Science.gov

Sample records for human fetal heart

  1. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Mowrey, Dennis L. (Inventor)

    2003-01-01

    A fetal heart monitoring system and method for detecting and processing acoustic fetal heart signals transmitted by different signal transmission modes. One signal transmission mode, the direct contact mode, occurs in a first frequency band when the fetus is in direct contact with the maternal abdominal wall. Another signal transmission mode, the fluid propagation mode, occurs in a second frequency band when the fetus is in a recessed position with no direct contact with the maternal abdominal wall. The second frequency band is relatively higher than the first frequency band. The fetal heart monitoring system and method detect and process acoustic fetal heart signals that are in the first frequency band and in the second frequency band.

  2. Congenital Heart Block Maternal Sera Autoantibodies Target an Extracellular Epitope on the α1G T-Type Calcium Channel in Human Fetal Hearts

    PubMed Central

    Rath, Arianna; Liu, Jie; Silverman, Earl D.; Liu, Xiaoru; Siragam, Vinayakumar; Ackerley, Cameron; Su, Brenda Bin; Yan, Jane Yuqing; Capecchi, Marco; Biavati, Luca; Accorroni, Alice; Yuen, William; Quattrone, Filippo; Lung, Kalvin; Jaeggi, Edgar T.; Backx, Peter H.; Deber, Charles M.; Hamilton, Robert M.

    2013-01-01

    Background Congenital heart block (CHB) is a transplacentally acquired autoimmune disease associated with anti-Ro/SSA and anti-La/SSB maternal autoantibodies and is characterized primarily by atrioventricular (AV) block of the fetal heart. This study aims to investigate whether the T-type calcium channel subunit α1G may be a fetal target of maternal sera autoantibodies in CHB. Methodology/Principal Findings We demonstrate differential mRNA expression of the T-type calcium channel CACNA1G (α1G gene) in the AV junction of human fetal hearts compared to the apex (18–22.6 weeks gestation). Using human fetal hearts (20–22 wks gestation), our immunoprecipitation (IP), Western blot analysis and immunofluorescence (IF) staining results, taken together, demonstrate accessibility of the α1G epitope on the surfaces of cardiomyocytes as well as reactivity of maternal serum from CHB affected pregnancies to the α1G protein. By ELISA we demonstrated maternal sera reactivity to α1G was significantly higher in CHB maternal sera compared to controls, and reactivity was epitope mapped to a peptide designated as p305 (corresponding to aa305–319 of the extracellular loop linking transmembrane segments S5–S6 in α1G repeat I). Maternal sera from CHB affected pregnancies also reacted more weakly to the homologous region (7/15 amino acids conserved) of the α1H channel. Electrophysiology experiments with single-cell patch-clamp also demonstrated effects of CHB maternal sera on T-type current in mouse sinoatrial node (SAN) cells. Conclusions/Significance Taken together, these results indicate that CHB maternal sera antibodies readily target an extracellular epitope of α1G T-type calcium channels in human fetal cardiomyocytes. CHB maternal sera also show reactivity for α1H suggesting that autoantibodies can target multiple fetal targets. PMID:24039792

  3. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes.

    PubMed

    Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F

    2015-08-01

    A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development. PMID:25761723

  4. Hypoxia and fetal heart development.

    PubMed

    Patterson, A J; Zhang, L

    2010-10-01

    Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation. PMID:20712587

  5. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D. (Inventor); Wynkoop, Mark W. (Inventor); Holloway, Nancy M. H. (Inventor); Zuckerwar, Allan J. (Inventor)

    2004-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  6. Fetal heart extract facilitates the differentiation of human umbilical cord blood-derived mesenchymal stem cells into heart muscle precursor cells.

    PubMed

    Pham, Truc Le-Buu; Nguyen, Tam Thanh; Van Bui, Anh; Nguyen, My Thu; Van Pham, Phuc

    2016-08-01

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are a promising stem cell source with the potential to modulate the immune system as well as the capacity to differentiate into osteoblasts, chondrocytes, and adipocytes. In previous publications, UCB-MSCs have been successfully differentiated into cardiomyocytes. This study aimed to improve the efficacy of differentiation of UCB-MSCs into cardiomyocytes by combining 5-azacytidine (Aza) with mouse fetal heart extract (HE) in the induction medium. UCB-MSCs were isolated from umbilical cord blood according to a published protocol. Murine fetal hearts were used to produce fetal HE using a rapid freeze-thaw procedure. MSCs at the 3rd to 5th passage were differentiated into cardiomyocytes in two kinds of induction medium: complete culture medium plus Aza (Aza group) and complete culture medium plus Aza and fetal HE (Aza + HE group). The results showed that the cells in both kinds of induction medium exhibited the phenotype of cardiomyocytes. At the transcriptional level, the cells expressed a number of cardiac muscle-specific genes such as Nkx2.5, Gata 4, Mef2c, HCN2, hBNP, α-Ca, cTnT, Desmin, and β-MHC on day 27 in the Aza group and on day 18 in the Aza + HE group. At the translational level, sarcomic α-actin was expressed on day 27 in the Aza group and day 18 in the Aza + HE group. Although they expressed specific genes and proteins of cardiac muscle cells, the induced cells in both groups did not contract and beat spontaneously. These properties are similar to properties of heart muscle precursor cells in vivo. These results demonstrated that the fetal HE facilitates the differentiation process of human UCB-MSCs into heart muscle precursor cells. PMID:25377264

  7. Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, III, Robert A. (Inventor)

    1996-01-01

    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.

  8. Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves

    PubMed Central

    van Geemen, Daphne; Soares, Ana L. F.; Oomen, Pim J. A.; Driessen-Mol, Anita; Janssen-van den Broek, Marloes W. J. T.; van den Bogaerdt, Antoon J.; Bogers, Ad J. J. C.; Goumans, Marie-José T. H.; Baaijens, Frank P. T.; Bouten, Carlijn V. C.

    2016-01-01

    There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation–but more pronounced in aortic valves–the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age. PMID:26867221

  9. Human Fetal Behavior: 100 Years of Study.

    ERIC Educational Resources Information Center

    Kisilevsky, B. S.; Low, J. A.

    1998-01-01

    Reviews literature on human fetal behavior. Includes descriptions of coupling of body movements and fetal heart rate and behavior maturation from conception to term. Discusses use of stimulus-induced behavior to examine sensory and cognitive development, and spontaneous and stimulus-induced behavior to assess fetal well-being. Notes research focus…

  10. Fetal Heart Rate Monitoring during Labor

    MedlinePlus

    ... fetal heart rate. The other belt measures the length of contractions and the time between them. How ... uterus. Doppler Transducer: A device that uses sound waves to reflect motion—such as the fetal heartbeat— ...

  11. Assessment of fetal heart disorder by means of fetal magnetocardiography

    NASA Astrophysics Data System (ADS)

    Łozińska, Maria; Dunajski, Zbigniew

    2006-10-01

    Fetal magnetocardiography is new method for investigations of electrical activity of the fetal heart. The idea and build of system for magnetic signal registration is described. Two cases of premature atrial contraction and complete AV block diagnosis by means of magnetic field recording system are described.

  12. [Hypoxaemia, peripheral chemoreceptors and fetal heart rate].

    PubMed

    Secourgeon, J-F

    2012-02-01

    The perinatal results of the widespread adoption of the continuous electronic fetal heart rate monitoring during labor remain rather disappointing. This is due in part to a lack of consistent interpretation of the fetal heart tracings. Despite efforts by referral agencies over the past decade the situation has not improved. In defense of practitioners the heterogeneity and complexity of definitions and classifications patterns especially morphological currently proposed should be noted. Whereas with the recent advances in the field of neuroscience, it is now possible to visualize the chain of pathophysiological events that lead from the hypoxemic stimulus of the glomus cell to changes in the morphology of the fetal heart rate tracing. Thus by taking some examples of real situations, we propose a method of analysis that dissects the fetal heart tracing and take into account the functional specifications of the chemoreceptor when exposed to a hypoxic environment. Furthermore we can identify tracings with a "threshold effect" and also "sensitization and desensitization effects" according to the intensity, duration and recurrence of hypoxaemic episodes. This new approach based upon specific research into the mechanism behind the fetal heart rate abnormalities may be useful to complement the morphological study of the fetal heart tracing, to provide a better idea of the fetal status and to better define the indications of fetal blood sampling procedures. PMID:21798673

  13. Fetal Heart Rate Response to Maternal Exercise.

    PubMed

    Monga, Manju

    2016-09-01

    Current guidelines regarding recommended exercise in pregnancy appear consistent with reported research regarding fetal heart changes in response to maternal exercise. Fetal heart rate increases during pregnancy, but maternal exercise appears well tolerated if performed in uncomplicated pregnancies and not in the supine position. Maximal levels of exercise that are well tolerated by the fetus have not yet been well defined; however, recent literature suggests that sustained exercise during pregnancy may have beneficial effects on autonomic control of fetal heart rate and variability that may lead to long-term health benefits. PMID:27388963

  14. Interpretation of the electronic fetal heart rate during labor.

    PubMed

    Sweha, A; Hacker, T W; Nuovo, J

    1999-05-01

    Electronic fetal heart rate monitoring is commonly used to assess fetal well-being during labor. Although detection of fetal compromise is one benefit of fetal monitoring, there are also risks, including false-positive tests that may result in unnecessary surgical intervention. Since variable and inconsistent interpretation of fetal heart rate tracings may affect management, a systematic approach to interpreting the patterns is important. The fetal heart rate undergoes constant and minute adjustments in response to the fetal environment and stimuli. Fetal heart rate patterns are classified as reassuring, nonreassuring or ominous. Nonreassuring patterns such as fetal tachycardia, bradycardia and late decelerations with good short-term variability require intervention to rule out fetal acidosis. Ominous patterns require emergency intrauterine fetal resuscitation and immediate delivery. Differentiating between a reassuring and nonreassuring fetal heart rate pattern is the essence of accurate interpretation, which is essential to guide appropriate triage decisions. PMID:10323356

  15. [Disputes and history of fetal heart monitoring].

    PubMed

    Dueñas-García, Omar Felipe; Díaz-Sotomayor, Maricela

    2011-01-01

    The concept of fetal heart monitoring to determine the fetal wellbeing state has been employed for almost 300 years, but in the last 50 years it has observed drastic changes due to the incorporation of the electronic devices that has started controversy since the moment of its description and point of start. The purpose of this article is to mention the key points and controversial moments in the history of the cardiotocography PMID:23650679

  16. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  17. Fetal heart rate classification using generative models.

    PubMed

    Dash, Shishir; Quirk, J Gerald; Djurić, Petar M

    2014-11-01

    This paper presents novel methods for classification of fetal heart rate (FHR) signals into categories that are meaningful for clinical implementation. They are based on generative models (GMs) and Bayesian theory. Instead of using scalar features that summarize information obtained from long-duration data, the models allow for explicit use of feature sequences derived from local patterns of FHR evolution. We compare our methods with a deterministic expert system for classification and with a support vector machine approach that relies on system-identification and heart rate variability features. We tested the classifiers on 83 retrospectively collected FHR records, with the gold-standard true diagnosis defined using umbilical cord pH values. We found that our methods consistently performed as well as or better than these, suggesting that the use of GMs and the Bayesian paradigm can bring significant improvement to automatic FHR classification approaches. PMID:24951678

  18. Signal processing methodologies for an acoustic fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  19. Fetal heart rate changes associated with general anesthesia.

    PubMed

    Fedorkow, D M; Stewart, T J; Parboosingh, J

    1989-07-01

    Decreased fetal heart rate variability was noted 90 seconds after the induction of general anesthesia with sodium thiopentone and fentanyl in a patient undergoing basket extraction of a renal calculus at 30 weeks' gestation. The fetal sleep pattern lasted for 105 minutes after the anesthetic was discontinued, 45 minutes after the mother was fully awake. PMID:2730732

  20. Exploring the Relationship between Fetal Heart Rate and Cognition

    ERIC Educational Resources Information Center

    Kisilevsky, Barbara S.; Hains, Sylvia M. J.

    2010-01-01

    A relationship between fetal heart rate (HR) and cognition is explored within the context of infant, child and adult studies where the association is well established. Lack of direct access to the fetus and maturational changes limit research paradigms and response measures for fetal studies. Nevertheless, neural regulation of HR shows a number of…

  1. Automated Fetal Heart Rate Analysis in Labor: Decelerations and Overshoots

    NASA Astrophysics Data System (ADS)

    Georgieva, A. E.; Payne, S. J.; Moulden, M.; Redman, C. W. G.

    2010-10-01

    Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced `modified' Sensitivity (SE°) and `modified' Positive Predictive Value (PPV°) as appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.

  2. Automated Fetal Heart Rate Analysis in Labor: Decelerations and Overshoots

    SciTech Connect

    Georgieva, A. E.; Payne, S. J.; Moulden, M.; Redman, C. W. G.

    2010-10-25

    Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced 'modified' Sensitivity (SE deg.) and 'modified' Positive Predictive Value (PPV deg.) as appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.

  3. Fetal Echocardiography/Your Unborn Baby's Heart

    MedlinePlus

    ... in the Young, American Heart Association Overview of congenital heart disease: Congenital heart disease is a problem that occurs with the baby's ... Find answers to common questions about children and heart disease. CHD Personal Stories ... and hope. Popular Articles ...

  4. Transfer entropy analysis of maternal and fetal heart rate coupling.

    PubMed

    Marzbanrad, Faezeh; Kimura, Yoshitaka; Endo, Miyuki; Palaniswami, Marimuthu; Khandoker, Ahsan H

    2015-08-01

    Although evidence of the short term relationship between maternal and fetal heart rates has been found in previous model-based studies, knowledge about the mechanism and patterns of the coupling during gestation is still limited. In this study, a model-free method based on Transfer Entropy (TE) was applied to quantify the maternal-fetal heart rate couplings in both directions. Furthermore, analysis of the lag at which TE was maximum and its changes throughout gestation, provided more information about the mechanism of coupling and its latency. Experimental results based on fetal electrocardiograms (fECGs) and maternal ECG showed the evidence of coupling for 62 out of 65 healthy mothers and fetuses in each direction, by statistically validating against the surrogate pairs. The fetuses were divided into three gestational age groups: early (16-25 weeks), mid (26-31 weeks) and late (32-41 weeks) gestation. The maximum TE from maternal to fetal heart rate significantly increased from early to mid gestation, while the coupling delay on both directions decreased significantly from mid to late gestation. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. In conclusion, the application of TE with delays revealed detailed information about the changes in fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being. PMID:26738115

  5. Reliability of spectral analysis of fetal heart rate variability.

    PubMed

    Warmerdam, G J J; Vullings, R; Bergmans, J W M; Oei, S G

    2014-01-01

    Spectral analysis of fetal heart rate variability could provide information on fetal wellbeing. Unfortunately, fetal heart rate recordings are often contaminated by artifacts. Correction of these artifacts affects the outcome of spectral analysis, but it is currently unclear what level of artifact correction facilitates reliable spectral analysis. In this study, a method is presented that estimates the error in spectral powers due to artifact correction, based on the properties of the Continuous Wavelet Transformation. The results show that it is possible to estimate the error in spectral powers. The information about this error makes it possible for clinicians to assess the reliability of spectral analysis of fetal heart rate recordings that are contaminated by artifacts. PMID:25570577

  6. Quantification of fetal heart rate regularity using symbolic dynamics

    NASA Astrophysics Data System (ADS)

    van Leeuwen, P.; Cysarz, D.; Lange, S.; Geue, D.; Groenemeyer, D.

    2007-03-01

    Fetal heart rate complexity was examined on the basis of RR interval time series obtained in the second and third trimester of pregnancy. In each fetal RR interval time series, short term beat-to-beat heart rate changes were coded in 8bit binary sequences. Redundancies of the 28 different binary patterns were reduced by two different procedures. The complexity of these sequences was quantified using the approximate entropy (ApEn), resulting in discrete ApEn values which were used for classifying the sequences into 17 pattern sets. Also, the sequences were grouped into 20 pattern classes with respect to identity after rotation or inversion of the binary value. There was a specific, nonuniform distribution of the sequences in the pattern sets and this differed from the distribution found in surrogate data. In the course of gestation, the number of sequences increased in seven pattern sets, decreased in four and remained unchanged in six. Sequences that occurred less often over time, both regular and irregular, were characterized by patterns reflecting frequent beat-to-beat reversals in heart rate. They were also predominant in the surrogate data, suggesting that these patterns are associated with stochastic heart beat trains. Sequences that occurred more frequently over time were relatively rare in the surrogate data. Some of these sequences had a high degree of regularity and corresponded to prolonged heart rate accelerations or decelerations which may be associated with directed fetal activity or movement or baroreflex activity. Application of the pattern classes revealed that those sequences with a high degree of irregularity correspond to heart rate patterns resulting from complex physiological activity such as fetal breathing movements. The results suggest that the development of the autonomic nervous system and the emergence of fetal behavioral states lead to increases in not only irregular but also regular heart rate patterns. Using symbolic dynamics to

  7. Development of the human fetal testis.

    PubMed

    O'Shaughnessy, Peter J; Fowler, Paul A

    2014-05-01

    Masculinisation and adult fertility in the male are dependent on appropriate fetal endocrine programming. There is also now increasing evidence to indicate that the same mechanisms which regulate masculinisation also affect the general wellbeing of males throughout their life and, particularly, during ageing. Testosterone, secreted by the fetal testes, is the main factor regulating these processes and an understanding of fetal testis development in the human male is essential if we are to prevent adult reproductive disorders. This review focuses on what is known about human testis development and describes the effects of maternal smoking, a surrogate of possible xenotoxicant exposure on fetal testis and fetal liver function. PMID:24746112

  8. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  9. Robust estimation of fetal heart rate from US Doppler signals

    NASA Astrophysics Data System (ADS)

    Voicu, Iulian; Girault, Jean-Marc; Roussel, Catherine; Decock, Aliette; Kouame, Denis

    2010-01-01

    Introduction: In utero, Monitoring of fetal wellbeing or suffering is today an open challenge, due to the high number of clinical parameters to be considered. An automatic monitoring of fetal activity, dedicated for quantifying fetal wellbeing, becomes necessary. For this purpose and in a view to supply an alternative for the Manning test, we used an ultrasound multitransducer multigate Doppler system. One important issue (and first step in our investigation) is the accurate estimation of fetal heart rate (FHR). An estimation of the FHR is obtained by evaluating the autocorrelation function of the Doppler signals for ills and healthiness foetus. However, this estimator is not enough robust since about 20% of FHR are not detected in comparison to a reference system. These non detections are principally due to the fact that the Doppler signal generated by the fetal moving is strongly disturbed by the presence of others several Doppler sources (mother' s moving, pseudo breathing, etc.). By modifying the existing method (autocorrelation method) and by proposing new time and frequency estimators used in the audio' s domain, we reduce to 5% the probability of non-detection of the fetal heart rate. These results are really encouraging and they enable us to plan the use of automatic classification techniques in order to discriminate between healthy and in suffering foetus.

  10. Heart disease link to fetal hypoxia and oxidative stress.

    PubMed

    Giussani, Dino A; Niu, Youguo; Herrera, Emilio A; Richter, Hans G; Camm, Emily J; Thakor, Avnesh S; Kane, Andrew D; Hansell, Jeremy A; Brain, Kirsty L; Skeffington, Katie L; Itani, Nozomi; Wooding, F B Peter; Cross, Christine M; Allison, Beth J

    2014-01-01

    The quality of the intrauterine environment interacts with our genetic makeup to shape the risk of developing disease in later life. Fetal chronic hypoxia is a common complication of pregnancy. This chapter reviews how fetal chronic hypoxia programmes cardiac and endothelial dysfunction in the offspring in adult life and discusses the mechanisms via which this may occur. Using an integrative approach in large and small animal models at the in vivo, isolated organ, cellular and molecular levels, our programmes of work have raised the hypothesis that oxidative stress in the fetal heart and vasculature underlies the mechanism via which prenatal hypoxia programmes cardiovascular dysfunction in later life. Developmental hypoxia independent of changes in maternal nutrition promotes fetal growth restriction and induces changes in the cardiovascular, metabolic and endocrine systems of the adult offspring, which are normally associated with disease states during ageing. Treatment with antioxidants of animal pregnancies complicated with reduced oxygen delivery to the fetus prevents the alterations in fetal growth, and the cardiovascular, metabolic and endocrine dysfunction in the fetal and adult offspring. The work reviewed offers both insight into mechanisms and possible therapeutic targets for clinical intervention against the early origin of cardiometabolic disease in pregnancy complicated by fetal chronic hypoxia. PMID:25015802

  11. Bacterial infection and human fetal wastage.

    PubMed

    Lessing, J B; Amster, R; Berger, S A; Peyser, M R

    1989-12-01

    Twenty-eight of 57 fetuses delivered after intrauterine death were found to have a variety of aerobic and facultative bacteria in the heart, anus, placenta, brain and cerebrospinal fluid. Subclinical maternal bacteremia, possibly originating in the urinary tract, appears to be a common cause of second- and third-trimester fetal demise. PMID:2695648

  12. Heart rate variability parameters and fetal movement complement fetal behavioral states detection via magnetography to monitor neurovegetative development

    PubMed Central

    Brändle, Johanna; Preissl, Hubert; Draganova, Rossitza; Ortiz, Erick; Kagan, Karl O.; Abele, Harald; Brucker, Sara Y.; Kiefer-Schmidt, Isabelle

    2015-01-01

    Fetal behavioral states are defined by fetal movement and heart rate variability (HRV). At 32 weeks of gestational age (GA) the distinction of four fetal behavioral states represented by combinations of quiet or active sleep or awakeness is possible. Prior to 32 weeks, only periods of fetal activity and quiesence can be distinguished. The increasing synchronization of fetal movement and HRV reflects the development of the autonomic nervous system (ANS) control. Fetal magnetocardiography (fMCG) detects fetal heart activity at high temporal resolution, enabling the calculation of HRV parameters. This study combined the criteria of fetal movement with the HRV analysis to complete the criteria for fetal state detection. HRV parameters were calculated including the standard deviation of the normal-to-normal R–R interval (SDNN), the mean square of successive differences of the R–R intervals (RMSSD, SDNN/RMSSD ratio, and permutation entropy (PE) to gain information about the developing influence of the ANS within each fetal state. In this study, 55 magnetocardiograms from healthy fetuses of 24–41 weeks’ GA were recorded for up to 45 min using a fetal biomagnetometer. Fetal states were classified based on HRV and movement detection. HRV parameters were calculated for each state. Before GA 32 weeks, 58.4% quiescence and 41.6% activity cycles were observed. Later, 24% quiet sleep state (1F), 65.4% active sleep state (2F), and 10.6% active awake state (4F) were observed. SDNN increased over gestation. Changes of HRV parameters between the fetal behavioral states, especially between 1F and 4F, were statistically significant. Increasing fetal activity was confirmed by a decrease in PE complexity measures. The fHRV parameters support the differentiation between states and indicate the development of autonomous nervous control of heart rate function. PMID:25904855

  13. Canine fetal heart rate: do accelerations or decelerations predict the parturition day in bitches?

    PubMed

    Gil, E M U; Garcia, D A A; Giannico, A T; Froes, T R

    2014-10-15

    Ultrasonography is a safe and efficient technique for monitoring fetal development and viability. One of the most important and widely used parameters to verify fetal viability is the fetal heart rate (HR). In human medicine, the fetal HR normally oscillates during labor in transient accelerations and decelerations associated with uterine contractions. The present study investigated whether these variations also occur in canine fetuses and its relationship to parturition. A cohort study was conducted in 15 pregnant bitches undergoing two-dimensional high-resolution ultrasonographic examination during the 8th and 9th week of gestation. Fetal HR was assessed in M-mode for 5 minutes in each fetus in all bitches. In addition, the bitches were monitored for clinical signs of imminent parturition. Associations between the HR, antepartum time, and delivery characteristics were evaluated with a Poisson regression model. Fetal HR acceleration and deceleration occurred in canine fetuses and predicted the optimal time of parturition. These findings can help veterinarians and sonographers better understand this phenomenon in canine fetuses. PMID:24888684

  14. Harnessing fetal and adult genetic reprograming for therapy of heart disease

    PubMed Central

    Nandi, Shyam Sundar; Mishra, Paras Kumar

    2015-01-01

    Heart is the first organ formed during organogenesis. The fetal heart undergoes several structural and functional modifications to form the four-chambered mammalian heart. The adult heart shows different adaptations during compensatory and decompensatory heart failure. However, one common adaptation in the pathological heart is fetal reprogramming, where the adult heart expresses several genes and miRNAs which are active in the fetal stage. The fetal reprogramming in the failing heart raises several questions, such as whether the switch of adult to fetal genetic programming is an adaptive response to cope with adverse remodeling of the heart, does the expression of fetal genes protect the heart during compensatory and/or decompensatory heart failure, does repressing the fetal gene in the failing heart is protective to the heart? To answer these questions, we need to understand the expression of genes and miRNAs that are reprogrammed in the failing heart. In view of this, we provided an overview of differentially expressed genes and miRNAs, and their regulation in this review. Further, we elaborated novel strategies for a plausible future therapy of cardiovascular diseases. PMID:25879081

  15. Prone position craniotomy in pregnancy without fetal heart rate monitoring.

    PubMed

    Jacob, Jean; Alexander, Ashish; Philip, Shoba; Thomas, Anoop

    2016-09-01

    A pregnant patient in second trimester scheduled for posterior fossa craniotomy in prone position is a challenge for the anesthesiologist. Things to consider are physiological changes during pregnancy, non-obstetric surgery in pregnant patients, neuroanesthetic principles, effects of prone positioning, and need for fetal heart rate (FHR) monitoring. We have described the anesthetic management of this case and discussed intra-operative FHR monitoring including controversies about its role, indications, and various options available as per fetal gestational age. In our case we attempted intermittent intra-operative FHR monitoring to optimize maternal positioning and fetal oxygenation even though the fetus was pre-viable. However the attempt was abandoned due to practical difficulties with prone positioning. Patient made good neurological recovery following the procedure and delivered a healthy term baby 4 months later. Decisions regarding fetal monitoring should be individualized based on viability of the fetus and feasibility of emergency cesarean delivery. Good communication between a multidisciplinary team involving neurosurgeon, anesthesiologist, obstetrician, and neonatologist is important for a successful outcome for mother and fetus. We conclude that prone position neurosurgery can safely be carried out in a pregnant patient with pre-viable fetus without FHR monitoring. PMID:27555144

  16. Fetal echocardiographic characteristics of fused heart in thoracopagus conjoined twins.

    PubMed

    Wu, Yu; Lv, Qing; Xie, Ming-Xing; Wan, Lin-Yuan; Ren, Ping-Ping; Ge, Andrew; Ge, Shuping

    2014-08-01

    Conjoined twins (CT) are rare with possible serious malformations in which soft tissue, bone, or some organs are joined in utero. The extent of cardiac fusion and intracardiac anatomy of CT determine the viability, natural history, and outcome of potential surgical intervention. Early prenatal diagnosis and assessment may provide a window of opportunity to counsel the family for their informed decision on the pregnancy and to plan for prenatal and perinatal care. In this report, we describe a case of thoracopagus twins diagnosed by fetal echocardiography at 23-week gestation. The 2 hearts fused at the atrial and ventricular levels. The outcome and review of literature on fetal echocardiographic characteristics of this malformation are discussed. PMID:24814222

  17. Design of an FECG scalp electrode fetal heart rate monitor.

    PubMed

    Reguig, F B; Kirk, D L

    1996-03-01

    The design of a fetal heart rate (FHR) monitor using fetal electrocardiogram (FECG) scalp electrodes is described. It is shown that the design approach followed two stages: generation of FHR pulses at R-R intervals and FHR computation. The former uses a simple hardware approach for QRS detection and R-wave enhancement, while the latter requires a software implementation in order to produce FHR traces on a beat to beat basis. The QRS detection is based on bandpass filtering using switched mode capacitor technique; the R-wave enhancement and amplitude information are achieved by differentiation followed by fullwave rectification and peak detection. An adaptive threshold together with a comparator circuit are used to generate FHR pulses at R-R intervals. Beat to beat variations of FHR traces are produced by hardware and software implementation on a Z80 microprocessor board. Results obtained by the FHR monitor are evaluated and contrasted to other commercial FHR monitors. PMID:8673321

  18. The Effect of Maternal Relaxation Training on Reactivity of Non-Stress Test, Basal Fetal Heart Rate, and Number of Fetal Heart Accelerations: A Randomized Controlled Trial

    PubMed Central

    Akbarzade, Marzieh; Rafiee, Bahare; Asadi, Nasrin; Zare, Najaf

    2015-01-01

    Background: Relaxation-training, as an anxiety-reducer intervention, plays an important role in fetal health. The present study aimed to analyze the effect of maternal relaxation on stress test (NST), basal fetal heart rate, and number of fetal heart accelerations. Methods: In this randomized controlled trial, 84 pregnant women were randomly divided into two groups of teaching relaxation and control groups in 2012. In the intervention group, 60-90 minute classes were held every week lasting for 4 weeks. Besides, home practice charts were given to the mothers and researchers controlled the home practices by phone calls every week. The control group received routine prenatal care. In the 4th week, NST was performed in the intervention group 30 minutes before and after the 4th session. In the control group, NST was done in the 4th week. The quantitative variables in the two groups were compared through ANOVA and Chi-square test. Results: The results of paired t-test showed that relaxation could improve the NST results (P=0.01). Mean and standard deviation of basal fetal heart rate was 138.95±8.18 before the intervention and 133.07±6.9 after the intervention. Paired t-test also showed that relaxation reduced the basal fetal heart rate (P=0.001). Mean and standard deviation of the number of fetal heart accelerations was 1.5±0.8 before the intervention and 2.2±0.9 after it. The results of paired t-test also showed that relaxation increased the number of fetal heart accelerations (P=0.001). Conclusions: Relaxation could improve the NST results, reduce the basal fetal heart rate, and increase the number of fetal heart accelerations. Therefore, relaxation is recommended during pregnancy. Trial Registration Number: IRCT2012072810418N1 PMID:25553334

  19. Methylomic trajectories across human fetal brain development.

    PubMed

    Spiers, Helen; Hannon, Eilis; Schalkwyk, Leonard C; Smith, Rebecca; Wong, Chloe C Y; O'Donovan, Michael C; Bray, Nicholas J; Mill, Jonathan

    2015-03-01

    Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ∼ 400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity. PMID:25650246

  20. Dual transmission model of the fetal heart tone

    NASA Astrophysics Data System (ADS)

    Baker, Donald A.; Zuckerwar, Allan J.

    2001-05-01

    Detection of the fetal heart tone by auscultation is sometimes easy, other times very difficult. In the model proposed here, the level of difficulty depends upon the position of the fetus within the maternal abdomen. If the fetus lies in the classical left/right occiput anterior position (head down, back against the maternal abdominal wall), detection by a sensor or stethoscope on the maternal abdominal surface is easy. In this mode, named here the ``direct contact'' mode, the heartbeat pushes the fetus against the detecting sensor. The motion generates pressure by impact and does not involve acoustic propagation at all. If the fetus lies in a persistent occiput posterior position (spine-to-spine, fetus facing forward), detection is difficult. In this, the ``fluid propagation'' mode, sound generated by the fetal heart and propagating across the amniotic fluid produces extremely weak signals at the maternal surface, typically 30 dB lower than those of the direct contact mode. This reduction in tone level can be compensated by judicious selection of detection frequency band and by exploiting the difference between the background noise levels of the two modes. Experimental clinical results, demonstrating the tones associated with the two respective modes, will be presented.

  1. Fetal heart rate response to running in midpregnancy and late pregnancy.

    PubMed

    Clapp, J F

    1985-10-01

    Fetal heart rate was recorded at 20 and 32 weeks' gestation before and after 20 minutes of treadmill exercise. The intensity of the exercise was matched to each woman's current training level. On every occasion the fetal heart rate rose significantly after exercise. PMID:4050891

  2. Adrenergic receptors in human fetal liver membranes

    SciTech Connect

    Falkay, G.; Kovacs, L. )

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment of premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  3. Incidence of fetal bradycardia and effect of placental injury on fetal heart rate during second-trimester genetic amniocentesis.

    PubMed

    Hanprasertpong, T; Petpichetchian, C; Ponglopisit, S; Suksai, M; Kor-Anantakul, O; Geater, A; Pruksanusak, N; Hanprasertpong, J

    2016-05-01

    A prospective study was conducted for comparing the incidence of fetal bradycardia and level of fetal heart rate change following a second-trimester genetic amniocentesis with and without placental injury. A total of 257 and 495 participants in injured and non-injured groups were analysed. The incidence of fetal bradycardia following amniocentesis was not statistically different between the two groups (1.17%, [95% CI 0.24, 3.37] and 0.20%, [95% CI 0.005, 1.12]) in injured and non-injured placenta groups, respectively; p = 0.118). The mean change in baseline fetal heart rate before and after amniocentesis was also not significantly different between the two groups (p = 0.844). No fetal death or pregnancy loss occurred within 4 weeks after the procedure. All 4 bradycardia participants were normal and healthy and had an appropriate weight for their gestational age. We conclude that placental injury during a second-trimester genetic amniocentesis due to advanced maternal age poses only a low risk of fetal bradycardia, and there is no evidence of differences between subjects with injured and non-injured placenta in the changes in fetal heart rate. PMID:26512899

  4. Metabolism of lipoproteins by human fetal hepatocytes

    SciTech Connect

    Carr, B.R.

    1987-12-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of (/sup 125/I)iodo-LDL and (/sup 125/I)iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. (/sup 125/I)Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas (/sup 125/I)iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues.

  5. The fetal heart response to static antenatal exercises in the supine position.

    PubMed

    Green, R C; Schneider, K; MacLENNAN, A H

    1988-01-01

    Continuous fetal heart rate traces were made in twenty-six low risk patients during static maternal exercises in the supine position, as prescribed in a hospital's antenatal education programme. Prior to exercise, fetal heart rate abnormalities were present in four patients. Three of these had an abnormal fetal outcome. During the exercises a further eight cases had reductions in fetal heart rate, variability or reactivity. An abnormal fetal outcome was recorded in two of these cases. The findings indicate uncertainty about the safety of antenatal exercises in the supine position in late pregnancy and, until further studies are available, it is prudent to advocate the practice of all antenatal exercises in a tilted position, and not at all where fetal compromise is suspected. PMID:25025977

  6. Improving Interprofessional Consistency in Electronic Fetal Heart Rate Interpretation.

    PubMed

    Govindappagari, Shravya; Zaghi, Sahar; Zannat, Ferdous; Reimers, Laura; Goffman, Dena; Kassel, Irene; Bernstein, Peter S

    2016-07-01

    Objective To determine if mandatory online training in electronic fetal monitoring (EFM) improved agreement in documentation between obstetric care providers and nurses on labor and delivery. Methods Health care professionals working in obstetrics at our institution were required to complete a course on EFM interpretation. We performed a retrospective chart review of 701 charts including patients delivered before and after the introduction of the course to evaluate agreement among providers in their documentation of their interpretations of the EFM tracings. Results Agreement between provider and nurse documentation at the time of admission improved for variability and accelerations (variability: 91.1 vs. 98.3%, p < 0.001; and accelerations: 75.2 vs. 87.7%, p < 0.001). Similarly, agreement improved at the time of the last note prior to delivery for documentation of variability and accelerations (variability: 82.1 vs. 90.6%, p = 0.001; and accelerations: 56.7 vs. 68.6%, p = 0.0012). Agreement in interpretation of decelerations both at the time of admission and at the time of delivery increased (86.3 vs. 90.6%, p = 0.0787, and 56.7 vs. 61.1%, p = 0.2314, respectively) but was not significant. Conclusion An online EFM course can significantly improve consistency in multidisciplinary documentation of fetal heart rate tracing interpretation. PMID:26906180

  7. Organization of the human fetal subpallium

    PubMed Central

    Pauly, Marie-Christin; Döbrössy, Máté D.; Nikkhah, Guido; Winkler, Christian; Piroth, Tobias

    2014-01-01

    The subpallium comprises large parts of the basal ganglia including striatum and globus pallidus. Genes and factors involved in the development of the subpallium have been extensively studied in most vertebrates, including amphibians, birds, and rodents. However, our knowledge on patterning of the human subpallium remains insufficient. Using double fluorescent immunohistochemistry, we investigated the protein distribution of transcription factors involved in patterning of the subventricular zone (SVZ) in the human forebrain at late embryonic development. Furthermore, we compared the development of cortical and striatal precursors between human fetal brain and E14 and E16 fetal rat brains. Our results reveal that DLX2 marks SVZ precursors in the entire subpallium. Individual subpallial subdomains can be identified based on co-expression of DLX2 with either PAX6 or NKX2-1. SVZ precursors in the dorsal LGE and preopto-hypothalamic boundary are characterized by DLX2/PAX6 co-expression, while precursors in the MGE and preoptic region co-express DLX2/NKX2-1. SVZ precursors in the ventral LGE are DLX2(+)/PAX6(-)/NKX2-1(-). In terms of staging comparisons, the development of the corpus striatum in the human fetal brain during late embryonic stages corresponds well with the development of the striatum observed in E14 fetal rat brains. Our study demonstrates that the pattern underlying the development of the subpallium is highly conserved between rodents and humans and suggests a similar function for these factors in human brain development. Moreover, our data directly influence the application of ganglionic eminence derived human tissue for cell therapeutic approaches in neurodegenerative disorders such as Huntington's disease. PMID:24474906

  8. Fetal heart rate monitoring: from Doppler to computerized analysis

    PubMed Central

    Kwon, Ji Young

    2016-01-01

    The monitoring of fetal heart rate (FHR) status is an important method to check well-being of the baby during labor. Since the electronic FHR monitoring was introduced 40 years ago, it has been expected to be an innovative screening test to detect fetuses who are becoming hypoxic and who may benefit from cesarean delivery or operative vaginal delivery. However, several randomized controlled trials have failed to prove that electronic FHR monitoring had any benefit of reducing the perinatal mortality and morbidity. Also it is now clear that the FHR monitoring had high intra- and interobserver disagreements and increased the rate of cesarean delivery. Despite such limitations, the FHR monitoring is still one of the most important obstetric procedures in clinical practice, and the cardiotocogram is the most-used equipment. To supplement cardiotocogram, new methods of computerized FHR analysis and electrocardiogram have been developed, and several clinical researches have been currently performed. Computerized equipment makes us to analyze beat-to-beat variability and short term heart rate patterns. Furthermore, researches about multiparameters of FHR variability will be ongoing. PMID:27004196

  9. Fetal heart rate monitoring: from Doppler to computerized analysis.

    PubMed

    Kwon, Ji Young; Park, In Yang

    2016-03-01

    The monitoring of fetal heart rate (FHR) status is an important method to check well-being of the baby during labor. Since the electronic FHR monitoring was introduced 40 years ago, it has been expected to be an innovative screening test to detect fetuses who are becoming hypoxic and who may benefit from cesarean delivery or operative vaginal delivery. However, several randomized controlled trials have failed to prove that electronic FHR monitoring had any benefit of reducing the perinatal mortality and morbidity. Also it is now clear that the FHR monitoring had high intra- and interobserver disagreements and increased the rate of cesarean delivery. Despite such limitations, the FHR monitoring is still one of the most important obstetric procedures in clinical practice, and the cardiotocogram is the most-used equipment. To supplement cardiotocogram, new methods of computerized FHR analysis and electrocardiogram have been developed, and several clinical researches have been currently performed. Computerized equipment makes us to analyze beat-to-beat variability and short term heart rate patterns. Furthermore, researches about multiparameters of FHR variability will be ongoing. PMID:27004196

  10. Differentiation of xenografted human fetal lung parenchyma

    PubMed Central

    Pavlovic, Jelena; Floros, Joanna; Phelps, David S.; Wigdahl, Brian; Welsh, Patricia; Weisz, Judith; Shearer, Debra A.; Pree, Alphonse Leure du; Myers, Roland; Howett, Mary K.

    2009-01-01

    The goal of this study was to characterize xenografted human fetal lung tissue with respect to developmental stage-specific cytodifferentiation. Human fetal lung tissue (pseudoglandular stage) was grafted either beneath the renal capsule or the skin of athymic mice (NCr-nu). Tissues were analyzed from 3 to 42 days post-engraftment for morphological alterations by light and electron microscopy (EM), and for surfactant protein mRNA and protein by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry (ICC), respectively. The changes observed resemble those seen in human lung development in utero in many respects, including the differentiation of epithelium to the saccular stage. Each stage occurred over approximately one week in the graft in contrast to the eight weeks of normal in utero development. At all time points examined, all four surfactant proteins (SP-A, SP-B, SP-C, and SP-D) were detected in the epithelium by ICC. Lamellar bodies were first identified by EM in 14 day xenografts. By day 21, a significant increase in lamellar body expression was observed. Cellular proliferation, as marked by PCNA ICC and elastic fiber deposition resembled those of canalicular and saccular in utero development. This model in which xenografted lung tissue in different stages of development is available may facilitate the study of human fetal lung development and the impact of various pharmacological agents on this process. PMID:17555893

  11. DNA Methylation Landscapes of Human Fetal Development

    PubMed Central

    van Iperen, Liesbeth; Suchiman, H. Eka D.; Tobi, Elmar W.; Carlotti, Françoise; de Koning, Eelco J. P.; Slagboom, P. Eline; Heijmans, Bastiaan T.; Chuva de Sousa Lopes, Susana M.

    2015-01-01

    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality. PMID:26492326

  12. Ascorbic acid in fetal human brain

    PubMed Central

    Adlard, B. P. F.; De Souza, S. W.; Moon, Susan

    1974-01-01

    Ascorbic acid concentrations in fetal human forebrain in the period 11 to 19 weeks' gestational age were 4 to 11 times higher than those of adults. Levels fell progressively with increasing gestational age but, in term babies dying within 4 weeks of birth, were still at least 3 times those of adults. It was confirmed that, in women delivering at term, ascorbic acid concentrations are approximately 4 times higher in cord blood plasma than in maternal blood plasma. The possible importance of ascorbic acid for normal human brain development is discussed. PMID:4830116

  13. Interpreting Category II Fetal Heart Rate Tracings: Does Meconium Matter?

    PubMed Central

    FREY, Heather A.; TUULI, Methodius G.; SHANKS, Anthony L.; MACONES, George A.; CAHILL, Alison G.

    2014-01-01

    OBJECTIVE Category II fetal heart rate (FHR) tracings are considered indeterminate, thus improved risk stratification of category II FHR tracings is needed. We estimated whether the presence of meconium increased the risk of adverse neonatal outcomes. STUDY DESIGN This study was conducted within a prospective cohort of 5000 women with singleton pregnancies admitted in labor at term. Pregnancies with category II FHR in the 60 minutes prior to delivery were included. FHR data were extracted by trained nurses blinded to clinical outcome. The exposure was presence of meconium. The primary outcome was a composite neonatal morbidity defined as ≥1 of the following: neonatal death, neurologic morbidity, respiratory morbidity, hypotension requiring treatment, and sepsis. Secondary outcomes were nursery admission, cord pH, 5-minute Apgar score, and components of the composite. Logistic regression was used to adjust for confounders. RESULTS Of the 3,257 women with category II FHR tracings, 693 (21.3%) had meconium and 2,564 (78.7%) did not. Meconium was associated with higher risk of the composite morbidity (aOR 2.49, 95% CI 1.78-3.48) and increased risks of the secondary outcomes. The associations remained significant when infants with meconium aspiration syndrome were excluded. Thick meconium was significantly associated with the composite morbidity. CONCLUSIONS The presence of meconium is associated with an increased risk of neonatal morbidity in women with category II FHR pattern. This clinical factor may assist clinicians in managing category II FHR patterns in labor. PMID:24949543

  14. The Ontogenesis of Human Fetal Hormones

    PubMed Central

    Kaplan, S. L.; Grumbach, M. M.; Shepard, T. H.

    1972-01-01

    The content and concentration of immunoreactive growth hormone (GH) were measured in 117 human fetal pituitary glands from 68 days of gestation to term and in the pituitary glands of 20 children 1 month to 9 yr of age. Physicochemical and immunochemical properties of GH of fetal pituitary glands and GH from adult pituitary glands were indistinguishable by disc gel electrophoresis, immunoelectrophoresis, starch gel electrophoresis, and radioimmunoassay techniques. In the fetal pituitary gland, the GH content rose from mean levels of 0.44±0.2 μg at 10-14 wk of gestation, to 9.21±2.31 μg at 15-19 wk, to 59.38±11.08 μg at 20-24 wk, to 225.93±40.49 μg at 25-29 wk, to 577.67±90 μg at 30-34 wk, and to 675.17±112.33 μg at 35-40 wk. There was a significant positive correlation between growth hormone content of the pituitary and gestational age, crown-rump length, and the weight of the pituitary gland. The content and concentration (micrograms/milligram) of human growth hormone (HGH) in the fetal pituitary showed significant increments (P < 0.001) for each 4 wk period of gestation until 35 wk. Further increases in the HGH content were noted in pituitaries of children aged 1-9 yr (range of 832 to 11.211 μg). Immunoreactive GH was detected in fetal serum at a concentration of 14.5 ng/ml as early as 70 days gestation, the youngest fetus assayed. At 10-14 wk, the mean concentration of serum growth hormone was 65.2±7.6 ng/ml; at 15-19 wk 114.9±12.5 ng/ml; at 20-24 wk 119.3±19.8 ng/ml; at 25-29 wk 72.0±11.5 ng/ml; and 33.5±4.2 ng/ml at term. A significant negative correlation of serum growth hormone with advancing gestational age after 20-24 wk was observed (P < 0.001). In 17 fetuses paired serum and pituitary samples were assayed; no significant correlation between the concentration of serum GH and the pituitary content or concentration of GH was demonstrable. The serum concentration of chorionic somatomammotropin (HCS) in the fetus was unrelated to gestational

  15. Isolation and Characterization of Human Fetal Myoblasts

    PubMed Central

    Lapan, Ariya D.; Gussoni, Emanuela

    2011-01-01

    Dissociated human fetal skeletal muscle contains myogenic cells, as well as non-myogenic cells such as adipocytes, fibroblasts, and lymphocytes. It is therefore important to determine an efficient and reliable isolation method to obtain a purer population of myoblasts. Toward this end, fluorescence-activated cell sorting in conjunction with robust myogenic cell surface markers can be utilized to enrich for myoblasts in dissociated muscle. In this chapter, we describe a method to significantly enrich for myoblasts using melanoma cell adhesion molecule (MCAM), which we have determined to be an excellent marker of human fetal myoblasts. The myoblasts resulting from this isolation method can then be expanded in vitro and still retain significant myogenic activity as shown by an in vitro fusion assay. The ability to isolate a highly myogenic population from dissociated muscle facilitates the in vitro study of skeletal muscle development and muscle diseases. Furthermore, robust expansion of these cells will lead to new insights in the development of cell-based therapies for human muscle disorders. PMID:22130828

  16. [Studies on features of fetal movement and development of human fetus with use of fetal actogram].

    PubMed

    Tatsumura, M

    1991-08-01

    In 167 normal fetuses at 26 to 41 weeks of gestation, features of fetal movement and fetal development were investigated with use of actocardiograph in connection with a microcomputer system. The signals of fetal movement obtained by actocardiograph were stored in a floppy disc every 250 ms for 5 minutes through an AD-converter, and were analyzed every 5 minutes with the computer to reveal 3-dimensional (3-D) histograms. The 3-D histogram of fetal movement was composed of number, amplitude and interval of the signals in 11 voltage steps between 0.05 and 0.55V. The histogram clearly indicated state of fetal behavior, being either resting or active state. Fetal movement such as rolling movement, breathing movement and hiccup could be also identified with the computer analysis. In 68 normal fetuses at 14 to 41 weeks of gestation, the cross-correlation between fetal movement and fetal heart rate (FHR) were examined with the computer analysis. Finally fetal responses to acoustic and light stimulation were evaluated with use of pure-tone generator and flashlight. Acoustic stimulation was carried out in 53 normal fetuses at 28 to 41 weeks and light stimulation was performed in 116 normal fetuses at 18 to 41 weeks of gestation. The fetal responses were evaluated with actocardiogram. As a result, 1) Frequency in active state decreased and resting state increased as gestational weeks advanced, and then the frequencies of both state remained constant after 37 weeks of gestation. Duration of resting state also increased from 26 weeks to 37 weeks. These observations may suggest that fetal behavior can be established by 37 weeks of gestation. 2) Frequency in rolling movement decreased until 37 weeks of gestation, and then the movement increased during 38-41 weeks. Frequency in breathing movement increased to 33 weeks of gestation, then it remained constant. Hiccup occurred most frequently at 30-33 weeks, and it decreased thereafter. The function in fetal respiratory movement may

  17. Quantifying the Interactions between Maternal and Fetal Heart Rates by Transfer Entropy

    PubMed Central

    Marzbanrad, Faezeh; Kimura, Yoshitaka; Palaniswami, Marimuthu; Khandoker, Ahsan H.

    2015-01-01

    Evidence of the short term relationship between maternal and fetal heart rates has been found in previous studies. However there is still limited knowledge about underlying mechanisms and patterns of the coupling throughout gestation. In this study, Transfer Entropy (TE) was used to quantify directed interactions between maternal and fetal heart rates at various time delays and gestational ages. Experimental results using maternal and fetal electrocardiograms showed significant coupling for 63 out of 65 fetuses, by statistically validating against surrogate pairs. Analysis of TE showed a decrease in transfer of information from fetus to the mother with gestational age, alongside the maturation of the fetus. On the other hand, maternal to fetal TE was significantly greater in mid (26–31 weeks) and late (32–41 weeks) gestation compared to early (16–25 weeks) gestation (Mann Whitney Wilcoxon (MWW) p<0.05). TE further increased from mid to late, for the fetuses with RMSSD of fetal heart rate being larger than 4 msec in the late gestation. This difference was not observed for the fetuses with smaller RMSSD, which could be associated with the quiet sleep state. Delay in the information transfer from mother to fetus significantly decreased (p = 0.03) from mid to late gestation, implying a decrease in fetal response time. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. The effect of maternal respiratory rate derived from maternal ECG was also investigated and no significant relationship was found between breathing rate and TE at any lag. In conclusion, the application of TE with delays revealed detailed information on the fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being. PMID:26701122

  18. Fetal QRS detection and heart rate estimation: a wavelet-based approach.

    PubMed

    Almeida, Rute; Gonçalves, Hernâni; Bernardes, João; Rocha, Ana Paula

    2014-08-01

    Fetal heart rate monitoring is used for pregnancy surveillance in obstetric units all over the world but in spite of recent advances in analysis methods, there are still inherent technical limitations that bound its contribution to the improvement of perinatal indicators. In this work, a previously published wavelet transform based QRS detector, validated over standard electrocardiogram (ECG) databases, is adapted to fetal QRS detection over abdominal fetal ECG. Maternal ECG waves were first located using the original detector and afterwards a version with parameters adapted for fetal physiology was applied to detect fetal QRS, excluding signal singularities associated with maternal heartbeats. Single lead (SL) based marks were combined in a single annotator with post processing rules (SLR) from which fetal RR and fetal heart rate (FHR) measures can be computed. Data from PhysioNet with reference fetal QRS locations was considered for validation, with SLR outperforming SL including ICA based detections. The error in estimated FHR using SLR was lower than 20 bpm for more than 80% of the processed files. The median error in 1 min based FHR estimation was 0.13 bpm, with a correlation between reference and estimated FHR of 0.48, which increased to 0.73 when considering only records for which estimated FHR > 110 bpm. This allows us to conclude that the proposed methodology is able to provide a clinically useful estimation of the FHR. PMID:25070210

  19. The Application of an Anatomical Database for Fetal Congenital Heart Disease

    PubMed Central

    Yang, Li; Pei, Qiu-Yan; Li, Yun-Tao; Yang, Zhen-Juan

    2015-01-01

    Background: Fetal congenital heart anomalies are the most common congenital anomalies in live births. Fetal echocardiography (FECG) is the only prenatal diagnostic approach used to detect fetal congenital heart disease (CHD). FECG is not widely used, and the antenatal diagnosis rate of CHD varies considerably. Thus, mastering the anatomical characteristics of different kinds of CHD is critical for ultrasound physicians to improve FECG technology. The aim of this study is to investigate the applications of a fetal CHD anatomic database in FECG teaching and training program. Methods: We evaluated 60 transverse section databases including 27 types of fetal CHD built in the Prenatal Diagnosis Center in Peking University People's Hospital. Each original database contained 400–700 cross-sectional digital images with a resolution of 3744 pixels × 5616 pixels. We imported the database into Amira 5.3.1 (Australia Visage Imaging Company, Australia) three-dimensional (3D) software. The database functions use a series of 3D software visual operations. The features of the fetal CHD anatomical database were analyzed to determine its applications in FECG continuing education and training. Results: The database was rebuilt using the 3D software. The original and rebuilt databases can be displayed dynamically, continuously, and synchronically and can be rotated at arbitrary angles. The sections from the dynamic displays and rotating angles are consistent with the sections in FECG. The database successfully reproduced the anatomic structures and spatial relationship features of different fetal CHDs. We established a fetal CHD anatomy training database and a standardized training database for FECG. Ultrasound physicians and students can learn the anatomical features of fetal CHD and FECG through either centralized training or distance education. Conclusions: The database of fetal CHD successfully reproduced the anatomic structures and spatial relationship of different kinds of

  20. Application of higher-order cepstral techniques in problems of fetal heart signal extraction

    NASA Astrophysics Data System (ADS)

    Sabry-Rizk, Madiha; Zgallai, Walid; Hardiman, P.; O'Riordan, J.

    1996-10-01

    Recently, cepstral analysis based on second order statistics and homomorphic filtering techniques have been used in the adaptive decomposition of overlapping, or otherwise, and noise contaminated ECG complexes of mothers and fetals obtained by a transabdominal surface electrodes connected to a monitoring instrument, an interface card, and a PC. Differential time delays of fetal heart beats measured from a reference point located on the mother complex after transformation to cepstra domains are first obtained and this is followed by fetal heart rate variability computations. Homomorphic filtering in the complex cepstral domain and the subuent transformation to the time domain results in fetal complex recovery. However, three problems have been identified with second-order based cepstral techniques that needed rectification in this paper. These are (1) errors resulting from the phase unwrapping algorithms and leading to fetal complex perturbation, (2) the unavoidable conversion of noise statistics from Gaussianess to non-Gaussianess due to the highly non-linear nature of homomorphic transform does warrant stringent noise cancellation routines, (3) due to the aforementioned problems in (1) and (2), it is difficult to adaptively optimize windows to include all individual fetal complexes in the time domain based on amplitude thresholding routines in the complex cepstral domain (i.e. the task of `zooming' in on weak fetal complexes requires more processing time). The use of third-order based high resolution differential cepstrum technique results in recovery of the delay of the order of 120 milliseconds.

  1. [Detection of Heart Rate of Fetal ECG Based on STFT and BSS].

    PubMed

    Wang, Xu; Cai, Kun

    2016-01-01

    Changes in heart rate of fetal is function regulating performance of the circulatory system and the central nervous system, it is significant to detect heart rate of fetus in perinatal fetal. This paper puts forward the fetal heart rate detection method based on short time Fourier transform and blind source separation. First of all, the mixed ECG signal was preprocessed, and then the wavelet transform technique was used to separate the fetal ECG signal with noise from mixed ECG signal, after that, the short-time Fourier transform and the blind separation were carried on it, and then calculated the correlation coefficient of it, Finally, An independent component that it has strongest correlation with the original signal was selected to make FECG peak detection and calculated the fetal instantaneous heart rate. The experimental results show that the method can improve the detection rate of the FECG peak (R), and it has high accuracy in fixing peak(R) location in the case of low signal-noise ratio. PMID:27197491

  2. Thyroid hormone is required for growth adaptation to pressure load in the ovine fetal heart.

    PubMed

    Segar, Jeffrey L; Volk, Ken A; Lipman, Michael H B; Scholz, Thomas D

    2013-03-01

    Thyroid hormone exerts broad effects on the adult heart, but little is known regarding the role of thyroid hormone in the regulation of cardiac growth early in development and in response to pathophysiological conditions. To address this issue, we determined the effects of fetal thyroidectomy on cardiac growth and growth-related gene expression in control and pulmonary-artery-banded fetal sheep. Fetal thyroidectomy (THX) and/or placement of a restrictive pulmonary artery band (PAB) were performed at 126 ± 1 days of gestation (term, 145 days). Four groups of animals [n = 5-6 in each group; (i) control; (ii) fetal THX; (iii) fetal PAB; and (iv) fetal PAB + THX] were monitored for 1 week prior to being killed. Fetal heart rate was significantly lower in the two THX groups compared with the non-THX groups, while mean arterial blood pressure was similar among groups. Combined left and right ventricle free wall + septum weight, expressed per kilogram of fetal weight, was significantly increased in PAB (6.27 ± 0.85 g kg(-1)) compared with control animals (4.72 ± 0.12 g kg(-1)). Thyroidectomy significantly attenuated the increase in cardiac mass associated with PAB (4.94 ± 0.13 g kg(-1)), while THX alone had no detectable effect on heart mass (4.95 ± 0.27 g kg(-1)). The percentage of binucleated cardiomyocytes was significantly decreased in THX and PAB +THX groups (∼16%) compared with the non-THX groups (∼27%). No differences in levels of activated Akt, extracellular signal-regulated kinase or c-Jun N-terminal kinase were detected among the groups. Markers of cellular proliferation but not apoptosis or expression of growth-related genes were lower in the THX and THX+ PAB groups relative to thyroid-intact animals. These findings suggest that in the late-gestation fetal heart, thyroid hormone has important cellular growth functions in both physiological and pathophysiological states. Specifically, thyroid hormone is required for adaptive fetal cardiac growth in

  3. Fetal Heart Rate and Variability: Stability and Prediction to Developmental Outcomes in Early Childhood

    PubMed Central

    DiPietro, Janet A.; Bornstein, Marc H.; Hahn, Chun-Shin; Costigan, Kathleen; Achy-Brou, Aristide

    2008-01-01

    Stability in cardiac indicators before birth and their utility in predicting variation in postnatal development were examined. Fetal heart rate and variability were measured longitudinally from 20 through 38 weeks gestation (n = 137) and again at age 2 (n = 79). Significant within-individual stability during the prenatal period and into childhood was demonstrated. Fetal heart rate variability at or after 28 weeks gestation and steeper developmental trajectories were significantly associated with mental and psychomotor development at 2 years (n = 82) and language ability at 2.5 years (n = 61). These data suggest that the foundations of individual differences in autonomic control originate during gestation and the developmental momentum of the fetal period continues after birth. PMID:17988321

  4. Development of a piezopolymer pressure sensor for a portable fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Pretlow, R. A.; Stoughton, J. W.; Baker, D. A.

    1993-01-01

    A piezopolymer pressure sensor has been developed for service in a portable fetal heart rate monitor, which will permit an expectant mother to perform the fetal nonstress test, a standard predelivery test, in her home. Several sensors are mounted in an array on a belt worn by the mother. The sensor design conforms to the distinctive features of the fetal heart tone, namely, the acoustic signature, frequency spectrum, signal amplitude, and localization. The components of a sensor serve to fulfill five functions: signal detection, acceleration cancellation, acoustical isolation, electrical shielding, and electrical isolation of the mother. A theoretical analysis of the sensor response yields a numerical value for the sensor sensitivity, which is compared to experiment in an in vitro sensor calibration. Finally, an in vivo test on patients within the last six weeks of term reveals that nonstress test recordings from the acoustic monitor compare well with those obtained from conventional ultrasound.

  5. Fetal Heart Rate Reactivity Differs by Women's Psychiatric Status: An Early Marker for Developmental Risk?

    ERIC Educational Resources Information Center

    Monk, Catherine; Sloan, Richard P.; Myers, Michael M.; Ellman, Lauren; Werner, Elizabeth; Jeon, Jiyeon; Tager, Felice; Fifer, William P.

    2004-01-01

    Objective: To determine whether there are differences in fetal heart rate (FHR) reactivity associated with women's psychiatric status. Method: In 57 women in their 36th to 38th week of pregnancy (mean age 27 [+ or -] 6 years), electrocardiogram, blood pressure (BP), respiration (RSP), and FHR were measured during baseline and a psychological…

  6. Measurements of Ultrasonic Attenuation Properties of Mid-Gestational Fetal Pig Hearts

    PubMed Central

    Gibson, Allyson A.; Singh, Gautam K.; Hoffman, Joseph J.; Ludomirsky, Achiau; Holland, Mark R.

    2009-01-01

    The objectives of this study were to measure the relative attenuation properties of the left and right ventricles in fetal pig hearts and to compare the spatial variation in attenuation measurements with those observed in previously published backscatter measurements. Approximately 1.0 mm thick, short-axis slices of excised, formalin-fixed heart were examined from 15 mid-gestational fetal pigs using a 50-MHz single-element transducer. Measurements of the attenuation properties demonstrate regional differences in the left and right ventricular myocardium that appear consistent with the previously reported regional differences in apparent integrated backscatter measurements of the same fetal pig hearts. For regions of perpendicular insonification relative to the myofiber orientation, the right ventricular free wall showed larger values for the slope of the attenuation coefficient from 30–60 MHz (1.48 ± 0.22 dB/(cm•MHz) (mean ± SD (standard deviation)) and attenuation coefficient at 45 MHz (46.3 ± 7.3 dB/cm (mean ± SD)) than the left ventricular free wall (1.18 ± 0.24 dB/(cm•MHz) and 37.0 ± 7.9 dB/cm (mean ± SD) for slope of attenuation coefficient and attenuation coefficient at 45 MHz, respectively). This attenuation study supports the hypothesis that intrinsic differences in the myocardium of the left and right ventricles exist in fetal pig hearts at mid-gestation. PMID:18977067

  7. A portable fetal heart monitor and its adaption to the detection of certain prenatal abnormalities

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A.

    1994-01-01

    There were three primary objectives for this task: (1) The investigation of the feasibility of making the fetal heart rate monitor portable, using a laptop computer; (2) Improvements in the signal processing for the monitor; and (3) Implementation of a real-time hardware software system. These tasks have been completed as discussed in the following section.

  8. Fetal Heart Rate and Variability: Stability and Prediction to Developmental Outcomes in Early Childhood

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; Bornstein, Marc H.; Hahn, Chun-Shin; Costigan, Kathleen; Achy-Brou, Aristide

    2007-01-01

    Stability in cardiac indicators before birth and their utility in predicting variation in postnatal development were examined. Fetal heart rate and variability were measured longitudinally from 20 through 38 weeks gestation (n = 137) and again at age 2 (n = 79). Significant within-individual stability during the prenatal period and into childhood…

  9. Fetal autonomic brain age scores, segmented heart rate variability analysis, and traditional short term variability.

    PubMed

    Hoyer, Dirk; Kowalski, Eva-Maria; Schmidt, Alexander; Tetschke, Florian; Nowack, Samuel; Rudolph, Anja; Wallwitz, Ulrike; Kynass, Isabelle; Bode, Franziska; Tegtmeyer, Janine; Kumm, Kathrin; Moraru, Liviu; Götz, Theresa; Haueisen, Jens; Witte, Otto W; Schleußner, Ekkehard; Schneider, Uwe

    2014-01-01

    Disturbances of fetal autonomic brain development can be evaluated from fetal heart rate patterns (HRP) reflecting the activity of the autonomic nervous system. Although HRP analysis from cardiotocographic (CTG) recordings is established for fetal surveillance, temporal resolution is low. Fetal magnetocardiography (MCG), however, provides stable continuous recordings at a higher temporal resolution combined with a more precise heart rate variability (HRV) analysis. A direct comparison of CTG and MCG based HRV analysis is pending. The aims of the present study are: (i) to compare the fetal maturation age predicting value of the MCG based fetal Autonomic Brain Age Score (fABAS) approach with that of CTG based Dawes-Redman methodology; and (ii) to elaborate fABAS methodology by segmentation according to fetal behavioral states and HRP. We investigated MCG recordings from 418 normal fetuses, aged between 21 and 40 weeks of gestation. In linear regression models we obtained an age predicting value of CTG compatible short term variability (STV) of R (2) = 0.200 (coefficient of determination) in contrast to MCG/fABAS related multivariate models with R (2) = 0.648 in 30 min recordings, R (2) = 0.610 in active sleep segments of 10 min, and R (2) = 0.626 in quiet sleep segments of 10 min. Additionally segmented analysis under particular exclusion of accelerations (AC) and decelerations (DC) in quiet sleep resulted in a novel multivariate model with R (2) = 0.706. According to our results, fMCG based fABAS may provide a promising tool for the estimation of fetal autonomic brain age. Beside other traditional and novel HRV indices as possible indicators of developmental disturbances, the establishment of a fABAS score normogram may represent a specific reference. The present results are intended to contribute to further exploration and validation using independent data sets and multicenter research structures. PMID:25505399

  10. Modulation of Serotonin Transporter Function during Fetal Development Causes Dilated Heart Cardiomyopathy and Lifelong Behavioral Abnormalities

    PubMed Central

    Noorlander, Cornelle W.; Ververs, Frederique F. T.; Nikkels, Peter G. J.; van Echteld, Cees J. A.; Visser, Gerard H. A.; Smidt, Marten P.

    2008-01-01

    Background Women are at great risk for mood and anxiety disorders during their childbearing years and may become pregnant while taking antidepressant drugs. In the treatment of depression and anxiety disorders, selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed drugs, while it is largely unknown whether this medication affects the development of the central nervous system of the fetus. The possible effects are the product of placental transfer efficiency, time of administration and dose of the respective SSRI. Methodology/Principal Findings In order to attain this information we have setup a study in which these parameters were measured and the consequences in terms of physiology and behavior are mapped. The placental transfer of fluoxetine and fluvoxamine, two commonly used SSRIs, was similar between mouse and human, indicating that the fetal exposure of these SSRIs in mice is comparable with the human situation. Fluvoxamine displayed a relatively low placental transfer, while fluoxetine showed a relatively high placental transfer. Using clinical doses of fluoxetine the mortality of the offspring increased dramatically, whereas the mortality was unaffected after fluvoxamine exposure. The majority of the fluoxetine-exposed offspring died postnatally of severe heart failure caused by dilated cardiomyopathy. Molecular analysis of fluoxetine-exposed offspring showed long-term alterations in serotonin transporter levels in the raphe nucleus. Furthermore, prenatal fluoxetine exposure resulted in depressive- and anxiety-related behavior in adult mice. In contrast, fluvoxamine-exposed mice did not show alterations in behavior and serotonin transporter levels. Decreasing the dose of fluoxetine resulted in higher survival rates and less dramatic effects on the long-term behavior in the offspring. Conclusions These results indicate that prenatal fluoxetine exposure affects fetal development, resulting in cardiomyopathy and a higher

  11. Isolation and characterization of multipotent cells from human fetal dermis.

    PubMed

    Chinnici, Cinzia Maria; Amico, Giandomenico; Monti, Marcello; Motta, Stefania; Casalone, Rosario; Petri, Sergio Li; Spada, Marco; Gridelli, Bruno; Conaldi, Pier Giulio

    2014-01-01

    We report that cells from human fetal dermis, termed here multipotent fetal dermal cells, can be isolated with high efficiency by using a nonenzymatic, cell outgrowth method. The resulting cell population was consistent with the definition of mesenchymal stromal cells by the International Society for Cellular Therapy. As multipotent fetal dermal cells proliferate extensively, with no loss of multilineage differentiation potential up to passage 25, they may be an ideal source for cell therapy to repair damaged tissues and organs. Multipotent fetal dermal cells were not recognized as targets by T lymphocytes in vitro, thus supporting their feasibility for allogenic transplantation. Moreover, the expansion protocol did not affect the normal phenotype and karyotype of cells. When compared with adult dermal cells, fetal cells displayed several advantages, including a greater cellular yield after isolation, the ability to proliferate longer, and the retention of differentiation potential. Interestingly, multipotent fetal dermal cells expressed the pluripotency marker SSEA4 (90.56 ± 3.15% fetal vs. 10.5 ± 8.5% adult) and coexpressed mesenchymal and epithelial markers (>80% CD90(+)/CK18(+) cells), coexpression lacking in the adult counterparts isolated under the same conditions. Multipotent fetal dermal cells were able to form capillary structures, as well as differentiate into a simple epithelium in vitro, indicating skin regeneration capabilities. PMID:23768775

  12. Monitoring Fetal Heart Rate during Pregnancy: Contributions from Advanced Signal Processing and Wearable Technology

    PubMed Central

    Signorini, Maria G.

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring. PMID:24639886

  13. Using uterine activity to improve fetal heart rate variability analysis for detection of asphyxia during labor.

    PubMed

    Warmerdam, G J J; Vullings, R; Van Laar, J O E H; Van der Hout-Van der Jagt, M B; Bergmans, J W M; Schmitt, L; Oei, S G

    2016-03-01

    During labor, uterine contractions can cause temporary oxygen deficiency for the fetus. In case of severe and prolonged oxygen deficiency this can lead to asphyxia. The currently used technique for detection of asphyxia, cardiotocography (CTG), suffers from a low specificity. Recent studies suggest that analysis of fetal heart rate variability (HRV) in addition to CTG can provide information on fetal distress. However, interpretation of fetal HRV during labor is difficult due to the influence of uterine contractions on fetal HRV. The aim of this study is therefore to investigate whether HRV features differ during contraction and rest periods, and whether these differences can improve the detection of asphyxia. To this end, a case-control study was performed, using 14 cases with asphyxia that were matched with 14 healthy fetuses. We did not find significant differences for individual HRV features when calculated over the fetal heart rate without separating contractions and rest periods (p  >  0.30 for all HRV features). Separating contractions from rest periods did result in a significant difference. In particular the ratio between HRV features calculated during and outside contractions can improve discrimination between fetuses with and without asphyxia (p  <  0.04 for three out of four ratio HRV features that were studied in this paper). PMID:26862891

  14. O/sup 6/-methylguanine DNA methyltransferase in human fetal tissues: fetal and maternal factors

    SciTech Connect

    D'Ambrosio, S.M.; Samuel, M.J.; Dutta-Choudhury, T.A.; Wani, A.A.

    1986-03-01

    O/sup 6/-Methylguanine methyltransferase (O/sup 6/-MT) was measured and compared in extracts of 7 human fetal tissues obtained from 21 different fetal specimens as a function of fetal age and race, and maternal smoking and drug usage. Activity was determined from the proteinase-K solubilized radioactivity transferred from the DNA to the O/sup 6/-MT. S9 homogenates were incubated with a heat depurinated (/sup 3/H)-methylnitrosourea alkylated DNA. Liver exhibited the highest activity followed by kidney, lung, small intestine, large intestine, skin and brain. Each of the tissues exhibited a 3- to 5-fold level of interindividual variation of O/sup 6/-MT. There did not appear to be any significant difference of O/sup 6/-MT in the tissues obtained from mothers who smoked cigarettes during pregnancy. Also, fetal race and age did not appear to account for the level of variation of O/sup 6/-MT. The fetal tissues obtained from an individual using phenobarbital and smoking exhibited 4-fold increases in O/sup 6/-MT activity. The tissues obtained from another individual on kidney dialysis were 2- to 3-fold higher than the normal population. These data suggest that the variation in human O/sup 6/-MT can not be explained by racial or smoking factors, but may be modulated by certain drugs.

  15. Use of Audible and Chart-recorded Ultrasonography to Monitor Fetal Heart Rate and Uterine Blood Flow Parameters in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the present study was to evaluate the use of audible chart-recorded doppler ultrasonography (DUS) to monitor both uterine blood flow and fetal heart rate (FHR) during pregnancy in dairy cattle. Possible applications of DUS include the monitoring of fetal distress when a pregnancy be...

  16. Consumer information on fetal heart rate monitoring during labor: a content analysis: a content analysis.

    PubMed

    Torres, Jennifer; De Vries, Raymond; Low, Lisa Kane

    2014-01-01

    Electronic fetal monitoring (EFM) is used for the majority of births that occur in the United States. While there are indications for use of EFM for women with high-risk pregnancies, its use in low-risk pregnancies is less evidence-based. In low-risk women, the use of EFM is associated with an increased risk for cesarean birth compared with the use of intermittent auscultation of the fetal heart rate. The purpose of this investigation was to evaluate the existence of evidence-based information on fetal heart rate monitoring in popular consumer-focused maternity books and Web sites. Content analysis of information in consumer-oriented Web sites and books was completed using the NVivo software (QRSinternational, Melbourne, Australia). Themes identified included lack of clear terminology when discussing fetal monitoring, use of broad categories such as low risk and high risk, limited presentation of information about intermittent auscultation, and presentation of EFM as the standard of care, particularly upon admission into the labor unit. More than one-third of the sources did not mention auscultation, and conflicting information about monitoring methods was presented. The availability of accurate, publically accessible information offers consumers the opportunity to translate knowledge into the power to seek evidence-based care practices during their maternity care experience. PMID:24781772

  17. Toward the improvement in fetal monitoring during labor with the inclusion of maternal heart rate analysis.

    PubMed

    Gonçalves, Hernâni; Pinto, Paula; Silva, Manuela; Ayres-de-Campos, Diogo; Bernardes, João

    2016-04-01

    Fetal heart rate (FHR) monitoring is used routinely in labor, but conventional methods have a limited capacity to detect fetal hypoxia/acidosis. An exploratory study was performed on the simultaneous assessment of maternal heart rate (MHR) and FHR variability, to evaluate their evolution during labor and their capacity to detect newborn acidemia. MHR and FHR were simultaneously recorded in 51 singleton term pregnancies during the last two hours of labor and compared with newborn umbilical artery blood (UAB) pH. Linear/nonlinear indices were computed separately for MHR and FHR. Interaction between MHR and FHR was quantified through the same indices on FHR-MHR and through their correlation and cross-entropy. Univariate and bivariate statistical analysis included nonparametric confidence intervals and statistical tests, receiver operating characteristic curves and linear discriminant analysis. Progression of labor was associated with a significant increase in most MHR and FHR linear indices, whereas entropy indices decreased. FHR alone and in combination with MHR as FHR-MHR evidenced the highest auROC values for prediction of fetal acidemia, with 0.76 and 0.88 for the UAB pH thresholds 7.20 and 7.15, respectively. The inclusion of MHR on bivariate analysis achieved sensitivity and specificity values of nearly 100 and 89.1 %, respectively. These results suggest that simultaneous analysis of MHR and FHR may improve the identification of fetal acidemia compared with FHR alone, namely during the last hour of labor. PMID:26219610

  18. Gestational Dietary Protein Is Associated with Sex Specific Decrease in Blood Flow, Fetal Heart Growth and Post-Natal Blood Pressure of Progeny

    PubMed Central

    2015-01-01

    Study Overview The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60d up to 23dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Conclusion and Significance Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system. PMID:25915506

  19. Reducing sojourn points from recurrence plots to improve transition detection: Application to fetal heart rate transitions.

    PubMed

    Zaylaa, Amira; Charara, Jamal; Girault, Jean-Marc

    2015-08-01

    The analysis of biomedical signals demonstrating complexity through recurrence plots is challenging. Quantification of recurrences is often biased by sojourn points that hide dynamic transitions. To overcome this problem, time series have previously been embedded at high dimensions. However, no one has quantified the elimination of sojourn points and rate of detection, nor the enhancement of transition detection has been investigated. This paper reports our on-going efforts to improve the detection of dynamic transitions from logistic maps and fetal hearts by reducing sojourn points. Three signal-based recurrence plots were developed, i.e. embedded with specific settings, derivative-based and m-time pattern. Determinism, cross-determinism and percentage of reduced sojourn points were computed to detect transitions. For logistic maps, an increase of 50% and 34.3% in sensitivity of detection over alternatives was achieved by m-time pattern and embedded recurrence plots with specific settings, respectively, and with a 100% specificity. For fetal heart rates, embedded recurrence plots with specific settings provided the best performance, followed by derivative-based recurrence plot, then unembedded recurrence plot using the determinism parameter. The relative errors between healthy and distressed fetuses were 153%, 95% and 91%. More than 50% of sojourn points were eliminated, allowing better detection of heart transitions triggered by gaseous exchange factors. This could be significant in improving the diagnosis of fetal state. PMID:25308517

  20. Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart.

    PubMed

    DeVore, G R; Falkensammer, P; Sklansky, M S; Platt, L D

    2003-10-01

    Spatio-temporal image correlation (STIC) is a new approach for clinical assessment of the fetal heart. It offers an easy to use technique to acquire data from the fetal heart and to aid in visualization with both two-dimensional and three-dimensional (3D) cine sequences. The acquisition is performed in two steps: first, images are acquired by a single, automatic volume sweep. Second, the system analyzes the image data according to their spatial and temporal domain and processes an online dynamic 3D image sequence that is displayed in a multiplanar reformatted cross-sectional display and/or a surface rendered display. The examiner can navigate within the heart, re-slice, and produce all of the standard image planes necessary for a comprehensive diagnosis. The advantages of STIC for use in evaluation of the fetal heart are as follows: the technique delivers a temporal resolution which corresponds to a B-mode frame rate of approximately 80 frames/s; it provides the examiner with an unlimited number of images for review; it allows for correlation between image planes that are perpendicular to the main image acquisition plane; it may shorten the evaluation time when complex heart defects are suspected; it enables the reconstruction of a 3D rendered image that contains depth and volume which may provide additional information that is not available from the thin multiplanar image slices (e.g. for pulmonary veins, septal thickness); it lends itself to storage and review of volume data by the examiner or by experts at a remote site; it provides the examiner with the ability to review all images in a looped cine sequence. PMID:14528474

  1. Direct effect of cocaine on epigenetic regulation of PKCepsilon gene repression in the fetal rat heart.

    PubMed

    Meyer, Kurt; Zhang, Haitao; Zhang, Lubo

    2009-10-01

    Maternal cocaine administration during gestation caused a down-regulation of PKCepsilon expression in the heart of adult offspring resulting in an increased sensitivity to ischemia and reperfusion injury. The present study investigated the direct effect of cocaine in epigenetic modification of PKCepsilon gene repression in the fetal heart. Hearts were isolated from gestational day 17 fetal rats and treated with cocaine in an ex vivo organ culture system. Cocaine treatment for 48 h resulted in significant decreases in PKCepsilon protein and mRNA abundance and increases in CpG methylation at two SP1 binding sites in the PKCepsilon promoter region (-346 and -268). Electrophoretic mobility shift assays demonstrated that CpG methylation of both SP1 sites inhibited SP1 binding. Consistently, chromatin immunoprecipitation assays showed that cocaine treatment significantly decreased binding of SP1 to the SP1 sites in the intact fetal heart. Reporter gene assays revealed that site-directed mutations of CpG methylation at both SP1 sites significantly reduced the PKCepsilon promoter activity while methylation of a single site at either -346 or -268 did not have a significant effect. The causal effect of increased methylation in the cocaine-induced down-regulation of PKCepsilon was demonstrated with the use of DNA methylation inhibitors. The presence of either 5-aza-2'-deoxycytodine or procainamide blocked the cocaine-induced increase in SP1 sites methylation and decrease in PKCepsilon mRNA. The results demonstrate a direct effect of cocaine in epigenetic modification of DNA methylation and programming of cardiac PKCepsilon gene repression linking prenatal cocaine exposure and pathophysiological consequences in the heart of adult offspring. PMID:19538969

  2. Sca-1+ cells from fetal heart with high aldehyde dehydrogenase activity exhibit enhanced gene expression for self-renewal, proliferation, and survival.

    PubMed

    Dey, Devaveena; Pan, Guodong; Varma, Nadimpalli Ravi S; Palaniyandi, Suresh Selvaraj

    2015-01-01

    Stem/progenitor cells from multiple tissues have been isolated based on enhanced activity of cytosolic aldehyde dehydrogenase (ALDH) enzyme. ALDH activity has emerged as a reliable marker for stem/progenitor cells, such that ALDH(bright/high) cells from multiple tissues have been shown to possess enhanced stemness properties (self-renewal and multipotency). So far though, not much is known about ALDH activity in specific fetal organs. In this study, we sought to analyze the presence and activity of the ALDH enzyme in the stem cell antigen-1-positive (Sca-1+) cells of fetal human heart. Biochemical assays showed that a subpopulation of Sca-1+ cells (15%) possess significantly high ALDH1 activity. This subpopulation showed increased expression of self-renewal markers compared to the ALDH(low) fraction. The ALDH(high) fraction also exhibited significant increase in proliferation and pro-survival gene expression. In addition, only the ALDH(high) and not the ALDH(low) fraction could give rise to all the cell types of the original population, demonstrating multipotency. ALDH(high) cells showed increased resistance against aldehyde challenge compared to ALDH(low) cells. These results indicate that ALDH(high) subpopulation of the cultured human fetal cells has enhanced self-renewal, multipotency, high proliferation, and survival, indicating that this might represent a primitive stem cell population within the fetal human heart. PMID:25861413

  3. A Three-Way Interaction among Maternal and Fetal Variants Contributing to Congenital Heart Defects.

    PubMed

    Li, Ming; Li, Jingyun; Wei, Changshuai; Lu, Qing; Tang, Xinyu; Erickson, Stephen W; MacLeod, Stewart L; Hobbs, Charlotte A

    2016-01-01

    Congenital heart defects (CHDs) develop through a complex interplay between genetic variants, epigenetic modifications, and maternal environmental exposures. Genetic studies of CHDs have commonly tested single genetic variants for association with CHDs. Less attention has been given to complex gene-by-gene and gene-by-environment interactions. In this study, we applied a recently developed likelihood-ratio Mann-Whitney (LRMW) method to detect joint actions among maternal variants, fetal variants, and maternal environmental exposures, allowing for high-order statistical interactions. All subjects are participants from the National Birth Defect Prevention Study, including 623 mother-offspring pairs with CHD-affected pregnancies and 875 mother-offspring pairs with unaffected pregnancies. Each individual has 872 single nucleotide polymorphisms encoding for critical enzymes in the homocysteine, folate, and trans-sulfuration pathways. By using the LRMW method, three variants (fetal rs625879, maternal rs2169650, and maternal rs8177441) were identified with a joint association to CHD risk (nominal P-value = 1.13e-07). These three variants are located within genes BHMT2, GSTP1, and GPX3, respectively. Further examination indicated that maternal SNP rs2169650 may interact with both fetal SNP rs625879 and maternal SNP rs8177441. Our findings suggest that the risk of CHD may be influenced by both the intragenerational interaction within the maternal genome and the intergenerational interaction between maternal and fetal genomes. PMID:26612412

  4. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult.

    PubMed

    Silva, A C; Rodrigues, S C; Caldeira, J; Nunes, A M; Sampaio-Pinto, V; Resende, T P; Oliveira, M J; Barbosa, M A; Thorsteinsdóttir, S; Nascimento, D S; Pinto-do-Ó, P

    2016-10-01

    A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair. PMID:27424216

  5. Humans at high altitude: hypoxia and fetal growth

    PubMed Central

    Moore, Lorna G.; Charles, Shelton M.; Julian, Colleen G.

    2011-01-01

    High-altitude studies offer insight into the evolutionary processes and physiological mechanisms affecting the early phases of the human lifespan. Chronic hypoxia slows fetal growth and reduces the pregnancy-associated rise in uterine artery (UA) blood flow. Multigenerational vs. shorter-term high-altitude residents are protected from the altitude-associated reductions in UA flow and fetal growth. Presently unknown is whether this fetal-growth protection is due to the greater delivery or metabolism of oxygen, glucose or other substrates or to other considerations such as mechanical factors protecting fragile fetal villi, the creation of a reserve protecting against ischemia/reperfusion injury, or improved placental O2 transfer as the result of narrowing the A-V O2 difference and raising uterine PvO2. Placental growth and development appear to be normal or modified at high altitude in ways likely to benefit diffusion. Much remains to be learned concerning the effects of chronic hypoxia on embryonic development. Further research is required for identifying the fetoplacental and maternal mechanisms responsible for transforming the maternal vasculature and regulating UA blood flow and fetal growth. Genomic as well as epigenetic studies are opening new avenues of investigation that can yield insights into the basic pathways and evolutionary processes involved. PMID:21536153

  6. Fetal cardiac interventions: clinical and experimental research

    PubMed Central

    Humuruola, Gulimila

    2016-01-01

    Fetal cardiac interventions for congenital heart diseases may alleviate heart dysfunction, prevent them evolving into hypoplastic left heart syndrome, achieve biventricular outcome and improve fetal survival. Candidates for clinical fetal cardiac interventions are now restricted to cases of critical aortic valve stenosis with evolving hypoplastic left heart syndrome, pulmonary atresia with an intact ventricular septum and evolving hypoplastic right heart syndrome, and hypoplastic left heart syndrome with an intact or highly restrictive atrial septum as well as fetal heart block. The therapeutic options are advocated as prenatal aortic valvuloplasty, pulmonary valvuloplasty, creation of interatrial communication and fetal cardiac pacing. Experimental research on fetal cardiac intervention involves technical modifications of catheter-based cardiac clinical interventions and open fetal cardiac bypass that cannot be applied in human fetuses for the time being. Clinical fetal cardiac interventions are plausible for midgestation fetuses with the above-mentioned congenital heart defects. The technical success, biventricular outcome and fetal survival are continuously being improved in the conditions of the sophisticated multidisciplinary team, equipment, techniques and postnatal care. Experimental research is laying the foundations and may open new fields for catheter-based clinical techniques. In the present article, the clinical therapeutic options and experimental fetal cardiac interventions are described. PMID:27279868

  7. Fetal cardiac interventions: clinical and experimental research.

    PubMed

    Yuan, Shi-Min; Humuruola, Gulimila

    2016-01-01

    Fetal cardiac interventions for congenital heart diseases may alleviate heart dysfunction, prevent them evolving into hypoplastic left heart syndrome, achieve biventricular outcome and improve fetal survival. Candidates for clinical fetal cardiac interventions are now restricted to cases of critical aortic valve stenosis with evolving hypoplastic left heart syndrome, pulmonary atresia with an intact ventricular septum and evolving hypoplastic right heart syndrome, and hypoplastic left heart syndrome with an intact or highly restrictive atrial septum as well as fetal heart block. The therapeutic options are advocated as prenatal aortic valvuloplasty, pulmonary valvuloplasty, creation of interatrial communication and fetal cardiac pacing. Experimental research on fetal cardiac intervention involves technical modifications of catheter-based cardiac clinical interventions and open fetal cardiac bypass that cannot be applied in human fetuses for the time being. Clinical fetal cardiac interventions are plausible for midgestation fetuses with the above-mentioned congenital heart defects. The technical success, biventricular outcome and fetal survival are continuously being improved in the conditions of the sophisticated multidisciplinary team, equipment, techniques and postnatal care. Experimental research is laying the foundations and may open new fields for catheter-based clinical techniques. In the present article, the clinical therapeutic options and experimental fetal cardiac interventions are described. PMID:27279868

  8. Correlating multidimensional fetal heart rate variability analysis with acid-base balance at birth.

    PubMed

    Frasch, Martin G; Xu, Yawen; Stampalija, Tamara; Durosier, Lucien D; Herry, Christophe; Wang, Xiaogang; Casati, Daniela; Seely, Andrew Je; Alfirevic, Zarko; Gao, Xin; Ferrazzi, Enrico

    2014-12-01

    Fetal monitoring during labour currently fails to accurately detect acidemia. We developed a method to assess the multidimensional properties of fetal heart rate variability (fHRV) from trans-abdominal fetal electrocardiogram (fECG) during labour. We aimed to assess this novel bioinformatics approach for correlation between fHRV and neonatal pH or base excess (BE) at birth.We enrolled a prospective pilot cohort of uncomplicated singleton pregnancies at 38-42 weeks' gestation in Milan, Italy, and Liverpool, UK. Fetal monitoring was performed by standard cardiotocography. Simultaneously, with fECG (high sampling frequency) was recorded. To ensure clinician blinding, fECG information was not displayed. Data from the last 60 min preceding onset of second-stage labour were analyzed using clinically validated continuous individualized multiorgan variability analysis (CIMVA) software in 5 min overlapping windows. CIMVA allows simultaneous calculation of 101 fHRV measures across five fHRV signal analysis domains. We validated our mathematical prediction model internally with 80:20 cross-validation split, comparing results to cord pH and BE at birth.The cohort consisted of 60 women with neonatal pH values at birth ranging from 7.44 to 6.99 and BE from -0.3 to -18.7 mmol L(-1). Our model predicted pH from 30 fHRV measures (R(2) = 0.90, P < 0.001) and BE from 21 fHRV measures (R(2) = 0.77, P < 0.001).Novel bioinformatics approach (CIMVA) applied to fHRV derived from trans-abdominal fECG during labor correlated well with acid-base balance at birth. Further refinement and validation in larger cohorts are needed. These new measurements of fHRV might offer a new opportunity to predict fetal acid-base balance at birth. PMID:25407948

  9. Diagnostic Accuracy of Fetal Heart Rate Monitoring in the Identification of Neonatal Encephalopathy

    PubMed Central

    GRAHAM, Ernest M.; ADAMI, Rebecca R.; MCKENNEY, Stephanie L.; JENNINGS, Jacky M.; BURD, Irina; WITTER, Frank R.

    2014-01-01

    Objective To estimate the diagnostic accuracy of electronic fetal heart rate abnormalities in the identification of neonates with encephalopathy treated with whole-body hypothermia. Methods Between January 1, 2007, and July 1, 2013, there were 39 neonates born at two hospitals within our system treated with whole-body hypothermia within 6 hours of birth. Neurologically normal controls were matched to each case by gestational age and mode of delivery in a 2:1 fashion. The last hour of electronic fetal heart rate monitoring before delivery was evaluated by three obstetricians blinded to outcome. Results The differences in tracing category were not significantly different (cases 10.3% I, 76.9% II, 12.8% III; controls 9.0% I, 89.7% II, 1.3% III, p=0.18). Bivariate analysis showed cases had significantly increased late decelerations, total deceleration area 30 (debt 30) and 60 minutes (debt 60) prior to delivery and were more likely to be nonreactive. Multivariable logistic regression showed cases had a significant decrease in early decelerations (P=0.03) and a significant increase in debt 30 (0.01) and debt 60 (P=0.005). The area under the ROC curve, sensitivity and specificity were 0.72, 23.1%, 94.9% for early decelerations; 0.66, 33.3% and 87.2% for debt 30 and 0.68, 35.9% and 89.7% for debt 60. Conclusion Abnormalities during the last hour of fetal heart rate monitoring before delivery are poorly predictive of neonatal hypoxic-ischemic encephalopathy qualifying for whole-body hypothermia treatment within 6 hours of birth. PMID:25162250

  10. Maternal and Fetal Outcomes in Pregnant Women with a Prosthetic Mechanical Heart Valve

    PubMed Central

    Ayad, Sherif W.; Hassanein, Mahmoud M.; Mohamed, Elsayed A.; Gohar, Ahmed M.

    2016-01-01

    BACKGROUND Pregnancy is associated with several cardiocirculatory changes that can significantly impact underlying cardiac disease. These changes include an increase in cardiac output, sodium, and water retention leading to blood volume expansion, and reductions in systemic vascular resistance and systemic blood pressure. In addition, pregnancy results in a hypercoagulable state that increases the risk of thromboembolic complications. OBJECTIVES The aim of this study is to assess the maternal and fetal outcomes of pregnant women with mechanical prosthetic heart valves (PHVs). METHODS This is a prospective observational study that included 100 pregnant patients with cardiac mechanical valve prostheses on anticoagulant therapy. The main maternal outcomes included thromboembolic or hemorrhagic complications, prosthetic valve thrombosis, and acute decompensated heart failure. Fetal outcomes included miscarriage, fetal death, live birth, small-for-gestational age, and warfarin embryopathy. The relationship between the following were observed: – Maternal and fetal complications and the site of the replaced valve (mitral, aortic, or double)– Maternal and fetal complications and warfarin dosage (≤5 mg, >5 mg)– Maternal and fetal complications and the type of anticoagulation administered during the first trimester RESULTS This study included 60 patients (60%) with mitral valve replacement (MVR), 22 patients (22%) with aortic valve replacement (AVR), and 18 patients (18%) with double valve replacement (DVR). A total of 65 patients (65%) received >5 mg of oral anticoagulant (warfarin), 33 patients (33%) received ≤5 mg of warfarin, and 2 patients (2%) received low-molecular-weight heparin (LMWH; enoxaparin sodium) throughout the pregnancy. A total of 17 patients (17%) received oral anticoagulant (warfarin) during the first trimester: 9 patients received a daily warfarin dose of >5 mg while the remaining 8 patients received a daily dose of ≤5 mg. Twenty

  11. Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters

    PubMed Central

    Lopez, Ana D.; Kayali, Ayse G.; Hayek, Alberto; King, Charles C.

    2014-01-01

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells. PMID:24895054

  12. Eleven fetal echocardiographic planes using 4-dimensional ultrasound with spatio-temporal image correlation (STIC): a logical approach to fetal heart volume analysis

    PubMed Central

    2010-01-01

    Background Theoretically, a cross-sectional image of any cardiac planes can be obtained from a STIC fetal heart volume dataset. We described a method to display 11 fetal echocardiographic planes from STIC volumes. Methods Fetal heart volume datasets were acquired by transverse acquisition from 200 normal fetuses at 15 to 40 weeks of gestation. Analysis of the volume datasets using the described technique to display 11 echocardiographic planes in the multiplanar display mode were performed offline. Results Volume datasets from 18 fetuses were excluded due to poor image resolution. The mean visualization rates for all echocardiographic planes at 15-17, 18-22, 23-27, 28-32 and 33-40 weeks of gestation fetuses were 85.6% (range 45.2-96.8%, N = 31), 92.9% (range 64.0-100%, N = 64), 93.4% (range 51.4-100%, N = 37), 88.7%(range 54.5-100%, N = 33) and 81.8% (range 23.5-100%, N = 17) respectively. Conclusions Overall, the applied technique can favorably display the pertinent echocardiographic planes. Description of the presented method provides a logical approach to explore the fetal heart volumes. PMID:20843340

  13. Selective Toll-Like Receptor Expression in Human Fetal Lung

    PubMed Central

    Petrikin, Joshua E; Gaedigk, Roger; Leeder, J Steven; Truog, William E

    2010-01-01

    Toll-like receptors (TLRs) are critical components of the innate immune system, acting as pattern recognition molecules and triggering an inflammatory response. TLR associated gene products are of interest in modulating inflammatory related pulmonary diseases of the neonate. The ontogeny of TLR related genes in human fetal lung has not been previously described and could elucidate additional functions and identify strategies for attenuating the effects of fetal inflammation. We examined the expression of 84 TLR related genes on 23 human fetal lung samples from three groups with estimated ages of 60 (57-59d), 90 (89-91d), and 130 (117-154d) days. Using a false detection rate algorithm, we identified 32 genes displaying developmental regulation with TLR2 having the greatest up-regulation of TLR genes (9.2 fold increase) and TLR4 unchanged. We confirmed the TLR2 up-regulation by examining an additional 133 fetal lung tissue samples with a fluorogenic polymerase chain reaction assay (TaqMan®) and found an exponential best-fit curve over the time studied. The best-fit curve predicts a 6.1 fold increase from 60d to 130d. We conclude that TLR2 is developmentally expressed from the early pseudoglandular stage of lung development to the canalicular stage. PMID:20581745

  14. Isolation of Leukocytes from the Human Maternal-fetal Interface.

    PubMed

    Xu, Yi; Plazyo, Olesya; Romero, Roberto; Hassan, Sonia S; Gomez-Lopez, Nardhy

    2015-01-01

    Pregnancy is characterized by the infiltration of leukocytes in the reproductive tissues and at the maternal-fetal interface (decidua basalis and decidua parietalis). This interface is the anatomical site of contact between maternal and fetal tissues; therefore, it is an immunological site of action during pregnancy. Infiltrating leukocytes at the maternal-fetal interface play a central role in implantation, pregnancy maintenance, and timing of delivery. Therefore, phenotypic and functional characterizations of these leukocytes will provide insight into the mechanisms that lead to pregnancy disorders. Several protocols have been described in order to isolate infiltrating leukocytes from the decidua basalis and decidua parietalis; however, the lack of consistency in the reagents, enzymes, and times of incubation makes it difficult to compare these results. Described herein is a novel approach that combines the use of gentle mechanical and enzymatic dissociation techniques to preserve the viability and integrity of extracellular and intracellular markers in leukocytes isolated from the human tissues at the maternal-fetal interface. Aside from immunophenotyping, cell culture, and cell sorting, the future applications of this protocol are numerous and varied. Following this protocol, the isolated leukocytes can be used to determine DNA methylation, expression of target genes, in vitro leukocyte functionality (i.e., phagocytosis, cytotoxicity, T-cell proliferation, and plasticity, etc.), and the production of reactive oxygen species at the maternal-fetal interface. Additionally, using the described protocol, this laboratory has been able to describe new and rare leukocytes at the maternal-fetal interface. PMID:26067211

  15. Enabling research with human embryonic and fetal tissue resources

    PubMed Central

    Gerrelli, Dianne; Lisgo, Steven; Copp, Andrew J.; Lindsay, Susan

    2015-01-01

    Summary Congenital anomalies are a significant burden on human health. Understanding the developmental origins of such anomalies is key to developing potential therapies. The Human Developmental Biology Resource (HDBR), based in London and Newcastle UK, was established to provide embryonic and fetal material for a variety of human studies ranging from single gene expression analysis to large scale genomic/transcriptomic studies. Increasingly HDBR material is enabling the derivation of stem cell lines and contributing towards developments in tissue engineering. Use of the HDBR and other fetal tissue resources discussed here will contribute to the long term aims of understanding the causation and pathogenesis of congenital anomalies, and developing new methods for their treatment and prevention. PMID:26395135

  16. Fetal Heart

    MedlinePlus

    ... There is actually no direct contact between the circulatory systems of the mother and fetus. The fetus does ... use its own lungs until birth, so its circulatory system is different from that of a newborn baby. ...

  17. Fetal Diagnostics and Fetal Intervention.

    PubMed

    McLaughlin, Ericka S; Schlosser, Brian A; Border, William L

    2016-03-01

    Advances in ultrasound technology and specialized training have allowed clinicians to diagnose congenital heart disease in utero and counsel families on perinatal outcomes and management strategies, including fetal cardiac interventions and fetal surgery. This article gives a detailed approach to fetal cardiac assessment and provides the reader with accompanying figures and video clips to illustrate unique views and sweeps invaluable to diagnosing congenital heart disease. We demonstrate that using a sequential segmental approach to evaluate cardiac anatomy enables one to decipher the most complex forms of congenital heart disease. Also provided is a review of fetal cardiac intervention and surgery from the fetal cardiologist's perspective. PMID:26876119

  18. Perivascular mesenchymal progenitors in human fetal and adult liver.

    PubMed

    Gerlach, Jörg C; Over, Patrick; Turner, Morris E; Thompson, Robert L; Foka, Hubert G; Chen, William C W; Péault, Bruno; Gridelli, Bruno; Schmelzer, Eva

    2012-12-10

    The presence of mesenchymal stem cells (MSCs) has been described in various organs. Pericytes possess a multilineage differentiation potential and have been suggested to be one of the developmental sources for MSCs. In human liver, pericytes have not been defined. Here, we describe the identification, purification, and characterization of pericytes in human adult and fetal liver. Flow cytometry sorting revealed that human adult and fetal liver contains 0.56%±0.81% and 0.45%±0.39% of CD146(+)CD45(-)CD56(-)CD34(-) pericytes, respectively. Of these, 41% (adult) and 30% (fetal) were alkaline phosphatase-positive (ALP(+)). In situ, pericytes were localized around periportal blood vessels and were positive for NG2 and vimentin. Purified pericytes could be cultured extensively and had low population doubling times. Immunofluorescence of cultures demonstrated that cells were positive for pericyte and mesenchymal cell markers CD146, NG2, CD90, CD140b, and vimentin, and negative for endothelial, hematopoietic, stellate, muscle, or liver epithelial cell markers von Willebrand factor, CD31, CD34, CD45, CD144, CD326, CK19, albumin, α-fetoprotein, CYP3A7, glial fibrillary acid protein, MYF5, and Pax7 by gene expression; myogenin and alpha-smooth muscle actin expression were variable. Fluorescence-activated cell sorting analysis of cultures confirmed surface expression of CD146, CD73, CD90, CD10, CD13, CD44, CD105, and ALP and absence of human leukocyte antigen-DR. In vitro differentiation assays demonstrated that cells possessed robust osteogenic and myogenic, but low adipogenic and low chondrogenic differentiation potentials. In functional in vitro assays, cells had typical mesenchymal strong migratory and invasive activity. In conclusion, human adult and fetal livers harbor pericytes that are similar to those found in other organs and are distinct from hepatic stellate cells. PMID:22931482

  19. High resolution MR imaging of the fetal heart with cardiac triggering: a feasibility study in the sheep fetus.

    PubMed

    Yamamura, Jin; Schnackenburg, Bernhard; Kooijmann, Hendrik; Frisch, Michael; Hecher, Kurt; Adam, Gerhard; Wedegärtner, Ulrike

    2009-10-01

    The aim of this study was to perform fetal cardiac magnetic resonance imaging (MRI) with triggering of the fetal heart beat in utero in a sheep model. All experimental protocols were reviewed and the usage of ewes and fetuses was approved by the local animal protection authorities. Images of the hearts of six pregnant ewes were obtained by using a 1.5-T MR system (Philips Medical Systems, Best, Netherlands). The fetuses were chronically instrumented with a carotid catheter to measure the fetal heart frequency for the cardiac triggering. Pulse wave triggered, breath-hold cine-MRI with steady-state free precession (SSFP) was achieved in short axis, two-, four- and three-chamber views. The left ventricular volume and thus the function were measured from the short axis. The fetal heart frequencies ranged between 130 and 160 bpm. The mitral, tricuspid, aortic, and pulmonary valves could be clearly observed. The foramen ovale could be visualized. Myocardial contraction was shown in cine sequences. The average blood volume at the end systole was 3.4 + or - 0.2 ml (+ or - SD). The average volume at end diastole was 5.2 + or - 0.2 ml; thus the stroke volumes of the left ventricle in the systole were between 1.7 and 1.9 ml with ejection fractions of 38.6% and 39%, respectively. The pulse wave triggered cardiac MRI of the fetal heart allowed evaluation of anatomical structures and functional information. This feasibility study demonstrates the applicability of MRI for future evaluation of fetuses with complex congenital heart defects, once a noninvasive method has been developed to perform fetal cardiac triggering. PMID:19430796

  20. Scattering transform for intrapartum fetal heart rate variability fractal analysis: a case-control study.

    PubMed

    Chudáček, Václav; Andén, Joakim; Mallat, Stéphane; Abry, Patrice; Doret, Muriel

    2014-04-01

    Intrapartum fetal heart rate monitoring, aiming at early acidosis detection, constitutes an important public health stake. Scattering transform is proposed here as a new tool to analyze intrapartum fetal heart rate (FHR) variability. It consists of a nonlinear extension of the underlying wavelet transform, that thus preserves its multiscale nature. Applied to an FHR signal database constructed in a French academic hospital, the scattering transform is shown to permit to efficiently measure scaling exponents characterizing the fractal properties of intrapartum FHR temporal dynamics, that relate not only to the sole covariance (correlation scaling exponent), but also to the full dependence structure of data (intermittency scaling exponent). Such exponents are found to satisfactorily discriminate temporal dynamics of healthy subjects (from that of nonhealthy ones) and to emphasize the role of the highest frequencies (around and above 1 Hz) in intrapartum FHR variability. This permits us to achieve satisfactory classification performance that improves on those obtained from the analysis of International Federation of Gynecology and Obstetrics (FIGO) criteria, notably by classifying as healthy a number of subjects that were incorrectly classified as nonhealthy by classical clinically used FIGO criteria. Combined to obstetrician annotations, these scaling exponents enable us to sketch a typology of these FIGO-false positive subjects. Also, they permit us to monitor the evolution along time of the intrapartum health status of the fetuses and to estimate an optimal detection time-frame. PMID:24658235

  1. The association of histologic placental inflammation with category II fetal heart tracings.

    PubMed

    Robinson, Barrett K; Su, Emily; Grobman, William; Huang, Michael; Ernst, Linda M

    2012-01-01

    The present study assessed whether placentas in women delivered by cesarean for category II fetal heart tracings (FHT) exhibit a higher incidence of acute inflammation than those of women delivered by cesarean for labor arrest. This case control study included singleton pregnancies ≥36 weeks of gestation delivered by cesarean for an FHT indication (cases) or because of labor arrest (controls) 2005-2009 at Prentice Women's Hospital. Exclusions were maternal diabetes, hypertension, known thrombophilia, connective tissue disorders, clinical evidence of chorioamnionitis, placental abruption, fetal anomalies, stillbirth, or an infant with a birth weight less than the 10th percentile. Women were included in the case group if the indication for cesarean delivery was based on the FHT and review of the FHT determined that they were designated as category II prior to delivery. A perinatal pathologist, unaware of indications for delivery, assessed placental inflammation in maternal and fetal compartments. Stage and grade of acute inflammation, from none to severe (scored 0-3), in the membranes, chorionic plate, chorionic vessels, and umbilical cord were assessed, and overall maternal and fetal inflammatory stages were assigned. Findings indicative of chronic inflammation were also noted. Other than lower umbilical artery cord gases in women with category II FHT, cases (n  =  51) and controls (n  =  27) had similar baseline characteristics and newborn outcomes, as well as similar placental pathologic findings. In uncomplicated patients, the presence or extent of placental inflammation does not appear to differ between women delivered for category II FHT and labor arrest. PMID:22671990

  2. Automated Quantitation of Uterine Contractility (UC) and Fetal Heart Rate (FHR) in Labor Surveillance

    PubMed Central

    Bieniarz, J.; Rabin, S.; Mercado, R.; Altamirano, Z.; Burd, L.; Scommegna, A.

    1981-01-01

    Automated quantitation of UC and FHR tabulated in half hour averages throughout labor could improve human expertise in early diagnosis of fetal distress. Such continuous 24 hr/day surveillance system developed in our laboratory for simultaneous monitoring of 10 women in labor is presented. Clinical reliability and usefulness of data supplied by the computer are being validated now by clinical and biochemical assessment of the fetus, newborn, and baby.

  3. Fetal echocardiography

    MedlinePlus

    ... Fetal echocardiography is a test that uses sound waves ( ultrasound ) to evaluate the baby's heart for problems ... over the area. The probe sends out sound waves, which bounce off the baby's heart and create ...

  4. Data from acellular human heart matrix.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Espinosa, M Angeles; González-Nicolas, M Angeles; Acebes, Judith R; Costanza, Salvatore; Moscoso, Isabel; Rodríguez, Hugo; García, Julio; Romero, Jesús; Kren, Stefan M; Bermejo, Javier; Yotti, Raquel; Del Villar, Candelas Pérez; Sanz-Ruiz, Ricardo; Elizaga, Jaime; Taylor, Doris A; Fernández-Avilés, Francisco

    2016-09-01

    Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. This article contains additional data of our experience decellularizing and testing structural integrity and composition of a large series of human hearts, "Acellular human heart matrix: a critical step toward whole heat grafts" (Sanchez et al., 2015) [1]. Here we provide the information about the heart decellularization technique, the valve competence evaluation of the decellularized scaffolds, the integrity evaluation of epicardial and myocardial coronary circulation, the pressure volume measurements, the primers used to assess cardiac muscle gene expression and, the characteristics of donors, donor hearts, scaffolds and perfusion decellularization process. PMID:27331090

  5. Evaluation of fetal echocardiography as a routine antenatal screening tool for detection of congenital heart disease

    PubMed Central

    Nayak, Krishnananda; Shetty, Ranjan; Narayan, Pratap Kumar

    2016-01-01

    Background Fetal echocardiography plays a pivotal role in identifying the congenital heart defects (CHDs) in utero. Though foetal echocardiography is mostly reserved for high risk pregnant women, its role as a routine prenatal screening tool still needs to be defined. Performing foetal echocardiography based on only these indications can lead to a significant numbers of CHD cases going undetected who will be deprived of further management leading to increased early neonatal mortalities. The aim of this study is to assess the incidence of CHDs by fetal echocardiography in an unselected population of pregnant women in comparison with pregnant women with conventional high risk factors for CHD. Methods This study enrolled consecutive pregnant women who attended antenatal clinic between 2008 and 2012 in a tertiary care hospital. These pregnant women were categorized into two groups: high risk group included pregnant women with traditional risk factors for CHD as laid down by Pediatric Council of the American Society of Echocardiography and low risk group. Detailed fetal 2 D echocardiography was done. Results A total of 1,280 pregnant women were included in study. The 118 women were categorized as the high risk group while remaining 1,162 were included in the low risk group. Twenty six cases of CHDs were detected based on abnormal foetal echocardiography (20.3 per 1,000). Two of the 26 cases of CHD occurred in high risk group whereas the remaining 24 occurred in low risk pregnancy. The difference in the incidence of CHDs between the two groups was not significant statistically (P=0.76). Conclusions Our study shows no difference in incidence of CHDs between pregnancies associated with high risk factors compared to low risk pregnancies. So we advocate foetal echocardiography should be included as a part of routine antenatal screening and all pregnant women irrespective of risk factors for CHDs. PMID:26885491

  6. Combining latent class analysis labeling with multiclass approach for fetal heart rate categorization.

    PubMed

    Karvelis, P; Spilka, J; Georgoulas, G; Chudáček, V; Stylios, C D; Lhotská, L

    2015-05-01

    The most common approach to assess fetal well-being during delivery is monitoring of fetal heart rate and uterine contractions-the cardiotocogram (CTG). Nevertheless, 40 years since the introduction of CTG to clinical practice, its evaluation is still challenging with high inter- and intra-observer variability. Therefore the development of more objective methods has become an issue of major importance in the field. Unlike the usually proposed approaches to assign classes for classification methods that rely either on biochemical parameters (e.g. pH value) or a simple aggregation of expert judgment, this work investigates the use of an alternative labeling system using latent class analysis (LCA) along with an ordinal classification scheme. The study is performed on a well-documented open-access database, where nine expert obstetricians provided CTG annotations. The LCA is proposed here to produce more objective class labels while the ordinal classification aims to explore the natural ordering, and representation of increased severity, for obtaining the final results. The results are promising suggesting that more effort should be put into this proposed approach. PMID:25894994

  7. The performance and reliability of wavelet denoising for Doppler ultrasound fetal heart rate signal preprocessing.

    PubMed

    Papadimitriou, S; Papadopoulos, V; Gatzounas, D; Tzigounis, V; Bezerianos, A

    1997-01-01

    The present paper deals with the performance and the reliability of a Wavelet Denoising method for Doppler ultrasound Fetal Heart Rate (FHR) recordings. It displays strong evidence that the denoising process extracts the actual noise components. The analysis is approached with three methods. First, the power spectrum of the denoised FHR displays more clearly an 1/fa scaling law, i.e. the characteristic of fractal time series. Second, the rescaled scale analysis technique reveals a Hurst exponent at the range of 0.7-0.8 that corresponds to a long memory persistent process. Moreover, the variance of the Hurst exponent across time scales is smaller at the denoised signal. Third, a chaotic attractor reconstructed with the embedding dimension technique becomes evident at the denoised signals, while it is completely obscured at the unfiltered ones. PMID:10179728

  8. Fetal cardiology: changing the definition of critical heart disease in the newborn.

    PubMed

    Słodki, M; Respondek-Liberska, M; Pruetz, J D; Donofrio, M T

    2016-08-01

    Infants born with congenital heart disease (CHD) may require emergent treatment in the newborn period. These infants are likely to benefit the most from a prenatal diagnosis, which allows for optimal perinatal planning. Several cardiac centers have created guidelines for the management of these high-risk patients with CHD. This paper will review and compare several prenatal CHD classification systems with a particular focus on the most critical forms of CHD in the fetus and newborn. A contemporary definition of critical CHD is one which requires urgent intervention in the first 24 h of life to prevent death. Such cardiac interventions may be not only life saving for the infant but also decrease subsequent morbidity. Critical CHD cases may require delivery at specialized centers that can provide perinatal, obstetric, cardiology and cardiothoracic surgery care. Fetuses diagnosed in mid-gestation require detailed fetal diagnostics and serial monitoring during the prenatal period, in order to assess for ongoing changes and identify progression to a more severe cardiac status. Critical CHD may progress in utero and there is still much to be learned about how to best predict those who will require urgent neonatal interventions. Despite improved therapeutic capabilities, newborns with critical CHD continue to have significant morbidity and mortality due to compromise that begins in the delivery room. Fetal echocardiography is the best way to predict the need for specialized care at birth to improve outcome. Once the diagnosis is made of critical CHD, delivery at the proper time and in appropriate institution with specific care protocols should be initiated. More work needs to be done to better delineate the risk factors for progression of critical CHD and to determine which newborns will require specialized care. The most frequently described forms of critical CHD requiring immediate intervention include hypoplastic left heart syndrome with intact or severely restricted

  9. Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases: An NHLBI Resource for the Gene Therapy Community

    PubMed Central

    Skarlatos, Sonia I.

    2012-01-01

    Abstract The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; “proof-of-principle”; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field. PMID:22974119

  10. Conotruncal Heart Defects and Common Variants in Maternal and Fetal Genes in Folate, Homocysteine and Transsulfuration Pathways

    PubMed Central

    Hobbs, Charlotte A.; Cleves, Mario A.; MacLeod, Stewart L.; Erickson, Stephen W.; Tang, Xinyu; Li, Jingyun; Li, Ming; Nick, Todd; Malik, Sadia

    2014-01-01

    Background We investigated the association between conotruncal heart defects (CTDs) and maternal and fetal single nucleotide polymorphisms (SNPs) in 60 genes in the folate, homocysteine and pathways. We also investigated whether periconceptional maternal folic acid supplementation modified associations between CTDs and SNPs. Methods Participants were enrolled in the National Birth Defects Prevention Study between 1997 and 2007. DNA samples from 616 case-parental triads affected by CTDs and 1,645 control-parental triads were genotyped using an Illumina® Golden Gate custom SNP panel. A hybrid design analysis, optimizing data from case and control trios, was used to identify maternal and fetal SNPs associated with CTDs. Results Among 921 SNPs, 17 maternal and 17 fetal SNPs had a Bayesian false-discovery probability (BFDP) of <0.8. Ten of the 17 maternal SNPs and 2 of the 17 fetal SNPs were found within the glutamate-cysteine ligase, catalytic subunit (GCLC) gene. Fetal SNPs with the lowest BFDP (rs2612101, rs2847607, rs2847326, rs2847324) were found within the thymidylate synthetase (TYMS) gene. Additional analyses indicated that the risk of CTDs associated with candidate SNPs was modified by periconceptional folic acid supplementation. Nineteen maternal and 9 fetal SNPs had BFDP <0.8 for gene-by-environment (GxE) interactions with maternal folic acid supplementation. Conclusions These results support previous studies suggesting that maternal and fetal SNPs within folate, homocysteine and transsulfuration pathways are associated with CTD risk. Maternal use of supplements containing folic acid may modify the impact of SNPs on the developing heart. PMID:24535845

  11. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans

    PubMed Central

    Luo, Zhong-Cheng; Bilodeau, Jean-François; Monique Nuyt, Anne; Fraser, William D.; Julien, Pierre; Audibert, Francois; Xiao, Lin; Garofalo, Carole; Levy, Emile

    2015-01-01

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24–28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = −0.32, p < 0.0001 for MDA; r = −0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = −0.13, p = 0.04 for MDA; r = −0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental “programming” the vulnerability to metabolic syndrome related disorders remain to be elucidated. PMID:26643495

  12. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  13. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  14. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  15. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  16. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  17. Comparison of Immune Profiles in Fetal Hearts with Idiopathic Dilated Cardiomyopathy, Maternal Autoimmune-Associated Dilated Cardiomyopathy and the Normal Fetus.

    PubMed

    Nield, Lynne E; von Both, Ingo; Popel, Najla; Strachan, Kate; Manlhiot, Cedric; Shannon, Patrick; McCrindle, Brian W; Atkinson, Adelle; Miner, Steven E S; Jaeggi, Edgar T; Taylor, Glenn P

    2016-02-01

    The etiology of idiopathic dilated cardiomyopathy (iDCM) remains unknown. Immune therapies have improved outcome in fetuses with DCM born to mothers with autoimmune disease (aDCM). The purpose of this retrospective study was to compare the myocardial B and T cell profiles in fetuses and neonates with idiopathic DCM (iDCM) versus autoimmune-mediated DCM (aDCM) and to describe the normal cell maturation within the human fetal myocardium. Of 60 fetal autopsy cases identified from institutional databases, 10 had aDCM (18-38 weeks), 12 iDCM (19-37 weeks) and 38 had normal hearts (11-40 weeks). Paraffin-embedded myocardium sections were stained for all lymphocyte (CD45), B cells (CD20, CD79a), T cells (CD3, CD4, CD7, CD8) and monocyte (CD68) surface markers. Two independent, blinded cell counts were performed. Normal hearts expressed all B and T cell markers in a bimodal fashion, with peaks at 22 and 37 weeks of gestation. The aDCM cohort was most distinct from normal hearts, with less overall T cell markers [EST -9.1 (2.6) cells/mm(2), p = 0.001], CD4 [EST -2.0 (0.6), p = 0.001], CD3 [EST -3.9 (1.0), p < 0.001], CD7 [EST -3.0 (1.1), p = 0.01] overall B cell markers [EST -4.9 (1.8), p = 0.01] and CD79a counts [EST -2.3 (0.9), p = 0.01]. The iDCM group had less overall B cell markers [EST -4.0 (1.8), p = 0.03] and CD79a [EST -1.7 (0.9), p = 0.05], but no difference in T cell markers. Autoimmune-mediated DCM fetuses have less B and T cell markers, whereas iDCM fetuses have less B cell markers compared with normal fetal hearts. The fetal immune system may play a role in the normal development of the heart and evolution of dilated cardiomyopathy. PMID:26481221

  18. Effects of docosahexaenoic acid supplementation during pregnancy on fetal heart rate and variability: A randomized clinical trial☆, ☆☆

    PubMed Central

    Gustafson, K.M.; Carlson, S.E.; Colombo, J.; Yeh, H.-W.; Shaddy, D.J.; Li, S.; Kerling, E.H.

    2013-01-01

    DHA (22:6n-3) supplementation during infancy has been associated with lower heart rate (HR) and improved neurobehavioral outcomes. We hypothesized that maternal DHA supplementation would improve fetal cardiac autonomic control and newborn neurobehavior. Pregnant women were randomized to 600 mg/day of DHA or placebo oil capsules at 14.4 (+/−4) weeks gestation. Fetal HRand HRV were calculated from magnetocardiograms (MCGs) at 24, 32 and 36 weeks gestational age (GA). Newborn neurobehavior was assessed using the Neonatal Behavioral Assessment Scale (NBAS). Postpartum maternal and infant red blood cell (RBC) DHA was significantly higher in the supplemented group as were metrics of fetal HRV and newborn neurobehavior in the autonomic and motor clusters. Higher HRV is associated with more responsive and flexible autonomic nervous system (ANS). Coupled with findings of improved autonomic and motor behavior, these data suggest that maternal DHA supplementation during pregnancy may impart an adaptive advantage to the fetus. PMID:23433688

  19. Interobserver reliability to interpret intrapartum electronic fetal heart rate monitoring: Does a standardized algorithm improve agreement among clinicians?

    PubMed

    Uccella, S; Cromi, A; Colombo, G F; Bogani, G; Casarin, J; Agosti, M; Ghezzi, F

    2015-04-01

    Our aim was to investigate the accuracy in predicting intrapartum fetal acidaemia and the interobserver reproducibility of a mathematical algorithm for the interpretation of electronic fetal heart rate (FHR) monitoring throughout labour. Eight physicians (blinded to the clinical outcomes of the deliveries) evaluated four randomly selected intrapartum FHR tracings by common visual interpretation, trying to predict umbilical artery base excess at birth. They subsequently were asked to re-evaluate the tracings using a mathematical algorithm for FHR tracing interpretation. Common visual interpretation allowed a correct estimation of the umbilical artery base excess in 34.4% of cases, with a poor interobserver reproducibility (Kappa correlation coefficient = 0.24). After implementation of the algorithm, the proportion of correct estimates significantly increased to 90.6% (p < 0.001), with excellent inter-clinician agreement (κ: 0.85). To conclude, incorporation of a standardised algorithm reduces the interobserver variability and allows a better estimation of fetal acidaemia at birth. PMID:25254299

  20. Effects of docosahexaenoic acid supplementation during pregnancy on fetal heart rate and variability: a randomized clinical trial.

    PubMed

    Gustafson, K M; Carlson, S E; Colombo, J; Yeh, H-W; Shaddy, D J; Li, S; Kerling, E H

    2013-05-01

    DHA (22:6n-3) supplementation during infancy has been associated with lower heart rate (HR) and improved neurobehavioral outcomes. We hypothesized that maternal DHA supplementation would improve fetal cardiac autonomic control and newborn neurobehavior. Pregnant women were randomized to 600 mg/day of DHA or placebo oil capsules at 14.4 (+/-4) weeks gestation. Fetal HR and HRV were calculated from magnetocardiograms (MCGs) at 24, 32 and 36 weeks gestational age (GA). Newborn neurobehavior was assessed using the Neonatal Behavioral Assessment Scale (NBAS). Post-partum maternal and infant red blood cell (RBC) DHA was significantly higher in the supplemented group as were metrics of fetal HRV and newborn neurobehavior in the autonomic and motor clusters. Higher HRV is associated with more responsive and flexible autonomic nervous system (ANS). Coupled with findings of improved autonomic and motor behavior, these data suggest that maternal DHA supplementation during pregnancy may impart an adaptive advantage to the fetus. PMID:23433688

  1. Xenotransplantation Models to Study the Effects of Toxicants on Human Fetal Tissues1

    PubMed Central

    Spade, Daniel J.; McDonnell, Elizabeth V.; Heger, Nicholas E.; Sanders, Jennifer A.; Saffarini, Camelia M.; Gruppuso, Philip A.; De Paepe, Monique E.; Boekelheide, Kim

    2015-01-01

    Many diseases that manifest throughout the lifetime are influenced by factors affecting fetal development. Fetal exposure to xenobiotics, in particular, may influence the development of adult diseases. Established animal models provide systems for characterizing both developmental biology and developmental toxicology. However, animal model systems do not allow researchers to assess the mechanistic effects of toxicants on developing human tissue. Human fetal tissue xenotransplantation models have recently been implemented to provide human-relevant mechanistic data on the many tissue-level functions that may be affected by fetal exposure to toxicants. This review describes the development of human fetal tissue xenotransplant models for testis, prostate, lung, liver, and adipose tissue, aimed at studying the effects of xenobiotics on tissue development, including implications for testicular dysgenesis, prostate disease, lung disease, and metabolic syndrome. The mechanistic data obtained from these models can complement data from epidemiology, traditional animal models, and in vitro studies to quantify the risks of toxicant exposures during human development. PMID:25477288

  2. Fetal Heart Rate Reactivity Differs by Women’s Psychiatric Status during Psychological Stress, but Not Paced Breathing

    PubMed Central

    Fifer, William P.; Myers, Michael M.; Bagiella, Emilia; Duong, Jimmy K.; Chen, Ivy S.; Leotti, Lauren

    2013-01-01

    Objective Prenatal exposure to women’s mood dysregulation is associated with variation in neurobehavioral profiles in children. Few studies have assessed these relationships during the prenatal period. Methods In 113 women in the 36th – 38th gestational week (mean age 26.3 ± 5.4 years), electrocardiogram, blood pressure, respiration, salivary cortisol, and fetal heart rate (HR) were measured during baseline, a psychological challenge (Stroop color–word matching task), and a standardized paced breathing protocol. Subjects underwent the Structured Clinical Interview for DSM-IV prior to testing and were grouped as: depressed, co–morbid for depression and anxiety, anxiety disorder only, and control. Results There was a significant main effect of maternal diagnostic group on fetal HR only during the Stroop task: fetuses of women in the co–morbid group had a greater HR increase compared to controls (p < .05). Overall, fetuses showed robust increases in HR during paced breathing (p < .0001), but there was no significant difference by maternal diagnosis. For both tasks, changes in fetal HR were independent of women’s concurrent cardiorespiratory activity. Finally, although cortisol was higher in the co-morbid group (p <.05), independent of diagnosis, there was a trend for maternal baseline cortisol to be positively associated with average fetal HR (p = .08). Conclusions These findings indicate that variation in fetal HR reactivity — an index of emerging regulatory capacities — is likely influenced by multiple acute and chronic factors associated with women’s psychobiology. PMID:21400485

  3. Specific heart granules and natriuretic peptide in the developing myocardium of fetal and neonatal rats and hamsters.

    PubMed Central

    Navaratnam, V; Woodward, J M; Skepper, J N

    1989-01-01

    The ontogenesis of specific heart granules and of the related natriuretic peptide activity in heart muscle was studied in fetal and neonatal rats and golden hamsters by ultrastructural analysis including immunogold labelling for ANP-28 and by radioimmunoassay. In both species, immunoreactive granules first appear in the myocardial sleeve of the embryonic heart tube during the looping stages which precede chamber formation and the peptide becomes detectable by radioimmunoassay two or three days later by which time the chambers are identifiable. Granule density and ANP concentration in the rat are higher than in the hamster at all stages of development. Almost all atrial myocytes express ANP in fetal hearts whereas, in the ventricular wall, cells containing immunoreactive granules are scattered. The density of granules in atrial myocytes increases during further stages of fetal and neonatal development, while it decreases markedly even in those ventricular myocytes which are immunoreactive. Changes in the ultrastructural appearance of ventricular SHG suggest that the mode of production of ANP changes in ventricular myocytes after birth but does not change in atrial cells. There is no correlation between the distribution of immunoreactive ventricular myocytes and that of the conducting system. In both species, the concentration of ANP in the atrial well is higher than ventricular levels from the outset and the disparity becomes exaggerated with development till, in six months old adult animals, the atrial to ventricular concentration ratio is about 3 x 10(3):1 in the rat and 1.5 x 10(3): 1 in the hamster. In the hamster, a distinct gradient of ANP concentration between the right and left atria is already established in the early fetal period and it becomes enhanced in the neonatal period. In the rat, however, a slight difference becomes discernible only after birth. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:2532637

  4. The effect of warfarin dosage on maternal and fetal outcomes in pregnant women with prosthetic heart valves

    PubMed Central

    Soma-Pillay, P; Nene, Z; Mathivha, T M; Macdonald, A P

    2011-01-01

    There are several challenges in the management of pregnant women with mechanical heart valves. Pregnancy increases the risk of thromboembolism and there is currently no consensus on the safest anticoagulation method during pregnancy. The objective of the study was to determine the correlation between the warfarin dose and pregnancy outcome in pregnant women with prosthetic heart valves. Warfarin in pregnancy was associated with a low risk of valve thrombosis or maternal death. The risk for fetal abnormalities was not related to the maternal warfarin dosage. However, the risk for stillbirth was significantly increased with increasing doses of warfarin.

  5. Three-dimensional digital visible heart model and myocardial pathological characteristics of fetal single ventricle connected with aortic coarctation.

    PubMed

    Ren, B; Jiang, Y; Xia, H M; Li, X Y; Tan, L W; Li, Y; Li, Q Y; Li, X S; Gao, Y H

    2013-01-01

    This study aimed to provide data for imaging diagnosis and clinical surgical plans by reconstructing a three-dimensional (3-D) digital visible heart model of single ventricle (SV) connection with aortic coarctation (CoA) and characterizing the myocardial and vascular wall pathological characteristics. Fifteen miscarried fetus cadavers with SV and CoA were selected. Fourteen cardiac specimens were systematically reviewed for segmental anatomy and conventional histological examinations. One fetus cadaver was used to obtain the structural dataset of the fetal body and to reconstruct a 3-D digital visible heart model. Specimen pathological dissection indicated hypertrophic myocardium SV, significant aortic wall thickening, and localized coarctation area elevation. Ten cases of SV with left ventricular morphology displayed a large muscle ridge and solitus normally aligned great arteries. Five cases of SV with right ventricular morphology had coarse, parallel trabeculations and received a common atrioventricular valve. The reconstructed 3-D heart and the main internal structures were realistic, which were beneficial for clinical and image teaching of fetal heart development. The change of characteristics of the myocardium and great vascular wall was obvious and may be the critical cause leading to progressive dysfunction in the postnatal heart. PMID:24301785

  6. Cortisol stimulates proliferation and apoptosis in the late gestation fetal heart: differential effects of mineralocorticoid and glucocorticoid receptors

    PubMed Central

    Feng, Xiaodi; Reini, Seth A.; Richards, Elaine; Wood, Charles E.

    2013-01-01

    We have previously found that modest chronic increases in maternal cortisol result in an enlarged fetal heart. To explore the mechanisms of this effect, we used intrapericardial infusions of a mineralocorticoid receptor (MR) antagonist (canrenoate) or of a glucocorticoid receptor (GR) antagonist (mifepristone) in the fetus during maternal infusion of cortisol (1 mg·kg−1·day−1). We have shown that the MR antagonist blocked the increase in fetal heart weight and in wall thickness resulting from maternal cortisol infusion. In the current study we extended those studies and found that cortisol increased Ki67 staining in both ventricles, indicating cell proliferation, but also increased active caspase-3 staining in cells of the conduction pathway in the septum and subendocardial layers of the left ventricle, suggesting increased apoptosis in Purkinje fibers. The MR antagonist blocked the increase in cell proliferation, whereas the GR antagonist blocked the increased apoptosis in Purkinje fibers. We also found evidence of activation of caspase-3 in c-kit-positive cells, suggesting apoptosis in stem cell populations in the ventricle. These studies suggest a potentially important role of corticosteroids in the terminal remodeling of the late gestation fetal heart and suggest a mechanism for the cardiac enlargement with excess corticosteroid exposure. PMID:23785077

  7. Brain macrophages and microglia in human fetal hydrocephalus.

    PubMed

    Ulfig, Norbert; Bohl, Jürgen; Neudörfer, Frank; Rezaie, Payam

    2004-08-01

    Whereas several studies have addressed the activation of microglia (the resident mononuclear phagocytes of the brain) and macrophages within the nervous system in experimental animal models of congenital and induced hydrocephalus, little is known of their state of activation or regional distribution in human fetal hydrocephalus. This investigation aimed to address such questions. Ten human fetal cases [20-36 gestational weeks (GW) at postmortem] previously diagnosed with hydrocephalus on ultrasound examination in utero, and 10 non-hydrocephalic controls (22-38 GW at postmortem) were assessed immufcnohistochemically with antibodies directed against MHC class II and CD68 antigens, and lectin histochemistry with Lycopersicon esculentum (tomato lectin). Adjacent sections were also immunoreacted with an antiserum to laminin to detect cerebral blood vessels. Eight out of the 10 hydrocephalus cases showed numerous CD68 and tomato lectin-positive macrophages located at focal regions along the ependymal lining of the lateral ventricles (particularly within the occipital horn). However, only five of these cases demonstrated MHC class II positive macrophages associated with the ventricular lining. Microglial reactivity within periventricular regions could also be identified using the lectin in four cases, two of which were also immunoreactive with CD68 (but not with MHC class II). By comparison, in control cases five out of 10 fetal brains (aged between 20 and 24 GW) showed few or no ependymal or supraependymal macrophages. One case at 28 GW, and cases at 32 and 38 GW (two of which were diagnosed with intrauterine hypoxic-ischemia) did, however, show some MHC class II (CD68 negative) cells located at the ependymal surface. Nevertheless, these were not as numerous or intensely immunoreactive as in the hydrocephalus cases. Microglia interspersed throughout the intermediate zone and circumscribing the basal ganglia were within normal confines in all cases examined. Hydrocephalic

  8. Morphology and biomechanics of human heart

    NASA Astrophysics Data System (ADS)

    Chelnokova, Natalia O.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Polienko, Asel V.; Ivanov, Dmitry V.

    2016-03-01

    Object of study: A study of the biomechanical characteristics of the human heart ventricles was performed. 80 hearts were extracted during autopsy of 80 corpses of adults (40 women and 40 men) aged 31-70 years. The samples were investigated in compliance with the recommendations of the ethics committee. Methods: Tension and compression tests were performed with help of the uniaxial testing machine Instron 5944. Cardiometry was also performed. Results: In this work, techniques for human heart ventricle wall biomechanical properties estimation were developed. Regularities of age and gender variability in deformative and strength properties of the right and left ventricle walls were found. These properties were characterized by a smooth growth of myocardial tissue stiffness and resistivity at a relatively low strain against reduction in their strength and elasticity from 31-40 to 61-70 years. It was found that tissue of the left ventricle at 61-70 years had a lower stretchability and strength compared with tissues of the right ventricle and septum. These data expands understanding of the morphological organization of the heart ventricles, which is very important for the development of personalized medicine. Taking into account individual, age and gender differences of the heart ventricle tissue biomechanical characteristics allows to rationally choosing the type of patching materials during reconstructive operations on heart.

  9. Fetal Circulatory Variation in an Acute Incident Causing Bradycardia

    PubMed Central

    Olgan, Safak; Sakinci, Mehmet; Dogan, Nasuh Utku; Cagliyan, Erkan; Altunyurt, Sabahattin

    2014-01-01

    Umbilical artery\\vein, middle cerebral artery, and ductus venosus Doppler velocimetry were performed at 33 weeks of gestation in the settings of an intrauterine growth restricted fetus during a heart rate deceleration. Interestingly, we recorded a sudden onset redistribution of fetal blood flow with fetal bradycardia. Spontaneous normalization of waveforms was observed once fetal heart rate returned to normal. Our case provides evidence to circulatory variation of a human fetus resulting from an acute incident causing bradycardia. PMID:25580322

  10. Human fetal globin gene expression is regulated by LYAR

    PubMed Central

    Ju, Junyi; Wang, Ying; Liu, Ronghua; Zhang, Yichong; Xu, Zhen; Wang, Yadong; Wu, Yupeng; Liu, Ming; Cerruti, Loretta; Zou, Fengwei; Ma, Chi; Fang, Ming; Tan, Renxiang; Jane, Stephen M.; Zhao, Quan

    2014-01-01

    Human globin gene expression during development is modulated by transcription factors in a stage-dependent manner. However, the mechanisms controlling the process are still largely unknown. In this study, we found that a nuclear protein, LYAR (human homologue of mouse Ly-1 antibody reactive clone) directly interacted with the methyltransferase PRMT5 which triggers the histone H4 Arg3 symmetric dimethylation (H4R3me2s) mark. We found that PRMT5 binding on the proximal γ-promoter was LYAR-dependent. The LYAR DNA-binding motif (GGTTAT) was identified by performing CASTing (cyclic amplification and selection of targets) experiments. Results of EMSA and ChIP assays confirmed that LYAR bound to a DNA region corresponding to the 5′-untranslated region of the γ-globin gene. We also found that LYAR repressed human fetal globin gene expression in both K562 cells and primary human adult erythroid progenitor cells. Thus, these data indicate that LYAR acts as a novel transcription factor that binds the γ-globin gene, and is essential for silencing the γ-globin gene. PMID:25092918

  11. Human fetal globin gene expression is regulated by LYAR.

    PubMed

    Ju, Junyi; Wang, Ying; Liu, Ronghua; Zhang, Yichong; Xu, Zhen; Wang, Yadong; Wu, Yupeng; Liu, Ming; Cerruti, Loretta; Zou, Fengwei; Ma, Chi; Fang, Ming; Tan, Renxiang; Jane, Stephen M; Zhao, Quan

    2014-09-01

    Human globin gene expression during development is modulated by transcription factors in a stage-dependent manner. However, the mechanisms controlling the process are still largely unknown. In this study, we found that a nuclear protein, LYAR (human homologue of mouse Ly-1 antibody reactive clone) directly interacted with the methyltransferase PRMT5 which triggers the histone H4 Arg3 symmetric dimethylation (H4R3me2s) mark. We found that PRMT5 binding on the proximal γ-promoter was LYAR-dependent. The LYAR DNA-binding motif (GGTTAT) was identified by performing CASTing (cyclic amplification and selection of targets) experiments. Results of EMSA and ChIP assays confirmed that LYAR bound to a DNA region corresponding to the 5'-untranslated region of the γ-globin gene. We also found that LYAR repressed human fetal globin gene expression in both K562 cells and primary human adult erythroid progenitor cells. Thus, these data indicate that LYAR acts as a novel transcription factor that binds the γ-globin gene, and is essential for silencing the γ-globin gene. PMID:25092918

  12. A human fetal prostate xenograft model of developmental estrogenization.

    PubMed

    Saffarini, Camelia M; McDonnell-Clark, Elizabeth V; Amin, Ali; Boekelheide, Kim

    2015-01-01

    Prostate cancer is a common disease in older men. Rodent models have demonstrated that an early and later-life exposure to estrogen can lead to cancerous lesions and implicated hormonal dysregulation as an avenue for developing future prostate neoplasia. This study utilizes a human fetal prostate xenograft model to study the role of estrogen in the progression of human disease. Histopathological lesions were assessed in 7-, 30-, 90-, 200-, and 400-day human prostate xenografts. Gene expression for cell cycle, tumor suppressors, and apoptosis-related genes (ie, CDKN1A, CASP9, ESR2, PTEN, and TP53) was performed for 200-day estrogen-treated xenografts. Glandular hyperplasia was observed in xenografts given both an initial and secondary exposure to estradiol in both 200- and 400-day xenografts. Persistent estrogenic effects were verified using immunohistochemical markers for cytokeratin 10, p63, and estrogen receptor α. This model provides data on the histopathological state of the human prostate following estrogenic treatment, which can be utilized in understanding the complicated pathology associated with prostatic disease and early and later-life estrogenic exposures. PMID:25633637

  13. Evaluation of prenatal diagnosis of associated congenital heart diseases by fetal ultrasonographic examination in Europe.

    PubMed

    Stoll, C; Garne, E; Clementi, M

    2001-04-01

    Ultrasound scans in the mid trimester of pregnancy are now a routine part of antenatal care in most European countries. With the assistance of Registries of Congenital Anomalies a study was undertaken in Europe. The objective of the study was to evaluate prenatal detection of congenital heart defects (CHD) by routine ultrasonographic examination of the fetus. All congenital malformations suspected prenatally and all congenital malformations, including chromosome anomalies, confirmed at birth were identified from the Congenital Malformation Registers, including 20 registers from the following European countries: Austria, Croatia, Denmark, France, Germany, Italy, Lithuania, Spain, Switzerland, The Netherlands, UK and Ukrainia. These registries follow the same methodology. The study period was 1996-1998, 709 030 births were covered, and 8126 cases with congenital malformations were registered. If more than one cardiac malformation was present the case was coded as complex cardiac malformation. CHD were subdivided into 'isolated' when only a cardiac malformation was present and 'associated' when at least one other major extra cardiac malformation was present. The associated CHD were subdivided into chromosomal, syndromic non-chromosomal and multiple. The study comprised 761 associated CHD including 282 cases with multiple malformations, 375 cases with chromosomal anomalies and 104 cases with non-chromosomal syndromes. The proportion of prenatal diagnosis of associated CHD varied in relation to the ultrasound screening policies from 17.9% in countries without routine screening (The Netherlands and Denmark) to 46.0% in countries with only one routine fetal scan and 55.6% in countries with two or three routine fetal scans. The prenatal detection rate of chromosomal anomalies was 40.3% (151/375 cases). This rate for recognized syndromes and multiply malformed with CHD was 51.9% (54/104 cases) and 48.6% (137/282 cases), respectively; 150/229 Down syndrome (65.8%) were

  14. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    PubMed Central

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C.I. Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E.; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-01-01

    Summary The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo. PMID:27052314

  15. Fetal Aortic Valvuloplasty for Evolving Hypoplastic Left Heart Syndrome: Postnatal Outcomes of the First 100 Patients

    PubMed Central

    Freud, Lindsay R.; McElhinney, Doff B.; Marshall, Audrey C.; Marx, Gerald R.; Friedman, Kevin G.; del Nido, Pedro J.; Emani, Sitaram M.; Lafranchi, Terra; Silva, Virginia; Wilkins-Haug, Louise E.; Benson, Carol B.; Lock, James E.; Tworetzky, Wayne

    2015-01-01

    Background Fetal aortic valvuloplasty (FAV) can be performed for severe mid-gestation aortic stenosis (AS) in an attempt to prevent progression to hypoplastic left heart syndrome (HLHS). A subset of patients has achieved a biventricular (BV) circulation after FAV. The postnatal outcomes and survival of the BV patients, compared to those managed as HLHS, have not been reported. Methods and Results We included 100 patients who underwent FAV for severe mid-gestation AS with evolving HLHS from March 2000 to January 2013. Patients were categorized based on postnatal management as BV or HLHS. Clinical records were reviewed. Eighty-eight fetuses were live-born, and 38 had a BV circulation (31 from birth, 7 converted after initial univentricular palliation). Left-sided structures, namely aortic and mitral valve sizes and LV volume, were significantly larger in the BV group at the time of birth (p-values <0.01). After a median follow-up of 5.4 years, freedom from cardiac death among all BV patients was 96±4% at 5 years and 84±12% at 10 years, which was better than HLHS patients (log-rank p=0.04). There was no cardiac mortality in patients with a BV circulation from birth. All but 1 of the BV patients required postnatal intervention; 42% underwent aortic and/or mitral valve replacement. On most recent echocardiogram, the median LV end-diastolic volume z-score was +1.7 (range: -1.3, +8.2), and 80% had normal ejection fraction. Conclusions Short- and intermediate-term survival among patients who underwent FAV and achieved a BV circulation postnatally is encouraging. However, morbidity still exists, and on-going assessment is warranted. PMID:25052401

  16. Transplantation of electively aborted human fetal tissue: physicians' attitudes.

    PubMed Central

    Mullen, M A; Williams, J I; Lowy, F H

    1994-01-01

    OBJECTIVE: To provide empirical data on the attitudes of Ontario family physicians and gynecologists toward the use of electively aborted fetal tissue for transplantation (FTT). DESIGN: Cross-sectional survey. SETTING: Ontario. PARTICIPANTS: Random samples of 300 physicians from the membership list of the College of Family Physicians of Canada and 300 from the membership list of the Society of Obstetricians and Gynaecologists of Canada; 248 family physicians and 186 gynecologists responded, for an overall response rate of 72%. OUTCOME MEASURES: Physicians' attitudes toward incentives to collect fetal tissue at abortion, patient-management issues, consent issues and potential conflicts in the supply and demand of fetal tissue. RESULTS: Of those surveyed 75% agreed that there should be no incentives to collect fetal tissue at abortion, 90% believed that decisions to abort must be separate from decisions to donate fetal tissue, 94% agreed that an option to donate fetal tissue should be discussed only after a firm decision to abort has been made, and 88% stated that the demand for fetal tissue should not hinder the availability of new abortion technology such as the abortifacient pill (RU 486). CONCLUSIONS: Results suggest that there is general approval for FTT. Apparent variations between responses to global statements and to practice-oriented statements suggest strategies for effective Canadian public policy regarding FTT. PMID:8039086

  17. Fetal neural transplantation: placing the ethical debate within the context of society's use of human material.

    PubMed

    Jones, D Gareth

    1991-01-01

    In this paper I wish to place the debate about the use of fetal tissue, as in fetal neural transplantation, within the context of society's use of, and dependence upon, human material for many teaching, research, and therapeutic purposes. I shall argue that such an emphasis is required if we are to be consistent in our approach to the ethical dimensions of the fetal neural transplantation debate. What will emerge is the ambivalence of society's ethical attitudes and also the diversity of perspectives in most debates involving the use of human material. PMID:11650946

  18. Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys

    NASA Astrophysics Data System (ADS)

    Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.

    1988-11-01

    Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.

  19. Performance of Different Scan Protocols of Fetal Echocardiography in the Diagnosis of Fetal Congenital Heart Disease: A Systematic Review and Meta-Analysis

    PubMed Central

    Li, Yifei; Hua, Yimin; Fang, Jie; Wang, Chuan; Qiao, Lina; Wan, Chaomin; Mu, Dezhi; Zhou, Kaiyu

    2013-01-01

    Objective The rapid progress in fetal echocardiography has lead to early detection of congenital heart diseases. Increasing evidences have shown that prenatal diagnosis could be life saving in certain cases. However, there is no agreement on which protocol is most adaptive diagnostic one. Thus, we use meta-analysis to conduct a pooled performance test on 5 diagnostic protocols. Methods We searched PUBMED, EMBASE, the Cochrane Central Register of Controlled Trials and WHO clinical trails registry center to identify relevant studies up to August, 2012. We performed meta-analysis in a fixed/random-effect model using Meta-disc 1.4. We used STATA 11.0 to estimate the publication bias and SPSS 17.0 to evaluate variance. Results We use results from 81 studies in 63 articles to analyze the pooled accuracy. The overall performance of pooled sensitivities of spatiotemporal image correlation (STIC), extend cardiac echography examination (ECEE) and 4 chambers view + outflow tract view + 3 vessels and trachea view (4 CV+OTV+3 VTV) were around 0.90, which was significant higher than that of 4 chambers view + outflow tract view or 3 vessels and trachea view (4 CV+OTV/3 VTV) and 4 chambers view (4 CV). Unfortunately the pooled specificity of STIC was 0.92, which was significant lower than that of other 4 protocols which reached at 1.00. The area under the summary receiver operating characteristic curves value of STIC, ECEE, 4 CV+OTV+3 VTV, 4 CV+OTV/3 VTV and 4 CV were 0.9700, 0.9971, 0.9983, 0.9929 and 0.9928 respectively. Conclusion These results suggest a great diagnostic potential for fetal echocardiography detection as a reliable method of fetal congenital heart disease. But at least 3 sections view (4 CV, OTV and 3 VTV) should be included in scan protocol, while the STIC can be used to provide more information for local details of defects, and can not be used to make a definite diagnosis alone with its low specificity. PMID:23750263

  20. Characterization of a Carrier-Mediated Transport System for Taurine in the Fetal Mouse Heart In Vitro

    PubMed Central

    Grosso, David S.; Roeske, William R.; Bressler, Rubin

    1978-01-01

    Cardiac taurine levels are elevated in hypertension and congestive heart failure. A possible mechanism for this increase in taurine is an alteration of its uptake. We sought to identify and characterize a carrier-mediated transport system for taurine in the mammalian myocardium utilizing the fetal mouse heart in organ culture. Hearts from fetuses of 16-19 days gestational age used in these studies had an endogenous taurine content of 14.1±0.5 nmol/mg tissue. The uptake of [3H]taurine was linear for up to 8 h. Taurine was accumulated against a concentration gradient as demonstrated by a net increase in taurine concentration when hearts were incubated in 0.5 mM taurine. [3H]Taurine uptake was saturable, Km = 0.44 mM, temperature dependent, and required sodium. The close structural analogues, hypotaurine and β-alanine, reduced [3H]taurine uptake by 87% when present in 100-fold excess. The α-amino acids alanine, α-aminoisobutyric acid, glycine, leucine, and threonine did not inhibit uptake. Other taurine analogues tested were guanidinotaurine, guanidinopropionic acid, γ-aminobutyric acid, 2-aminoethane phosphonic acid, aminomethane sulfonic acid, 3-aminopropane sulfonic acid, N-acetyltaurine, and isethionic acid. We conclude that a carrier-mediated transport system for taurine exists in the fetal mouse heart based on the demonstration of (a) temperature dependence, (b) saturability, and (c) structural selectivity of the uptake process. Transport was demonstrated to be mediated by a β-amino acid uptake system. In addition, taurine uptake was observed to be sodium dependent, energy dependent, and capable of accumulating taurine against a concentration gradient. PMID:659583

  1. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth.

    PubMed

    Winterbottom, Emily F; Fei, Dennis L; Koestler, Devin C; Giambelli, Camilla; Wika, Eric; Capobianco, Anthony J; Lee, Ethan; Marsit, Carmen J; Karagas, Margaret R; Robbins, David J

    2015-06-01

    Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health. PMID:26288817

  2. Structural and functional maturation of the fetal human choriocapillaris

    PubMed Central

    Baba, Takayuki; Grebe, Rhonda; Hasegawa, Takuya; Bhutto, Imran; Merges, Carol; McLeod, D. Scott; Lutty, Gerard A.

    2016-01-01

    Purpose The purpose of this study was to examine the structural and functional maturation of the choriocapillaris (CC). We sought to determine when fenestrations formed, pericytes invest the capillaries and endothelial cells became functional. Methods Immunohistochemistry was performed on cryopreserved sections of embryonic/fetal human eyes from 7 to 22 weeks gestation (WG) using antibodies against PAL-E, PV-1 (fenestrations), carbonic anhydrase IV (CA IV), eNOS, and alpha smooth muscle actin (αSMA) and NG2 (two pericyte markers) and endothelial cell (EC) markers (CD34, CD31). Alkaline phosphatase (APase) enzymatic activity was demonstrated by enzyme histochemistry. Transmission electron microscopy (TEM) was performed on 11, 14, 16 and 22 WG eyes. Adult human eyes were used as positive controls. Results All EC markers were present in CC by 7 WG. PAL-E, CA IV and eNOS immunoreactivities and APase activity were present in CC by 7–9 WG. TEM analysis demonstrated how structurally immature this vasculature was even at 11 WG: no basement membrane, absence of pericytes, and poorly formed lumens that were filled with filopodia. The few fenestrations that were observed were often present within the luminal space in the filopodia. Contiguous fenestrations and significant PV-1 were not observed until 21–22 WG. αSMA was prominent at 22 WG and the maturation of pericytes was confirmed by TEM. Conclusions It appears that EC and their precursors have several mature functional characteristics well before they are structurally mature. Although EC make tight junctions early in development, contiguous fenestrations and mature pericytes occur much later in development. PMID:19264887

  3. Human hepatic stem cells from fetal and postnatal donors

    PubMed Central

    Schmelzer, Eva; Zhang, Lili; Bruce, Andrew; Wauthier, Eliane; Ludlow, John; Yao, Hsin-lei; Moss, Nicholas; Melhem, Alaa; McClelland, Randall; Turner, William; Kulik, Michael; Sherwood, Sonya; Tallheden, Tommi; Cheng, Nancy; Furth, Mark E.; Reid, Lola M.

    2007-01-01

    Human hepatic stem cells (hHpSCs), which are pluripotent precursors of hepatoblasts and thence of hepatocytic and biliary epithelia, are located in ductal plates in fetal livers and in Canals of Hering in adult livers. They can be isolated by immunoselection for epithelial cell adhesion molecule–positive (EpCAM+) cells, and they constitute ∼0.5–2.5% of liver parenchyma of all donor ages. The self-renewal capacity of hHpSCs is indicated by phenotypic stability after expansion for >150 population doublings in a serum-free, defined medium and with a doubling time of ∼36 h. Survival and proliferation of hHpSCs require paracrine signaling by hepatic stellate cells and/or angioblasts that coisolate with them. The hHpSCs are ∼9 μm in diameter, express cytokeratins 8, 18, and 19, CD133/1, telomerase, CD44H, claudin 3, and albumin (weakly). They are negative for α-fetoprotein (AFP), intercellular adhesion molecule (ICAM) 1, and for markers of adult liver cells (cytochrome P450s), hemopoietic cells (CD45), and mesenchymal cells (vascular endothelial growth factor receptor and desmin). If transferred to STO feeders, hHpSCs give rise to hepatoblasts, which are recognizable by cordlike colony morphology and up-regulation of AFP, P4503A7, and ICAM1. Transplantation of freshly isolated EpCAM+ cells or of hHpSCs expanded in culture into NOD/SCID mice results in mature liver tissue expressing human-specific proteins. The hHpSCs are candidates for liver cell therapies. PMID:17664288

  4. KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas

    PubMed Central

    Roost, Matthias S.; van Iperen, Liesbeth; Ariyurek, Yavuz; Buermans, Henk P.; Arindrarto, Wibowo; Devalla, Harsha D.; Passier, Robert; Mummery, Christine L.; Carlotti, Françoise; de Koning, Eelco J.P.; van Zwet, Erik W.; Goeman, Jelle J.; Chuva de Sousa Lopes, Susana M.

    2015-01-01

    Summary Differentiated derivatives of human pluripotent stem cells in culture are generally phenotypically immature compared to their adult counterparts. Their identity is often difficult to determine with certainty because little is known about their human fetal equivalents in vivo. Cellular identity and signaling pathways directing differentiation are usually determined by extrapolating information from either human adult tissue or model organisms, assuming conservation with humans. To resolve this, we generated a collection of human fetal transcriptional profiles at different developmental stages. Moreover, we developed an algorithm, KeyGenes, which uses this dataset to quantify the extent to which next-generation sequencing or microarray data resemble specific cell or tissue types in the human fetus. Using KeyGenes combined with the human fetal atlas, we identified multiple cell and tissue samples unambiguously on a limited set of features. We thus provide a flexible and expandable platform to monitor and evaluate the efficiency of differentiation in vitro. PMID:26028532

  5. FETAL HEART RATE MONITORING PATTERNS IN WOMEN WITH AMNIOTIC FLUID PROTEOMIC PROFILES INDICATIVE OF INFLAMMATION

    PubMed Central

    Buhimschi, Catalin S.; Abdel-Razeq, Sonya; Cackovic, Michael; Pettker, Christian M.; Dulay, Antonette T.; Bahtiyar, Mert Ozan; Zambrano, Eduardo; Martin, Ryan; Norwitz, Errol R.; Bhandari, Vineet; Buhimschi, Irina A.

    2009-01-01

    We hypothesized that abnormal fetal heart rate monitoring patterns (FHR-MP) occur more often in pregnancies complicated by intra-amniotic inflammation. Therefore, our objective was to examine the relationships between FHR-MP abnormalities, intra-amniotic inflammation and/or infection, acute histological chorioamnionitis and early-onset neonatal sepsis (EONS) in pregnancies complicated by preterm birth. Additionally, the ability of various FHR-MPs to predict EONS was investigated. FHR-MP from 87 singleton premature neonates delivered within 48 hours from amniocentesis [gestational age: 28.9 ± 3.3 weeks] were analyzed blindly using strict NICHD criteria. Strips were evaluated at three time points: at admission, at amniocentesis and prior to delivery. Intra-amniotic inflammation was established based on a previously validated proteomic fingerprint (MR score). Diagnoses of histological chorioamnionitis and EONS were based on well-recognized pathological, clinical and laboratory criteria. We determined that fetuses of women with severe intra-amniotic inflammation had a higher FHR baseline throughout the entire monitoring period and an increased frequency of a non-reactive FHR-MP at admission. Of all FHR-MP, a non-reassuring test at admission had 32% sensitivity, 95% specificity, 73% positive predictive value, 77% negative predictive value, and 76% accuracy in predicting EONS. Although a non-reassuring FHR-MP at admission was significantly associated with EONS after correcting for gestational age (OR: 5.6 [95%CI: 1.2–26.2], p=0.030), the majority of the neonates that developed EONS had an overall reassuring FHR-MP. Non-reassuring FHR-MPs at either amniocentesis or delivery had no association with EONS. We conclude that in cases complicated by preterm birth, a non-reassuring FHR-MP at the initial evaluation is a specific but not a sensitive predictor of EONS. An abnormal FHR-MP can thus raise the level of awareness that a fetus with EONS may be born, but is not a

  6. Human fetal inner ear involvement in congenital cytomegalovirus infection

    PubMed Central

    2013-01-01

    Background Congenital cytomegalovirus (CMV) infection is a leading cause of sensorineural hearing loss (SNHL). The mechanisms of pathogenesis of CMV-related SNHL are still unclear. The aim is to study congenital CMV-related damage in the fetal inner ear, in order to better understand the underlying pathophysiology behind CMV-SNHL. Results We studied inner ears and brains of 20 human fetuses, all at 21 week gestational age, with a high viral load in the amniotic fluid, with and without ultrasound (US) brain abnormalities. We evaluated histological brain damage, inner ear infection, local inflammatory response and tissue viral load. Immunohistochemistry revealed that CMV was positive in 14/20 brains (70%) and in the inner ears of 9/20 fetuses (45%). In the cases with inner ear infection, the marginal cell layer of the stria vascularis was always infected, followed by infection in the Reissner’s membrane. The highest tissue viral load was observed in the inner ear with infected Organ of Corti. Vestibular labyrinth showed CMV infection of sensory cells in the utricle and in the crista ampullaris. US cerebral anomalies were detected in 6 cases, and in all those cases, the inner ear was always involved. In the other 14 cases with normal brain scan, histological brain damage was present in 8 fetuses and 3 of them presented inner ear infection. Conclusions CMV-infection of the marginal cell layer of the stria vascularis may alter potassium and ion circulation, dissipating the endocochlear potential with consequent SNHL. Although abnormal cerebral US is highly predictive of brain and inner ear damage, normal US findings cannot exclude them either. PMID:24252374

  7. Identification of CYP3A7 for Glyburide Metabolism in Human Fetal Livers

    PubMed Central

    Shuster, Diana L.; Risler, Linda J.; Prasad, Bhagwat; Calamia, Justina C.; Voellinger, Jenna L.; Kelly, Edward J.; Unadkat, Jashvant D.; Hebert, Mary F.; Shen, Danny D.; Thummel, Kenneth E.; Mao, Qingcheng

    2014-01-01

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u = 37.1, 13.0, and 8.7 ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4′-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. PMID:25450675

  8. Expression of Stem Cell Markers in the Human Fetal Kidney

    PubMed Central

    Metsuyanim, Sally; Harari-Steinberg, Orit; Buzhor, Ella; Omer, Dorit; Pode-Shakked, Naomi; Ben-Hur, Herzl; Halperin, Reuvit; Schneider, David; Dekel, Benjamin

    2009-01-01

    In the human fetal kidney (HFK) self-renewing stem cells residing in the metanephric mesenchyme (MM)/blastema are induced to form all cell types of the nephron till 34th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2) are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24) in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (<10% of HFK cells) and were mostly present within the EpCAMneg and EpCAMdim fractions, indicating putative stem/progenitor markers. In contrast, single markers such as CD24 and CD133 as well as double-positive CD24+CD133+ cells comprise >50% of HFK cells and predominantly co-express EpCAMbright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM+EpCAM- and to a lesser extent in NCAM+EpCAM+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM+EpCAM+FZD7+), MM stem cells (NCAM+EpCAM-FZD7+) or both (NCAM+FZD7+). These results and

  9. Identification and Analysis of Intermediate Size Noncoding RNAs in the Human Fetal Brain

    PubMed Central

    Chen, Xiaoyan; Fan, Zhen; Chen, Runsheng

    2011-01-01

    The involvement of noncoding RNAs (ncRNAs) in the development of the human brain remains largely unknown. Applying a cloning strategy for detection of intermediate size (50–500 nt) ncRNAs (is-ncRNAs) we have identified 82 novel transcripts in human fetal brain tissue. Most of the novel is-ncRNAs are not well conserved in vertebrates, and several transcripts were only found in primates. Northern blot and microarray analysis indicated considerable variation in expression across human fetal brain development stages and fetal tissues for both novel and known is-ncRNAs. Expression of several of the novel is-ncRNAs was conspicuously absent in one or two brain cancer cell lines, and transient overexpression of some transcripts in cancer cells significantly inhibited cell proliferation. Overall, our results suggest that is-ncRNAs play important roles in the development and tumorigenesis of human brain. PMID:21789175

  10. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR

    PubMed Central

    Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela

    2016-01-01

    Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344

  11. Sampling frequency of fetal heart rate impacts the ability to predict pH and BE at birth: a retrospective multi-cohort study.

    PubMed

    Li, Xuan; Xu, Yawen; Herry, Christophe; Durosier, L Daniel; Casati, Daniela; Stampalija, Tamara; Maisonneuve, Emeline; Seely, Andrew J E; Audibert, Francois; Alfirevic, Zarko; Ferrazzi, Enrico; Wang, Xiaogang; Frasch, Martin G

    2015-05-01

    Fetal heart rate (FHR) sampling rate used on the bedside is equal or less than 4 Hz. Current FHR analysis methods fail to detect incipient fetal acidemia. In a fetal sheep model of human labour we showed that FHR sampling rates near 1000 Hz are needed to detect fetal acidemia. Trans-abdominal fetal ECG (t-a fECG) sampling FHR at 900 Hz combined with a complex signals bioinformatics approach showed promise in a human cohort. Here we validate this finding in a retrospective human cohort study by comparing the performance of the same bioinformatics approach to predict pH and BE at birth in the cohorts with FHR sampled either at 4 Hz or at 900 Hz.The 4 Hz FHR recording data sets consisted of the open access intrapartum CTG data base with n = 552 subjects used to develop the predictive model and another cohort of prospectively recruited n = 11 labouring women to then validate it. 900 Hz FHR data set comprised two prospectively recruited t-a fECG cohorts of n = 60 and n = 23 subjects. Recruitment criteria were similar across the cohorts. We have determined the goodness of fit (R(2)) and root mean square error (RMSE) as the performance indicators of the model on each cohort.The clinical characteristics of all cohorts were similar (gestational age 280   ±   8 d; gender 50% male; birth body weight 3.5   ±   0.5 kg; pH and BE at birth 7.25   ±   0.1 and  -5.7   ±   3.4 mmol L(  -  1), respectively; 1' and 5' Apgar scores at birth 8.5   ±   1.4 and 9.4   ±   0.6, respectively). The 4 Hz FHR cohort rendered-for pH and BE-R(2) = 0.26 and 0.2 and RMSE = 0.087 and 3.44, respectively. This could not be confirmed in the validation cohort for neither pH nor BE prediction. The 900 Hz FHR cohort rendered-for pH and BE-R(2) = 0.9 and 0.77 and RMSE = 0.03 and 1.70, respectively, and the pH prediction was validated.In our model, lower FHR sampling rate increased the

  12. Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.

    PubMed

    Sreckovic, Ivana; Birner-Gruenberger, Ruth; Obrist, Britta; Stojakovic, Tatjana; Scharnagl, Hubert; Holzer, Michael; Scholler, Monika; Philipose, Sonia; Marsche, Gunther; Lang, Uwe; Desoye, Gernot; Wadsack, Christian

    2013-04-01

    In human high-density lipoprotein (HDL) represents the major cholesterol carrying lipoprotein class in cord blood, while cholesterol is mainly carried by low-density lipoprotein in maternal serum. Additionally, to carrying cholesterol, HDL also associates with a range of proteins as cargo. We tested the hypothesis that fetal HDL carries proteins qualitatively and quantitatively different from maternal HDL. These differences then contribute to distinct HDL functionality in both circulations. Shotgun proteomics and biochemical analyses were used to assess composition/function of fetal and maternal HDL isolated from uncomplicated human pregnancies at term of gestation. The pattern of analyzed proteins that were statistically elevated in fetal HDL (apoE, proteins involved in coagulation, transport processes) suggests a particle characteristic for the light HDL2 sub-fraction. In contrast, proteins that were enriched in maternal HDL (apoL, apoF, PON1, apoD, apoCs) have been described almost exclusively in the dense HDL3 fraction and relevant to its anti-oxidative function and role in innate immunity. Strikingly, PON1 mass and activity were 5-fold lower (p<0.01) in the fetus, which was accompanied by attenuation of anti-oxidant capacity of fetal HDL. Despite almost equal quantity of CETP in maternal and fetal HDL, its enzymatic activity was 55% lower (p<0.001) in the fetal circulation, whereas LCAT activity was not altered. These findings indicate that maternally derived HDL differs from fetal HDL with respect to its proteome, size and function. Absence of apoA-1, apoL and PON1 on fetal HDL is associated with decreased anti-oxidative properties together with deficiency in innate immunity collectively indicating distinct HDLs in fetuses. PMID:23321267

  13. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    SciTech Connect

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-03-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s).

  14. Scaling approach to study the changes through the gestation of human fetal cardiac and circulatory behaviors.

    PubMed

    Pennati, G; Fumero, R

    2000-04-01

    During human gestation, fetal body size increases considerably and important transformations occur to hemodynamics of the cardiovascular system of the fetus. Vascular compliances and resistances as well as the cardiac function show important changes. In order to investigate these modifications, a mathematical approach based on scaling techniques was developed. Vascular and cardiac parameters of the human fetus were related by allometric equations to the anatomical dimensions of vessels that, in turn, depend on the fetal body weight and the gestational age. A scaling factor (b) was identified for each parameter under study: vascular resistances and flow inertances decrease with gestational age (b= -0.33 for flow inertances) whereas vascular compliances remarkably increase (b= 1.33). Scaling factors were also adopted for the fetal cardiac parameters, according to experimental data on the development of fetal myocardium. Parameter values calculated for each week of the last trimester of the fetal gestation, were tested using a mathematical lumped parameter model, previously developed for a human fetus near the term of the gestation. The validation of the scaling method adopted for the parameters was performed by comparing the results of the simulations with a group of data obtained by Doppler velocimetry at different stages of fetal normal gestation. The adopted allometric equations were appropriate in describing the development of the human fetal circulatory system. The ductus venosus, the ductus arteriosus, and the foramen ovale, that conclude their function at the birth moment, as well as the lungs and the brain, do not follow the general growth rate and require different scaling factors. PMID:10870901

  15. Expression of natural antimicrobials by human placenta and fetal membranes.

    PubMed

    King, A E; Paltoo, A; Kelly, R W; Sallenave, J-M; Bocking, A D; Challis, J R G

    2007-01-01

    Preterm birth associated with infection is a major clinical problem. We hypothesized that this condition is associated with altered expression of natural antimicrobial molecules (beta-defensins (HBD), elafin). Therefore, we examined expression of these molecules and their regulation by proinflammatory cytokines in placentae and fetal membranes from term pregnancy. HBD1-3 and elafin were localized by immunohistochemistry in fetal membranes and placenta. Real-time quantitative PCR was used to examine mRNA expression in primary trophoblast cells treated with inflammatory molecules. HBD1-3 and elafin were immunolocalized to placental and chorion trophoblast layers of fetal membranes and placenta. Immunoreactivity was also observed in amnion epithelium and decidua. No differences were noted between samples from women who were not in labour compared to those in active labour. In in vitro cultures of primary trophoblast cells, HBD2 and elafin mRNA expression was upregulated by the proinflammatory cytokine, IL-1beta. These results suggest that the chorion and placental trophoblast layers may be key barriers to the progression of infection in the pregnant uterus. Natural antimicrobial expression may be altered in response to inflammatory mediator expression associated with the onset of labour and/or uterine infection, providing increased protection when the uterus may be particularly susceptible to infection. PMID:16513165

  16. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids

    PubMed Central

    Tobita, Takamasa; Guzman-Lepe, Jorge; Takeishi, Kazuki; Nakao, Toshimasa; Wang, Yang; Meng, Fanying; Deng, Chu-Xia; Collin de l’Hortet, Alexandra; Soto-Gutierrez, Alejandro

    2016-01-01

    There are unprecedented epidemics of obesity, such as type II diabetes and non-alcoholic fatty liver diseases (NAFLD) in developed countries. A concerning percentage of American children are being affected by obesity and NAFLD. Studies have suggested that the maternal environment in utero might play a role in the development of these diseases later in life. In this study, we documented that inhibiting SIRT1 signaling in human fetal hepatocytes rapidly led to an increase in intracellular glucose and lipids levels. More importantly, both de novo lipogenesis and gluconeogenesis related genes were upregulated upon SIRT1 inhibition. The AKT/FOXO1 pathway, a major negative regulator of gluconeogenesis, was decreased in the human fetal hepatocytes inhibited for SIRT1, consistent with the higher level of gluconeogenesis. These results indicate that SIRT1 is an important regulator of lipid and carbohydrate metabolisms within human fetal hepatocytes, acting as an adaptive transcriptional response to environmental changes. PMID:26890260

  17. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids.

    PubMed

    Tobita, Takamasa; Guzman-Lepe, Jorge; Takeishi, Kazuki; Nakao, Toshimasa; Wang, Yang; Meng, Fanying; Deng, Chu-Xia; Collin de l'Hortet, Alexandra; Soto-Gutierrez, Alejandro

    2016-01-01

    There are unprecedented epidemics of obesity, such as type II diabetes and non-alcoholic fatty liver diseases (NAFLD) in developed countries. A concerning percentage of American children are being affected by obesity and NAFLD. Studies have suggested that the maternal environment in utero might play a role in the development of these diseases later in life. In this study, we documented that inhibiting SIRT1 signaling in human fetal hepatocytes rapidly led to an increase in intracellular glucose and lipids levels. More importantly, both de novo lipogenesis and gluconeogenesis related genes were upregulated upon SIRT1 inhibition. The AKT/FOXO1 pathway, a major negative regulator of gluconeogenesis, was decreased in the human fetal hepatocytes inhibited for SIRT1, consistent with the higher level of gluconeogenesis. These results indicate that SIRT1 is an important regulator of lipid and carbohydrate metabolisms within human fetal hepatocytes, acting as an adaptive transcriptional response to environmental changes. PMID:26890260

  18. Increased reprogramming of human fetal hepatocytes compared with adult hepatocytes in feeder-free conditions.

    PubMed

    Hansel, Marc C; Gramignoli, Roberto; Blake, William; Davila, Julio; Skvorak, Kristen; Dorko, Kenneth; Tahan, Veysel; Lee, Brian R; Tafaleng, Edgar; Guzman-Lepe, Jorge; Soto-Gutierrez, Alejandro; Fox, Ira J; Strom, Stephen C

    2014-01-01

    Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation. PMID:23394081

  19. Echocardiographic image of an active human heart

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiographic images provide quick, safe images of the heart as it beats. While a state-of-the art echocardiograph unit is part of the Human Research Facility on International Space Station, quick transmission of images and data to Earth is a challenge. NASA is developing techniques to improve the echocardiography available to diagnose sick astronauts as well as study the long-term effects of space travel on their health. Echocardiography uses ultrasound, generated in a sensor head placed against the patient's chest, to produce images of the structure of the heart walls and valves. However, ultrasonic imaging creates an enormous volume of data, up to 220 million bits per second. This can challenge ISS communications as well as Earth-based providers. Compressing data for rapid transmission back to Earth can degrade the quality of the images. Researchers at the Cleveland Clinic Foundation are working with NASA to develop compression techniques that meet imaging standards now used on the Internet and by the medical community, and that ensure that physicians receive quality diagnostic images.

  20. Effect of nitrate and L-arginine therapy on nitric oxide levels in serum, heart, and aorta of fetal hypothyroid rats.

    PubMed

    Ghasemi, Asghar; Mehrazin, Fatemeh; Zahediasl, Saleh

    2013-12-01

    Reduced nitric oxide availability and a heterogeneous pattern of nitric oxide synthase activity in some tissues have been reported in hypothyroidism. This study aimed at determining the effects of oral nitrate and L-arginine administration on serum, heart, and aorta nitric oxide metabolite concentrations in fetal hypothyroid rats. In an experimental study, pregnant Wistar rats were administrated tap water or 0.02 % of 6-propyl-2-thiouracil in drinking water during pregnancy and their male pups were followed (n = 8/group). In adult progeny, serum, heart, and aorta nitric oxide metabolite concentrations were measured by the Griess method after 1-week administration of sodium nitrate (500 mg/L) or L-arginine (2 %) in drinking water. Serum thyroid hormone and thyroid-stimulating hormone levels were also measured. Compared to controls, fetal hypothyroid progeny had significantly lower nitric oxide metabolite concentrations in heart (0.32 ± 0.07 vs. 0.90 ± 0.14 nmol/mg protein, p = 0.004) and aorta (2.98±0.56 vs. 6.15±0.74 nmol/mg protein, p = 0.011) tissues. Nitrate therapy restored heart nitric oxide metabolite levels decreased by fetal hypothyroidism, while L-arginine administration further decreased aorta nitric oxide metabolite levels. Sodium nitrate increased and L-arginine decreased serum nitric oxide metabolite levels in both control and fetal hypothyroid animals. In conclusion, nitrate therapy restores decreased heart nitric oxide metabolite levels, whereas L-arginine decreases aorta nitric oxide metabolite levels even further in fetal hypothyroid rats, findings relevant to the cardiovascular consequences of congenital hypothyroidism in adulthood. PMID:23568620

  1. Wireless Fetal Heart Rate Monitoring in Inpatient Full-Term Pregnant Women: Testing Functionality and Acceptability

    PubMed Central

    Boatin, Adeline A.; Wylie, Blair; Goldfarb, Ilona; Azevedo, Robin; Pittel, Elena; Ng, Courtney; Haberer, Jessica

    2015-01-01

    We tested functionality and acceptability of a wireless fetal monitoring prototype technology in pregnant women in an inpatient labor unit in the United States. Women with full-term singleton pregnancies and no evidence of active labor were asked to wear the prototype technology for 30 minutes. We assessed functionality by evaluating the ability to successfully monitor the fetal heartbeat for 30 minutes, transmit this data to Cloud storage and view the data on a web portal. Three obstetricians also rated fetal cardiotocographs on ease of readability. We assessed acceptability by administering closed and open-ended questions on perceived utility and likeability to pregnant women and clinicians interacting with the prototype technology. Thirty-two women were enrolled, 28 of whom (87.5%) successfully completed 30 minutes of fetal monitoring including transmission of cardiotocographs to the web portal. Four sessions though completed, were not successfully uploaded to the Cloud storage. Six non-study clinicians interacted with the prototype technology. The primary technical problem observed was a delay in data transmission between the prototype and the web portal, which ranged from 2 to 209 minutes. Delays were ascribed to Wi-Fi connectivity problems. Recorded cardiotocographs received a mean score of 4.2/5 (± 1.0) on ease of readability with an interclass correlation of 0.81(95%CI 0.45, 0.96). Both pregnant women and clinicians found the prototype technology likable (81.3% and 66.7% respectively), useful (96.9% and 66.7% respectively), and would either use it again or recommend its use to another pregnant woman (77.4% and 66.7% respectively). In this pilot study we found that this wireless fetal monitoring prototype technology has potential for use in a United States inpatient setting but would benefit from some technology changes. We found it to be acceptable to both pregnant women and clinicians. Further research is needed to assess feasibility of using this

  2. Wireless fetal heart rate monitoring in inpatient full-term pregnant women: testing functionality and acceptability.

    PubMed

    Boatin, Adeline A; Wylie, Blair; Goldfarb, Ilona; Azevedo, Robin; Pittel, Elena; Ng, Courtney; Haberer, Jessica

    2015-01-01

    We tested functionality and acceptability of a wireless fetal monitoring prototype technology in pregnant women in an inpatient labor unit in the United States. Women with full-term singleton pregnancies and no evidence of active labor were asked to wear the prototype technology for 30 minutes. We assessed functionality by evaluating the ability to successfully monitor the fetal heartbeat for 30 minutes, transmit this data to Cloud storage and view the data on a web portal. Three obstetricians also rated fetal cardiotocographs on ease of readability. We assessed acceptability by administering closed and open-ended questions on perceived utility and likeability to pregnant women and clinicians interacting with the prototype technology. Thirty-two women were enrolled, 28 of whom (87.5%) successfully completed 30 minutes of fetal monitoring including transmission of cardiotocographs to the web portal. Four sessions though completed, were not successfully uploaded to the Cloud storage. Six non-study clinicians interacted with the prototype technology. The primary technical problem observed was a delay in data transmission between the prototype and the web portal, which ranged from 2 to 209 minutes. Delays were ascribed to Wi-Fi connectivity problems. Recorded cardiotocographs received a mean score of 4.2/5 (± 1.0) on ease of readability with an interclass correlation of 0.81(95%CI 0.45, 0.96). Both pregnant women and clinicians found the prototype technology likable (81.3% and 66.7% respectively), useful (96.9% and 66.7% respectively), and would either use it again or recommend its use to another pregnant woman (77.4% and 66.7% respectively). In this pilot study we found that this wireless fetal monitoring prototype technology has potential for use in a United States inpatient setting but would benefit from some technology changes. We found it to be acceptable to both pregnant women and clinicians. Further research is needed to assess feasibility of using this

  3. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?

    PubMed

    Burnouf, Thierry; Strunk, Dirk; Koh, Mickey B C; Schallmoser, Katharina

    2016-01-01

    The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications. PMID:26561934

  4. Characterization of Liver-Specific Functions of Human Fetal Hepatocytes in Culture.

    PubMed

    Chinnici, Cinzia Maria; Timoneri, Francesca; Amico, Giandomenico; Pietrosi, Giada; Vizzini, Giovanni; Spada, Marco; Pagano, Duilio; Gridelli, Bruno; Conaldi, Pier Giulio

    2015-01-01

    This study was designed to assess liver-specific functions of human fetal liver cells proposed as a potential source for hepatocyte transplantation. Fetal liver cells were isolated from livers of different gestational ages (16-22 weeks), and the functions of cell preparations were evaluated by establishing primary cultures. We observed that 20- to 22-week-gestation fetal liver cell cultures contained a predominance of cells with hepatocytic traits that did not divide in vitro but were functionally competent. Fetal hepatocytes performed liver-specific functions at levels comparable to those of their adult counterpart. Moreover, exposure to dexamethasone in combination with oncostatin M promptly induced further maturation of the cells through the acquisition of additional functions (i.e., ability to store glycogen and uptake of indocyanine green). In some cases, particularly in cultures obtained from fetuses of earlier gestational ages (16-18 weeks gestation), cells with mature hepatocytic traits proved to be sporadic, and the primary cultures were mainly populated by clusters of proliferating cells. Consequently, the values of liver-specific functions detected in these cultures were low. We observed that a low cell density culture system rapidly prompted loss of the mature hepatocytic phenotype with downregulations of all the liver-specific functions. We found that human fetal liver cells can be cryopreserved without significant loss of viability and function and evaluated up to 1 year in storage in liquid nitrogen. They might, therefore, be suitable for cell banking and allow for the transplantation of large numbers of cells, thus improving clinical outcomes. Overall, our results indicate that fetal hepatocytes could be used as a cell source for hepatocyte transplantation. Fetal liver cells have been used so far to treat end-stage liver disease. Additional studies are needed to include these cells in cell-based therapies aimed to treat liver failure and inborn

  5. Categorization of Fetal Heart Rate Decelerations in American and European Practice: Importance and Imperative of Avoiding Framing and Confirmation Biases.

    PubMed

    Sholapurkar, Shashikant L

    2015-09-01

    Interpretation of electronic fetal monitoring (EFM) remains controversial and unsatisfactory. Fetal heart rate (FHR) decelerations are the commonest aberrant feature on cardiotocographs and considered "center-stage" in the interpretation of EFM. A recent American study suggested that the lack of correlation of American three-tier system to neonatal acidemia may be due to the current peculiar nomenclature of FHR decelerations leading to loss of meaning. The pioneers like Hon and Caldeyro-Barcia classified decelerations based primarily on time relationship to contractions and not on etiology per se. This critical analysis debates pros and cons of significant anchoring/framing and confirmation biases in defining different types of decelerations based primarily on the shape (slope) or time of descent. It would be important to identify benign early decelerations correctly to avoid unnecessary intervention as well as to improve the positive predictive value of the other types of decelerations. Currently the vast majority of decelerations are classed as "variable". This review shows that the most common rapid decelerations during contractions with trough corresponding to peak of contraction cannot be explained by "cord-compression" hypothesis but by direct/pure (defined here as not mediated through baro-/chemoreceptors) or non-hypoxic vagal reflex. These decelerations are benign, most likely and mainly a result of head-compression and hence should be called "early" rather than "variable". Standardization is important but should be appropriate and withstand scientific scrutiny. Significant framing and confirmation biases are necessarily unscientific and the succeeding three-tier interpretation systems and structures embodying these biases would be dysfunctional and clinically unhelpful. Clinical/pathophysiological analysis and avoidance of flaws/biases suggest that a more physiological and scientific categorization of decelerations should be based on time relationship to

  6. Categorization of Fetal Heart Rate Decelerations in American and European Practice: Importance and Imperative of Avoiding Framing and Confirmation Biases

    PubMed Central

    Sholapurkar, Shashikant L.

    2015-01-01

    Interpretation of electronic fetal monitoring (EFM) remains controversial and unsatisfactory. Fetal heart rate (FHR) decelerations are the commonest aberrant feature on cardiotocographs and considered “center-stage” in the interpretation of EFM. A recent American study suggested that the lack of correlation of American three-tier system to neonatal acidemia may be due to the current peculiar nomenclature of FHR decelerations leading to loss of meaning. The pioneers like Hon and Caldeyro-Barcia classified decelerations based primarily on time relationship to contractions and not on etiology per se. This critical analysis debates pros and cons of significant anchoring/framing and confirmation biases in defining different types of decelerations based primarily on the shape (slope) or time of descent. It would be important to identify benign early decelerations correctly to avoid unnecessary intervention as well as to improve the positive predictive value of the other types of decelerations. Currently the vast majority of decelerations are classed as “variable”. This review shows that the most common rapid decelerations during contractions with trough corresponding to peak of contraction cannot be explained by “cord-compression” hypothesis but by direct/pure (defined here as not mediated through baro-/chemoreceptors) or non-hypoxic vagal reflex. These decelerations are benign, most likely and mainly a result of head-compression and hence should be called “early” rather than “variable”. Standardization is important but should be appropriate and withstand scientific scrutiny. Significant framing and confirmation biases are necessarily unscientific and the succeeding three-tier interpretation systems and structures embodying these biases would be dysfunctional and clinically unhelpful. Clinical/pathophysiological analysis and avoidance of flaws/biases suggest that a more physiological and scientific categorization of decelerations should be based on

  7. Use of wind-up fetal Doppler versus Pinard for fetal heart rate intermittent monitoring in labour: a randomised clinical trial

    PubMed Central

    Byaruhanga, R; Bassani, D G; Jagau, A; Muwanguzi, P; Montgomery, A L; Lawn, J E

    2015-01-01

    Objectives In resource-poor settings, the standard of care to inform labour management is the partograph plus Pinard stethoscope for intermittent fetal heart rate (FHR) monitoring. We compared FHR monitoring in labour using a novel, robust wind-up handheld Doppler with the Pinard as a primary screening tool for abnormal FHR on perinatal outcomes. Design Prospective equally randomised clinical trial. Setting The labour and delivery unit of a teaching hospital in Kampala, Uganda. Participants Of the 2042 eligible antenatal women, 1971 women in active term labour, following uncomplicated pregnancies, were randomised to either the standard of care or not. Intervention Intermittent FHR monitoring using Doppler. Primary outcome measures Incidence of FHR abnormality detection, intrapartum stillbirth and neonatal mortality prior to discharge. Results Age, parity, gestational age, mode of delivery and newborn weight were similar between study groups. In the Doppler group, there was a significantly higher rate of FHR abnormalities detected (incidence rate ratio (IRR)=1.61, 95% CI 1.13 to 2.30). However, in this group, there were also higher though not statistically significant rates of intrapartum stillbirths (IRR=3.94, 0.44 to 35.24) and neonatal deaths (IRR=1.38, 0.44 to 4.34). Conclusions Routine monitoring with a handheld Doppler increased the identification of FHR abnormalities in labour; however, our trial did not find evidence that this leads to a decrease in the incidence of intrapartum stillbirth or neonatal death. Trial registration number Clinical Trails.gov (1000031587). PMID:25636792

  8. Studies in Fetal Behavior: Revisited, Renewed, and Reimagined

    PubMed Central

    DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.

    2016-01-01

    Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodermal activity and fetal heart rate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include: within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physiological processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship. We pose a number of open questions for future research. Although the human fetus remains just out of reach, new

  9. Towards a New Study on Associative Learning in Human Fetuses: Fetal Associative Learning in Primates

    ERIC Educational Resources Information Center

    Kawai, Nobuyuki

    2010-01-01

    Research has revealed that fetuses can learn from events in their environment. The most convincing evidence for fetal learning is habituation to vibroacoustic stimulation (VAS) in human fetuses and classical conditioning in rat fetuses. However, these two research areas have been independent of each other. There have been few attempts at classical…

  10. Xenotransplantation of human fetal adipose tissue: a model of in vivo adipose tissue expansion and adipogenesis

    PubMed Central

    Garcia, Briana; Francois-Vaughan, Heather; Onikoyi, Omobola; Kostadinov, Stefan; De Paepe, Monique E.; Gruppuso, Philip A.; Sanders, Jennifer A.

    2014-01-01

    Obesity during childhood and beyond may have its origins during fetal or early postnatal life. At present, there are no suitable in vivo experimental models to study factors that modulate or perturb human fetal white adipose tissue (WAT) expansion, remodeling, development, adipogenesis, angiogenesis, or epigenetics. We have developed such a model. It involves the xenotransplantation of midgestation human WAT into the renal subcapsular space of immunocompromised SCID-beige mice. After an initial latency period of approximately 2 weeks, the tissue begins expanding. The xenografts are healthy and show robust expansion and angiogenesis for at least 2 months following transplantation. Data and cell size and gene expression are consistent with active angiogenesis. The xenografts maintain the expression of genes associated with differentiated adipocyte function. In contrast to the fetal tissue, adult human WAT does not engraft. The long-term viability and phenotypic maintenance of fetal adipose tissue following xenotransplantation may be a function of its autonomous high rates of adipogenesis and angiogenesis. Through the manipulation of the host mice, this model system offers the opportunity to study the mechanisms by which nutrients and other environmental factors affect human adipose tissue development and biology. PMID:25193996

  11. Xenotransplantation of human fetal adipose tissue: a model of in vivo adipose tissue expansion and adipogenesis.

    PubMed

    Garcia, Briana; Francois-Vaughan, Heather; Onikoyi, Omobola; Kostadinov, Stefan; De Paepe, Monique E; Gruppuso, Philip A; Sanders, Jennifer A

    2014-12-01

    Obesity during childhood and beyond may have its origins during fetal or early postnatal life. At present, there are no suitable in vivo experimental models to study factors that modulate or perturb human fetal white adipose tissue (WAT) expansion, remodeling, development, adipogenesis, angiogenesis, or epigenetics. We have developed such a model. It involves the xenotransplantation of midgestation human WAT into the renal subcapsular space of immunocompromised SCID-beige mice. After an initial latency period of approximately 2 weeks, the tissue begins expanding. The xenografts are healthy and show robust expansion and angiogenesis for at least 2 months following transplantation. Data and cell size and gene expression are consistent with active angiogenesis. The xenografts maintain the expression of genes associated with differentiated adipocyte function. In contrast to the fetal tissue, adult human WAT does not engraft. The long-term viability and phenotypic maintenance of fetal adipose tissue following xenotransplantation may be a function of its autonomous high rates of adipogenesis and angiogenesis. Through the manipulation of the host mice, this model system offers the opportunity to study the mechanisms by which nutrients and other environmental factors affect human adipose tissue development and biology. PMID:25193996

  12. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development

    PubMed Central

    Camp, J. Gray; Badsha, Farhath; Florio, Marta; Kanton, Sabina; Gerber, Tobias; Wilsch-Bräuninger, Michaela; Lewitus, Eric; Sykes, Alex; Hevers, Wulf; Lancaster, Madeline; Knoblich, Juergen A.; Lachmann, Robert; Pääbo, Svante; Huttner, Wieland B.; Treutlein, Barbara

    2015-01-01

    Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures. PMID:26644564

  13. A comparative biomechanical analysis of term fetal membranes in human and domestic species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to biomechanically characterize and compare human, porcine, equine, and ovine fetal membranes. Noncontact metrology was used for topographic analyses. Uniaxial tensile testing was performed to resolve specific biomechanical values. Puncture force and radial stresses we...

  14. Dissecting human cerebral organoids and fetal neocortex using single-cell RNAseq

    NASA Astrophysics Data System (ADS)

    Treutlein, Barbara

    Cerebral organoids - three-dimensional cultures of human cerebral tissue derived from pluripotent stem cells - have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and novel interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages, and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue in order to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

  15. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  16. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  17. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  18. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  19. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  20. Characterization of a primary brown adipocyte culture system derived from human fetal interscapular fat

    PubMed Central

    Seiler, Sarah E; Xu, Dan; Ho, Jia-Pei; Lo, Kinyui Alice; Buehrer, Benjamin M; Ludlow, Y John W; Kovalik, Jean-Paul; Sun, Lei

    2015-01-01

    Brown fat has gained widespread attention as a potential therapeutic target to treat obesity and associated metabolic disorders. Indeed, the anti-obesity potential of multiple targets to stimulate both brown adipocyte differentiation and recruitment have been verified in rodent models. However, their therapeutic potential in humans is unknown due to the lack of a human primary brown adipocyte cell culture system. Likewise, the lack of a well-characterized human model has limited the discovery of novel targets for the activation of human brown fat. To address this current need, we aimed to identify and describe the first primary brown adipocyte cell culture system from human fetal interscapular brown adipose tissue. Pre-adipocytes isolated from non-viable human fetal interscapular tissue were expanded and cryopreserved. Cells were then thawed and plated alongside adult human subcutaneous and omental pre-adipocytes for subsequent differentiation and phenotypic characterization. Interscapular pre-adipocytes in cell culture differentiated into mature adipocytes that were morphologically indistinguishable from the adult white depots. Throughout differentiation, cultured human fetal interscapular adipocytes demonstrated increased expression of classical brown fat markers compared to subcutaneous and omental cells. Further, functional analysis revealed an elevation in fatty acid oxidation as well as maximal and uncoupled oxygen consumption in interscapular brown adipocytes compared to white control cells. These data collectively identify the brown phenotype of these cells. Thus, our primary cell culture system derived from non-viable human fetal interscapular brown adipose tissue provides a valuable tool for the study of human brown adipocyte biology and for the development of anti-obesity therapeutics. PMID:26451287

  1. Critical Scale Invariance in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Sakata, Seiichiro; Hayano, Junichiro; Yamamoto, Yoshiharu

    2004-10-01

    We demonstrate the robust scale-invariance in the probability density function (PDF) of detrended healthy human heart rate increments, which is preserved not only in a quiescent condition, but also in a dynamic state where the mean level of the heart rate is dramatically changing. This scale-independent and fractal structure is markedly different from the scale-dependent PDF evolution observed in a turbulentlike, cascade heart rate model. These results strongly support the view that a healthy human heart rate is controlled to converge continually to a critical state.

  2. Transient structures of the human fetal brain: subplate, thalamic reticular complex, ganglionic eminence.

    PubMed

    Ulfig, N; Neudörfer, F; Bohl, J

    2000-07-01

    Morphological features of the subplate, the thalamic reticular complex and the ganglionic eminence, which represent three major transient structures of the human fetal forebrain, are summarized with special reference to their functional roles. The subplate harboring various neuronal types is an outstandingly wide zone subjacent to the cortical plate in the human fetal brain. Within the subplate various cortical afferents establish synaptic contacts for a prolonged period before entering the cortical plate. Therefore, the subplate is regarded as a "waiting compartment" which is required for the formation of mature cortical connections. Next to the thalamic reticular nucleus, within the fibers of internal capsule, the perireticular nucleus is located which has been established as a distinct entity during development. Its various neuronal types express a number of different neuroactive substances. Perinatally, the perireticular nucleus is drastically reduced in size. It is involved in the guidance of corticofugal and thalamocortical fibers. The ganglionic eminence is a conspicuous proliferative area that persists throughout nearly the entire fetal period. In the human fetal brain it extends medially upon the dorsal thalamic nuclei which receive precursor cells from the ganglionic eminence. Postmitotic cells in the marginal zone of the ganglionic eminence serve as an intermediate target for growing axons. On the whole, all three structures establish transient neural circuitries that may be essential for the formation of adult projections. The characteristics of the three transient structures are particularly relevant for developmental neuropathology as these structures may be damaged in disorders that preferentially occur in preterm infants. PMID:10963122

  3. An application of reconfigurable technologies for non-invasive fetal heart rate extraction.

    PubMed

    Morales, D P; García, A; Castillo, E; Carvajal, M A; Parrilla, L; Palma, A J

    2013-07-01

    This paper illustrates the use of a reconfigurable system for fetal electrocardiogram (FECG) estimation from mother's abdomen ECG measurements. The system is based on two different reconfigurable devices. Initially, a field-programmable analog array (FPAA) device implements the analog reconfigurable preprocessing for ECG signal acquisition. The signal processing chain continues onto a field-programmable gate array (FPGA) device, which contains all the communication and interfacing protocols along with specific digital signal processing blocks required for fundamental period extraction from FECG waveforms. The synergy between these devices provides the system the ability to change any necessary parameter during the acquisition process for enhancing the result. The use of a FPGA allows implementing different algorithms for FECG signal extraction, such as adaptive signal filtering. Preliminary works employ commercially available development platforms for test experiments, which suffice for the processing of real FECG signals from biomedical databases, as the presented results illustrate. PMID:23089209

  4. Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model

    PubMed Central

    Niu, Jing; Venkatasubramanian, Raja; Vinks, Alexander A.; Sadhasivam, Senthilkumar

    2016-01-01

    Background Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model. Methods Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check. Results A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated. Conclusions For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms

  5. Evolutionary anticipation of the human heart.

    PubMed Central

    Victor, S.; Nayak, V. M.

    2000-01-01

    We have studied the comparative anatomy of hearts from fish, frog, turtle, snake, crocodile, birds (duck, chicken, quail), mammals (elephant, dolphin, sheep, goat, ox, baboon, wallaby, mouse, rabbit, possum, echidna) and man. The findings were analysed with respect to the mechanism of evolution of the heart. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:11041025

  6. Comparative Effects of Di(n-Butyl) Phthalate Exposure on Fetal Germ Cell Development in the Rat and in Human Fetal Testis Xenografts

    PubMed Central

    McKinnell, Chris; Calarrão, Ana; Kennedy, Laura; Hutchison, Gary R.; Hrabalkova, Lenka; Jobling, Matthew S.; Macpherson, Sheila; Anderson, Richard A.; Sharpe, Richard M.; Mitchell, Rod T.

    2014-01-01

    Background Phthalate exposure induces germ cell effects in the fetal rat testis. Although experimental models have shown that the human fetal testis is insensitive to the steroidogenic effects of phthalates, the effects on germ cells have been less explored. Objectives We sought to identify the effects of phthalate exposure on human fetal germ cells in a dynamic model and to establish whether the rat is an appropriate model for investigating such effects. Methods We used immunohistochemistry, immunofluorescence, and quantitative real-time polymerase chain reaction to examine Sertoli and germ cell markers on rat testes and human fetal testis xenografts after exposure to vehicle or di(n-butyl) phthalate (DBP). Our study included analysis of germ cell differentiation markers, proliferation markers, and cell adhesion proteins. Results In both rat and human fetal testes, DBP exposure induced similar germ cell effects, namely, germ cell loss (predominantly undifferentiated), induction of multinucleated gonocytes (MNGs), and aggregation of differentiated germ cells, although the latter occurred rarely in the human testes. The mechanism for germ cell aggregation and MNG induction appears to be loss of Sertoli cell–germ cell membrane adhesion, probably due to Sertoli cell microfilament redistribution. Conclusions Our findings provide the first comparison of DBP effects on germ cell number, differentiation, and aggregation in human testis xenografts and in vivo in rats. We observed comparable effects on germ cells in both species, but the effects in the human were muted compared with those in the rat. Nevertheless, phthalate effects on germ cells have potential implications for the next generation, which merits further study. Our results indicate that the rat is a human-relevant model in which to explore the mechanisms for germ cell effects. Citation van den Driesche S, McKinnell C, Calarrão A, Kennedy L, Hutchison GR, Hrabalkova L, Jobling MS, Macpherson S, Anderson RA

  7. Change of Spectral Analysis of Fetal Heart Rate During Clinical Hypnosis: a Prospective Randomised Trial from the 20th Week of Gestation Till Term

    PubMed Central

    Reinhard, J.; Hayes-Gill, B. R.; Schiermeier, S.; Hatzmann, W.; Heinrich, T. M.; Hüsken-Janßen, H.; Herrmann, E.; Louwen, F.

    2012-01-01

    Objective: To investigate the functional adaptive process of the fetal autonomic nervous system during hypnosis from the 20th week of gestation till term. Are there changes in the power spectrum analysis of fetal heart rate when the mother is having a clinical hypnosis or control period? Study Design: Fourty-nine FHR recordings were analysed. Included recordings were from singletons and abdominal fetal ECG-monitored pregnancies. All women were randomised to receive clinical hypnosis followed by a period with no intervention or vice versa. Statistical analyses were performed with the Wilcoxon signed ranks and Spearman rho correlation tests. Results: There was a significant difference found between fetal heart rate at baseline (144.3 ± 6.0) and hypnosis (142.1 ± 6.4). A difference was also detected between the standard deviation of the heart rate between baseline (6.7 ± 1.9) and hypnosis (6.8 ± 3.5). LFnu was smaller during baseline (80.2 ± 5.3) than during hypnosis (82.1 ± 5.7), whereas HFnu was significantly larger (19.8 ± 5.3 vs. 17.9 ± 5.7). There was no correlation between the gestation age and the change in LFnu, HFnu or ratio LF/HF due to the hypnosis intervention. Conclusion: The functional adaptive process of the fetal autonomic system during hypnosis is reflected by a sympathovagal shift towards increased sympathetic modulation. PMID:25284838

  8. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches

    SciTech Connect

    Muczynski, V.; Cravedi, J.P.; Lehraiki, A.; Levacher, C.; Moison, D.; Lecureuil, C.; Messiaen, S.; Perdu, E.; Frydman, R.; Habert, R.; and others

    2012-05-15

    The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10{sup −5} M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation and cultured in the presence or not of 10{sup −5} M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with {sup 14}C-MEHP. A 10{sup −5} M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10{sup −5} M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells. -- Highlights: ► 10{sup −5} M of MEHP impairs germ cell development in the human fetal testis. ► Organotypic culture is a suitable approach to investigate phthalate effects in human. ► MEHP is not metabolized in the human fetal testis. ► In mice, MEHP triggers similar effects both in vivo and in vitro.

  9. Fetal human keratinocytes produce large amounts of antimicrobial peptides: Involvement of histone-methylation processes

    PubMed Central

    Tschachler, Antonia; Mlitz, Veronika; Karner, Susanne; Elbe-Bürger, Adelheid; Mildner, Michael

    2015-01-01

    Antimicrobial peptides (AMP), an important part of the innate immune system, are crucial for defense against invading micro-organisms. Whereas AMP have been extensively studied in adult skin little is known about the impact of AMP in the developing human skin. We therefore compared the expression and regulation of AMP in fetal, neonatal and adult keratinocytes (KC) in vitro. The constitutive expression of human beta defensin-2 (HBD-2), HBD-3, S100 protein family members and cathelicidin was significantly higher in KC from fetal skin than in KC from postnatal skin. The capacity to further increase AMP-production was comparable between pre- and postnatal KC. Analysis of skin equivalents (SE) revealed a strong constitutive expression of S100 proteins in fetal but not in neonatal and adult SE. The elevated AMP-levels correlated with reduced H3K27me3 (tri-methyl-lysine 27 on histone H3) levels and increased expression of the histone demethylase JMJD3. Knock-down of JMJD3 in fetal KC significantly down-regulated the expression of HBD-3, S100A7, S100A8, S100A9 and cathelicidin. Our data indicate an important contribution of histone-modifications in the regulation of AMP-expression in the skin during ontogeny. The elevated AMP expression in prenatal skin might represent an important defense strategy of the unborn. PMID:24694903

  10. The impact of a human IGF-II analog ([Leu27]IGF-II) on fetal growth in a mouse model of fetal growth restriction

    PubMed Central

    Charnock, Jayne C.; Dilworth, Mark R.; Aplin, John D.; Sibley, Colin P.; Westwood, Melissa

    2015-01-01

    Enhancing placental insulin-like growth factor (IGF) availability appears to be an attractive strategy for improving outcomes in fetal growth restriction (FGR). Our approach was the novel use of [Leu27]IGF-II, a human IGF-II analog that binds the IGF-II clearance receptor IGF-IIR in fetal growth-restricted (FGR) mice. We hypothesized that the impact of [Leu27]IGF-II infusion in C57BL/6J (wild-type) and endothelial nitric oxide synthase knockout (eNOS−/−; FGR) mice would be to enhance fetal growth and investigated this from mid- to late gestation; 1 mg·kg−1·day−1 [Leu27]IGF-II was delivered via a subcutaneous miniosmotic pump from E12.5 to E18.5. Fetal and placental weights recorded at E18.5 were used to generate frequency distribution curves; fetuses <5th centile were deemed growth restricted. Placentas were harvested for immunohistochemical analysis of the IGF system, and maternal serum was collected for measurement of exogenously administered IGF-II. In WT pregnancies, [Leu27]IGF-II treatment halved the number of FGR fetuses, reduced fetal(P = 0.028) and placental weight variations (P = 0.0032), and increased the numbers of pups close to the mean fetal weight (131 vs. 112 pups within 1 SD). Mixed-model analysis confirmed litter size to be negatively correlated with fetal and placental weight and showed that [Leu27]IGF-II preferentially improved fetal weight in the largest litters, as defined by number. Unidirectional 14CMeAIB transfer per gram placenta (System A amino acid transporter activity) was inversely correlated with fetal weight in [Leu27]IGF-II-treated WT animals (P < 0.01). In eNOS−/− mice, [Leu27]IGF-II reduced the number of FGR fetuses(1 vs. 5 in the untreated group). The observed reduction in FGR pup numbers in both C57 and eNOS−/− litters suggests the use of this analog as a means of standardizing and rescuing fetal growth, preferentially in the smallest offspring. PMID:26530156

  11. The impact of a human IGF-II analog ([Leu27]IGF-II) on fetal growth in a mouse model of fetal growth restriction.

    PubMed

    Charnock, Jayne C; Dilworth, Mark R; Aplin, John D; Sibley, Colin P; Westwood, Melissa; Crocker, Ian P

    2016-01-01

    Enhancing placental insulin-like growth factor (IGF) availability appears to be an attractive strategy for improving outcomes in fetal growth restriction (FGR). Our approach was the novel use of [Leu(27)]IGF-II, a human IGF-II analog that binds the IGF-II clearance receptor IGF-IIR in fetal growth-restricted (FGR) mice. We hypothesized that the impact of [Leu(27)]IGF-II infusion in C57BL/6J (wild-type) and endothelial nitric oxide synthase knockout (eNOS(-/-); FGR) mice would be to enhance fetal growth and investigated this from mid- to late gestation; 1 mg·kg(-1)·day(-1) [Leu(27)]IGF-II was delivered via a subcutaneous miniosmotic pump from E12.5 to E18.5. Fetal and placental weights recorded at E18.5 were used to generate frequency distribution curves; fetuses <5th centile were deemed growth restricted. Placentas were harvested for immunohistochemical analysis of the IGF system, and maternal serum was collected for measurement of exogenously administered IGF-II. In WT pregnancies, [Leu(27)]IGF-II treatment halved the number of FGR fetuses, reduced fetal(P = 0.028) and placental weight variations (P = 0.0032), and increased the numbers of pups close to the mean fetal weight (131 vs. 112 pups within 1 SD). Mixed-model analysis confirmed litter size to be negatively correlated with fetal and placental weight and showed that [Leu(27)]IGF-II preferentially improved fetal weight in the largest litters, as defined by number. Unidirectional (14C)MeAIB transfer per gram placenta (System A amino acid transporter activity) was inversely correlated with fetal weight in [Leu(27)]IGF-II-treated WT animals (P < 0.01). In eNOS(-/-) mice, [Leu(27)]IGF-II reduced the number of FGR fetuses(1 vs. 5 in the untreated group). The observed reduction in FGR pup numbers in both C57 and eNOS(-/-) litters suggests the use of this analog as a means of standardizing and rescuing fetal growth, preferentially in the smallest offspring. PMID:26530156

  12. Regulation of fibrillins and modulators of TGFβ in fetal bovine and human ovaries.

    PubMed

    Bastian, Nicole A; Bayne, Rosemary A; Hummitzsch, Katja; Hatzirodos, Nicholas; Bonner, Wendy M; Hartanti, Monica D; Irving-Rodgers, Helen F; Anderson, Richard A; Rodgers, Raymond J

    2016-08-01

    Fibrillins 1-3 are stromal extracellular matrix proteins that play important roles in regulating TGFβ activity, which stimulates fibroblasts to proliferate and synthesize collagen. In the developing ovary, the action of stroma is initially necessary for the formation of ovigerous cords and subsequently for the formation of follicles and the surface epithelium of the ovary. FBN3 is highly expressed only in early ovarian development and then it declines. In contrast, FBN1 and 2 are upregulated in later ovarian development. We examined the expression of FBN1-3 in bovine and human fetal ovaries. We used cell dispersion and monolayer culture, cell passaging and tissue culture. Cells were treated with growth factors, hormones or inhibitors to assess the regulation of expression of FBN1-3 When bovine fetal ovarian tissue was cultured, FBN3 expression declined significantly. Treatment with TGFβ-1 increased FBN1 and FBN2 expression in bovine fibroblasts, but did not affect FBN3 expression. Additionally, in cultures of human fetal ovarian fibroblasts (9-17weeks gestational age), the expression of FBN1 and FBN2 increased with passage, whereas FBN3 dramatically decreased. Treatment with activin A and a TGFβ family signaling inhibitor, SB431542, differentially regulated the expression of a range of modulators of TGFβ signaling and of other growth factors in cultured human fetal ovarian fibroblasts suggesting that TGFβ signaling is differentially involved in the regulation of ovarian fibroblasts. Additionally, since the changes in FBN1-3 expression that occur in vitro are those that occur with increasing gestational age in vivo, we suggest that the fetal ovarian fibroblasts mature in vitro. PMID:27222596

  13. Fetal echocardiographic evaluation of the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Sklansky, Mark; Renner, Michael; Clough, Patricia; Levine, Gregg; Campbell, Michelle; Stone, Rae; Schmitt, Todd; Chang, Ruey-Kang; Shannon-Rodriguez, Jayne

    2010-03-01

    In humans, fetal echocardiography represents the most important tool for the assessment of the cardiovascular well-being of the fetus. However, because of logistic, anatomic, and behavioral challenges, detailed fetal echocardiographic evaluation of marine mammals has not been previously described. Because the application of fetal echocardiography to cetaceans could have both clinical and academic importance, an approach to evaluating the fetal dolphin's cardiovascular status was developed with conventional, fetal echocardiographic techniques developed in humans. Eight singleton fetal bottlenose dolphins (Tursiops truncatus) were evaluated, each between 6 and 11 mo gestation; six fetuses underwent two fetal echocardiographic evaluations each, four at 3-mo intervals, and two at 0.5-mo intervals. Evaluations were performed without sedation, using conventional, portable ultrasound systems. Multiple transducers, probes, and maternal dolphin positions were used to optimize image quality. Fetal echocardiography included two-dimensional imaging and color flow mapping of the heart and great arteries, as well as pulsed Doppler evaluation of the umbilical artery and vein. Thorough evaluations of the fetal dolphins' cardiovascular status were performed, with the greatest resolution between 8 and 9 mo gestation. With the use of published human fetal echocardiographic findings for comparison, fetal echocardiography demonstrated normal structure and function of the heart and great arteries, including the pulmonary veins, inferior vena cava, right and left atria, foramen ovale, tricuspid and mitral valves, right and left ventricles, ventricular septum, pulmonary and aortic valves, main pulmonary artery and ascending aorta, and ductus arteriosus. Pulsed Doppler techniques demonstrated normal umbilical arterial and venous waveforms, and color flow mapping demonstrated absence of significant valvar regurgitation. Fetal echocardiography, particularly between 8 and 9 mo gestation, can

  14. Easy as ABC: A System to Stratify Category II Fetal Heart Rate Tracings.

    PubMed

    Penfield, Christina A; Hong, Connie; Ibrahim, Samia El Haj; Kilpatrick, Sarah J; Gregory, Kimberly D

    2016-06-01

    Objective To evaluate whether a subcategory system for category II tracings can improve team communication and perinatal outcomes. Study Design We collected data prospectively for 15 months, first using the NICHD system, followed by the ABC system, which divides category II tracings into subcategories A, B, and C, each representing increased risk for metabolic acidemia. We surveyed providers about communication effectiveness and agreement on tracing interpretation for each system. In cases where the communication system was used to alert an off-site physician about a category II tracing, we compared arrival to L&D and NICU admissions. Results The ABC system was preferred (69%, n = 152) and considered a more effective tool for communicating concerning fetal status (80% vs. 43%, p < 0.01). Participants also reported greater agreement on tracing interpretation (79% for ABC vs. 64% for NICHD, p = 0.046). When an off-site physician was contacted about a category II tracing (n = 95), they were more likely to arrive to L&D (44% vs. 20%, p < 0.01) and have fewer NICU admissions (0% vs. 6%, p < 0.01) with the ABC system. Conclusion The ABC system resulted in improved team communication, increased physician response, and decreased NICU admissions. Using standardized communication may offer a useful strategy for identifying and expediting care. PMID:26871906

  15. Quantitative and Qualitative Analysis of Transient Fetal Compartments during Prenatal Human Brain Development

    PubMed Central

    Vasung, Lana; Lepage, Claude; Radoš, Milan; Pletikos, Mihovil; Goldman, Jennifer S.; Richiardi, Jonas; Raguž, Marina; Fischi-Gómez, Elda; Karama, Sherif; Huppi, Petra S.; Evans, Alan C.; Kostovic, Ivica

    2016-01-01

    The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13–40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the

  16. Quantitative and Qualitative Analysis of Transient Fetal Compartments during Prenatal Human Brain Development.

    PubMed

    Vasung, Lana; Lepage, Claude; Radoš, Milan; Pletikos, Mihovil; Goldman, Jennifer S; Richiardi, Jonas; Raguž, Marina; Fischi-Gómez, Elda; Karama, Sherif; Huppi, Petra S; Evans, Alan C; Kostovic, Ivica

    2016-01-01

    The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13-40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the

  17. The Regional Centralization of Electronic Fetal Heart Rate Monitoring and Its Impact on Neonatal Acidemia and the Cesarean Birth Rate

    PubMed Central

    Urabe, Hirotoshi; Tokunaga, Syuichi; Kodama, Yuki; Ikenoue, Tsuyomu

    2016-01-01

    Objective. The improvement of the accuracy of fetal heart rate (FHR) pattern interpretation to improve perinatal outcomes remains an elusive challenge. We examined the impact of an FHR centralization system on the incidence of neonatal acidemia and cesarean births. Methods. We performed a regional, population-based, before-and-after study of 9,139 deliveries over a 3-year period. The chi-squared test was used for the statistical analysis. Results. The before-and-after study showed no difference in the rates of acidemia, cesarean births, or perinatal death in the whole population. A subgroup analysis using the 4 hospitals in which an FHR centralization system was continuously connected (compliant group) and 3 hospitals in which the FHR centralization system was connected on demand (noncompliant group) showed that the incidence acidemia was significantly decreased (from 0.47% to 0.11%) without a corresponding increase in the cesarean birth rate due to nonreassuring FHR patterns in the compliant group. Although there was no difference in the incidence of nonreassuring FHR patterns in the noncompliant group, the total cesarean birth rate was significantly higher than that in the compliant group. Conclusion. The continuous FHR centralization system, in which specialists help to interpret results and decide clinical actions, was beneficial in reducing the incidence of neonatal acidemia (pH < 7.1) without increasing the cesarean birth rate due to nonreassuring FHR patterns. PMID:27379185

  18. Mechanical stretch increases brain natriuretic peptide production and secretion in the human fetal membranes.

    PubMed

    Carvajal, Jorge A; Delpiano, Ana M; Cuello, Mauricio A; Poblete, José A

    2013-05-01

    Brain natriuretic peptide (BNP) is synthesized by human fetal membranes, both the amnion and chorion. This locally produced BNP inhibits the contraction of the human myometrium, contributing to the maintenance of myometrial quiescence during pregnancy. We tested the hypothesis that BNP production is increased by fetal membrane stretching, which is predicted to occur in the expanding uterus, and inhibited by epidermal growth factor (EGF), whose production in the fetal membranes increases in late pregnancy. Term fetal membranes were obtained during elective cesarean delivery before labor. Sections of membranes were placed in an isolated chamber containing DMEM: F12 medium (37°C) and stretched with a 35 g weight. Medium and tissue samples were collected at 0, 3, 6, 18, and 24 hours for measurement of messenger RNA (mRNA) and BNP levels in the presence/absence of EGF (2 × 10(-9 )mol/L). Inducible nitric oxide synthase (iNOS) and β-actin were also evaluated to discard a nonspecific effect of mechanical stretch on protein expression. We found that amnion and chorion stretching increased the BNP mRNA (reverse transcription-polymerase chain reaction [RT-PCR]) and protein (radioimmunosorbent assay [RIA]) levels from 18 hours onward. The effect of stretching was inhibited by EGF (2 × 10(-9) mol/L). Stretch did not increase iNOS or β-actin protein levels. We concluded that chorion and amnion stretching may increase BNP expression in the fetal membranes during pregnancy, while increasing biological activity of EGF may decrease BNP production in the chorion and amnion late in pregnancy. We postulate BNP is an important regulator of myometrial contractility during pregnancy, and its production is modulated by both stretch and progressive increase in EGF levels during pregnancy. PMID:23012317

  19. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development.

    PubMed

    Rechavi, Erez; Lev, Atar; Lee, Yu Nee; Simon, Amos J; Yinon, Yoav; Lipitz, Schlomo; Amariglio, Ninette; Weisz, Boaz; Notarangelo, Luigi D; Somech, Raz

    2015-02-25

    Insights into the ontogeny of the human fetal adaptive immune system are of great value for understanding immunocompetence of the developing fetus. However, to date, this has remained largely uncharted territory, in large part because blood samples from healthy, early gestation fetuses have been hard to come by. In a comprehensive study, we analyzed levels of T cell receptor excision circles (TRECs), signal-joint κ receptor excision circles (sjKRECs), and intron recombination signal sequence-K-deleting element (iRSS-Kde) rearrangement, and T and B lymphocyte repertoire clonality in human fetuses from 12 to 26 weeks of gestational age. Using next-generation sequencing, we analyzed the diversity and complexity of T cell receptor β (TRB) and immunoglobulin heavy chain (IGH) repertoires in four fetuses at 12, 13, 22, and 26 weeks of gestation and in healthy full-term infants. We report the progressive increase of TREC, sjKREC, and iRSS-Kde levels over time and confirm that B cell development precedes T cell development in the human fetus. Temporally and spatially regulated maturation of B and T cell repertoire diversity and complexity during human fetal development was observed, including evidence that immunoglobulin somatic hypermutation and class switch recombination occur already during intrauterine life. Our results help define physiological levels of immunodeficiency in premature infants and may serve as a reference for future studies aimed at investigating the impact of intrauterine pathologies on fetal immune development and function. PMID:25717098

  20. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells.

    PubMed

    Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N; Xue, Zhigang; Deng, Sophie X; Fan, Guoping

    2013-04-01

    The corneal endothelium is composed of a monolayer of corneal endothelial cells (CECs), which is essential for maintaining corneal transparency. To better characterize CECs in different developmental stages, we profiled mRNA transcriptomes in human fetal and adult corneal endothelium with the goal to identify novel molecular markers in these cells. By comparing CECs with 12 other tissue types, we identified 245 and 284 signature genes that are highly expressed in fetal and adult CECs, respectively. Functionally, these genes are enriched in pathways characteristic of CECs, including inorganic anion transmembrane transporter, extracellular matrix structural constituent and cyclin-dependent protein kinase inhibitor activity. Importantly, several of these genes are disease target genes in hereditary corneal dystrophies, consistent with their functional significance in CEC physiology. We also identified stage-specific markers associated with CEC development, such as specific members in the transforming growth factor beta and Wnt signaling pathways only expressed in fetal, but not in adult CECs. Lastly, by the immunohistochemistry of ocular tissues, we demonstrated the unique protein localization for Wnt5a, S100A4, S100A6 and IER3, the four novel markers for fetal and adult CECs. The identification of a new panel of stage-specific markers for CECs would be very useful for characterizing CECs derived from stem cells or ex vivo expansion for cell replacement therapy. PMID:23257286

  1. Phase Transition in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Togo, Fumiharu; Yamamoto, Yoshiharu

    2005-07-01

    A healthy human heart rate displays complex fluctuations which share characteristics of physical systems in a critical state. We demonstrate that the human heart rate in healthy individuals undergoes a dramatic breakdown of criticality characteristics, reminiscent of continuous second order phase transitions. By studying the germane determinants, we show that the hallmark of criticality—highly correlated fluctuations—is observed only during usual daily activity, and a breakdown of these characteristics occurs in prolonged, strenuous exercise and sleep. This finding is the first reported discovery of the dynamical phase transition phenomenon in a biological control system and will be a key to understanding the heart rate control system in health and disease.

  2. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  3. Peroxisome Proliferator-Activated Receptor Alpha (PPARa), Beta (PPARI3), and Gamma (PPARy) Expression in Human Fetal Tissues.

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study uses qPCR...

  4. Effect of placental factors on growth and function of the human fetal adrenal in vitro

    SciTech Connect

    Riopel, L.; Branchaud, C.L.; Goodyer, C.G.; Zweig, M.; Lipowski, L.; Adkar, V.; Lefebvre, Y. )

    1989-11-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: (1) maximal response to PM was 2-5 times greater; (2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; (3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland.

  5. Correlation between Conjugated Bisphenol A Concentrations and Efflux Transporter Expression in Human Fetal Livers.

    PubMed

    Moscovitz, Jamie E; Nahar, Muna S; Shalat, Stuart L; Slitt, Angela L; Dolinoy, Dana C; Aleksunes, Lauren M

    2016-07-01

    Because of its widespread use in the manufacturing of consumer products over several decades, human exposure to bisphenol A (BPA) has been pervasive. Fetuses are particularly sensitive to BPA exposure, with a number of negative developmental and reproductive outcomes observed in rodent perinatal models. Xenobiotic transporters are one mechanism to extrude conjugated and unconjugated BPA from the liver. In this study, the mRNA expression of xenobiotic transporters and relationships with total, conjugated, and free BPA levels were explored utilizing human fetal liver samples. The mRNA expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated transporter (MRP)4, as well as BCRP and multidrug resistance transporter 1 exhibited the highest degree of correlation, with r(2) values of 0.941 and 0.816 (P < 0.001 for both), respectively. Increasing concentrations of conjugated BPA significantly correlated with high expression of MRP1 (P < 0.001), MRP2 (P < 0.05), and MRP3 (P < 0.05) transporters, in addition to the NF-E2-related factor 2 transcription factor (P < 0.001) and its prototypical target gene, NAD(P)H quinone oxidoreductase 1 (P < 0.001). These data demonstrate that xenobiotic transporters may be coordinately expressed in the human fetal liver. This is also the first report of a relationship between environmentally relevant fetal BPA levels and differences in the expression of transporters that can excrete the parent compound and its metabolites. PMID:26851240

  6. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells.

    PubMed

    Zhang, Shaojie; Patel, Ananddeep; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-09-01

    Bronchopulmonary dysplasia (BPD) is a chronic lung disease of premature infants that is characterized by alveolar simplification and decreased lung angiogenesis. Hyperoxia-induced oxidative stress and inflammation contributes to the development of BPD in premature infants. Adrenomedullin (AM) is an endogenous peptide with potent angiogenic, anti-oxidant, and anti-inflammatory properties. Whether AM regulates hyperoxic injury in fetal primary human lung cells is unknown. Therefore, we tested the hypothesis that AM-deficient fetal primary human pulmonary microvascular endothelial cells (HPMEC) will have increased oxidative stress, inflammation, and cytotoxicity compared to AM-sufficient HPMEC upon exposure to hyperoxia. Adrenomedullin gene (Adm) was knocked down in HPMEC by siRNA-mediated transfection and the resultant AM-sufficient and -deficient cells were evaluated for hyperoxia-induced oxidative stress, inflammation, cytotoxicity, and Akt activation. AM-deficient HPMEC had significantly increased hyperoxia-induced reactive oxygen species (ROS) generation and cytotoxicity compared to AM-sufficient HPMEC. Additionally, AM-deficient cell culture supernatants had increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, AM deficiency was associated with an abrogated Akt activation upon exposure to hyperoxia. These findings support the hypothesis that AM deficiency potentiates hyperoxic injury in primary human fetal HPMEC via mechanisms entailing Akt activation. PMID:26196743

  7. Effect of 3'-azido-3'-deoxythymidine on human immunodeficiency virus type 1 replication in human fetal brain macrophages.

    PubMed Central

    Geleziunas, R; Arts, E J; Boulerice, F; Goldman, H; Wainberg, M A

    1993-01-01

    We investigated whether cells derived from the fetal central nervous system can support productive infection by a human immunodeficiency virus type 1 (HIV-1) isolate termed UHC-1, produced by a cellular clone derived from HIV-1 strain HIV-IIIB chronically infected U-937 promonocytic cells, and what the effect of nucleoside analogs might be on viral replication in this system. Fractionation of human fetal brain tissue into two different populations, enriched for either astrocytes or macrophages, showed that only the latter were able to support productive UHC-1 replication and generation of detectable progeny virus. Pretreatment of fetal brain macrophages with either of two nucleoside analogs, 3'-azido-3'-deoxythymidine (AZT) or the (-) enantiomer of 2'-deoxy-3'-thiacytidine, efficiently blocked production of progeny virus. Generation of unintegrated proviral DNA and HIV-1 transcripts were inhibited by pretreatment of fetal brain macrophages with 1 microM AZT. Administration of AZT at 24 h postinfection led to a slight reduction in viral transcript levels and viral progeny production by day 15 postinfection; however, brain macrophages under these conditions did not contain detectable amounts of unintegrated viral DNA. These results suggest that AZT may interfere with the accumulation of unintegrated HIV-1 DNA in brain macrophages. This is the first demonstration that nucleoside analogs are able to block HIV-1 replication in primary cultures of brain cells. Images PMID:8392310

  8. The winding road to regenerating the human heart

    PubMed Central

    Gerbin, Kaytlyn A.; Murry, Charles E.

    2015-01-01

    Regenerating the human heart is a challenge that has engaged researchers and clinicians around the globe for nearly a century. From the repair of the first septal defect in 1953, followed by the first successful heart transplant in 1967, and later to the first infusion of bone-marrow derived cells to the human myocardium in 2002, significant progress has been made in heart repair. Yet, chronic heart failure remains a leading pathological burden worldwide. Why has regenerating the human heart been such a challenge, and how close are we to achieving clinically relevant regeneration? Exciting progress has been made to establish cell transplantation techniques in recent years, and new pre-clinical studies in large animal models have shed light on the promises and challenges that lie ahead. In this review, we will discuss the history of cell therapy approaches and provide an overview of clinical trials using cell transplantation for heart regeneration. Focusing on the delivery of human stem cell-derived cardiomyocytes, current experimental strategies in the field will be discussed as well as their clinical translation potential. Although the human heart has not been regenerated yet, decades of experimental progress have guided us onto a promising pathway. Summary Exciting progress has been made in recent years to establish clinical cell transplantation techniques, and new pre-clinical studies in large animal models have shed light on the promises and challenges that lie ahead. Although the human heart has not been regenerated yet, decades of experimental progress in pre-clinical and clinical trials have guided us onto a promising pathway. PMID:25795463

  9. Generation of Neural Stem Cells from Discarded Human Fetal Cortical Tissue

    PubMed Central

    Lu, Jie; Delli-Bovi, Laurent C.; Hecht, Jonathan; Folkerth, Rebecca; Sheen, Volney L.

    2011-01-01

    Neural stem cells (NSCs) reside along the ventricular zone neuroepithelium during the development of the cortical plate. These early progenitors ultimately give rise to intermediate progenitors and later, the various neuronal and glial cell subtypes that form the cerebral cortex. The capacity to generate and expand human NSCs (so called neurospheres) from discarded normal fetal tissue provides a means with which to directly study the functional aspects of normal human NSC development 1-5. This approach can also be directed toward the generation of NSCs from known neurological disorders, thereby affording the opportunity to identify disease processes that alter progenitor proliferation, migration and differentiation 6-9. We have focused on identifying pathological mechanisms in human Down syndrome NSCs that might contribute to the accelerated Alzheimer's disease phenotype 10,11. Neither in vivo nor in vitro mouse models can replicate the identical repertoire of genes located on human chromosome 21. Here we use a simple and reliable method to isolate Down syndrome NSCs from aborted human fetal cortices and grow them in culture. The methodology provides specific aspects of harvesting the tissue, dissection with limited anatomical landmarks, cell sorting, plating and passaging of human NSCs. We also provide some basic protocols for inducing differentiation of human NSCs into more selective cell subtypes. PMID:21654623

  10. Oligodendrocyte development and the onset of myelination in the human fetal brain.

    PubMed

    Jakovcevski, Igor; Filipovic, Radmila; Mo, Zhicheng; Rakic, Sonja; Zecevic, Nada

    2009-01-01

    Oligodendrocytes are cells that myelinate axons, providing saltatory conduction of action potentials and proper function of the central nervous system. Myelination begins prenatally in the human, and the sequence of oligodendrocyte development and the onset of myelination are not thoroughly investigated. This knowledge is important to better understand human diseases, such as periventricular leukomalacia, one of the leading causes of motor deficit in premature babies, and demyelinating disorders such as multiple sclerosis (MS). In this review we discuss the spatial and temporal progression of oligodendrocyte lineage characterized by the expression of specific markers and transcription factors in the human fetal brain from the early embryonic period (5 gestational weeks, gw) until midgestation (24 gw). Our in vitro evidence indicated that a subpopulation of human oligodendrocytes may have dorsal origin, from cortical radial glia cells, in addition to their ventral telencephalic origin. Furthermore, we demonstrated that the regulation of myelination in the human fetal brain includes positive and negative regulators. Chemokines, such as CXCL1, abundant in proliferative zones during brain development and in regions of remyelination in adult, are discussed in the view of their potential roles in stimulating oligodendrocyte development. Other signals are inhibitory and may include, but are not limited to, polysialic acid modification of the neural cell adhesion molecule on axons. Overall, important differences in temporal and spatial distribution and regulatory signals for oligodendrocyte differentiation exist between human and rodent brains. Those differences may underlie the unique susceptibility of humans to demyelinating diseases, such as MS. PMID:19521542

  11. Intracellular Immunization of Human Fetal Cord Blood Stem/Progenitor Cells with a Ribozyme Against Human Immunodeficiency Virus Type 1

    NASA Astrophysics Data System (ADS)

    Yu, Mang; Leavitt, Mark C.; Maruyama, Midori; Yamada, Osamu; Young, Dennis; Ho, Anthony D.; Wong-Staal, Flossie

    1995-01-01

    Successful treatment of human immunodeficiency virus infection may ultimately require targeting of hematopoietic stem cells. Here we used retroviral vectors carrying the ribozyme gene to transduce CD34^+ cells from human fetal cord blood. Transduction and ribozyme expression had no apparent adverse effect on cell differentiation and/or proliferation. The macrophage-like cells, differentiated from the stem/progenitor cells in vitro, expressed the ribozyme gene and resisted infection by a macrophage tropic human immunodeficiency virus type 1. These results suggest the feasibility of stem cell gene therapy for human immunodeficiency virus-infected patients.

  12. Alloproliferation of purified CD4+ T cells to adult human heart endothelial cells, and study of second-signal requirements.

    PubMed Central

    McDouall, R M; Page, C S; Hafizi, S; Yacoub, M H; Rose, M L

    1996-01-01

    Human endothelial cells have been shown to be capable of causing direct allostimulation of T cells. However, the majority of immunological studies of human endothelial cells have been performed on cells of fetal origin. Here we use endothelial cells isolated from the adult human heart, both large vessel (coronary artery, pulmonary artery and aorta) and also microvascular. We have examined the ability of all these endothelial cells to cause direct allostimulation of T cells, and show that purified CD4+ T cells can proliferate in response to adult human heart endothelial cells, the response being dependent on pretreatment of the endothelial cells with interferon-gamma (IFN-gamma) and inhibited by anti-HLA-DR monoclonal antibody. The proliferative responses of CD8+ T cells to adult but not fetal endothelial cells was inconsistent and weak. Proliferative responses were not blocked by CTLA4-Ig, which inhibits T-cell responses to "classical' antigen-presenting cells (APC), but > 50% inhibition was achieved with monoclonal antibody to lymphocyte function-associated antigen-3 (LFA-3). These results show that adult human cardiovascular endothelial cells are capable of causing allostimulation of resting CD4+ T cells, using a different second signal to classical APC. In view of these findings endothelial cells should be considered as APC following solid organ transplantation. PMID:8943718

  13. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone

    PubMed Central

    Pearson, Helen; Britt, Rodney D.; Pabelick, Christine M.; Prakash, Y.S.; Amrani, Yassine; Pandya, Hitesh C.

    2016-01-01

    Background Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Methods Cultured fetal human ASM cells stimulated with TNF-α (0–20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. Results CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Conclusion Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases. PMID:26331770

  14. Intelligent Structured Intermittent Auscultation (ISIA): evaluation of a decision-making framework for fetal heart monitoring of low-risk women

    PubMed Central

    2014-01-01

    Background Research-informed fetal monitoring guidelines recommend intermittent auscultation (IA) for fetal heart monitoring for low-risk women. However, the use of cardiotocography (CTG) continues to dominate many institutional maternity settings. Methods A mixed methods intervention study with before and after measurement was undertaken in one secondary level health service to facilitate the implementation of an initiative to encourage the use of IA. The intervention initiative was a decision-making framework called Intelligent Structured Intermittent Auscultation (ISIA) introduced through an education session. Results Following the intervention, medical records review revealed an increase in the use of IA during labour represented by a relative change of 12%, with improved documentation of clinical findings from assessments, and a significant reduction in the risk of receiving an admission CTG (RR 0.75, 95% CI, 0.60 – 0.95, p = 0.016). Conclusion The ISIA informed decision-making framework transformed the practice of IA and provided a mechanism for knowledge translation that enabled midwives to implement evidence-based fetal heart monitoring for low risk women. PMID:24884597

  15. The early fetal development of human neocortical GABAergic interneurons.

    PubMed

    Al-Jaberi, Nahidh; Lindsay, Susan; Sarma, Subrot; Bayatti, Nadhim; Clowry, Gavin J

    2015-03-01

    GABAergic interneurons are crucial to controlling the excitability and responsiveness of cortical circuitry. Their developmental origin may differ between rodents and human. We have demonstrated the expression of 12 GABAergic interneuron-associated genes in samples from human neocortex by quantitative rtPCR from 8 to 12 postconceptional weeks (PCW) and shown a significant anterior to posterior expression gradient, confirmed by in situ hybridization or immunohistochemistry for GAD1 and 2, DLX1, 2, and 5, ASCL1, OLIG2, and CALB2. Following cortical plate (CP) formation from 8 to 9 PCW, a proportion of cells were strongly stained for all these markers in the CP and presubplate. ASCL1 and DLX2 maintained high expression in the proliferative zones and showed extensive immunofluorescent double-labeling with the cell division marker Ki-67. CALB2-positive cells increased steadily in the SVZ/VZ from 10 PCW but were not double-labeled with Ki-67. Expression of GABAergic genes was generally higher in the dorsal pallium than in the ganglionic eminences, with lower expression in the intervening ventral pallium. It is widely accepted that the cortical proliferative zones may generate CALB2-positive interneurons from mid-gestation; we now show that the anterior neocortical proliferative layers especially may be a rich source of interneurons in the early neocortex. PMID:24047602

  16. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells.

    PubMed

    Faksh, Arij; Britt, Rodney D; Vogel, Elizabeth R; Thompson, Michael A; Pandya, Hitesh C; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2016-01-15

    Viral infections, such as respiratory syncytial virus and rhinovirus, adversely affect neonatal and pediatric populations, resulting in significant lung morbidity, including acute asthma exacerbation. Studies in adults have demonstrated that human airway smooth muscle (ASM) cells modulate inflammation through their ability to secrete inflammatory cytokines and chemokines. The role of ASM in the developing airway during infection remains undefined. In our study, we used human fetal ASM cells as an in vitro model to examine the effect of Toll-like receptor (TLR) agonists on chemokine secretion. We found that fetal ASM express multiple TLRs, including TLR3 and TLR4, which are implicated in the pathogenesis of respiratory syncytial virus and rhinovirus infection. Cells were treated with TLR agonists, polyinosinic-polycytidylic acid [poly(I:C)] (TLR3 agonist), lipopolysaccharide (TLR4 agonist), or R848 (TLR7/8 agonist), and IL-8 and chemokine (C-C motif) ligand 5 (CCL5) secretion were evaluated. Interestingly, poly(I:C), but neither lipopolysaccharide nor R848, increased IL-8 and chemokine (C-C motif) ligand 5 secretion. Examination of signaling pathways suggested that the poly(I:C) effects in fetal ASM involve TLR and ERK signaling, in addition to another major inflammatory pathway, NF-κB. Moreover, there are variations between fetal and adult ASM with respect to poly(I:C) effects on signaling pathways. Pharmacological inhibition suggested that ERK pathways mediate poly(I:C) effects. Overall, our data show that poly(I:C) initiates activation of proinflammatory pathways in developing ASM, which may contribute to immune responses to infection and exacerbation of asthma. PMID:26589477

  17. Human fetal pancreatic islet-like structures as source material to treat type 1 diabetes.

    PubMed

    Ikeda, Yasuhiro; Kudva, Yogish C

    2013-01-01

    The incidence of type 1 diabetes is increasing worldwide. Current therapy continues to be suboptimal. An exciting therapeutic advance in the short term is closed loop technology development and application. However, cell and tissue therapy continues to be an unmet need for the disorder. Human islets isolated from deceased donors will be clinically available to treat type 1 diabetes within the next 1 to 2 years. Other approaches such as xenotransplantation and islet products derived from human embryonic stem cells and induced pluripotent stem cells are currently being pursued. The current commentary provides context and discusses future endeavors for transplantation of islet-like structures derived from fetal pancreas. PMID:24377429

  18. How Live Performance Moves the Human Heart

    PubMed Central

    Shoda, Haruka; Adachi, Mayumi; Umeda, Tomohiro

    2016-01-01

    We investigated how the audience member’s physiological reactions differ as a function of listening context (i.e., live versus recorded music contexts). Thirty-seven audience members were assigned to one of seven pianists’ performances and listened to his/her live performances of six pieces (fast and slow pieces by Bach, Schumann, and Debussy). Approximately 10 weeks after the live performance, each of the audience members returned to the same room and listened to the recorded performances of the same pianists’ via speakers. We recorded the audience members’ electrocardiograms in listening to the performances in both conditions, and analyzed their heart rates and the spectral features of the heart-rate variability (i.e., HF/TF, LF/HF). Results showed that the audience’s heart rate was higher for the faster than the slower piece only in the live condition. As compared with the recorded condition, the audience’s sympathovagal balance (LF/HF) was less while their vagal nervous system (HF/TF) was activated more in the live condition, which appears to suggest that sharing the ongoing musical moments with the pianist reduces the audience’s physiological stress. The results are discussed in terms of the audience’s superior attention and temporal entrainment to live performance. PMID:27104377

  19. How Live Performance Moves the Human Heart.

    PubMed

    Shoda, Haruka; Adachi, Mayumi; Umeda, Tomohiro

    2016-01-01

    We investigated how the audience member's physiological reactions differ as a function of listening context (i.e., live versus recorded music contexts). Thirty-seven audience members were assigned to one of seven pianists' performances and listened to his/her live performances of six pieces (fast and slow pieces by Bach, Schumann, and Debussy). Approximately 10 weeks after the live performance, each of the audience members returned to the same room and listened to the recorded performances of the same pianists' via speakers. We recorded the audience members' electrocardiograms in listening to the performances in both conditions, and analyzed their heart rates and the spectral features of the heart-rate variability (i.e., HF/TF, LF/HF). Results showed that the audience's heart rate was higher for the faster than the slower piece only in the live condition. As compared with the recorded condition, the audience's sympathovagal balance (LF/HF) was less while their vagal nervous system (HF/TF) was activated more in the live condition, which appears to suggest that sharing the ongoing musical moments with the pianist reduces the audience's physiological stress. The results are discussed in terms of the audience's superior attention and temporal entrainment to live performance. PMID:27104377

  20. Cytokeratin (CK5, CK8, CK14) expression and presence of progenitor stem cells in human fetal thymuses.

    PubMed

    Gupta, Richa; Gupta, Tulika; Kaur, Harjeet; Sehgal, Shobha; Aggarwal, Anjali; Kapoor, Kanchan; Sharma, Anshu; Sahni, Daisy; Singla, Suhalika

    2016-09-01

    The aim of the current study was to observe the expression of cytokeratins in human fetal thymuses. Specific cytokeratin markers in adult humans and mice have been well described but there has been little similar work on human fetuses. We also aimed to see whether progenitor stem cells that could be harvested to treat various immunodeficiency disorders are present in fetal thymic tissue. Thymuses obtained from 30 aborted human fetuses (12 to 31 weeks) were examined immunohistochemically to investigate changes in cytokeratin expression in the epithelial cells (TEC) at various gestational ages. Before 16 weeks of gestation, cortical (cTEC) and medullary (mTEC) TEC exhibited homogenous staining for cytokeratins CK8 and CK5. After 16 weeks there was differential staining, with cTEC positive for CK8 and mTEC for CK5 and CK14. Interestingly, both CK5 + CK8+ progenitor stem cells were present in the fetal thymic cortex at all gestational ages, with a relatively high number from 12 to 16 weeks. Cytokeratin expression in fetal thymuses was quite different from that in the adult thymus owing to the presence of undifferentiated progenitor stem cells in fetal thymic stroma along with differentiated TEC. The best time to harvest these progenitor stem cells from fetal thymic stroma in order to treat various immune deficiency disorders appears to be 12-16 weeks. Clin. Anat. 29:711-717, 2016. © 2016 Wiley Periodicals, Inc. PMID:27213760

  1. Development and Function of the Human Fetal Adrenal Cortex: A Key Component in the Feto-Placental Unit

    PubMed Central

    Ishimoto, Hitoshi

    2011-01-01

    Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex. PMID:21051591

  2. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo

    PubMed Central

    Lee, Y. Terry; de Vasconcellos, Jaira F.; Yuan, Joan; Byrnes, Colleen; Noh, Seung-Jae; Meier, Emily R.; Kim, Ki Soon; Rabel, Antoinette; Kaushal, Megha; Muljo, Stefan A.

    2013-01-01

    Reactivation of fetal hemoglobin (HbF) holds therapeutic potential for sickle cell disease and β-thalassemias. In human erythroid cells and hematopoietic organs, LIN28B and its targeted let-7 microRNA family, demonstrate regulated expression during the fetal-to-adult developmental transition. To explore the effects of LIN28B in human erythroid cell development, lentiviral transduction was used to knockdown LIN28B expression in erythroblasts cultured from human umbilical cord CD34+ cells. The subsequent reduction in LIN28B expression caused increased expression of let-7 and significantly reduced HbF expression. Conversely, LIN28B overexpression in cultured adult erythroblasts reduced the expression of let-7 and significantly increased HbF expression. Cellular maturation was maintained including enucleation. LIN28B expression in adult erythroblasts increased the expression of γ-globin, and the HbF content of the cells rose to levels >30% of their hemoglobin. Expression of carbonic anhydrase I, glucosaminyl (N-acetyl) transferase 2, and miR-96 (three additional genes marking the transition from fetal-to-adult erythropoiesis) were reduced by LIN28B expression. The transcription factor BCL11A, a well-characterized repressor of γ-globin expression, was significantly down-regulated. Independent of LIN28B, experimental suppression of let-7 also reduced BCL11A expression and significantly increased HbF expression. LIN28B expression regulates HbF levels and causes adult human erythroblasts to differentiate with a more fetal-like phenotype. PMID:23798711

  3. The expression of c-kit protein in human adult and fetal tissues.

    PubMed

    Horie, K; Fujita, J; Takakura, K; Kanzaki, H; Suginami, H; Iwai, M; Nakayama, H; Mori, T

    1993-11-01

    The c-kit proto-oncogene encodes a tyrosine kinase receptor and is allelic with the dominant white-spotting (W) locus of the mouse. In this study we investigated the expression of human c-kit protein in various adult and fetal human tissues immunohistochemically using anti-human c-kit monoclonal antibody. To discriminate c-kit+ cells from mast cells expressing c-kit, mast cells were identified by staining with Toluidine blue. In oogonia, spermatogonia and skin melanocytes of the fetus and in oocytes of adult ovary, c-kit expression was detected. In adult uterus, c-kit+ cells were widely distributed in the basal layer of the endometrium, myometrium and cervix, the number and distribution being almost identical to those of mast cells. In fetal uterus, c-kit+ non-mast cells clustered beneath the epithelium and a few mast cells were observed in the myometrium and subserosal layer. In both adult and fetus, c-kit+ non-mast cells were detected within smooth muscle layers of the intestine, colon and oesophagus, while mast cells were observed in the mucosal and submucosal layers of these organs. In contrast to mice, no expression of c-kit protein was detected in the human placenta and decidua. Thus, the distribution of c-kit+ cells in various tissues is similar but not identical between adult and fetus and between human and mouse. PMID:7507133

  4. The Living Heart Project: A robust and integrative simulator for human heart function.

    PubMed

    Baillargeon, Brian; Rebelo, Nuno; Fox, David D; Taylor, Robert L; Kuhl, Ellen

    2014-11-01

    The heart is not only our most vital, but also our most complex organ: Precisely controlled by the interplay of electrical and mechanical fields, it consists of four chambers and four valves, which act in concert to regulate its filling, ejection, and overall pump function. While numerous computational models exist to study either the electrical or the mechanical response of its individual chambers, the integrative electro-mechanical response of the whole heart remains poorly understood. Here we present a proof-of-concept simulator for a four-chamber human heart model created from computer topography and magnetic resonance images. We illustrate the governing equations of excitation-contraction coupling and discretize them using a single, unified finite element environment. To illustrate the basic features of our model, we visualize the electrical potential and the mechanical deformation across the human heart throughout its cardiac cycle. To compare our simulation against common metrics of cardiac function, we extract the pressure-volume relationship and show that it agrees well with clinical observations. Our prototype model allows us to explore and understand the key features, physics, and technologies to create an integrative, predictive model of the living human heart. Ultimately, our simulator will open opportunities to probe landscapes of clinical parameters, and guide device design and treatment planning in cardiac diseases such as stenosis, regurgitation, or prolapse of the aortic, pulmonary, tricuspid, or mitral valve. PMID:25267880

  5. Localization of cyclooxygenase-1 and -2 in adult and fetal human kidney: implication for renal function.

    PubMed

    Kömhoff, M; Grone, H J; Klein, T; Seyberth, H W; Nüsing, R M

    1997-04-01

    To gain insight into the roles of cyclooxygenase (COX)-1 and -2 in human kidney, we analyzed their expressions and localization in adult and fetal normal kidney. Immunohistology showed expression of COX-1 in collecting duct cells, interstitial cells, endothelial cells, and smooth muscle cells of pre- and postglomerular vessels. Expression of COX-2 immunoreactive protein could be localized to endothelial and smooth muscle cells of arteries and veins and intraglomerularly in podocytes. In contrast to the rat, COX isoforms were not detected in the macula densa. These data were confirmed by in situ mRNA analysis using digoxigenin-labeled riboprobes. In fetal kidney, COX-1 was primarily expressed in podocytes and collecting duct cells. Expression levels of COX-1 in both cell types increased markedly from subcapsular to juxtamedullary cortex. Glomerular staining of COX-2 was detectable in podocytes only at the endstage of renal development. In summary, the localization of COX-2 suggests that this enzyme may be primarily involved in the regulation of renal perfusion and glomerular hemodynamics. The expression of COX-1 in podocytes of the fetal kidney and its absence in adult glomeruli suggests that this isoform might be involved in glomerulogenesis. PMID:9140046

  6. Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio

    PubMed Central

    Doret, Muriel; Spilka, Jiří; Chudáček, Václav; Gonçalves, Paulo; Abry, Patrice

    2015-01-01

    Background The fetal heart rate (FHR) is commonly monitored during labor to detect early fetal acidosis. FHR variability is traditionally investigated using Fourier transform, often with adult predefined frequency band powers and the corresponding LF/HF ratio. However, fetal conditions differ from adults and modify spectrum repartition along frequencies. Aims This study questions the arbitrariness definition and relevance of the frequency band splitting procedure, and thus of the calculation of the underlying LF/HF ratio, as efficient tools for characterizing intrapartum FHR variability. Study Design The last 30 minutes before delivery of the intrapartum FHR were analyzed. Subjects Case-control study. A total of 45 singletons divided into two groups based on umbilical cord arterial pH: the Index group with pH ≤ 7.05 (n = 15) and Control group with pH > 7.05 (n = 30). Outcome Measures Frequency band-based LF/HF ratio and Hurst parameter. Results This study shows that the intrapartum FHR is characterized by fractal temporal dynamics and promotes the Hurst parameter as a potential marker of fetal acidosis. This parameter preserves the intuition of a power frequency balance, while avoiding the frequency band splitting procedure and thus the arbitrary choice of a frequency separating bands. The study also shows that extending the frequency range covered by the adult-based bands to higher and lower frequencies permits the Hurst parameter to achieve better performance for identifying fetal acidosis. Conclusions The Hurst parameter provides a robust and versatile tool for quantifying FHR variability, yields better acidosis detection performance compared to the LF/HF ratio, and avoids arbitrariness in spectral band splitting and definitions. PMID:26322889

  7. Temporal Patterns in Sheep Fetal Heart Rate Variability Correlate to Systemic Cytokine Inflammatory Response: A Methodological Exploration of Monitoring Potential Using Complex Signals Bioinformatics

    PubMed Central

    Wu, Hau-Tieng; Durosier, Lucien D.; Desrochers, André; Fecteau, Gilles; Seely, Andrew J. E.; Frasch, Martin G.

    2016-01-01

    Fetal inflammation is associated with increased risk for postnatal organ injuries. No means of early detection exist. We hypothesized that systemic fetal inflammation leads to distinct alterations of fetal heart rate variability (fHRV). We tested this hypothesis deploying a novel series of approaches from complex signals bioinformatics. In chronically instrumented near-term fetal sheep, we induced an inflammatory response with lipopolysaccharide (LPS) injected intravenously (n = 10) observing it over 54 hours; seven additional fetuses served as controls. Fifty-one fHRV measures were determined continuously every 5 minutes using Continuous Individualized Multi-organ Variability Analysis (CIMVA). CIMVA creates an fHRV measures matrix across five signal-analytical domains, thus describing complementary properties of fHRV. We implemented, validated and tested methodology to obtain a subset of CIMVA fHRV measures that matched best the temporal profile of the inflammatory cytokine IL-6. In the LPS group, IL-6 peaked at 3 hours. For the LPS, but not control group, a sharp increase in standardized difference in variability with respect to baseline levels was observed between 3 h and 6 h abating to baseline levels, thus tracking closely the IL-6 inflammatory profile. We derived fHRV inflammatory index (FII) consisting of 15 fHRV measures reflecting the fetal inflammatory response with prediction accuracy of 90%. Hierarchical clustering validated the selection of 14 out of 15 fHRV measures comprising FII. We developed methodology to identify a distinctive subset of fHRV measures that tracks inflammation over time. The broader potential of this bioinformatics approach is discussed to detect physiological responses encoded in HRV measures. PMID:27100089

  8. Temporal Patterns in Sheep Fetal Heart Rate Variability Correlate to Systemic Cytokine Inflammatory Response: A Methodological Exploration of Monitoring Potential Using Complex Signals Bioinformatics.

    PubMed

    Herry, Christophe L; Cortes, Marina; Wu, Hau-Tieng; Durosier, Lucien D; Cao, Mingju; Burns, Patrick; Desrochers, André; Fecteau, Gilles; Seely, Andrew J E; Frasch, Martin G

    2016-01-01

    Fetal inflammation is associated with increased risk for postnatal organ injuries. No means of early detection exist. We hypothesized that systemic fetal inflammation leads to distinct alterations of fetal heart rate variability (fHRV). We tested this hypothesis deploying a novel series of approaches from complex signals bioinformatics. In chronically instrumented near-term fetal sheep, we induced an inflammatory response with lipopolysaccharide (LPS) injected intravenously (n = 10) observing it over 54 hours; seven additional fetuses served as controls. Fifty-one fHRV measures were determined continuously every 5 minutes using Continuous Individualized Multi-organ Variability Analysis (CIMVA). CIMVA creates an fHRV measures matrix across five signal-analytical domains, thus describing complementary properties of fHRV. We implemented, validated and tested methodology to obtain a subset of CIMVA fHRV measures that matched best the temporal profile of the inflammatory cytokine IL-6. In the LPS group, IL-6 peaked at 3 hours. For the LPS, but not control group, a sharp increase in standardized difference in variability with respect to baseline levels was observed between 3 h and 6 h abating to baseline levels, thus tracking closely the IL-6 inflammatory profile. We derived fHRV inflammatory index (FII) consisting of 15 fHRV measures reflecting the fetal inflammatory response with prediction accuracy of 90%. Hierarchical clustering validated the selection of 14 out of 15 fHRV measures comprising FII. We developed methodology to identify a distinctive subset of fHRV measures that tracks inflammation over time. The broader potential of this bioinformatics approach is discussed to detect physiological responses encoded in HRV measures. PMID:27100089

  9. Structural development of human brain white matter from mid-fetal to perinatal stage

    NASA Astrophysics Data System (ADS)

    Ouyang, Austin; Yu, Qiaowen; Mishra, Virendra; Chalak, Lina; Jeon, Tina; Sivarajan, Muraleedharan; Jackson, Greg; Rollins, Nancy; Liu, Shuwei; Huang, Hao

    2015-03-01

    The structures of developing human brain white matter (WM) tracts can be effectively quantified by DTI-derived metrics, including fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD). However, dynamics of WM microstructure during very early developmental period from mid-fetal to perinatal stage is unknown. It is difficult to accurately measure microstructural properties of these WM tracts due to severe contamination from cerebrospinal fluid (CSF). In this study, high resolution DTI of fetal brains at mid-fetal stage (20 weeks of gestation or 20wg), 19 brains in the middle of 3rd trimester (35wg) and 17 brains around term (40wg) were acquired. We established first population-averaged DTI templates at these three time points and extracted WM skeleton. 16 major WM tracts in limbic, projection, commissural and association tract groups were traced with DTI tractography in native space. The WM skeleton in the template space was inversely transformed back to the native space for measuring core WM microstructures of each individual tract. Continuous microstructural enhancement and volumetric increase of WM tracts were found from 20wg to 40wg. The microstructural enhancement from FA measurement is decelerated in late 3rd trimester compared to mid-fetal to middle 3rd trimester, while volumetric increase of prefrontal WM tracts is accelerated. The microstructural enhancement from 35wg to 40wg is heterogeneous among different tract groups with microstructures of association tracts undergoing most dramatic change. Besides decreases of RD indicating active myelination, the decrease of AD for most WM tracts during late 3rd trimester suggests axonal packing process.

  10. Fetal Neurobehavioral Development.

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; And Others

    1996-01-01

    Investigated the ontogeny of fetal autonomic, motoric, state, and interactive functioning in 31 healthy fetuses from 20 weeks through term. Found that male fetuses were more active than female fetuses, and that greater maternal stress appraisal was associated with reduced fetal heart rate variability. Found that an apparent period of…

  11. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies

    PubMed Central

    2010-01-01

    Background Quantitative real-time RT-PCR (RT-qPCR) is a highly sensitive method for mRNA quantification, but requires invariant expression of the chosen reference gene(s). In pathological myocardium, there is limited information on suitable reference genes other than the commonly used Gapdh mRNA and 18S ribosomal RNA. Our aim was to evaluate and identify suitable reference genes in human failing myocardium, in rat and mouse post-myocardial infarction (post-MI) heart failure and across developmental stages in fetal and neonatal rat myocardium. Results The abundance of Arbp, Rpl32, Rpl4, Tbp, Polr2a, Hprt1, Pgk1, Ppia and Gapdh mRNA and 18S ribosomal RNA in myocardial samples was quantified by RT-qPCR. The expression variability of these transcripts was evaluated by the geNorm and Normfinder algorithms and by a variance component analysis method. Biological variability was a greater contributor to sample variability than either repeated reverse transcription or PCR reactions. Conclusions The most stable reference genes were Rpl32, Gapdh and Polr2a in mouse post-infarction heart failure, Polr2a, Rpl32 and Tbp in rat post-infarction heart failure and Rpl32 and Pgk1 in human heart failure (ischemic disease and cardiomyopathy). The overall most stable reference genes across all three species was Rpl32 and Polr2a. In rat myocardium, all reference genes tested showed substantial variation with developmental stage, with Rpl4 as was most stable among the tested genes. PMID:20331858

  12. Hemodynamics in fetal arrhythmia.

    PubMed

    Sonesson, Sven-Erik; Acharya, Ganesh

    2016-06-01

    Fetal arrhythmias are among the few conditions that can be managed in utero. However, accurate diagnosis is essential for appropriate management. Ultrasound-based imaging methods can be used to study fetal heart structure and function noninvasively and help to understand fetal cardiovascular pathophysiology, and they remain the mainstay of evaluating fetuses with arrhythmias in clinical settings. Hemodynamic evaluation using Doppler echocardiography allows the elucidation of the electrophysiological mechanism and helps to make an accurate diagnosis. It can also be used as a tool to understand fetal cardiac pathophysiology, for assessing fetal condition and monitoring the effect of antiarrhythmic treatment. This narrative review describes Doppler techniques that are useful for evaluating fetal cardiac rhythms to refine diagnosis and provides an overview of hemodynamic changes observed in different types of fetal arrhythmia. PMID:26660845

  13. Fetal alcohol syndrome

    MedlinePlus

    Alcohol in pregnancy; Alcohol-related birth defects; Fetal alcohol effects; FAS ... the baby is in the womb and after birth Decreased muscle tone and ... Heart defects such as ventricular septal defect (VSD) or atrial ...

  14. High-resolution imaging diagnosis of human fetal membrane by three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Avila, Cecilia; Kaplan, Cynthia; Pan, Yingtian

    2011-11-01

    Microscopic chorionic pseudocyst (MCP) arising in the chorion leave of the human fetal membrane (FM) is a clinical precursor for preeclampsia which may progress to fatal medical conditions (e.g., abortion) if left untreated. To examine the utility of three-dimensional (3D) optical coherence tomography (OCT) for noninvasive delineation of the morphology of human fetal membranes and early clinical detection of MCP, 60 human FM specimens were acquired from 10 different subjects undergoing term cesarean delivery for an ex vivo feasibility study. Our results showed that OCT was able to identify the four-layer architectures of human FMs consisting of high-scattering decidua vera (DV, average thickness dDV ~ 92+/-38 μm), low-scattering chorion and trophoblast (CT, dCT ~ 150+/-67 μm), high-scattering subepithelial amnion (A, dA ~ 95+/-36 μm), and low-scattering epithelium (E, dE ~ 29+/-8 μm). Importantly, 3D OCT was able to instantaneously detect MCPs (low scattering due to edema, fluid buildup, vasodilatation) and track (staging) their thicknesses dMCP ranging from 24 to 615 μm. It was also shown that high-frequency ultrasound was able to compliment OCT for detecting more advanced thicker MCPs (e.g., dMCP>615 μm) because of its increased imaging depth.

  15. High-resolution imaging diagnosis of human fetal membrane by three-dimensional optical coherence tomography

    PubMed Central

    Ren, Hugang; Avila, Cecilia; Kaplan, Cynthia; Pan, Yingtian

    2011-01-01

    Microscopic chorionic pseudocyst (MCP) arising in the chorion leave of the human fetal membrane (FM) is a clinical precursor for preeclampsia which may progress to fatal medical conditions (e.g., abortion) if left untreated. To examine the utility of three-dimensional (3D) optical coherence tomography (OCT) for noninvasive delineation of the morphology of human fetal membranes and early clinical detection of MCP, 60 human FM specimens were acquired from 10 different subjects undergoing term cesarean delivery for an ex vivo feasibility study. Our results showed that OCT was able to identify the four-layer architectures of human FMs consisting of high-scattering decidua vera (DV, average thickness dDV ≈ 92±38 μm), low-scattering chorion and trophoblast (CT, dCT ≈ 150±67 μm), high-scattering subepithelial amnion (A, dA ≈ 95±36 μm), and low-scattering epithelium (E, dE ≈ 29±8 μm). Importantly, 3D OCT was able to instantaneously detect MCPs (low scattering due to edema, fluid buildup, vasodilatation) and track (staging) their thicknesses dMCP ranging from 24 to 615 μm. It was also shown that high-frequency ultrasound was able to compliment OCT for detecting more advanced thicker MCPs (e.g., dMCP>615 μm) because of its increased imaging depth. PMID:22112111

  16. Right ventricular long noncoding RNA expression in human heart failure

    PubMed Central

    Guo, Yan; Su, Yan Ru; Clark, Travis; Brittain, Evan; Absi, Tarek; Maltais, Simon; Hemnes, Anna

    2015-01-01

    Abstract The expression of long noncoding RNAs (lncRNAs) in human heart failure (HF) has not been widely studied. Using RNA sequencing (RNA-Seq), we compared lncRNA expression in 22 explanted human HF hearts with lncRNA expression in 5 unused donor human hearts. We used Cufflinks to identify isoforms and DESeq to identify differentially expressed genes. We identified the noncoding RNAs by cross-reference to Ensembl release 73 (Genome Reference Consortium human genome build 37) and explored possible functional roles using a variety of online tools. In HF hearts, RNA-Seq identified 84,793 total messenger RNA coding and noncoding different transcripts, including 13,019 protein-coding genes, 2,085 total lncRNA genes, and 1,064 pseudogenes. By Ensembl noncoding RNA categories, there were 48 lncRNAs, 27 pseudogenes, and 30 antisense RNAs for a total of 105 differentially expressed lncRNAs in HF hearts. Compared with donor hearts, HF hearts exhibited differential expression of 7.7% of protein-coding genes, 3.7% of lncRNAs (including pseudogenes), and 2.5% of pseudogenes. There were not consistent correlations between antisense lncRNAs and parent genes and between pseudogenes and parent genes, implying differential regulation of expression. Exploratory in silico functional analyses using online tools suggested a variety of possible lncRNA regulatory roles. By providing a comprehensive profile of right ventricular polyadenylated messenger RNA transcriptome in HF, RNA-Seq provides an inventory of differentially expressed lncRNAs, including antisense transcripts and pseudogenes, for future mechanistic study. PMID:25992278

  17. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    SciTech Connect

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike; Ramos, Meg; Fisher, Robyn L.; Vickers, Alison E.M.

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol

  18. Developmental Exposure to Estrogen Alters Differentiation and Epigenetic Programming in a Human Fetal Prostate Xenograft Model

    PubMed Central

    Saffarini, Camelia M.; McDonnell-Clark, Elizabeth V.; Amin, Ali; Huse, Susan M.; Boekelheide, Kim

    2015-01-01

    Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM) isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure. PMID:25799167

  19. Human myocardial Na,K-ATPase concentration in heart failure.

    PubMed

    Bundgaard, H; Kjeldsen, K

    1996-01-01

    The Na,K-ATPase is of major importance for active ion transport across the sarcolemma and thus for electrical as well as contractile function of the myocardium. Furthermore, it is receptor for digitalis glycosides. In human studies of the regulatory aspects of myocardial Na,K-ATPase concentration a major problem has been to obtain tissue samples. Methodological accomplishments in quantification of myocardial Na,K-ATPase using vanadate facilitated 3H-ouabain binding to intact samples have, however, made it possible to obtain reliable measurements on human myocardial necropsies obtained at autopsy as well as on biopsies of a wet weight of only 1-2 mg obtained during heart catheterisation. However, access to the ultimately, normal, vital myocardial tissue has come from the heart transplantation programs, through which myocardial samples from cardiovascular healthy organ donors have become available. In the present paper we evaluate the various values reported for normal human myocardial Na,K-ATPase concentration, its regulation in heart disease and the association with digitalization. Normal myocardial Na,K-ATPase concentration level is found to be 700 pmol/g wet weight. No major variations were found between or within the walls of the heart ventricles. During the first few years of life a marked decrease in myocardial Na,K-ATPase concentration is followed by a stable level obtained in early adulthood and normally maintained throughout life. In patients with enlarged cardiac x-ray silhouette a significant positive, linear correlation between left ventricular ejection fraction (EF) and Na,K-ATPase concentration was established. A maximum reduction in Na,K-ATPase concentration of 89% was obtained when EF was reduced to 20%. Generally, heart failure associated with heart dilatation, myocardial hypertrophy as well as ischaemic heart disease is associated with reductions in myocardial Na,K-ATPase concentration of around 25%. During digoxin treatment of heart failure

  20. Uterine artery blood flow, fetal hypoxia and fetal growth

    PubMed Central

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  1. Uterine artery blood flow, fetal hypoxia and fetal growth.

    PubMed

    Browne, Vaughn A; Julian, Colleen G; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G

    2015-03-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100-4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  2. FISH CONSUMPTION, METHYLMERCURY, AND HUMAN HEART DISEASE.

    SciTech Connect

    LIPFERT, F.W.; SULLIVAN, T.M.

    2005-09-21

    Environmental mercury continues to be of concern to public health advocates, both in the U.S. and abroad, and new research continues to be published. A recent analysis of potential health benefits of reduced mercury emissions has opened a new area of public health concern: adverse effects on the cardiovascular system, which could account for the bulk of the potential economic benefits. The authors were careful to include caveats about the uncertainties of such impacts, but they cited only a fraction of the applicable health effects literature. That literature includes studies of the potentially harmful ingredient (methylmercury, MeHg) in fish, as well as of a beneficial ingredient, omega-3 fatty acids or ''fish oils''. The U.S. Food and Drug Administration (FDA) recently certified that some of these fat compounds that are primarily found in fish ''may be beneficial in reducing coronary heart disease''. This paper briefly summarizes and categorizes the extensive literature on both adverse and beneficial links between fish consumption and cardiovascular health, which are typically based on studies of selected groups of individuals (cohorts). Such studies tend to comprise the ''gold standard'' of epidemiology, but cohorts tend to exhibit a great deal of variability, in part because of the limited numbers of individuals involved and in part because of interactions with other dietary and lifestyle considerations. Note that eating fish will involve exposure to both the beneficial effects of fatty acids and the potentially harmful effects of contaminants like Hg or PCBs, all of which depend on the type of fish but tend to be correlated within a population. As a group, the cohort studies show that eating fish tends to reduce mortality, especially due to heart disease, for consumption rates up to about twice weekly, above which the benefits tend to level off. A Finnish cohort study showed increased mortality risks in the highest fish-consuming group ({approx}3 times

  3. Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans

    PubMed Central

    Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Dolinoy, Dana C.

    2013-01-01

    Widespread exposure to the endocrine active compound, bisphenol A (BPA), is well documented in humans. A growing body of literature suggests adverse health outcomes associated with varying ranges of exposure to BPA. In the current study, we measured the internal dose of free BPA and conjugated BPA and evaluated gene expression of bio-transformation enzymes specific for BPA metabolism in 50 first- and second-trimester human fetal liver samples. Both free BPA and conjugated BPA concentrations varied widely, with free BPA exhibiting three times higher concentrations than conjugated BPA concentrations. As compared to gender-matched adult liver controls, UDP-glucuronyltransferase, sulfotransferase, and steroid sulfatase genes exhibited reduced expression whereas β-glucuronidase mRNA expression remained unchanged in the fetal tissues. This study provides evidence that there is considerable exposure to BPA during human pregnancy and that the capacity for BPA metabolism is altered in the human fetal liver. PMID:23208979

  4. Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: In Vitro and In Vivo Evaluation

    PubMed Central

    Hamidouche, Zahia; Sokal, Etienne; Charbord, Pierre

    2016-01-01

    In line with the search of effective stem cell population that would progress liver cell therapy and because the rate and differentiation potential of mesenchymal stem cells (MSC) decreases with age, the current study investigates the hepatogenic differentiation potential of human fetal liver MSCs (FL-MSCs). After isolation from 11-12 gestational weeks' human fetal livers, FL-MSCs were shown to express characteristic markers such as CD73, CD90, and CD146 and to display adipocytic and osteoblastic differentiation potential. Thereafter, we explored their hepatocytic differentiation potential using the hepatogenic protocol applied for adult human liver mesenchymal cells. FL-MSCs differentiated in this way displayed significant features of hepatocyte-like cells as demonstrated in vitro by the upregulated expression of specific hepatocytic markers and the induction of metabolic functions including CYP3A4 activity, indocyanine green uptake/release, and glucose 6-phosphatase activity. Following transplantation, naive and differentiated FL-MSC were engrafted into the hepatic parenchyma of newborn immunodeficient mice and differentiated in situ. Hence, FL-MSCs appeared to be interesting candidates to investigate the liver development at the mesenchymal compartment level. Standardization of their isolation, expansion, and differentiation may also support their use for liver cell-based therapy development. PMID:27057173

  5. Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis.

    PubMed

    Francavilla, S; D'Abrizio, P; Rucci, N; Silvano, G; Properzi, G; Straface, E; Cordeschi, G; Necozione, S; Gnessi, L; Arizzi, M; Ulisse, S

    2000-08-01

    In mice, the Fas/Fas ligand (FasL) system has been shown to be involved in germ cell apoptosis. In the present study we evaluated the expression of Fas and Fas ligand (FasL) in fetal and adult human testis. Semiquantitative RT-PCR demonstrated the expression of Fas and FasL messenger ribonucleic acids in adult testis, but not in fetal testis (20-22 weeks gestation). In situ RT-PCR and immunohistochemistry experiments on adult human testis demonstrated the expression of FasL messenger ribonucleic acid and protein in Sertoli and Leydig cells, whereas the expression of Fas was confined to the Leydig cells and sporadic degenerating spermatocytes. The number of Fas-positive germ cells per 100 Sertoli cell nuclei was increased in 10 biopsies with postmeiotic germ cell arrest compared to 10 normal testis biopsies (mean, 3.82 +/- 0.45 vs. 2.02 +/- 0.29; P = 0.0001), but not in 10 biopsies with meiotic germ cell arrest (mean, 1.56 +/- 1.07). Fas and FasL proteins were not expressed in cases of idiopathic hypogonadotropic hypogonadism. Together, these findings may suggest that Fas/FasL expression in the human testis is developmentally regulated and under gonadotropin control. The increased germ cell expression of Fas in patients with postmeiotic germ cell arrest suggests that the Fas/FasL system may be involved in the quality control mechanism of the produced gametes. PMID:10946867

  6. Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes

    PubMed Central

    De Preter, Katleen; Vandesompele, Jo; Heimann, Pierre; Yigit, Nurten; Beckman, Siv; Schramm, Alexander; Eggert, Angelika; Stallings, Raymond L; Benoit, Yves; Renard, Marleen; Paepe, Anne De; Laureys, Geneviève; Påhlman, Sven; Speleman, Frank

    2006-01-01

    Background Neuroblastoma tumor cells are assumed to originate from primitive neuroblasts giving rise to the sympathetic nervous system. Because these precursor cells are not detectable in postnatal life, their transcription profile has remained inaccessible for comparative data mining strategies in neuroblastoma. This study provides the first genome-wide mRNA expression profile of these human fetal sympathetic neuroblasts. To this purpose, small islets of normal neuroblasts were isolated by laser microdissection from human fetal adrenal glands. Results Expression of catecholamine metabolism genes, and neuronal and neuroendocrine markers in the neuroblasts indicated that the proper cells were microdissected. The similarities in expression profile between normal neuroblasts and malignant neuroblastomas provided strong evidence for the neuroblast origin hypothesis of neuroblastoma. Next, supervised feature selection was used to identify the genes that are differentially expressed in normal neuroblasts versus neuroblastoma tumors. This approach efficiently sifted out genes previously reported in neuroblastoma expression profiling studies; most importantly, it also highlighted a series of genes and pathways previously not mentioned in neuroblastoma biology but that were assumed to be involved in neuroblastoma pathogenesis. Conclusion This unique dataset adds power to ongoing and future gene expression studies in neuroblastoma and will facilitate the identification of molecular targets for novel therapies. In addition, this neuroblast transcriptome resource could prove useful for the further study of human sympathoadrenal biogenesis. PMID:16989664

  7. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed Central

    Lovering, Ruth C

    2014-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’.  ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach. PMID:24627794

  8. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed

    Khodiyar, Varsha K; Howe, Doug; Talmud, Philippa J; Breckenridge, Ross; Lovering, Ruth C

    2013-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'.  'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach. PMID:24627794

  9. Programming and reprogramming a human heart cell

    PubMed Central

    Sahara, Makoto; Santoro, Federica; Chien, Kenneth R

    2015-01-01

    The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the “programming” and “reprogramming” of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart. PMID:25712211

  10. Direct observation of homoclinic orbits in human heart rate variability

    NASA Astrophysics Data System (ADS)

    Żebrowski, J. J.; Baranowski, R.

    2003-05-01

    Homoclinic trajectories of the interbeat intervals between contractions of ventricles of the human heart are identified. The interbeat intervals are extracted from 24-h Holter ECG recordings. Three such recordings are discussed in detail. Mappings of the measured consecutive interbeat intervals are constructed. In the second and in some cases in the fourth iterate of the map of interbeat intervals homoclinic trajectories associated with a hyperbolic saddle are found. The homoclinic trajectories are often persistent for many interbeat intervals, sometimes spanning many thousands of heartbeats. Several features typical for homoclinic trajectories found in other systems were identified, including a signature of the gluing bifurcation. The homoclinic trajectories are present both in recordings of heart rate variability obtained from patients with an increased number of arrhythmias and in cases in which the sinus rhythm is dominant. The results presented are a strong indication of the importance of deterministic nonlinear instabilities in human heart rate variability.

  11. Foodborne outbreak of human brucellosis caused by ingested raw materials of fetal calf on Jeju Island.

    PubMed

    Yoo, Jeong Rae; Heo, Sang Taek; Lee, Keun Hwa; Kim, Young Ree; Yoo, Seung Jin

    2015-02-01

    Since the first reported case of human brucellosis in 2002 in South Korea, its incidence has been increasing nationally. However, bovine brucellosis has not been present from 2005 to date on Jeju Island. Despite Jeju Island being considered a clean area for bovine brucellosis, we experienced an outbreak of human brucellosis between 2012 and 2013. Herein, we report cases with human brucellosis after ingestion of raw materials of fetal calf at a restaurant. Patients were identified by isolation of the Brucella abortus in their blood and joint tissue. Because all patients developed zoonosis by a faulty folk remedy, we emphasize the importance of educational programs to increase the awareness of zoonosis, and the need for active surveillance and detection of illegal distribution channels of the infected animal. After the outbreak, we took control of the involved restaurant and its illegal distribution channel, and there have been no further outbreaks. PMID:25510725

  12. Ex utero: live human fetal research and the films of Davenport Hooker.

    PubMed

    Wilson, Emily K

    2014-01-01

    Between 1932 and 1963 University of Pittsburgh anatomist Davenport Hooker, Ph.D., performed and filmed noninvasive studies of reflexive movement on more than 150 surgically aborted human fetuses. The resulting imagery and information would contribute substantially to new visual and biomedical conceptions of fetuses as baby-like, autonomous human entities that emerged in the 1960s and 1970s. Hooker's methods, though broadly conforming to contemporary research practices and views of fetuses, would not have been feasible later. But while Hooker and the 1930s medical and general public viewed live fetuses as acceptable materials for nontherapeutic research, they also shared a regard for fetuses as developing humans with some degree of social value. Hooker's research and the various reactions to his work demonstrate the varied and changing perspectives on fetuses and fetal experimentation, and the influence those views can have on biomedical research. PMID:24769805

  13. Searching for Classical Brown Fat in Humans: Development of a Novel Human Fetal Brown Stem Cell Model.

    PubMed

    Di Franco, Alessandra; Guasti, Daniele; Squecco, Roberta; Mazzanti, Benedetta; Rossi, Francesca; Idrizaj, Eglantina; Gallego-Escuredo, José M; Villarroya, Francesc; Bani, Daniele; Forti, Gianni; Vannelli, Gabriella Barbara; Luconi, Michaela

    2016-06-01

    The potential therapeutic applications of targeting brown adipose tissue open new clinical avenues in fighting against metabolic pathologies. However, due to the limited extension in adult humans of brown depots, which are dramatically reduced after birth, solid cell models to study human brown adipogenesis and its regulatory factors in pathophysiology are urgently needed. Here, we generated a novel human model of brown adipose stem cells, hfB-ASC, derived for the first time from fetal interscapular brown fat depots. Besides the characterization of their stem and classical brown adipose properties, we demonstrated that these cells retain a specific intrinsic differentiation program to functional brown adipocytes, even spontaneously generating organoid structures with brown features. Moreover, for the first time, we investigated the thermogenic and electrophysiological activity of the in vitro-derived fetal brown adipocytes compared to their undifferentiated precursors hfB-ASC, in basal and norepinephrine-induced conditions. In conclusion, from interscapular brown fat of the human fetus we developed and functionally characterized a novel physiological brown adipose stem cell model early programmed to brown differentiation, which may represent a unique opportunity for further studies on brown adipogenesis processes in humans as well as the most suitable target to study novel therapeutic approaches for stimulating brown activity in metabolic pathologies. Stem Cells 2016;34:1679-1691. PMID:26866833

  14. Influence of heart failure on nucleolar organization and protein expression in human hearts

    SciTech Connect

    Rosello-Lleti, Esther; Rivera, Miguel; Cortes, Raquel; Azorin, Inmaculada; Sirera, Rafael; Martinez-Dolz, Luis; Hove, Leif; Cinca, Juan; Lago, Francisca; Gonzalez-Juanatey, Jose R.; Salvador, Antonio; Portoles, Manuel

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Heart failure alters nucleolar morphology and organization. Black-Right-Pointing-Pointer Nucleolin expression is significant increased in ischemic and dilated cardiomyopathy. Black-Right-Pointing-Pointer Ventricular function of heart failure patients was related with nucleolin levels. -- Abstract: We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n = 38) and DCM (n = 27) patients, undergoing heart transplantation and control donors (n = 6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levels according to HF etiology, nucleolin was increased in both ICM (117%, p < 0.05) and DCM (141%, p < 0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p < 0.05) and DCM (1.70-fold, p < 0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p < 0.0001), and it was increased in pathological hearts (p < 0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p < 0.05 and 131%, p < 0.001) and DCM (56%, p < 0.01 and 69%, p < 0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p < 0.001), perinucleolar chromatin (p < 0.01) and dense fibrillar components (p < 0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p < 0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein.

  15. Mechanisms for the adverse effects of late gestational increases in maternal cortisol on the heart revealed by transcriptomic analyses of the fetal septum.

    PubMed

    Richards, Elaine M; Wood, Charles E; Rabaglino, Maria Belen; Antolic, Andrew; Keller-Wood, Maureen

    2014-08-01

    We have previously shown in sheep that 10 days of modest chronic increase in maternal cortisol resulting from maternal infusion of cortisol (1 mg/kg/day) caused fetal heart enlargement and Purkinje cell apoptosis. In subsequent studies we extended the cortisol infusion to term, finding a dramatic incidence of stillbirth in the pregnancies with chronically increased cortisol. To investigate effects of maternal cortisol on the heart, we performed transcriptomic analyses on the septa using ovine microarrays and Webgestalt and Cytoscape programs for pathway inference. Analyses of the transcriptomic effects of maternal cortisol infusion for 10 days (130 day cortisol vs 130 day control), or ∼25 days (140 day cortisol vs 140 day control) and of normal maturation (140 day control vs 130 day control) were performed. Gene ontology terms related to immune function and cytokine actions were significantly overrepresented as genes altered by both cortisol and maturation in the septa. After 10 days of cortisol, growth factor and muscle cell apoptosis pathways were significantly overrepresented, consistent with our previous histologic findings. In the term fetuses (∼25 days of cortisol) nutrient pathways were significantly overrepresented, consistent with altered metabolism and reduced mitochondria. Analysis of mitochondrial number by mitochondrial DNA expression confirmed a significant decrease in mitochondria. The metabolic pathways modeled as altered by cortisol treatment to term were different from those modeled during maturation of the heart to term, and thus changes in gene expression in these metabolic pathways may be indicative of the fetal heart pathophysiologies seen in pregnancies complicated by stillbirth, including gestational diabetes, Cushing's disease and chronic stress. PMID:24867915

  16. Fetal Microchimerism in Cancer Protection and Promotion: Current Understanding in Dogs and the Implications for Human Health.

    PubMed

    Bryan, Jeffrey N

    2015-05-01

    Fetal microchimerism is the co-existence of small numbers of cells from genetically distinct individuals living within a mother's body following pregnancy. During pregnancy, bi-directional exchange of cells occurs resulting in maternal microchimerism and even sibling microchimerism in offspring. The presence of fetal microchimerism has been identified with lower frequency in patients with cancers such as breast and lymphoma and with higher frequency in patients with colon cancer and autoimmune diseases. Microchimeric cells have been identified in healing and healed tissues as well as normal and tumor tissues. This has led to the hypothesis that fetal microchimerism may play a protective role in some cancers and may provoke other cancers or autoimmune disease. The long periods of risk for these diseases make it a challenge to prospectively study this phenomenon in human populations. Dogs get similar cancers as humans, share our homes and environmental exposures, and live compressed life-spans, allowing easier prospective study of disease development. This review describes the current state of understanding of fetal microchimerism in humans and dogs and highlights the similarities of the common cancers mammary carcinoma, lymphoma, and colon cancer between the two species. Study of fetal microchimerism in dogs might hold the key to characterization of the type and function of microchimeric cells and their role in health and disease. Such an understanding could then be applied to preventing and treating disease in humans. PMID:25693490

  17. Basic axes of human heart in correlation with heart mass and right ventricular wall thickness.

    PubMed

    Skwarek, M; Grzybiak, M; Kosiński, A; Hreczecha, J

    2006-11-01

    A comparison of the data published in anatomy textbooks and anthropological tables does not reveal any change in basic heart dimensions during the period since the beginning of the 20th century to nowadays. However, normal values of many other parameters have changed up to 30% over the same period. These changes may be caused by the acceleration phenomenon or the extension of average lifespan. The progress of laboratory medicine methodology permitted the introduction of new biochemical tests in myocardial infarct diagnosis, such as myoglobin and troponins T and I measurement, as well as better understanding of cardiac metabolism. Parameters describing the direction and intensity of metabolic changes are substrate extraction and metabolic equilibrium. The expression describing metabolic equilibrium contains heart mass value. Therefore, as studying heart mass in vivo is not possible, it may be important to study it in vitro. The study was performed on a group of 107 formalin-fixed human hearts. The organs came from adults of both sexes: 30 women and 77 men, aged 18 to 90 years. None of the hearts carried signs of macroscopic developmental abnormalities or pathologic changes. PMID:17171620

  18. Exogenous transforming growth factor-beta amplifies its own expression and induces scar formation in a model of human fetal skin repair.

    PubMed Central

    Lin, R Y; Sullivan, K M; Argenta, P A; Meuli, M; Lorenz, H P; Adzick, N S

    1995-01-01

    OBJECTIVE: Fetal skin wounds heal without scarring. To determine the role of TGF-beta 1 in fetal wound healing, mRNA expression of TGF-beta 1 was analyzed in human fetal and adult skin wounds. METHODS: Human fetal skin transplanted to a subcutaneous location on an adult athymic mouse that was subsequently wounded heals without scar, whereas human adult skin heals with scar formation in that location. In situ hybridization for TGF-beta 1 mRNA expression and species-specific immunohistochemistry for fibroblasts, macrophages, and neutrophils were performed in human adult wounds, fetal wounds, and fetal wounds treated with a TGF-beta 1 slow release disk. RESULTS: Transforming growth factor-beta 1 mRNA expression was induced by wounding adult skin. No TGF-beta 1 mRNA upregulation was detected in human fetal skin after wounding. However, when exogenous TGF-beta 1 was added to human fetal skin, induction of TGF-beta 1 mRNA expression in human fetal fibroblasts occurred, an adult-like inflammatory response was detected, and the skin healed with scar formation. CONCLUSIONS: Transforming growth factor-beta 1 is an important modulator in scar formation. Anti-TGF-beta 1 strategies may promote scarless healing in adult wounds. Images Figure 1. Figure 2. Figure 3. Figure 5. Figure 6. PMID:7639582

  19. Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure

    PubMed Central

    Gupte, Anisha A.; Hamilton, Dale J.; Cordero-Reyes, Andrea M.; Youker, Keith A.; Yin, Zheng; Estep, Jerry D.; Stevens, Robert D.; Wenner, Brett; Ilkayeva, Olga; Loebe, Matthias; Peterson, Leif E.; Lyon, Christopher J.; Wong, Stephen T.C.; Newgard, Christopher B.; Torre-Amione, Guillermo; Taegtmeyer, Heinrich; Hsueh, Willa A.

    2015-01-01

    Background Impaired bioenergetics is a prominent feature of the failing heart, but the underlying metabolic perturbations are poorly understood. Methods and Results We compared metabolomic, gene transcript, and protein data from six paired failing human left ventricular (LV) tissue samples obtained during left ventricular assist device (LVAD) insertion (heart failure (HF) samples) and at heart transplant (post-LVAD samples). Non-failing left ventricular (NFLV) wall samples procured from explanted hearts of patients with right HF served as novel comparison samples. Metabolomic analyses uncovered a distinct pattern in HF tissue: 2.6 fold increased pyruvate concentrations coupled with reduced Krebs cycle intermediates and short-chain acylcarnitines, suggesting a global reduction in substrate oxidation. These findings were associated with decreased transcript levels for enzymes that catalyze fatty acid oxidation and pyruvate metabolism and for key transcriptional regulators of mitochondrial metabolism and biogenesis, peroxisome proliferator-activated receptor gamma co-activator1α (PGC1A, 1.3 fold) and estrogen-related receptor α (ERRA, 1.2 fold) and γ (ERRG, 2.2 fold). Thus, parallel decreases in key transcription factors and their target metabolic enzyme genes can explain the decreases in associated metabolic intermediates. Mechanical support with LVAD improved all of these metabolic and transcriptional defects. Conclusions These observations underscore an important pathophysiologic role for severely defective metabolism in HF, while the reversibility of these defects by LVAD suggests metabolic resilience of the human heart. PMID:24825877

  20. Characterization and Pharmacologic Targeting of EZH2, a Fetal Retinal Protein and Epigenetic Regulator, in Human Retinoblastoma

    PubMed Central

    Khan, Mehnaz; Walters, Laura L.; Li, Qiang; Thomas, Dafydd G.; Miller, Jason M.L.; Zhang, Qitao; Sciallis, Andrew P.; Liu, Yu; Dlouhy, Brian J.; Fort, Patrice E.; Archer, Steven M.; Demirci, Hakan; Dou, Yali; Rao, Rajesh C.

    2015-01-01

    Retinoblastoma (RB) is the most common primary intraocular cancer in children, a nd the third most common cancer overall in infants. No molecular-targeted therapy for this lethal tumor exists. Since the tumor suppressor RB1, whose genetic inactivation underlies RB, is upstream of the epigenetic regulator EZH2, a pharmacologic target for many solid tumors, we reasoned that EZH2 might regulate human RB tumorigenesis. Histologic and immunohistochemical analyses were performed using an EZH2 antibody in sections from 43 samples of primary, formalin-fixed, paraffin embedded human RB tissue, cryopreserved mouse retina; and in whole cell lysates from human RB cell lines (Y79 and WERI-Rb1), primary human fetal RPE and fetal and adult retina, mouse retina and embryonic stem (ES) cells. While enriched during fetal human retinal development, EZH2 protein was not present in the normal postnatal retina. However, EZH2 was detected in all 43 analyzed human RB specimens, indicating that EZH2 is a fetal protein expressed in postnatal human RB. EZH2 expression marked single RB cell invasion into the optic nerve, a site of invasion whose involvement may influence the decision for systemic chemotherapy. To assess the role of EZH2 in RB cell survival, human RB and primary RPE cells were treated with two EZH2 inhibitors (EZH2i), GSK126 and SAH-EZH2 (SAH). EZH2i inhibitors impaired intracellular ATP production, an indicator of cell viability, in a time and dose-dependent manner, but did not affect primary human fetal RPE. Thus, aberrant expression of a histone methyltransferase protein is a feature of human RB. This is the first time this mechanism has been implicated for an eye, adnexal, or orbital tumor. The specificity of EZH2i toward human RB cells, but not RPE, warrants further in vivo testing in animal models of RB, especially those EZH2i currently in clinical trials for solid tumors and lymphoma. PMID:26280220

  1. Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Kunstar, Aliz; Leijten, Jeroen; van Leuveren, Stefan; Hilderink, Janneke; Otto, Cees; van Blitterswijk, Clemens A.; Karperien, Marcel; van Apeldoorn, Aart A.

    2012-11-01

    Traditionally, the composition of bone and cartilage is determined by standard histological methods. We used Raman microscopy, which provides a molecular "fingerprint" of the investigated sample, to detect differences between the zones in human fetal femur cartilage without the need for additional staining or labeling. Raman area scans were made from the (pre)articular cartilage, resting, proliferative, and hypertrophic zones of growth plate and endochondral bone within human fetal femora. Multivariate data analysis was performed on Raman spectral datasets to construct cluster images with corresponding cluster averages. Cluster analysis resulted in detection of individual chondrocyte spectra that could be separated from cartilage extracellular matrix (ECM) spectra and was verified by comparing cluster images with intensity-based Raman images for the deoxyribonucleic acid/ribonucleic acid (DNA/RNA) band. Specific dendrograms were created using Ward's clustering method, and principal component analysis (PCA) was performed with the separated and averaged Raman spectra of cells and ECM of all measured zones. Overall (dis)similarities between measured zones were effectively visualized on the dendrograms and main spectral differences were revealed by PCA allowing for label-free detection of individual cartilaginous zones and for label-free evaluation of proper cartilaginous matrix formation for future tissue engineering and clinical purposes.

  2. Characterization of mesenchymal cells beneath cornification of the fetal epithelium and epidermis at the face: an immunohistochemical study using human fetal specimens

    PubMed Central

    Kim, Ji Hyun; Jin, Zhe Wu; Murakami, Gen

    2016-01-01

    Fetal development of the face involves a specific type of cornification in which keratinocytes provide a mass or plug to fill a cavity. The epithelial-mesenchymal interaction was likely to be different from that in the usual skin. We examined expression of intermediate filaments and other mesenchymal markers beneath cornification in the fetal face. Using sections from 5 mid-term human fetuses at 14–16 weeks, immunohistochemistry was conducted for cytokeratins (CK), vimentin, nestin, glial fibrilary acidic protein, desmin, CD34, CD68 and proliferating cell nuclear antigen (PCNA). Fetal zygomatic skin was composed of a thin stratum corneum and a stratum basale (CK5/6+, CK14+, and CK19+) and, as the intermediate layer, 2–3 layered large keratinocytes with nucleus. The basal layer was lined by mono-layered mesenchymal cells (CD34+ and nestin+). Some of basal cells were PCNA-positive. In the keratinocyte plug at the external ear and nose, most cell nuclei expressed PCNA, CK5/6, CK14, and CK19. Vimentin-positive mesenchymal cells migrated into the plug. The PCNA-positive nucleus as well as mesenchymal cell migration was not seen in the lip margin in spite of the thick keratinocyte layer. The lingual epithelium were characterized by the CK7-positive stratum corneum as well as the thick mesenchymal papilla. CD68-positive macrophages were absent in the epidermis/epithelium. Being different from usual cornification of the skin, loss of a mesenchymal monolayer as well as superficial migration of mesenchymal cells might connect with a specific differentiation of keratinocyte to provide a plug at the fetal nose and ear. PMID:27051567

  3. Characterization of mesenchymal cells beneath cornification of the fetal epithelium and epidermis at the face: an immunohistochemical study using human fetal specimens.

    PubMed

    Kim, Ji Hyun; Jin, Zhe Wu; Murakami, Gen; Cho, Baik Hwan

    2016-03-01

    Fetal development of the face involves a specific type of cornification in which keratinocytes provide a mass or plug to fill a cavity. The epithelial-mesenchymal interaction was likely to be different from that in the usual skin. We examined expression of intermediate filaments and other mesenchymal markers beneath cornification in the fetal face. Using sections from 5 mid-term human fetuses at 14-16 weeks, immunohistochemistry was conducted for cytokeratins (CK), vimentin, nestin, glial fibrilary acidic protein, desmin, CD34, CD68 and proliferating cell nuclear antigen (PCNA). Fetal zygomatic skin was composed of a thin stratum corneum and a stratum basale (CK5/6+, CK14+, and CK19+) and, as the intermediate layer, 2-3 layered large keratinocytes with nucleus. The basal layer was lined by mono-layered mesenchymal cells (CD34+ and nestin+). Some of basal cells were PCNA-positive. In the keratinocyte plug at the external ear and nose, most cell nuclei expressed PCNA, CK5/6, CK14, and CK19. Vimentin-positive mesenchymal cells migrated into the plug. The PCNA-positive nucleus as well as mesenchymal cell migration was not seen in the lip margin in spite of the thick keratinocyte layer. The lingual epithelium were characterized by the CK7-positive stratum corneum as well as the thick mesenchymal papilla. CD68-positive macrophages were absent in the epidermis/epithelium. Being different from usual cornification of the skin, loss of a mesenchymal monolayer as well as superficial migration of mesenchymal cells might connect with a specific differentiation of keratinocyte to provide a plug at the fetal nose and ear. PMID:27051567

  4. Dysregulated flow-mediated vasodilatation in the human placenta in fetal growth restriction

    PubMed Central

    Jones, Sarah; Bischof, Helen; Lang, Ingrid; Desoye, Gernot; Greenwood, Sue L; Johnstone, Edward D; Wareing, Mark; Sibley, Colin P; Brownbill, Paul

    2015-01-01

    Increased vascular resistance and reduced fetoplacental blood flow are putative aetiologies in the pathogenesis of fetal growth restriction (FGR); however, the regulating sites and mechanisms remain unclear. We hypothesised that placental vessels dictate fetoplacental resistance and in FGR exhibit endothelial dysfunction and reduced flow-mediated vasodilatation (FMVD). Resistance was measured in normal pregnancies (n = 10) and FGR (n = 10) both in vivo by umbilical artery Doppler velocimetry and ex vivo by dual placental perfusion. Ex vivo FMVD is the reduction in fetal-side inflow hydrostatic pressure (FIHP) following increased flow rate. Results demonstrated a significant correlation between vascular resistance measured in vivo and ex vivo in normal pregnancy, but not in FGR. In perfused FGR placentas, vascular resistance was significantly elevated compared to normal placentas (58 ± 7.7 mmHg and 36.8 ± 4.5 mmHg, respectively; 8 ml min−1; means ± SEM; P < 0.0001) and FMVD was severely reduced (3.9 ± 1.3% and 9.1 ± 1.2%, respectively). In normal pregnancies only, the highest level of ex vivo FMVD was associated with the lowest in vivo resistance. Inhibition of NO synthesis during perfusion (100 μm l-NNA) moderately elevated FIHP in the normal group, but substantially in the FGR group. Human placenta artery endothelial cells from FGR groups exhibited increased shear stress-induced NO generation, iNOS expression and eNOS expression compared with normal groups. In conclusion, fetoplacental resistance is determined by placental vessels, and is increased in FGR. The latter also exhibit reduced FMVD, but with a partial compensatory increased NO generation capacity. The data support our hypothesis, which highlights the importance of FMVD regulation in normal and dysfunctional placentation. Key points A correlation was found between in vivo umbilical artery Doppler velocimetry and resistance to fetal-side flow in the human ex vivo dually

  5. Human anogenital distance: an update on fetal smoke-exposure and integration of the perinatal literature on sex differences

    PubMed Central

    Fowler, Paul A.; Filis, Panagiotis; Bhattacharya, Siladitya; le Bizec, Bruno; Antignac, Jean-Philippe; Morvan, Marie-Line; Drake, Amanda J.; Soffientini, Ugo; O'Shaughnessy, Peter J.

    2016-01-01

    STUDY QUESTION Do sex and maternal smoking effects on human fetal anogenital distance (AGD) persist in a larger study and how do these data integrate with the wider literature on perinatal human AGD, especially with respect to sex differences? SUMMARY ANSWER Second trimester sex differences in AGD are broadly consistent with neonatal and infant measures of AGD and maternal cigarette smoking is associated with a temporary increase in male AGD in the absence of changes in circulating testosterone. WHAT IS KNOWN ALREADY AGD is a biomarker of fetal androgen exposure, a reduced AGD in males being associated with cryptorchidism, hypospadias and reduced penile length. Normative fetal AGD data remain partial and windows of sensitivity of human fetal AGD to disruption are not known. STUDY DESIGN, SIZE, DURATION The effects of fetal sex and maternal cigarette smoking on the second trimester (11–21 weeks of gestation) human fetal AGD were studied, along with measurement of testosterone and testicular transcripts associated with apoptosis and proliferation. PARTICIPANTS/MATERIALS, SETTING METHODS AGD, measured from the centre of the anus to the posterior/caudal root of penis/clitoris (AGDapp) was determined in 56 female and 70 male morphologically normal fetuses. These data were integrated with current literature on perinatal AGD in humans. MAIN RESULTS AND THE ROLE OF CHANCE At 11–13 weeks of gestation male fetal AGDapp was 61% (P< 0.001) longer than in females, increasing to 70% at 17–21 weeks. This sexual dimorphism was independent of growth characteristics (fetal weight, length, gonad weight). We confirmed that at 14–16 weeks of gestation male fetal AGDapp was increased 28% (P < 0.05) by in utero cigarette smoke exposure. Testosterone levels were not affected by smoking. To develop normative data, our findings have been integrated with available data from in vivo ultrasound scans and neonatal studies. Inter-study variations in male/female AGD differences lead to

  6. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    PubMed

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing. PMID:23856366

  7. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light. [Development associated changes

    SciTech Connect

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R. . Dept. of Biochemistry)

    1984-03-01

    Human fetal fibroblasts have been tested for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus. Skin fibroblasts derived at 12 week gestation were more repair proficient than at 8 weeks. However, they exhibited a lower rate of repair than non-fetal cells. Enhancement of protease plasminogen activator (PA) was higher after u.v. irradiation in skin fibroblasts derived at 8 weeks than at 12 weeks gestation and was absent in non-fetal skin fibroblasts. Excision repair and PA inducibility depended on the tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s).

  8. Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets.

    PubMed

    Blodgett, David M; Nowosielska, Anetta; Afik, Shaked; Pechhold, Susanne; Cura, Anthony J; Kennedy, Norman J; Kim, Soyoung; Kucukural, Alper; Davis, Roger J; Kent, Sally C; Greiner, Dale L; Garber, Manuel G; Harlan, David M; diIorio, Philip

    2015-09-01

    Understanding distinct gene expression patterns of normal adult and developing fetal human pancreatic α- and β-cells is crucial for developing stem cell therapies, islet regeneration strategies, and therapies designed to increase β-cell function in patients with diabetes (type 1 or 2). Toward that end, we have developed methods to highly purify α-, β-, and δ-cells from human fetal and adult pancreata by intracellular staining for the cell-specific hormone content, sorting the subpopulations by flow cytometry, and, using next-generation RNA sequencing, we report the detailed transcriptomes of fetal and adult α- and β-cells. We observed that human islet composition was not influenced by age, sex, or BMI, and transcripts for inflammatory gene products were noted in fetal β-cells. In addition, within highly purified adult glucagon-expressing α-cells, we observed surprisingly high insulin mRNA expression, but not insulin protein expression. This transcriptome analysis from highly purified islet α- and β-cell subsets from fetal and adult pancreata offers clear implications for strategies that seek to increase insulin expression in type 1 and type 2 diabetes. PMID:25931473

  9. Modeling of Human Cytomegalovirus Maternal-Fetal Transmission in a Novel Decidual Organ Culture ▿

    PubMed Central

    Weisblum, Yiska; Panet, Amos; Zakay-Rones, Zichria; Haimov-Kochman, Ronit; Goldman-Wohl, Debra; Ariel, Ilana; Falk, Haya; Natanson-Yaron, Shira; Goldberg, Miri D.; Gilad, Ronit; Lurain, Nell S.; Greenfield, Caryn; Yagel, Simcha; Wolf, Dana G.

    2011-01-01

    Human cytomegalovirus (HCMV) is the leading cause of congenital infection, associated with severe birth defects and intrauterine growth retardation. The mechanism of HCMV transmission via the maternal-fetal interface is largely unknown, and there are no animal models for HCMV. The initial stages of infection are believed to occur in the maternal decidua. Here we employed a novel decidual organ culture, using both clinically derived and laboratory-derived viral strains, for the ex vivo modeling of HCMV transmission in the maternal-fetal interface. Viral spread in the tissue was demonstrated by the progression of infected-cell foci, with a 1.3- to 2-log increase in HCMV DNA and RNA levels between days 2 and 9 postinfection, the expression of immediate-early and late proteins, the appearance of typical histopathological features of natural infection, and dose-dependent inhibition of infection by ganciclovir and acyclovir. HCMV infected a wide range of cells in the decidua, including invasive cytotrophoblasts, macrophages, and endothelial, decidual, and dendritic cells. Cell-to-cell viral spread was revealed by focal extension of infected-cell clusters, inability to recover infectious extracellular virus, and high relative proportions (88 to 93%) of cell-associated viral DNA. Intriguingly, neutralizing HCMV hyperimmune globulins exhibited inhibitory activity against viral spread in the decidua even when added at 24 h postinfection—providing a mechanistic basis for their clinical use in prenatal prevention. The ex vivo-infected decidual cultures offer unique insight into patterns of viral tropism and spread, defining initial stages of congenital HCMV transmission, and can facilitate evaluation of the effects of new antiviral interventions within the maternal-fetal interface milieu. PMID:21976654

  10. Alternative splicing of the FMR1 gene in human fetal brain neurons

    SciTech Connect

    Tao Huang; Yan Shen; Xue-bin Qin; Guan-Yun Wu

    1996-08-09

    The alternative splicing expression of the FMR1 gene was reported in several human and mouse tissues. Five regions of FMR1 gene can be alternatively spliced, but the combination of them has not been investigated fully. We reported here the analysis of alternative splicing pattern of the FMR1 gene in cultured fetal human neurons, using a RT-PCR and cloning strategy. Eleven splicing types were cloned and different isoforms were not equally represented. The dominant isoform represents nearly 40%, and the other isoforms were relatively rare. One isoform has a different carboxyl-terminus. Most of the alternative spliced regions appear hydrophilic; thus, they may locate on the surface of the FMR1 protein. 16 refs., 2 figs.

  11. Human fetal and adult chondrocytes. Effect of insulinlike growth factors I and II, insulin, and growth hormone on clonal growth.

    PubMed Central

    Vetter, U; Zapf, J; Heit, W; Helbing, G; Heinze, E; Froesch, E R; Teller, W M

    1986-01-01

    Clonal proliferation of freshly isolated human fetal chondrocytes and adult chondrocytes in response to human insulinlike growth factors I and II (IGF I, IGF II), human biosynthetic insulin, and human growth hormone (GH) was assessed. IGF I (25 ng/ml) stimulated clonal growth of fetal chondrocytes (54 +/- 12 colonies/1,000 inserted cells, mean +/- 1 SD), but IGF II (25 ng/ml) was significantly more effective (106 +/- 12 colonies/1,000 inserted cells, P less than 0.05, unstimulated control: 14 +/- 4 colonies/1,000 inserted cells). In contrast, IGF I (25 ng/ml) was more effective in adult chondrocytes (42 +/- 6 colonies/1,000 inserted cells) than IGF II (25 ng/ml) (21 +/- 6 colonies/1,000 inserted cells; P less than 0.05, unstimulated control: 6 +/- 3 colonies/1,000 inserted cells). GH and human biosynthetic insulin did not affect clonal growth of fetal or adult chondrocytes. The clonal growth pattern of IGF-stimulated fetal and adult chondrocytes was not significantly changed when chondrocytes were first grown in monolayer culture, harvested, and then inserted in the clonal culture system. However, the adult chondrocytes showed a time-dependent decrease of stimulation of clonal growth by IGF I and II. This was not true for fetal chondrocytes. The results are compatible with the concept that IGF II is a more potent stimulant of clonal growth of chondrocytes during fetal life, whereas IGF I is more effective in stimulating clonal growth of chondrocytes during postnatal life. Images PMID:3519682

  12. Dynamics of Cell Generation and Turnover in the Human Heart.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Felker, Anastasia; Salehpour, Mehran; Alkass, Kanar; Bernard, Samuel; Sjostrom, Staffan L; Szewczykowska, Mirosława; Jackowska, Teresa; Dos Remedios, Cris; Malm, Torsten; Andrä, Michaela; Jashari, Ramadan; Nyengaard, Jens R; Possnert, Göran; Jovinge, Stefan; Druid, Henrik; Frisén, Jonas

    2015-06-18

    The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart. PMID:26073943

  13. Geometry of the capillary net in human hearts.

    PubMed

    Rakusan, K; Cicutti, N; Spatenka, J; Samánek, M

    1997-01-01

    The geometry of the coronary capillary bed in human hearts was studied using samples obtained during cardiac surgery of children operated for tetralogy of Fallot and samples from fresh normal hearts used for valve harvesting. The results revealed a similar coronary capillary density and heterogeneity of capillary spacing in samples from both groups. A double-staining method was used to distinguish between capillary segments close to the feeding arteriole (proximal capillaries) and segments distant from the arteriole (distal capillaries). In both groups of hearts, capillary segment length was consistently shorter on the venular than the arteriolar portion of the capillary. Similarly, capillary domain areas were also smaller and the resulting capillary supply unit was smaller along venular portions compared to arteriolar regions of the capillary bed. This distinctive geometry would provide advantageous geometric conditions for tissue oxygen supply. PMID:9176723

  14. Maturation of the developing human fetal prostate in a rodent xenograft model

    PubMed Central

    Saffarini, Camelia M.; McDonnell, Elizabeth V.; Amin, Ali; Spade, Daniel J.; Huse, Susan M.; Kostadinov, Stefan; Hall, Susan J.; Boekelheide, Kim

    2015-01-01

    Background Prostate cancer is the most commonly diagnosed non-skin cancer in men. The etiology of prostate cancer is unknown, although both animal and epidemiologic data suggest that early life exposures to various toxicants, may impact DNA methylation status during development, playing an important role. Methods We have developed a xenograft model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks) that can provide new data on the potential role of early life stressors on prostate cancer. The expression of key immunohistochemical markers responsible for prostate maturation was evaluated, including p63, cytokeratin 18, α-smooth muscle actin, vimentin, caldesmon, Ki-67, prostate specific antigen, estrogen receptor-α, and androgen receptor. Xenografts were separated into epithelial and stromal compartments using laser capture microdissection (LCM), and the DNA methylation status was assessed in >480,000 CpG sites throughout the genome. Results Xenografts demonstrated growth and maturation throughout the 200 days of post-implantation evaluation. DNA methylation profiles of laser capture micro-dissected tissue demonstrated tissue-specific markers clustered by their location in either the epithelium or stroma of human prostate tissue. Differential methylated promoter region CpG-associated gene analysis revealed significantly more stromal than epithelial DNA methylation in the 30 and 90-day xenografts. Functional classification analysis identified CpG-related gene clusters in methylated epithelial and stromal human xenografts. Conclusion This study of human fetal prostate tissue establishes a xenograft model that demonstrates dynamic growth and maturation, allowing for future mechanistic studies of the developmental origins of later life proliferative prostate disease. PMID:24038131

  15. Cryopreserved Human Amniotic Membrane and A Bioinspired Underwater Adhesive To Seal And Promote Healing Of Iatrogenic Fetal Membrane Defect Sites

    PubMed Central

    Papanna, Ramesha; Mann, Lovepreet K; Tseng, Scheffer C.G.; Stewart, Russell J; Kaur, Sarbjit S; Swindle, M Michael; Kyriakides, Themis R; Tatevian, Nina; Moise, Kenneth J

    2015-01-01

    Introduction We investigated the ability of cryopreserved human amniotic membrane (hAM) scaffold sealed with an underwater adhesive, bio-inspired by marine sandcastle worms to promote healing of iatrogenic fetal membrane defects in a pregnant swine model. Methods Twelve Yucatan miniature pigs underwent laparotomy under general anesthesia at 70 days gestation (term = 114 days). The gestational sacs were assigned to uninstrumented (n=24) and instrumented with 12 Fr trocar, which was further randomized into four different arms-no hAM patch, (n=22), hAM patch secured with suture (n=16), hAM patch with no suture (n=14), and hAM patch secured with adhesive (n=9). The animals were euthanized 20 days after the procedure. Gross and histological examination of the entry site was performed for fetal membrane healing. Results There were no differences in fetal survival, amniotic fluid levels, or dye-leakage from the amniotic cavity between the groups. The fetal membranes spontaneously healed in instrumented sacs without hAM patches. In sacs with hAM patches secured with sutures, the patch was incorporated into the swine fetal membranes. In sacs with hAM patches without sutures, 100% of the patches were displaced from the defect site, whereas in sacs with hAM patches secured with adhesive 55% of the patches remained in place and showed complete healing (p=0.04). Discussion In contrast to humans, swine fetal membranes heal spontaneously after an iatrogenic injury and thus not an adequate model. hAM patches became incorporated into the defect site by cellular ingrowth from the fetal membranes. The bioinspired adhesive adhered the hAM patches within the defect site. PMID:26059341

  16. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells

    PubMed Central

    Moutouh-de Parseval, Laure A.; Verhelle, Dominique; Glezer, Emilia; Jensen-Pergakes, Kristen; Ferguson, Gregory D.; Corral, Laura G.; Morris, Christopher L.; Muller, George; Brady, Helen; Chan, Kyle

    2007-01-01

    Sickle-cell disease (SCD) and β thalassemia constitute worldwide public health problems. New therapies, including hydroxyurea, have attempted to augment the synthesis of fetal hemoglobin (HbF) and improve current treatment. Lenalidomide and pomalidomide are members of a class of immunomodulators used as anticancer agents. Because clinical trials have demonstrated that lenalidomide reduces or eliminates the need for transfusions in some patients with disrupted blood cell production, we investigated the effects of lenalidomide and pomalidomide on erythropoiesis and hemoglobin synthesis. We used an in vitro erythropoiesis model derived from human CD34+ progenitor cells from normal and SCD donors. We found that both compounds slowed erythroid maturation, increased proliferation of immature erythroid cells, and regulated hemoglobin transcription, resulting in potent induction of HbF without the cytotoxicity associated with other HbF inducers. When combined with hydroxyurea, pomalidomide and, to a lesser extent, lenalidomide were found to have synergistic effects on HbF upregulation. Our results elucidate what we believe to be a new mechanism of action of pomalidomide and lenalidomide and support the hypothesis that pomalidomide, used alone or in combination with hydroxyurea, may improve erythropoiesis and increase the ratio of fetal to adult hemoglobin. These findings support the evaluation of pomalidomide as an innovative new therapy for β-hemoglobinopathies. PMID:18064299

  17. A physiological delay in human fetal hemoglobin switching is associated with specific globin DNA hypomethylation.

    PubMed

    Perrine, S P; Greene, M F; Cohen, R A; Faller, D V

    1988-02-01

    The human fetal-to-adult globin switch normally occurs on a fixed schedule, beginning at 32-34 weeks gestation, and recent studies have suggested an association between this developmental inactivation of the fetal (gamma) globin genes and the appearance of methylation within and around these genes. We have studied a population of infants in whom this switch does not occur before birth (infants of diabetic mothers, IDM) and examined the patterns of methylation surrounding their active gamma-globin genes, in comparison to the gamma-globin genes of age-matched controls who have switched their pattern of globin gene expression on schedule. All genomic DNA samples from infants with delays in the globin switch demonstrated extensive hypomethylation in the region of the gamma-globin genes, comparable to that found in the genomes of fetuses of less than 21 weeks gestation. DNA from the erythroid cells of infants of 32-40 weeks gestation had no detectable hypomethylation in the gamma-globin region. These findings support the concept that hypomethylation is an accurate developmental marker of globin gene switching, and suggest that globin gene expression in IDM may be arrested at an early preswitch stage. PMID:2449361

  18. The synthesis of dermatan sulphate proteoglycans by fetal and adult human articular cartilage.

    PubMed Central

    Melching, L I; Roughley, P J

    1989-01-01

    Non-aggregating dermatan sulphate proteoglycans can be extracted from both fetal and adult human articular cartilage. The dermatan sulphate proteoglycans appear to be smaller in the adult, this presumably being due to shorter glycosaminoglycan chains, and these chains contain a greater proportion of their uronic acid residues as iduronate. Both the adult and fetal dermatan sulphate proteoglycans contain a greater amount of 4-sulphation than 6-sulphation of the N-acetylgalactosamine residues, in contrast with the aggregating proteoglycans, which always show more 6-sulphation on their chondroitin sulphate chains. In the fetus the major dermatan sulphate proteoglycan to be synthesized is DS-PGI, though DS-PGII is synthesized in reasonable amounts. In the adult, however, DS-PGI synthesis is barely detectable relative to DS-PGII, which is still synthesized in substantial amounts. Purification of the dermatan sulphate proteoglycans from adult cartilage is hampered by the presence of degradation products derived from the large aggregating proteoglycans, which possess similar charge, size and density properties, but which can be distinguished by their ability to interact with hyaluronic acid. Images Fig. 1. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:2775229

  19. The role of CX3CL1 in fetal-maternal interaction during human gestation.

    PubMed

    Kervancioglu Demirci, Elif; Salamonsen, Lois A; Gauster, Martin

    2016-03-01

    Embryo implantation and subsequent placentation require a fine balanced fetal-maternal cross-talk of hormones, cytokines and chemokines. Amongst the group of chemokines, CX3CL1 (also known as fractalkine) has recently attracted attention in the field of reproductive research. It exists both as membrane-bound and soluble isoforms. On the basis of current experimental evidence, fractalkine is suggested to regulate adhesion and migration processes in fetal-maternal interaction at different stages of human pregnancy. Expressed by uterine glandular epithelial cells, predominantly during the mid-secretory phase of the menstrual cycle, fractalkine appears to prime the blastocyst for forthcoming implantation. After implantation, fractalkine is suggested to regulate invasion of extravillous trophoblasts by altering their expression profile of adhesion molecules. With onset of perfusion of the intervillous space at the end of first trimester, fractalkine present at the apical microvillous plasma membrane of the syncytiotrophoblast may mediate close interaction of placental villi with circulating maternal blood cells. PMID:26745855

  20. VEGF165b in the developing vasculatures of the fetal human eye

    PubMed Central

    Baba, Takayuki; McLeod, D. Scott; Edwards, Malia M.; Merges, Carol; Sen, Tanusree; Sinha, Debasish; Lutty, Gerard A.

    2016-01-01

    VEGF165b is an anti-angiogenic form of VEGF165 produced by alternative splicing. The localization of pro-angiogenic VEGF165 and anti-angiogenic VEGF165b was investigated during development of the vasculatures in fetal human eyes from 7 to 21 weeks gestation (WG). The fetal vasculature of vitreous, which includes tunica vasculosa lentis (TVL), had moderate VEGF165 immunoreactivity at 7WG and very little VEGF165b. Both forms were elevated at 12WG. VEGF165 then decreased around 17WG when the TVL regresses but VEGF165b remained elevated. In choroid, VEGF165 was present in forming choriocapillaris (CC) and retinal pigment epithelium (RPE) at 7WG while VEGF165b was present in CC and mesenchymal precursors within the choroidal stroma. By 21WG, both forms were elevated in RPE and choroidal blood vessels but VEGF165b was apical and VEGF165 basal in RPE. Diffuse VEGF165 immunoreactivity was prominent in 12WG innermost retina where blood vessels will form while VEGF165b was present in most CXCR4+ progenitors in the inner neuroblastic layer and migrating angioblasts in the putative nerve fiber layer. By 21WG, VEGF165 was present in nerve fibers and VEGF165b in inner Muller cell process. The localization of VEGF165b was distinctly different from VEGF165 both spatially and temporally and it was often associated with nucleus in progenitors. PMID:22275161

  1. General anesthesia suppresses normal heart rate variability in humans

    NASA Astrophysics Data System (ADS)

    Matchett, Gerald; Wood, Philip

    2014-06-01

    The human heart normally exhibits robust beat-to-beat heart rate variability (HRV). The loss of this variability is associated with pathology, including disease states such as congestive heart failure (CHF). The effect of general anesthesia on intrinsic HRV is unknown. In this prospective, observational study we enrolled 100 human subjects having elective major surgical procedures under general anesthesia. We recorded continuous heart rate data via continuous electrocardiogram before, during, and after anesthesia, and we assessed HRV of the R-R intervals. We assessed HRV using several common metrics including Detrended Fluctuation Analysis (DFA), Multifractal Analysis, and Multiscale Entropy Analysis. Each of these analyses was done in each of the four clinical phases for each study subject over the course of 24 h: Before anesthesia, during anesthesia, early recovery, and late recovery. On average, we observed a loss of variability on the aforementioned metrics that appeared to correspond to the state of general anesthesia. Following the conclusion of anesthesia, most study subjects appeared to regain their normal HRV, although this did not occur immediately. The resumption of normal HRV was especially delayed on DFA. Qualitatively, the reduction in HRV under anesthesia appears similar to the reduction in HRV observed in CHF. These observations will need to be validated in future studies, and the broader clinical implications of these observations, if any, are unknown.

  2. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells.

    PubMed

    Hemeda, Hatim; Giebel, Bernd; Wagner, Wolfgang

    2014-02-01

    Culture media for therapeutic cell preparations-such as mesenchymal stromal cells (MSCs)-usually comprise serum additives. Traditionally, fetal bovine serum is supplemented in basic research and in most clinical trials. Within the past years, many laboratories adapted their culture conditions to human platelet lysate (hPL), which further stimulates proliferation and expansion of MSCs. Particularly with regard to clinical application, human alternatives for fetal bovine serum are clearly to be preferred. hPL is generated from human platelet units by disruption of the platelet membrane, which is commonly performed by repeated freeze and thaw cycles. Such culture supplements are notoriously ill-defined, and many parameters contribute to batch-to-batch variation in hPL such as different amounts of plasma, a broad range of growth factors and donor-specific effects. The plasma components of hPL necessitate addition of anticoagulants such as heparins to prevent gelatinization of hPL medium, and their concentration must be standardized. Labels for description of hPL-such as "xenogen-free," "animal-free" and "serum free"-are not used consistently in the literature and may be misleading if not critically assessed. Further analysis of the precise composition of relevant growth factors, attachment factors, microRNAs and exosomes will pave the way for optimized and defined culture conditions. The use of hPL has several advantages and disadvantages: they must be taken into account because the choice of cell culture additive has major impact on cell preparations. PMID:24438898

  3. Fetal electrocardiograph

    NASA Astrophysics Data System (ADS)

    Rios, Heriberto; Andrade, Armando; Puente, Ernestina; Lizana, Pablo R.; Mendoza, Diego

    2002-11-01

    The high intra-uterine death rate is due to failure in appropriately diagnosing some problems in the cardiobreathing system of the fetus during pregnancy. The electrocardiograph is one apparatus which might detect problems at an early stage. With electrodes located near the womb and uterus, in a way similar to the normal technique, the detection of so-called biopotential differences, caused by concentrations of ions, can be achieved. The fetal electrocardiograph is based on an ultrasound technique aimed at detecting intrauterine problems in pregnant women, because it is a noninvasive technique due to the very low level of ultrasound power used. With this system, the following tests can be done: Heart movements from the ninth week onwards; Rapid and safe diagnosis of intrauterine fetal death; Location and size of the placenta. The construction of the fetal electrocardiograph requires instrument level components directly mounted on the printed circuit board, in order to avoid stray capacitance in the cabling which prevents the detection of the E.C.G. activity. The low cost of the system makes it affordable to low budget institutions; in contrast, available commercial systems are priced in U.S. Dollars. (To be presented in Spanish.)

  4. Inhibition of Histone H3K9 Acetylation by Anacardic Acid Can Correct the Over-Expression of Gata4 in the Hearts of Fetal Mice Exposed to Alcohol during Pregnancy

    PubMed Central

    Peng, Chang; Zhu, Jing; Sun, Hui-Chao; Huang, Xu-Pei; Zhao, Wei-An; Zheng, Min; Liu, Ling-Juan; Tian, Jie

    2014-01-01

    Background Cardiovascular malformations can be caused by abnormalities in Gata4 expression during fetal development. In a previous study, we demonstrated that ethanol exposure could lead to histone hyperacetylation and Gata4 over-expression in fetal mouse hearts. However, the potential mechanisms of histone hyperacetylation and Gata4 over-expression induced by ethanol remain unclear. Methods and Results Pregnant mice were gavaged with ethanol or saline. Fetal mouse hearts were collected for analysis. The results of ethanol fed groups showed that global HAT activity was unusually high in the hearts of fetal mice while global HDAC activity remained unchanged. Binding of P300, CBP, PCAF, SRC1, but not GCN5, were increased on the Gata4 promoter relative to the saline treated group. Increased acetylation of H3K9 and increased mRNA expression of Gata4, α-MHC, cTnT were observed in these hearts. Treatment with the pan-histone acetylase inhibitor, anacardic acid, reduced the binding of P300, PCAF to the Gata4 promoter and reversed H3K9 hyperacetylation in the presence of ethanol. Interestingly, anacardic acid attenuated over-expression of Gata4, α-MHC and cTnT in fetal mouse hearts exposed to ethanol. Conclusions Our results suggest that P300 and PCAF may be critical regulatory factors that mediate Gata4 over-expression induced by ethanol exposure. Alternatively, P300, PCAF and Gata4 may coordinate over-expression of cardiac downstream genes in mouse hearts exposed to ethanol. Anacardic acid may thus protect against ethanol-induced Gata4, α-MHC, cTnT over-expression by inhibiting the binding of P300 and PCAF to the promoter region of these genes. PMID:25101666

  5. Expression of the potassium channel ROMK in adult and fetal human kidney.

    PubMed

    Nüsing, Rolf M; Pantalone, Fiore; Gröne, Hermann-Josef; Seyberth, Hannsjörg W; Wegmann, Markus

    2005-06-01

    The renal potassium channel ROMK is a crucial element of K+ recycling and secretion in the distal tubule and the collecting duct system. Mutations in the ROMK gene (KCNJ1) lead to hyperprostaglandin E syndrome/antenatal Bartter syndrome, a life-threatening hypokalemic disorder of the newborn. The localization of ROMK channel protein, however, remains unknown in humans. We generated an affinity-purified specific polyclonal anti-ROMK antibody raised against a C-terminal peptide of human ROMK. Immunoblotting revealed a 45 kDa protein band in both rat and human kidney tissue. In human kidney sections, the antibody showed intense staining of epithelial cells in the cortical and medullary thick ascending limb (TAL), the connecting tubule, and the collecting duct. Moreover, a strong expression of ROMK protein was detected in cells of the macula densa. In epithelial cells of the TAL expression of ROMK protein was mainly restricted to the apical membrane. In human fetal kidney expression of ROMK protein was detected mainly in distal tubules of mature nephrons but not or only marginally in the collecting system. No expression was found in early developmental stages such as comma or S shapes, indicating a differentiation-dependent expression of ROMK protein. In summary, these findings support the proposed role of ROMK channels in potassium recycling and in the regulation of K+ secretion and present a rationale for the phenotype observed in patients with ROMK deficiency. PMID:15895241

  6. Virtual histology of the human heart using optical coherence tomography

    PubMed Central

    Ambrosi, Christina M.; Moazami, Nader; Rollins, Andrew M.; Efimov, Igor R.

    2009-01-01

    Optical coherence tomography (OCT) allows for the visualization of micron-scale structures within nontransparent biological tissues. For the first time, we demonstrate the use of OCT in identifying components of the cardiac conduction system and other structures in the explanted human heart. Reconstructions of cardiac structures up to 2 mm below the tissue surface were achieved and validated with Masson Trichrome histology in atrial, ventricular, sinoatrial nodal, and atrioventricular nodal preparations. The high spatial resolution of OCT provides visualization of cardiac fibers within the myocardium, as well as elements of the cardiac conduction system; however, a limiting factor remains its depth penetration, demonstrated to be ∼2 mm in cardiac tissues. Despite its currently limited imaging depth, the use of OCT to identify the structural determinants of both normal and abnormal function in the intact human heart is critical in its development as a potential aid to intracardiac arrhythmia diagnosis and therapy. PMID:19895104

  7. Virtual histology of the human heart using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ambrosi, Christina M.; Moazami, Nader; Rollins, Andrew M.; Efimov, Igor R.

    2009-09-01

    Optical coherence tomography (OCT) allows for the visualization of micron-scale structures within nontransparent biological tissues. For the first time, we demonstrate the use of OCT in identifying components of the cardiac conduction system and other structures in the explanted human heart. Reconstructions of cardiac structures up to 2 mm below the tissue surface were achieved and validated with Masson Trichrome histology in atrial, ventricular, sinoatrial nodal, and atrioventricular nodal preparations. The high spatial resolution of OCT provides visualization of cardiac fibers within the myocardium, as well as elements of the cardiac conduction system; however, a limiting factor remains its depth penetration, demonstrated to be ~2 mm in cardiac tissues. Despite its currently limited imaging depth, the use of OCT to identify the structural determinants of both normal and abnormal function in the intact human heart is critical in its development as a potential aid to intracardiac arrhythmia diagnosis and therapy.

  8. Influence of heart failure on nucleolar organization and protein expression in human hearts.

    PubMed

    Roselló-Lletí, Esther; Rivera, Miguel; Cortés, Raquel; Azorín, Inmaculada; Sirera, Rafael; Martínez-Dolz, Luis; Hove, Leif; Cinca, Juan; Lago, Francisca; González-Juanatey, José R; Salvador, Antonio; Portolés, Manuel

    2012-02-10

    We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n=38) and DCM (n=27) patients, undergoing heart transplantation and control donors (n=6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levels according to HF etiology, nucleolin was increased in both ICM (117%, p<0.05) and DCM (141%, p<0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p<0.05) and DCM (1.70-fold, p<0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p<0.0001), and it was increased in pathological hearts (p<0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p<0.05 and 131%, p<0.001) and DCM (56%, p<0.01 and 69%, p<0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p<0.001), perinucleolar chromatin (p<0.01) and dense fibrillar components (p<0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p<0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein. PMID:22244875

  9. Maternal and fetal stress are associated with impaired lactogenesis in humans.

    PubMed

    Dewey, K G

    2001-11-01

    Studies in animals indicate that various types of stressful stimuli can depress lactation, but there is much less information in humans. Experimental studies in breastfeeding women have shown that acute physical and mental stress can impair the milk ejection reflex by reducing the release of oxytocin during a feed. If this occurs repeatedly, it could reduce milk production by preventing full emptying of the breast at each feed. Prospective observational studies indicate that both maternal and fetal stress during labor and delivery (e.g., urgent Cesarean sections or long duration of labor in vaginal deliveries) are associated with delayed onset of lactation. The effects of chronic emotional stress on lactation are not known. Mothers who experience high levels of stress during and after childbirth should receive additional lactation guidance during the first week or two postpartum. PMID:11694638

  10. Conversion of thyroxine to triiodothyronine and reverse triiodothyronine in human placenta and fetal membranes.

    PubMed

    Banovac, K; Bzik, L; Tislarić, D; Sekso, M

    1980-01-01

    Conversion of thyroxine (T4) to 3,5,3'-triiodothyronine (T3) and reverse 3,3',5'-triiodothyronine (rT3) was measured in vitro in human placenta and fetal membranes. T4 (5 micrograms/ml) was incubated in 0.15 mol/l phosphate buffer with tissue homogenates for 2 h at 37 degrees C, and the T3 and rT3 generated were determined in ethanol extract using RIA methods. The placenta and chorion homogenates converted more T4 to T3 than to rT3; the placenta was more active than the chorion. In both tissues the highest converting activity was found in microsomal fractions. PMID:7399397

  11. Neuroblast long-term cell cultures from human fetal olfactory epithelium respond to odors.

    PubMed

    Vannelli, G B; Ensoli, F; Zonefrati, R; Kubota, Y; Arcangeli, A; Becchetti, A; Camici, G; Barni, T; Thiele, C J; Balboni, G C

    1995-06-01

    Primary cell cultures from human fetal olfactory neuroepithelium have been isolated, cloned, and propagated in continuous in vitro culture for approximately 1 year. The two clones we report here synthesize both neuronal proteins and olfactory-specific markers as well as the putative olfactory neurotransmitter, carnosine. In addition, patchclamp experiments reveal that these cells are electrically excitable. Following exposure to a panel of aromatic chemicals one of the cell cultures shows a specific increase in intracellular cAMP, indicating that some degree of functional maturity is expressed in vitro. The results suggest that these cells originate from the "stem cell" compartment that gives rise to mature olfactory receptor neurons. These long-term cell cultures represent models that will be useful in studying the mechanism(s) of olfaction and the regulation of olfactory neurogenesis and differentiation. PMID:7790915

  12. Metric optimized gating for fetal cardiac MRI.

    PubMed

    Jansz, Michael S; Seed, Mike; van Amerom, Joshua F P; Wong, Derek; Grosse-Wortmann, Lars; Yoo, Shi-Joon; Macgowan, Christopher K

    2010-11-01

    Phase-contrast magnetic resonance imaging can be used to complement echocardiography for the evaluation of the fetal heart. Cardiac imaging typically requires gating with peripheral hardware; however, a gating signal is not readily available in utero. No successful application of existing technologies to human fetal phase-contrast magnetic resonance imaging has been reported to date in the literature. The purpose of this work is to develop a technique for phase-contrast magnetic resonance imaging of the fetal heart that does not require measurement of a gating signal. Metric optimized gating involves acquiring data without gating and retrospectively determining the proper reconstruction by optimizing an image metric. The effects of incorrect gating on phase contrast images were investigated, and the time-entropy of the series of images was found to provide a good measure of the level of corruption. The technique was validated with a pulsatile flow phantom, experiments with adult volunteers, and in vivo application in the fetal population. Images and flow curves from these measurements are presented. Additionally, numerical simulations were used to investigate the degree to which heart rate variability affects the reconstruction process. Metric optimized gating enables imaging with conventional phase-contrast magnetic resonance imaging sequences in the absence of a gating signal, permitting flow measurements in the great vessels in utero. PMID:20632406

  13. Immunohistochemical evidence for the occurrence of vasoactive intestinal polypeptide (VIP)-containing nerve fibres in human fetal abdominal paraganglia.

    PubMed

    Hervonen, A; Linnoila, I; Tainio, H; Vaalasti, A; Mascorro, J A

    1985-12-01

    The abdominal paraganglia in man represent a major source of catecholamines, and perhaps peptide hormones, during the fetal period. The nature of the innervation of the abdominal paraganglia was studied immunohistochemically by utilising antibodies to vasoactive intestinal polypeptide, enkephalin, substance-P and somatostatin. The paraganglia showed an abundant network of VIP-immunoreactive fibres, and similar nerve fibres were found within nerve bundles of the preaortic sympathetic plexus. Occasionally, VIP-immunoreactive fibres were seen within the prevertebral ganglia, but stained cell bodies were never observed. It may be suggested that VIP-containing nerves could regulate a secretory response from fetal human abdominal paraganglia. PMID:3870718

  14. Correlates of photoreceptor rescue by transplantation of human fetal RPE in the RCS rat.

    PubMed

    Little, C W; Cox, C; Wyatt, J; del Cerro, C; del Cerro, M

    1998-01-01

    This study uses a water maze paradigm as a tool to assess posttransplantation changes in behavior associated with a visual stimulus. A set of dystrophic RCS rats received bilateral injections of freshly isolated human fetal RPE cells into the subretinal space of the superior equatorial hemisphere. Five age-matched control dystrophic RCS rats received subretinal injections of vehicle. All animals were immunosuppressed. At 2 months posttransplantation, each rat was tested in the water escape apparatus. The rat used a single light source, randomly located on the edge of the tank, to locate a submerged platform, placed directly in front of the light. Each rat was timed and videotaped during 10 consecutive trials. The swimming paths and times for all rats were recorded and statistically analyzed. Subsequent to the water escape trials, the eyes were embedded for histologic analysis which included quantitative assessment of photoreceptor cells in predefined retinal regions. The water escape data indicated the differences between the sham and experimental groups changed significantly over time (P = 0.0017). Over time, the transplanted animals learned to use light as a clue (P < 0.0001), whereas the sham animals did not (P = 0.73). Transplanted eyes had a significantly greater mean number of photoreceptors in the superior, grafted region than seen in the inferior region of the same eyes and compared with either region of sham-injected eyes (P = 0.0023). Statistical analyses demonstrated a functional advantage for visually guided behavior in RCS rats transplanted with human fetal RPE cells and a statistically significant PRC rescue effect at 2 months after transplantation. PMID:9454624

  15. Cadmium and mercury toxicity in a human fetal hepatic cell line (WRL-68 cells).

    PubMed

    Bucio, L; Souza, V; Albores, A; Sierra, A; Chávez, E; Cárabez, A; Gutiérrez-Ruiz, M C

    1995-09-18

    The toxic effects of cadmium (Cd) and mercury (Hg), as chloride salts, were studied using an hepatic human fetal cell line (WRL-68 cells). From viability curves and the proliferative capacity of the cell in the presence of the metal, three different cell treatments were chosen, (1) 0.5 microM of the metal chloride for 24 h (acute low dose treatment), (2) 0.5 microM of the metal chloride for 7 days (chronic treatment), and (3) 5 microM of the metal chloride for 24 h (acute high dose treatment). WRL-68 cells grown in the presence of Cd exhibited the same proliferative curve as control cells, whereas in the case of Hg, the cells increased their proliferative capacity. Both metals produced ultrastructural alterations in different degrees, mainly observed as mitochondrial and RER structural changes, depending of the treatment and concentration of the metal used. Cytotoxicity was assessed by measuring the release of lactate dehydrogenase from the cells. Acutely high dose-treated cells showed the highest value for this parameter, and Cd-treated cells presented higher lactate dehydrogenase release than the Hg-treated ones. Cell damage was also measured by alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT) activities. Acute high dose Cd treatment caused the highest value of enzymatic release. Lipid peroxidation was significantly different with respect to control cells in chronic and acute high dose treatments with both metals. Metallothionein (MT) induction in response to Hg treatment was not detected. However, a dramatic induction of this protein occurred in Cd-treated cells. WRL-68 cells differentially respond to Cd and Hg making this hepatic fetal human cell line a useful tool in investigating the mechanism of toxicity of these heavy metals. PMID:7482568

  16. Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells).

    PubMed Central

    Yang, C F; Shen, H M; Shen, Y; Zhuang, Z X; Ong, C N

    1997-01-01

    Epidemiological evidence suggests that cadmium (Cd) exposure causes pulmonary damage such as emphysema and lung cancer. However, relatively little is known about the mechanisms involved in Cd pulmonary toxicity. In the present study, the effects of Cd exposure on human fetal lung fibroblasts (MRC-5 cells) were evaluated by determination of lipid peroxidation, intra-cellular production of reactive oxygen species (ROS), and changes of mitochondrial membrane potential. A time- and dose-dependent increase of both lactate dehydrogenase leakage and malondialdehyde formation was observed in Cd-treated cells. A close correlation between these two events suggests that lipid peroxidation may be one of the main pathways causing its cytotoxicity. It was also noted that Cd-induced cell injury and lipid peroxidation were inhibited by catalase and superoxide dismutase, two antioxidant enzymes. By using the fluorescent probe 2',7'-dichlorofluorescin diacetate, a significant increase of ROS production in Cd-treated MRC-5 cells was detected. The inhibition of dichlorofluorescein fluorescence by catalase, not superoxide dismutase, suggests that hydrogen peroxide is the main ROS involved. Moreover, the significant dose-dependent changes of mitochondrial membrane potential in Cd-treated MRC-5 cells, demonstrated by increased fluorescence of rhodamine 123 examined using a laser-scanning confocal microscope, also indicate the involvement of mitochondrial damage in Cd cytotoxicity. These findings provide in vitro evidence that Cd causes oxidative cellular damage in human fetal lung fibroblasts, which may be closely associated with the pulmonary toxicity of Cd. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 5. Figure 6. Figure 7. A Figure 7. B PMID:9294717

  17. Fetal cardiac arrhythmia detection and in utero therapy

    PubMed Central

    Strasburger, Janette F.; Wakai, Ronald T.

    2010-01-01

    The human fetal heart develops arrhythmias and conduction disturbances in response to ischemia, inflammation, electrolyte disturbances, altered load states, structural defects, inherited genetic conditions, and many other causes. Yet sinus rhythm is present without altered rate or rhythm in some of the most serious electrophysiological diseases, which makes detection of diseases of the fetal conduction system challenging in the absence of magnetocardiographic or electrocardiographic recording techniques. Life-threatening changes in QRS or QT intervals can be completely unrecognized if heart rate is the only feature to be altered. For many fetal arrhythmias, echocardiography alone can assess important clinical parameters for diagnosis. Appropriate treatment of the fetus requires awareness of arrhythmia characteristics, mechanisms, and potential associations. Criteria to define fetal bradycardia specific to gestational age are now available and may allow detection of ion channelopathies, which are associated with fetal and neonatal bradycardia. Ectopic beats, once thought to be entirely benign, are now recognized to have important pathologic associations. Fetal tachyarrhythmias can now be defined precisely for mechanism-specific therapy and for subsequent monitoring of response. This article reviews the current and future diagnostic techniques and pharmacologic treatments for fetal arrhythmia. PMID:20418904

  18. An Investigation of the Endocrine-Disruptive Effects of Bisphenol A in Human and Rat Fetal Testes

    PubMed Central

    Maamar, Millissia Ben; Lesné, Laurianne; Desdoits-Lethimonier, Christèle; Coiffec, Isabelle; Lassurguère, Julie; Lavoué, Vincent; Deceuninck, Yoann; Antignac, Jean-Philippe; Le Bizec, Bruno; Perdu, Elisabeth; Zalko, Daniel; Pineau, Charles; Chevrier, Cécile; Dejucq-Rainsford, Nathalie; Mazaud-Guittot, Séverine; Jégou, Bernard

    2015-01-01

    Few studies have been undertaken to assess the possible effects of bisphenol A (BPA) on the reproductive hormone balance in animals or humans with often contradictory results. We investigated possible direct endocrine disruption by BPA of the fetal testes of 2 rat strains (14.5–17.5 days post-coitum) and humans (8–12 gestational weeks) and under different culture conditions. BPA concentrations of 10-8M and 10-5M for 72h reduced testosterone production by the Sprague-Dawley fetal rat testes, while only 10-5M suppressed it in the Wistar strain. The suppressive effects at 10-5M were seen as early as 24h and 48h in both strains. BPA at 10-7-10-5M for 72h suppressed the levels of fetal rat Leydig cell insulin-like factor 3 (INSL3). BPA exposure at 10-8M, 10-7M, and 10-5M for 72h inhibited testosterone production in fetal human testes. For the lowest doses, the effects observed occurred only when no gonadotrophin was added to the culture media and were associated with a poorly preserved testicular morphology. We concluded that (i) BPA can display anti-androgenic effects both in rat and human fetal testes; (ii) it is essential to ascertain that the divergent effects of endocrine disruptors between species in vitro do not result from the culture conditions used, and/or the rodent strain selected; (iii) the optimization of each in vitro assay for a given species should be a major objective rather than the search of an hypothetical trans-species consensual model-system, as the organization of the testis is intrinsically different between mammalian species; (iv) due to the uncertainty existing on the internal exposure of the human fetal testis to BPA, and the insufficient number of epidemiological studies on the endocrine disruptive effects of BPA, caution should be taken in the extrapolation of our present results to the human reproductive health after fetal exposure to BPA. PMID:25706302

  19. High Contrast Ultrafast Imaging of the Human Heart

    PubMed Central

    Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael

    2014-01-01

    Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135

  20. Arteriovenous malformation of vein of Galen as a rare non-hypoxic cause of changes in fetal heart rate pattern during labor.

    PubMed

    Biringer, Kamil; Zubor, Pavol; Kudela, Erik; Kolarovszki, Branislav; Zibolen, Mirko; Danko, Jan

    2016-03-01

    The aim of this case report is to describe a rare non-hypoxic cause of pathological changes in fetal heart rate pattern during labor, and to determine management, including a description of important prenatal aspects when pathologic cardiotocographic recording is performed during labor. A fetus with rare arteriovenous malformation of the vein of Galen, which represents less than 1% of all intracranial arteriovenous malformations, was monitored by intrapartum external cardiotocography in the 37 + 5 gestational week. The baby was born by cesarean section because of signs of imminent intrauterine hypoxia on cardiotocography. However, metabolic acidosis was not confirmed in umbilical cord blood sampling. Despite intensive neonatal care management, the newborn died 31 h after delivery because of progressive cardiac decompensation, hypotension and multi-organ failure. Precise diagnosis of the abovementioned pathology, a pre-labor plan for delivery and postnatal prognosis assessment can significantly contribute to the avoidance of a misdiagnosis of fetal hypoxia and unnecessary operative delivery with marked medico-legal consequences. PMID:26694901

  1. Validation of In utero Tractography of Human Fetal Commissural and Internal Capsule Fibers with Histological Structure Tensor Analysis

    PubMed Central

    Mitter, Christian; Jakab, András; Brugger, Peter C.; Ricken, Gerda; Gruber, Gerlinde M.; Bettelheim, Dieter; Scharrer, Anke; Langs, Georg; Hainfellner, Johannes A.; Prayer, Daniela; Kasprian, Gregor

    2015-01-01

    Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in utero DTI as a clinical imaging tool, an independent comparison between macroscopic imaging and microscopic histology data in the same subject is needed. The present study aimed to cross-validate normal as well as abnormal in utero tractography results of commissural and internal capsule fibers in human fetal brains using postmortem histological structure tensor (ST) analysis. In utero tractography findings from two structurally unremarkable and five abnormal fetal brains were compared to the results of postmortem ST analysis applied to digitalized whole hemisphere sections of the same subjects. An approach to perform ST-based deterministic tractography in histological sections was implemented to overcome limitations in correlating in utero tractography to postmortem histology data. ST analysis and histology-based tractography of fetal brain sections enabled the direct assessment of the anisotropic organization and main fiber orientation of fetal telencephalic layers on a micro- and macroscopic scale, and validated in utero tractography results of corpus callosum and internal capsule fiber tracts. Cross-validation of abnormal in utero tractography results could be achieved in four subjects with agenesis of the corpus callosum (ACC) and in two cases with malformations of internal capsule fibers. In addition, potential limitations of current DTI-based in utero tractography could be demonstrated in several brain regions. Combining the three-dimensional nature of DTI-based in utero tractography with the microscopic resolution provided by histological ST analysis may ultimately facilitate a more complete morphologic

  2. Validation of In utero Tractography of Human Fetal Commissural and Internal Capsule Fibers with Histological Structure Tensor Analysis.

    PubMed

    Mitter, Christian; Jakab, András; Brugger, Peter C; Ricken, Gerda; Gruber, Gerlinde M; Bettelheim, Dieter; Scharrer, Anke; Langs, Georg; Hainfellner, Johannes A; Prayer, Daniela; Kasprian, Gregor

    2015-01-01

    Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in utero DTI as a clinical imaging tool, an independent comparison between macroscopic imaging and microscopic histology data in the same subject is needed. The present study aimed to cross-validate normal as well as abnormal in utero tractography results of commissural and internal capsule fibers in human fetal brains using postmortem histological structure tensor (ST) analysis. In utero tractography findings from two structurally unremarkable and five abnormal fetal brains were compared to the results of postmortem ST analysis applied to digitalized whole hemisphere sections of the same subjects. An approach to perform ST-based deterministic tractography in histological sections was implemented to overcome limitations in correlating in utero tractography to postmortem histology data. ST analysis and histology-based tractography of fetal brain sections enabled the direct assessment of the anisotropic organization and main fiber orientation of fetal telencephalic layers on a micro- and macroscopic scale, and validated in utero tractography results of corpus callosum and internal capsule fiber tracts. Cross-validation of abnormal in utero tractography results could be achieved in four subjects with agenesis of the corpus callosum (ACC) and in two cases with malformations of internal capsule fibers. In addition, potential limitations of current DTI-based in utero tractography could be demonstrated in several brain regions. Combining the three-dimensional nature of DTI-based in utero tractography with the microscopic resolution provided by histological ST analysis may ultimately facilitate a more complete morphologic

  3. Cloning, chromosomal mapping, and expression of human fetal brain type I adenylyl cyclase

    SciTech Connect

    Villacres, E.C.; Xia, Z.; Bookbinder, L.H.; Edelhoff, S.; Disteche, C.M.; Storm, D.R.

    1993-05-01

    The neural-specific calmodulin-sensitive adenylyl cyclase (type I), which was first cloned from bovine brain, has been implicated in learning and memory. The objective of this study was to clone and determine the chromosomal localization of human fetal brain type I adenylyl cyclase. A 3.8-kb cDNA clone was isolated that contained sequence coinciding with the 3{prime} end 2553 nucleotides of the bovine open reading frame. This clone shows 87% nucleotide and 92% translated amino acid sequence identity to the bovine clone. The most significant sequence differences were in the carboxy-terminal 100 amino acid residues. This region contains one of several possible calmodulin binding domains and the only putative cAMP-dependent protein kinase A phosphorylation site. A chimera was constructed that contained the 5{prime} half of the bovine type I adenylyl cyclase and the 3{prime} half of the human type I adenylyl cyclase. The activity of the chimeric gene product and its sensitivity to calmodulin and calcium were indistinguishable from those of the bovine type I adenylyl cyclase. In situ hybridization was used to localize the human type I adenylyl cyclase gene to the proximal portion of the short arm of chromosome 7. 36 refs., 4 figs.

  4. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    PubMed Central

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  5. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    PubMed

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  6. Establishment and characterization of buffalo fetal fibroblasts induced with human telomerase reverse transcriptase.

    PubMed

    Zhang, Shun; Guan, Xiaomei; Lu, Fenghua; Jiang, Jianrong; Deng, Yanfei; Luo, Chan; Shi, Deshun

    2016-10-01

    Fetal fibroblasts are often used as donor cells for SCNT, but their short lifespan greatly limits this application. To provide stable and long-lifespan cells, buffalo fetal fibroblasts (BFFs) transfected with human telomerase reverse transcriptase (hTERT). The hTERT-transfected BFFs (hTERT-BFFs) were evaluated by qRT-PCR, Western blot, karyotype analysis, telomerase activity assay, growth curve assay, flow cytometry, and soft agar assay. The development of SCNT embryos derived from hTERT-BFFs was also assessed in vitro. The morphology of hTERT-BFFs was similar to the nontransfected BFFs, and the karyotype of hTERT-BFFs was normal at passage 30. The hTERT-BFFs at passage 4 and 30 had higher telomerase activity and extended proliferative lifespan with an increase in cell population at S phase when compared with nontransfected BFFs at passage 5 and 30. The mRNA expression of p53 in hTERT-BFFs at passage 5 and 30 remained unchanged when compared with nontransfected BFFs at passage 5, whereas the mRNA expression of p53 in the nontransfected BFFs at passage 30 was increased. Soft agar assay showed that hTERT-BFFs at passage 30 were not a malignant phenotype. Significantly, more SCNT embryos derived from hTERT-BFFs at passage 5 and 30 developed to blastocysts in comparison with BFFs at passage 30. The Caudal type homeobox 2 and Connexin 43 genes were indicated to involve in the development of cloned embryos. These results indicate that transfection of BFFs with hTERT can extend their lifespan and retain their basic and key biological characteristics in the status of primary BFFs. PMID:27388808

  7. Human cytomegalovirus elicits fetal γδ T cell responses in utero

    PubMed Central

    Brouwer, Margreet; Donner, Catherine; Liesnard, Corinne; Tackoen, Marie; Van Rysselberge, Michel; Twité, Nicolas; Goldman, Michel; Marchant, Arnaud; Willems, Fabienne

    2010-01-01

    The fetus and infant are highly susceptible to viral infections. Several viruses, including human cytomegalovirus (CMV), cause more severe disease in early life compared with later life. It is generally accepted that this is a result of the immaturity of the immune system. γδ T cells are unconventional T cells that can react rapidly upon activation and show major histocompatibility complex–unrestricted activity. We show that upon CMV infection in utero, fetal γδ T cells expand and become differentiated. The expansion was restricted to Vγ9-negative γδ T cells, irrespective of their Vδ chain expression. Differentiated γδ T cells expressed high levels of IFN-γ, transcription factors T-bet and eomes, natural killer receptors, and cytotoxic mediators. CMV infection induced a striking enrichment of a public Vγ8Vδ1-TCR, containing the germline-encoded complementary-determining-region-3 (CDR3) δ1–CALGELGDDKLIF/CDR3γ8–CATWDTTGWFKIF. Public Vγ8Vδ1-TCR–expressing cell clones produced IFN-γ upon coincubation with CMV-infected target cells in a TCR/CD3-dependent manner and showed antiviral activity. Differentiated γδ T cells and public Vγ8Vδ1-TCR were detected as early as after 21 wk of gestation. Our results indicate that functional fetal γδ T cell responses can be generated during development in utero and suggest that this T cell subset could participate in antiviral defense in early life. PMID:20368575

  8. Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma.

    PubMed

    Khan, Mehnaz; Walters, Laura L; Li, Qiang; Thomas, Dafydd G; Miller, Jason M L; Zhang, Qitao; Sciallis, Andrew P; Liu, Yu; Dlouhy, Brian J; Fort, Patrice E; Archer, Steven M; Demirci, Hakan; Dou, Yali; Rao, Rajesh C

    2015-11-01

    Retinoblastoma (RB) is the most common primary intraocular cancer in children, and the third most common cancer overall in infants. No molecular-targeted therapy for this lethal tumor exists. Since the tumor suppressor RB1, whose genetic inactivation underlies RB, is upstream of the epigenetic regulator EZH2, a pharmacologic target for many solid tumors, we reasoned that EZH2 might regulate human RB tumorigenesis. Histologic and immunohistochemical analyses were performed using an EZH2 antibody in sections from 43 samples of primary, formalin-fixed, paraffin-embedded human RB tissue, cryopreserved mouse retina, and in whole cell lysates from human RB cell lines (Y79 and WERI-Rb1), primary human fetal retinal pigment epithelium (RPE) and fetal and adult retina, mouse retina and embryonic stem (ES) cells. Although enriched during fetal human retinal development, EZH2 protein was not present in the normal postnatal retina. However, EZH2 was detected in all 43 analyzed human RB specimens, indicating that EZH2 is a fetal protein expressed in postnatal human RB. EZH2 expression marked single RB cell invasion into the optic nerve, a site of invasion whose involvement may influence the decision for systemic chemotherapy. To assess the role of EZH2 in RB cell survival, human RB and primary RPE cells were treated with two EZH2 inhibitors (EZH2i), GSK126 and SAH-EZH2 (SAH). EZH2i impaired intracellular adenosine triphosphate (ATP) production, an indicator of cell viability, in a time and dose-dependent manner, but did not affect primary human fetal RPE. Thus, aberrant expression of a histone methyltransferase protein is a feature of human RB. This is the first time this mechanism has been implicated for an eye, adnexal, or orbital tumor. The specificity of EZH2i toward human RB cells, but not RPE, warrants further in vivo testing in animal models of RB, especially those EZH2i currently in clinical trials for solid tumors and lymphoma. PMID:26280220

  9. Germ cell differentiation in the marmoset (Callithrix jacchus) during fetal and neonatal life closely parallels that in the human

    PubMed Central

    Mitchell, R.T.; Cowan, G.; Morris, K.D.; Anderson, R.A.; Fraser, H.M.; Mckenzie, K.J.; Wallace, W.H.B.; Kelnar, C.J.H.; Saunders, P.T.K.; Sharpe, R.M.

    2008-01-01

    BACKGROUND Testicular germ cell tumours (TGCT) are thought to originate from fetal germ cells that fail to differentiate normally, but no animal model for these events has been described. We evaluated the marmoset (Callithrix jacchus) as a model by comparing perinatal germ cell differentiation with that in humans. METHODS Immunohistochemical profiling was used to investigate germ cell differentiation (OCT4, NANOG, AP-2γ, MAGE-A4, VASA, NANOS-1) and proliferation (Ki67) in fetal and neonatal marmoset testes in comparison with the human and, to a lesser extent, the rat. RESULTS In marmosets and humans, differentiation of gonocytes into spermatogonia is associated with the gradual loss of pluripotency markers such as OCT4 and NANOG, and the expression of germ cell-specific proteins such as VASA. This differentiation occurs asynchronously within individual cords during fetal and early postnatal life. This contrasts with rapid and synchronous germ cell differentiation within and between cords in the rat. Similarly, germ cell proliferation in the marmoset and human occurs throughout perinatal life, in contrast to rats in which proliferation ceases during this period. CONCLUSIONS The marmoset provides a good model for normal human germ cell differentiation and proliferation. The perinatal marmoset may be a useful model in which to establish factors that lead to failure of normal germ cell differentiation and the origins of TGCT. PMID:18694875

  10. A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos

    PubMed Central

    2013-01-01

    Background A recessive mutation “c” in the Mexican axolotl, Ambystoma mexicanum, results in the failure of normal heart development. In homozygous recessive embryos, the hearts do not have organized myofibrils and fail to beat. In our previous studies, we identified a noncoding Myofibril-Inducing RNA (MIR) from axolotls which promotes myofibril formation and rescues heart development. Results We randomly cloned RNAs from fetal human heart. RNA from clone #291 promoted myofibril formation and induced heart development of mutant axolotls in organ culture. This RNA induced expression of cardiac markers in mutant hearts: tropomyosin, troponin and α-syntrophin. This cloned RNA matches in partial sequence alignment to human microRNA-499a and b, although it differs in length. We have concluded that this cloned RNA is unique in its length, but is still related to the microRNA-499 family. We have named this unique RNA, microRNA-499c. Thus, we will refer to this RNA derived from clone #291 as microRNA-499c throughout the rest of the paper. Conclusions This new form, microRNA-499c, plays an important role in cardiac development. PMID:23522091

  11. ZEB1 Promotes Invasion in Human Fetal Neural Stem Cells and Hypoxic Glioma Neurospheres.

    PubMed

    Kahlert, Ulf D; Suwala, Abigail K; Raabe, Eric H; Siebzehnrubl, Florian A; Suarez, Maria J; Orr, Brent A; Bar, Eli E; Maciaczyk, Jaroslaw; Eberhart, Charles G

    2015-11-01

    Diffuse spread through brain parenchyma and the presence of hypoxic foci rimmed by neoplastic cells are two cardinal features of glioblastoma, and low oxygen is thought to drive movement of malignant gliomas in the core of the lesions. Transcription factors associated with epithelial-to-mesenchymal transition (EMT) have been linked to this invasion, and we found that hypoxia increased in vitro invasion up to fourfold in glioblastoma neurosphere lines and induced the expression of ZEB1. Immunohistochemical assessment of 295 surgical specimens consisting of various types of pediatric and adult brain cancers showed that ZEB1 expression was significantly higher in infiltrative lesions than less invasive tumors such as pilocytic astrocytoma and ependymoma. ZEB1 protein was also present in human fetal periventricular stem and progenitor cells and ZEB1 inhibition impaired migration of in vitro propagated human neural stem cells. The induction of ZEB1 protein in hypoxic glioblastoma neurospheres could be partially blocked by the HIF1alpha inhibitor digoxin. Targeting ZEB1 blocked hypoxia-augmented invasion of glioblastoma cells in addition to slowing them in normoxia. These data support the role for ZEB1 in invasive and high-grade brain tumors and suggest its key role in promoting invasion in the hypoxic tumor core as well as in the periphery. PMID:25521330

  12. Temporal and spatial distribution of mast cells and steroidogenic enzymes in the human fetal adrenal.

    PubMed

    Naccache, Alexandre; Louiset, Estelle; Duparc, Céline; Laquerrière, Annie; Patrier, Sophie; Renouf, Sylvie; Gomez-Sanchez, Celso E; Mukai, Kuniaki; Lefebvre, Hervé; Castanet, Mireille

    2016-10-15

    Mast cells are present in the human adult adrenal with a potential role in the regulation of aldosterone secretion in both normal cortex and adrenocortical adenomas. We have investigated the human developing adrenal gland for the presence of mast cells in parallel with steroidogenic enzymes profile and serotonin signaling pathway. RT-QPCR and immunohistochemical studies were performed on adrenals at 16-41 weeks of gestation (WG). Tryptase-immunopositive mast cells were found from 18 WG in the adrenal subcapsular layer, close to 3βHSD- and CYP11B2-immunoreactive cells, firstly detected at 18 and 24 WG, respectively. Tryptophan hydroxylase and serotonin receptor type 4 expression increased at 30 WG before the CYP11B2 expression surge. In addition, HDL and LDL cholesterol receptors were expressed in the subcapsular zone from 24 WG. Altogether, our findings suggest the implication of mast cells and serotonin in the establishment of the mineralocorticoid synthesizing pathway during fetal adrenal development. PMID:27302892

  13. Establishment of Metabolism and Transport Pathways in the Rodent and Human Fetal Liver

    PubMed Central

    Moscovitz, Jamie E.; Aleksunes, Lauren M.

    2013-01-01

    The ultimate fate of drugs and chemicals in the body is largely regulated by hepatic uptake, metabolism, and excretion. The liver acquires the functional ability to metabolize and transport chemicals during the perinatal period of development. Research using livers from fetal and juvenile rodents and humans has begun to reveal the timing, key enzymes and transporters, and regulatory factors that are responsible for the establishment of hepatic phase I and II metabolism as well as transport. The majority of this research has been limited to relative mRNA and protein quantification. However, the recent utilization of novel technology, such as RNA-Sequencing, and the improved availability and refinement of functional activity assays, has begun to provide more definitive information regarding the extent of hepatic drug disposition in the developing fetus. The goals of this review are to provide an overview of the early regulation of the major phase I and II enzymes and transporters in rodent and human livers and to highlight potential mechanisms that control the ontogeny of chemical metabolism and excretion pathways. PMID:24322441

  14. Fate and Development of Human Vomeronasal Organ – A Microscopic Fetal Study

    PubMed Central

    Fenn, T.K. Aleyemma; Devi, M. Nirmala; Hebzibah, T. Deborah Joy; Jamuna, M.; Sundaram, K. Kalyana

    2016-01-01

    Introduction The existence of Vomeronasal organ in human is a controversial subject. Presence of Vomeronasal organ and its structure was not reported in standard text books. The presence of Vomeronasal organ in fetal life is doubtful. Hence identification of the organ by histological examination was planned. Materials and Methods A study was conducted on resected specimens of nasal septum obtained from 45 spontaneously aborted fetuses from Obstetrics and Gynaecology department, PSG Institute of Medical Sciences and Research, Coimbatore, after ethical clearance. Results The histological structure of Vomeronasal organ was observed from 11 weeks old fetus. The epithelial lining of the organ, presence of cilia, presence of lamina propria, acini and the blood vessel and the types of cells were observed. The organ was lined by pseudostratified columnar epithelium. The organ showed Lamina propria with serous acini from 18 weeks fetus. Vomeronasal duct opening into the nasal cavity and three types of cells were observed in 28 weeks fetus. Conclusion Knowledge about the persistence of Vomeronasal organ in fetuses and its structure need to be known. The organ may be found as a putative pit posterior to anterior nasal spine. The organ may be damaged in nasal septal surgeries and nasal endoscopic procedures. The organ may not be seen on gross examination in all human fetuses and cadavers. PMID:27134849

  15. White matter maturation of normal human fetal brain. An in vivo diffusion tensor tractography study

    PubMed Central

    Zanin, Emilie; Ranjeva, Jean-Philippe; Confort-Gouny, Sylviane; Guye, Maxime; Denis, Daniele; Cozzone, Patrick J; Girard, Nadine

    2011-01-01

    We demonstrate for the first time the ability to determine in vivo and in utero the transitions between the main stages of white matter (WM) maturation in normal human fetuses using magnetic resonance diffusion tensor imaging (DTI) tractography. Biophysical characteristics of water motion are used as an indirect probe to evaluate progression of the tissue matrix organization in cortico-spinal tracts (CSTs), optic radiations (OR), and corpus callosum (CC) in 17 normal human fetuses explored between 23 and 38 weeks of gestation (GW) and selected strictly on minimal motion artifacts. Nonlinear polynomial (third order) curve fittings of normalized longitudinal and radial water diffusivities (Z-scores) as a function of age identify three different phases of maturation with specific dynamics for each WM bundle type. These phases may correspond to distinct cellular events such as axonal organization, myelination gliosis, and myelination, previously reported by other groups on post-mortem fetuses using immunostaining methods. According to the DTI parameter dynamics, we suggest that myelination (phase 3) appears early in the CSTs, followed by the OR and by the CC, respectively. DTI tractography provides access to a better understanding of fetal WM maturation. PMID:22399089

  16. Differential Gene Expression in Adipose Stem Cells Cultured in Allogeneic Human Serum Versus Fetal Bovine Serum

    PubMed Central

    Aho, Kaisa-Leena; Kuokkanen, Hannu; Räty, Sari; Huhtala, Heini; Lemponen, Riina; Yli-Harja, Olli; Suuronen, Riitta; Miettinen, Susanna

    2010-01-01

    In preclinical studies, human adipose stem cells (ASCs) have been shown to have therapeutic applicability, but standard expansion methods for clinical applications remain yet to be established. ASCs are typically expanded in the medium containing fetal bovine serum (FBS). However, sera and other animal-derived culture reagents stage safety issues in clinical therapy, including possible infections and severe immune reactions. By expanding ASCs in the medium containing human serum (HS), the problem can be eliminated. To define how allogeneic HS (alloHS) performs in ASC expansion compared to FBS, a comparative in vitro study in both serum supplements was performed. The choice of serum had a significant effect on ASCs. First, to reach cell proliferation levels comparable with 10% FBS, at least 15% alloHS was required. Second, while genes of the cell cycle pathway were overexpressed in alloHS, genes of the bone morphogenetic protein receptor–mediated signaling on the transforming growth factor beta signaling pathway regulating, for example, osteoblast differentiation, were overexpressed in FBS. The result was further supported by differentiation analysis, where early osteogenic differentiation was significantly enhanced in FBS. The data presented here underscore the importance of thorough investigation of ASCs for utilization in cell therapies. This study is a step forward in the understanding of these potential cells. PMID:20184435

  17. The human fetal lymphocyte lineage: identification by CD27 and LIN28B expression in B cell progenitors

    PubMed Central

    McWilliams, Laurie; Su, Kuei-Ying; Liang, Xiaoe; Liao, Dongmei; Floyd, Serina; Amos, Joshua; Moody, M. Anthony; Kelsoe, Garnett; Kuraoka, Masayuki

    2013-01-01

    CD27, a member of the TNFR superfamily, is used to identify human memory B cells. Nonetheless, CD27+ B cells are present in patients with HIGM1 syndrome who are unable to generate GCs or memory B cells. CD27+IgD+ fetal B cells are present in umbilical cord blood, and CD27 may also be a marker of the human B1-like B cells. To define the origin of naïve CD27+IgD+ human B cells, we studied B cell development in both fetal and adult tissues. In human FL, most CD19+ cells coexpressed CD10, a marker of human developing B cells. Some CD19+CD10+ B cells expressed CD27, and these fetal CD27+ cells were present in the pro-B, pre-B, and immature/transitional B cell compartments. Lower frequencies of phenotypically identical cells were also identified in adult BM. CD27+ pro-B, pre-B, and immature/transitional B cells expressed recombination activating gene-1, terminal deoxynucleotidyl transferase and Vpre-B mRNA comparably to their CD27− counterparts. CD27+ and CD27− developing B cells showed similar Ig heavy chain gene usage with low levels of mutations, suggesting that CD27+ developing B cells are distinct from mutated memory B cells. Despite these similarities, CD27+ developing B cells differed from CD27− developing B cells by their increased expression of LIN28B, a transcription factor associated with the fetal lymphoid lineages of mice. Furthermore, CD27+ pro-B cells efficiently generated IgM+IgD+ immature/transitional B cells in vitro. Our observations suggest that CD27 expression during B cell development identifies a physiologic state or lineage for human B cell development distinct from the memory B cell compartment. PMID:23901121

  18. Human Engineered Heart Tissue: Analysis of Contractile Force.

    PubMed

    Mannhardt, Ingra; Breckwoldt, Kaja; Letuffe-Brenière, David; Schaaf, Sebastian; Schulz, Herbert; Neuber, Christiane; Benzin, Anika; Werner, Tessa; Eder, Alexandra; Schulze, Thomas; Klampe, Birgit; Christ, Torsten; Hirt, Marc N; Huebner, Norbert; Moretti, Alessandra; Eschenhagen, Thomas; Hansen, Arne

    2016-07-12

    Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT) from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histologically and functionally. HiPSC-CM in EHTs showed well-developed sarcomeric organization and alignment, and frequent mitochondria. Systematic contractility analysis (26 concentration-response curves) reveals that EHTs replicated canonical response to physiological and pharmacological regulators of inotropy, membrane- and calcium-clock mediators of pacemaking, modulators of ion-channel currents, and proarrhythmic compounds with unprecedented precision. The analysis demonstrates a high degree of similarity between hiPSC-CM in EHT format and native human heart tissue, indicating that human EHTs are useful for preclinical drug testing and disease modeling. PMID:27211213

  19. Arrhythmogenic and metabolic remodelling of failing human heart.

    PubMed

    Gloschat, C R; Koppel, A C; Aras, K K; Brennan, J A; Holzem, K M; Efimov, I R

    2016-07-15

    Heart failure (HF) is a major cause of morbidity and mortality worldwide. The global burden of HF continues to rise, with prevalence rates estimated at 1-2% and incidence approaching 5-10 per 1000 persons annually. The complex pathophysiology of HF impacts virtually all aspects of normal cardiac function - from structure and mechanics to metabolism and electrophysiology - leading to impaired mechanical contraction and sudden cardiac death. Pharmacotherapy and device therapy are the primary methods of treating HF, but neither is able to stop or reverse disease progression. Thus, there is an acute need to translate basic research into improved HF therapy. Animal model investigations are a critical component of HF research. However, the translation from cellular and animal models to the bedside is hampered by significant differences between species and among physiological scales. Our studies over the last 8 years show that hypotheses generated in animal models need to be validated in human in vitro models. Importantly, however, human heart investigations can establish translational platforms for safety and efficacy studies before embarking on costly and risky clinical trials. This review summarizes recent developments in human HF investigations of electrophysiology remodelling, metabolic remodelling, and β-adrenergic remodelling and discusses promising new technologies for HF research. PMID:27019074

  20. THERP and HEART integrated methodology for human error assessment

    NASA Astrophysics Data System (ADS)

    Castiglia, Francesco; Giardina, Mariarosa; Tomarchio, Elio

    2015-11-01

    THERP and HEART integrated methodology is proposed to investigate accident scenarios that involve operator errors during high-dose-rate (HDR) treatments. The new approach has been modified on the basis of fuzzy set concept with the aim of prioritizing an exhaustive list of erroneous tasks that can lead to patient radiological overexposures. The results allow for the identification of human errors that are necessary to achieve a better understanding of health hazards in the radiotherapy treatment process, so that it can be properly monitored and appropriately managed.

  1. Snake heart: a case of atavism in a human being.

    PubMed

    Walia, Ishmeet; Arora, Harvinder S; Barker, Esmond A; Delgado, Reynolds M; Frazier, O H

    2010-01-01

    Atavism is the rare reappearance, in a modern organism, of a trait from a distant evolutionary ancestor. We describe an apparent case of atavism involving a 59-year-old man with chest pain whose coronary circulation and myocardial architecture resembled those of the reptilian heart. The chest pain was attributed to a coronary steal phenomenon. The patient was discharged from the hospital on a heightened regimen of β-blockers, and his symptoms improved significantly. To our knowledge, this is only the 2nd reported clinical case of a human coronary circulation similar to that of reptiles. PMID:21224948

  2. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    SciTech Connect

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z. . E-mail: Zaal.Kokaia@med.lu.se

    2007-02-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.

  3. Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth

    PubMed Central

    Eitan, Erez; Zhang, Shi; Witwer, Kenneth W.; Mattson, Mark P.

    2015-01-01

    Background Fetal bovine serum (FBS) is the most widely used serum supplement for mammalian cell culture. It supports cell growth by providing nutrients, growth signals, and protection from stress. Attempts to develop serum-free media that support cell expansion to the same extent as serum-supplemented media have not yet succeeded, suggesting that FBS contains one or more as-yet-undefined growth factors. One potential vehicle for the delivery of growth factors from serum to cultured cells is extracellular vesicles (EVs). Methods EV-depleted FBS and human serum were generated by 120,000g centrifugation, and its cell growth–supporting activity was measured. Isolated EVs from FBS were quantified and characterized by nanoparticle tracking analysis, electron microscopy, and protein assay. EV internalization into cells was quantified using fluorescent plate reader analysis and microscopy. Results Most cell types cultured with EV-depleted FBS showed a reduced growth rate but not an increased sensitivity to the DNA-damaging agent etoposide and the endoplasmic reticulum stress–inducing chemical tunicamycin. Supplying cells with isolated FBS-derived EVs enhanced their growth. FBS-derived EVs were internalized by mouse and human cells wherein 65±26% of them interacted with the lysosomes. EV-depleted human serum also exhibited reduced cell growth–promoting activity. Conclusions EVs play a role in the cell growth and survival-promoting effects of FBS and human serum. Thus, it is important to take the effect of EV depletion under consideration when planning EV extraction experiments and while attempting to develop serum-free media that support rapid cell expansion. In addition, these findings suggest roles for circulating EVs in supporting cell growth and survival in vivo. PMID:25819213

  4. Engraftment potential of human fetal hematopoietic cells in NOD/SCID mice is not restricted to mitotically quiescent cells.

    PubMed

    Wilpshaar, Jannine; Bhatia, Mickie; Kanhai, Humphrey H H; Breese, Robert; Heilman, Doug K; Johnson, Cynthia S; Falkenburg, J H Frederik; Srour, Edward F

    2002-07-01

    During fetal development, there is a continued demand for large numbers of primitive and mature hematopoietic cells. This demand may require that all potential hematopoietic stem cells (HSCs) migrate effectively to emerging hematopoietic sites and subsequently contribute to blood cell production, regardless of their cell cycle status. We recently established that umbilical cord blood cells in the G(1) phase of the cell cycle have a repopulating potential similar to cells in G(0), suggesting that cycling prenatal and neonatal HSCs may have the same functional capabilities described for quiescent, but not cycling, cells from adult sources. To establish the relationship between cell cycle status and hematopoietic potential at early stages of human ontogeny, the in vivo engraftment potential of mitotically defined fetal liver (FL) and fetal bone marrow (FBM) cells were examined in NOD/SCID recipients. Following transplantation of the same numbers of G(0), G(1), or S/G(2)+M CD34(+) cells from FL, equivalent percentages of recipient mice were chimeric (55%, 60%, and 60%, respectively). FBM-derived CD34(+) cells in all phases of the cell cycle engrafted in conditioned recipients and sustained human hematopoiesis, albeit at lower levels than their FL-derived counterparts. Multilineage differentiation was evident in all transplanted mice independent of the source or cell cycle status of graft cells. In addition, levels of chimerism in mice transplanted with fetal blood-derived G(0) or G(1) CD34(+) lineage-depleted cells were similar. These results support the assertion that mitotically quiescent and cycling fetal hematopoietic cells contain marrow-repopulating stem cells capable of multilineage engraftment in NOD/SCID mouse recipients. PMID:12070016

  5. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system.

    PubMed

    Schneider, U; Schleussner, E; Fiedler, A; Jaekel, S; Liehr, M; Haueisen, J; Hoyer, D

    2009-02-01

    The aim of this study was to investigate the hypothesis that fetal beat-to-beat heart rate variability (fHRV) displays the different time scales of sympatho-vagal development prior to and after 32 weeks of gestation (wks GA). Ninety-two magnetocardiograms of singletons with normal courses of pregnancy between 24 + 1 and 41 + 6 wks GA were studied. Heart rate patterns were either quiet/non-accelerative (fHRP I) or active/accelerative (fHRP II) and recording quality sufficient for fHRV. The sample was divided into the GA groups <32 wks GA/>32 wks GA. Linear parameters of fHRV were calculated: mean heart rate (mHR), SDNN and RMSSD of normal-to-normal interbeat intervals, power in the low (0.04-0.15 Hz) and high frequency range (0.15-0.4 Hz) and the ratios SDNN/RMSSD and LF/HF as markers for sympatho-vagal balance. fHRP I is characterized by decreasing SDNN/RMSSD, LF/HF and mHR. The decrease is more pronounced <32 wks GA. Beyond that GA SDNN/RMSSD is predominantly determined by RMSSD during fHRP I and by SDNN during fHRP II. In contrast to fHRP I, during fHRP II, mHR is positively correlated to SDNN/RMSSD instead of SDNN >32 wks GA. LF/HF increases in fHRP II during the first half of the third trimester. Non-accelerative fHRP are indicative of parasympathetic dominance >32 wks GA. In contrast, the sympathetic accentuation during accelerative fHRP is displayed in the interrelations between mHR, SDNN and SDNN/RMSSD. Prior to 32 wks GA, fHRV reveals the increasing activity of the respective branches of the autonomic nervous system differentiating the types of fHRP. PMID:19179746

  6. Differential expression of vascular endothelial growth factor in human fetal skeletal site-specific tissues: Mandible versus femur.

    PubMed

    Marini, Mirca; Bertolai, Roberto; Ambrosini, Stefano; Sarchielli, Erica; Vannelli, Gabriella Barbara; Sgambati, Eleonora

    2015-04-01

    Vascular endothelial growth factor (VEGF) is a well-known mediator that signals through pathways in angiogenesis and osteogenesis. Angiogenesis and bone formation are coupled during either skeletal development or bone remodeling and repair occurring in postnatal life. In this study, we examined for the first time the expression of VEGF in human fetal mandibular and femoral bone in comparison with the respective adult tissues. Similarly to other craniofacial bones, but at variance with the axial and appendicular skeleton, during development mandible does not arise from mesoderm but neural crest cells of the neuroectoderm germ layer, and undergoes intramembranous instead of endochondral ossification. By quantitative real-time PCR technique, we could show that VEGF gene expression levels were significantly higher in fetal than in adult samples, especially in femoral tissue. Western blotting analysis confirmed higher protein expression of VEGF in the fetal femur respect to the mandible. Moreover, immunohistochemistry revealed that in both fetal tissues VEGF expression was mainly localized in pre- and osteoblasts. Differential expression of VEGF in femoral and mandibular bone tissues could be related to their different structure, function and development during organogenesis. PMID:25769656

  7. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.

    PubMed

    Garreta, Elena; de Oñate, Lorena; Fernández-Santos, M Eugenia; Oria, Roger; Tarantino, Carolina; Climent, Andreu M; Marco, Andrés; Samitier, Mireia; Martínez, Elena; Valls-Margarit, Maria; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco; Izpisua Belmonte, Juan Carlos; Montserrat, Nuria

    2016-08-01

    Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting. PMID:27179434

  8. Intramyocardial Transplantation and Tracking of Human Mesenchymal Stem Cells in a Novel Intra-Uterine Pre-Immune Fetal Sheep Myocardial Infarction Model: A Proof of Concept Study

    PubMed Central

    Wolint, Petra; Frauenfelder, Thomas; Zeisberger, Steffen M.; Behr, Luc; Sammut, Sebastien; Scherman, Jacques; Brokopp, Chad E.; Schwartländer, Ruth; Vogel, Viola; Vogt, Peter; Grünenfelder, Jürg; Alkadhi, Hatem; Falk, Volkmar; Boss, Andreas; Hoerstrup, Simon P.

    2013-01-01

    -Cytometry detected the cells within spleen, lungs, kidneys, thymus, bone-marrow and intra-peritoneal lavage, but not within the heart. For the first time we demonstrate the feasibility of intra-uterine, intra-myocardial stem-cell transplantation into the pre-immune fetal-sheep after MI. Utilizing cell-tracking strategies comprising advanced imaging-technologies and in-vitro tracking-tools, this novel model may serve as a unique platform to assess human cell-fate after intra-myocardial transplantation without the necessity of immunosuppressive-therapy. PMID:23533575

  9. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow.

    PubMed

    Bieback, Karen; Hecker, Andrea; Kocaömer, Asli; Lannert, Heinrich; Schallmoser, Katharina; Strunk, Dirk; Klüter, Harald

    2009-09-01

    Mesenchymal stromal cells (MSCs) are promising candidates for novel cell therapeutic applications. For clinical scale manufacturing, human factors from serum or platelets have been suggested as alternatives to fetal bovine serum (FBS). We have previously shown that pooled human serum (HS) and thrombin-activated platelet releasate in plasma (tPRP) support the expansion of adipose tissue-derived MSCs. Contradictory results with bone marrow (BM)-derived MSCs have initiated a comprehensive comparison of HS, tPRP, and pooled human platelet lysate (pHPL) and FBS in terms of their impact on MSC isolation, expansion, differentiation, and immunomodulatory activity. In addition to conventional Ficoll density gradient centrifugation, depletion of lineage marker expressing cells (RosetteSep) and CD271+ sorting were used for BM-MSC enrichment. Cells were cultured in medium containing either 10% FBS, HS, tPRP, or pHPL. Colony-forming units and cumulative population doublings were determined, and MSCs were maximally expanded. Although both HS and tPRP comparable to FBS supported isolation and expansion, pHPL significantly accelerated BM-MSC proliferation to yield clinically relevant numbers within the first two passages. MSC quality and functionality including cell surface marker expression, adipogenic and osteogenic differentiation, and immunosuppressive action were similar in MSCs from all culture conditions. Importantly, spontaneous cell transformation was not observed in any of the culture conditions. Telomerase activity was not detected in any of the cultures at any passage. In contrast to previous data from adipose tissue-derived MSCs, pHPL was found to be the most suitable FBS substitute in clinical scale BM-MSC expansion. PMID:19544413

  10. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome

    PubMed Central

    2011-01-01

    Background The effects of fetal calf serum (FCS) heat inactivation and bacterial lipopolysaccharide (LPS) contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM) cells were grown in FCS, either non-heated, or heat inactivated, having low (< 1 EU/mL) or regular (< 30 EU/mL) LPS concentrations. Protein lysates were resolved by 2-DE followed by phospho-specific and silver nitrate staining. Differentially regulated spots were identified by nano LC ESI Q-TOF MS/MS analysis. Results A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA) were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE) as compared to cells grown in media with non-heated FCS (NHE). Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN) displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1). Conclusion The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome. PMID:22085958

  11. Cerebroplacental ratio in prediction of adverse perinatal outcome and fetal heart rate disturbances in uncomplicated pregnancy at 40 weeks and beyond

    PubMed Central

    Korbelak, Tomasz; Świder-Musielak, Joanna; Breborowicz, Grzegorz

    2015-01-01

    Introduction The aim of the study was to determine the usefulness of Doppler velocimetry, based on cerebroplacental ratio (C/U) evaluation, in predicting intrapartum fetal heart rate abnormalities and adverse neonatal outcome in uncomplicated pregnancies at 40 weeks and beyond. Material and methods One hundred and forty-eight women in uncomplicated pregnancies, between 40 and 42 completed weeks, were divided into control and study groups: with the absence (n = 79) and with the presence of a fetal brain-sparing effect (n = 69), respectively. Pulsatility and resistance indices in the middle cerebral, the umbilical artery and the C/U ratio were evaluated daily by Doppler ultrasonography. C/U < 1.1 was reported as suggestive of a brain-sparing effect. Abnormal flow indices were analyzed and compared to adverse pregnancy and neonatal outcome determinants. Results In the abnormal C/U group the abnormal CTG records were significantly more frequently observed (62.3%) than in normal C/U group (19.0%) (p = 0.0001). The comparison of selected Doppler indices revealed that C/U showed the highest sensitivity in prediction of both the intrapartum abnormal FHR (74.1%) and the adverse neonatal outcome (87.8%). Conclusions The C/U index shows the highest sensitivity in prediction of FHR abnormalities and adverse neonatal outcome in uncomplicated pregnancies at 40 weeks and beyond. The C/U index is useful in clinical practice in antenatal monitoring of these women in order to select those at high risk of intra- and postpartum complications. PMID:25861301

  12. Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts.

    PubMed

    Zhu, Huang; Wang, Jie; Cui, Jiefeng; Fan, Xianqun

    2016-06-01

    This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p < 0.05). This study shows that ELF-EMFs had biological effects on HFSFs and could cause abnormality in scleral collagen. PMID:25147305

  13. Pharmacological Induction of Human Fetal Globin Gene in Hydroxyurea-Resistant Primary Adult Erythroid Cells.

    PubMed

    Chou, Yu-Chi; Chen, Ruei-Lin; Lai, Zheng-Sheng; Song, Jen-Shin; Chao, Yu-Sheng; Shen, Che-Kun James

    2015-07-01

    Pharmacological induction of the fetal γ globin gene and the consequent formation of HbF (α2/γ2) in adult erythroid cells are one feasible therapeutic strategy for sickle cell disease (SCD) and severe β-thalassemias. Hydroxyurea (HU) is the current drug of choice for SCD, but serious side effects limit its clinical use. Moreover, 30 to 50% of patients are irresponsive to HU treatment. We have used high-throughput screening to identify benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one and its derivatives (compounds I to VI) as potent γ globin inducers. Of the compounds, I to V exert superior γ globin induction and have better therapeutic potential than HU, likely because of their activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway and modulation of expression levels and/or chromosome binding of γ globin gene regulators, including BCL11A, and chromatin structure over the γ globin promoter. Unlike sodium butyrate (NaB), the global levels of acetylated histones H3 and H4 are not changed by compound II treatment. Remarkably, compound II induces the γ globin gene in HU-resistant primary human adult erythroid cells, the p38 signaling pathway of which appears to be irresponsive to HU and NaB as well as compound II. This study provides a new framework for the development of new and superior compounds for treating SCD and severe β-thalassemias. PMID:25986606

  14. Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide.

    PubMed

    Rivera-Denizard, Omayra; Diffoot-Carlo, Nannette; Navas, Vivian; Sundaram, Paul A

    2008-01-01

    Ti-48Al-2Cr-2Nb (at. %) (gammaTiAl), a gamma titanium aluminide alloy originally designed for aerospace applications, appears to have excellent potential for bone repair and replacement. The biological response to gammaTiAl implant is expected to be similar to other titanium-based biomaterials. Human fetal osteoblast cells were cultured on the surface of gammaTiAl and Ti-6Al-4V disks with variable surface roughness for both SEM and immunofluorescent analysis to detect the presence of collagen type I and osteonectin, proteins of the bone extracellular matrix. Qualitative results show that cell growth and attachment on gammaTiAl was normal compared to that of Ti-6Al-4V, suggesting that gammaTiAl is not toxic to osteoblasts. The presence of collagen type I and osteonectin was observed on both gammaTiAl and Ti-6Al-4V. The results obtained suggest gammaTiAl is biocompatible with the osteoblast cells. PMID:17597368

  15. Rapid effect of progesterone on transepithelial resistance of human fetal membranes: evidence for non-genomic action.

    PubMed

    Verikouki, C H; Hatzoglou, C H; Gourgoulianis, K I; Molyvdas, P A; Kallitsaris, A; Messinis, I E

    2008-02-01

    1. The factors that regulate human fetal membrane transport mechanisms are unknown. The aim of the present study was to investigate the effect of progesterone on transepithelial electrical resistance (R(TE)) in the human amniochorion. 2. Fetal membranes from uncomplicated term pregnancies were obtained immediately after vaginal or Caesarean deliveries. Intact pieces were mounted as planar sheets separating an Ussing chamber. Progesterone (10(-4) to 10(-7) mol/L), mifepristone (10(-4) to 10(-8) mol/L) and combinations of progesterone plus mifepristone were applied to the chambers facing the fetal or maternal sides of the membrane. The R(TE) was measured before and 1, 5, 10, 15, 20, 25, 30, 45 and 60 min after each solution was added (at 37 degrees C). The R(TE) was calculated in Omega.cm(2), according to Ohm's law. 3. The mean (+/-SEM) basal value of R(TE) before the application of any substance in all experiments was 29.1 +/- 0.4 Omega.cm(2). The net change in the R(TE) (Delta R(TE)) in relation to the basal value was calculated in each experiment. Progesterone, mifepristone and the combination of progesterone and mifepristone induced a rapid, surge-type increase in R(TE) during the 1st min on both sides of the membrane. The combination of progesterone plus mifepristone exerted a synergistic action. The effect was stronger on the fetal side than on the maternal side for all substances tested (P < 0.05). The highest Delta R(TE) during the 1st min on the fetal side was seen with the combination of progesterone plus mifepristone (4.0 +/- 0.3 Omega.cm(2)) and the lowest Delta R(TE) occurred with mifepristone (1.5 +/- 0.1 Omega.cm(2)). 4. The present results demonstrated that the R(TE) of human fetal membranes increases rapidly in response to progesterone. It is possible that changes in R(TE) play a role in the control of membrane permeability during pregnancy. PMID:17892501

  16. Embryonic----Fetal Hb switch in humans: studies on erythroid bursts generated by embryonic progenitors from yolk sac and liver.

    PubMed

    Peschle, C; Migliaccio, A R; Migliaccio, G; Petrini, M; Calandrini, M; Russo, G; Mastroberardino, G; Presta, M; Gianni, A M; Comi, P

    1984-04-01

    The synthesis of embryonic (zeta, epsilon), fetal (alpha, gamma), and adult (beta) globin was evaluated in human yolk sacs (YS) and livers at different ontogenic stages (i.e., from 6 through 10-12 wk of age) by means of analytical isoelectric focusing. Globin production was comparatively evaluated in vivo (i.e., in directly labeled erythroblasts from YS and liver) and in vitro [i.e., in erythroid bursts generated in culture by erythroid burst-forming units (BFU-E) from the same erythropoietic tissues]. Erythroid bursts generated in vitro by BFU-E from 6-wk livers and YS show essentially a "fetal" globin synthetic pattern: this is in sharp contrast to the "embryonic" pattern in corresponding liver and YS erythroblasts directly labeled in vivo. The invitro phenomenon suggests that (i) 6-wk BFU-E constitute a new generation of progenitors, which have already switched from an embryonic to a fetal program, and/or (ii) expression of their fetal program is induced by unknown in vitro factor(s), which may underlie the in vivo switch at later ontogenic stages. It is emphasized that 6- to 7-wk BFU-E are endowed with the potential for in vitro synthesis of not only epsilon- and gamma-chains but also some beta-globin. In general, we observed an inverse correlation between the levels of epsilon- and beta-chain synthesis. These results, together with previous studies on fetal, perinatal, and adult BFU-E, are compatible with models suggesting that in ontogeny the chromatin configuration is gradually modified at the level of the non-alpha gene cluster, thus leading to a 5'----3' activation of globin genes in a balanced fashion. PMID:6201856

  17. Maternal Smoking Dysregulates Protein Expression in Second Trimester Human Fetal Livers in a Sex-Specific Manner

    PubMed Central

    Nagrath, Nalin; Fraser, Margaret; Hay, David C.; Iredale, John P.; O'Shaughnessy, Peter; Fowler, Paul A.

    2015-01-01

    Context: Maternal smoking during pregnancy has adverse effects on the offspring (eg, increased likelihood of metabolic syndrome and infertility), which may involve alterations in fetal liver function. Objective: Our aim was to analyze, for the first time, the human fetal liver proteome to identify pathways affected by maternal smoking. Design: Fetal liver proteins extracted from elective second trimester pregnancy terminations (12–16 weeks of gestation) were divided in four balanced groups based on sex and maternal smoking. Setting and Participants: Livers were collected from 24 morphologically normal fetuses undergoing termination for nonmedical reasons and analyzed at the Universities of Aberdeen and Glasgow. Main Outcome Measures: Protein extracts were resolved by 2D-PAGE and analyzed with SameSpots software. Ingenuity pathway analysis was used to investigate likely roles of dysregulated proteins identified by tandem liquid chromatography/mass spectroscopy. Results: Significant expression differences between one or more groups (fetal sex and/or maternal smoking) were found in 22 protein spots. Maternal smoking affected proteins with roles in post-translational protein processing and secretion (ERP29, PDIA3), stress responses and detoxification (HSP90AA1, HSBP1, ALDH7A1, CAT), and homeostasis (FTL1, ECHS1, GLUD1, AFP, SDHA). Although proteins involved in necrosis and cancer development were affected in both sexes, pathways affecting cellular homeostasis, inflammation, proliferation, and apoptosis were affected in males and pathways affecting glucose metabolism were affected in females. Conclusions: The fetal liver exhibits marked sex differences at the protein level, and these are disturbed by maternal smoking. The foundations for smoke-induced post-natal diseases are likely to be due to sex-specific effects on diverse pathways. PMID:25803269

  18. Fetal Research

    NASA Astrophysics Data System (ADS)

    Hansen, John T.; Sladek, John R.

    1989-11-01

    This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.

  19. Derivation and characterization of goat fetal fibroblast cells induced with human telomerase reverse transcriptase.

    PubMed

    Xie, Ying; Zhao, Xiaoe; Jia, Hongxiang; Ma, Baohua

    2013-01-01

    Fetal fibroblast cells (FFCs) are often used as donor cells for somatic cell nuclear transfer (SCNT) because they are easy to culture and suitable for genetic manipulation. However, through genetic modification process, which required FFCs to be cultured in vitro for several passages, cells tended to age very rapidly and became inappropriate for SCNT. Human telomerase reverse transcriptase (hTERT) possessed the activity of human telomerase and maintains telomere in dividing cells; therefore, hTERT can be transfected into somatic cells to extend their lifespan. In this study, we transfected a Xinong Saanen Dairy Goat FFC line with hTERT. Then, we tested several characteristics of transfected cells, including growth curve, expression and activity of hTERT, tumorigenicity, and expression of oct4 and nanog. The result showed that hTERT could significantly extend the lifespan of transfected cells in vitro. hTERT mRNA was expressed in hTERT-transfected cells. Moreover, hTERT-transfected cells presented enhanced telomerase activity and longer telomere than untransfected cells at the same passage. On the other hand, hTERT-transfected cells can maintain normal karyotype even after several times of subculture in vitro. After inoculation of hTERT-transfected cells in nude mouse, none of them developed tumors on the vaccination site. Interestingly, transfection of hTERT can improve expression of nanog and oct4 in Xinong Saanen Dairy Goat FFCs, especially in low generation after transfection, but with increasing subculture, this effect gradually weakened. PMID:23271363

  20. Cigarette smoke enhances proliferation and extracellular matrix deposition by human fetal airway smooth muscle

    PubMed Central

    Vogel, Elizabeth R.; VanOosten, Sarah K.; Holman, Michelle A.; Hohbein, Danielle D.; Thompson, Michael A.; Vassallo, Robert; Pandya, Hitesh C.; Prakash, Y. S.

    2014-01-01

    Cigarette smoke is a common environmental insult associated with increased risk of developing airway diseases such as wheezing and asthma in neonates and children. In adults, asthma involves airway remodeling characterized by increased airway smooth muscle (ASM) cell proliferation and increased extracellular matrix (ECM) deposition, as well as airway hyperreactivity. The effects of cigarette smoke on remodeling and contractility in the developing airway are not well-elucidated. In this study, we used canalicular-stage (18–20 wk gestational age) human fetal airway smooth muscle (fASM) cells as an in vitro model of the immature airway. fASM cells were exposed to cigarette smoke extract (CSE; 0.5–1.5% for 24–72 h), and cell proliferation, ECM deposition, and intracellular calcium ([Ca2+]i) responses to agonist (histamine 10 μM) were used to evaluate effects on remodeling and hyperreactivity. CSE significantly increased cell proliferation and deposition of ECM molecules collagen I, collagen III, and fibronectin. In contrast, [Ca2+]i responses were not significantly affected by CSE. Analysis of key signaling pathways demonstrated significant increase in extracellular signal-related kinase (ERK) and p38 activation with CSE. Inhibition of ERK or p38 signaling prevented CSE-mediated changes in proliferation, whereas only ERK inhibition attenuated the CSE-mediated increase in ECM deposition. Overall, these results demonstrate that cigarette smoke may enhance remodeling in developing human ASM through hyperplasia and ECM production, thus contributing to development of neonatal and pediatric airway disease. PMID:25344066

  1. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains

    PubMed Central

    Miyazaki, Yuta; Song, Jae W.; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in

  2. Hierarchical Structure of Heart Rate Variability in Humans

    NASA Astrophysics Data System (ADS)

    Gao, X. Z.; Ching, E. S. C.; Lin, D. C.

    2004-03-01

    We show a hierarchical structure (HS) of the She-Leveque form in the beat-to-beat RR intervals of heart rate variability (HRV) in humans. This structure, first found as an empirical law in turbulent fluid flows, implies further details in the HRV multifractal scaling. We tested HS using daytime RRi data from healthy subjects and heart diseased patients with congestive heart failure and found a universal law C(b) where b characterizes the multifractality of HRV and C is related to a co-dimension parameter of the most violent events in the fluctuation. The potential of diagnosis is discussed based on the characteristics of this finding. To model the HRV phenomenology, we propose a local-feedback-global-cascade (LFGC) model based on the She-Waymire (SW) cascade solution to the HS in fluid turbulence. This model extends from the previous work in that it integrates additive law multiplicatively into the cascade structure. It is an attempt to relate to the cardiovascular physiology which consists of numerous feedback controls that function primarily on the principle of additive law. In particular, the model is based on the same philosophy as the SW cascade that its multifractal dynamics consists of a singular and a modulating component. In the LFGC model, we introduce local feedback to model the dynamics of the modulating effect. The novelty of our model is to incorporate the cascade structure in the scheduling for the feedback control. This model also represents an alternative solution to the HS. We will present the simulation results by the LFGC model and discuss its implication in physiology terms.

  3. Organophosphate inhibition of human heart muscle cholinesterase isoenzymes.

    PubMed

    Chemnitius, J M; Sadowski, R; Winkel, H; Zech, R

    1999-05-14

    The rate of acetylcholine hydrolysis of mammalian heart muscle influences cardiac responses to vagal innervation. We characterized cholinesterases of human left ventricular heart muscle with respect to both substrate specificity and irreversible inhibition kinetics with the organophosphorus inhibitor N,N'-di-isopropylphosphorodiamidic fluoride (mipafox). Specimens were obtained postmortem from three men and four women (61 +/- 5 years) with no history of cardiovascular disease. Myocardial choline ester hydrolyzing activity was determined with acetylthiocholine (ASCh; 1.25 mM), acetyl-beta-methylthiocholine (AbetaMSCh; 2.0 mM), and butyrylthiocholine (BSCh; 30 mM). After irreversible and covalent inhibition (60 min; 25 degrees C) with a wide range of mipafox concentrations (50 nM-5 mM), residual choline ester hydrolyzing activities were fitted to a sum of up to five exponentials using weighted least-squares non-linear curve fitting. In each ease, quality of curve fitting reached its optimum on the basis of a four component model. Final classification of heart muscle cholinesterases was achieved according to substrate hydrolysis patterns (nmol/min per g wet weight) and to second-order organophosphate inhibition rate constants k2 (1/mol per min); one choline ester hydrolyzing enzyme was identified as acetylcholinesterase (AChE; k2/mipafox = 6.1 (+/- 0.8) x 10(2)), and one as butyrylcholinesterase (BChE; k2/mipafox = 5.3 (+/- 1.1) x 10(3)). An enzyme exhibiting both ChE-like substrate specificity and relative resistance to mipafox inhibition (k2/mipafox = 5.2 (+/- 1.0) x 10(-1)) was classified as atypical cholinesterase. PMID:10421452

  4. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    SciTech Connect

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.; Zhang, J.; Oreffo, R.O.C. . E-mail: roco@soton.ac.uk

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.

  5. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements.

    PubMed

    Bieback, Karen; Ha, Viet Anh-Thu; Hecker, Andrea; Grassl, Melanie; Kinzebach, Sven; Solz, Hermann; Sticht, Carsten; Klüter, Harald; Bugert, Peter

    2010-11-01

    Mesenchymal stromal cells (MSCs) are promising candidates for innovative cell therapeutic applications. For clinical scale manufacturing regulatory agencies recommend to replace fetal bovine serum (FBS) commonly used in MSC expansion media as soon as equivalent alternative supplements are available. We already demonstrated that pooled blood group AB human serum (HS) and thrombin-activated platelet releasate plasma (tPRP) support the expansion of multipotent adipose tissue-derived MSCs (ASCs). Slight differences in size, growth pattern and adhesion prompted us to investigate the level of equivalence by compiling the transcriptional profiles of ASCs cultivated in these supplements. A whole genome gene expression analysis was performed and data verified by polymerase chain reaction and protein analyses. Microarray-based screening of 34,039 genes revealed 102 genes differentially expressed in ASCs cultured with FBS compared to HS or tPRP supplements. A significantly higher expression in FBS cultures was found for 90 genes (fold change ≥2). Only 12 of the 102 genes showed a lower expression in FBS compared to HS or tPRP cultures (fold change ≤0.5). Differences between cells cultivated in HS and tPRP were hardly evident. Supporting previous observations of reduced adhesion of cells cultivated in the human alternatives we detected a number of adhesion and extracellular matrix-associated molecules expressed at lower levels in ASCs cultivated with human supplements. Confirmative assays analyzing transcript or protein expression with selected genes supported these results. Likewise a number of mesodermal differentiation-associated genes were higher expressed in cells grown in FBS. Quantifying adipogenic and osteogenic differentiation lacked to demonstrate a clear correlation to the supplement due to donor-specific variances. Our results emphasize the necessity of comparability studies as they indicate that FBS induces a culture adaptation exceeding that of ex vivo

  6. Human heart rate variability relation is unchanged during motion sickness

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  7. Statistical Properties of the Interbeat Interval Cascade in Human Hearts

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Peinke, J.; Reza Rahimi Tabar, M.; Sahimi, Muhammad

    Statistical properties of interbeat intervals cascade in human hearts are evaluated by considering the joint probability distribution P (Δx2, τ2 Δx1, τ1) for two interbeat increments Δx1 and Δx2 of different time scales τ1 and τ2. We present evidence that the conditional probability distribution P (Δx2, τ2 | Δx1, τ1) may be described by a Chapman-Kolmogorov equation. The corresponding Kramers-Moyal (KM) coefficients are evaluated. The analysis indicates that while the first and second KM coefficients take on well-defined and significant values, the higher-order coefficients in the KM expansion are small. As a result, the joint probability distributions of the increments in the interbeat intervals are described by a Fokker-Planck equation, with the first two KM coefficients acting as the drift and diffusion coefficients. The method provides a novel technique for distinguishing two classes of subjects, namely, healthy ones and those with congestive heart failure, in terms of the drift and diffusion coefficients which behave differently for two classes of the subjects.

  8. Progesterone promotes maternal–fetal tolerance by reducing human maternal T‐cell polyfunctionality and inducing a specific cytokine profile

    PubMed Central

    Eldershaw, Suzy A.; Inman, Charlotte F.; Coomarasamy, Aravinthan; Moss, Paul A. H.; Kilby, Mark D.

    2015-01-01

    Progesterone is a steroid hormone essential for the maintenance of human pregnancy, and its actions are thought to include promoting maternal immune tolerance of the semiallogenic fetus. We report that exposure of maternal T cells to progesterone at physiological doses induced a unique skewing of the cytokine production profile of CD4+ and CD8+ T cells, with reductions not only in potentially deleterious IFN‐γ and TNF‐α production but also in IL‐10 and IL‐5. Conversely, production of IL‐4 was increased. Maternal T cells also became less polyfunctional, focussing cytokine production toward profiles including IL‐4. This was accompanied by reduced T‐cell proliferation. Using fetal and viral antigen‐specific CD8+ T‐cell clones, we confirmed that this as a direct, nonantigen‐specific effect. Yet human T cells lacked conventional nuclear progesterone receptors, implicating a membrane progesterone receptor. CD4+ and CD8+ T cells responded to progesterone in a dose‐dependent manner, with subtle effects at concentrations comparable to those in maternal blood, but profound effects at concentrations similar to those at the maternal–fetal interface. This characterization of how progesterone modulates T‐cell function is important in understanding the normal biology of pregnancy and informing the rational use of progesterone therapy in pregnancies at risk of fetal loss. PMID:26249148

  9. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development

    NASA Astrophysics Data System (ADS)

    Leeansyah, Edwin; Loh, Liyen; Nixon, Douglas F.; Sandberg, Johan K.

    2014-01-01

    Innate-like, evolutionarily conserved MR1-restricted mucosa-associated invariant T (MAIT) cells represent a large antimicrobial T-cell subset in humans. Here, we investigate the development of these cells in second trimester human fetal tissues. MAIT cells are rare and immature in the fetal thymus, spleen and mesenteric lymph nodes. In contrast, mature IL-18Rα+ CD8αα MAIT cells are enriched in the fetal small intestine, liver and lung. Independently of localization, MAIT cells express CD127 and Ki67 in vivo and readily proliferate in response to Escherichia coli in vitro. Maturation is accompanied by the gradual post-thymic acquisition of the PLZF transcription factor and the ability to produce IFNγ and IL-22 in response to bacteria in mucosa. Thus, MAIT cells acquire innate-like antimicrobial responsiveness in mucosa before exposure to environmental microbes and the commensal microflora. Establishment of this arm of immunity before birth may help protect the newborn from a range of pathogenic microbes.

  10. Fetal in vivo continuous cardiovascular function during chronic hypoxia.

    PubMed

    Allison, B J; Brain, K L; Niu, Y; Kane, A D; Herrera, E A; Thakor, A S; Botting, K J; Cross, C M; Itani, N; Skeffington, K L; Beck, C; Giussani, D A

    2016-03-01

    Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean P(aO2) levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l(-1), P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase-derived reactive oxygen species. PMID:26926316

  11. Immunohistochemical evidence for the occurrence of vasoactive intestinal polypeptide (VIP)-containing nerve fibres in human fetal abdominal paraganglia.

    PubMed Central

    Hervonen, A; Linnoila, I; Tainio, H; Vaalasti, A; Mascorro, J A

    1985-01-01

    The abdominal paraganglia in man represent a major source of catecholamines, and perhaps peptide hormones, during the fetal period. The nature of the innervation of the abdominal paraganglia was studied immunohistochemically by utilising antibodies to vasoactive intestinal polypeptide, enkephalin, substance-P and somatostatin. The paraganglia showed an abundant network of VIP-immunoreactive fibres, and similar nerve fibres were found within nerve bundles of the preaortic sympathetic plexus. Occasionally, VIP-immunoreactive fibres were seen within the prevertebral ganglia, but stained cell bodies were never observed. It may be suggested that VIP-containing nerves could regulate a secretory response from fetal human abdominal paraganglia. Images Fig. 1 Figs. 2-3 Fig. 4 Fig. 5 Fig. 6 Figs. 7-11 PMID:3870718

  12. Psychological and psychophysiological considerations regarding the maternal-fetal relationship

    PubMed Central

    DiPietro, Janet A.

    2009-01-01

    The earliest relationship does not begin with birth. Pregnant women construct mental representations of the fetus, and feelings of affiliation or “maternal-fetal attachment” generally increase over the course of gestation. While there is a fairly substantial literature on the development and moderation of psychological features of the maternal-fetal relationship, including the role of ultrasound imaging, relatively little is known about the manner in which maternal psychological functioning influences the fetus. Dispositional levels of maternal stress and anxiety are modestly associated with aspects of fetal heart rate and motor activity. Both induced maternal arousal and relaxation generate fairly immediate alterations to fetal neurobehaviors; the most consistently observed fetal response to changes in maternal psychological state involves suppression of motor activity. These effects may be mediated, in part, by an orienting response of the fetus to changes in the intrauterine environment. Conversely, there is evidence that fetal behaviors elicit maternal physiological responses. Integration of this finding into a more dynamic model of the maternal-fetal dyad, and implications for the postnatal relationship are discussed. Research on the period before birth affords tremendous opportunity for developmental scientists to advance understanding of the origins of human attachment. PMID:20228872

  13. Infection of human fetal dorsal root ganglion glial cells with human immunodeficiency virus type 1 involves an entry mechanism independent of the CD4 T4A epitope.

    PubMed Central

    Kunsch, C; Hartle, H T; Wigdahl, B

    1989-01-01

    Human immunodeficiency virus type 1 (HIV-1) has been implicated in the generation of acquired immunodeficiency syndrome-associated neurological dysfunction, and it is believed that the presence of CD4 in the nervous system may be involved in the susceptibility of selected neural cell populations to HIV-1 infection. We previously demonstrated (B. Wigdahl, R. A. Guyton, and P. S. Sarin, Virology 159:440-445, 1987) that glial cells derived from human fetal dorsal root ganglion (DRG) are susceptible to HIV-1 infection and subsequently express at least a fraction of the virus genome. In contrast to HIV-1 infection of CD4+ lymphocytes, which can be blocked by treatment with monoclonal antibodies directed against the HIV-1-binding region of CD4 (T4A epitope), treatment of human fetal DRG glial cells with similar antibodies resulted in only a slight reduction in HIV-1-specific gag antigen expression. In addition, preincubation of the HIV-1 inoculum prior to infection with HIV-1-neutralizing antiserum did not reduce HIV-1 gag antigen expression in these cells. Furthermore, we were unable to detect the synthesis or accumulation of the CD4 molecule in neural cell populations derived from DRG. However, a protected CD4-specific RNA fragment was detected in RNA isolated from human fetal DRG and spinal cord tissue by an RNase protection assay with a CD4-specific antisense RNA probe. RNA blot hybridization analysis of total cellular RNA isolated from human fetal DRG and spinal cord demonstrated specific hybridization to an RNA species that comigrated with the mature 3.0-kilobase CD4 mRNA as well as two unique CD4 RNA species with relative molecular sizes of approximately 5.3 and 6.7 kilobases. Furthermore, all three CD4-related RNA species were polyadenylated when isolated from human fetal spinal cord tissue. These data suggest that HIV-1 infection of human fetal DRG glial cells may proceed via a mechanism of viral entry independent of the T4A epitope of CD4. Images PMID:2479771

  14. Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart

    PubMed Central

    Mao, Rong; Wang, Xiaowen; Spitznagel, Edward L; Frelin, Laurence P; Ting, Jason C; Ding, Huashi; Kim, Jung-whan; Ruczinski, Ingo; Downey, Thomas J; Pevsner, Jonathan

    2005-01-01

    Background Down syndrome, caused by trisomic chromosome 21, is the leading genetic cause of mental retardation. Recent studies demonstrated that dosage-dependent increases in chromosome 21 gene expression occur in trisomy 21. However, it is unclear whether the entire transcriptome is disrupted, or whether there is a more restricted increase in the expression of those genes assigned to chromosome 21. Also, the statistical significance of differentially expressed genes in human Down syndrome tissues has not been reported. Results We measured levels of transcripts in human fetal cerebellum and heart tissues using DNA microarrays and demonstrated a dosage-dependent increase in transcription across different tissue/cell types as a result of trisomy 21. Moreover, by having a larger sample size, combining the data from four different tissue and cell types, and using an ANOVA approach, we identified individual genes with significantly altered expression in trisomy 21, some of which showed this dysregulation in a tissue-specific manner. We validated our microarray data by over 5,600 quantitative real-time PCRs on 28 genes assigned to chromosome 21 and other chromosomes. Gene expression values from chromosome 21, but not from other chromosomes, accurately classified trisomy 21 from euploid samples. Our data also indicated functional groups that might be perturbed in trisomy 21. Conclusions In Down syndrome, there is a primary transcriptional effect of disruption of chromosome 21 gene expression, without a pervasive secondary effect on the remaining transcriptome. The identification of dysregulated genes and pathways suggests molecular changes that may underlie the Down syndrome phenotypes. PMID:16420667

  15. Effects of ambient oxygen concentration on the growth and antioxidant defenses of of human cell cultures established from fetal and postnatal skin.

    PubMed

    Balin, Arthur K; Pratt, Loretta; Allen, R G

    2002-02-01

    Oxygen toxicity is believed to arise from changes in the rates at which cells generate reactive oxygen species (ROS). Sensitivity to hyperoxia has been postulated to depend on levels of antioxidant defense. Human cells obtained from fetal tissues have lower antioxidant defenses than those obtained from adult tissue. The present study was performed to determine whether the differences in fetal and adult antioxidant defense levels modulated their responses to changes in the ambient oxygen concentration. Our results demonstrate that oxygen modulates the proliferation of human fetal and adult skin fibroblasts in a similar fashion. In general, skin fibroblasts grew better at approximately 31 mm Hg, regardless of donor age. Manganese superoxide dismutase, catalase, and glutathione peroxidase activities were lower in fetal cells than in adult fibroblasts. Copper/zinc superoxide dismutase and glucose-6-phosphate dehydrogenase were similar in fetal and postnatal tissues and were unaltered appreciably by hyperoxic exposure. Glutathione concentration increased at higher oxygen tensions; however, the increase was much greater in fetal cells than in cultures derived from adult skin. These observations demonstrate that the capacity of fetal and adult cells to cope with oxidative stress, while similar, result from distinct mechanisms. PMID:11827751

  16. Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging.

    PubMed

    Lee, Eddy S M; Chan, Jerry; Shuter, Borys; Tan, Lay Geok; Chong, Mark S K; Ramachandra, Durrgah L; Dawe, Gavin S; Ding, Jun; Teoh, Swee Hin; Beuf, Olivier; Briguet, Andre; Tam, Kam Chiu; Choolani, Mahesh; Wang, Shih-Chang

    2009-08-01

    Stem cell transplantation for regenerative medicine has made significant progress in various injury models, with the development of modalities to track stem cell fate and migration post-transplantation being currently pursued rigorously. Magnetic resonance imaging (MRI) allows serial high-resolution in vivo detection of transplanted stem cells labeled with iron oxide particles, but has been hampered by low labeling efficiencies. Here, we describe the use of microgel iron oxide (MGIO) particles of diameters spanning 100-750 nm for labeling human fetal mesenchymal stem cells (hfMSCs) for MRI tracking. We found that MGIO particle uptake by hfMSCs was size dependent, with 600-nm MGIO (M600) particles demonstrating three- to sixfold higher iron loading than the clinical particle ferucarbotran (33-263 versus 9.6-42.0 pg iron/hfMSC; p < .001). Cell labeling with either M600 particles or ferucarbotran did not affect either cellular proliferation or tri-lineage differentiation into osteoblasts, adipocytes, and chondrocytes, despite differences in gene expression on a genome-wide microarray analysis. Cell tracking in a rat photothrombotic stroke model using a clinical 1.5-T MRI scanner demonstrated the migration of labeled hfMSCs from the contralateral cortex to the stroke injury, with M600 particles achieving a five- to sevenfold higher sensitivity for MRI detection than ferucarbotran (p < .05). However, model-related cellular necrosis and acute inflammation limited the survival of hfMSCs beyond 5-12 days. The use of M600 particles allowed high detection sensitivity with low cellular toxicity to be achieved through a simple incubation protocol, and may thus be useful for cellular tracking using standard clinical MRI scanners. PMID:19544438

  17. TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment Epithelium

    PubMed Central

    Zhao, Peter Y.; Gan, Geliang; Peng, Shaomin; Wang, Shao-Bin; Chen, Bo; Adelman, Ron A.; Rizzolo, Lawrence J.

    2015-01-01

    Purpose. Calcium regulates many functions of the RPE. Its concentration in the subretinal space and RPE cytoplasm is closely regulated. Transient receptor potential (TRP) channels are a superfamily of ion channels that are moderately calcium-selective. This study investigates the subcellular localization and potential functions of TRP channels in a first-passage culture model of human fetal RPE (hfRPE). Methods. The RPE isolated from 15- to 16-week gestation fetuses were maintained in serum-free media. Cultures were treated with barium chloride (BaCl2) in the absence and presence of TRP channel inhibitors and monitored by the transepithelial electrical resistance (TER). The expression of TRP channels was determined using quantitative RT-PCR, immunoblotting, and immunofluorescence confocal microscopy. Results. Barium chloride substantially decreased TER and disrupted cell–cell contacts when added to the apical surface of RPE, but not when added to the basolateral surface. The effect could be partially blocked by the general TRP inhibitor, lanthanum chloride (LaCl3, ~75%), or an inhibitor of calpain (~25%). Family member-specific inhibitors, ML204 (TRPC4) and HC-067047 (TRPV4), had no effect on basal channel activity. Expression of TRPC4, TRPM1, TRPM3, TRPM7, and TRPV4 was detected by RT-PCR and immunoblotting. The TRPM3 localized to the base of the primary cilium, and TRPC4 and TRPM3 localized to apical tight junctions. The TRPV4 localized to apical microvilli in a small subset of cells. Conclusions. The TRP channels localized to subdomains of the apical membrane, and BaCl2 was only able to dissociate tight junctions when presented to the apical membrane. The data suggest a potential role for TRP channels as sensors of [Ca2+] in the subretinal space. PMID:25736794

  18. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces

    PubMed Central

    Rivera-Chacon, D. M.; Alvarado-Velez, M.; Acevedo-Morantes, C.Y.; Singh, S.P.; Gultepe, E.; Nagesha, D.; Sridhar, S.; Ramirez-Vick, J.E.

    2013-01-01

    Improvements in osteoconduction of implant biomaterials require focusing on the bone-implant interface, which is a complex multifactorial system. Surface topography of implants plays a crucial role at this interface. Nanostructured surfaces have been shown to promote serum protein adsorption and osteoblast adhesion when compared to microstructured surfaces for bone-implant materials. We studied the influence of the serum proteins fibronectin and vitronectin on the attachment and proliferation of osteoblasts onto nanostructured titania surfaces. Human fetal osteoblastic cells hFOB 1.19 were used as model osteoblasts and were grown on nanoporous TiO2 templates, using Ti6Al4V and commercially pure Ti substrates as controls. Results show a significant increase in cell proliferation on nanoporous TiO2 over flat substrates. Initial cell attachment data exhibited a significant effect by either fibronectin or vitronectin on cell adhesion at the surface of any of the tested materials. In addition, the extent of cell adhesion was significantly different between the nanoporous TiO2 and both Ti6Al4V and commercially pure Ti substrates, with the first showing the highest surface coverage. There was no significant difference on osteoblast attachment or proliferation between the presence of fibronectin or vitronectin using any of the material substrates. Taken together, these results suggest that the increase in osteoblast attachment and proliferation shown on the nanoporous TiO2 is due to an increase in the adsorption of fibronectin and vitronectin because of the higher surface area and to an enhanced protein unfolding, which allows access to osteoblast binding motifs within these proteins. PMID:23858975

  19. Parent bisphenol A accumulation in the human maternal-fetal-placental unit.

    PubMed Central

    Schönfelder, Gilbert; Wittfoht, Werner; Hopp, Hartmut; Talsness, Chris E; Paul, Martin; Chahoud, Ibrahim

    2002-01-01

    Bisphenol A (BPA), an endocrine disruptor, is employed in the manufacture of a wide range of consumer products. The suggestion that BPA, at amounts to which we are exposed, alters the reproductive organs of developing rodents has caused concern. At present, no information exists concerning the exposure of human pregnant women and their fetuses to BPA. We therefore investigated blood samples from mothers (n = 37) between weeks 32 and 41 of gestation. Afer the births, we also analyzed placental tissue and umbilical cord blood from the same subjects. We developed a novel chemical derivatization-gas chromatography/mass spectrometry method to analyze parent BPA at concentrations < 1 micro g/mL in plasma and tissues. Concentrations of BPA ranged from 0.3 to 18.9 ng/mL (median = 3.1 ng/mL) in maternal plasma, from 0.2 to 9.2 ng/mL (median = 2.3 ng/mL) in fetal plasma, and from 1.0 to 104.9 ng/g (median = 12.7 ng/g) in placental tissue. BPA blood concentrations were higher in male than in female fetuses. Here we demonstrate parent BPA in pregnant women and their fetuses. Exposure levels of parent BPA were found within a range typical of those used in recent animal studies and were shown to be toxic to reproductive organs of male and female offspring. We suggest that the range of BPA concentrations we measured may be related to sex differences in metabolization of parent BPA or variable maternal use of consumer products leaching BPA. PMID:12417499

  20. Transient HEXA expression in a transformed human fetal Tay-Sachs disease neuroglial cell line

    SciTech Connect

    Fernandes, M.J.; Hechtman, P.; Kaplan, F.

    1994-09-01

    Tay-Sachs disease (TSD) is a severe neurodegenerative disorder characterized by the accumulation of GM{sub 2} ganglioside in the neurons of the central cortex. The recessively inherited disorder results from deficiency of hexosaminidase A (Hex A), a heterodimer of an {alpha} and {beta} subunit encoded by the HEXA and HEXB genes. Expression of HEXA mutations in COS cells has several disadvantages including high endogenous hexosaminidase activity. We report a new transient expression system with very low endogenous Hex A activity. An SV40-transformed fetal TSD neuroglial cell line was assessed for transient expression of the HEXA gene. pCMV{alpha}, a vector incorporating the cytomegalovirus promoter with the human {alpha}-subunit cDNA insert, proved to be the most efficient expression vector. Transfection of 4x10{sup 6} cells with 5-20 {mu}g of plasmid resulted in 100 to 500-fold Hex A activity (4MUGS hydrolysis) relative to mock-transfected cells. Use of pCMV{beta}-Gal as a control for transfection efficiency indicated that 10-20% of cells were transfected. Hex A specific activity increased for at least 72 h post-transfection. This new transient expression system should greatly improve the characterization of mutations in which low levels of HEXA expression result in milder clinical phenotypes and permit studies on enzymatic properties of mutant forms of Hex A. Since the cells used are of CNS origin and synthesize gangliosides, it should also be possible to study, in culture, the metabolic phenotype associated with TSD.

  1. Telocytes and putative stem cells in ageing human heart

    PubMed Central

    Popescu, Laurentiu M; Curici, Antoanela; Wang, Enshi; Zhang, Hao; Hu, Shengshou; Gherghiceanu, Mihaela

    2015-01-01

    Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit http://www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days–1 year), children (6–17 years) and adults (34–60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm2) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52–62%; vascular smooth muscle cells and pericytes 22–28%, Schwann cells with nerve endings 6–7%, fibroblasts 3–10%, macrophages 1–8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults). PMID:25545142

  2. A Simple Dissection Method for the Conduction System of the Human Heart

    ERIC Educational Resources Information Center

    Yanagawa, Nariaki; Nakajima, Yuji

    2009-01-01

    A simple dissection guide for the conduction system of the human heart is shown. The atrioventricular (AV) node, AV bundle, and right bundle branch were identified in a formaldehyde-fixed human heart. The sinu-atrial (SA) node could not be found, but the region in which SA node was contained was identified using the SA nodal artery. Gross…

  3. The role and interaction of imprinted genes in human fetal growth

    PubMed Central

    Moore, Gudrun E.; Ishida, Miho; Demetriou, Charalambos; Al-Olabi, Lara; Leon, Lydia J.; Thomas, Anna C.; Abu-Amero, Sayeda; Frost, Jennifer M.; Stafford, Jaime L.; Chaoqun, Yao; Duncan, Andrew J.; Baigel, Rachel; Brimioulle, Marina; Iglesias-Platas, Isabel; Apostolidou, Sophia; Aggarwal, Reena; Whittaker, John C.; Syngelaki, Argyro; Nicolaides, Kypros H.; Regan, Lesley; Monk, David; Stanier, Philip

    2015-01-01

    Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses

  4. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.

    PubMed

    Zhang, Hui; Kho, Alvin T; Wu, Qing; Halayko, Andrew J; Limbert Rempel, Karen; Chase, Robert P; Sweezey, Neil B; Weiss, Scott T; Kaplan, Feige

    2016-09-01

    Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid-regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal-epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/- mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal-epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)-induced human fetal lung fibroblast line (MRC5). LPS-induced upregulation of the proinflammatory cytokines IL-8 and CCL2 was exacerbated in MRC5-CRISPLD2(knockdown) cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL-8, IL-6, CCL2. LPS-stimulated expression of proinflammatory mediators by human lung epithelial HAEo- cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF-CRISPLD2(knockdown) suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood. PMID:27597766

  5. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.

    PubMed

    Wang, Qingjie; Yang, Hui; Bai, Aobing; Jiang, Wei; Li, Xiuya; Wang, Xinhong; Mao, Yishen; Lu, Chao; Qian, Ruizhe; Guo, Feng; Ding, Tianling; Chen, Haiyan; Chen, Sifeng; Zhang, Jianyi; Liu, Chen; Sun, Ning

    2016-10-01

    With the advent of induced pluripotent stem cells and directed differentiation techniques, it is now feasible to derive individual-specific cardiac cells for human heart tissue engineering. Here we report the generation of functional engineered human cardiac patches using human induced pluripotent stem cells-derived cardiac cells and decellularized natural heart ECM as scaffolds. The engineered human cardiac patches can be tailored to any desired size and shape and exhibited normal contractile and electrical physiology in vitro. Further, when patching on the infarct area, these patches improved heart function of rats with acute myocardial infarction in vivo. These engineered human cardiac patches can be of great value for normal and disease-specific heart tissue engineering, drug screening, and meet the demands for individual-specific heart tissues for personalized regenerative therapy of myocardial damages in the future. PMID:27509303

  6. Human fetal exposure to triclosan and triclocarban in an urban population from Brooklyn, New York.

    PubMed

    Pycke, Benny F G; Geer, Laura A; Dalloul, Mudar; Abulafia, Ovadia; Jenck, Alizee M; Halden, Rolf U

    2014-01-01

    Triclosan (TCS) and triclocarban (TCC) are antimicrobial agents formulated in a wide variety of consumer products (including soaps, toothpaste, medical devices, plastics, and fabrics) that are regulated by the U.S. Food and Drug Administration (FDA) and U.S. Environmental Protection Agency. In late 2014, the FDA will consider regulating the use of both chemicals, which are under scrutiny regarding lack of effectiveness, potential for endocrine disruption, and potential contribution to bacterial resistance to antibiotics. Here, we report on body burdens of TCS and TCC resulting from real-world exposures during pregnancy. Using liquid chromatography tandem mass spectrometry, we determined the concentrations of TCS, TCC, and its human metabolites (2'-hydroxy-TCC and 3'-hydroxy-TCC) as well as the manufacturing byproduct (3'-chloro-TCC) as total concentrations (Σ-) after conjugate hydrolysis in maternal urine and cord blood plasma from a cohort of 181 expecting mother/infant pairs in an urban multiethnic population from Brooklyn, NY recruited in 2007-09. TCS was detected in 100% of urine and 51% of cord blood samples after conjugate hydrolysis. The interquartile range (IQR) of detected TCS concentrations in urine was highly similar to the IQR reported previously for the age-matched population of the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2004, but typically higher than the IQR reported previously for the general population (detection frequency = 74.6%). Urinary levels of TCC are reported here for the first time from real-world exposures during pregnancy, showing a median concentration of 0.21 μg/L. Urinary concentrations of TCC correlated well with its phase-I metabolite ∑-2'-hydroxy-TCC (r = 0.49) and the manufacturing byproduct ∑-3'-chloro-TCC C (r = 0.79), and ∑-2'-hydroxy-TCC correlated strongly with ∑-3'-hydroxy-TCC (r = 0.99). This human biomonitoring study presents the first body burden data for TCC from exposures

  7. Human Fetal Exposure to Triclosan and Triclocarban in an Urban Population from Brooklyn, New York

    PubMed Central

    2015-01-01

    Triclosan (TCS) and triclocarban (TCC) are antimicrobial agents formulated in a wide variety of consumer products (including soaps, toothpaste, medical devices, plastics, and fabrics) that are regulated by the U.S. Food and Drug Administration (FDA) and U.S. Environmental Protection Agency. In late 2014, the FDA will consider regulating the use of both chemicals, which are under scrutiny regarding lack of effectiveness, potential for endocrine disruption, and potential contribution to bacterial resistance to antibiotics. Here, we report on body burdens of TCS and TCC resulting from real-world exposures during pregnancy. Using liquid chromatography tandem mass spectrometry, we determined the concentrations of TCS, TCC, and its human metabolites (2′-hydroxy-TCC and 3′-hydroxy-TCC) as well as the manufacturing byproduct (3′-chloro-TCC) as total concentrations (Σ−) after conjugate hydrolysis in maternal urine and cord blood plasma from a cohort of 181 expecting mother/infant pairs in an urban multiethnic population from Brooklyn, NY recruited in 2007–09. TCS was detected in 100% of urine and 51% of cord blood samples after conjugate hydrolysis. The interquartile range (IQR) of detected TCS concentrations in urine was highly similar to the IQR reported previously for the age-matched population of the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2004, but typically higher than the IQR reported previously for the general population (detection frequency = 74.6%). Urinary levels of TCC are reported here for the first time from real-world exposures during pregnancy, showing a median concentration of 0.21 μg/L. Urinary concentrations of TCC correlated well with its phase-I metabolite ∑-2′-hydroxy-TCC (r = 0.49) and the manufacturing byproduct ∑-3′-chloro-TCC C (r = 0.79), and ∑-2′-hydroxy-TCC correlated strongly with ∑-3′-hydroxy-TCC (r = 0.99). This human biomonitoring study presents the first body burden data for TCC

  8. A fast method to measure the 3D surface of the human heart

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Su, Xianyu; Xiang, Liqun; Chen, Wenjing; Zhang, Qican

    2003-12-01

    Three-dimensional (3-D) automatic measurement of an object is widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new fast method to measure the 3D surface of human heart is proposed which can provide doctors a lot of information, such as the size of heart profile, the sizes of the left or right heart ventricle, and the curvature center and radius of heart ventricle, to fully analyze and diagnose pathobiology of human heart. The new fast method is optically and noncontacted and based upon the Phase Measurement Profilometry (PMP), which has higher measuring precision. A human heart specimen experiment has verified our method.

  9. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages.

    PubMed

    Svensson-Arvelund, Judit; Mehta, Ratnesh B; Lindau, Robert; Mirrasekhian, Elahe; Rodriguez-Martinez, Heriberto; Berg, Göran; Lash, Gendie E; Jenmalm, Maria C; Ernerudh, Jan

    2015-02-15

    A successful pregnancy requires that the maternal immune system is instructed to a state of tolerance to avoid rejection of the semiallogeneic fetal-placental unit. Although increasing evidence supports that decidual (uterine) macrophages and regulatory T cells (Tregs) are key regulators of fetal tolerance, it is not known how these tolerogenic leukocytes are induced. In this article, we show that the human fetal placenta itself, mainly through trophoblast cells, is able to induce homeostatic M2 macrophages and Tregs. Placental-derived M-CSF and IL-10 induced macrophages that shared the CD14(+)CD163(+)CD206(+)CD209(+) phenotype of decidual macrophages and produced IL-10 and CCL18 but not IL-12 or IL-23. Placental tissue also induced the expansion of CD25(high)CD127(low)Foxp3(+) Tregs in parallel with increased IL-10 production, whereas production of IFN-γ (Th1), IL-13 (Th2), and IL-17 (Th17) was not induced. Tregs expressed the suppressive markers CTLA-4 and CD39, were functionally suppressive, and were induced, in part, by IL-10, TGF-β, and TRAIL. Placental-derived factors also limited excessive Th cell activation, as shown by decreased HLA-DR expression and reduced secretion of Th1-, Th2-, and Th17-associated cytokines. Thus, our data indicate that the fetal placenta has a central role in promoting the homeostatic environment necessary for successful pregnancy. These findings have implications for immune-mediated pregnancy complications, as well as for our general understanding of tissue-induced tolerance. PMID:25560409

  10. Morphological Study of Chordae Tendinae in Human Cadaveric Hearts

    PubMed Central

    Gunnal, S. A.; Wabale, R. N.; Farooqui, M. S.

    2015-01-01

    Objectives: The chordae tendinae (CT) are strong, fibrous connections between the valve leaflets and the papillary muscles. Dysfunction of the papillary muscles and chordae is frequent. Mitral valve replacement with preservation of CT and papillary muscles may preserve postoperative left ventricular function better than conventional mitral valve replacement in patients with chronic mitral regurgitation. Methods: The study was carried out on 116 human cadaveric hearts. The heart was opened through the atrioventricular valve to view the constituents of the complex. Origin, attachments, insertions, distribution, branching pattern and gross structure of CT were observed and studied in detail. Results: In the present study more than 21 terminologies of CT were defined by classifying it into six different types. Classification is done according to the origin, attachments, insertion, distribution, branching pattern and gross structure. Terminologies defined are as follows. Apical pillar chordae, Basal pillar chordae, True chordae, False chordae, Interpillar chordae, Pillar wall chordae, Cusp chordae, Cleft chordae, Commissural chordae, First order chordae, Second order chordae, Free zone chordae, Marginal chordae, Rough zone chordae, Straight chordae, Branched-fan shaped chordae, Spiral chordae, Irregular-web chordae, Tendinous chordae, Muscular chordae, Membranous chordae. Basal pillar chordae are found in 9.48%. Mean number of chordae taking origin from apical half of a single papillary muscle or single head of papillary muscle was 9.09 with the range of 3-18. Mean number of the marginal chordae attached to a single cusp was 22.63 ranging from 11 to 35. Strut chordae showed interesting insertion with broad aponeurosis in 38.79% and large muscular flaps in 13.79%. Chordae muscularis were found in 14% and membranous chordae were found in 6%. Conclusions: This knowledge may prove useful for cardiologists and cardiac surgeons. PMID:25838872

  11. Heart disease is common in humans and chimpanzees, but is caused by different pathological processes.

    PubMed

    Varki, Nissi; Anderson, Dan; Herndon, James G; Pham, Tho; Gregg, Christopher J; Cheriyan, Monica; Murphy, James; Strobert, Elizabeth; Fritz, Jo; Else, James G; Varki, Ajit

    2009-02-01

    Heart disease is common in both humans and chimpanzees, manifesting typically as sudden cardiac arrest or progressive heart failure. Surprisingly, although chimpanzees are our closest evolutionary relatives, the major cause of heart disease is different in the two species. Histopathology data of affected chimpanzee hearts from two primate centers, and analysis of literature indicate that sudden death in chimpanzees (and in gorillas and orangutans) is commonly associated with diffuse interstitial myocardial fibrosis of unknown cause. In contrast, most human heart disease results from coronary artery atherosclerosis, which occludes myocardial blood supply, causing ischemic damage. The typical myocardial infarction of humans due to coronary artery thrombosis is rare in these apes, despite their human-like coronary-risk-prone blood lipid profiles. Instead, chimpanzee 'heart attacks' are likely due to arrythmias triggered by myocardial fibrosis. Why do humans not often suffer from the fibrotic heart disease so common in our closest evolutionary cousins? Conversely, why do chimpanzees not have the kind of heart disease so common in humans? The answers could be of value to medical care, as well as to understanding human evolution. A preliminary attempt is made to explore possibilities at the histological level, with a focus on glycosylation changes. PMID:25567850

  12. Short- and long-term adverse effects of cocaine abuse during pregnancy on the heart development

    PubMed Central

    Zhang, Lubo

    2009-01-01

    The effect of cocaine on the developing fetus is a topic of considerable interest and debate. One of the potential effects of fetal cocaine exposure is damage to the developing heart. This review provides an overview of the current understanding of the short- and long-term effects of fetal cocaine exposure on the heart in both humans and animal models. Human studies are still preliminary but have suggested that fetal cocaine exposure impacts on the developing heart. Studies in animal models provide strong evidence for a programming effect resulting in detrimental long-term changes to the heart induced by fetal cocaine exposure. In the rat model, fetal cocaine results in apoptosis in the term heart, left ventricular remodeling and myocyte hypertrophy, as well as increased sensitivity to ischemia/reperfusion injury in the adult male offspring. The rat model has also shown evidence of epigenetic modifications in response to intrauterine cocaine. Increased DNA methylation of promoter regions leads to a long-term decrease in the expression of the cardioprotective gene, PKCε. The current data shows fetal cocaine exposure has significant immediate and long-term cardiac consequences in animal models and while human studies are still incomplete they suggest this phenomenon may also be significant in humans exposed to cocaine during development. PMID:19144667

  13. Comparative Analysis of KnockOut™ Serum with Fetal Bovine Serum for the In Vitro Long-Term Culture of Human Limbal Epithelial Cells

    PubMed Central

    Liu, Zaoxia

    2016-01-01

    The limbal epithelial cells can be maintained on 3T3 feeder layer with fetal bovine serum supplemented culture medium, and these cells have been used to successfully treat limbal stem cell deficiency. However, fetal bovine serum contains unknown components and displays quantitative and qualitative lot-to-lot variations. To improve the culture condition, the defined KnockOut serum replacement was investigated to replace fetal bovine serum for culturing human limbal epithelial cell. Human primary limbal epithelial cells were cultured in KnockOut serum and fetal bovine serum supplemented medium, respectively. The cell growth rate, gene expression, and maintenance of limbal epithelial stem cells were studied and compared between these two groups. Human primary limbal epithelial cells were isolated and successfully serially cultivated in this novel KnockOut serum supplemented medium; the cell proliferation and stem cell maintenance were similar to those of cells grown in fetal bovine serum supplemented medium. These data suggests that this KnockOut serum supplemented medium is an efficient replacement to traditional fetal bovine serum supplemented medium for limbal epithelial cell culture, and this medium has great potential for long term maintenance of limbal epithelial cells, limbal epithelial stem cells transplantation, and tissue regeneration. PMID:27446607

  14. Fetal development

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002398.htm Fetal development To use the sharing features on this page, ... Cunningham FG, Leveno KJ, Bloom SL, et al. Fetal growth and development. In: Cunningham FG, Leveno KL, Bloom SL, et ...

  15. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    PubMed

    Brennan, Sarah C; Finney, Brenda A; Lazarou, Maria; Rosser, Anne E; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.5 in mouse) in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+) channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match

  16. Fetal Calcium Regulates Branching Morphogenesis in the Developing Human and Mouse Lung: Involvement of Voltage-Gated Calcium Channels

    PubMed Central

    Brennan, Sarah C.; Finney, Brenda A.; Lazarou, Maria; Rosser, Anne E.; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J.; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9–17 of human gestation, embryonic days (E)11.5–16.5 in mouse) in a hypercalcaemic environment (∼1.7 in the fetus vs. ∼1.1–1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca2+ channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to

  17. Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes.

    PubMed Central

    Tornatore, C; Meyers, K; Atwood, W; Conant, K; Major, E

    1994-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of the developing central nervous system results in a dementing process in children, termed HIV-1-associated encephalopathy. Infection of astroglial elements of the pediatric nervous system has been demonstrated and suggests that direct infection of some astrocytes may contribute to the neurologic deficit. In this model, HIV-1 establishes a persistent state of infection in astrocytes, which can be reactivated by the cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta). To better understand the natural history of viral persistence in astroglial cells, we characterized infection at the transcriptional level. The most abundant viral transcript during the establishment of persistence was the subgenomic multiply spliced 2-kb message, similar to mononuclear cell models of HIV-1 latency. Following reactivation with TNF-alpha or IL-1 beta the multiply spliced 2-kb message remained the most abundant viral transcript, in contrast to infected mononuclear cells in which reactivation leads to the reemergence of the 9- and 4-kb transcripts. Further characterization of the persistent 2-kb transcript by PCR amplification of in vitro-synthesized viral cDNA showed that, in the absence of cytokine stimulation, the most abundant multiply spliced transcripts were the Nef- and Rev-specific messages. However, following cytokine stimulation, double- and triple-spliced Tat-, Rev-, and Nef-specific messages could be identified. Immunohistochemical staining demonstrated that, during viral persistence, astrocytes expressed Nef protein but few or no viral structural proteins. These results demonstrate that viral persistence in astrocytes at the transcriptional level is fundamentally different from that seen in mononuclear cells and could account for the virtual absence of astroglial expression of viral structural antigens in vivo. Images PMID:8254781

  18. Reconstruction of a geometrically correct diffusion tensor image of a moving human fetal brain

    NASA Astrophysics Data System (ADS)

    Kim, Kio; Habas, Piotr A.; Rousseau, Francois; Glenn, Orit A.; Barkovich, A. J.; Koob, Meriam; Dietemann, Jean-Louis; Robinson, Ashley J.; Poskitt, Kenneth J.; Miller, Steven P.; Studholme, Colin

    2010-03-01

    Recent studies reported the development of methods for rigid registration of 2D fetal brain imaging data to correct for unconstrained fetal and maternal motion, and allow the formation of a true 3D image of conventional fetal brain anatomy from conventional MRI. Diffusion tensor imaging provides additional valuable insight into the developing brain anatomy, however the correction of motion artifacts in clinical fetal diffusion imaging is still a challenging problem. This is due to the challenging problem of matching lower signal-to-noise ratio diffusion weighted EPI slice data to recover between-slice motion, compounded by the presence of possible geometric distortions in the EPI data. In addition, the problem of estimating a diffusion model (such as a tensor) on a regular grid that takes into account the inconsistent spatial and orientation sampling of the diffusion measurements needs to be solved in a robust way. Previous methods have used slice to volume registration within the diffusion dataset. In this work, we describe an alternative approach that makes use of an alignment of diffusion weighted EPI slices to a conventional structural MRI scan which provides a geometrically correct reference image. After spatial realignment of each diffusion slice, a tensor field representing the diffusion profile is estimated by weighted least squared fitting. By qualitative and quantitative evaluation of the results, we confirm the proposed algorithm successfully corrects the motion and reconstructs the diffusion tensor field.

  19. Age, Sexual Dimorphism, and Disease Associations in the Developing Human Fetal Lung Transcriptome.

    PubMed

    Kho, Alvin T; Chhabra, Divya; Sharma, Sunita; Qiu, Weiliang; Carey, Vincent J; Gaedigk, Roger; Vyhlidal, Carrie A; Leeder, J Steven; Tantisira, Kelan G; Weiss, Scott T

    2016-06-01

    The fetal origins of disease hypothesis suggests that variations in the course of prenatal lung development may affect life-long pulmonary function growth, decline, and pathobiology. Many studies support the existence of differences in the developing lung trajectory in males and females, and sex-specific differences in the prevalence of chronic lung diseases, such as asthma and bronchopulmonary dysplasia. The objectives of this study were to investigate the early developing fetal lung for transcriptomic correlates of postconception age (maturity) and sex, and their associations with chronic lung diseases. We analyzed whole-lung transcriptome profiles of 61 females and 78 males at 54-127 days postconception (dpc) from nonsmoking mothers using unsupervised principal component analysis and supervised linear regression models. We identified dominant transcriptomic correlates for postconception age and sex with corresponding gene sets that were enriched for developing lung structural and functional ontologies. We observed that the transcriptomic sex difference was not a uniform global time shift/lag, rather, lungs of males appear to be more mature than those of females before 96 dpc, and females appear to be more mature than males after 96 dpc. The age correlate gene set was consistently enriched for asthma and bronchopulmonary dysplasia genes, but the sex correlate gene sets were not. Despite sex differences in the developing fetal lung transcriptome, postconception age appears to be more dominant than sex in the effect of early fetal lung developments on disease risk during this early pseudoglandular phase of development. PMID:26584061

  20. Sex Moderates Associations between Prenatal Glucocorticoid Exposure and Human Fetal Neurological Development

    ERIC Educational Resources Information Center

    Glynn, Laura M.; Sandman, Curt A.

    2012-01-01

    Maternal cortisol levels (at 15, 19, 25, 31 and 37 weeks' gestation) and fetal movement response to vibroacoustic stimulation (VAS; at 25, 31 and 37 weeks) were assessed in 190 mother-fetus pairs. Fetuses showed a response to the VAS at 25 weeks and there was evidence of increasing maturation in the response at 31 and 37 weeks. Early elevations in…

  1. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart.

    PubMed

    Lemieux, Hélène; Semsroth, Severin; Antretter, Herwig; Höfer, Daniel; Gnaiger, Erich

    2011-12-01

    Heart failure is a consequence of progressive deterioration of cardiac performance. Little is known about the role of impaired oxidative phosphorylation in the progression of the disease, since previous studies of mitochondrial injuries are restricted to end-stage chronic heart failure. The present study aimed at evaluating the involvement of mitochondrial dysfunction in the development of human heart failure. We measured the control of oxidative phosphorylation with high-resolution respirometry in permeabilized myocardial fibres from donor hearts (controls), and patients with no or mild heart failure but presenting with heart disease, or chronic heart failure due to dilated or ischemic cardiomyopathy. The capacity of the phosphorylation system exerted a strong limitation on oxidative phosphorylation in the human heart, estimated at 121 pmol O(2)s(-1)mg(-1) in the healthy left ventricle. In heart disease, a specific defect of the phosphorylation system, Complex I-linked respiration, and mass-specific fatty acid oxidation were identified. These early defects were also significant in chronic heart failure, where the capacities of the oxidative phosphorylation and electron transfer systems per cardiac tissue mass were decreased with all tested substrate combinations, suggesting a decline of mitochondrial density. Oxidative phosphorylation and electron transfer system capacities were higher in ventricles compared to atria, but the impaired mitochondrial quality was identical in the four cardiac chambers of chronic heart failure patients. Coupling was preserved in heart disease and chronic heart failure, in contrast to the mitochondrial dysfunction observed after prolonged cold storage of cardiac tissue. Mitochondrial defects in the phosphorylation system, Complex I respiration and mass-specific fatty acid oxidation occurred early in the development of heart failure. Targeting these mitochondrial injuries with metabolic therapy may offer a promising approach to delay

  2. Bioartificial Heart: A Human-Sized Porcine Model – The Way Ahead

    PubMed Central

    Weymann, Alexander; Patil, Nikhil Prakash; Sabashnikov, Anton; Jungebluth, Philipp; Korkmaz, Sevil; Li, Shiliang; Veres, Gabor; Soos, Pal; Ishtok, Roland; Chaimow, Nicole; Pätzold, Ines; Czerny, Natalie; Schies, Carsten; Schmack, Bastian; Popov, Aron-Frederik; Simon, André Rüdiger; Karck, Matthias; Szabo, Gabor

    2014-01-01

    Background A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts. Methods We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions. Results Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6±3.2 ng DNA/mg tissue vs. 473.2±13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks. Conclusions Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure. PMID:25365554

  3. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support

    PubMed Central

    Giri, Shibashish; Bader, Augustinus

    2014-01-01

    Background Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Methods Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. Results After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5–7 days. The remaining transfected hepatocytes persisted for 2–4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose

  4. Induction of Hepatic and Endothelial Differentiation by Perfusion in a Three-Dimensional Cell Culture Model of Human Fetal Liver

    PubMed Central

    Pekor, Christopher; Gerlach, Jörg C.; Nettleship, Ian

    2015-01-01

    The development of functional engineered tissue constructs depends on high cell densities and appropriate vascularization. In this study we implemented a four-compartment three-dimensional perfusion bioreactor culture model for studying the effects of medium perfusion on endothelial, hepatic, and hematopoietic cell populations of primary human fetal liver in an in vivo-like environment. Human fetal liver cells were cultured in bioreactors configured to provide either perfusion or diffusion conditions. Metabolic activities of the cultures were monitored daily by measuring glucose consumption and lactate production. Cell viability during culture was analyzed by lactate dehydrogenase activity. Hepatic functionality was determined by the release of albumin and alpha-fetoprotein (AFP) in culture medium samples. After 4 days of culture, cells were analyzed for the expression of a variety of endothelial, hepatic, and hematopoietic genes, as well as the surface marker expression of CD31 and CD34 in flow cytometry. We found that medium perfusion increased the gene expression of endothelial markers such as CD31, von Willebrand factor (vWF), CD140b, CD309, and CD144 while decreasing the gene expression of the erythrocyte-surface marker CD235a. Hepatic differentiation was promoted under perfusion conditions as demonstrated by lower AFP and higher albumin secretion compared with cultures not exposed to medium perfusion. Additionally, cultures exposed to medium perfusion gave higher rates of glucose consumption and lactate production, indicating increased metabolic activity. In conclusion, high-density bioreactors configured to provide constant medium perfusion significantly induced hepatic and endothelial cell differentiation and provided improved conditions for the culture of human fetal liver cells compared with cultures without perfusion. PMID:25559936

  5. Induction of Hepatic and Endothelial Differentiation by Perfusion in a Three-Dimensional Cell Culture Model of Human Fetal Liver.

    PubMed

    Pekor, Christopher; Gerlach, Jörg C; Nettleship, Ian; Schmelzer, Eva

    2015-07-01

    The development of functional engineered tissue constructs depends on high cell densities and appropriate vascularization. In this study we implemented a four-compartment three-dimensional perfusion bioreactor culture model for studying the effects of medium perfusion on endothelial, hepatic, and hematopoietic cell populations of primary human fetal liver in an in vivo-like environment. Human fetal liver cells were cultured in bioreactors configured to provide either perfusion or diffusion conditions. Metabolic activities of the cultures were monitored daily by measuring glucose consumption and lactate production. Cell viability during culture was analyzed by lactate dehydrogenase activity. Hepatic functionality was determined by the release of albumin and alpha-fetoprotein (AFP) in culture medium samples. After 4 days of culture, cells were analyzed for the expression of a variety of endothelial, hepatic, and hematopoietic genes, as well as the surface marker expression of CD31 and CD34 in flow cytometry. We found that medium perfusion increased the gene expression of endothelial markers such as CD31, von Willebrand factor (vWF), CD140b, CD309, and CD144 while decreasing the gene expression of the erythrocyte-surface marker CD235a. Hepatic differentiation was promoted under perfusion conditions as demonstrated by lower AFP and higher albumin secretion compared with cultures not exposed to medium perfusion. Additionally, cultures exposed to medium perfusion gave higher rates of glucose consumption and lactate production, indicating increased metabolic activity. In conclusion, high-density bioreactors configured to provide constant medium perfusion significantly induced hepatic and endothelial cell differentiation and provided improved conditions for the culture of human fetal liver cells compared with cultures without perfusion. PMID:25559936

  6. DNA damage produced by cadmium in a human fetal hepatic cell line.

    PubMed

    López-Ortal, P; Souza, V; Bucio, L; González, E; Gutiérrez-Ruiz, M C

    1999-02-19

    Cadmium (Cd) is one of the most important heavy metal environmental toxicants. It alters a wide variety of cellular and biochemical processes. The objective of this work was to study DNA damage and recovery after acute and chronic CdCl2 treatment in a human fetal hepatic cell line (WRL-68 cells). Using the alkaline microgel electrophoresis assay that detects DNA single-strand breaks and/or alkali-labile sites in individual cells, we evaluated for levels of DNA damage. The mean migration length in control cells was 35.37+/-1. 43 microm (8% damaged cells), whereas the mean migration in cells treated with 0.005 microM CdCl2 for 3 h (acute low dose) was 65. 87+/-2.07 microm (88% damaged cells). Treatment with 0.01 microM CdCl2 for the same time (acute high dose) increased the mean migration length to 125.79+/-2.91 microm (92% damaged cells). However, a 0.005 microM CdCl2 treatment for 7 days (chronic treatment) only increased 65% DNA migration to 58.38+/-2.59 microm (88% damaged nucleus). Lipoperoxidative damage expressed as malondialdehyde (MDA) production per milligram of protein was 15. 7+/-2.6 for control cells, whereas in Cd-treated cells the values were 20.2+/-2.4 (acute low dose), 22.9+/-2.2 (acute high dose), and 22.6+/-2.1 (chronic treatment). To study the repair of DNA damage, cells were washed with 0.01 microM meso-2,3-dimercaptosuccinic acid (DMSA), and fresh Dulbecco's modified essential medium (DMEM) added. The percentage of damaged cells diminished after 90 min, with DNA migration returning to control values by 120 min. Cd treatment produced DNA single-strand breaks and the damage was greater in acute high dose treated cells. Lipid peroxidation values did not correlate with DNA single-strand breaks. PMID:10023089

  7. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    SciTech Connect

    Muthukumaran, Padmalosini; Lim, Chwee Teck; Lee, Taeyong

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Estradiol induced stiffness changes of osteoblasts were quantified using AFM. Black-Right-Pointing-Pointer Estradiol causes significant decrease in the stiffness of osteoblasts. Black-Right-Pointing-Pointer Decreased stiffness was caused by decreased density of f-actin network. Black-Right-Pointing-Pointer Stiffness changes were not associated with mineralized matrix of osteoblasts. Black-Right-Pointing-Pointer Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E{sup Asterisk-Operator }) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with {beta}-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E{sup Asterisk-Operator }. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E{sup Asterisk-Operator} of osteoblasts significantly decreased by 43-46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness

  8. Effects of macroporous hydroxyapatite carriers on the growth and function of human hepatoblasts derived from fetal hepatocytes.

    PubMed

    Ishii, Takaaki; Saito, Hiroshi; Komizu, Yuji; Tomoshige, Ryuichi; Matsushita, Taku

    2016-08-01

    Improvement of three-dimensional (3D) culture conditions, including substrates for cell growth, is needed for various cell-based applications. In this study, we developed hydroxyapatite (HAp) macroporous carriers having several pore size distributions and tried to obtain the findings about the effective pore sizes for the growth and function of hepatoblasts derived from human fetal hepatocytes. Cellular CYP3A4 activity was significantly enhanced when 20% HAp macroporous carrier was used, reaching 1.49±0.28 pmol/10(6) cells/min of benzyloxyresorufin-O-dealkylation activity, which is comparable to that of primary human hepatocytes from livers of adult donors. Analysis of the pore size (the radius of curvature) distribution of each HAp carrier using a 3D-electron beam surface roughness analyzer revealed two peaks of pore size distribution at 30-40 μm and 70-80 μm, respectively. Thirty-five percent of the pores in the 20% carrier had a size distribution within 50-80 μm. Especially, pores of 70-80 μm were more abundant in the 20% HAp carrier than in the 10% and 30% HAp carriers. These results suggested that a HAp carrier with the pore size distribution of 50-80 μm might be effective for cell growth and function in human hepatoblasts derived from fetal hepatocytes. PMID:26968126

  9. Diagnosis and Treatment of Fetal Arrhythmia

    PubMed Central

    Wacker-Gussmann, Annette; Strasburger, Janette F.; Cuneo, Bettina F.; Wakai, Ronald T.

    2014-01-01

    Detection and careful stratification of fetal heart rate (FHR) is extremely important in all pregnancies. The most lethal cardiac rhythm disturbances occur during apparently normal pregnancies where FHR and rhythmare regular and within normal or low-normal ranges. These hidden depolarization and repolarization abnormalities, associated with genetic ion channelopathies cannot be detected by echocardiography, and may be responsible for up to 10% of unexplained fetal demise, prompting a need for newer and better fetal diagnostic techniques. Other manifest fetal arrhythmias such as premature beats, tachycardia, and bradycardia are commonly recognized. Heart rhythm diagnosis in obstetrical practice is usually made by M-mode and pulsed Doppler fetal echocardiography, but not all fetal cardiac time intervals are captured by echocardiographic methods. This article reviews different types of fetal arrhythmias, their presentation and treatment strategies, and gives an overview of the present and future diagnostic techniques. PMID:24858320

  10. Comparison of the Effects of Two Auditory Methods by Mother and Fetus on the Results of Non-Stress Test (Baseline Fetal Heart Rate and Number of Accelerations) in Pregnant Women: A Randomized Controlled Trial

    PubMed Central

    Khoshkholgh, Roghaie; Keshavarz, Tahereh; Moshfeghy, Zeinab; Akbarzadeh, Marzieh; Asadi, Nasrin; Zare, Najaf

    2016-01-01

    Objective: To compare the effects of two auditory methods by mother and fetus on the results of NST in 2011-2012. Materials and methods: In this single-blind clinical trial, 213 pregnant women with gestational age of 37-41 weeks who had no pregnancy complications were randomly divided into 3 groups (auditory intervention for mother, auditory intervention for fetus, and control) each containing 71 subjects. In the intervention groups, music was played through the second 10 minutes of NST. The three groups were compared regarding baseline fetal heart rate and number of accelerations in the first and second 10 minutes of NST. The data were analyzed using one-way ANOVA, Kruskal-Wallis, and paired T-test. Results: The results showed no significant difference among the three groups regarding baseline fetal heart rate in the first (p = 0.945) and second (p = 0.763) 10 minutes. However, a significant difference was found among the three groups concerning the number of accelerations in the second 10 minutes. Also, a significant difference was observed in the number of accelerations in the auditory intervention for mother (p = 0.013) and auditory intervention for fetus groups (p < 0.001). The difference between the number of accelerations in the first and second 10 minutes was also statistically significant (p = 0.002). Conclusion: Music intervention was effective in the number of accelerations which is the indicator of fetal health. Yet, further studies are required to be conducted on the issue. PMID:27385971

  11. Fetal endocrinology

    PubMed Central

    Kota, Sunil Kumar; Gayatri, Kotni; Jammula, Sruti; Meher, Lalit Kumar; Kota, Siva Krishna; Krishna, S. V. S.; Modi, Kirtikumar D.

    2013-01-01

    Successful outcome of pregnancy depends upon genetic, cellular, and hormonal interactions, which lead to implantation, placentation, embryonic, and fetal development, parturition and fetal adaptation to extrauterine life. The fetal endocrine system commences development early in gestation and plays a modulating role on the various physiological organ systems and prepares the fetus for life after birth. Our current article provides an overview of the current knowledge of several aspects of this vast field of fetal endocrinology and the role of endocrine system on transition to extrauterine life. We also provide an insight into fetal endocrine adaptations pertinent to various clinically important situations like placental insufficiency and maternal malnutrition. PMID:23961471

  12. Intermittent Auscultation in Labor: Could It Be Missing Many Pathological (Late) Fetal Heart Rate Decelerations? Analytical Review and Rationale for Improvement Supported by Clinical Cases

    PubMed Central

    Sholapurkar, Shashikant L.

    2015-01-01

    Intermittent auscultation (IA) of fetal heart rate (FHR) is recommended/preferred in low risk labors. Its usage even in developed countries is poised to increase because of perceived benefit of reduction in operative intervention and some disillusionment with the cardiotocography (CTG). Many national guidelines have stipulated regimes (frequency/timing) of IA based on level IV evidence. These tend to get faithfully and exactingly followed. It was observed that deliveries of many unexpectedly asphyxiated infants occurred despite rigorously performed and documented IA compliant with the guidelines. This triggered a reappraisal of the robustness of IA leading to this focused review supplemented by two anonymized cases. It concludes that the current methodology of IA may be flawed in that it poses a risk of missing many or most late (pathological) FHR decelerations, one of the foremost goals of IA. This is because many late decelerations reach their nadir before the end of the contraction. Thus the currently recommended auscultation of FHR for 60 seconds after the contraction by all national guidelines seemed to encompass their “recovery” phase and appeared to be misinterpreted as normal FHR or even as a reassuring accelerative pattern in the clinical practice. A recent recommendation of recording of the FHR as a single figure (rather than a range) does not remedy this anomaly and seems even less informative. It would be better to auscultate FHR before and after the contractions (or contraction to contraction) and take the FHR just before the contraction as the baseline FHR and interpret the FHR after contraction in the context of this baseline. This relatively simple improvement would detect most late FHR decelerations thus ameliorating the risk and significantly enhancing the patient safety. PMID:26566404

  13. Intermittent Auscultation in Labor: Could It Be Missing Many Pathological (Late) Fetal Heart Rate Decelerations? Analytical Review and Rationale for Improvement Supported by Clinical Cases.

    PubMed

    Sholapurkar, Shashikant L

    2015-12-01

    Intermittent auscultation (IA) of fetal heart rate (FHR) is recommended/preferred in low risk labors. Its usage even in developed countries is poised to increase because of perceived benefit of reduction in operative intervention and some disillusionment with the cardiotocography (CTG). Many national guidelines have stipulated regimes (frequency/timing) of IA based on level IV evidence. These tend to get faithfully and exactingly followed. It was observed that deliveries of many unexpectedly asphyxiated infants occurred despite rigorously performed and documented IA compliant with the guidelines. This triggered a reappraisal of the robustness of IA leading to this focused review supplemented by two anonymized cases. It concludes that the current methodology of IA may be flawed in that it poses a risk of missing many or most late (pathological) FHR decelerations, one of the foremost goals of IA. This is because many late decelerations reach their nadir before the end of the contraction. Thus the currently recommended auscultation of FHR for 60 seconds after the contraction by all national guidelines seemed to encompass their "recovery" phase and appeared to be misinterpreted as normal FHR or even as a reassuring accelerative pattern in the clinical practice. A recent recommendation of recording of the FHR as a single figure (rather than a range) does not remedy this anomaly and seems even less informative. It would be better to auscultate FHR before and after the contractions (or contraction to contraction) and take the FHR just before the contraction as the baseline FHR and interpret the FHR after contraction in the context of this baseline. This relatively simple improvement would detect most late FHR decelerations thus ameliorating the risk and significantly enhancing the patient safety. PMID:26566404

  14. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart. PMID:25350945

  15. Characteristic parameters of electromagnetic signals from a human heart system

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Yuan; Pei, Liu-Qing; Wang, Yin; Zhang, Su-Ming; Gao, Hong-Lei; Dai, Yuan-Dong

    2011-04-01

    The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-Tc radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency fz of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time—frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and fz for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology.

  16. INTUSSUSCEPTIVE-LIKE ANGIOGENESIS IN HUMAN FETAL LUNG XENOGRAFTS: LINK WITH BRONCHOPULMONARY DYSPLASIA-ASSOCIATED MICROVASCULAR DYSANGIOGENESIS?

    PubMed Central

    De Paepe, Monique E.; Chu, Sharon; Hall, Susan; McDonnell-Clark, Elizabeth; Heger, Nicholas E.; Schorl, Christoph; Mao, Quanfu; Boekelheide, Kim

    2016-01-01

    Background Human fetal lung xenografts display an unusual pattern of non-sprouting, plexus-forming angiogenesis that is reminiscent of the dysmorphic angioarchitecture described in bronchopulmonary dysplasia (BPD). The aim of this study was to determine the clinicopathological correlates, growth characteristics and molecular regulation of this aberrant form of graft angiogenesis. Methods Fetal lung xenografts, derived from 12 previable fetuses (15 to 22 weeks’ gestation) and engrafted in the renal subcapsular space of SCID-beige mice, were analyzed 4 weeks post-transplantation for morphology, vascularization, proliferative activity and gene expression. Results Focal plexus-forming angiogenesis (PFA) was observed in 60/230 (26%) of xenografts. PFA was characterized by a complex network of tortuous non-sprouting vascular structures with low endothelial proliferative activity, suggestive of intussusceptive-type angiogenesis. There was no correlation between the occurrence of PFA and gestational age or time interval between delivery and engraftment. PFA was preferentially localized in the relatively hypoxic central subcapsular area. Microarray analysis suggested altered expression of 15 genes in graft regions with PFA, of which 7 are known angiogenic/lymphangiogenic regulators and 5 are known hypoxia-inducible genes. qRT-PCR analysis confirmed significant upregulation of SULF2, IGF2 and HMOX1 in graft regions with PFA. Conclusion These observations in human fetal lungs ex vivo suggest that postcanalicular lungs can switch from sprouting angiogenesis to an aberrant intussusceptive-type of angiogenesis that is highly reminiscent of BPD-associated dysangiogenesis. While circumstantial evidence suggests hypoxia may be implicated, the exact triggering mechanisms, molecular regulation and clinical implications of this angiogenic switch in preterm lungs in vivo remain to be determined. PMID:26495956

  17. Ljungan virus: a commentary on its association with fetal and infant morbidity and mortality in animals and humans.

    PubMed

    Krous, Henry F; Langlois, Neil E

    2010-11-01

    Epidemiologic and experimental data support the notion that Ljungan virus (LV), endemic in some rodent populations in Sweden, Denmark, and the United States, can cause morbidity and mortality in animals and humans. LV infection can cause type I diabetes mellitus, myocarditis, and encephalitis in bank voles and experimental mice, and lemmings. Mouse dams infected with LV experience high rates of stillbirth that may persist across generations, and their fetuses may develop cranial, brain, and limb malformations. In humans, epidemiologic and serologic data suggest that LV infection correlates with intrauterine fetal death, malformations, placental inflammation, myocarditis, encephalitis, and Guillain-Barré syndrome. The proposed role of LV infection in SIDS is unconvincing. Further research is necessary to clarify the role of LV infection in animal and human disease. PMID:20890937

  18. Human heart conjugate cooling simulation: Unsteady thermo-fluid-stress analysis

    PubMed Central

    Abdoli, Abas; Dulikravich, George S.; Bajaj, Chandrajit; Stowe, David F.; Jahania, M. Salik

    2015-01-01

    The main objective of this work was to demonstrate computationally that realistic human hearts can be cooled much faster by performing conjugate heat transfer consisting of pumping a cold liquid through the cardiac chambers and major veins while keeping the heart submerged in cold gelatin filling a cooling container. The human heart geometry used for simulations was obtained from three-dimensional, high resolution MRI scans. Two fluid flow domains for the right (pulmonic) and left (systemic) heart circulations, and two solid domains for the heart tissue and gelatin solution were defined for multi-domain numerical simulation. Detailed unsteady temperature fields within the heart tissue were calculated during the conjugate cooling process. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart due to the coolant fluid shear and normal forces and to examine the thermal stress caused by temperature variation inside the heart. It was demonstrated that a conjugate cooling effort with coolant temperature at +4°C is capable of reducing the average heart temperature from +37°C to +8°C in 25 minutes for cases in which the coolant was steadily pumped only through major heart inlet veins and cavities. PMID:25045006

  19. Maternal hyperglycemia leads to fetal cardiac hyperplasia and dysfunction in a rat model.

    PubMed

    Lehtoranta, Lara; Vuolteenaho, Olli; Laine, V Jukka; Koskinen, Anna; Soukka, Hanna; Kytö, Ville; Määttä, Jorma; Haapsamo, Mervi; Ekholm, Eeva; Räsänen, Juha

    2013-09-01

    Accelerated fetal myocardial growth with altered cardiac function is a well-documented complication of human diabetic pregnancy, but its pathophysiology is still largely unknown. Our aim was to explore the mechanisms of fetal cardiac remodeling and cardiovascular hemodynamics in a rat model of maternal pregestational streptozotocin-induced hyperglycemia. The hyperglycemic group comprised 107 fetuses (10 dams) and the control group 219 fetuses (20 dams). Fetal cardiac function was assessed serially by Doppler ultrasonography. Fetal cardiac to thoracic area ratio, newborn heart weight, myocardial cell proliferative and apoptotic activities, and cardiac gene expression patterns were determined. Maternal hyperglycemia was associated with increased cardiac size, proliferative, apoptotic and mitotic activities, upregulation of genes encoding A- and B-type natriuretic peptides, myosin heavy chain types 2 and 3, uncoupling proteins 2 and 3, and the angiogenetic tumor necrosis factor receptor superfamily member 12A. The genes encoding Kv channel-interacting protein 2, a regulator of electrical cardiac phenotype, and the insulin-regulated glucose transporter 4 were downregulated. The heart rate was lower in fetuses of hyperglycemic dams. At 13-14 gestational days, 98% of fetuses of hyperglycemic dams had holosystolic atrioventricular valve regurgitation and decreased outflow mean velocity, indicating diminished cardiac output. Maternal hyperglycemia may lead to accelerated fetal myocardial growth by cardiomyocyte hyperplasia. In fetuses of hyperglycemic dams, expression of key genes that control and regulate cardiomyocyte electrophysiological properties, contractility, and metabolism are altered and may lead to major functional and clinical implications on the fetal heart. PMID:23839525

  20. Assessment of placental transfer and the effect on embryo-fetal development of a humanized monoclonal antibody targeting lymphotoxin-alpha in non-human primates.

    PubMed

    Wang, Hong; Schuetz, Chris; Arima, Akihiro; Chihaya, Yutaka; Weinbauer, Gerhard F; Habermann, Gunnar; Xiao, Jim; Woods, Cynthia; Grogan, Jane; Gelzleichter, Thomas; Cain, Gary

    2016-08-01

    An enhanced embryo-fetal development study was conducted in cynomolgus monkeys using pateclizumab, a humanized IgG1 monoclonal antibody (mAb) targeting lymphotoxin-alpha. Pateclizumab administration between gestation days (GD) 20 and 132 did not induce maternal or developmental toxicities. The ratio of fetal-to-maternal serum concentration of pateclizumab was 0.73% on GD 50 and 61% by GD 139. Decreased fetal inguinal lymph node-to-body weight ratio was present in the high-dose group without microscopic abnormalities, a change attributable to inhibition of lymphocyte recruitment, which is a pharmacologic effect of pateclizumab during late lymph node development. The effect was observed in inguinal but not submandibular or mesenteric lymph nodes; this was attributed to differential susceptibility related to sequential lymph node development. Placental transfer of therapeutic IgG1 antibodies; thus, begins during the first trimester in non-human primates. Depending on the potency and dose levels administered, antibody levels in the fetus may be pharmacologically or toxicologically relevant. PMID:27211603

  1. Involution of human fetal Leydig cells. An immunohistochemical, ultrastructural and quantitative study.

    PubMed Central

    Codesal, J; Regadera, J; Nistal, M; Regadera-Sejas, J; Paniagua, R

    1990-01-01

    The testes of stillborn fetuses (from 13 to 28 weeks of gestational age), fetuses born alive (from 29 weeks of gestational age) who died a few days later, and infants dying 1 to 8 months after birth were processed for light and electron microscopy. Paraffin-embedded material was stained with the avidin-biotin peroxidase complex (ABC) method for immunohistochemical detection of testosterone (T) in order to quantify the age-related changes in the number of T-positive interstitial cells. This number decreased progressively from the 24th week of gestation up to birth and remained unchanged up to the second month of postnatal life. During the third month of age, the number of T-positive cells rose markedly but fell again from the fourth month to the end of the study. The ultrastructural study revealed the following types of interstitial cells at all ages studied: fibroblast-like cells, myofibroblast-like cells, developed fetal Leydig cells, degenerating fetal Leydig cells and infantile Leydig cells with a multilobed nucleus and focal cytoplasmic accumulations of smooth endoplasmic reticulum and lipid droplets. Quantitative ultrastructural studies revealed that the changes in the number of fetal Leydig cells with age were similar to those found in the number of T-positive cells although, for each age studied, absolute values were higher in the ultrastructural study. The number of infantile Leydig cells increased with age. Images Figs. 1-4 Figs. 5-9 Figs. 10-11 PMID:2272896

  2. Baby on board: olfactory cues indicate pregnancy and fetal sex in a non-human primate

    PubMed Central

    Crawford, Jeremy Chase; Drea, Christine M.

    2015-01-01

    Olfactory cues play an integral, albeit underappreciated, role in mediating vertebrate social and reproductive behaviour. These cues fluctuate with the signaller's hormonal condition, coincident with and informative about relevant aspects of its reproductive state, such as pubertal onset, change in season and, in females, timing of ovulation. Although pregnancy dramatically alters a female's endocrine profiles, which can be further influenced by fetal sex, the relationship between gestation and olfactory cues is poorly understood. We therefore examined the effects of pregnancy and fetal sex on volatile genital secretions in the ring-tailed lemur (Lemur catta), a strepsirrhine primate possessing complex olfactory mechanisms of reproductive signalling. While pregnant, dams altered and dampened their expression of volatile chemicals, with compound richness being particularly reduced in dams bearing sons. These changes were comparable in magnitude with other, published chemical differences among lemurs that are salient to conspecifics. Such olfactory ‘signatures’ of pregnancy may help guide social interactions, potentially promoting mother–infant recognition, reducing intragroup conflict or counteracting behavioural mechanisms of paternity confusion; cues that also advertise fetal sex may additionally facilitate differential sex allocation. PMID:25716086

  3. Baby on board: olfactory cues indicate pregnancy and fetal sex in a non-human primate.

    PubMed

    Crawford, Jeremy Chase; Drea, Christine M

    2015-02-01

    Olfactory cues play an integral, albeit underappreciated, role in mediating vertebrate social and reproductive behaviour. These cues fluctuate with the signaller's hormonal condition, coincident with and informative about relevant aspects of its reproductive state, such as pubertal onset, change in season and, in females, timing of ovulation. Although pregnancy dramatically alters a female's endocrine profiles, which can be further influenced by fetal sex, the relationship between gestation and olfactory cues is poorly understood. We therefore examined the effects of pregnancy and fetal sex on volatile genital secretions in the ring-tailed lemur (Lemur catta), a strepsirrhine primate possessing complex olfactory mechanisms of reproductive signalling. While pregnant, dams altered and dampened their expression of volatile chemicals, with compound richness being particularly reduced in dams bearing sons. These changes were comparable in magnitude with other, published chemical differences among lemurs that are salient to conspecifics. Such olfactory 'signatures' of pregnancy may help guide social interactions, potentially promoting mother-infant recognition, reducing intragroup conflict or counteracting behavioural mechanisms of paternity confusion; cues that also advertise fetal sex may additionally facilitate differential sex allocation. PMID:25716086

  4. Western Zika Virus in Human Fetal Neural Progenitors Persists Long Term with Partial Cytopathic and Limited Immunogenic Effects.

    PubMed

    Hanners, Natasha W; Eitson, Jennifer L; Usui, Noriyoshi; Richardson, R Blake; Wexler, Eric M; Konopka, Genevieve; Schoggins, John W

    2016-06-14

    The recent Zika virus (ZIKV) outbreak in the Western hemisphere is associated with severe pathology in newborns, including microcephaly and brain damage. The mechanisms underlying these outcomes are under intense investigation. Here, we show that a 2015 ZIKV isolate replicates in multiple cell types, including primary human fetal neural progenitors (hNPs). In immortalized cells, ZIKV is cytopathic and grossly rearranges endoplasmic reticulum membranes similar to other flaviviruses. In hNPs, ZIKV infection has a partial cytopathic phase characterized by cell rounding, pyknosis, and activation of caspase 3. Despite notable cell death, ZIKV did not activate a cytokine response in hNPs. This lack of cell intrinsic immunity to ZIKV is consistent with our observation that virus replication persists in hNPs for at least 28 days. These findings, supported by published fetal neuropathology, establish a proof-of-concept that neural progenitors in the developing human fetus can be direct targets of detrimental ZIKV-induced pathology. PMID:27268504

  5. Temporal and spatial expression of major myelin proteins in the human fetal spinal cord during the second trimester

    SciTech Connect

    Weidenheim, K.M.; Bodhireddy, S.R.; Rashbaum, W.K.; Lyman, W.D.

    1996-06-01

    Immunohistochemical identification of myelin basic protein (MBP) is a sensitive method for assessing myelination in the human fetal central nervous system (CNS). However, the temporospatial relationship of expression of two other major myelin proteins, proteolipid protein (PLP) and myelin-associated glycoprotein (MAG) to that of MBP during fetal development has not been assessed in human tissues. Vibratome sections of cervical, thoracic and lumbosacral levels from 37 normal spinal cords of {le} 10 to 24 gestational week (GW) fetuses were analyzed using immunohistochemical methods. Using light microscopy, MBP was the first oligodendrocyte marker detected, present by 10 GW at more rostral levels. PLP and MAG were detected rostrally between 12 to 14 GW. All myelin proteins were expressed in anterior to posterior and rostral to caudal gradients. By the late second trimester, expression of MBP, PLP and MAG was noted in all locations in the spinal white matter except for the corticospinal tract. Expression of MAG was particularly marked in the posterior root entry zone and propriospinal tracts. The results suggest that PLP and MAG are expressed later than MBP but follow similar spatial gradients. 44 refs., 11 figs., 2 tabs.

  6. The expression patterns of pro-apoptotic and anti-apoptotic factors in human fetal and adult ovary.

    PubMed

    Poljicanin, Ana; Vukusic Pusic, Tanja; Vukojevic, Katarina; Caric, Ana; Vilovic, Katarina; Tomic, Snjezana; Soljic, Violeta; Saraga-Babic, Mirna

    2013-07-01

    The influence of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins on the cell death (caspase-3, TUNEL) of different ovarian cell lineages was immunohistochemically analyzed in six fetal and five adult human ovaries in order to disclose possible mechanisms of cell number control. Mild to moderate expression of Bcl-2 characterized ovarian surface epithelium, follicular cells and oocytes of 15 and 22 week human ovaries, while expression of Bax and caspase-3 gradually increased in all ovarian cell populations, except caspase-3 in the ovarian surface epithelium. Different levels of Bax and Bcl-2 proteins co-expression characterized fetal ovarian cells, while TUNEL and caspase-3 co-expression was found only in some of them. In adult ovaries, Bcl-2 was moderately and Bax strongly expressed in the surface ovarian epithelium and stroma. Bcl-2 and Bax expression in granulosa and theca interna cells varied depending on the stage of follicular atresia. Caspase-3 apoptotic cells characterized granulosa cells of adult atretic follicles. Our results indicate that intracellular levels of Bcl-2 and Bax protein might regulate the final destiny of developing germ cells. Caspase-3 dependent apoptosis seems to be the most important, but not the only cell death pathway in ovaries. In adult ovaries, caspase-dependent cell death characterized granulosa cells, but not the germ cells. PMID:23295106

  7. Expression of Nerve Growth Factor (NGF), TrkA, and p75NTR in Developing Human Fetal Teeth

    PubMed Central

    Mitsiadis, Thimios A.; Pagella, Pierfrancesco

    2016-01-01

    Nerve growth factor (NGF) is important for the development and the differentiation of neuronal and non-neuronal cells. NGF binds to specific low- and high-affinity cell surface receptors, respectively, p75NTR and TrkA. In the present study, we examined by immunohistochemistry the expression patterns of the NGF, p75NTR, and TrkA proteins during human fetal tooth development, in order to better understand the mode of NGF signaling action in dental tissues. The results obtained show that these molecules are expressed in a wide range of dental cells of both epithelial and mesenchymal origin during early stages of odontogenesis, as well as in nerve fibers that surround the developing tooth germs. At more advanced developmental stages, NGF and TrkA are localized in differentiated cells with secretory capacities such as preameloblasts/ameloblasts secreting enamel matrix and odontoblasts secreting dentine matrix. In contrast, p75NTR expression is absent from these secretory cells and restricted in proliferating cells of the dental epithelium. The temporospatial distribution of NGF and p75NTR in fetal human teeth is similar, but not identical, with that observed previously in the developing rodent teeth, thus indicating that the genetic information is well-conserved during evolution. The expression patterns of NGF, p75NTR, and TrkA during odontogenesis suggest regulatory roles for NGF signaling in proliferation and differentiation of epithelial and mesenchymal cells, as well as in attraction and sprouting of nerve fibers within dental tissues. PMID:27536251

  8. Omeprazole does not Potentiate Acute Oxygen Toxicity in Fetal Human Pulmonary Microvascular Endothelial Cells Exposed to Hyperoxia

    PubMed Central

    Patel, Ananddeep; Zhang, Shaojie; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the pathogenesis of broncho-pulmonary dysplasia (BPD), which is a developmental lung disease of premature infants that is characterized by an interruption of lung alveolar and pulmonary vascular development. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Earlier we observed that OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury in adult mice and oxygen toxicity in adult human lung cells. However, our later studies in newborn mice demonstrated that OM potentiates hyperoxia-induced developmental lung injury. Whether OM exerts a similar toxicity in primary human fetal lung cells is unknown. Hence, we tested the hypothesis that OM potentiates hyperoxia-induced cytotoxicity and ROS generation in the human fetal lung derived primary human pulmonary microvascular endothelial cells (HPMEC). OM activated AhR as evident by a dose-dependent increase in cytochrome P450 (CYP) 1A1 mRNA levels in OM-treated cells. Furthermore, OM at a concentration of 100 μM (OM 100) increased NADP(H) quinone oxidoreductase 1 (NQO1) expression. Surprisingly, hyperoxia decreased rather than increase the NQO1 protein levels in OM 100-treated cells. Exposure to hyperoxia increased cytotoxicity and hydrogen peroxide (H2O2) levels. Interestingly, OM 100-treated cells exposed to air had increased H2O2 levels. However, hyperoxia did not further augment H2O2 levels in OM 100-treated cells. Additionally, hyperoxia-mediated oxygen toxicity was similar in both vehicle- and OM-treated cells. These findings contradict our hypothesis and support the hypothesis that OM does not potentiate acute hyperoxic injury in HPMEC in vitro. PMID:26779382

  9. CD10/neutral endopeptidase 24.11 in developing human fetal lung. Patterns of expression and modulation of peptide-mediated proliferation.

    PubMed Central

    Sunday, M E; Hua, J; Torday, J S; Reyes, B; Shipp, M A

    1992-01-01

    The cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) functions in multiple organ systems to downregulate responses to peptide hormones. Recently, CD10/NEP was found to hydrolyze bombesin-like peptides (BLP), which are mitogens for normal bronchial epithelial cells and small cell lung carcinomas. Growth of BLP-responsive small cell lung carcinomas was potentiated by CD10/NEP inhibition, implicating CD10/NEP in regulation of BLP-mediated tumor growth. BLP are also likely to participate in normal lung development because high BLP levels are found in fetal lung, and bombesin induces proliferation and maturation of human fetal lung in organ cultures and murine fetal lung in utero. To explore potential roles for CD10/NEP in regulating peptide-mediated human fetal lung development, we have characterized temporal and cellular patterns of CD10/NEP expression and effects of CD10/NEP inhibition in organ cultures. Peak CD10/NEP transcript levels are identified at 11-13 wk gestation by Northern blots and localized to epithelial cells and mesenchyme of developing airways by in situ hybridization. CD10/NEP immunostaining is most intense in undifferentiated airway epithelium. In human fetal lung organ cultures, inhibition of CD10/NEP with either phosphoramidon or SCH32615 increases thymidine incorporation by 166-182% (P < 0.025). The specific BLP receptor antagonist, [Leu13-psi(CH2NH)Leu14]bombesin abolishes these effects on fetal lung growth, suggesting that CD10/NEP modulates BLP-mediated proliferation. CD10/NEP expression in the growing front of airway epithelium and the effects of CD10/NEP inhibitors in lung explants implicate the enzyme in the regulation of peptide-mediated fetal lung growth. Images PMID:1469102

  10. Heart Anatomy

    MedlinePlus

    ... Incredible Machine Bonus poster (PDF) The Human Heart Anatomy Blood The Conduction System The Coronary Arteries The ... of the Leg Vasculature of the Torso Heart anatomy illustrations and animations for grades K-6. Heart ...

  11. Inhibition of Acute in vivo Human Immunodeficiency Virus Infection by Human Interleukin 10 Treatment of SCID Mice Implanted with Human Fetal Thymus and Liver

    NASA Astrophysics Data System (ADS)

    Kollmann, Tobias R.; Pettoello-Mantovani, Massimo; Katopodis, Nikos F.; Hachamovitch, Moshe; Rubinstein, Arye; Kim, Ana; Goldstein, Harris

    1996-04-01

    To improve the usefulness of in vivo models for the investigation of the pathophysiology of human immunodeficiency virus (HIV) infection, we modified the construction of SCID mice implanted with human fetal thymus and liver (thy/liv-SCID-hu mice) so that the peripheral blood of the mice contained significant numbers of human monocytes and T cells. After inoculation with HIV-159, a primary patient isolate capable of infecting monocytes and T cells, the modified thy/liv-SCID-hu mice developed disseminated HIV infection that was associated with plasma viremia. The development of plasma viremia and HIV infection in thy/liv-SCID-hu mice inoculated with HIV-159 was inhibited by acute treatment with human interleukin (IL) 10 but not with human IL-12. The human peripheral blood mononuclear cells in these modified thy/liv-SCID-hu mice were responsive in vivo to treatment with exogenous cytokines. Human interferon γ expression in the circulating human peripheral blood mononuclear cells was induced by treatment with IL-12 and inhibited by treatment with IL-10. Thus, these modified thy/liv-SCID-hu mice should prove to be a valuable in vivo model for examining the role of immunomodulatory therapy in modifying HIV infection. Furthermore, our demonstration of the in vivo inhibitory effect of IL-10 on acute HIV infection suggests that further studies may be warranted to evaluate whether there is a role for IL-10 therapy in preventing HIV infection in individuals soon after exposure to HIV such as for children born to HIV-infected mothers.

  12. Human gene copy number spectra analysis in congenital heart malformations.

    PubMed

    Tomita-Mitchell, Aoy; Mahnke, Donna K; Struble, Craig A; Tuffnell, Maureen E; Stamm, Karl D; Hidestrand, Mats; Harris, Susan E; Goetsch, Mary A; Simpson, Pippa M; Bick, David P; Broeckel, Ulrich; Pelech, Andrew N; Tweddell, James S; Mitchell, Michael E

    2012-05-01

    The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency "spectra" to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways. PMID:22318994

  13. Human gene copy number spectra analysis in congenital heart malformations

    PubMed Central

    Mahnke, Donna K.; Struble, Craig A.; Tuffnell, Maureen E.; Stamm, Karl D.; Hidestrand, Mats; Harris, Susan E.; Goetsch, Mary A.; Simpson, Pippa M.; Bick, David P.; Broeckel, Ulrich; Pelech, Andrew N.; Tweddell, James S.; Mitchell, Michael E.

    2012-01-01

    The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency “spectra” to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways. PMID:22318994

  14. The human subject: an integrative animal model for 21st century heart failure research

    PubMed Central

    Chandrasekera, P Charukeshi; Pippin, John J

    2015-01-01

    Heart failure remains a leading cause of death and it is a major cause of morbidity and mortality affecting tens of millions of people worldwide. Despite decades of extensive research conducted at enormous expense, only a handful of interventions have significantly impacted survival in heart failure. Even the most widely prescribed treatments act primarily to slow disease progression, do not provide sustained survival advantage, and have adverse side effects. Since mortality remains about 50% within five years of diagnosis, the need to increase our understanding of heart failure disease mechanisms and development of preventive and reparative therapies remains critical. Currently, the vast majority of basic science heart failure research is conducted using animal models ranging from fruit flies to primates; however, insights gleaned from decades of animal-based research efforts have not been proportional to research success in terms of deciphering human heart failure and developing effective therapeutics for human patients. Here we discuss the reasons for this translational discrepancy which can be equally attributed to the use of erroneous animal models and the lack of widespread use of human-based research methodologies and address why and how we must position our own species at center stage as the quintessential animal model for 21st century heart failure research. If the ultimate goal of the scientific community is to tackle the epidemic status of heart failure, the best way to achieve that goal is through prioritizing human-based, human-relevant research. PMID:26550463

  15. Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flk1+/CD31-/CD34- Progenitors.

    PubMed

    Fang, Baijun; Shi, Mingxia; Liao, Lianming; Yang, Shaoguang; Liu, Yuhao; Zhao, Robert Chunhua

    2003-12-01

    We previously reported that Flk1(+)/CD31(-)/CD34(-) cells isolated from human fetal bone marrow can differentiate at the single cell level into endothelial and hematopoietic cells in vitro. Here we report that within this cell population reside cells that can differentiate into the epithelium of liver, lung, gut, as well as the cells of both hematopoietic and endothelial system after primary or secondary transplantation into irradiated nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Hence, Flk1(+)/CD31(-)/CD34(-) cells possess remarkable differentiation potential and may thereby provide an alternative to hematopoietic stem cells for transplantation. In addition, our results show this stem cell population effectively accelerated wound healing in NOD/SCID mice and thus holds therapeutic promise for treatment of genetic disorders, organ dysfunction, and tissue repair in humans. PMID:14977470

  16. Fetal medicine and treatment.

    PubMed

    Westgren, Magnus

    2011-01-01

    Fetal medicine covers a broad spectrum of conditions that can be diagnosed before birth. Different disorders will require different treatment strategies and there is often an important ontogenetic aspect on how and when treatment can be implemented. Due to the limited availability there is a general lack of knowledge on how pharmacotherapy can be provided in the most efficient way. Until recently most knowledge about how different drugs are transferred and metabolized in the human fetus is based on very limited observational studies on concentrations of drugs in fetal blood and other fetal compartments. It might be that the rapid development of other non-invasive methods for fetal diagnostics such as isolation of fetal DNA and RNA in maternal serum, NMR imaging and other techniques could in the future be explored in fetal pharmacotherapy. Introduction of new treatment strategies are often based on extrapolation from experience in neonates and adults. However some fetal conditions are very specific for this time period in life. This especially entails disturbances in development as malformations, early growth restriction and several congenital disorders. Here it might be required to introduce new treatment strategies without any previous experience in humans. Example of this ethical dilemma is gene therapy for lung growth in severe cases of diaphragmatic hernia and early growth restriction. The risk-benefit issues need to be discussed in all these alternatives. However, it is likely that the concept of the human fetus as a potential patient is still in its infancy and with an improved understanding about fetal patho-physiology there will be a continued need for better knowledge of pharmacotherapy during this crucial time period in life. PMID:21882116

  17. In situ expression of cytokines in human heart allografts.

    PubMed Central

    Van Hoffen, E.; Van Wichen, D.; Stuij, I.; De Jonge, N.; Klöpping, C.; Lahpor, J.; Van Den Tweel, J.; Gmelig-Meyling, F.; De Weger, R.

    1996-01-01

    Although allograft rejection, the major complication of human organ transplantation, has been extensively studied, little is known about the exact cellular localization of the cytokine expression inside the graft during rejection. Therefore, we used in situ hybridization and immunohistochemistry to study local cytokine mRNA and protein expression in human heart allografts, in relation to the phenotypical characteristics of the cellular infiltrate. Clear expression of mRNA for interleukin (IL)-6, IL-8, IL-9, and IL-10 and weak expression for IL-2, IL-4, IL-5, and tumor necrosis factor (TNF)-alpha was detected in biopsies exhibiting high rejection grades (grade 3A/B). Also at lower grades of rejection, mRNA for IL-6 and IL-9 was present. Some mRNA for IL-1 beta, TNF-beta, and interferon (IFN)-gamma was detected in only a few biopsies. Using immunohistochemistry, IL-2, IL-3, and IL-10 protein was detected in biopsies with high rejection grades, whereas few cells expressed IL-6, IL-8, and IFN-gamma. In biopsies with lower grades of rejection, a weaker expression of these cytokines was observed. IL-4 was hardly detected in any of the biopsies. The level of IL-12 expression was equal in all biopsies. Although mRNA expression of several cytokines was expressed at a low level compared with the protein level of those cytokines, there was a good correlation between localization of cytokine mRNA and protein. Expression of IL-2, IL-4, IL-5, TNF-alpha, and IFN-gamma was mainly detected in lymphocytes. IL-3, IL-6, IL-10, and IL-12 were not detected or not only detected in lymphocytes but also in other stromal elements (eg, macrophages). Macrophage production of IL-3 and IL-12 was confirmed by immunofluorescent double labeling with CD68. We conclude that cardiac allograft rejection is not simply regulated by T helper cell cytokine production, but other intragraft elements contribute considerably to this process. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8952534

  18. Mutator/Hypermutable Fetal/Juvenile Metakaryotic Stem Cells and Human Colorectal Carcinogenesis

    PubMed Central

    Kini, Lohith G.; Herrero-Jimenez, Pablo; Kamath, Tushar; Sanghvi, Jayodita; Gutierrez, Efren; Hensle, David; Kogel, John; Kusko, Rebecca; Rexer, Karl; Kurzweil, Ray; Refinetti, Paulo; Morgenthaler, Stephan; Koledova, Vera V.; Gostjeva, Elena V.; Thilly, William G.

    2013-01-01

    Adult age-specific colorectal cancer incidence rates increase exponentially from maturity, reach a maximum, then decline in extreme old age. Armitage and Doll (1) postulated that the exponential increase resulted from “n” mutations occurring throughout adult life in normal “cells at risk” that initiated the growth of a preneoplastic colony in which subsequent “m” mutations promoted one of the preneoplastic “cells at risk” to form a lethal neoplasia. We have reported cytologic evidence that these “cells at risk” are fetal/juvenile organogenic, then preneoplastic metakaryotic stem cells. Metakaryotic cells display stem-like behaviors of both symmetric and asymmetric nuclear divisions and peculiarities such as bell shaped nuclei and amitotic nuclear fission that distinguish them from embryonic, eukaryotic stem cells. Analyses of mutant colony sizes and numbers in adult lung epithelia supported the inferences that the metakaryotic organogenic stem cells are constitutively mutator/hypermutable and that their contributions to cancer initiation are limited to the fetal/juvenile period. We have amended the two-stage model of Armitage and Doll and incorporated these several inferences in a computer program CancerFit v.5.0. We compared the expectations of the amended model to adult (15–104 years) age-specific colon cancer rates for European-American males born 1890–99 and observed remarkable concordance. When estimates of normal colonic fetal/juvenile APC and OAT gene mutation rates (∼2–5 × 10−5 per stem cell doubling) and preneoplastic colonic gene loss rates (∼8 × 10−3) were applied, the model was in accordance only for the values of n = 2 and m = 4 or 5. PMID:24195059

  19. ATP flux through creatine kinase in the normal, stressed, and failing human heart.

    PubMed

    Weiss, Robert G; Gerstenblith, Gary; Bottomley, Paul A

    2005-01-18

    The heart consumes more energy per gram than any other organ, and the creatine kinase (CK) reaction serves as its prime energy reserve. Because chemical energy is required to fuel systolic and diastolic function, the question of whether the failing heart is "energy starved" has been debated for decades. Despite the central role of the CK reaction in cardiac energy metabolism, direct measures of CK flux in the beating human heart were not previously possible. Using an image-guided molecular assessment of endogenous ATP turnover, we directly measured ATP flux through CK in normal, stressed, and failing human hearts. We show that cardiac CK flux in healthy humans is faster than that estimated through oxidative phosphorylation and that CK flux does not increase during a doubling of the heart rate-blood pressure product by dobutamine. Furthermore, cardiac ATP flux through CK is reduced by 50% in mild-to-moderate human heart failure (1.6 +/- 0.6 vs. 3.2 +/- 0.9 micromol/g of wet weight per sec, P <0.0005). We conclude that magnetic resonance strategies can now directly assess human myocardial CK energy flux. The deficit in ATP supplied by CK in the failing heart is cardiac-specific and potentially of sufficient magnitude, even in the absence of a significant reduction in ATP stores, to contribute to the pathophysiology of human heart failure. These findings support the pursuit of new therapies that reduce energy demand and/or augment energy transfer in heart failure and indicate that cardiac magnetic resonance can be used to assess their effectiveness. PMID:15647364

  20. ATP flux through creatine kinase in the normal, stressed, and failing human heart

    PubMed Central

    Weiss, Robert G.; Gerstenblith, Gary; Bottomley, Paul A.

    2005-01-01

    The heart consumes more energy per gram than any other organ, and the creatine kinase (CK) reaction serves as its prime energy reserve. Because chemical energy is required to fuel systolic and diastolic function, the question of whether the failing heart is “energy starved” has been debated for decades. Despite the central role of the CK reaction in cardiac energy metabolism, direct measures of CK flux in the beating human heart were not previously possible. Using an image-guided molecular assessment of endogenous ATP turnover, we directly measured ATP flux through CK in normal, stressed, and failing human hearts. We show that cardiac CK flux in healthy humans is faster than that estimated through oxidative phosphorylation and that CK flux does not increase during a doubling of the heart rate-blood pressure product by dobutamine. Furthermore, cardiac ATP flux through CK is reduced by 50% in mild-to-moderate human heart failure (1.6 ± 0.6 vs. 3.2 ± 0.9 μmol/g of wet weight per sec, P < 0.0005). We conclude that magnetic resonance strategies can now directly assess human myocardial CK energy flux. The deficit in ATP supplied by CK in the failing heart is cardiac-specific and potentially of sufficient magnitude, even in the absence of a significant reduction in ATP stores, to contribute to the pathophysiology of human heart failure. These findings support the pursuit of new therapies that reduce energy demand and/or augment energy transfer in heart failure and indicate that cardiac magnetic resonance can be used to assess their effectiveness. PMID:15647364

  1. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Hall, Earl T.; Baker, Donald A.; Bryant, Timothy D.

    1992-08-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  2. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Hall, Earl T. (Inventor); Baker, Donald A. (Inventor); Bryant, Timothy D. (Inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  3. Fetal and Neonatal Arrhythmias.

    PubMed

    Jaeggi, Edgar; Öhman, Annika

    2016-03-01

    Cardiac arrhythmias are an important aspect of fetal and neonatal medicine. Premature complexes of atrial or ventricular origin are the main cause of an irregular heart rhythm. The finding is typically unrelated to an identifiable cause and no treatment is required. Tachyarrhythmia most commonly relates to supraventricular reentrant tachycardia, atrial flutter, and sinus tachycardia. Several antiarrhythmic agents are available for the perinatal treatment of tachyarrhythmias. Enduring bradycardia may result from sinus node dysfunction, complete heart block and nonconducted atrial bigeminy as the main arrhythmia mechanisms. The management and outcome of bradycardia depend on the underlying mechanism. PMID:26876124

  4. Simultaneous quantification of nicotine, opioids, cocaine, and metabolites in human fetal postmortem brain by liquid chromatography tandem mass spectrometry

    PubMed Central

    Shakleya, Diaa M.

    2011-01-01

    A validated method for simultaneous LCMSMS quantification of nicotine, cocaine, 6-acetylmorphine (6AM), codeine, and metabolites in 100 mg fetal human brain was developed and validated. After homogenization and solid-phase extraction, analytes were resolved on a Hydro-RP analytical column with gradient elution. Empirically determined linearity was from 5–5,000 pg/mg for cocaine and benzoylecgonine (BE), 25–5,000 pg/mg for cotinine, ecgonine methyl ester (EME) and 6AM, 50–5000 pg/mg for trans-3-hydroxycotinine (OH-cotinine) and codeine, and 250–5,000 pg/mg for nicotine. Potential endogenous and exogenous interferences were resolved. Intra- and inter-assay analytical recoveries were ≥92%, intra- and inter-day and total assay imprecision were ≤14% RSD and extraction efficiencies were ≥67.2% with ≤83% matrix effect. Method applicability was demonstrated with a postmortem fetal brain containing 40 pg/mg cotinine, 65 pg/mg OH-cotinine, 13 pg/mg cocaine, 34 pg/mg EME, and 525 pg/mg BE. This validated method is useful for determination of nicotine, opioid, and cocaine biomarkers in brain. PMID:19229524

  5. Maintaining human fetal pancreatic stellate cell function and proliferation require β1 integrin and collagen I matrix interactions

    PubMed Central

    Chen, Bijun; Li, Jinming; Fellows, George F.; Sun, Zilin; Wang, Rennian

    2015-01-01

    Pancreatic stellate cells (PaSCs) are cells that are located around the acinar, ductal, and vasculature tissue of the rodent and human pancreas, and are responsible for regulating extracellular matrix (ECM) turnover and maintaining the architecture of pancreatic tissue. This study examines the contributions of integrin receptor signaling in human PaSC function and survival. Human PaSCs were isolated from pancreata collected during the 2nd trimester of pregnancy and identified by expression of stellate cell markers, ECM proteins and associated growth factors. Multiple integrins are found in isolated human PaSCs, with high levels of β1, α3 and α5. Cell adhesion and migration assays demonstrated that human PaSCs favour collagen I matrix, which enhanced PaSC proliferation and increased TGFβ1, CTGF and α3β1 integrin. Significant activation of FAK/ERK and AKT signaling pathways, and up-regulation of cyclin D1 protein levels, were observed within PaSCs cultured on collagen I matrix. Blocking β1 integrin significantly decreased PaSC adhesion, migration and proliferation, further complementing the aforementioned findings. This study demonstrates that interaction of β1 integrin with collagen I is required for the proliferation and function of human fetal PaSCs, which may contribute to the biomedical engineering of the ECM microenvironment needed for the efficient regulation of pancreatic development. PMID:26062655

  6. Visualization of Fiber Structurein the Left and Right Ventricleof a Human Heart

    SciTech Connect

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-07-12

    The human heart is composed of a helical network of musclefibers. Anisotropic least squares filtering followed by fiber trackingtechniques were applied to Diffusion Tensor Magnetic Resonance Imaging(DTMRI) data of the excised human heart. The fiber configuration wasvisualized by using thin tubes to increase 3-dimensional visualperception of the complex structure. All visualizations were performedusing the high-quality ray-tracing software POV-Ray. The fibers are shownwithin the left and right ventricles. Both ventricles exhibit similarfiber architecture and some bundles of fibers are shown linking right andleft ventricles on the posterior region of the heart.

  7. Minimal changes in heart rate of incubating American Oystercatchers (Haematopus palliatus) in response to human activity

    USGS Publications Warehouse

    Borneman, Tracy E.; Rose, Eli T.; Simons, Theodore R.

    2014-01-01

    An organism's heart rate is commonly used as an indicator of physiological stress due to environmental stimuli. We used heart rate to monitor the physiological response of American Oystercatchers (Haematopus palliatus) to human activity in their nesting environment. We placed artificial eggs with embedded microphones in 42 oystercatcher nests to record the heart rate of incubating oystercatchers continuously for up to 27 days. We used continuous video and audio recordings collected simultaneously at the nests to relate physiological response of birds (heart rate) to various types of human activity. We observed military and civilian aircraft, off-road vehicles, and pedestrians around nests. With the exception of high-speed, low-altitude military overflights, we found little evidence that oystercatcher heart rates were influenced by most types of human activity. The low-altitude flights were the only human activity to significantly increase average heart rates of incubating oystercatchers (12% above baseline). Although statistically significant, we do not consider the increase in heart rate during high-speed, low-altitude military overflights to be of biological significance. This noninvasive technique may be appropriate for other studies of stress in nesting birds.

  8. Adiponectin Inhibits Nutrient Transporters and Promotes Apoptosis in Human Villous Cytotrophoblasts: Involvement in the Control of Fetal Growth.

    PubMed

    Duval, Fabien; Santos, Esther Dos; Poidatz, Dorothée; Sérazin, Valérie; Gronier, Héloïse; Vialard, François; Dieudonné, Marie-Noëlle

    2016-05-01

    The placenta exchanges nutrients between the mother and the fetus and requires a constant abundant energy supply. Adiponectin (a cytokine produced primarily by adipose tissue) controls glucose and lipid homeostasis. It is well-known that maternal serum adiponectin levels are inversely related to birth weight, suggesting that adiponectin has a negative effect on fetal growth. This effect appears to be related to the control of nutrient transporters in human placenta. However, the underlying molecular mechanisms have not yet been characterized. In the present work, we studied adiponectin's direct effect on human primary cytotrophoblasts from first-trimester placenta. Our result showed that in placental cells, adiponectin 1) inhibits the expression of the major glucose transporters (GLUT1 and GLUT12) and sodium-coupled neutral amino acid transporters (SNAT1, SNAT2, and SNAT4), 2) enhances total ATP production but decreases lactate production, 3) inhibits mitochondrial biogenesis and function, and 4) stimulates cell death by enhancing the expression of the pro-apoptotic B-cell lymphoma-2 (BCL-2)-associated X protein (BAX) and tumor protein P53 (TP53) gene expression and inducing the caspase activity. Small-interfering RNA mediating the down-regulation of adiponectin receptors (ADIPOR1 and ADIPOR2) was used to demonstrate that adiponectin effects on placental nutrient transport and apoptosis seemed to be essentially mediated by these specific receptors. Taken as a whole, these results strongly suggest that adiponectin regulates human placental function by limiting nutrient transporter expression and inducing apoptosis. These findings may help us to better understand adiponectin's role in placental pathologies such as intrauterine growth restriction, which is characterized by fetal weight loss and drastic apoptosis of placental cells. PMID:27030046

  9. Maternal-fetal transfer of indocyanine green across the perfused human placenta.

    PubMed

    Rubinchik-Stern, Miriam; Shmuel, Miriam; Bar, Jacob; Eyal, Sara; Kovo, Michal

    2016-07-01

    Indocyanine green (ICG) is an FDA-approved near-infrared imaging probe, given also to pregnant women. We aimed to characterize ICG's transplacental transfer using the ex-vivo perfusion model. Placentas were obtained from caesarean deliveries. Cotyledons were cannulated and dually perfused. ICG, 9.6μg/mL and antipyrine (50μg/mL) were added to the maternal circulation in the absence (n=4) or the presence of the organic anion transporting polypeptide (OATPs) inhibitor rifampin (10μg/mL; n=5) or the P-glycoprotein inhibitor valspodar (2μg/mL; n=3). ICG's maternal-to-fetal transfer was evaluated over 180min. The cumulative percent of ICG in the fetal reservoir was minor. When ICG transfer was normalized to that of antipyrine, it was lower in the presence of rifampin (a 41% decrease; p<0.05). Valspodar did not appear to modify the kinetics of ICG. ICG's transplacental transfer is minimal and is probably OATP-mediated. The placenta is an effective protective barrier to ICG's distribution into the fetus. PMID:27132189

  10. Influence of endurance exercise and diet on human placental development and fetal growth.

    PubMed

    Clapp, J F

    2006-01-01

    The delivery of oxygen and substrate to the maternal-fetal interphase is the major maternal environmental stimulus which either up- or down-regulates feto-placental growth. During pregnancy, sustained exercise sessions cause an intermittent reduction in oxygen and substrate delivery to the interphase that may exceed 50% during the exercise but, it is probable that regular bouts of sustained exercise or exercise training may improve oxygen and substrate delivery at rest. The type of maternal carbohydrate intake (low- versus high-glycemic sources) and food intake frequency also influence substrate availability through their effects on maternal blood glucose levels and insulin sensitivity. As a result, different exercise regimens and/or different types of carbohydrate intake modify feto-placental growth. The magnitude and direction of the effect is determined by their average 24-h effect on oxygen and substrate availability at different time-points in pregnancy. In general, exercise in early and mid pregnancy stimulates placental growth while the relative amount of exercise in late pregnancy determines its effect on late fetal growth. Low-glycemic food sources in the diet decrease growth rate and size at birth while high-glycemic food sources increase it. Thus, it may be possible to improve pregnancy outcomes in both healthy, low-risk women and a variety of high-risk populaces by simply modifying maternal physical activity and dietary carbohydrate intake during pregnancy. PMID:16165206

  11. Zika virus damages the human placental barrier and presents marked fetal neurotropism.

    PubMed

    Noronha, Lucia de; Zanluca, Camila; Azevedo, Marina Luize Viola; Luz, Kleber Giovanni; Santos, Claudia Nunes Duarte Dos

    2016-05-01

    An unusually high incidence of microcephaly in newborns has recently been observed in Brazil. There is a temporal association between the increase in cases of microcephaly and the Zika virus (ZIKV) epidemic. Viral RNA has been detected in amniotic fluid samples, placental tissues and newborn and fetal brain tissues. However, much remains to be determined concerning the association between ZIKV infection and fetal malformations. In this study, we provide evidence of the transplacental transmission of ZIKV through the detection of viral proteins and viral RNA in placental tissue samples from expectant mothers infected at different stages of gestation. We observed chronic placentitis (TORCH type) with viral protein detection by immunohistochemistry in Hofbauer cells and some histiocytes in the intervillous spaces. We also demonstrated the neurotropism of the virus via the detection of viral proteins in glial cells and in some endothelial cells and the observation of scattered foci of microcalcifications in the brain tissues. Lesions were mainly located in the white matter. ZIKV RNA was also detected in these tissues by real-time-polymerase chain reaction. We believe that these findings will contribute to the body of knowledge of the mechanisms of ZIKV transmission, interactions between the virus and host cells and viral tropism. PMID:27143490

  12. Zika virus damages the human placental barrier and presents marked fetal neurotropism

    PubMed Central

    de Noronha, Lucia; Zanluca, Camila; Azevedo, Marina Luize Viola; Luz, Kleber Giovanni; dos Santos, Claudia Nunes Duarte

    2016-01-01

    An unusually high incidence of microcephaly in newborns has recently been observed in Brazil. There is a temporal association between the increase in cases of microcephaly and the Zika virus (ZIKV) epidemic. Viral RNA has been detected in amniotic fluid samples, placental tissues and newborn and fetal brain tissues. However, much remains to be determined concerning the association between ZIKV infection and fetal malformations. In this study, we provide evidence of the transplacental transmission of ZIKV through the detection of viral proteins and viral RNA in placental tissue samples from expectant mothers infected at different stages of gestation. We observed chronic placentitis (TORCH type) with viral protein detection by immunohistochemistry in Hofbauer cells and some histiocytes in the intervillous spaces. We also demonstrated the neurotropism of the virus via the detection of viral proteins in glial cells and in some endothelial cells and the observation of scattered foci of microcalcifications in the brain tissues. Lesions were mainly located in the white matter. ZIKV RNA was also detected in these tissues by real-time-polymerase chain reaction. We believe that these findings will contribute to the body of knowledge of the mechanisms of ZIKV transmission, interactions between the virus and host cells and viral tropism. PMID:27143490

  13. Total lymphatic irradiation and bone marrow in human heart transplantation

    SciTech Connect

    Kahn, D.R.; Hong, R.; Greenberg, A.J.; Gilbert, E.F.; Dacumos, G.C.; Dufek, J.H.

    1984-08-01

    Six patients, aged 36 to 59 years, had heart transplants for terminal myocardial disease using total lymphatic irradiation (TLI) and donor bone marrow in addition to conventional therapy. All patients were poor candidates for transplantation because of marked pulmonary hypertension, unacceptable tissue matching, or age. Two patients are living and well more than four years after the transplants. Two patients died of infection at six and seven weeks with normal hearts. One patient, whose preoperative pulmonary hypertension was too great for an orthotopic heart transplant, died at 10 days after such a procedure. The other patient died of chronic rejection seven months postoperatively. Donor-specific tolerance developed in 2 patients. TLI and donor bone marrow can produce specific tolerance to donor antigens and allow easy control of rejection, but infection is still a major problem. We describe a new technique of administering TLI with early reduction of prednisone that may help this problem.

  14. Application of Laser Doppler Vibrometery for human heart auscultation.

    PubMed

    Koegelenberg, S; Scheffer, C; Blanckenberg, M M; Doubell, A F

    2014-01-01

    In this study the potential of a Laser Doppler Vibrometer (LDV) was tested as a non-contact sensor for the classification of heart sounds. Of the twenty participants recorded using the LDV, five presented with Aortic Stenosis (AS), three were healthy and twelve presented with other pathologies. The recorded heart sounds were denoised and segmented using a combination of the Electrocardiogram (ECG) data and the complexity of the signal. Frequency domain features were extracted from the segmented heart sound cycles and used to train a K-nearest neighbor classifier. Due to the small number of participants, the classifier could not be trained to differentiate between normal and abnormal participants, but could successfully distinguish between participants who presented with AS and those who did not. A sensitivity of 80 % and a specificity of 100 % were achieved a test dataset. PMID:25570986

  15. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts.

    PubMed

    Shiba, Yuji; Fernandes, Sarah; Zhu, Wei-Zhong; Filice, Dominic; Muskheli, Veronica; Kim, Jonathan; Palpant, Nathan J; Gantz, Jay; Moyes, Kara White; Reinecke, Hans; Van Biber, Benjamin; Dardas, Todd; Mignone, John L; Izawa, Atsushi; Hanna, Ramy; Viswanathan, Mohan; Gold, Joseph D; Kotlikoff, Michael I; Sarvazyan, Narine; Kay, Matthew W; Murry, Charles E; Laflamme, Michael A

    2012-09-13

    Transplantation studies in mice and rats have shown that human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) can improve the function of infarcted hearts, but two critical issues related to their electrophysiological behaviour in vivo remain unresolved. First, the risk of arrhythmias following hESC-CM transplantation in injured hearts has not been determined. Second, the electromechanical integration of hESC-CMs in injured hearts has not been demonstrated, so it is unclear whether these cells improve contractile function directly through addition of new force-generating units. Here we use a guinea-pig model to show that hESC-CM grafts in injured hearts protect against arrhythmias and can contract synchronously with host muscle. Injured hearts with hESC-CM grafts show improved mechanical function and a significantly reduced incidence of both spontaneous and induced ventricular tachycardia. To assess the activity of hESC-CM grafts in vivo, we transplanted hESC-CMs expressing the genetically encoded calcium sensor, GCaMP3 (refs 4, 5). By correlating the GCaMP3 fluorescent signal with the host ECG, we found that grafts in uninjured hearts have consistent 1:1 host–graft coupling. Grafts in injured hearts are more heterogeneous and typically include both coupled and uncoupled regions. Thus, human myocardial grafts meet physiological criteria for true heart regeneration, providing support for the continued development of hESC-based cardiac therapies for both mechanical and electrical repair. PMID:22864415

  16. Fetal ultrasonography.

    PubMed Central

    Garmel, S H; D'Alton, M E

    1993-01-01

    Since its introduction in the 1950s, ultrasonography in pregnancy has been helpful in determining gestational age, detecting multiple pregnancies, locating placentas, diagnosing fetal anomalies, evaluating fetal well-being, and guiding obstetricians with in utero treatment. We review current standards and controversies regarding the indications, safety, accuracy, and limitations of ultrasonography in pregnancy. Images PMID:8236969

  17. Fetal Abuse.

    ERIC Educational Resources Information Center

    Kent, Lindsey; And Others

    1997-01-01

    Five cases of fetal abuse by mothers suffering from depression are discussed. Four of the women had unplanned pregnancies and had considered termination of the pregnancy. Other factors associated with fetal abuse include pregnancy denial, pregnancy ambivalence, previous postpartum depression, and difficulties in relationships. Vigilance for…

  18. [Fetal programming].

    PubMed

    Lang, U; Fink, D; Kimmig, R

    2008-01-01

    The intrauterine environment not only influences fetal well-being and behaviour during pregnancy, but also predisposes the fetus in many health aspects of later life. The terms 'fetal programming' and 'developmental origins of health and disease' reflect the enormous impact of pregnancy-related factors on the individual and the health. PMID:19096216

  19. Fetal development

    MedlinePlus

    Cunningham FG, Leveno KJ, Bloom SL, et al. Fetal growth and development. In: Cunningham FG, Leveno KL, Bloom SL, et al, eds. Williams Obstetrics . 23rd ed. New York, NY: McGraw-Hill; ... and fetal physiology. In: Gabbe SG, Niebyl JR, Simpson JL, ...

  20. Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.

    PubMed

    Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J

    2016-08-01

    Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. PMID:27565903

  1. Heart Rate and Heart Rate Variability in Dairy Cows with Different Temperament and Behavioural Reactivity to Humans

    PubMed Central

    Tőzsér, János; Szenci, Ottó; Póti, Péter; Pajor, Ferenc

    2015-01-01

    From the 1990s, extensive research was started on the physiological aspects of individual traits in animals. Previous research has established two extreme (proactive and reactive) coping styles in several animal species, but the means of reactivity with the autonomic nervous system (ANS) activity has not yet been investigated in cattle. The aim of this study was the characterization of cardiac autonomic activity under different conditions in cows with different individual characteristics. For this purpose, we investigated heart rate and ANS-related heart rate variability (HRV) parameters of dairy cows (N = 282) on smaller- and larger-scale farms grouped by (1) temperament and (2) behavioural reactivity to humans (BRH). Animals with high BRH scores were defined as impulsive, while animals with low BRH scores were defined as reserved. Cardiac parameters were calculated for undisturbed lying (baseline) and for milking bouts, the latter with the presence of an unfamiliar person (stressful situation). Sympathetic tone was higher, while vagal activity was lower in temperamental cows than in calm animals during rest both on smaller- and larger-scale farms. During milking, HRV parameters were indicative of a higher sympathetic and a lower vagal activity of temperamental cows as compared to calm ones in farms of both sizes. Basal heart rate did not differ between BRH groups either on smaller- or larger-scale farms. Differences between basal ANS activity of impulsive and reserved cows reflected a higher resting vagal and lower sympathetic activity of reserved animals compared to impulsive ones both on smaller- and larger-scale farms. There was no difference either in heart rate or in HRV parameters between groups during milking neither in smaller- nor in larger-scale farms. These two groupings allowed to draw possible parallels between personality and cardiac autonomic activity during both rest and milking in dairy cows. Heart rate and HRV seem to be useful for

  2. Functionally graded beta-TCP/PCL nanocomposite scaffolds: in vitro evaluation with human fetal osteoblast cells for bone tissue engineering.

    PubMed

    Ozkan, Seher; Kalyon, Dilhan M; Yu, Xiaojun

    2010-03-01

    The engineering of biomimetic tissue relies on the ability to develop biodegradable scaffolds with functionally graded physical and chemical properties. In this study, a twin-screw-extrusion/spiral winding (TSESW) process was developed to enable the radial grading of porous scaffolds (discrete and continuous gradations) that were composed of polycaprolactone (PCL), beta-tricalciumphosphate (beta-TCP) nanoparticles, and salt porogens. Scaffolds with interconnected porosity, exhibiting myriad radial porosity, pore-size distributions, and beta-TCP nanoparticle concentration could be obtained. The results of the characterization of their compressive properties and in vitro cell proliferation studies using human fetal osteoblast cells suggest the promising nature of such scaffolds. The significant degree of freedom offered by the TSESW process should be an additional enabler in the quest toward the mimicry of the complex elegance of the native tissues. PMID:19296543

  3. Encounters with the Human Heart: An Interview with John Stone.

    ERIC Educational Resources Information Center

    Flynn, Dale Bachman

    1995-01-01

    Interviews Dale Bachman Flynn, professor of cardiology and dean of admissions and student affairs at Emory University School of Medicine, about his "In the Country of Hearts," a collection of stories about his medical practice. Discusses Flynn's personal life; his life-long practice of writing; and his interest in the intersections among medicine,…

  4. Common Tests for Congenital Heart Defects

    MedlinePlus

    ... Heart Defect - Fetal Circulation • Care & Treatment • Tools & Resources Web Booklets on Congenital Heart Defects These online publications ... to you or your child’s defect and concerns. Web Booklet: Adults With Congenital Heart Defects Web Booklet: ...

  5. Fetal Brain Behavior and Cognitive Development.

    ERIC Educational Resources Information Center

    Joseph, R.

    2000-01-01

    Presents information on prenatal brain development, detailing the functions controlled by the medulla, pons, and midbrain, and the implications for cognitive development. Concludes that fetal cognitive motor activity, including auditory discrimination, orienting, the wake-sleep cycle, fetal heart rate accelerations, and defensive reactions,…

  6. Infrequency of cytomegalovirus genome in coronary arteriopathy of human heart allografts.

    PubMed Central

    Gulizia, J. M.; Kandolf, R.; Kendall, T. J.; Thieszen, S. L.; Wilson, J. E.; Radio, S. J.; Costanzo, M. R.; Winters, G. L.; Miller, L. L.; McManus, B. M.

    1995-01-01

    In heart transplantation, long-term engraftment success is severely limited by the rapid development of obliterative disease of the coronary arteries. Data from various groups have been suggestive of a pathogenetic role of herpesviruses, particularly human cytomegalovirus, in accelerated allograft coronary artery disease; however, results are not yet conclusive. This study examines the hypothesis that human cytomegalovirus infection of allograft tissues is related pathogenetically and directly to accelerated coronary artery disease. Using in situ DNA hybridization and polymerase chain reaction, we examined particular coronary artery segments from 41 human heart allografts (ranging from 4 days to greater than 4 years after transplantation; mean, 457 days) and 22 donor age- and gender-comparable, coronary site-matched trauma victims for presence of human cytomegalovirus DNA. Human cytomegalovirus genome was detected in 8 of 41 (19.5%) allografts and in 1 of 22 (4.5%) control hearts. This difference in positivity was not statistically significant (P = 0.10). In the human cytomegalovirus-positive hearts, viral genome was localized to perivascular myocardium or coronary artery media or adventitia. Human cytomegalovirus genome was not detected in arterial intima of any allograft or control heart, although human cytomegalovirus genome was readily identified within intima of small pulmonary arteries from lung tissue with human cytomegalovirus pneumonitis. By statistical analyses, the presence of human cytomegalovirus genome was not associated with the nature or digitized extent of transplant arteriopathy, evidence of rejection, allograft recipient or donor serological data suggestive of human cytomegalovirus infection, duration of allograft implantation, or causes of death or retransplantation. Thus, our data indicate a low frequency of detectable human cytomegalovirus genome in accelerated coronary artery disease and do not support a direct role for human cytomegalovirus

  7. Angiotensin II formation in the intact human heart. Predominance of the angiotensin-converting enzyme pathway.

    PubMed Central

    Zisman, L S; Abraham, W T; Meixell, G E; Vamvakias, B N; Quaife, R A; Lowes, B D; Roden, R L; Peacock, S J; Groves, B M; Raynolds, M V

    1995-01-01

    It has been proposed that the contribution of myocardial tissue angiotensin converting enzyme (ACE) to angiotensin II (Ang II) formation in the human heart is low compared with non-ACE pathways. However, little is known about the actual in vivo contribution of these pathways to Ang II formation in the human heart. To examine angiotensin II formation in the intact human heart, we administered intracoronary 123I-labeled angiotensin I (Ang I) with and without intracoronary enalaprilat to orthotopic heart transplant recipients. The fractional conversion of Ang I to Ang II, calculated after separation of angiotensin peptides by HPLC, was 0.415 +/- 0.104 (n = 5, mean +/- SD). Enalaprilat reduced fractional conversion by 89%, to a value of 0.044 +/- 0.053 (n = 4, P = 0.002). In a separate study of explanted hearts, a newly developed in vitro Ang II-forming assay was used to examine cardiac tissue ACE activity independent of circulating components. ACE activity in solubilized left ventricular membrane preparations from failing hearts was 49.6 +/- 5.3 fmol 125I-Ang II formed per minute per milligram of protein (n = 8, +/- SE), and 35.9 +/- 4.8 fmol/min/mg from nonfailing human hearts (n = 7, P = 0.08). In the presence of 1 microM enalaprilat, ACE activity was reduced by 85%, to 7.3 +/- 1.4 fmol/min/mg in the failing group and to 4.6 +/- 1.3 fmol/min/mg in the nonfailing group (P < 0.001). We conclude that the predominant pathway for angiotensin II formation in the human heart is through ACE. Images PMID:7657820

  8. Multiparametric Phenotypic Screening System for Profiling Bioactive Compounds Using Human Fetal Hippocampal Neural Stem/Progenitor Cells.

    PubMed

    Tabata, Yoshikuni; Murai, Norio; Sasaki, Takeo; Taniguchi, Sachie; Suzuki, Shuichi; Yamazaki, Kazuto; Ito, Masashi

    2015-10-01

    Stem cell research has been progressing rapidly, contributing to regenerative biology and regenerative medicine. In this field, small-molecule compounds affecting stem cell proliferation/differentiation have been explored to understand stem cell biology and support regenerative medicine. In this study, we established a multiparametric screening system to detect bioactive compounds affecting the cell fate of human neural stem/progenitor cells (NSCs/NPCs), using human fetal hippocampal NSCs/NPCs, HIP-009 cells. We examined effects of 410 compounds, which were collected based on mechanisms of action (MOAs) and chemotypes, on HIP-009's cell fate (self-renewal, neuronal and astrocytic differentiation) and morphology by automated multiparametric assays and profiled induced cellular phenotypes. We found that this screening classified compounds with the same MOAs into subgroups according to additional pharmacological effects (e.g., mammalian target of rapamycin complex 1 [mTORC1] inhibitors and mTORC1/mTORC2 dual inhibitors among mTOR inhibitors). Moreover, it identified compounds that have off-target effects under matrix analyses of MOAs and structure similarities (e.g., neurotropic effects of amitriptyline among tri- and tetracyclic compounds). Therefore, this automated, medium-throughput and multiparametric screening system is useful for finding compounds that affect the cell fate of human NSCs/NPCs for supporting regenerative medicine and to fingerprint compounds based on human stem cells' multipotency, leading to understanding of stem cell biology. PMID:26245650

  9. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells.

    PubMed

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K; Berkovich, Irina; Sappal, Baljit S; Karnieli, Ohad; Zern, Mark A; Fleischer, Norman; Efrat, Shimon

    2003-06-10

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes. PMID:12756298

  10. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    NASA Astrophysics Data System (ADS)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  11. Xenotransplantation of Human Cardiomyocyte Progenitor Cells Does Not Improve Cardiac Function in a Porcine Model of Chronic Ischemic Heart Failure. Results from a Randomized, Blinded, Placebo Controlled Trial

    PubMed Central

    Jansen of Lorkeers, Sanne J.; Gho, Johannes M. I. H.; Koudstaal, Stefan; van Hout, Gerardus P. J.; Zwetsloot, Peter Paul M.; van Oorschot, Joep W. M.; van Eeuwijk, Esther C. M.; Leiner, Tim; Hoefer, Imo E.; Goumans, Marie-José; Doevendans, Pieter A.; Sluijter, Joost P. G.; Chamuleau, Steven A. J.

    2015-01-01

    Background Recently cardiomyocyte progenitor cells (CMPCs) were successfully isolated from fetal and adult human hearts. Direct intramyocardial injection of human CMPCs (hCMPCs) in experimental mouse models of acute myocardial infarction significantly improved cardiac function compared to controls. Aim Here, our aim was to investigate whether xenotransplantation via intracoronary infusion of fetal hCMPCs in a pig model of chronic myocardial infarction is safe and efficacious, in view of translation purposes. Methods & Results We performed a randomized, blinded, placebo controlled trial. Four weeks after ischemia/reperfusion injury by 90 minutes of percutaneous left anterior descending artery occlusion, pigs (n = 16, 68.5 ± 5.4 kg) received intracoronary infusion of 10 million fetal hCMPCs or placebo. All animals were immunosuppressed by cyclosporin (CsA). Four weeks after infusion, endpoint analysis by MRI displayed no difference in left ventricular ejection fraction, left ventricular end diastolic and left ventricular end systolic volumes between both groups. Serial pressure volume (PV-)loop and echocardiography showed no differences in functional parameters between groups at any timepoint. Infarct size at follow-up, measured by late gadolinium enhancement MRI showed no difference between groups. Intracoronary pressure and flow measurements showed no signs of coronary obstruction 30 minutes after cell infusion. No premature death occurred in cell treated animals. Conclusion Xenotransplantation via intracoronary infusion of hCMPCs is feasible and safe, but not associated with improved left ventricular performance and infarct size compared to placebo in a porcine model of chronic myocardial infarction. PMID:26678993

  12. Human Chorionic Gonadotropin Has Anti-Inflammatory Effects at the Maternal-Fetal Interface and Prevents Endotoxin-Induced Preterm Birth, but Causes Dystocia and Fetal Compromise in Mice.

    PubMed

    Furcron, Amy-Eunice; Romero, Roberto; Mial, Tara N; Balancio, Amapola; Panaitescu, Bogdan; Hassan, Sonia S; Sahi, Aashna; Nord, Claire; Gomez-Lopez, Nardhy

    2016-06-01

    Human chorionic gonadotropin (hCG) is implicated in the maintenance of uterine quiescence by down-regulating myometrial gap junctions during pregnancy, and it was considered as a strategy to prevent preterm birth after the occurrence of preterm labor. However, the effect of hCG on innate and adaptive immune cells implicated in parturition is poorly understood. Herein, we investigated the immune effects of hCG at the maternal-fetal interface during late gestation, and whether this hormone can safely prevent endotoxin-induced preterm birth. Using immunophenotyping, we demonstrated that hCG has immune effects at the maternal-fetal interface (decidual tissues) by: 1) increasing the proportion of regulatory T cells; 2) reducing the proportion of macrophages and neutrophils; 3) inducing an M1 → M2 macrophage polarization; and 4) increasing the proportion of T helper 17 cells. Next, ELISAs were used to determine whether the local immune changes were associated with systemic concentrations of progesterone, estradiol, and/or cytokines (IFNgamma, IL1beta, IL2, IL4, IL5, IL6, IL10, IL12p70, KC/GRO, and TNFalpha). Plasma concentrations of IL1beta, but not progesterone, estradiol, or any other cytokine, were increased following hCG administration. Pretreatment with hCG prevented endotoxin-induced preterm birth by 44%, proving the effectiveness of this hormone as an anti-inflammatory agent. However, hCG administration alone caused dystocia and fetal compromise, as proven by Doppler ultrasound. These results provide insight into the mechanisms whereby hCG induces an anti-inflammatory microenvironment at the maternal-fetal interface during late gestation, and demonstrate its effectiveness in preventing preterm labor/birth. However, the deleterious effects of this hormone on mothers and fetuses warrant caution. PMID:27146032

  13. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    SciTech Connect

    Magnusson, Lisa U.; Lundqvist, Annika; Asp, Julia; Synnergren, Jane; Johansson, Cecilia Thalen; Palmqvist, Lars; Jeppsson, Anders; Hulten, Lillemor Mattsson

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We found a 17-fold upregulation of ALOX15 in the ischemic heart. Black-Right-Pointing-Pointer Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. Black-Right-Pointing-Pointer We observed increased levels of proinflammatory markers in ischemic heart tissue. Black-Right-Pointing-Pointer Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1{alpha} (HIF-1{alpha}) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1{alpha} mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield

  14. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes

    PubMed Central

    Deurholt, Tanja; van Til, Niek P; Chhatta, Aniska A; ten Bloemendaal, Lysbeth; Schwartlander, Ruth; Payne, Catherine; Plevris, John N; Sauer, Igor M; Chamuleau, Robert AFM; Elferink, Ronald PJ Oude; Seppen, Jurgen; Hoekstra, Ruurdtje

    2009-01-01

    Background A clonal cell line that combines both stable hepatic function and proliferation capacity is desirable for in vitro applications that depend on hepatic function, such as pharmacological or toxicological assays and bioartificial liver systems. Here we describe the generation and characterization of a clonal human cell line for in vitro hepatocyte applications. Results Cell clones derived from human fetal liver cells were immortalized by over-expression of telomerase reverse transcriptase. The resulting cell line, cBAL111, displayed hepatic functionality similar to the parental cells prior to immortalization, and did not grow in soft agar. Cell line cBAL111 expressed markers of immature hepatocytes, like glutathione S transferase and cytokeratin 19, as well as progenitor cell marker CD146 and was negative for lidocaine elimination. On the other hand, the cBAL111 cells produced urea, albumin and cytokeratin 18 and eliminated galactose. In contrast to hepatic cell lines NKNT-3 and HepG2, all hepatic functions were expressed in cBAL111, although there was considerable variation in their levels compared with primary mature hepatocytes. When transplanted in the spleen of immunodeficient mice, cBAL111 engrafted into the liver and partly differentiated into hepatocytes showing expression of human albumin and carbamoylphosphate synthetase without signs of cell fusion. Conclusion This novel liver cell line has the potential to differentiate into mature hepatocytes to be used for in vitro hepatocyte applications. PMID:19845959

  15. A resource of ribosomal RNA-depleted RNA-Seq data from different normal adult and fetal human tissues

    PubMed Central

    Choy, Jocelyn Y.H.; Boon, Priscilla L.S.; Bertin, Nicolas; Fullwood, Melissa J.

    2015-01-01

    Gene expression is the most fundamental level at which the genotype leads to the phenotype of the organism. Enabled by ultra-high-throughput next-generation DNA sequencing, RNA-Seq involves shotgun sequencing of fragmented RNA transcripts by next-generation sequencing followed by in silico assembly, and is rapidly becoming the most popular method for gene expression analysis. Poly[A]+ RNA-Seq analyses of normal