-cell lines overexpressing the adenovirus E1B 19K protein, a potent inhibitor of apoptosis, were used to examine the consequences of inhibition of apoptosis during acute and chronic HIV-1 infections. E1B 19K protein expression inhibited HIV-induced apoptosis, enhanced virus production, and established high levels of persistent viral infection. One E1B 19K-expressing line appeared to undergo HIV-induced death via a nonapoptotic mechanism, illustrating that HIV infection results in lymphocyte depletion through multiple pathways. Increased virus production associated with sustained cell viability suggests that therapeutic approaches involving inhibition of HIV-induced programmed cell death may be problematic. PMID:7884884

  17. NOX1/2 activation in human gingival fibroblasts by Fusobacterium nucleatum facilitates attachment of Porphyromonas gingivalis.

    PubMed

    Ahn, Sun Hee; Song, Ji-Eun; Kim, Suhee; Cho, Sung-Hyun; Lim, Yun Kyong; Kook, Joong-Ki; Kook, Min-Suk; Lee, Tae-Hoon

    2016-08-01

    Periodontal diseases are infectious polymicrobial inflammatory diseases that lead to destruction of the periodontal ligament, gingiva, and alveolar bone. Sequential colonization of a broad range of bacteria, including Fusobacterium nucleatum and Porphyromonas gingivalis, is an important phenomenon in this disease model. F. nucleatum is a facultative anaerobic species thought to be a key mediator of dental plaque maturation due to its extensive coaggregation with other oral bacteria, while P. gingivalis is an obligate anaerobic species that induces gingival inflammation by secreting various virulence factors. The formation of a bacterial complex by these two species is central to the pathogenesis of periodontal disease. Reactive oxygen species (ROS) are produced during bacterial infections and are involved in intracellular signaling. However, the impact of oral bacteria-induced ROS on the ecology of F. nucleatum and P. gingivalis has yet to be clarified. In the present study, we investigated ROS production induced in primary human oral cells by F. nucleatum and P. gingivalis and its effect on the formation of their bacterial complexes and further host cell apoptosis. We found that in primary human gingival fibroblasts (GFs), two NADPH oxidase isoforms, NOX1 and NOX2, were activated in response to F. nucleatum infection but not P. gingivalis infection. Accordingly, increased NADPH oxidase activity and production of superoxide anion were observed in GFs after F. nucleatum infection, but not after P. gingivalis infection. Interestingly, in NOX1, NOX2, or NOX1/NOX2 knockdown cells, the number of P. gingivalis decreased when the cells were coinfected with F. nucleatum. A similar pattern of host cell apoptosis was observed. This implies that F. nucleatum contributes to attachment of P. gingivalis by triggering activation of NADPH oxidase in host cells, which may provide an environment more favorable to strict anaerobic bacteria and have a subsequent effect on apoptosis of

  18. Cyclophilins Facilitate Dissociation of the Human Papillomavirus Type 16 Capsid Protein L1 from the L2/DNA Complex following Virus Entry

    PubMed Central

    Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L.

    2012-01-01

    Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles. PMID:22761365

  19. Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells.

    PubMed

    Matsumoto, Rena; Uemura, Toshimasa; Xu, Zhefeng; Yamaguchi, Isamu; Ikoma, Toshiyuki; Tanaka, Junzo

    2015-08-01

    We studied the effect of fibril formation of fish scale collagen on the osteoblastic differentiation of human mesenchymal stem cells (hMSCs). We found that hMSCs adhered easily to tilapia scale collagen, which remarkably accelerated the early stage of osteoblastic differentiation in hMSCs during in vitro cell culture. Osteoblastic markers such as ALP activity, osteopontin, and bone morphogenetic protein 2 were markedly upregulated when the hMSCs were cultured on a tilapia collagen surface, especially in the early osteoblastic differentiation stage. We hypothesized that this phenomenon occurs due to specific fibril formation of tilapia collagen. Thus, we examined the time course of collagen fibril formation using high-speed atomic force microscopy. Moreover, to elucidate the effect of the orientation of fibril formation on the differentiation of hMSCs, we measured ALP activity of hMSCs cultured on two types of tilapia scale collagen membranes with different degrees of fibril formation. The ALP activity in hMSCs cultured on a fibrous collagen membrane was significantly higher than on a non-fibrous collagen membrane even before adding osteoblastic differentiation medium. These results showed that the degree of the fibril formation of tilapia collagen was essential for the osteoblastic differentiation of hMSCs. PMID:25546439

  20. Adapting the human-computer interface for reading literacy and computer skill to facilitate collection of information directly from patients.

    PubMed

    Lobach, David F; Arbanas, Jennifer M; Mishra, Dharani D; Campbell, Marci; Wildemuth, Barbara M

    2004-01-01

    Clinical information collected directly from patients is critical to the practice of medicine. Past efforts to collect this information using computers have had limited utility because these efforts required users to be facile with the computerized information collecting system. In this paper we describe the design, development, and function of a computer system that uses recent technology to overcome the limitations of previous computer-based data collection tools by adapting the human-computer interface to the native language, reading literacy, and computer skills of the user. Specifically, our system uses a numerical representation of question content, multimedia, and touch screen technology to adapt the computer interface to the native language, reading literacy, and computer literacy of the user. In addition, the system supports health literacy needs throughout the data collection session and provides contextually relevant disease-specific education to users based on their responses to the questions. The system has been successfully used in an academically affiliated family medicine clinic and in an indigent adult medicine clinic. PMID:15360991

  1. Human DNA Helicase B (HDHB) Binds to Replication Protein A and Facilitates Cellular Recovery from Replication Stress*

    PubMed Central

    Guler, Gulfem Dilek; Liu, Hanjian; Vaithiyalingam, Sivaraja; Arnett, Diana R.; Kremmer, Elisabeth; Chazin, Walter J.; Fanning, Ellen

    2012-01-01

    Maintenance of genomic stability in proliferating cells depends on a network of proteins that coordinate chromosomal replication with DNA damage responses. Human DNA helicase B (HELB or HDHB) has been implicated in chromosomal replication, but its role in this coordinated network remains undefined. Here we report that cellular exposure to UV irradiation, camptothecin, or hydroxyurea induces accumulation of HDHB on chromatin in a dose- and time-dependent manner, preferentially in S phase cells. Replication stress-induced recruitment of HDHB to chromatin is independent of checkpoint signaling but correlates with the level of replication protein A (RPA) recruited to chromatin. We show using purified proteins that HDHB physically interacts with the N-terminal domain of the RPA 70-kDa subunit (RPA70N). NMR spectroscopy and site-directed mutagenesis reveal that HDHB docks on the same RPA70N surface that recruits S phase checkpoint signaling proteins to chromatin. Consistent with this pattern of recruitment, cells depleted of HDHB display reduced recovery from replication stress. PMID:22194613

  2. Microvesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Facilitate Tubular Epithelial Cell Dedifferentiation and Growth via Hepatocyte Growth Factor Induction

    PubMed Central

    Wu, Shuai; Zou, Xiang-yu; Zhang, Guang-yuan; Gu, Di; Miao, Shuai; Zhu, Ying-jian; Sun, Jie; Du, Tao

    2015-01-01

    During acute kidney injury (AKI), tubular cell dedifferentiation initiates cell regeneration; hepatocyte growth factor (HGF) is involved in modulating cell dedifferentiation. Mesenchymal stem cell (MSC)-derived microvesicles (MVs) deliver RNA into injured tubular cells and alter their gene expression, thus regenerating these cells. We boldly speculated that MVs might induce HGF synthesis via RNA transfer, thereby facilitating tubular cell dedifferentiation and regeneration. In a rat model of unilateral AKI, the administration of MVs promoted kidney recovery. One of the mechanisms of action is the acceleration of tubular cell dedifferentiation and growth. Both in vivo and in vitro, rat HGF expression in damaged rat tubular cells was greatly enhanced by MV treatment. In addition, human HGF mRNA present in MVs was delivered into rat tubular cells and translated into the HGF protein as another mechanism of HGF induction. RNase treatment abrogated all MV effects. In the in vitro experimental setting, the conditioned medium of MV-treated injured tubular cells, which contains a higher concentration of HGF, strongly stimulated cell dedifferentiation and growth, as well as Erk1/2 signaling activation. Intriguingly, these effects were completely abrogated by either c-Met inhibitor or MEK inhibitor, suggesting that HGF induction is a crucial contributor to the acceleration of cell dedifferentiation and growth. All these findings indicate that MV-induced HGF synthesis in damaged tubular cells via RNA transfer facilitates cell dedifferentiation and growth, which are important regenerative mechanisms. PMID:25793303

  3. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    SciTech Connect

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  4. Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation

    PubMed Central

    Li, Jasmine; Hardy, Kristine; Phetsouphanh, Chan; Tu, Wen Juan; Sutcliffe, Elissa L.; McCuaig, Robert; Sutton, Christopher R.; Zafar, Anjum; Munier, C. Mee Ling; Zaunders, John J.; Xu, Yin; Theodoratos, Angelo; Tan, Abel; Lim, Pek Siew; Knaute, Tobias; Masch, Antonia; Zerweck, Johannes; Brezar, Vedran; Milburn, Peter J.; Dunn, Jenny; Casarotto, Marco G.; Turner, Stephen J.; Seddiki, Nabila; Kelleher, Anthony D.

    2016-01-01

    ABSTRACT Memory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4+ T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation. Flanked by permissive histone modifications, these PKC-enriched regions are significantly enriched with NF-κB motifs in ex vivo bulk and vaccinia-responsive human memory CD4+ T cells. Within the nucleus, PKC-θ catalytic activity maintains the Ser536 phosphorylation on the p65 subunit of NF-κB (also known as RelA) and can directly influence chromatin accessibility at transcriptional memory genes by regulating H2B deposition through Ser32 phosphorylation. Furthermore, using a cytoplasm-restricted PKC-θ mutant, we highlight that chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit transcriptional memory responses in human memory T cells. PMID:27149922

  5. Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation.

    PubMed

    Li, Jasmine; Hardy, Kristine; Phetsouphanh, Chan; Tu, Wen Juan; Sutcliffe, Elissa L; McCuaig, Robert; Sutton, Christopher R; Zafar, Anjum; Munier, C Mee Ling; Zaunders, John J; Xu, Yin; Theodoratos, Angelo; Tan, Abel; Lim, Pek Siew; Knaute, Tobias; Masch, Antonia; Zerweck, Johannes; Brezar, Vedran; Milburn, Peter J; Dunn, Jenny; Casarotto, Marco G; Turner, Stephen J; Seddiki, Nabila; Kelleher, Anthony D; Rao, Sudha

    2016-06-15

    Memory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4(+) T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation. Flanked by permissive histone modifications, these PKC-enriched regions are significantly enriched with NF-κB motifs in ex vivo bulk and vaccinia-responsive human memory CD4(+) T cells. Within the nucleus, PKC-θ catalytic activity maintains the Ser536 phosphorylation on the p65 subunit of NF-κB (also known as RelA) and can directly influence chromatin accessibility at transcriptional memory genes by regulating H2B deposition through Ser32 phosphorylation. Furthermore, using a cytoplasm-restricted PKC-θ mutant, we highlight that chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit transcriptional memory responses in human memory T cells. PMID:27149922

  6. Characterization of Human CD8(+)TCR(-) Facilitating Cells In Vitro and In Vivo in a NOD/SCID/IL2rγ(null) Mouse Model.

    PubMed

    Huang, Y; Elliott, M J; Yolcu, E S; Miller, T O; Ratajczak, J; Bozulic, L D; Wen, Y; Xu, H; Ratajczak, M Z; Ildstad, S T

    2016-02-01

    CD8(+)/TCR(-) facilitating cells (FCs) in mouse bone marrow (BM) significantly enhance engraftment of hematopoietic stem/progenitor cells (HSPCs). Human FC phenotype and mechanism of action remain to be defined. We report, for the first time, the phenotypic characterization of human FCs and correlation of phenotype with function. Approximately half of human FCs are CD8(+)/TCR(-)/CD56 negative (CD56(neg)); the remainder are CD8(+)/TCR(-)/CD56 bright (CD56(bright)). The CD56(neg) FC subpopulation significantly promotes homing of HSPCs to BM in nonobese diabetic/severe combined immunodeficiency/IL-2 receptor γ-chain knockout mouse recipients and enhances hematopoietic colony formation in vitro. The CD56(neg) FC subpopulation promotes rapid reconstitution of donor HSPCs without graft-versus-host disease (GVHD); recipients of CD56(bright) FCs plus HSPCs exhibit low donor chimerism early after transplantation, but the level of chimerism significantly increases with time. Recipients of HSPCs plus CD56(neg) or CD56(bright) FCs showed durable donor chimerism at significantly higher levels in BM. The majority of both FC subpopulations express CXCR4. Coculture of CD56(bright) FCs with HSPCs upregulates cathelicidin and β-defensin 2, factors that prime responsiveness of HSPCs to stromal cell-derived factor 1. Both FC subpopulations significantly upregulated mRNA expression of the HSPC growth factors and Flt3 ligand. These results indicate that human FCs exert a direct effect on HSPCs to enhance engraftment. Human FCs offer a potential regulatory cell-based therapy for enhancement of engraftment and prevention of GVHD. PMID:26550777

  7. Human RAD18 Interacts with Ubiquitylated Chromatin Components and Facilitates RAD9 Recruitment to DNA Double Strand Breaks

    PubMed Central

    Inagaki, Akiko; Sleddens-Linkels, Esther; van Cappellen, Wiggert A.; Hibbert, Richard G.; Sixma, Titia K.; Hoeijmakers, Jan H. J.; Grootegoed, J. Anton; Baarends, Willy M.

    2011-01-01

    RAD18 is an ubiquitin ligase involved in replicative damage bypass and DNA double-strand break (DSB) repair processes. We found that RPA is required for the dynamic pattern of RAD18 localization during the cell cycle, and for accumulation of RAD18 at sites of γ-irradiation-induced DNA damage. In addition, RAD18 colocalizes with chromatin-associated conjugated ubiquitin and ubiquitylated H2A throughout the cell cycle and following irradiation. This localization pattern depends on the presence of an intact, ubiquitin-binding Zinc finger domain. Using a biochemical approach, we show that RAD18 directly binds to ubiquitylated H2A and several other unknown ubiquitylated chromatin components. This interaction also depends on the RAD18 Zinc finger, and increases upon the induction of DSBs by γ-irradiation. Intriguingly, RAD18 does not always colocalize with regions that show enhanced H2A ubiquitylation. In human female primary fibroblasts, where one of the two X chromosomes is inactivated to equalize X-chromosomal gene expression between male (XY) and female (XX) cells, this inactive X is enriched for ubiquitylated H2A, but only rarely accumulates RAD18. This indicates that the binding of RAD18 to ubiquitylated H2A is context-dependent. Regarding the functional relevance of RAD18 localization at DSBs, we found that RAD18 is required for recruitment of RAD9, one of the components of the 9-1-1 checkpoint complex, to these sites. Recruitment of RAD9 requires the functions of the RING and Zinc finger domains of RAD18. Together, our data indicate that association of RAD18 with DSBs through ubiquitylated H2A and other ubiquitylated chromatin components allows recruitment of RAD9, which may function directly in DSB repair, independent of downstream activation of the checkpoint kinases CHK1 and CHK2. PMID:21858012

  8. Strategic differentiation and integration of genomic-level heritabilities facilitate individual differences in preparedness and plasticity of human life history

    PubMed Central

    Woodley of Menie, Michael A.; Figueredo, Aurelio José; Cabeza de Baca, Tomás; Fernandes, Heitor B. F.; Madison, Guy; Wolf, Pedro S. A.; Black, Candace J.

    2015-01-01

    Life history (LH) strategies refer to the pattern of allocations of bioenergetic and material resources into different domains of fitness. While LH is known to have moderate to high population-level heritability in humans, both at the level of the high-order factor (Super-K) and the lower-order factors (K, Covitality, and the General Factor of Personality), several important questions remain unexplored. Here, we apply the Continuous Parameter Estimation Model to measure individual genomic-level heritabilities (termed transmissibilities). These transmissibility values were computed for the latent hierarchical structure and developmental dynamics of LH strategy, and demonstrate; (1) moderate to high heritability of factor loadings of Super-K on its lower-order factors, evidencing biological preparedness, genetic accommodation, and the gene-culture coevolution of biased epigenetic rules of development; (2) moderate to high heritability of the magnitudes of the effect of the higher-order factors upon their loadings on their constituent factors, evidencing genetic constraints upon phenotypic plasticity; and (3) that heritability of the LH factors, their factor loadings, and the magnitudes of the correlations among factors, are weaker among individuals with slower LH speeds. The results were obtained from an American sample of 316 monozygotic (MZ) and 274 dizygotic (DZ) twin dyads and a Swedish sample of 863 MZ and 475 DZ twin dyads, and indicate that inter-individual variation in transmissibility is a function of individual socioecological selection pressures. Our novel technique, opens new avenues for analyzing complex interactions among heritable traits inaccessible to standard structural equation methods. PMID:25954216

  9. Strategic differentiation and integration of genomic-level heritabilities facilitate individual differences in preparedness and plasticity of human life history.

    PubMed

    Woodley Of Menie, Michael A; Figueredo, Aurelio José; Cabeza de Baca, Tomás; Fernandes, Heitor B F; Madison, Guy; Wolf, Pedro S A; Black, Candace J

    2015-01-01

    Life history (LH) strategies refer to the pattern of allocations of bioenergetic and material resources into different domains of fitness. While LH is known to have moderate to high population-level heritability in humans, both at the level of the high-order factor (Super-K) and the lower-order factors (K, Covitality, and the General Factor of Personality), several important questions remain unexplored. Here, we apply the Continuous Parameter Estimation Model to measure individual genomic-level heritabilities (termed transmissibilities). These transmissibility values were computed for the latent hierarchical structure and developmental dynamics of LH strategy, and demonstrate; (1) moderate to high heritability of factor loadings of Super-K on its lower-order factors, evidencing biological preparedness, genetic accommodation, and the gene-culture coevolution of biased epigenetic rules of development; (2) moderate to high heritability of the magnitudes of the effect of the higher-order factors upon their loadings on their constituent factors, evidencing genetic constraints upon phenotypic plasticity; and (3) that heritability of the LH factors, their factor loadings, and the magnitudes of the correlations among factors, are weaker among individuals with slower LH speeds. The results were obtained from an American sample of 316 monozygotic (MZ) and 274 dizygotic (DZ) twin dyads and a Swedish sample of 863 MZ and 475 DZ twin dyads, and indicate that inter-individual variation in transmissibility is a function of individual socioecological selection pressures. Our novel technique, opens new avenues for analyzing complex interactions among heritable traits inaccessible to standard structural equation methods. PMID:25954216

  10. Zinc Finger Structures in the Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Facilitate Efficient Minus- and Plus-Strand Transfer

    PubMed Central

    Guo, Jianhui; Wu, Tiyun; Anderson, Jada; Kane, Bradley F.; Johnson, Donald G.; Gorelick, Robert J.; Henderson, Louis E.; Levin, Judith G.

    2000-01-01

    The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) has two zinc fingers, each containing the invariant metal ion binding residues CCHC. Recent reports indicate that mutations in the CCHC motifs are deleterious for reverse transcription in vivo. To identify reverse transcriptase (RT) reactions affected by such changes, we have probed zinc finger functions in NC-dependent RT-catalyzed HIV-1 minus- and plus-strand transfer model systems. Our approach was to examine the activities of wild-type NC and a mutant in which all six cysteine residues were replaced by serine (SSHS NC); this mutation severely disrupts zinc coordination. We find that the zinc fingers contribute to the role of NC in complete tRNA primer removal from minus-strand DNA during plus-strand transfer. Annealing of the primer binding site sequences in plus-strand strong-stop DNA [(+) SSDNA] to its complement in minus-strand acceptor DNA is not dependent on NC zinc fingers. In contrast, the rate of annealing of the complementary R regions in (−) SSDNA and 3′ viral RNA during minus-strand transfer is approximately eightfold lower when SSHS NC is used in place of wild-type NC. Moreover, unlike wild-type NC, SSHS NC has only a small stimulatory effect on minus-strand transfer and is essentially unable to block TAR-induced self-priming from (−) SSDNA. Our results strongly suggest that NC zinc finger structures are needed to unfold highly structured RNA and DNA strand transfer intermediates. Thus, it appears that in these cases, zinc finger interactions are important components of NC nucleic acid chaperone activity. PMID:10982342