Science.gov

Sample records for human glioblastoma intracellular

  1. The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na+/Ca2+ exchanger and increasing intracellular Ca2+

    PubMed Central

    Song, M; Chen, D; Yu, S P

    2014-01-01

    BACKGROUND AND PURPOSE SKF 96365 is well known for its suppressing effect on human glioblastoma growth by inhibiting pre-activated transient receptor potential canonical (TRPC) channels and Ca2+ influx. The effect of SKF 96363 on glioblastoma cells, however, may be multifaceted and this possibility has been largely ignored. EXPERIMENTAL APPROACH The effects of SKF 96365 on cell cycle and cell viability of cultured human glioblastoma cells were characterized. Western blot, Ca2+ imaging and patch clamp recordings were used to delineate cell death mechanisms. siRNA gene knockdown provided additional evidence. KEY RESULTS SKF 96365 repressed glioblastoma cell growth via increasing intracellular Ca2+ ([Ca2+]i) irrespective of whether TRPC channels were blocked or not. The effect of SKF 96365 primarily resulted from enhanced reverse operation of the Na+/Ca2+ exchanger (NCX) with an EC50 of 9.79 μM. SKF 96365 arrested the glioblastoma cells in the S and G2 phases and activated p38-MAPK and JNK, which were all prevented by the Ca2+ chelator BAPTA-AM or EGTA. The expression of NCX in glioblastoma cells was significantly higher than in normal human astrocytes. Knockdown of the NCX1 isoforms diminished the effect of SKF 96365 on glioblastoma cells. CONCLUSIONS AND IMPLICATIONS At the same concentration, SKF 96365 blocks TRPC channels and enhances the reverse mode of the NCX causing [Ca2+]i accumulation and cytotoxicity. This finding suggests an alternative pharmacological mechanism of SKF 96365. It also indicates that modulation of the NCX is an effective method to disrupt Ca2+ homeostasis and suppress human glioblastoma cells. PMID:24641279

  2. Decitabine Nano-conjugate Sensitizing Human Glioblastoma Cells to Temozolomide

    PubMed Central

    Cui, Yi; Naz, Asia; Thompson, David H.; Irudayaraj, Joseph

    2015-01-01

    In this study we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) based nano-conjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells. After synthesis, the highly efficient uptake process and intracellular dynamics of this nano-conjugate was monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nano-vector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing a “positive feedback” to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to excellent internalization and endo-lysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than free drug molecules. Hence, the synthesized nano-conjugate and temozolomide could act in synergy to deliver a more potent and long-term anti-proliferation effect against malignant GBM cells. PMID:25751281

  3. Glioblastoma

    MedlinePlus

    ... most common form of glioblastoma; it is very aggressive. Secondary: These tumors have a longer, somewhat slower growth history, but still are very aggressive. They may begin as lower-grade tumors which ...

  4. Glioblastoma.

    PubMed

    Wirsching, Hans-Georg; Galanis, Evanthia; Weller, Michael

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Defining histopathologic features are necrosis and endothelial proliferation, resulting in the assignment of grade IV, the highest grade in the World Health Organization (WHO) classification of brain tumors. The classic clinical term "secondary glioblastoma" refers to a minority of glioblastomas that evolve from previously diagnosed WHO grade II or grade III gliomas. Specific point mutations of the genes encoding isocitrate dehydrogenase (IDH) 1 or 2 appear to define molecularly these tumors that are associated with younger age and more favorable outcome; the vast majority of glioblastomas are IDH wild-type. Typical molecular changes in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signaling. Standard treatment of glioblastoma includes surgery, radiotherapy, and alkylating chemotherapy. Promoter methylation of the gene encoding the DNA repair protein, O(6)-methylguanyl DNA methyltransferase (MGMT), predicts benefit from alkylating chemotherapy with temozolomide and guides choice of first-line treatment in elderly patients. Current developments focus on targeting the molecular characteristics that drive the malignant phenotype, including altered signal transduction and angiogenesis, and more recently, various approaches of immunotherapy. PMID:26948367

  5. Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages

    PubMed Central

    Perez, Ana Paula; Cosaka, Maria Luz; Romero, Eder Lilia; Morilla, Maria Jose

    2011-01-01

    Background Gene silencing using small interfering RNA (siRNA) is a promising new therapeutic approach for glioblastoma. The endocytic uptake and delivery of siRNA to intracellular compartments could be enhanced by complexation with polyamidoamine dendrimers. In the present work, the uptake mechanisms and intracellular traffic of siRNA/generation 7 dendrimer complexes (siRNA dendriplexes) were screened in T98G glioblastoma and J774 macrophages. Methods The effect of a set of chemical inhibitors of endocytosis on the uptake and silencing capacity of dendriplexes was determined by flow cytometry. Colocalization of fluorescent dendriplexes with endocytic markers and occurrence of intracellular dissociation were assessed by confocal laser scanning microscopy. Results Uptake of siRNA dendriplexes by T98G cells was reduced by methyl-β-cyclodextrin, and genistein, and cytochalasine D, silencing activity was reduced by genistein; dendriplexes colocalized with cholera toxin subunit B. Therefore, caveolin-dependent endocytosis was involved both in the uptake and silencing activity of siRNA dendriplexes. On the other hand, uptake of siRNA dendriplexes by J774 cells was reduced by methyl-β-cyclodextrin, genistein, chlorpromazine, chloroquine, cytochalasine D, and nocodazole, the silencing activity was not affected by chlorpromazine, genistein or chloroquine, and dendriplexes colocalized with transferrin and cholera toxin subunit B. Thus, both clathrin-dependent and caveolin-dependent endocytosis mediated the uptake and silencing activity of the siRNA dendriplexes. SiRNA dendriplexes were internalized at higher rates by T98G but induced lower silencing than in J774 cells. SiRNA dendriplexes showed relatively slow dissociation kinetics, and their escape towards the cytosol was not mediated by acidification independently of the uptake pathway. Conclusion The extent of cellular uptake of siRNA dendriplexes was inversely related to their silencing activity. The higher silencing

  6. Detection of primary cilia in human glioblastoma

    PubMed Central

    Sarkisian, Matthew R.; Siebzehnrubl, Dorit; Hoang-Minh, Lan; Deleyrolle, Loic; Silver, Daniel J.; Siebzehnrubl, Florian A.; Guadiana, Sarah M.; Srivinasan, Gayathri; Semple-Rowland, Susan; Harrison, Jeffrey K.; Steindler, Dennis A.; Reynolds, Brent A.

    2015-01-01

    Glioblastoma (GBM) is the most common malignant adult brain tumor and carries a poor prognosis due to primary and acquired resistance. While many cellular features of GBM have been documented, it is unclear if cells within these tumors extend a primary cilium, an organelle whose associated signaling pathways may regulate proliferation, migration, and survival of neural precursor and tumor cells. Using immunohistochemical and electron microscopy (EM) techniques, we screened human GBM tumor biopsies and primary cell lines for cilia. Immunocytochemical staining of five primary GBM cell lines revealed that between 8 and 25 % of the cells in each line possessed gamma tubulin-positive basal bodies from which extended acetylated, alpha-tubulin-positive axonemes. EM analyses confirmed the presence of cilia at the cell surface and revealed that their axonemes contained organized networks of microtubules, a structural feature consistent with our detection of IFT88 and Arl13b, two trafficked cilia proteins, along the lengths of the axonemes. Notably, cilia were detected in each of 23 tumor biopsies (22 primary and 1 recurrent) examined. These cilia were distributed across the tumor landscape including regions proximal to the vasculature and within necrotic areas. Moreover, ciliated cells within these tumors co-stained with Ki67, a marker for actively dividing cells, and ZEB1, a transcription factor that is upregulated in GBM and linked to tumor initiation, invasion, and chemoresistance. Collectively, our data show that subpopulations of cells within human GBM tumors are ciliated. In view of mounting evidence supporting roles of primary cilia in tumor initiation and propagation, it is likely that further study of the effects of cilia on GBM tumor cell function will improve our understanding of GBM pathogenesis and may provide new directions for GBM treatment strategies. PMID:24510433

  7. Voltage-Gated Proton Channel in Human Glioblastoma Multiforme Cells.

    PubMed

    Ribeiro-Silva, Luisa; Queiroz, Fernanda Oliveira; da Silva, Annielle Mendes Brito; Hirata, Aparecida Emiko; Arcisio-Miranda, Manoel

    2016-07-20

    Solid tumors tend to have a more glycolytic metabolism leading to an accumulation of acidic metabolites in their cytosol, and consequently, their intracellular pH (pHi) turns critically lower if the cells do not handle the acid excess. Recently, it was proposed that the voltage gated proton channels (HV1) can regulate the pHi in several cancers. Here we report the functional expression of voltage gated proton channels in a human glioblastoma multiforme (GBM) cell line, the most common and lethal brain tumor. T98G cells presented an outward, slow activating voltage-dependent proton current, which was also ΔpH-dependent and inhibited by ZnCl2, characterizing it as being conducted by HV1 channels. Furthermore, blocking HV1 channels with ZnCl2 significantly reduced the pHi, cell survival, and migration, indicating an important role for HV1 for tumor proliferation and progression in GBM. Overall, our results suggest that HV1 channels can be a new therapeutic target for GBM. PMID:27225904

  8. Comprehensive genomic characterization defines human glioblastoma genes and core pathways.

    PubMed

    2008-10-23

    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multi-dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas--the most common type of adult brain cancer--and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol-3-OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer. PMID:18772890

  9. Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy.

    PubMed

    De Stasio, G; Casalbore, P; Pallini, R; Gilbert, B; Sanità, F; Ciotti, M T; Rosi, G; Festinesi, A; Larocca, L M; Rinelli, A; Perret, D; Mogk, D W; Perfetti, P; Mehta, M P; Mercanti, D

    2001-05-15

    157Gd is a potential agent for neutron capture cancer therapy (GdNCT). We directly observed the microdistribution of Gd in cultured human glioblastoma cells exposed to Gd-diethylenetriaminepentaacetic acid (Gd-DTPA). We demonstrated, with three independent techniques, that Gd-DTPA penetrates the plasma membrane, and we observed no deleterious effect on cell survival. A systematic microchemical analysis revealed a higher Gd accumulation in cell nuclei compared with cytoplasm. This is significant for prospective GdNCT because the proximity of Gd to DNA increases the cell-killing potential of the short-range, high-energy electrons emitted during the neutron capture reaction. We also exposed Gd-containing cells to thermal neutrons and demonstrated the GdNC reaction effectiveness in inducing cell death. These results in vitro stimulated in vivo Gd-DTPA uptake studies, currently underway, in human glioblastoma patients. PMID:11358855

  10. Tax-interacting protein 1 coordinates the spatiotemporal activation of Rho GTPases and regulates the infiltrative growth of human glioblastoma

    PubMed Central

    Wang, Hailun; Han, Miaojun; Whetsell, William; Wang, Jialiang; Rich, Jeremy; Hallahan, Dennis; Han, Zhaozhong

    2014-01-01

    PDZ domains represent one group of the major structural units that mediate protein interactions in intercellular contact, signal transduction and assembly of biological machineries. TIP-1 protein is composed of a single PDZ domain that distinguishes TIP-1 from other PDZ domain proteins that more often contain multiple protein domains and function as scaffolds for protein complex assembly. However, the biological functions of TIP-1, especially in cell transformation and tumor progression, are still controversial as observed in a variety of cell types. In this study, we have identified ARHGEF7, a guanine nucleotide exchange factor (GEF) for Rho GTPases, as one novel TIP-1 interacting protein in human glioblastoma cells. We found that the presence of TIP-1 protein is essential to the intracellular redistribution of ARHGEF7 and rhotekin, one Rho effector, and the spatiotemporally coordinated activation of Rho GTPases (RhoA, Cdc42 and Rac1) in migrating glioblastoma cells. TIP-1 knockdown resulted in both aberrant localization of ARHGEF7 and rhotekin, as well as abnormal activation of Rho GTPases that was accompanied with impaired motility of glioblastoma cells. Furthermore, TIP-1 knockdown suppressed tumor cell dispersal in orthotopic glioblastoma murine models. We also observed high levels of TIP-1 expression in human glioblastoma specimens, and the elevated TIP-1 levels are associated with advanced staging and poor prognosis in glioma patients. Although more studies are needed to further dissect the mechanism(s) by which TIP-1 modulates the intracellular redistribution and activation of Rho GTPases, this study suggests that TIP-1 holds potential as both a prognostic biomarker and a therapeutic target of malignant gliomas. PMID:23563176

  11. DIETARY ISOTHIOCYANATE IBERIN INHIBITS GROWTH AND INDUCES APOPTOSIS IN HUMAN GLIOBLASTOMA CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we evaluated the antiproliferative and proapoptotic effects of the isothiocyanate iberin, a bioactive agent in Brassicaceae species, in human glioblastoma cells. The human glioblastoma cell cultures were treated with different concentrations of iberin and tested for growth inhibition...

  12. Sesquiterpenoid Lactones in Tanacetum huronense Inhibit Human Glioblastoma Cell Proliferation.

    PubMed

    Dissanayake, Amila A; Bejcek, Bruce E; Zhang, Chuan-Rui; Nair, Muraleedharan G

    2016-05-01

    Tanacetum huronense (Lake Huron tansy), which is native to the upper Midwest region of USA and Canada, was examined for the presence of anticancer compounds using an in vitro human tumor cell proliferation inhibition assay, with glioblastoma derived cell line U-87 MG. Bioassay-directed purification of the ethyl acetate extract of the aerial portion of this plant identified six active sesquiterpenoid lactones (1-6). Among these, compounds 5 and 6 are new structural analogs. One of the most abundant isolates, tanacin (4), exhibited the greatest inhibition with an IC50 value of 4.5 μg/mL. PMID:27319121

  13. Targeted Intracellular Delivery of Resveratrol to Glioblastoma Cells Using Apolipoprotein E-Containing Reconstituted HDL as a Nanovehicle

    PubMed Central

    Kim, Sea H.; Adhikari, Birendra Babu; Cruz, Siobanth; Schramm, Michael P.; Vinson, Joe A.; Narayanaswami, Vasanthy

    2015-01-01

    The objective of this study is to transport and deliver resveratrol to intracellular sites using apolipoprotein E3 (apoE3). Reconstituted high-density lipoprotein (rHDL) bearing resveratrol (rHDL/res) was prepared using phospholipids and the low-density lipoprotein receptor (LDLr)-binding domain of apoE3. Biophysical characterization revealed that resveratrol was partitioned into the phospholipid bilayer of discoidal rHDL/res particles (~19 nm diameter). Co-immunoprecipitation studies indicated that the LDLr-binding ability of apoE3 was retained. Cellular uptake of resveratrol to intracellular sites was evaluated in glioblastoma A-172 cells by direct fluorescence using chemically synthesized NBD-labeled resveratrol (res/NBD) embedded in rHDL/res. Competition and inhibition studies indicate that the uptake is by receptor mediated endocytosis via the LDLr, with co-localization of apoE3 and res/NBD in late endosomes/lysosomes. We propose that rHDL provides an ideal hydrophobic milieu to sequester resveratrol and that rHDL containing apoE3 serves as an effective “nanovehicle” to transport and deliver resveratrol to targeted intracellular sites. PMID:26258481

  14. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current

    PubMed Central

    Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M.G.; Mazzanti, Michele; Florio, Tullio

    2014-01-01

    Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment. PMID:25361004

  15. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    SciTech Connect

    Oka, Naoki; Soeda, Akio . E-mail: ccd29400@nyc.odn.ne.jp; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-08-31

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.

  16. Characterization of genes with increased expression in human glioblastomas.

    PubMed

    Kavsan, V; Shostak, K; Dmitrenko, V; Zozulya, Yu; Rozumenko, V; Demotes-Mainard, J

    2005-01-01

    In the present study, we have used the gene expression data available in the SAGE database in an attempt to identify glioblastoma molecular markers. Of 129 genes with more than 5-fold difference found by comparison of nine glioblastoma with five normal brain SAGE libraries, 44 increased their expression in glioblastomas. Most corresponding proteins were involved in angiogenesis, host-tumor immune interplay, multidrug resistance, extracellular matrix (ECM) formation, IGF-signalling, or MAP-kinase pathway. Among them, 16 genes had a high expression both in glioblastomas and in glioblastoma cell lines suggesting their expression in transformed cells. Other 28 genes had an increased expression only in glioblastomas, not in glioblastoma cell lines suggesting an expression possibly originated from host cells. Many of these genes are among the top transcripts in activated macrophages, and involved in immune response and angiogenesis. This altered pattern of gene expression in both host and tumor cells, can be viewed as a molecular marker in the analysis of malignant progression of astrocytic tumors, and as possible clues for the mechanism of disease. Moreover, several genes overexpressed in glioblastomas produce extracellular proteins, thereby providing possible therapeutic targets. Further characterization of these genes will thus allow them to be exploited in molecular classification of glial tumors, diagnosis, prognosis, and anticancer therapy. PMID:16396319

  17. Infrasound sensitizes human glioblastoma cells to cisplatin-induced apoptosis.

    PubMed

    Rachlin, Kenneth; Moore, Dan H; Yount, Garret

    2013-11-01

    The development of nontoxic agents that can selectively enhance the cytotoxicity of chemotherapy is an important aim in oncology. This study evaluates the ability of infrasound exposure to sensitize glioblastoma cells to cisplatin-induced apoptosis. The infrasound was delivered using a device designed to replicate the unique infrasound emissions measured during external Qigong treatments. Human glioblastoma cell lines harboring wild-type p53 (U87) or mutant p53 (U251, SF210, and SF188) were treated in culture with cisplatin, infrasound emissions, or the combination of the 2 agents. Induction of apoptosis was quantified after 24 hours by flow cytometry following annexin V/propidium iodide staining. Infrasound emissions alone, delivered at moderate levels (~10 mPa) with dynamic frequency content (7-13 Hz), did not induce apoptosis, yet combining infrasound with cisplatin augmented the induction of apoptosis by cisplatin in all the 4 cell lines (P < .05). Increased cellular uptake of the fluorophore calcein associated with infrasound exposure was quantified by fluorescence microscopy as well as flow cytometry, demonstrating increased cell membrane permeability. The 4 cell lines differed in the degree to which infrasound exposure increased calcein uptake, and these differences were predictive of the extent to which infrasound enhanced cisplatin-induced apoptosis. When exposed to specific frequencies, membrane permeabilization also appeared to be differentially responsive for each cell line, suggesting the potential for selective targeting of tissue types using isolated infrasonic frequencies. Additionally, the pressure amplitudes used in this study were several orders of magnitude less than those used in similar studies involving ultrasound and shock waves. The results of this study provide support for using infrasound to enhance the chemotherapeutic effects of cisplatin in a clinical setting. PMID:23165942

  18. The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells.

    PubMed

    Liang, Wei-Zhe; Chou, Chiang-Ting; Hsu, Shu-Shong; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Tseng, Hui-Wen; Kuo, Chun-Chi; Jan, Chung-Ren

    2015-01-01

    Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca(2+) levels ([Ca(2+)]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca(2+)]i rises which were reduced by removing extracellular Ca(2+). Eugenol-induced [Ca(2+)]i rises were not altered by store-operated Ca(2+) channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca(2+)]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca(2+)]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca(2+)]i rises by inducing PLC-dependent release of Ca(2+) from the endoplasmic reticulum and caused Ca(2+) influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway. PMID:25455450

  19. Distinct sulfonation activities in resveratrol-sensitive and resveratrol-insensitive human glioblastoma cells.

    PubMed

    Sun, Zheng; Li, Hong; Shu, Xiao-Hong; Shi, Hui; Chen, Xiao-Yan; Kong, Qing-You; Wu, Mo-Li; Liu, Jia

    2012-07-01

    Glioblastoma multiforme (GBM) cells show different responses to resveratrol, for unknown reasons. Our data from human medulloblastoma cells and primary cultures of rat brain cells revealed an inverse correlation of sulfonation activity with resveratrol sensitivities, providing a clue to the underlying mechanisms of the variable sensitivities of GBM cells to resveratrol. In this study, we found that U251 cells were sensitive and LN229 cells were insensitive to resveratrol. Thus, these two cell lines were taken as comparable models for elucidating the influence of sulfonation activities on resveratrol sensitivity. HPLC showed identical resveratrol metabolic patterns in both cell lines. LC/MS and high-resolution mass MS analyses further demonstrated that resveratrol monosulfate generated by sulfotransferases (SULTs) was the major metabolite of human GBM cells. The levels of brain-associated SULT (SULT1A1, SULT1C2, and SULT4A1) expression in U251 cells were lower than those in LN229 cells, suggesting the inverse relationship of SULT-mediated sulfonation activity with high intracellular resveratrol bioavailability and resveratrol sensitivity of human GBM cells. Furthermore, immunohistochemical staining revealed reductions in expression of the three brain-associated SULTs in 72.8%, 47.5% and 66.3% of astrocytomas, respectively. Therefore, the levels of brain-associated SULTs and sulfonation activity mediated by them could be important parameters for evaluating the potential response of human GBM cells to resveratrol, and may have value in the personalized treatment of GBMs with resveratrol. PMID:22540632

  20. Intracellular Penetration and Activity of Gemifloxacin in Human Polymorphonuclear Leukocytes

    PubMed Central

    García, Isabel; Pascual, Alvaro; Ballesta, Sofía; Joyanes, Providencia; Perea, Evelio J.

    2000-01-01

    The intracellular penetration and activity of gemifloxacin in human polymorphonuclear leukocytes (PMN) were evaluated. Gemifloxacin reached intracellular concentrations eight times higher than extracellular concentrations. The uptake was rapid, reversible, and nonsaturable and was affected by environmental temperature, cell viability, and membrane stimuli. At therapeutic extracellular concentrations, gemifloxacin showed intracellular activity against Staphylococcus aureus. PMID:11036051

  1. p53 regulates the mevalonate pathway in human glioblastoma multiforme

    PubMed Central

    Laezza, C; D'Alessandro, A; Di Croce, L; Picardi, P; Ciaglia, E; Pisanti, S; Malfitano, A M; Comegna, M; Faraonio, R; Gazzerro, P; Bifulco, M

    2015-01-01

    The mevalonate (MVA) pathway is an important metabolic pathway implicated in multiple aspects of tumorigenesis. In this study, we provided evidence that p53 induces the expression of a group of enzymes of the MVA pathway including 3′-hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase, farnesyl diphosphate synthase and farnesyl diphosphate farnesyl transferase 1, in the human glioblastoma multiforme cell line, U343 cells, and in normal human astrocytes, NHAs. Genetic and pharmacologic perturbation of p53 directly influences the expression of these genes. Furthermore, p53 is recruited to the gene promoters in designated p53-responsive elements, thereby increasing their transcription. Such effect was abolished by site-directed mutagenesis in the p53-responsive element of promoter of the genes. These findings highlight another aspect of p53 functions unrelated to tumor suppression and suggest p53 as a novel regulator of the MVA pathway providing insight into the role of this pathway in cancer progression. PMID:26469958

  2. Induction of Cytopathogenicity in Human Glioblastoma Cells by Chikungunya Virus

    PubMed Central

    Abraham, Rachy; Mudaliar, Prashant; Padmanabhan, Aiswaria; Sreekumar, Easwaran

    2013-01-01

    Chikungunya virus (CHIKV), an arthritogenic old-world alphavirus, has been implicated in the central nervous system (CNS) infection in infants and elderly patients. Astrocytes are the major immune cells of the brain parenchyma that mediate inflammation. In the present study we found that a local isolate of CHIKV infect and activate U-87 MG cells, a glioblastoma cell line of human astrocyte origin. The infection kinetics were similar in infected U-87 MG cells and the human embryo kidney (HEK293) cells as indicated by immunofluorescence and plaque assays, 24h post-infection (p.i.). In infected U-87 MG cells, apoptosis was detectable from 48h p.i. evidenced by DNA fragmentation, PARP cleavage, loss of mitochondrial membrane potential, nuclear condensation and visible cytopathic effects in a dose and time-dependent manner. XBP1 mRNA splicing and eIF2α phosphorylation studies indicated the occurrence of endoplasmic reticulum stress in infected cells. In U-87 MG cells stably expressing a green fluorescent protein-tagged light chain-3 (GFP-LC3) protein, CHIKV infection showed increased autophagy response. The infection led to an enhanced expression of the mRNA transcripts of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and CXCL9 within 24h p.i. Significant up-regulation of the proteins of RIG-I like receptor (RLR) pathway, such as RIG-I and TRAF-6, was observed indicating the activation of the cytoplasmic-cellular innate immune response. The overall results show that the U-87 MG cell line is a potential in vitro model for in depth study of these molecular pathways in response to CHIKV infection. The responses in these cells of CNS origin, which are inherently defective in Type I interferon response, could be analogous to that occurring in infants and very old patients who also have a compromised interferon-response. The results also point to the intriguing possibility of using this virus for studies to develop oncolytic virus therapy approaches against

  3. Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus.

    PubMed

    Abraham, Rachy; Mudaliar, Prashant; Padmanabhan, Aiswaria; Sreekumar, Easwaran

    2013-01-01

    Chikungunya virus (CHIKV), an arthritogenic old-world alphavirus, has been implicated in the central nervous system (CNS) infection in infants and elderly patients. Astrocytes are the major immune cells of the brain parenchyma that mediate inflammation. In the present study we found that a local isolate of CHIKV infect and activate U-87 MG cells, a glioblastoma cell line of human astrocyte origin. The infection kinetics were similar in infected U-87 MG cells and the human embryo kidney (HEK293) cells as indicated by immunofluorescence and plaque assays, 24h post-infection (p.i.). In infected U-87 MG cells, apoptosis was detectable from 48h p.i. evidenced by DNA fragmentation, PARP cleavage, loss of mitochondrial membrane potential, nuclear condensation and visible cytopathic effects in a dose and time-dependent manner. XBP1 mRNA splicing and eIF2α phosphorylation studies indicated the occurrence of endoplasmic reticulum stress in infected cells. In U-87 MG cells stably expressing a green fluorescent protein-tagged light chain-3 (GFP-LC3) protein, CHIKV infection showed increased autophagy response. The infection led to an enhanced expression of the mRNA transcripts of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and CXCL9 within 24h p.i. Significant up-regulation of the proteins of RIG-I like receptor (RLR) pathway, such as RIG-I and TRAF-6, was observed indicating the activation of the cytoplasmic-cellular innate immune response. The overall results show that the U-87 MG cell line is a potential in vitro model for in depth study of these molecular pathways in response to CHIKV infection. The responses in these cells of CNS origin, which are inherently defective in Type I interferon response, could be analogous to that occurring in infants and very old patients who also have a compromised interferon-response. The results also point to the intriguing possibility of using this virus for studies to develop oncolytic virus therapy approaches against

  4. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells.

    PubMed

    Chen, Jong-Hang; Chou, Chin-Cheng

    2015-08-01

    This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling. PMID:25959841

  5. Expression and rearrangement of the ROS1 gene in human glioblastoma cells

    SciTech Connect

    Birchmeier, C.; Sharma, S.; Wigler, M.

    1987-12-01

    The human ROS1 gene, which possibly encodes a growth factor receptor, was found to be expressed in human tumor cell lines. In a survey of 45 different human cell lines, the authors found ROS1 to be expressed in glioblastoma-derived cell lines at high levels and not to be expressed at all, or expressed at very low levels, in the remaining cell lines. The ROS1 gene was present in normal copy numbers in all cell lines that expressed the gene. However, in one particular glioblastoma line, they detected a potentially activating mutation at the ROS1 locus.

  6. Response of intracerebral human glioblastoma xenografts to multifraction radiation exposures

    SciTech Connect

    Ozawa, Tomoko; Faddegon, Bruce A.; Hu, Lily J.; Bollen, Andrew W.; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: ddeen@itsa.ucsf.edu

    2006-09-01

    Purpose: We investigated the effects of fractionated radiation treatments on the life spans of athymic rats bearing intracerebral brain tumors. Methods and Materials: U-251 MG or U-87 MG human glioblastoma cells were implanted into the brains of athymic rats, and the resulting tumors were irradiated once daily with various doses of ionizing radiation for 5 consecutive days or for 10 days with a 2-day break after Day 5. Results: Five daily doses of 1 and 1.5 Gy, and 10 doses of 0.75 and 1 Gy, cured some U-251 MG tumors. However, five daily doses of 0.5 Gy increased the survival time of animals bearing U-251 MG tumors 5 days without curing any animals of their tumors. Ten doses of 0.3 Gy given over 2 weeks extended the lifespan of the host animals 9 days without curing any animals. For U-87 MG tumors, 5 daily doses of 3 Gy produced an increased lifespan of 8 days without curing any animals, and 10 doses of 1 Gy prolonged lifespan 5.5 days without curing any animals. The differences in extension of life span between the 5- and 10-fraction protocols were minor for either tumor type. Conclusion: The finding that the U-251 MG tumors are more sensitive than U-87 MG tumors, despite the fact that U-251 MG tumors contain many more hypoxic cells than U-87 MG tumors, suggests the intrinsic cellular radiosensitivities of these cell lines are more important than hypoxia in determining their in vivo radiosensitivities.

  7. Ultrastructural evidence for differentiation in a human glioblastoma cell line treated with inhibitors of eicosanoid metabolism

    SciTech Connect

    Wilson, D.E.; Anderson, K.M. ); Seed, T.M. )

    1990-01-01

    Human glioblastoma cells incubated in the presence of inhibitors of eicosanoid biosynthesis show decreased cellular proliferation without cytotoxicity. The authors studied the ultrastructural morphology of a human glioblastoma cell line cultured with nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, or 5,8,11,14-eicosatetraynoic acid, a cyclooxygenase and lipoxygenase inhibitor. When glioblastoma cells were treated for 3 days with antiproliferative concentrations of either agent, they shared many morphological characteristics, including evidence for increased astrocytic differentiation with only limited signs of toxicity. The inhibited glioma cells demonstrated an increase in the number and length of astrocytic processes containing greater numbers of glial filaments, and the NDGA-treated cells also demonstrated extensive lateral pseudopod formation along the processes. The glioblastoma cell shape also become more elongated, losing the usual nuclear lobularity and nuclear inclusions, especially in NDGA-treated cells. Many cytoplasmic organelles packed the cytosol of the inhibited glioma cells, including prominent Golgi apparatus, dilated smooth endoplasmic reticulum evolving into dilated vesicles, cytoplasmic vacuoles, and numerous concentric laminations. There was limited evidence for toxicity, however, as the mitochondria were more pleomorphic with some mitochondrial distension and disruption of the cristae along with an increase in cytoplasmic vacuolization. The authors conclude that the inhibitors of eicosanoid biosynthesis. NDGA and 5,8,11,14-eicosatetraynoic acid, not only suppress glioblastoma cell proliferation, but also include increased astrocytic differentiation.

  8. New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line.

    PubMed

    Giacomelli, Chiara; Natali, Letizia; Trincavelli, Maria Letizia; Daniele, Simona; Bertoli, Alessandra; Flamini, Guido; Braca, Alessandra; Martini, Claudia

    2016-05-01

    Glioblastoma multiforme (GBM) is an aggressive brain tumour with high resistance to radio- and chemotherapy. As such, increasing attention has focused on developing new therapeutic strategies to improve treatment responses. Recently, attention has been shifted to natural compounds that are able to halt tumour development. Among them, carnosol (CAR), a phenolic diterpene present in rosemary, has become a promising molecule that is able to prevent certain types of solid cancer. However, no data are available on the effects of CAR in GBM. Here, CAR activity decreased the proliferation of different human glioblastoma cell lines, particularly cells that express wild type p53. The p53 pathway is involved in the control of apoptosis and is often impaired in GBM. Notably, CAR, through the dissociation of p53 from its endogenous inhibitor MDM2, was able to increase the intracellular p53 levels in GBM cells. Accordingly, functional reactivation of p53 was demonstrated by the stimulation of p53 target genes' transcription, the induction of apoptosis and cell cycle blockade. Most importantly, CAR produced synergistic effects with temozolomide (TMZ) and reduced the restoration of the tumour cells' proliferation after drug removal. Thus, for the first time, these data highlighted the potential use of the diterpene in the sensitization of GBM cells to chemotherapy through a direct re-activation of p53 pathway. Furthermore, progress has been made in delineating the biochemical mechanisms underlying the pro-apoptotic effects of this molecule. PMID:26939786

  9. Intracellular accumulation and cytotoxicity of doxorubicin with different pharmaceutical formulations in human cancer cell lines.

    PubMed

    Serpe, Loredana; Guido, Marilena; Canaparo, Roberto; Muntoni, Elisabetta; Cavalli, Roberta; Panzanelli, Patrizia; Della Pepal, Carlo; Bargoni, Alessandro; Mauro, Alessandro; Gasco, Maria Rosa; Eandi, Mario; Zara, Gian Paolo

    2006-01-01

    The structure of both carrier and anticancer drug affects the intracellular fate of a transported drug. The study investigated in vitro intracellular accumulation and cytotoxic activity of doxorubicin-loaded solid lipid nanoparticles (SLN), doxorubicin in pegylated liposomes (Caelyx) and free doxorubicin. Intracellular doxorubicin levels and cytotoxic activity were determined by high performance liquid chromatography with fluorescence detection, and by the trypan blue dye exclusion assay, respectively. Doxorubicin-loaded SLN inhibited cell growth more strongly than either free or liposomal doxorubicin, in human colorectal adenocarcinoma, HT-29, retinoblastoma Y79, and glioblastoma U373 cell lines. The IC50 values for doxorubicin-loaded SLN were significantly lower after 24 h exposure than those for free doxorubicin in all cell lines; after 48 h exposure they were lower than those for liposomal doxorubicin in HT-29 and Y79 cells. The enhanced cytotoxic activity of doxorubicin-loaded SLN was associated with increased drug incorporation in cells: intracellular doxorubicin levels were significantly enhanced after exposure to drug-loaded SLN versus either free or liposomal drug. Rate of intracellular accumulation and cytotoxic activity also differed among different cell lines; in particular, cells of epithelial origin were found to be more sensitive to doxorubicin-loaded SLN. In conclusion, the greater sensitivity of HT-29, Y79, and U373 cells to doxorubicin-loaded SLN than to the other drug formulations may be due to the capability of the delivery system to enhance drug action, through a marked uptake and accumulation of SLN within the cell. PMID:17048519

  10. Identification and isolation of slow-dividing cells in human glioblastoma using carboxy fluorescein succinimidyl ester (CFSE).

    PubMed

    Deleyrolle, Loic P; Rohaus, Mark R; Fortin, Jeff M; Reynolds, Brent A; Azari, Hassan

    2012-01-01

    Tumor heterogeneity represents a fundamental feature supporting tumor robustness and presents a central obstacle to the development of therapeutic strategies(1). To overcome the issue of tumor heterogeneity, it is essential to develop assays and tools enabling phenotypic, (epi)genetic and functional identification and characterization of tumor subpopulations that drive specific disease pathologies and represent clinically relevant targets. It is now well established that tumors exhibit distinct sub-fractions of cells with different frequencies of cell division, and that the functional criteria of being slow cycling is positively associated with tumor formation ability in several cancers including those of the brain, breast, skin and pancreas as well as leukemia(2-8). The fluorescent dye carboxyfluorescein succinimidyl ester (CFSE) has been used for tracking the division frequency of cells in vitro and in vivo in blood-borne tumors and solid tumors such as glioblastoma(2,7,8). The cell-permeant non-fluorescent pro-drug of CFSE is converted by intracellular esterases into a fluorescent compound, which is retained within cells by covalently binding to proteins through reaction of its succinimidyl moiety with intracellular amine groups to form stable amide bonds(9). The fluorescent dye is equally distributed between daughter cells upon divisions, leading to the halving of the fluorescence intensity with every cell division. This enables tracking of cell cycle frequency up to eight to ten rounds of division(10). CFSE retention capacity was used with brain tumor cells to identify and isolate a slow cycling subpopulation (top 5% dye-retaining cells) demonstrated to be enriched in cancer stem cell activity(2). This protocol describes the technique of staining cells with CFSE and the isolation of individual populations within a culture of human glioblastoma (GBM)-derived cells possessing differing division rates using flow cytometry(2). The technique has served to identify

  11. Phosphoproteome of Human Glioblastoma Initiating Cells Reveals Novel Signaling Regulators Encoded by the Transcriptome

    PubMed Central

    Kozuka-Hata, Hiroko; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Ao-Kondo, Hiroko; Tsumoto, Kouhei; Akiyama, Tetsu; Oyama, Masaaki

    2012-01-01

    Background Glioblastoma is one of the most aggressive tumors with poor prognosis. Although various studies have been performed so far, there are not effective treatments for patients with glioblastoma. Methodology/Principal Findings In order to systematically elucidate the aberrant signaling machinery activated in this malignant brain tumor, we investigated phosphoproteome dynamics of glioblastoma initiating cells using high-resolution nanoflow LC-MS/MS system in combination with SILAC technology. Through phosphopeptide enrichment by titanium dioxide beads, a total of 6,073 phosphopeptides from 2,282 phosphorylated proteins were identified based on the two peptide fragmentation methodologies of collision induced dissociation and higher-energy C-trap dissociation. The SILAC-based quantification described 516 up-regulated and 275 down-regulated phosphorylation sites upon epidermal growth factor stimulation, including the comprehensive status of the phosphorylation sites on stem cell markers such as nestin. Very intriguingly, our in-depth phosphoproteome analysis led to identification of novel phosphorylated molecules encoded by the undefined sequence regions of the human transcripts, one of which was regulated upon external stimulation in human glioblastoma initiating cells. Conclusions/Significance Our result unveils an expanded diversity of the regulatory phosphoproteome defined by the human transcriptome. PMID:22912867

  12. Dynamics of expression patterns of AQP4, dystroglycan, agrin and matrix metalloproteinases in human glioblastoma.

    PubMed

    Noell, Susan; Wolburg-Buchholz, Karen; Mack, Andreas F; Ritz, Rainer; Tatagiba, Marcos; Beschorner, Rudi; Wolburg, Hartwig; Fallier-Becker, Petra

    2012-02-01

    In human glioblastoma, the blood-brain barrier (BBB) is disturbed. According to our concept, the glio-vascular relationships and thus the control of the BBB are essentially dependent on the polarity of astroglial cells. This polarity is characterized by the uneven distribution of the water channel protein aquaporin-4 (AQP4), dystroglycan and other molecules. Recently, we were able to show that the extracellular matrix component agrin is important for the construction and localization of the so-called orthogonal arrays of particles (OAPs), which consist in AQP4. Here, combining freeze-fracture electron microscopy, immunohistochemistry and Western blotting, we describe alterations of expression and distribution of AQP4, dystroglycan, agrin and the matrix metalloproteinases (MMP) 2, 3 and 9 in human primary glioblastomas (eight primary tumours, six recurrent tumours). Increase of MMP3- and MMP2/9 immunoreactivities went along with loss of agrin and dystroglycan respectively. On the protein level, AQP4 expression was increased in glioblastoma compared to control tissue. This was not accompanied by an increase of OAPs, suggesting that AQP4 can also occur without forming OAPs. The results underline our concept of the loss of glioma cell polarity as one of the factors responsible for the disturbance of the neurovascular unit and as an explanation for the formation of edemas in the glioblastoma. PMID:22307776

  13. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin.

    PubMed

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. PMID:24657544

  14. A serially transplantable human giant cell glioblastoma that maintains a near-haploid stem line.

    PubMed

    Bigner, S H; Mark, J; Schold, S C; Eng, L F; Bigner, D D

    1985-10-01

    We have karyotyped a human giant cell glioblastoma removed from an 11-year-old girl and have established from it a subcutaneously transplantable line in athymic nude mice. The original tumor contained near-haploid cells with 25 or 26 chromosomes, including two copies of #1, (7 or 7p+) and #18. There were also hyperdiploid (49-52) cells that were tetraploid for these same three chromosome types; doubled versions of the hyperdiploid population were also seen. The stemline of the mouse-grown tumor was 26,X, +1, +7p+, +18 in the first passage and has remained consistently near-haploid through ten serial in vivo passages. Growth stabilization has occurred with an average latency of less than 3 months. This transplantable line is available for evaluating chemotherapeutic responsiveness of human giant cell glioblastoma and for studying near-haploidy in solid human tumors. PMID:3840409

  15. Equine Herpesvirus Type 1-Mediated Oncolysis of Human Glioblastoma Multiforme Cells

    PubMed Central

    Courchesne, Michael J.; White, Maria C.; Stanfield, Brent A.

    2012-01-01

    The cytolytic animal virus equine herpesvirus type 1 (EHV-1) was evaluated for its oncolytic potential against five human glioblastoma cell lines. EHV-1 productively infected four of these cell lines, and the degree of infection was positively correlated with glioma cell death. No human major histocompatibility complex class 1 (MHC-I) was detected in the resistant glioma line, while infection of the susceptible glioma cell lines, which expressed human MHC-I, were blocked with antibody to MHC-I, indicating that human MHC-I acts as an EHV-1 entry receptor on glioma cells. PMID:22205738

  16. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    SciTech Connect

    Lopez, Carlos A. Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-09-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G{sub 1} arrest, increase in sub-G{sub 1} fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios ({+-} SE) of 1.5 ({+-} 0.2) and 1.3 ({+-} 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53.

  17. Heterogeneous phenotype of human glioblastoma: in vitro study.

    PubMed

    Denysenko, Tetyana; Gennero, Luisa; Juenemann, Carola; Morra, Isabella; Masperi, Paolo; Ceroni, Vincenzo; Pragliola, Antonella; Ponzetto, Antonio; Melcarne, Antonio

    2014-03-01

    Glioblastomas (GBMs) are the most lethal primary brain tumours. Increasing evidence shows that brain tumours contain the population of stem cells, so-called cancer stem cells (CSCs). Stem cell marker CD133 was reported to identify CSC population in GBM. Further studies have indicated that CD133 negative cells exhibiting similar properties and are able to initiate the tumour, self-renew and undergo multilineage differentiation. GBM is a highly heterogeneous tumour and may contain different stem cell populations with different functional properties. We characterized five GBM cell lines, established from surgical samples, according to the marker expression, proliferation and differentiation potential. CD133 positive cell lines showed increased proliferation rate in neurosphere condition and marked differentiation potential towards neuronal lineages. Whereas two cell lines low-expressing CD133 marker showed mesenchymal properties in vitro, that is high proliferation rate in serum condition and differentiation in mesenchymal cell types. Further, we compared therapy resistance capacity of GBM cell lines treated with hydroxyurea. Our results suggest that CSC concept is more complex than it was believed before, and CD133 could not define entire stem cell population within GBM. At least two different subtypes of GBM CSCs exist, which may have different biological characteristics and imply different therapeutic strategies. PMID:23836332

  18. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    SciTech Connect

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne; Faethe, Christina; Mueller-Klieser, Wolfgang; Taucher-Scholz, Gisela; Temme, Achim; Schackert, Gabriele

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  19. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes

    PubMed Central

    Xie, Yuan; Bergström, Tobias; Jiang, Yiwen; Johansson, Patrik; Marinescu, Voichita Dana; Lindberg, Nanna; Segerman, Anna; Wicher, Grzegorz; Niklasson, Mia; Baskaran, Sathishkumar; Sreedharan, Smitha; Everlien, Isabelle; Kastemar, Marianne; Hermansson, Annika; Elfineh, Lioudmila; Libard, Sylwia; Holland, Eric Charles; Hesselager, Göran; Alafuzoff, Irina; Westermark, Bengt; Nelander, Sven; Forsberg-Nilsson, Karin; Uhrbom, Lene

    2015-01-01

    Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research. PMID:26629530

  20. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype

    PubMed Central

    Duan, Shunlei; Yuan, Guohong; Liu, Xiaomeng; Ren, Ruotong; Li, Jingyi; Zhang, Weizhou; Wu, Jun; Xu, Xiuling; Fu, Lina; Li, Ying; Yang, Jiping; Zhang, Weiqi; Bai, Ruijun; Yi, Fei; Suzuki, Keiichiro; Gao, Hua; Esteban, Concepcion Rodriguez; Zhang, Chuanbao; Belmonte, Juan Carlos Izpisua; Chen, Zhiguo; Wang, Xiaomin; Jiang, Tao; Qu, Jing; Tang, Fuchou; Liu, Guang-Hui

    2015-01-01

    PTEN is a tumour suppressor frequently mutated in many types of cancers. Here we show that targeted disruption of PTEN leads to neoplastic transformation of human neural stem cells (NSCs), but not mesenchymal stem cells. PTEN-deficient NSCs display neoplasm-associated metabolic and gene expression profiles and generate intracranial tumours in immunodeficient mice. PTEN is localized to the nucleus in NSCs, binds to the PAX7 promoter through association with cAMP responsive element binding protein 1 (CREB)/CREB binding protein (CBP) and inhibits PAX7 transcription. PTEN deficiency leads to the upregulation of PAX7, which in turn promotes oncogenic transformation of NSCs and instates ‘aggressiveness' in human glioblastoma stem cells. In a large clinical database, we find increased PAX7 levels in PTEN-deficient glioblastoma. Furthermore, we identify that mitomycin C selectively triggers apoptosis in NSCs with PTEN deficiency. Together, we uncover a potential mechanism of how PTEN safeguards NSCs, and establish a cellular platform to identify factors involved in NSC transformation, potentially permitting personalized treatment of glioblastoma. PMID:26632666

  1. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    SciTech Connect

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  2. Investigation of serum proteome alterations in human glioblastoma multiforme.

    PubMed

    Gollapalli, Kishore; Ray, Sandipan; Srivastava, Rajneesh; Renu, Durairaj; Singh, Prateek; Dhali, Snigdha; Bajpai Dikshit, Jyoti; Srikanth, Rapole; Moiyadi, Aliasgar; Srivastava, Sanjeeva

    2012-08-01

    Glioblastoma multiforme (GBM) or grade IV astrocytoma is the most common and lethal adult malignant brain tumor. The present study was conducted to investigate the alterations in the serum proteome in GBM patients compared to healthy controls. Comparative proteomic analysis was performed employing classical 2DE and 2D-DIGE combined with MALDI TOF/TOF MS and results were further validated through Western blotting and immunoturbidimetric assay. Comparison of the serum proteome of GBM and healthy subjects revealed 55 differentially expressed and statistically significant (p <0.05) protein spots. Among the identified proteins, haptoglobin, plasminogen precursor, apolipoprotein A-1 and M, and transthyretin are very significant due to their functional consequences in glioma tumor growth and migration, and could further be studied as glioma biomarkers and grade-specific protein signatures. Analysis of the lipoprotein pattern indicated elevated serum levels of cholesterol, triacylglycerol, and low-density lipoproteins in GBM patients. Functional pathway analysis was performed using multiple software including ingenuity pathway analysis (IPA), protein analysis through evolutionary relationships (PANTHER), database for annotation, visualization and integrated discovery (DAVID), and GeneSpring to investigate the biological context of the identified proteins, which revealed the association of candidate proteins in a few essential physiological pathways such as intrinsic prothrombin activation pathway, plasminogen activating cascade, coagulation system, glioma invasiveness signaling, and PI3K signaling in B lymphocytes. A subset of the differentially expressed proteins was applied to build statistical sample class prediction models for discrimination of GBM patients and healthy controls employing partial least squares discriminant analysis (PLS-DA) and other machine learning methods such as support vector machine (SVM), Decision Tree and Naïve Bayes, and excellent

  3. Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells

    PubMed Central

    Said, Harun M; Polat, Buelent; Stein, Susanne; Guckenberger, Mathias; Hagemann, Carsten; Staab, Adrian; Katzer, Astrid; Anacker, Jelena; Flentje, Michael; Vordermark, Dirk

    2012-01-01

    AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human

  4. Transfer of ultrasmall iron oxide nanoparticles from human brain-derived endothelial cells to human glioblastoma cells.

    PubMed

    Halamoda Kenzaoui, Blanka; Angeloni, Silvia; Overstolz, Thomas; Niedermann, Philippe; Chapuis Bernasconi, Catherine; Liley, Martha; Juillerat-Jeanneret, Lucienne

    2013-05-01

    Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer. PMID:23578059

  5. Metabolic Patterns and Biotransformation Activities of Resveratrol in Human Glioblastoma Cells: Relevance with Therapeutic Efficacies

    PubMed Central

    Shu, Xiao-Hong; Li, Hong; Sun, Xiao-Xin; Wang, Qian; Sun, Zheng; Wu, Mo-Li; Chen, Xiao-Yan; Li, Chong; Kong, Qing-You; Liu, Jia

    2011-01-01

    Background Trans-resveratrol rather than its biotransformed monosulfate metabolite exerts anti-medulloblastoma effects by suppressing STAT3 activation. Nevertheless, its effects on human glioblastoma cells are variable due to certain unknown reason(s). Methodology/Principal Findings Citing resveratrol-sensitive UW228-3 medulloblastoma cell line and primarily cultured rat brain cells/PBCs as controls, the effect of resveratrol on LN-18 human glioblastoma cells and its relevance with metabolic pattern(s), brain-associated sulfotransferase/SULT expression and the statuses of STAT3 signaling and protein inhibitor of activated STAT3 (PIAS3) were elucidated by multiple experimental approaches. Meanwhile, the expression patterns of three SULTs (SULT1A1, 1C2 and 4A1) in human glioblastoma tumors were profiled immunohistochemically. The results revealed that 100 µM resveratrol-treated LN-18 generated the same metabolites as UW228-3 cells, while additional metabolite in molecular weight of 403.0992 in negative ion mode was found in PBCs. Neither growth arrest nor apoptosis was found in resveratrol-treated LN-18 and PBC cells. Upon resveratrol treatment, the levels of SULT1A1, 1C2 and 4A1 expression in LN-18 cells were more up-regulated than that expressed in UW228-3 cells and close to the levels in PBCs. Immunohistochemical staining showed that 42.0%, 27.1% and 19.6% of 149 glioblastoma cases produced similar SULT1A1, 1C2 and 4A1 levels as that of tumor-surrounding tissues. Unlike the situation in UW228-3 cells, STAT3 signaling remained activated and its protein inhibitor PIAS3 was restricted in the cytosol of resveratrol-treated LN-18 cells. No nuclear translocation of STAT3 and PIAS3 was observed in resveratrol-treated PBCs. Treatment with STAT3 chemical inhibitor, AG490, committed majority of LN-18 and UW228-3 cells but not PBCs to apoptosis within 48 hours. Conclusions/Significance LN-18 glioblastoma cells are insensitive to resveratrol due to the more inducible brain

  6. Molecular mechanisms of the effect of TGF-β1 on U87 human glioblastoma cells

    PubMed Central

    Bryukhovetskiy, Igor; Shevchenko, Valeriy

    2016-01-01

    Glioblastoma multiforme (GBM) is the most widespread and aggressive type of primary brain tumor. The prognosis following diagnosis with GBM is poor, with a median survival time of 14 months. Tumor cell invasion, metastasis and proliferation are the major causes of mortality in patients with GBM. In order to develop effective GBM treatment methods it is necessary to identify novel targets involved in these processes. Recently, there has been increasing interest in investigating the signaling pathways involved in GBM development, and the transforming growth factor-β (TGF-β) signaling pathway is understood to be significant for regulating the behavior of GBM, as well as stimulating its invasion and metastatic development. Particular interest has been given to investigating the modulation of TGF-β-induced epithelial-to-mesenchymal transition (EMT); during this process, epithelial cells transdifferentiate into mobile cells with a mesenchymal phenotype. The induction of EMT increases the invasiveness of various types of carcinoma; however, the role of TGF-β in this process remains to be elucidated, particularly in the case of GBM. The current study presents a comparative proteome mapping of the U87 human glioblastoma cell line, with and without TGF-β1 treatment. Proteome analysis identified numerous proteins involved in the molecular mechanisms of GBM oncogenesis and TGF-β1 signaling in glioblastoma. The results of the present study facilitated the identification of novel potential markers of metastasis and candidates for targeted glioblastoma therapy, which may potentially be validated and used in clinical medicine to develop improved approaches for GBM diagnosis and treatment. PMID:27446475

  7. Intracellular accumulation of azithromycin by cultured human fibroblasts.

    PubMed Central

    Gladue, R P; Snider, M E

    1990-01-01

    Azithromycin was shown to achieve high concentrations in human skin fibroblasts. Intracellular penetration occurred rapidly (10 micrograms/mg of cellular protein after 3 h) and then increased progressively over a 3-day period; azithromycin accumulated up to 21 times more than erythromycin (61.1 versus 2.9 micrograms/mg of protein). Uptake was dependent on the extracellular concentration, was inhibited at 4 degrees C, did not occur in nonviable cells, and was reduced by a low pH. Intracellular accumulation was not affected by the metabolic inhibitor 2,4-dinitrophenol or sodium fluoride or by the nucleoside transport inhibitor 2-chloradenosine. Once concentrated in cells, azithromycin remained intracellular and was released slowly in the absence of extracellular drug, compared with erythromycin (17 versus 78% released after 1 h). After 48 h of incubation in drug-free medium, 27% of the initial amount of azithromycin remained cell associated. The release of azithromycin was not affected by various monokines reported to stimulate fibroblasts (interleukin-1 or tumor necrosis factor) or by exposure to bacteria. Incubation of azithromycin-loaded fibroblasts with human polymorphonuclear leukocytes resulted in a higher intracellular accumulation of azithromycin in polymorphonuclear leukocytes than in cells incubated with free nonintracellular azithromycin for the same time (8.3 versus 2.2 micrograms/ml after 2 h), suggesting a more efficient or rapid uptake through cell-to-cell interaction. The widespread distribution of fibroblasts in tissues suggests a potential for these cells, and possibly other lysosome-containing tissue cells, to serve as a reservoir for azithromycin, slowly releasing it for activity against extracellular organisms at sites of infection and passing it to phagocytes for activity against intracellular pathogens and potential transport to sites of infection. PMID:2168141

  8. Phloretin induces cell cycle arrest and apoptosis of human glioblastoma cells through the generation of reactive oxygen species.

    PubMed

    Liu, Yuanyuan; Fan, Chenghe; Pu, Lv; Wei, Cui; Jin, Haiqiang; Teng, Yuming; Zhao, Mingming; Yu, Albert Cheung Hoi; Jiang, Feng; Shu, Junlong; Li, Fan; Peng, Qing; Kong, Jian; Pan, Bing; Zheng, Lemin; Huang, Yining

    2016-06-01

    Phloretin, a flavonoid present in various plants, has been reported to exert anticarcinogenic effects. However, the mechanism of its chemo-preventive effect on human glioblastoma cells is not fully understood. This study aimed to investigate the molecular mechanism of phloretin and its associated chemo-preventive effect in human glioblastoma cells. The results indicate that phloretin inhibited cell proliferation by inducing cell cycle arrest at the G0-G1 phase and induced apoptosis of human glioblastoma cells. Phloretin-induced cell cycle arrest was associated with increased expression of p27 and decreased expression of cdk2, cdk4, cdk6, cyclinD and cyclinE. Moreover, the PI3K/AKT/mTOR signaling cascades were suppressed by phloretin in a dose-dependent manner. In addition, phloretin triggered the mitochondrial apoptosis pathway and generated reactive oxygen species (ROS). This was accompanied by the up-regulation of Bax, Bak and c-PARP and the down-regulation of Bcl-2. The antioxidant agents N-acetyl-L-cysteine and glutathione weakened the effect of phloretin on glioblastoma cells. In conclusion, these results demonstrate that phloretin exerts potent chemo-preventive activity in human glioblastoma cells through the generation of ROS. PMID:26983952

  9. Analysis of Intracellular Calcium Signaling in Human Embryonic Stem Cells.

    PubMed

    Péntek, Adrienn; Pászty, Katalin; Apáti, Ágota

    2016-01-01

    Measurement of changes in intracellular calcium concentration is one of the most common and useful tools for studying signal transduction pathways or cellular responses in basic research and drug screening purposes as well. Increasing number of such applications using human pluripotent stem cells and their derivatives requires development of calcium signal measurements for this special cell type. Here we describe a modified protocol for analysis of calcium signaling events in human embryonic stem cells, which can be used for other pluripotent cell types (such as iPSC) or their differentiated offspring as well. PMID:24482125

  10. Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression.

    PubMed

    Santos, Balbino L; Oliveira, Mona N; Coelho, Paulo L C; Pitanga, Bruno P S; da Silva, Alessandra B; Adelita, Taís; Silva, Victor Diógenes A; Costa, Maria de F D; El-Bachá, Ramon S; Tardy, Marcienne; Chneiweiss, Hervé; Junier, Marie-Pierre; Moura-Neto, Vivaldo; Costa, Silvia L

    2015-12-01

    The malignant gliomas are very common primary brain tumors with poor prognosis, which require more effective therapies than the current used, such as with chemotherapy drugs. In this work, we investigated the effects of several polyhydroxylated flavonoids namely, rutin, quercetin (F7), apigenin (F32), chrysin (F11), kaempferol (F12), and 3',4'-dihydroxyflavone (F2) in human GL-15 glioblastoma cells. We observed that all flavonoids decreased the number of viable cells and the mitochondrial metabolism. Furthermore, they damaged mitochondria and rough endoplasmic reticulum, inducing apoptosis. Flavonoids also induced a delay in cell migration, related to a reduction in filopodia-like structures on the cell surface, reduction on metalloproteinase (MMP-2) expression and activity, as well as an increase in intra- and extracellular expression of fibronectin, and intracellular expression of laminin. Morphological changes were also evident in adherent cells characterized by the presence of a condensed cell body with thin and long cellular processes, expressing glial fibrillary acidic protein (GFAP). Therefore, these flavonoids should be tested as potential antitumor agents in vitro and in vivo in other malignant glioma models. PMID:26408079

  11. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples.

    PubMed

    Szulzewsky, Frank; Arora, Sonali; de Witte, Lot; Ulas, Thomas; Markovic, Darko; Schultze, Joachim L; Holland, Eric C; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-08-01

    Glioblastoma (GBM) is the most aggressive brain tumor in adults. It is strongly infiltrated by microglia and peripheral monocytes that support tumor growth. In the present study we used RNA sequencing to compare the expression profile of CD11b(+) human glioblastoma-associated microglia/monocytes (hGAMs) to CD11b(+) microglia isolated from non-tumor samples. Hierarchical clustering and principal component analysis showed a clear separation of the two sample groups and we identified 334 significantly regulated genes in hGAMs. In comparison to human control microglia hGAMs upregulated genes associated with mitotic cell cycle, cell migration, cell adhesion, and extracellular matrix organization. We validated the expression of several genes associated with extracellular matrix organization in samples of human control microglia, hGAMs, and the hGAMs-depleted fraction via qPCR. The comparison to murine GAMs (mGAMs) showed that both cell populations share a significant fraction of upregulated transcripts compared with their respective controls. These genes were mostly related to mitotic cell cycle. However, in contrast to murine cells, human GAMs did not upregulate genes associated to immune activation. Comparison of human and murine GAMs expression data to several data sets of in vitro-activated human macrophages and murine microglia showed that, in contrast to mGAMs, hGAMs share a smaller overlap to these data sets in general and in particular to cells activated by proinflammatory stimulation with LPS + INFγ or TNFα. Our findings provide new insights into the biology of human glioblastoma-associated microglia/monocytes and give detailed information about the validity of murine experimental models. GLIA 2016 GLIA 2016;64:1416-1436. PMID:27312099

  12. Coibamide A Induces mTOR-Independent Autophagy and Cell Death in Human Glioblastoma Cells

    PubMed Central

    Hau, Andrew M.; Greenwood, Jeffrey A.; Löhr, Christiane V.; Serrill, Jeffrey D.; Proteau, Philip J.; Ganley, Ian G.; McPhail, Kerry L.; Ishmael, Jane E.

    2013-01-01

    Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and “COMPARE-negative” profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50<100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death

  13. Mechanisms of Defense against Intracellular Pathogens Mediated by Human Macrophages.

    PubMed

    Bloom, Barry R; Modlin, Robert L

    2016-06-01

    The key question our work has sought to address has been, "What are the necessary and sufficient conditions that engender protection from intracellular pathogens in the human host?" The origins of this work derive from a long-standing interest in the mechanisms of protection against two such paradigmatic intracellular pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, that have brilliantly adapted to the human host. It was obvious that these pathogens, which cause chronic diseases and persist in macrophages, must have acquired subtle strategies to resist host microbicidal mechanisms, yet since the vast majority of individuals infected with M. tuberculosis do not develop disease, there must be some potent human antimicrobial mechanisms. What follows is not a comprehensive review of the vast literature on the role of human macrophages in protection against infectious disease, but a summary of the research in our two laboratories with collaborators that we hope has contributed to some understanding of mechanisms of resistance and pathogenesis. While mouse models revealed some necessary conditions for protection, e.g., innate immunity, Th1 cells and their cytokines, and major histocompatibility complex class I-restricted T cells, here we emphasize multiple antimicrobial mechanisms that exist in human macrophages that differ from those of most experimental animals. Prominent here is the vitamin D-dependent antimicrobial pathway common to human macrophages activated by innate and acquired immune responses, mediated by antimicrobial peptides, e.g., cathelicidin, through an interleukin-15- and interleukin-32-dependent common pathway that is necessary for macrophage killing of M. tuberculosis in vitro. PMID:27337485

  14. Cytotoxic constituents of Abutilon indicum leaves against U87MG human glioblastoma cells.

    PubMed

    Khan, Rukaiyya Sirajuddin; Senthi, Mahibalan; Rao, Poorna Chandra; Basha, Ameer; Alvala, Mallika; Tummuri, Dinesh; Masubuti, Hironori; Fujimoto, Yoshinori; Begum, Ahil Sajeli

    2015-01-01

    The study was aimed to identify cytotoxic leads from Abutilon indicum leaves for treating glioblastoma. The petroleum ether extract, methanol extract (AIM), chloroform and ethyl acetate sub-fractions (AIM-C and AIM-E, respectively) prepared from AIM were tested for cytotoxicity on U87MG human glioblastoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. These extracts exhibited considerable activity (IC50 values of 42.6-64.5 μg/mL). The most active AIM-C fraction was repeatedly chromatographed to yield four known compounds, methyl trans-p-coumarate (1), methyl caffeate (2), syringic acid (3) and pinellic acid (4). Cell viability assay of 1-4 against U87MG cells indicated 2 as most active (IC50 value of 8.2 μg/mL), whereas the other three compounds were much less active. Interestingly, compounds 1-4 were non-toxic towards normal human cells (HEK-293). The content of 2 in AIM-C was estimated as 3% by HPLC. Hence, presence of some more active substances besides methyl caffeate (2) in AIM-C is anticipated. PMID:25422029

  15. Puerarin inhibits proliferation and induces apoptosis in human glioblastoma cell lines

    PubMed Central

    Yang, Ji-An; Li, Ji-Qiang; Shao, Ling-Min; Yang, Qian; Liu, Bao-Hui; Wu, Ting-Feng; Wu, Peng; Yi, Wei; Chen, Qian-Xue

    2015-01-01

    Puerarin has been widely used in clinical treatment and experiment research and is considered to exert an anticancer effect recently. The present study investigated the anticancer activity of puerarin in U251 and U87 human glioblastoma cells. The cells were treated with puerarin at various concentrations for different times. Cell viability and cell proliferation were detected by cell counting kit-8 (CCK-8) assay and 5-ethynyl-2’-deoxyuridine (EdU) staining respectively. Cell cycle and apoptosis were measured separately with PI staining and Annexin V-FITC/PI double staining method by flow cytometry. DNA damage of glioblastoma cells caused by puerarin exposure was evaluated by γ-H2AX foci detection, and the expressions of p-AKT, caspase-3 and apoptosis-related proteins were detected by Western blotting after puerarin treatment. Cell viability and proliferation of glioblastoma cells treated with puerarin were significantly lower than that of the control group; the apoptosis rate increased obviously compared to the control group. Puerarin significantly decreased the proportion at G1 phase of cell cycling accompanied by increased populations at the S and G2/M phases in both cell lines. At the same time, DNA damage level of puerarin treated cells was significantly higher than that in the control cells. Moreover, puerarin treatment suppressed the expression of p-Akt and Bcl-2 and promoted the expression of Bax and cleaved caspase-3 in U251 cells. These findings indicate that puerarin exerts antitumor effects both in U251 and U87 cells. PMID:26309712

  16. Expression profile of genes modulated by Aloe emodin in human U87 glioblastoma cells.

    PubMed

    Haris, Khalilah; Ismail, Samhani; Idris, Zamzuri; Abdullah, Jafri Malin; Yusoff, Abdul Aziz Mohamed

    2014-01-01

    Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment. PMID:24969876

  17. Bortezomib sensitizes human glioblastoma cells to induction of apoptosis by type I interferons through NOXA expression and Mcl-1 cleavage.

    PubMed

    Wang, Ruishan; Davidoff, Andrew M; Pfeffer, Lawrence M

    2016-09-01

    Glioblastomas are highly invasive and aggressive primary brain tumors. Type I interferons have significant, pleiotropic anticancer activity. However, through various pathways many cancers become interferon-resistant, limiting interferon's clinical utility. In this study, we demonstrated that the proteasomal inhibitor bortezomib sensitized human glioblastoma cells to the antiproliferative action of interferons, which involved the induction of caspase-dependent apoptosis but not necroptosis. We found that death ligands such as TRAIL (TNF-related apoptosis-inducing ligand) were not involved in interferon/bortezomib-induced apoptosis, although interferon induced TRAIL expression. However, apoptosis was induced through an intrinsic pathway involving increased NOXA expression and Mcl-1 cleavage. Our findings may provide an important rationale for combining type I interferons with bortezomib for glioblastoma therapy. PMID:27450810

  18. The disturbed blood-brain barrier in human glioblastoma.

    PubMed

    Wolburg, Hartwig; Noell, Susan; Fallier-Becker, Petra; Mack, Andreas F; Wolburg-Buchholz, Karen

    2012-01-01

    The aim of this article is to describe alterations of the blood-brain barrier (BBB) in gliomas. The main clinical problem of human gliomas is the edematous swelling and the dramatic increase of intracerebral pressure, also compromising healthy areas of the brain. According to our concept, one of the main reasons on the cellular level for these clinical problems is the loss or reduction of astroglial polarity. Astroglial polarity means the specific accumulation of potassium and water channels in the superficial and perivascular astroglial endfeet membranes. The most important water channel in the CNS is the astroglial water channel protein aquaporin-4 (AQP4) which is arranged in a morphologically spectacular way, the so-called orthogonal arrays of particles (OAPs) to be observed in freeze-fracture replicas. In brain tumors, but also under conditions of trauma or inflammation, these OAPs are redistributed to membrane domains apart from endfeet areas. Probably, this dislocation might be due to the degradation of the proteoglycan agrin by the matrix metalloproteinase 3 (MMP3). Agrin binds to the dystrophin-dystroglycan-complex (DDC), which in turn is connected to AQP4. As a consequence, agrin loss may lead to a redistribution of AQP4 and a compromised directionality of water transport out of the cell, finally to cytotoxic edema. This in turn is hypothesized to lead to a breakdown of the BBB characterized by disturbed tight junctions, and thus to the development of vasogenic edema. However, the mechanism how the loss of polarity is related to the disturbance of microvascular tight junctions is completely unknown so far. PMID:22387049

  19. Investigation of imatinib loaded surface decorated biodegradable nanocarriers against glioblastoma cell lines: Intracellular uptake and cytotoxicity studies.

    PubMed

    Khan, Abrar M; Ahmad, Farhan Jalees; Panda, Amulya K; Talegaonkar, Sushama

    2016-06-30

    Overexpression of P-glycoprotein (P-gp) efflux transporter in glioma cells thwarts the build-up of therapeutic concentration of drugs usually resulting into poor therapeutic outcome. To surmount aforesaid challenge, Imatinib (IMM) loaded Poly-lactide-co-glycolic acid nanoparticles (IMM-PLGA-NPs) were developed and optimized by Box Behnken Design as a new treatment stratagem in malignant glioma. Optimized NPs were functionalized with Pluronic(®) P84, P-gp inhibitor (IMM-PLGA-P84-NPs) which showed size, PDI, zeta potential, drug loading, 182.63±13.56nm, 0.196±0.021, -15.2±1.49mV, 40.63±2.04μg/mg, respectively. Intracellular uptake study conducted on A172, U251MG and C6 glioma cells demonstrated significantly high uptake of IMM through NPs when compared with IMM solution (IMM-S), p<0.001. IMM-PLGA-P84-NPs showed better uptake in P-gp expressing cell line (U251MG and C6) while uncoated NPs showed higher uptake in non-P-gp expressing cell line (A-172). Cytotoxicity studies demonstrated significantly low IC50 for both IMM-PLGA-NPs and IMM-PLGA-P84-NPs when compared with IC50 of IMM-S. IMM-PLGA-P84-NPs showed a significantly low IC50 against P-gp overexpressing cell lines when compared with IC50 of IMM-PLGA-NPs. In contrary, IMM-PLGA-NPs showed lower IC50 against non P-gp expressing cell line. This study demonstrated the feasibility of targeting surface decorated NPs to multidrug resistant gliomas. However, to address its clinical utility extensive in vivo studies are required. PMID:27154254

  20. Caffeine suppresses the progression of human glioblastoma via cathepsin B and MAPK signaling pathway.

    PubMed

    Cheng, Yu-Chen; Ding, You-Ming; Hueng, Dueng-Yuan; Chen, Jang-Yi; Chen, Ying

    2016-07-01

    Glioblastoma has aggressive proliferative and invasive properties. We investigated the effect of caffeine on the invasion and the anti-cancer effect in human glioblastomas. Caffeine reduced the invasion in U-87MG, GBM8401 and LN229 cells. Caffeine decreased mRNA, protein expression, and activity of cathepsin B. Besides, mRNA and protein expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) was upregulated by caffeine treatment, whereas matrix metalloproteinase-2 (MMP-2) was downregulated. The expression of Ki67, p-p38, phospforylated extracellular regulated protein kinases (p-ERK), and membranous integrin β1 and β3 was decreased by caffeine. The Rho-associated protein kinase (ROCK) inhibitor, Y27632, blocked the caffeine-mediated reduction of cathepsin B, phosphorylated focal adhesion kinase (p-FAK), and p-ERK, and invasion. Moreover, caffeine decreased the tumor size, cathepsin B and Ki67 expression in animal model. Caffeine reduced the invasion of glioma cells through ROCK-cathepsin B/FAK/ERK signaling pathway and tumor growth in orthotopic xenograft animal model, supporting the anti-cancer potential in glioma therapy. PMID:27260469

  1. Global Profiling of Metabolic Adaptation to Hypoxic Stress in Human Glioblastoma Cells

    PubMed Central

    Kucharzewska, Paulina; Christianson, Helena C.; Belting, Mattias

    2015-01-01

    Oncogenetic events and unique phenomena of the tumor microenvironment together induce adaptive metabolic responses that may offer new diagnostic tools and therapeutic targets of cancer. Hypoxia, or low oxygen tension, represents a well-established and universal feature of the tumor microenvironment and has been linked to increased tumor aggressiveness as well as resistance to conventional oncological treatments. Previous studies have provided important insights into hypoxia induced changes of the transcriptome and proteome; however, how this translates into changes at the metabolite level remains to be defined. Here, we have investigated dynamic, time-dependent effects of hypoxia on the cancer cell metabolome across all families of macromolecules, i.e., carbohydrate, protein, lipid and nucleic acid, in human glioblastoma cells. Using GC/MS and LC/MS/MS, 345 and 126 metabolites were identified and quantified in cells and corresponding media, respectively, at short (6 h), intermediate (24 h), and prolonged (48 h) incubation at normoxic or hypoxic (1% O2) conditions. In conjunction, we performed gene array studies with hypoxic and normoxic cells following short and prolonged incubation. We found that levels of several key metabolites varied with the duration of hypoxic stress. In some cases, metabolic changes corresponded with hypoxic regulation of key pathways at the transcriptional level. Our results provide new insights into the metabolic response of glioblastoma cells to hypoxia, which should stimulate further work aimed at targeting cancer cell adaptive mechanisms to microenvironmental stress. PMID:25633823

  2. mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.

    PubMed

    Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk

    2015-06-01

    The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme. PMID:25963717

  3. Distinct cellular responses induced by saporin and a transferrin-saporin conjugate in two different human glioblastoma cell lines.

    PubMed

    Cimini, A; Mei, S; Benedetti, E; Laurenti, G; Koutris, I; Cinque, B; Cifone, M G; Galzio, R; Pitari, G; Di Leandro, L; Giansanti, F; Lombardi, A; Fabbrini, M S; Ippoliti, R

    2012-03-01

    Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults, with a median survival of ~12-18 months post-diagnosis. GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are urgently needed. The marked difference of tumour cells with respect to normal brain cells renders glioblastoma a good candidate for selective targeted therapies. Recent experimental strategies focus on over expressed cell surface receptors. Targeted toxins represent a new class of selective molecules composed by a potent protein toxin and a carrier ligand. Targeted toxins approaches against glioblastoma were under investigation in phase I and II clinical trials with several immunotoxins (IT)/ligand toxins such as IL4-Pseudomonas aeruginosa exotoxin A (IL4-PE, NBI-3001), tumour growth factor fused to PE38, a shorter PE variant, (TGF)alpha-TP-38, IL13-PE38, and a transferrin-C diphtheriae toxin mutant (Tf-CRM107). In this work, we studied the effects of the plant ribosome-inactivating saporin and of its chimera transferrin-saporin against two different GBM cell lines. The data obtained here indicate that cell proliferation is affected by the toxin treatments but that different mechanisms are used, directly linked to the presence of an active or inactive p53. A model is proposed for these alternative intracellular pathways. PMID:21503892

  4. TARGETING SPHINGOSINE KINASE 1 INHIBITS AKT SIGNALING, INDUCES APOPTOSIS, AND SUPPRESSES GROWTH OF HUMAN GLIOBLASTOMA CELLS AND XENOGRAFTS

    PubMed Central

    Kapitonov, Dmitri; Allegood, Jeremy C.; Mitchell, Clint; Hait, Nitai C.; Almenara, Jorge A.; Adams, Jeffrey K.; Zipkin, Robert E.; Dent, Paul; Kordula, Tomasz; Milstien, Sheldon; Spiegel, Sarah

    2009-01-01

    Sphingosine-1-phosphate (S1P) is a potent sphingolipid mediator of diverse processes important for brain tumors, including cell growth, survival, migration, invasion, and angiogenesis. Sphingosine kinase 1 (SphK1), one of the two isoenzymes that produce S1P, is upregulated in glioblastoma and has been linked to poor prognosis in patients with glioblastoma multiforme (GBM). In the present study, we found that a potent isotype-specific SphK1 inhibitor, SK1-I, suppressed growth of LN229 and U373 glioblastoma cell lines and non-established human GBM6 cells. SK1-I also enhanced GBM cell death and inhibited their migration and invasion. SK1-I rapidly reduced phosphorylation of Akt but had no significant effect on activation of ERK1/2, another important survival pathway for GBM. Inhibition of the concomitant activation of the JNK pathway induced by SK1-I attenuated death of GBM cells. Importantly, SK1-I markedly reduced tumor growth rate of glioblastoma xenografts, inducing apoptosis and reducing tumor vascularization and enhanced the survival of mice harboring LN229 intracranial tumors. Our results support the notion that SphK1 may be an important factor in GBM and suggest that an isozyme-specific inhibitor of SphK1 deserves consideration as a new therapeutic agent for this disease. PMID:19723667

  5. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    PubMed

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. PMID:25542408

  6. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    SciTech Connect

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  7. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma

    PubMed Central

    González-Gómez, P.; de la Fuente, M.; Hernández-Laín, Aurelio; Mira, H.; Sánchez-Gómez, P.; Garcia-Fuentes, M.

    2015-01-01

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133+, Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  8. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma.

    PubMed

    González-Gómez, Pilar; Crecente-Campo, Jose; Zahonero, Cristina; de la Fuente, Maria; Hernández-Laín, Aurelio; Mira, Helena; Sánchez-Gómez, Pilar; Garcia-Fuentes, Marcos

    2015-05-10

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133(+), Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  9. Engraftment of Human Glioblastoma Cells in Immunocompetent Rats through Acquired Immunosuppression

    PubMed Central

    Huszthy, Peter C.; Sakariassen, Per Ø.; Espedal, Heidi; Brokstad, Karl A.; Bjerkvig, Rolf; Miletic, Hrvoje

    2015-01-01

    Transplantation of glioblastoma patient biopsy spheroids to the brain of T cell-compromised Rowett (nude) rats has been established as a representative animal model for human GBMs, with a tumor take rate close to 100%. In immunocompetent littermates however, primary human GBM tissue is invariably rejected. Here we show that after repeated passaging cycles in nude rats, human GBM spheroids are enabled to grow in the brain of immunocompetent rats. In case of engraftment, xenografts in immunocompetent rats grow progressively and host leukocytes fail to enter the tumor bed, similar to what is seen in nude animals. In contrast, rejection is associated with massive infiltration of the tumor bed by leukocytes, predominantly ED1+ microglia/macrophages, CD4+ T helper cells and CD8+ effector cells, and correlates with elevated serum levels of pro-inflammatory cytokines IL-1β, IL-18 and TNF-α. We observed that in nude rat brains, an adaptation to the host occurs after several in vivo passaging cycles, characterized by striking attenuation of microglial infiltration. Furthermore, tumor-derived chemokines that promote leukocyte migration and their entry into the CNS such as CXCL-10 and CXCL-12 are down-regulated, and the levels of TGF-β2 increase. We propose that through serial in vivo passaging in nude rats, human GBM cells learn to avoid and or/ suppress host immunity. Such adapted GBM cells are in turn able to engraft in immunocompetent rats without signs of an inflammatory response. PMID:26291724

  10. The Synergistic Effect of Combination Progesterone and Temozolomide on Human Glioblastoma Cells

    PubMed Central

    Atif, Fahim; Patel, Neil R.; Yousuf, Seema; Stein, Donald G.

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common and most aggressive malignant brain tumor. Despite optimal treatment and evolving standard of care, the median survival of patients diagnosed with GBM is only 12–15 months. In this study, we combined progesterone (PROG) and temozolomide (TMZ), a standard chemotherapeutic agent for human GBM, to test whether PROG enhances the antitumor effects of TMZ and reduces its side effects. Two WHO grade IV human GBM cells lines (U87MG and U118MG) and primary human dermal fibroblasts (HDFs) were repeatedly exposed to PROG and TMZ either alone or in combination for 3 and 6 days. Cell death was measured by MTT reduction assay. PROG and TMZ individually induced tumor cell death in a dose-dependent manner. PROG at high doses produced more cell death than TMZ alone. When combined, PROG enhanced the cell death-inducing effect of TMZ. In HDFs, PROG did not reduce viability even at the same high cytotoxic doses, but TMZ did so in a dose-dependent manner. In combination, PROG reduced TMZ toxicity in HDFs. PROG alone and in combination with TMZ suppressed the EGFR/PI3K/Akt/mTOR signaling pathway and MGMT expression in U87MG cells, thus suppressing cell proliferation. PROG and TMZ individually reduced cell migration in U87MG cells but did so more effectively in combination. PROG enhances the cytotoxic effects of TMZ in GBM cells and reduces its toxic side effects in healthy primary cells. PMID:26110872

  11. Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells

    PubMed Central

    Li, Hui-Fang; Kim, Jung-Sik; Waldman, Todd

    2009-01-01

    Background Ionizing radiation (IR) therapy is a primary treatment for glioblastoma multiforme (GBM), a common and devastating brain tumor in humans. IR has been shown to induce PI3K-Akt activation in many cell types, and activation of the PI3K-Akt signaling pathway has been correlated with radioresistance. Methods Initially, the effects of IR on Akt activation were assessed in multiple human GBM cell lines. Next, to evaluate a potential causative role of IR-induced Akt activation on radiosensitivity, Akt activation was inhibited during IR with several complementary genetic and pharmacological approaches, and radiosensitivity measured using clonogenic survival assays. Results Three of the eight cell lines tested demonstrated IR-induced Akt activation. Further studies revealed that IR-induced Akt activation was dependent upon the presence of a serum factor, and could be inhibited by the EGFR inhibitor AG1478. Inhibition of PI3K activation with LY294002, or with inducible wild-type PTEN, inhibition of EGFR, as well as direct inhibition of Akt with two Akt inhibitors during irradiation increased the radiosensitivity of U87MG cells. Conclusion These results suggest that Akt may be a central player in a feedback loop whereby activation of Akt induced by IR increases radioresistance of GBM cells. Targeting the Akt signaling pathway may have important therapeutic implications when used in combination with IR in the treatment of a subset of brain tumor patients. PMID:19828040

  12. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization

    PubMed Central

    Hayashi, Keiichiro; Michiue, Hiroyuki; Yamada, Hiroshi; Takata, Katsuyoshi; Nakayama, Hiroki; Wei, Fan-Yan; Fujimura, Atsushi; Tazawa, Hiroshi; Asai, Akira; Ogo, Naohisa; Miyachi, Hiroyuki; Nishiki, Tei-ichi; Tomizawa, Kazuhito; Takei, Kohji; Matsui, Hideki

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor with a median survival time about one year. Invasion of GBM cells into normal brain is the major cause of poor prognosis and requires dynamic reorganization of the actin cytoskeleton, which includes lamellipodial protrusions, focal adhesions, and stress fibers at the leading edge of GBM. Therefore, we hypothesized that inhibitors of actin polymerization can suppress GBM migration and invasion. First, we adopted a drug repositioning system for screening with a pyrene-actin-based actin polymerization assay and identified fluvoxamine, a clinically used antidepressant. Fluvoxamine, selective serotonin reuptake inhibitor, was a potent inhibitor of actin polymerization and confirmed as drug penetration through the blood–brain barrier (BBB) and accumulation of whole brain including brain tumor with no drug toxicity. Fluvoxamine inhibited serum-induced ruffle formation, cell migration, and invasion of human GBM and glioma stem cells in vitro by suppressing both FAK and Akt/mammalian target of rapamycin signaling. Daily treatment of athymic mice bearing human glioma-initiating cells with fluvoxamine blocked tumor cell invasion and prolonged the survival with almost same dose of anti-depressant effect. In conclusion, fluvoxamine is a promising anti-invasive treatment against GBM with reliable approach. PMID:26988603

  13. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization.

    PubMed

    Hayashi, Keiichiro; Michiue, Hiroyuki; Yamada, Hiroshi; Takata, Katsuyoshi; Nakayama, Hiroki; Wei, Fan-Yan; Fujimura, Atsushi; Tazawa, Hiroshi; Asai, Akira; Ogo, Naohisa; Miyachi, Hiroyuki; Nishiki, Tei-ichi; Tomizawa, Kazuhito; Takei, Kohji; Matsui, Hideki

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor with a median survival time about one year. Invasion of GBM cells into normal brain is the major cause of poor prognosis and requires dynamic reorganization of the actin cytoskeleton, which includes lamellipodial protrusions, focal adhesions, and stress fibers at the leading edge of GBM. Therefore, we hypothesized that inhibitors of actin polymerization can suppress GBM migration and invasion. First, we adopted a drug repositioning system for screening with a pyrene-actin-based actin polymerization assay and identified fluvoxamine, a clinically used antidepressant. Fluvoxamine, selective serotonin reuptake inhibitor, was a potent inhibitor of actin polymerization and confirmed as drug penetration through the blood-brain barrier (BBB) and accumulation of whole brain including brain tumor with no drug toxicity. Fluvoxamine inhibited serum-induced ruffle formation, cell migration, and invasion of human GBM and glioma stem cells in vitro by suppressing both FAK and Akt/mammalian target of rapamycin signaling. Daily treatment of athymic mice bearing human glioma-initiating cells with fluvoxamine blocked tumor cell invasion and prolonged the survival with almost same dose of anti-depressant effect. In conclusion, fluvoxamine is a promising anti-invasive treatment against GBM with reliable approach. PMID:26988603

  14. Element distribution is altered in a zone surrounding human glioblastoma multiforme.

    PubMed

    Dehnhardt, Markus; Zoriy, Myroslav V; Khan, Zahidul; Reifenberger, Guido; Ekström, Tomas J; Sabine Becker, J; Zilles, Karl; Bauer, Andreas

    2008-01-01

    Recent data indicate that A(1) adenosine receptor (A(1)AR) density is increased in a zone surrounding human and experimental gliomas. On the contrary, tumor tissue and adjacent brain tissue show low to intermediate A(1)AR densities. In order to assess whether changes in A(1)AR expression are indicating further processes of a chemical reorganization of the peritumoral zone, we investigated element concentrations and distribution patterns of copper and zinc in six human glioblastoma multiforme (GBM) specimens by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Uranium and lead were used as external standards. Copper and zinc levels were increased in a peritumoral zone corresponding to the region of elevated A(1)AR density. They showed a lower density in the solid tumor in comparison to surrounding brain tissue, although the cellular density was higher within GBM. Our findings suggest that the immediate vicinity of GBM is characterized by increased levels of copper and zinc supporting the view that higher A(1)AR density surrounding GBM is not an isolated alteration of peritumoral tissue but an indicator of complex changes in the vicinity of infiltrative tumors. Further research is needed to explore the pathophysiological consequences of altered peritumoral element distribution. PMID:18319136

  15. Identification of Novel Tumor-Associated Cell Surface Sialoglycoproteins in Human Glioblastoma Tumors Using Quantitative Proteomics

    PubMed Central

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A.; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells. PMID:25360666

  16. Intracellular recordings from myenteric neurones in the human colon.

    PubMed Central

    Brookes, S J; Ewart, W R; Wingate, D L

    1987-01-01

    1. Intracellular recordings were made from cells in the myenteric plexus of the human colon in freshly dissected tissue obtained from patients undergoing surgery for the removal of carcinomas or diverticular bowel. 2. Twenty-seven cells from ten preparations were classified as neurones and had overshooting action potentials, an average resting potential of -54 +/- 9 mV, an average input impedance of 1.05 +/- 0.59 x 10(8) omega and a variety of synaptic inputs. 3. Twenty-three (out of twenty-five neurones tested) received nicotinic fast excitatory synaptic inputs (fast e.p.s.p.s) that were blocked reversibly by hexamethonium and mimicked by acetylcholine. These nerve cells bore a close resemblance to S cells that have been characterized in the guinea-pig small-bowel myenteric plexus. 4. One cell had a long after-hyperpolarization following its impulses and was similar to AH cells in the guinea-pig small bowel. 5. Three neurones received inhibitory synaptic inputs, up to 15 mV in amplitude, lasting up to 10 s, associated with a decrease in input impedance and with a reversal potential between -80 and -90 mV. 6. Slow excitatory synaptic potentials were only detected in the single AH cell. The slow e.p.s.p. was associated with a depolarization of up to 12 mV, an increase in excitability and an increase in the input impedance of the neurone. 7. The proportion of S and AH cells differ considerably from that reported in the guinea-pig small-bowel preparation. Possible causes of the differences are discussed. Images Fig. 11 PMID:2895177

  17. Induction of microRNA-146a is involved in curcumin-mediated enhancement of temozolomide cytotoxicity against human glioblastoma.

    PubMed

    Wu, Hao; Liu, Qiang; Cai, Tao; Chen, Yu-Dan; Wang, Zhi-Fei

    2015-10-01

    MicroRNA (miR)-146a is a negative regulator of nuclear factor-κB (NF-κB) signaling that affects tumor growth and survival. The present study was undertaken to determine whether the cytotoxicity of curcumin (diferuloylmethane), a natural polyphenolic compound isolated from turmeric (Curcuma longa Linn), in glioblastoma cells is mediated through upregulation of miR‑146a. Human U‑87 MG glioblastoma cells were treated with curcumin and temozolomide (TMZ) alone or in combination, and cell proliferation and apoptosis were assessed. The involvement of miR‑146a and NF‑κB signaling in curcumin‑mediated chemosensitization was explored. Curcumin exposure led to upregulation of miR‑146a in U‑87 MG cells. Combined curcumin and TMZ treatment significantly (P<0.05) inhibited U‑87 MG cell proliferation and induced apoptotic death, compared with each alone. Notably, curcumin‑mediated enhancement of TMZ‑induced apoptosis was blocked by depletion of miR‑146a. By contrast, miR‑146a overexpression enhanced apoptosis and suppressed NF‑κB activation in TMZ‑treated cells. Additionally, pharmacological inhibition of NF‑κB signaling significantly increased TMZ‑induced apoptosis. To the best of our knowledge, the present study provides the first evidence that upregulation of miR‑146a and inactivation of NF‑κB signaling mediates the sensitization of human glioblastoma cells to TMZ-induced apoptosis by curcumin. PMID:26239619

  18. (68)Ga-labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of orthotopic human glioblastoma.

    PubMed

    Fan, Di; Zhang, Xin; Zhong, Lijun; Liu, Xujie; Sun, Yi; Zhao, Huiyun; Jia, Bing; Liu, Zhaofei; Zhu, Zhaohui; Shi, Jiyun; Wang, Fan

    2015-06-17

    β-Emitters can produce Cerenkov radiation that is detectable by Cerenkov luminescence imaging (CLI), allowing the combination of PET and CLI with one radiotracer for both tumor diagnosis and visual guidance during surgery. Recently, the clinical feasibility of CLI with the established therapeutic reagent Na(131)I and the PET tracer (18)F-FDG was demonstrated. (68)Ga possesses a higher Cerenkov light output than (18)F and (131)I, which would result in higher sensitivity for CLI and improve the outcome of CLI in clinical applications. However, the research on (68)Ga-based tumor-specific tracers for CLI is limited. In this study, we examined the use of (68)Ga-radiolabeled DOTA-3PRGD2 ((68)Ga-3PRGD2) for dual PET and CLI of orthotopic U87MG human glioblastoma. For this purpose, the Cerenkov efficiencies of (68)Ga and (18)F were measured with the IVIS Spectrum system (PerkinElmer, USA). The CLI signal intensity of (68)Ga was 15 times stronger than that of (18)F. PET and CLI of (68)Ga-3PRGD2 were performed in U87MG human glioblastoma xenografts. Both PET and CLI revealed a remarkable accumulation of (68)Ga-3PRGD2 in the U87MG human glioblastoma xenografts at 1 h p.i. with an extremely low background in the brain when compared with (18)F-FDG. Furthermore, (68)Ga-3PRGD2 was used for dual PET and CLI of orthotopic human glioblastoma. The orthotopic human glioblastoma was clearly visualized by both imaging modalities. In addition, the biodistribution of (68)Ga-3PRGD2 was assessed in normal mice to estimate the radiation dosimetry. The whole-body effective dose is 20.1 ± 3.3 μSv/MBq, which is equal to 3.7 mSv per whole-body PET scan with a 5 mCi injection dose. Thus, (68)Ga-3PRGD2 involves less radiation exposure in patients when compared with (18)F-FDG (7.0 mSv). The use of (68)Ga-3PRGD2 in dual PET and CLI shows great promise for tumor diagnosis and image-guided surgery. PMID:25853280

  19. Therapeutic potential of AZD1480 for the treatment of human glioblastoma.

    PubMed

    McFarland, Braden C; Ma, Jing-Yuan; Langford, Catherine P; Gillespie, G Yancey; Yu, Hao; Zheng, Ying; Nozell, Susan E; Huszar, Dennis; Benveniste, Etty N

    2011-12-01

    Aberrant activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway has been implicated in glioblastoma (GBM) progression. To develop a therapeutic strategy to inhibit STAT-3 signaling, we have evaluated the effects of AZD1480, a pharmacologic inhibitor of JAK1 and JAK2. In this study, the in vitro efficacy of AZD1480 was tested in human and murine glioma cell lines. AZD1480 treatment effectively blocks constitutive and stimulus-induced JAK1, JAK2, and STAT-3 phosphorylation in both human and murine glioma cells, and leads to a decrease in cell proliferation and induction of apoptosis. Furthermore, we used human xenograft GBM samples as models for the study of JAK/STAT-3 signaling in vivo, because human GBM samples propagated as xenografts in nude mice retain both the hallmark genetic alterations and the invasive phenotype seen in vivo. In these xenograft tumors, JAK2 and STAT-3 are constitutively active, but levels vary among tumors, which is consistent with the heterogeneity of GBMs. AZD1480 inhibits constitutive and stimulus-induced phosphorylation of JAK2 and STAT-3 in these GBM xenograft tumors in vitro, downstream gene expression, and inhibits cell proliferation. Furthermore, AZD1480 suppresses STAT-3 activation in the glioma-initiating cell population in GBM tumors. In vivo, AZD1480 inhibits the growth of subcutaneous tumors and increases survival of mice bearing intracranial GBM tumors by inhibiting STAT-3 activity, indicating that pharmacologic inhibition of the JAK/STAT-3 pathway by AZD1480 should be considered for study in the treatment of patients with GBM tumors. PMID:22027691

  20. Stereotaxic administrations of allogeneic human Vγ9Vδ2 T cells efficiently control the development of human glioblastoma brain tumors.

    PubMed

    Jarry, Ulrich; Chauvin, Cynthia; Joalland, Noémie; Léger, Alexandra; Minault, Sandrine; Robard, Myriam; Bonneville, Marc; Oliver, Lisa; Vallette, François M; Vié, Henri; Pecqueur, Claire; Scotet, Emmanuel

    2016-06-01

    Glioblastoma multiforme (GBM) represents the most frequent and deadliest primary brain tumor. Aggressive treatment still fails to eliminate deep brain infiltrative and highly resistant tumor cells. Human Vγ9Vδ2 T cells, the major peripheral blood γδ T cell subset, react against a wide array of tumor cells and represent attractive immune effector T cells for the design of antitumor therapies. This study aims at providing a preclinical rationale for immunotherapies in GBM based on stereotaxic administration of allogeneic human Vγ9Vδ2 T cells. The feasibility and the antitumor efficacy of stereotaxic Vγ9Vδ2 T cell injections have been investigated in orthotopic GBM mice model using selected heterogeneous and invasive primary human GBM cells. Allogeneic human Vγ9Vδ2 T cells survive and patrol for several days within the brain parenchyma following adoptive transfer and can successfully eliminate infiltrative GBM primary cells. These striking observations pave the way for optimized stereotaxic antitumor immunotherapies targeting human allogeneic Vγ9Vδ2 T cells in GBM patients. PMID:27471644

  1. Intracellular Distribution of Human T-Cell Leukemia Virus Type 1 Gag Proteins Is Independent of Interaction with Intracellular Membranes

    PubMed Central

    LeBlanc, Isabelle; Blot, Vincent; Bouchaert, Isabelle; Salamero, Jean; Goud, Bruno; Rosenberg, Arielle R.; Dokhélar, Marie-Christine

    2002-01-01

    Retrovirus Gag proteins are synthesized on free ribosomes, and are sufficient to govern the assembly and release of virus particles. Like type C retroviruses, human T-cell leukemia virus type 1 (HTLV-1) assembles and buds at the plasma membrane. After immunofluorescence staining, HTLV-1 Gag proteins appear as punctuated intracellular clusters, which suggests that they are associated either with intracellular membranes or with the plasma membrane. However, colocalization experiments using a panel of markers demonstrated that Gag proteins were not associated with the membranes involved in the secretory or endocytosis pathway. Small amounts of Gag proteins were detected at the plasma membrane and colocalized with the envelope glycoproteins. Moreover, Gag proteins were excluded from streptolysin-O permeabilized cells and in this respect behaved like cytoplasmic proteins. This suggests that the trafficking of HTLV-1 Gag proteins through the cytoplasm of the host cell is independent of any cell membrane system. PMID:11752179

  2. Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules.

    PubMed

    Clavreul, Anne; Montagu, Angélique; Lainé, Anne-Laure; Tétaud, Clément; Lautram, Nolwenn; Franconi, Florence; Passirani, Catherine; Vessières, Anne; Montero-Menei, Claudia N; Menei, Philippe

    2015-01-01

    Recently developed drug delivery nanosystems, such as lipid nanocapsules (LNCs), hold great promise for the treatment of glioblastomas (GBs). In this study, we used a subpopulation of human mesenchymal stem cells, "marrow-isolated adult multilineage inducible" (MIAMI) cells, which have endogenous tumor-homing activity, to deliver LNCs containing an organometallic complex (ferrociphenol or Fc-diOH), in the orthotopic U87MG GB model. We determined the optimal dose of Fc-diOH-LNCs that can be carried by MIAMI cells and compared the efficacy of Fc-diOH-LNC-loaded MIAMI cells with that of the free-standing Fc-diOH-LNC system. We showed that MIAMI cells entrapped an optimal dose of about 20 pg Fc-diOH per cell, with no effect on cell viability or migration capacity. The survival of U87MG-bearing mice was longer after the intratumoral injection of Fc-diOH-LNC-loaded MIAMI cells than after the injection of Fc-diOH-LNCs alone. The greater effect of the Fc-diOH-LNC-loaded MIAMI cells may be accounted for by their peritumoral distribution and a longer residence time of the drug within the tumor. These results confirm the potential of combinations of stem cell therapy and nanotechnology to improve the local tissue distribution of anticancer drugs in GB. PMID:25709447

  3. STAT3 Serine 727 Phosphorylation: A Relevant Target to Radiosensitize Human Glioblastoma.

    PubMed

    Ouédraogo, Zangbéwendé Guy; Müller-Barthélémy, Mélanie; Kemeny, Jean-Louis; Dedieu, Véronique; Biau, Julian; Khalil, Toufic; Raoelfils, Lala Ines; Granzotto, Adeline; Pereira, Bruno; Beaudoin, Claude; Guissou, Innocent Pierre; Berger, Marc; Morel, Laurent; Chautard, Emmanuel; Verrelle, Pierre

    2016-01-01

    Radiotherapy is an essential component of glioma standard treatment. Glioblastomas (GBM), however, display an important radioresistance leading to tumor recurrence. To improve patient prognosis, there is a need to radiosensitize GBM cells and to circumvent the mechanisms of resistance caused by interactions between tumor cells and their microenvironment. STAT3 has been identified as a therapeutic target in glioma because of its involvement in mechanisms sustaining tumor escape to both standard treatment and immune control. Here, we studied the role of STAT3 activation on tyrosine 705 (Y705) and serine 727 (S727) in glioma radioresistance. This study explored STAT3 phosphorylation on Y705 (pSTAT3-Y705) and S727 (pSTAT3-S727) in glioma cell lines and in clinical samples. Radiosensitizing effect of STAT3 activation down-modulation by Gö6976 was explored. In a panel of 15 human glioma cell lines, we found that the level of pSTAT3-S727 was correlated to intrinsic radioresistance. Moreover, treating GBM cells with Gö6976 resulted in a highly significant radiosensitization associated to a concomitant pSTAT3-S727 down-modulation only in GBM cell lines that exhibited no or weak pSTAT3-Y705. We report the constitutive activation of STAT3-S727 in all GBM clinical samples. Targeting pSTAT3-S727 mainly in pSTAT3-Y705-negative GBM could be a relevant approach to improve radiation therapy. PMID:25736961

  4. Lactate dehydrogenase-A inhibition induces human glioblastoma multiforme stem cell differentiation and death

    PubMed Central

    Daniele, Simona; Giacomelli, Chiara; Zappelli, Elisa; Granchi, Carlotta; Trincavelli, Maria Letizia; Minutolo, Filippo; Martini, Claudia

    2015-01-01

    Therapies that target the signal transduction and metabolic pathways of cancer stem cells (CSCs) are innovative strategies to effectively reduce the recurrence and significantly improve the outcome of glioblastoma multiforme (GBM). CSCs exhibit an increased rate of glycolysis, thus rendering them intrinsically more sensitive to prospective therapeutic strategies based on the inhibition of the glycolytic pathway. The enzyme lactate dehydrogenase-A (LDH-A), which catalyses the interconversion of pyruvate and lactate, is up-regulated in human cancers, including GBM. Although several papers have explored the benefits of targeting cancer metabolism in GBM, the effects of direct LDH-A inhibition in glial tumours have not yet been investigated, particularly in the stem cell subpopulation. Here, two representative LDH-A inhibitors (NHI-1 and NHI-2) were studied in GBM-derived CSCs and compared to differentiated tumour cells. LDH-A inhibition was particularly effective in CSCs isolated from different GBM cell lines, where the two compounds blocked CSC formation and elicited long-lasting effects by triggering both apoptosis and cellular differentiation. These data demonstrate that GBM, particularly the stem cell subpopulation, is sensitive to glycolytic inhibition and shed light on the therapeutic potential of LDH-A inhibitors in this tumour type. PMID:26494310

  5. Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules

    PubMed Central

    Clavreul, Anne; Montagu, Angélique; Lainé, Anne-Laure; Tétaud, Clément; Lautram, Nolwenn; Franconi, Florence; Passirani, Catherine; Vessières, Anne; Montero-Menei, Claudia N; Menei, Philippe

    2015-01-01

    Recently developed drug delivery nanosystems, such as lipid nanocapsules (LNCs), hold great promise for the treatment of glioblastomas (GBs). In this study, we used a subpopulation of human mesenchymal stem cells, “marrow-isolated adult multilineage inducible” (MIAMI) cells, which have endogenous tumor-homing activity, to deliver LNCs containing an organometallic complex (ferrociphenol or Fc-diOH), in the orthotopic U87MG GB model. We determined the optimal dose of Fc-diOH-LNCs that can be carried by MIAMI cells and compared the efficacy of Fc-diOH-LNC-loaded MIAMI cells with that of the free-standing Fc-diOH-LNC system. We showed that MIAMI cells entrapped an optimal dose of about 20 pg Fc-diOH per cell, with no effect on cell viability or migration capacity. The survival of U87MG-bearing mice was longer after the intratumoral injection of Fc-diOH-LNC-loaded MIAMI cells than after the injection of Fc-diOH-LNCs alone. The greater effect of the Fc-diOH-LNC-loaded MIAMI cells may be accounted for by their peritumoral distribution and a longer residence time of the drug within the tumor. These results confirm the potential of combinations of stem cell therapy and nanotechnology to improve the local tissue distribution of anticancer drugs in GB. PMID:25709447

  6. High-Throughput Chemical Screens Identify Disulfiram as an Inhibitor of Human Glioblastoma Stem Cells

    PubMed Central

    Hothi, Parvinder; Martins, Timothy J.; Chen, LiPing; Deleyrolle, Loic; Yoon, Jae-Geun; Reynolds, Brent; Foltz, Greg

    2012-01-01

    Glioblastoma Multiforme (GBM) continues to have a poor patient prognosis despite optimal standard of care. Glioma stem cells (GSCs) have been implicated as the presumed cause of tumor recurrence and resistance to therapy. With this in mind, we screened a diverse chemical library of 2,000 compounds to identify therapeutic agents that inhibit GSC proliferation and therefore have the potential to extend patient survival. High-throughput screens (HTS) identified 78 compounds that repeatedly inhibited cellular proliferation, of which 47 are clinically approved for other indications and 31 are experimental drugs. Several compounds (such as digitoxin, deguelin, patulin and phenethyl caffeate) exhibited high cytotoxicity, with half maximal inhibitory concentrations (IC50) in the low nanomolar range. In particular, the FDA approved drug for the treatment of alcoholism, disulfiram (DSF), was significantly potent across multiple patient samples (IC50 of 31.1 nM). The activity of DSF was potentiated by copper (Cu), which markedly increased GSC death. DSF–Cu inhibited the chymotrypsin-like proteasomal activity in cultured GSCs, consistent with inactivation of the ubiquitin-proteasome pathway and the subsequent induction of tumor cell death. Given that DSF is a relatively non-toxic drug that can penetrate the blood-brain barrier, we suggest that DSF should be tested (as either a monotherapy or as an adjuvant) in pre-clinical models of human GBM. Data also support targeting of the ubiquitin-proteasome pathway as a therapeutic approach in the treatment of GBM. PMID:23165409

  7. Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts1

    PubMed Central

    Ozawa, Tomoko; Gryaznov, Sergei M.; Hu, Lily J.; Pongracz, Krisztina; Santos, Raquel A.; Bollen, Andrew W.; Lamborn, Kathleen R.; Deen, Dennis F.

    2004-01-01

    Telomerase is a ribonucleoprotein complex that elongates telomeric DNA and appears to play an important role in cellular immortalization of cancers. Because telomerase is expressed in the vast majority of malignant gliomas but not in normal brain tissues, it is a logical target for glioma-specific therapy. The telomerase inhibitor GRN163, a 13-mer oligonucleotide N3′→P5′ thio-phosphoramidate (Geron Corporation, Menlo Park, Calif.), is complementary to the template region of the human telomerase RNA subunit hTR. When athymic mice bearing U-251 MG human brain tumor xenografts in their flanks were treated intratumorally with GRN163, a significant growth delay in tumor size was observed (P < 0.01 in all groups) as compared to the tumor size in mice receiving a mismatched oligonucleotide or the carrier alone. We also investigated biodistribution of the drug in vivo in an intracerebral rat brain-tumor model. Fluorescein-labeled GRN163 was loaded into an osmotic minipump and infused directly into U-251 MG brain tumors over 7 days. Examination of the brains revealed that GRN163 was present in tumor cells at all time points studied. When GRN163 was infused into intracerebral U-251 MG tumors shortly after their implantation, it prevented their establishment and growth. Lastly, when rats with larger intracerebral tumors were treated with the inhibitor, GRN163 increased animal survival times. Our results demonstrate that the antitelomerase agent GRN163 inhibits growth of glioblastoma in vivo, exhibits favorable intracerebral tumor uptake properties, and prevents the growth of intracerebral tumors. These findings support further development of this compound as a potential anticancer agent. PMID:15279714

  8. Involvement of miRNAs in the Differentiation of Human Glioblastoma Multiforme Stem-Like Cells

    PubMed Central

    Aldaz, Beatriz; Sagardoy, Ainara; Nogueira, Lorena; Guruceaga, Elizabeth; Grande, Lara; Huse, Jason T.; Aznar, Maria A.; Díez-Valle, Ricardo; Tejada-Solís, Sonia; Alonso, Marta M.; Fernandez-Luna, Jose L.

    2013-01-01

    Glioblastoma multiforme (GBM)-initiating cells (GICs) represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process. PMID:24155920

  9. Developing a Novel Embryo-Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics.

    PubMed

    Wehmas, Leah Christine; Tanguay, Robert L; Punnoose, Alex; Greenwood, Juliet A

    2016-08-01

    Glioblastoma is an aggressive brain cancer requiring improved treatments. Existing methods of drug discovery and development require years before new therapeutics become available to patients. Zebrafish xenograft models hold promise for prioritizing drug development. We have developed an embryo-larval zebrafish xenograft assay in which cancer cells are implanted in a brain microenvironment to discover and prioritize compounds that impact glioblastoma proliferation, migration, and invasion. We illustrate the utility of our assay by evaluating the well-studied, phosphatidylinositide 3-kinase inhibitor LY294002 and zinc oxide nanoparticles (ZnO NPs), which demonstrate selective cancer cytotoxicity in cell culture, but the in vivo effectiveness has not been established. Exposures of 3.125-6.25 μM LY294002 significantly decreased proliferation up to 34% with concentration-dependent trends. Exposure to 6.25 μM LY294002 significantly inhibited migration/invasion by ∼27% within the glioblastoma cell mass (0-80 μm) and by ∼32% in the next distance region (81-160 μm). Unexpectedly, ZnO enhanced glioblastoma proliferation by ∼19% and migration/invasion by ∼35% at the periphery of the cell mass (161+ μm); however, dissolution of these NPs make it difficult to discern whether this was a nano or ionic effect. These results demonstrate that we have a short, relevant, and sensitive zebrafish-based assay to aid glioblastoma therapeutic development. PMID:27158859

  10. Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma

    PubMed Central

    Johnson, Laura A.; Scholler, John; Ohkuri, Takayuki; Kosaka, Akemi; Patel, Prachi R.; McGettigan, Shannon E.; Nace, Arben K.; Dentchev, Tzvete; Thekkat, Pramod; Loew, Andreas; Boesteanu, Alina C.; Cogdill, Alexandria P.; Chen, Taylor; Fraietta, Joseph A.; Kloss, Christopher C.; Posey, Avery D.; Engels, Boris; Singh, Reshma; Ezell, Tucker; Idamakanti, Neeraja; Ramones, Melissa H.; Li, Na; Zhou, Li; Plesa, Gabriela; Seykora, John T.; Okada, Hideho; June, Carl H.; Brogdon, Jennifer L.; Maus, Marcela V.

    2015-01-01

    Chimeric antigen receptors (CARs) are synthetic molecules designed to redirect T cells to specific antigens. CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of surface targets with limited expression in normal tissues. The variant III mutation of the epidermal growth factor receptor (EGFRvIII) results from an in-frame deletion of a portion of the extracellular domain, creating a neoepitope. We chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv–based CAR in a xenograft model of glioblastoma. Next, we generated a panel of humanized scFvs and tested their specificity and function as soluble proteins and in the form of CAR-transduced T cells; a low-affinity scFv was selected on the basis of its specificity for EGFRvIII over wild-type EGFR. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. We further evaluated the specificity of the lead CAR candidate in vitro against EGFR-expressing keratinocytes and in vivo in a model of mice grafted with normal human skin. EGFRvIII-directed CAR T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFRvIII+ glioblastoma. On the basis of these results, we have designed a phase 1 clinical study of CAR T cells transduced with humanized scFv directed to EGFRvIII in patients with either residual or recurrent glioblastoma (NCT02209376). PMID:25696001

  11. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM)*

    PubMed Central

    Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P.

    2016-01-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future

  12. First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma.

    PubMed

    Whittle, James R; Lickliter, Jason D; Gan, Hui K; Scott, Andrew M; Simes, John; Solomon, Benjamin J; MacDiarmid, Jennifer A; Brahmbhatt, Himanshu; Rosenthal, Mark A

    2015-12-01

    There are limited treatment options for patients with recurrent glioblastoma (GBM). The EnGeneIC delivery vehicle (EDV) is a novel nanocellular (minicell) compound which packages theoretically effective concentrations of chemotherapeutic drugs that are designed to target tumors via minicell-surface attached bispecific proteins (EnGeneIC, Lane Cove West, NSW, Australia). Epidermal growth factor receptor (EGFR) is overexpressed in 40-50% of patients with GBM and is a promising target for new therapeutics. (V)EDVDox contains doxorubicin (Dox) within the minicells and targets EGFR through Vectibix (V; Amgen Biologicals, Thousand Oaks, CA, USA). We conducted a first in human Phase I study of (V)EDVDox in adults with recurrent GBM expressing EGFR on immunohistochemistry, following standard therapy including radiation and temozolomide, to establish a safe maximum tolerated dose and determine a recommended Phase II dose (RPTD). (V)EDVDox was administered weekly in an 8week cycle, with dose escalation in successive cohorts of patients using a standard 3+3 design. In total, 14 patients were treated at three dose levels, and the RPTD was identified as 5×10(9)(V)EDVDox. Overall (V)EDVDox was well tolerated, with no dose limiting toxicity and no withdrawals from the study due to adverse events. The most common adverse events were nausea, fever, and chills or rigors, experienced in seven, five and five patients, respectively. Transient uncomplicated hypophosphatemia was seen in seven patients and was not dose-related. Our results demonstrate that (V)EDVDox, up to a dose of 5×10(9)(V)EDVDox weekly, is well tolerated in patients with recurrent GBM. PMID:26279503

  13. PARP-1 inhibitors DPQ and PJ-34 negatively modulate proinflammatory commitment of human glioblastoma cells.

    PubMed

    Scalia, Marina; Satriano, Cristina; Greca, Rossana; Stella, Anna Maria Giuffrida; Rizzarelli, Enrico; Spina-Purrello, Vittoria

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) are recognized as key regulators of cell survival or death. PARP-1 is essential to the repair of DNA single-strand breaks via the base excision repair pathway. The enzyme may be overactivated in response to inflammatory cues, thus depleting cellular energy pools and eventually causing cell death. Accordingly, PARP-1 inhibitors, acting by competing with its physiological substrate NAD(+), have been proposed to play a protective role in a wide range of inflammatory and ischemia/reperfusion-associated diseases. Recently, it has also been reported that PARP-1 regulates proinflammatory mediators, including cytokines, chemokines, adhesion molecules, and enzymes (e.g., iNOS). Furthermore, PARP-1 has been shown to act as a coactivator of NF-κB- and other transcription factors implicated in stress/inflammation, as AP-1, Oct-1, SP-1, HIF, and Stat-1. To further substantiate this hypothesis, we tested the biomolecular effects of PARP-1 inhibitors DPQ and PJ-34 on human glioblastoma cells, induced to a proinflammatory state with lipopolysaccharide and Interferon-γ. PARP-1 expression was evaluated by laser scanning confocal microscopy immunofluorescence (LSM); nitrite production, LDH release and cell viability were also determined. LSM of A-172, SNB-19 and CAS-1 cells demonstrated that DPQ and PJ-34 downregulate PARP-1 expression; they also cause a decrease of LDH release and nitrite production, while increasing cell viability. Similar effects were caused in all three cell lines by N-mono-methyl-arginine, a well known iNOS inhibitor, and by L-carnosine and trehalose, two antioxidant molecules. These results demonstrate that, similar to other well characterized drugs, DPQ and PJ-34 reduce cell inflammation and damage that follow PARP-1 overexpression, while they increase cell survival: this suggests their potential exploitation in clinical Medicine. PMID:23011206

  14. Antitumour action on human glioblastoma A1235 cells through cooperation of bee venom and cisplatin.

    PubMed

    Gajski, Goran; Čimbora-Zovko, Tamara; Rak, Sanjica; Osmak, Maja; Garaj-Vrhovac, Vera

    2016-08-01

    Cisplatin (cDDP) is one of the most widely used anticancer-drugs in both therapy and research. However, cDDP-resistance is the greatest obstacle for the successful treatment of cancer patients. In the present study, the possible joint anticancer effect of bee venom (BV), as a natural toxin, and cDDP towards human glioblastoma A1235 cells was evaluated. Treatment with BV alone in concentrations of 2.5-30 μg/ml displayed dose-dependent cytotoxicity towards A1235 cells, as evaluated with different cytotoxicity assays (MTT, Cristal violet and Trypan blue exclusion assay), with an IC50 value of 22.57 μg/ml based on the MTT results. Furthermore, BV treatment induced necrosis, which was confirmed by typical morphological features and fast staining with ethidium-bromide dye. Pre-treatment with BV induced cell sensitization to cDDP, indicating that BV could improve the killing effect of selected cells when combined with cDDP. The isobologram method used to determine the extent of synergism in combining two agents to examine their possible therapeutic effect showed that combined treatment induced an additive and/or synergistic effect towards selected cells depending on the concentration of both. Hence, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. The obtained results indicate that joint treatment with BV could be useful from the point of minimizing the cDDP concentration during chemotherapy, thus reducing and/or postponing the development of drug resistance. Our data, in accordance with previously reported results, suggests that BV could be used in the development of a new strategy for cancer treatment. PMID:25916941

  15. Screening of differentially expressed genes associated with human glioblastoma and functional analysis using a DNA microarray.

    PubMed

    Wang, Lina; Wei, Bo; Hu, Guozhang; Wang, Le; Bi, Miaomiao; Sun, Zhigang; Jin, Ying

    2015-08-01

    Glioblastoma multiforme (GBM) is the most malignant type of human glioma, and has a poor prognosis. Screening differentially expressed genes (DEGs) in brain tumor samples and normal brain samples is of importance for identifying GBM and to design specific-targeting drugs. The transcriptional profile of GSE30563, containing three genechips of brain tumor samples and three genechips of normal brain samples, was downloaded from Gene Expression Omnibus to identify the DEGs. The differences in the expression of the DEGs in the two different samples were compared through hierarchical biclustering. The co-expression coefficient of the DEGs was calculated using the information from COXPRESdb, the network of the DEGs was constructed and functional enrichment and pathway analysis were performed. Finally, the transcription factors of important DEGs were predicted. A total of 1,006 DEGs, including 368 upregulated and 638 downregulated DEGs, were identified. A close correlation was demonstrated between six important genes, associated with immune response, HLA-DQB1, HLA-DRB1, HLA-DPA1, HLA-B, HLA-DMA and HLA-DRA, and the immune response. Allograft rejection was selected as the most significant pathway. A total of 17 transcription factors, including nuclear factor (NF)-κB and NF-κB1, and their binding sites containing these six DEGs, were also identified. The DEGs, including major histocompatibility complex (MHC) class II, DQβ1, MHC class II, DRβ1, MHC class IB, MHC class II, DMα, MHC class II, DPα1, MHC class II, DRα, may provide novel targets for the diagnosis and treatment of GBM. The transcription factors of these six genes and their binding sites may also provide evidence and direction for identifying target-specific drugs. PMID:25901754

  16. Horizontal Transmission and Retention of Malignancy, as well as Functional Human Genes, After Spontaneous Fusion of Human Glioblastoma and Hamster Host Cells In Vivo

    PubMed Central

    Goldenberg, David M.; Zagzag, David; Heselmeyer-Haddad, Kerstin M.; Berroa Garcia, Lissa Y; Ried, Thomas; Loo, Meiyu; Chang, Chien-Hsing; Gold, David V.

    2011-01-01

    Cell fusion in vitro has been used to study cancer, gene mapping and regulation, and the production of antibodies via hybridomas. However, in-vivo heterosynkaryon formation by cell-cell fusion has received less attention. This investigation describes the spontaneous fusion of a human glioblastoma with normal hamster cells after xenogeneic transplantation, resulting in malignant cells that express both human and hamster genes and gene products, and retention of glioblastoma traits with an enhanced ability to metastasize. Three of 7 human genes found showed translation of their proteins during serial propagation in vivo or in vitro for years; namely, CD74, CXCR4, and PLAGL2, each implicated with malignancy or glioblastoma. This supports the thesis that genetic hybridization of cancer and normal cells can transmit malignancy and also, as first described herein, regulatory genes involved in the tumor’s organotypic morphology. Evidence also is increasing that even cell-free human cancer DNA can induce malignancy and transfer genetic information to normal cells. Hence, we posit that the transfer of genetic information between tumor and stromal cells, whether by cell-cell fusion or other mechanisms, is implicated in the progression of malignancy, and may further define the crosstalk between cancer cells and their stromal neighbors. PMID:21796629

  17. Dexamethasone-Mediated Activation of Fibronectin Matrix Assembly Reduces Dispersal of Primary Human Glioblastoma Cells

    PubMed Central

    Shannon, Stephen; Vaca, Connan; Jia, Dongxuan; Entersz, Ildiko; Schaer, Andrew; Carcione, Jonathan; Weaver, Michael; Avidar, Yoav; Pettit, Ryan; Nair, Mohan; Khan, Atif; Foty, Ramsey A.

    2015-01-01

    Despite resection and adjuvant therapy, the 5-year survival for patients with Glioblastoma multiforme (GBM) is less than 10%. This poor outcome is largely attributed to rapid tumor growth and early dispersal of cells, factors that contribute to a high recurrence rate and poor prognosis. An understanding of the cellular and molecular machinery that drive growth and dispersal is essential if we are to impact long-term survival. Our previous studies utilizing a series of immortalized GBM cell lines established a functional causation between activation of fibronectin matrix assembly (FNMA), increased tumor cohesion, and decreased dispersal. Activation of FNMA was accomplished by treatment with Dexamethasone (Dex), a drug routinely used to treat brain tumor related edema. Here, we utilize a broad range of qualitative and quantitative assays and the use of a human GBM tissue microarray and freshly-isolated primary human GBM cells grown both as conventional 2D cultures and as 3D spheroids to explore the role of Dex and FNMA in modulating various parameters that can significantly influence tumor cell dispersal. We show that the expression and processing of fibronectin in a human GBM tissue-microarray is variable, with 90% of tumors displaying some abnormality or lack in capacity to secrete fibronectin or assemble it into a matrix. We also show that low-passage primary GBM cells vary in their capacity for FNMA and that Dex treatment reactivates this process. Activation of FNMA effectively “glues” cells together and prevents cells from detaching from the primary mass. Dex treatment also significantly increases the strength of cell-ECM adhesion and decreases motility. The combination of increased cohesion and decreased motility discourages in vitro and ex vivo dispersal. By increasing cell-cell cohesion, Dex also decreases growth rate of 3D spheroids. These effects could all be reversed by an inhibitor of FNMA and by the glucocorticoid receptor antagonist, RU-486. Our

  18. Diversified Expression of NG2/CSPG4 Isoforms in Glioblastoma and Human Foetal Brain Identifies Pericyte Subsets

    PubMed Central

    Rizzi, Marco; Errede, Mariella; Wälchli, Thomas; Mucignat, Maria Teresa; Frei, Karl; Roncali, Luisa; Perris, Roberto; Virgintino, Daniela

    2013-01-01

    NG2/CSPG4 is a complex surface-associated proteoglycan (PG) recognized to be a widely expressed membrane component of glioblastoma (WHO grade IV) cells and angiogenic pericytes. To determine the precise expression pattern of NG2/CSPG4 on glioblastoma cells and pericytes, we generated a panel of >60 mouse monoclonal antibodies (mAbs) directed against the ectodomain of human NG2/CSPG4, partially characterized the mAbs, and performed a high-resolution distributional mapping of the PG in human foetal, adult and glioblastoma-affected brains. The reactivity pattern initially observed on reference tumour cell lines indicated that the mAbs recognized 48 immunologically distinct NG2/CSPG4 isoforms, and a total of 14 mAbs was found to identify NG2/CSPG4 isoforms in foetal and neoplastic cerebral sections. These were consistently absent in the adult brain, but exhibited a complementary expression pattern in angiogenic vessels of both tumour and foetal tissues. Considering the extreme pleomorphism of tumour areas, and with the aim of subsequently analysing the distributional pattern of the NG2/CSPG4 isoforms on similar histological vessel typologies, a preliminary study was carried out with endothelial cell and pericyte markers, and with selected vascular basement membrane (VBM) components. On both tumour areas characterized by 'glomeruloid' and 'garland vessels', which showed a remarkably similar cellular and molecular organization, and on developing brain vessels, spatially separated, phenotypically diversified pericyte subsets with a polarized expression of key surface components, including NG2/CSPG4, were disclosed. Interestingly, the majority of the immunolocalized NG2/CSPG4 isoforms present in glioblastoma tissue were present in foetal brain, except for one isoform that seemed to be exclusive of tumour cells, being absent in foetal brain. The results highlight an unprecedented, complex pattern of NG2/CSPG4 isoform expression in foetal and neoplastic CNS, discriminating

  19. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    SciTech Connect

    Schuuring, Janneke; Bussink, Johan . E-mail: J.Bussink@rther.umcn.nl; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-02-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.

  20. [Role of defective intracellular proteolysis in human degenerative diseases].

    PubMed

    Nezelof, Christian

    2012-11-01

    Although intracellular protein synthesis has been studied extensively, protein degradation and disposal, know as proteolysis, has been relatively neglected. Modern studies which led two Nobel prizes (de Duve in 1950 and Herschko, Rose and Ciechanover in 1980) established that proteolysis is ensured by two separate but complementary mechanisms: lysosomes responsible for auto and heterophagy and the Ubiquitin-Proteasome System (UPS). The UPS involves ubiquitin, a small molecule consisting of 76 amino acids found in all eukaryotic cells that ensures the identification of the protein to be degraded and its transport to the proteasome, an intracellular complex with enzymes which degrade unneeded or damaged proteins. The proteasome, acting as a composting agent, ensures the enzymatic dissociation of the protein. In this degradation process, as infinite screw, ubiquitin, peptides and amino acids are released and made available for a new cycle. Knowledge of the UPS and its related disorders is continually expanding. Concurrent with lysosomes which work in acidic environment, it is currently known that the UPS provides 80% to 90% of the proteolysis of the short-life proteins and ensures, as chaperon-molecules, the right conformation and hence the correct function of the proteins. The proteolytic activity generates abnormal residues (tau protein, amyloid and related proteins) and various soluble and insoluble wastes. Some are precipitated as inclusion-bodies or aggregosomes, identified years ago by pathologists. These aggregosomes affect almost exclusively long-lived cells (nervous and muscular, macophages). Pigment deposits, such as lipofuscines made by the peroxydation of cell membranes, are the most abundant. Due to their diverse chemical composition, they cannot be empoyed for a scientific classification. Failures of these systems are numerous. They vary not according to the chemical nature of the abnormal protein and wastes but the life span of the targeted cells and

  1. BC3EE2,9B, a synthetic carbazole derivative, upregulates autophagy and synergistically sensitizes human GBM8901 glioblastoma cells to temozolomide

    PubMed Central

    CHEN, CHIEN-MIN; SYU, JHIH-PU; WAY, TZONG-DER; HUANG, LI-JIAU; KUO, SHENG-CHU; LIN, CHUNG-TIEN; LIN, CHIH-LI

    2015-01-01

    Glioblastoma multiforme (GBM) is the most fatal form of human brain cancer. Although temozolomide (TMZ), an oral alkylating chemotherapeutic agent, improves the survival rate, the prognosis of patients with GBM remains poor. Naturally occurring carbazole alkaloids isolated from curry leaves (Murraya koenigii Spreng.) have been shown to possess a wide range of anticancer properties. However, the effects of carbazole derivatives on glioblastoma cells remain poorly understood. In the present study, anti-glioblastoma profiles of a series of synthetic carbazole derivatives were evaluated in vitro. The most promising derivative in this series was BC3EE2,9B, which showed significant anti-proliferative effects in GBM8401 and GBM8901 cells. BC3EE2,9B also triggered cell-cycle arrest, most prominently at the G1 stage, and suppressed glioblastoma cell invasion and migration. Furthermore, BC3EE2,9B induced autophagy-mediated cell death and synergistically sensitized GBM cells to TMZ cytotoxicity. The possible mechanism underlying BC3EE2,9B-induced autophagy may involve activation of adenosine monophosphate-activated protein kinase and the attenuation of the Akt and mammalian target of the rapamycin downstream signaling pathway. Taken together, the present results provide molecular evidence for the mode of action governing the ability of BC3EE2,9B to sensitize drug-resistant glioblastoma cells to the chemotherapeutic agent TMZ. PMID:26329365

  2. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity

    PubMed Central

    Meyer, Mona; Reimand, Jüri; Lan, Xiaoyang; Head, Renee; Zhu, Xueming; Kushida, Michelle; Bayani, Jane; Pressey, Jessica C.; Lionel, Anath C.; Clarke, Ian D.; Cusimano, Michael; Squire, Jeremy A.; Scherer, Stephen W.; Bernstein, Mark; Woodin, Melanie A.; Bader, Gary D.; Dirks, Peter B.

    2015-01-01

    Glioblastoma (GBM) is a cancer comprised of morphologically, genetically, and phenotypically diverse cells. However, an understanding of the functional significance of intratumoral heterogeneity is lacking. We devised a method to isolate and functionally profile tumorigenic clones from patient glioblastoma samples. Individual clones demonstrated unique proliferation and differentiation abilities. Importantly, naïve patient tumors included clones that were temozolomide resistant, indicating that resistance to conventional GBM therapy can preexist in untreated tumors at a clonal level. Further, candidate therapies for resistant clones were detected with clone-specific drug screening. Genomic analyses revealed genes and pathways that associate with specific functional behavior of single clones. Our results suggest that functional clonal profiling used to identify tumorigenic and drug-resistant tumor clones will lead to the discovery of new GBM clone-specific treatment strategies. PMID:25561528

  3. Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1.

    PubMed

    Krossa, Sebastian; Schmitt, Anne Dorothée; Hattermann, Kirsten; Fritsch, Jürgen; Scheidig, Axel J; Mehdorn, Hubertus Maximilian; Held-Feindt, Janka

    2015-08-28

    The Twist-1 transcription factor and its interacting protein Akirin-2 regulate apoptosis. We found that in glioblastomas, highly malignant brain tumors, Akirin-2 and Twist-1 were expressed in glial fibrillary acidic protein positive tumor regions as well as in tumor endothelial cells and infiltrating macrophages / microglia. Temozolomide (TMZ) induced the expression of both molecules, partly shifting their nuclear to cytosolic localization. The knock-down (kd) of Akirin-2 increased the activity of cleaved (c)Caspase-3/-7, the amounts of cCaspases-3, -7 and cPARP-1 and resulted in an increased number of apoptotic cells after TMZ exposure. Glioblastoma cells containing decreased amounts of Akirin-2 after kd contained increased amounts of cCaspase-3 as determined by the ImageStreamx Mark II technology. For Twist-1, similar results were obtained with the exception that the combination of TMZ treatment and Twist-1 kd failed to significantly reduce chemoresistance compared with controls. This could be attributed to a cell population containing only slightly increased cCaspase-3 together with decreased Twist-1 levels, which was clearly larger than the respective population observed under Akirin-2 kd. Our results showed that, compared with Twist-1, Akirin-2 is the more promising target for RNAi strategies antagonizing Twist-1/Akirin-2 facilitated glioblastoma cell survival. PMID:26036627

  4. Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1

    PubMed Central

    Krossa, Sebastian; Schmitt, Anne Dorothée; Hattermann, Kirsten; Fritsch, Jürgen; Scheidig, Axel J.; Mehdorn, Hubertus Maximilian; Held-Feindt, Janka

    2015-01-01

    The Twist-1 transcription factor and its interacting protein Akirin-2 regulate apoptosis. We found that in glioblastomas, highly malignant brain tumors, Akirin-2 and Twist-1 were expressed in glial fibrillary acidic protein positive tumor regions as well as in tumor endothelial cells and infiltrating macrophages / microglia. Temozolomide (TMZ) induced the expression of both molecules, partly shifting their nuclear to cytosolic localization. The knock-down (kd) of Akirin-2 increased the activity of cleaved (c)Caspase-3/-7, the amounts of cCaspases-3, -7 and cPARP-1 and resulted in an increased number of apoptotic cells after TMZ exposure. Glioblastoma cells containing decreased amounts of Akirin-2 after kd contained increased amounts of cCaspase-3 as determined by the ImageStreamx Mark II technology. For Twist-1, similar results were obtained with the exception that the combination of TMZ treatment and Twist-1 kd failed to significantly reduce chemoresistance compared with controls. This could be attributed to a cell population containing only slightly increased cCaspase-3 together with decreased Twist-1 levels, which was clearly larger than the respective population observed under Akirin-2 kd. Our results showed that, compared with Twist-1, Akirin-2 is the more promising target for RNAi strategies antagonizing Twist-1/Akirin-2 facilitated glioblastoma cell survival. PMID:26036627

  5. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound.

    PubMed

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-01-01

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications. PMID:26542881

  6. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound

    PubMed Central

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-01-01

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications. PMID:26542881

  7. Jak2-Independent Activation of Stat3 by Intracellular Angiotensin II in Human Mesangial Cells.

    PubMed

    Singh, Rekha

    2011-01-01

    Ang II is shown to mediate the stimulatory effect of high glucose on TGF-b1 and extracellular matrix proteins in glomerular mesangial cells. Also inhibition of Ang II formation in cell media (extracellular) and lysates (intracellular) blocks high-glucose effects on TGF-b1 and matrix more effectively compared to inhibition of extracellular Ang II alone. To investigate whether intracellular Ang II can stimulate TGF-b1 and matrix independent of extracellular Ang II, cultured human mesangial cells were transfected with Ang II to increase intracellular Ang II levels and its effects on TGF-b1 and matrix proteins were determined. Prior to transfection, cells were treated with candesartan to block extracellular Ang II-induced responses via cell membrane AT1 receptors. Transfection of cells with Ang II resulted in increased levels of intracellular Ang II which was accompanied by increased production of TGF-b1, collagen IV, fibronectin, and cell proliferation as well. On further examination, intracellular Ang II was found to activate Stat3 transcription factor including increased Stat3 protein expression, tyrosine 705 phosphorylation, and DNA-binding activity. Treatment with AG-490, an inhibitor of Jak2, did not block intracellular Ang II-induced Stat3 phosphorylation at tyrosine 705 residue indicating a Jak2-independent mechanism used by intracellular Ang II for Stat3 phosphorylation. In contrast, extracellular Ang II-induced tyrosine 705 phosphorylation of Stat3 was inhibited by AG-490 confirming the presence of a Jak2-dependent pathway. These findings suggest that intracellular Ang II increases TGF-b1 and matrix in human mesangial cells and also activates Stat3 transcription factor without involvement of the extracellular Ang II signaling pathway. PMID:21915376

  8. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  9. Molecular profiling indicates orthotopic xenograft of glioma cell lines simulate a subclass of human glioblastoma

    PubMed Central

    Shankavaram, Uma T; Bredel, Markus; Burgan, William E; Carter, Donna; Tofilon, Philip; Camphausen, Kevin

    2012-01-01

    Abstract Cell line models have been widely used to investigate glioblastoma multiforme (GBM) pathobiology and in the development of targeted therapies. However, GBM tumours are molecularly heterogeneous and how cell lines can best model that diversity is unknown. In this report, we investigated gene expression profiles of three preclinical growth models of glioma cell lines, in vitro and in vivo as subcutaneous and intracerebral xenografts to examine which cell line model most resembles the clinical samples. Whole genome DNA microarrays were used to profile gene expression in a collection of 25 high-grade glioblastomas, and comparisons were made to profiles of cell lines under three different growth models. Hierarchical clustering revealed three molecular subtypes of the glioblastoma patient samples. Supervised learning algorithm, trained on glioma subtypes predicted the intracerebral cell line model with one glioma subtype (r = 0.68; 95% bootstrap CI –0.41, 0.46). Survival analysis of enriched gene sets (P < 0.05) revealed 19 biological categories (146 genes) belonging to neuronal, signal transduction, apoptosis- and glutamate-mediated neurotransmitter activation signals that are associated with poor prognosis in this glioma subclass. We validated the expression profiles of these gene categories in an independent cohort of patients from ‘The Cancer Genome Atlas’ project (r = 0.62, 95% bootstrap CI: –0.42, 0.43). We then used these data to select and inhibit a novel target (glutamate receptor) and showed that LY341595, a glutamate receptor specific antagonist, could prolong survival in intracerebral tumour-implanted mice in combination with irradiation, providing an in vivo cell line system of preclinical studies. PMID:21595825

  10. Intracellular Streptococcus pyogenes in human macrophages display an altered gene expression profile.

    PubMed

    Hertzén, Erika; Johansson, Linda; Kansal, Rita; Hecht, Alexander; Dahesh, Samira; Janos, Marton; Nizet, Victor; Kotb, Malak; Norrby-Teglund, Anna

    2012-01-01

    Streptococcus pyogenes is an important human pathogen, which has recently gained recognition as an intracellular microorganism during the course of severe invasive infections such as necrotizing fasciitis. Although the surface anchored M protein has been identified as a pivotal factor affecting phagosomal maturation and S. pyogenes survival within macrophages, the overall transcriptional profile required for the pathogen to adapt and persist intracellularly is as of yet unknown. To address this, the gene expression profile of S. pyogenes within human macrophages was determined and compared to that of extracellular bacteria using customized microarrays and real-time qRT-PCR. In order to model the early phase of infection involving adaptation to the intracellular compartment, samples were collected 2h post-infection. Microarray analysis revealed that the expression of 145 streptococcal genes was significantly altered in the intracellular environment. The majority of differentially regulated genes were associated with metabolic and energy-dependent processes. Key up-regulated genes in early phase intracellular bacteria were ihk and irr, encoding a two-component gene regulatory system (TCS). Comparison of gene expression of selected genes at 2h and 6h post-infection revealed a dramatic shift in response regulators over time with a down-regulation of ihk/irr genes concurring with an up-regulation of the covR/S TCS. In re-infection assays, intracellular bacteria from the 6h time point exhibited significantly greater survival within macrophages than did bacteria collected at the 2h time point. An isogenic S. pyogenes mutant deficient in ihk/irr displayed significantly reduced bacterial counts when compared to wild-type bacteria following infection of macrophages. The findings illustrate how gene expression of S. pyogenes during the intracellular life cycle is fine-tuned by temporal expression of specific two-component systems. PMID:22511985

  11. Intracellular Streptococcus pyogenes in Human Macrophages Display an Altered Gene Expression Profile

    PubMed Central

    Hertzén, Erika; Johansson, Linda; Kansal, Rita; Hecht, Alexander; Dahesh, Samira; Janos, Marton; Nizet, Victor; Kotb, Malak; Norrby-Teglund, Anna

    2012-01-01

    Streptococcus pyogenes is an important human pathogen, which has recently gained recognition as an intracellular microorganism during the course of severe invasive infections such as necrotizing fasciitis. Although the surface anchored M protein has been identified as a pivotal factor affecting phagosomal maturation and S. pyogenes survival within macrophages, the overall transcriptional profile required for the pathogen to adapt and persist intracellularly is as of yet unknown. To address this, the gene expression profile of S. pyogenes within human macrophages was determined and compared to that of extracellular bacteria using customized microarrays and real-time qRT-PCR. In order to model the early phase of infection involving adaptation to the intracellular compartment, samples were collected 2h post-infection. Microarray analysis revealed that the expression of 145 streptococcal genes was significantly altered in the intracellular environment. The majority of differentially regulated genes were associated with metabolic and energy-dependent processes. Key up-regulated genes in early phase intracellular bacteria were ihk and irr, encoding a two-component gene regulatory system (TCS). Comparison of gene expression of selected genes at 2h and 6h post-infection revealed a dramatic shift in response regulators over time with a down-regulation of ihk/irr genes concurring with an up-regulation of the covR/S TCS. In re-infection assays, intracellular bacteria from the 6h time point exhibited significantly greater survival within macrophages than did bacteria collected at the 2h time point. An isogenic S. pyogenes mutant deficient in ihk/irr displayed significantly reduced bacterial counts when compared to wild-type bacteria following infection of macrophages. The findings illustrate how gene expression of S. pyogenes during the intracellular life cycle is fine-tuned by temporal expression of specific two-component systems. PMID:22511985

  12. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes.

    PubMed

    Hsu, Shu-Shong; Chou, Chiang-Ting; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-25

    Gallic acid, a polyhydroxylphenolic compound, is widely distributed in various plants, fruits and foods. It has been shown that gallic acid passes into blood brain barrier and reaches the brain tissue of middle cerebral artery occlusion rats. However, the effect of gallic acid on Ca(2+) signaling in glia cells is unknown. This study explored whether gallic acid affected Ca(2+) homeostasis and induced Ca(2+)-associated cytotoxicity in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Gallic acid (20-40 μM) concentration-dependently induced cytotoxicity and intracellular Ca(2+) level ([Ca(2+)]i) increases in DBTRG-05MG cells but not in CTX TNA2 cells. In DBTRG-05MG cells, the Ca(2+) response was decreased by half by removal of extracellular Ca(2+). In Ca(2+)-containing medium, gallic acid-induced Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (2-APB, econazole and SKF96365). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished gallic acid-induced [Ca(2+)]i increases. Conversely, incubation with gallic acid also abolished thapsigargin-induced [Ca(2+)]i increases. Inhibition of phospholipase C with U73122 abolished gallic acid-induced [Ca(2+)]i increases. Gallic acid significantly caused cytotoxicity in DBTRG-05MG cells, which was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM. Moreover, gallic acid activated mitochondrial apoptotic pathways that involved ROS production. Together, in DBTRG-05MG cells but not in CTX TNA2 cells, gallic acid induced [Ca(2+)]i increases by causing Ca(2+) entry via 2-APB, econazole and SKF96365-sensitive store-operated Ca(2+) entry, and phospholipase C-dependent release from the endoplasmic reticulum. This Ca(2+) signal subsequently evoked mitochondrial pathways of apoptosis that involved ROS production. PMID:27060209

  13. PTEN-regulated AKT/FoxO3a/Bim signaling contributes to Human cell glioblastoma apoptosis by platinum-maurocalcin conjugate.

    PubMed

    Aroui, Sonia; Dardevet, Lucie; Najlaoui, Feten; Kammoun, Meriem; Laajimi, Amel; Fetoui, Hamadi; De Waard, Michel; Kenani, Abderraouf

    2016-08-01

    A previous report has shown that a chimera between a platinum complexing agent (1) and the cell penetrating peptide maurocalcin, synthesized with D-amino acids, (DMCa), termed Pt-1-DMCa, is a highly successful anticancer compound that works by targeting the intracellular redox system in glioblastoma (GBM) cells. However, the detailed cellular mechanism whereby the conjugate specifically kills tumor cells remains unclear. Herein, we show that Pt-1-DMCa induces apoptosis in Human U87 GBM cells through reactive oxygen species (ROS)-dependent modulation of the PI3K/AKT/FoxO3a signalling pathway. First, we found that Pt-1-DMCa treatment of these cells induces inhibition of AKT and nuclear accumulation of FoxO3a thereby facilitating transcription of the target genes Bim and PTEN. Modulation of the AKT/FoxO3a/Bim signaling pathway by RNA interference confirms that these signaling events are critical for Pt-1-DMCa-induced apoptosis of U87 GBM cells. Furthermore, we reveal that FoxO3a-mediated up-regulation of PTEN exerts an additional inhibitory effect on the AKT survival pathway. Thus, our results demonstrate that the conjugate can induce ROS-dependent FoxO3a-mediated apoptosis in U87 cells through PTEN-mediated inhibition of the PI3K/AKT survival axis. Our results help elucidate the molecular mechanisms underlying Pt-1-DMCa-induced cell death in U87 GBM cells and support a theoretical basis for future applications of the MCa peptide. PMID:27210502

  14. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    PubMed

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  15. Variability of intracellular lactate dehydrogenase isoenzymes in single human erythrocytes

    SciTech Connect

    Xue, Q.; Yeung, E.S. Iowa State Univ., Ames, IA )

    1994-04-01

    Trace amounts of enzymes within single human erythrocytes can be quantified by a combination of on-column reaction and capillary electrophoresis. A detection limit of 1.3 x 10[sup [minus]21] mol of LDH was achieved with laser-induced fluorescence by monitoring the product of the enzyme-catalyzed reaction between lactate and NAD[sup +]. Single erythrocyte analysis clearly isolates the major forms of LDH. The variation of total LDH activity in a population of cells from a single individual is large, but the relative activities of the isoenzymes LDH-1 and LDH-2 are fairly constant. This can be explained by the distribution of cell age in the population. A lower enzyme activity is indicative of senescence. The efficient separation of different LDH forms and the high detection sensitivity opens up the possibility of multiple-enzyme assays with a single mammalian cell. 41 refs., 5 figs.

  16. Advanced Magnetic Resonance Imaging of the Physical Processes in Human Glioblastoma

    PubMed Central

    Emblem, Kyrre E.; Andronesi, Ovidiu; Rosen, Bruce

    2014-01-01

    The most common malignant primary brain tumor, glioblastoma (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than 2 years and fewer than 10% of patients survive more than 5 years. Magnetic Resonance Imaging (MRI) can have great utility in the diagnosis, grading and management of patients with GBM as many of the physical manifestations of the pathological processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced (DCE) and dynamic susceptibility contrast (DSC) MRI provide functional information regarding the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We will review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We will conclude with challenges and opportunities for further research in applying physical principles to better understand the biological process in this deadly disease. PMID:25183787

  17. SIMS ion microscopy imaging of boronophenylalanine (BPA) and 13C15N-labeled phenylalanine in human glioblastoma cells: Relevance of subcellular scale observations to BPA-mediated boron neutron capture therapy of cancer

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Lorey, Daniel R., II

    2007-02-01

    p-Boronophenylalanine (BPA) is a clinically approved boron neutron capture therapy (BNCT) agent currently being used in clinical trials of glioblastoma multiforme, melanoma and liver metastases. Secondary ion mass spectrometry (SIMS) observations from the Cornell SIMS Laboratory provided support for using a 6 h infusion of BPA, instead of a 2 h infusion, for achieving higher levels of boron in brain tumor cells. These observations were clinically implemented in Phase II experimental trials of glioblastoma multiforme in Sweden. However, the mechanisms for higher BPA accumulation with longer infusions have remained unknown. In this work, by using 13C15N-labeled phenylalanine and T98G human glioblastoma cells, comparisons between the 10B-delivery of BPA and the accumulation of labeled phenylalanine after 2 and 6 h treatments were made with a Cameca IMS-3f SIMS ion microscope at 500 nm spatial resolution in fast frozen, freeze-fractured, freeze-dried cells. Due to the presence of the Na-K-ATPase in the plasma membrane of most mammalian cells, the cells maintain an approximately 10/1 ratio of K/Na in the intracellular milieu. Therefore, the quantitative imaging of these highly diffusible species in the identical cell in which the boron or labeled amino acid was imaged provides a rule-of-thumb criterion for validation of SIMS observations and the reliability of the cryogenic sampling. The labeled phenylalanine was detected at mass 28, as the 28(13C15N)- molecular ion. Correlative analysis with optical and confocal laser scanning microscopy revealed that fractured freeze-dried glioblastoma cells contained well-preserved ultrastructural details with three discernible subcellular regions: a nucleus or multiple nuclei, a mitochondria-rich perinuclear cytoplasmic region and the remaining cytoplasm. SIMS analysis revealed that the overall cellular signals of both 10B from BPA and 28CN- from labeled phenylalanine increased approximately 1.6-fold between the 2 and 6 h exposures

  18. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells

    PubMed Central

    Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A.; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication. PMID:26270679

  19. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma.

    PubMed

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  20. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma

    PubMed Central

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  1. PKCδ activated by c-MET enhances infiltration of human glioblastoma cells through NOTCH2 signaling

    PubMed Central

    Kang, Seok-Gu; Kim, Rae-Kwon; Cui, Yan-Hong; Lee, Hae-June; Kim, Min-Jung; Lee, Jae-Seong; Kim, In-Gyu; Suh, Yongjoon; Lee, Su-Jae

    2016-01-01

    Poor prognosis of glioblastoma (GBM) is attributable to the propensity of tumor cells to infiltrate into the brain parenchyma. Protein kinase C (PKC) isozymes are highly expressed or aberrantly activated in GBM. However, how this signaling node translates to GBM cell invasiveness remains unknown. Here, we report that among PKC isoforms, PKCδ is strongly associated with infiltration of GBM cells. Notably, PKCδ enhanced Tyr418 phosphorylation of the non-receptor tyrosine kinase SRC, which in turn activated STAT3 and subsequent NOTCH2 signaling, ultimately leading to GBM cell invasiveness. Furthermore, we showed that PKCδ was aberrantly activated in GBM cells by c-MET, a receptor tyrosine kinase hyperactivated in GBM. In agreement, inhibition either component in the c-MET/PKCδ/SRC/STAT3 signaling axis effectively blocked the NOTCH2 signaling and invasiveness of GBM cells. Taken together, our findings shed a light on the signaling mechanisms behind the constitutive activation of PKCδ signaling in GBM. PMID:26700818

  2. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    PubMed

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation. PMID:27091626

  3. Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide.

    PubMed

    Golubovskaya, Vita M; Huang, Grace; Ho, Baotran; Yemma, Michael; Morrison, Carl D; Lee, Jisook; Eliceiri, Brian P; Cance, William G

    2013-02-01

    Malignant gliomas are characterized by aggressive tumor growth with a mean survival of 15 to 18 months and frequently developed resistance to temozolomide. Therefore, strategies that sensitize glioma cells to temozolomide have a high translational impact. We have studied focal adhesion kinase (FAK), a tyrosine kinase and emerging therapeutic target that is known to be highly expressed and activated in glioma. In this report, we tested the FAK autophosphorylation inhibitor, Y15, in DBTRG and U87 glioblastoma cells. Y15 significantly decreased viability and clonogenicity in a dose-dependent manner, increased detachment in a dose- and time-dependent manner, caused apoptosis, and inhibited cell invasion in both cell lines. In addition, Y15 treatment decreased autophosphorylation of FAK in a dose-dependent manner and changed cell morphology by causing cell rounding in DBTRG and U87 cells. Administration of Y15 significantly decreased subcutaneous DBTRG tumor growth with decreased Y397-FAK autophosphorylation, activated caspase-3 and PARP. Y15 was administered in an orthotopic glioma model, leading to an increase in mouse survival. The combination of Y15 with temozolomide was more effective than either agent alone in decreasing viability and activating caspase-8 in DBTRG and U87 cells in vitro. In addition, the combination of Y15 and temozolomide synergistically blocked U87 brain tumor growth in vivo. Thus, pharmacologic blockade of FAK autophosphorylation with the oral administration of a small-molecule inhibitor Y15 has a potential to be an effective therapy approach for glioblastoma either alone or in combination with chemotherapy agents such as temozolomide. PMID:23243059

  4. Intracellular and extracellular pH dynamics in the human placenta from diabetes mellitus.

    PubMed

    Araos, Joaquín; Silva, Luis; Salsoso, Rocío; Sáez, Tamara; Barros, Eric; Toledo, Fernando; Gutiérrez, Jaime; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Sobrevia, Luis

    2016-07-01

    The placenta is a vital organ whose function in diseases of pregnancy is altered, resulting in an abnormal supply of nutrients to the foetus. The lack of placental vasculature homeostasis regulation causes endothelial dysfunction and altered vascular reactivity. The proper distribution of acid- (protons (H(+))) and base-equivalents through the placenta is essential to achieve physiological homeostasis. Several membrane transport mechanisms that control H(+) distribution between the extracellular and intracellular spaces are expressed in the human placenta vascular endothelium and syncytiotrophoblast, including sodium (Na(+))/H(+) exchangers (NHEs). One member of the NHEs family is NHE isoform 1 (NHE1), whose activity results in an alkaline intracellular pH (high intracellular pH (pHi)) and an acidic extracellular pH (pHo). Increased NHE1 expression, maximal transport activity, and turnover are reported in human syncytiotrophoblasts and lymphocytes from patients with diabetes mellitus type I (DMT1), and a positive correlation between NHEs activity and plasma factors, such as that between thrombin and platelet factor 3, has been reported in diabetes mellitus type II (DMT2). However, gestational diabetes mellitus (GDM) could result in a higher sensitivity of the human placenta to acidic pHo. We summarized the findings on pHi and pHo modulation in the human placenta with an emphasis on pregnancies in which the mother diagnosed with diabetes mellitus. A potential role of NHEs, particularly NHE1, is proposed regarding placental dysfunction in DMT1, DMT2, and GDM. PMID:27324099

  5. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation

    PubMed Central

    Zhang, Xianqin; Bogunovic, Dusan; Payelle-Brogard, Béatrice; Francois-Newton, Véronique; Speer, Scott D.; Yuan, Chao; Volpi, Stefano; Li, Zhi; Sanal, Ozden; Mansouri, Davood; Tezcan, Ilhan; Rice, Gillian I.; Chen, Chunyuan; Mansouri, Nahal; Alireza Mahdaviani, Seyed; Itan, Yuval; Boisson, Bertrand; Okada, Satoshi; Zeng, Lu; Wang, Xing; Jiang, Hui; Liu, Wenqiang; Han, Tiantian; Liu, Delin; Ma, Tao; Wang, Bo; Liu, Mugen; Liu, Jing-Yu; Wang, Qing K.; Yalnizoglu, Dilek; Radoshevich, Lilliana; Uzé, Gilles; Gros, Philippe; Rozenberg, Flore; Zhang, Shen-Ying; Jouanguy, Emmanuelle; Bustamante, Jacinta; Garcìa-Sastre, Adolfo; Abel, Laurent; Lebon, Pierre; Notarangelo, Luigi D.; Crow, Yanick J.; Boisson-Dupuis, Stèphanie; Casanova, Jean-Laurent; Pellegrini, Sandra

    2015-01-01

    Intracellular ISG15 is an interferon (IFN)-α/β-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-α/β-dependent antiviral immunity in mice1–4. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases5. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-γ-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-α/β immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi–Goutières syndrome and spondyloenchondrodysplasia6–9.We further show that an absence of intracellular ISG15 in the patients’ cells prevents the accumulation of USP1810,11, a potent negative regulator of IFN-α/β signalling, resulting in the enhancement and amplification of IFN-α/β responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-α/β immunity. In humans, intracellular ISG15 is IFN-α/β-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-α/β and prevention of IFN-α/β-dependent autoinflammation. PMID:25307056

  6. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation.

    PubMed

    Zhang, Xianqin; Bogunovic, Dusan; Payelle-Brogard, Béatrice; Francois-Newton, Véronique; Speer, Scott D; Yuan, Chao; Volpi, Stefano; Li, Zhi; Sanal, Ozden; Mansouri, Davood; Tezcan, Ilhan; Rice, Gillian I; Chen, Chunyuan; Mansouri, Nahal; Mahdaviani, Seyed Alireza; Itan, Yuval; Boisson, Bertrand; Okada, Satoshi; Zeng, Lu; Wang, Xing; Jiang, Hui; Liu, Wenqiang; Han, Tiantian; Liu, Delin; Ma, Tao; Wang, Bo; Liu, Mugen; Liu, Jing-Yu; Wang, Qing K; Yalnizoglu, Dilek; Radoshevich, Lilliana; Uzé, Gilles; Gros, Philippe; Rozenberg, Flore; Zhang, Shen-Ying; Jouanguy, Emmanuelle; Bustamante, Jacinta; García-Sastre, Adolfo; Abel, Laurent; Lebon, Pierre; Notarangelo, Luigi D; Crow, Yanick J; Boisson-Dupuis, Stéphanie; Casanova, Jean-Laurent; Pellegrini, Sandra

    2015-01-01

    Intracellular ISG15 is an interferon (IFN)-α/β-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-α/β-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-γ-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-α/β immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi-Goutières syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients' cells prevents the accumulation of USP18, a potent negative regulator of IFN-α/β signalling, resulting in the enhancement and amplification of IFN-α/β responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-α/β immunity. In humans, intracellular ISG15 is IFN-α/β-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-α/β and prevention of IFN-α/β-dependent autoinflammation. PMID:25307056

  7. Chemoattractant-Regulated Mobilization of a Novel Intracellular Compartment in Human Neutrophils

    NASA Astrophysics Data System (ADS)

    Borregaard, N.; Miller, L. J.; Springer, T. A.

    1987-09-01

    A novel mobilizable intracellular compartment was identified in human neutrophils by latent alkaline phosphatase activity. This compartment is mobilized to the plasma membrane much more readily than any identified granule subset and has kinetics of up-regulation in the membrane similar to those reported for a variety of receptor proteins. Triton X-100 permeabilization of both intact human neutrophils and subcellular fractions obtained by density-gradient centrifugation revelaed that 70 percent of the alkaline phosphatase is located in an intracellular compartment distinct from primary, secondary, and gelatinase granules and from the plasma membrane. This compartment fully translocates to the plasma membrane after stimulation with nanomolar concentrations of the chemotactic peptide N-formylmethionylleucylphenylalanine.

  8. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells.

    PubMed

    Kosaka, Kunio; Yokoi, Toshio

    2003-11-01

    Nerve growth factor (NGF) is a factor vital for the growth and functional maintenance of nerve tissue. The authors found that a rosemary (Rosmarinus officinalis L.) extract enhanced the production of NGF in T98G human glioblastoma cells. Furthermore, the results indicated that carnosic acid and carnosol, which are major components of the rosemary extract, were able to promote markedly enhanced synthesis of NGF. PMID:14600414

  9. 18F-FET and 18F-FCH uptake in human glioblastoma T98G cell lines

    PubMed Central

    Persico, Marco Giovanni; Buroni, Federica Eleonora; Pasi, Francesca; Aprile, Carlo; Nano, Rosanna; Hodolic, Marina

    2016-01-01

    Abstract Background Despite complex treatment of surgery, radiotherapy and chemotherapy, high grade gliomas often recur. Differentiation between post-treatment changes and recurrence is difficult. 18F-methyl-choline (18F-FCH) is frequently used in staging and detection of recurrent prostate cancer disease as well as some brain tumours; however accumulation in inflammatory tissue limits its specificity. The 18F-ethyl-tyrosine (18F-FET) shows a specific uptake in malignant cells, resulting from increased expression of amino acid transporters or diffusing through the disrupted blood-brain barrier. 18F-FET exhibits lower uptake in machrophages and other inflammatory cells. Aim of this study was to evaluate 18F-FCH and 18F-FET uptake by human glioblastoma T98G cells. Material and methods Human glioblastoma T98G or human dermal fibroblasts cells, seeded at a density to obtain 2 × 105 cells per flask when radioactive tracers were administered, grew adherent to the plastic surface at 37°C in 5% CO2 in complete medium. Equimolar amounts of radiopharmaceuticals were added to cells for different incubation times (20 to 120 minutes) for 18F-FCH and 18F-FET respectively. The cellular radiotracer uptake was determined with a gamma counter. All experiments were carried out in duplicate and repeated three times. The uptake measurements are expressed as the percentage of the administered dose of tracer per 2 × 105 cells. Data (expressed as mean values of % uptake of radiopharmaceuticals) were compared using parametric or non-parametric tests as appropriate. Differences were regarded as statistically significant when p<0.05. Results A significant uptake of 18F-FCH was seen in T98G cells at 60, 90 and 120 minutes. The percentage uptake of 18F-FET in comparison to 18F-FCH was lower by a factor of more than 3, with different kinetic curves.18F-FET showed a more rapid initial uptake up to 40 minutes and 18F-FCH showed a progressive rise reaching a maximum after 90 minutes

  10. Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells

    PubMed Central

    Hwang, Jae Youn; Yoon, Chi Woo; Lim, Hae Gyun; Park, Jin Man; Yoon, Sangpil; Lee, Jungwoo; Shung, K. Kirk

    2016-01-01

    Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities. PMID:26150401

  11. Biochemical manipulation of intracellular glutathione levels influences cytotoxicity to isolated human lymphocytes by sulfur mustard

    SciTech Connect

    Gross, C.L.; Innace, J.K.; Hovatter, R.C.; Meier, H.L.; Smith, W.J.

    1993-12-31

    Glutathione (GSH) is the major nonprotein thiol that can protect cells from damage due to electrophilic alkylating agents by forming conjugates with the agent. Sulfur mustard (HD) is an electrophilic alkylating agent that has potent mutagenic, carcinogenic, cytotoxic, and vesicant properties. Compounds that elevate or reduce intracellular levels of GSH may produce changes in cytotoxicity induced by sulfur mustard. Pretreatment of human peripheral blood lymphocytes (PBL) for 72 hr with 1 mM buthionine sulfoximine (BSO), which reduces intracellular GSH content to approximately 26% of control, appears to sensitize these in vitro cells to the cytotoxic effects of 10 AM HD but not to higher HD concentrations. Pretreatment of PBL for 48 hr with 10 mM N-acetyl cysteine (NA C), which elevates intracellular glutathione levels to 122% of control, appears to partially protect these in vitro cells from the cytotoxic effects of 10 LAIHD but not to higher HD concentrations. Augmentation of intracellular levels of glutathione may provide partial protection against cytotoxicity of sulfur mustard.

  12. Cryo-image Analysis of Tumor Cell Migration, Invasion, and Dispersal in a Mouse Xenograft Model of Human Glioblastoma Multiforme

    PubMed Central

    Qutaish, Mohammed Q.; Sullivant, Kristin E.; Burden-Gulley, Susan M.; Lu, Hong; Roy, Debashish; Wang, Jing; Basilion, James P.; Brady-Kalnay, Susann M.; Wilson, David L.

    2012-01-01

    Purpose The goals of this study were to create cryo-imaging methods to quantify characteristics (size, dispersal, and blood vessel density) of mouse orthotopic models of glioblastoma multiforme (GBM) and to enable studies of tumor biology, targeted imaging agents, and theranostic nanoparticles. Procedures Green fluorescent protein-labeled, human glioma LN-229 cells were implanted into mouse brain. At 20–38 days, cryo-imaging gave whole brain, 4-GB, 3D microscopic images of bright field anatomy, including vasculature, and fluorescent tumor. Image analysis/visualization methods were developed. Results Vessel visualization and segmentation methods successfully enabled analyses. The main tumor mass volume, the number of dispersed clusters, the number of cells/cluster, and the percent dispersed volume all increase with age of the tumor. Histograms of dispersal distance give a mean and median of 63 and 56 μm, respectively, averaged over all brains. Dispersal distance tends to increase with age of the tumors. Dispersal tends to occur along blood vessels. Blood vessel density did not appear to increase in and around the tumor with this cell line. Conclusion Cryo-imaging and software allow, for the first time, 3D, whole brain, microscopic characterization of a tumor from a particular cell line. LN-229 exhibits considerable dispersal along blood vessels, a characteristic of human tumors that limits treatment success. PMID:22125093

  13. Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53

    SciTech Connect

    Mercer, W.E.; Shields, M.T.; Amin, M.; Sauve, G.J. ); Appella, E.; Romano, J.W.; Ullrich, S.J. )

    1990-08-01

    To investigate the effect that human wild-type p53 (wt-p53) expression has on cell proliferation the authors constructed a recombinant plasmid, pM47, in which wt-p53 cDNA is under transcriptional control of the hormone-inducible mouse mammary tumor virus promoter linked to the dominant biochemical selection marker gene Eco gpt. The pM47 plasmid was introduced into T98G cells derived from a human glioblastomas multiforme tumor, and a stable clonal cell line, GM47.23, was derived that conditionally expressed wt-p53 following exposure to dexamethasone. The authors show that induction of wt-p53 expression in exponentially growing cells inhibits cell cycle progression and that the inhibitory effect is reversible upon removal of the inducer or infection with simian virus 40. Moreover, when growth-arrested cells are stimulated to proliferate, induction of wt-p53 expression inhibits G{sub 0}/G{sub 1} progression into S phase and the cells accumulate with a DNA content equivalent to cells arrested in the G{sub 0}/G{sub 1} phase of the cell cycle. Taken together, these studies suggest that wt-p53 may play a negative role in growth regulation.

  14. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity.

    PubMed

    Bury, M; Girault, A; Mégalizzi, V; Spiegl-Kreinecker, S; Mathieu, V; Berger, W; Evidente, A; Kornienko, A; Gailly, P; Vandier, C; Kiss, R

    2013-01-01

    Glioblastoma multiforme (GBM) is the most lethal and common malignant human brain tumor. The intrinsic resistance of highly invasive GBM cells to radiation- and chemotherapy-induced apoptosis accounts for the generally dismal treatment outcomes. This study investigated ophiobolin A (OP-A), a fungal metabolite from Bipolaris species, for its promising anticancer activity against human GBM cells exhibiting varying degrees of resistance to proapoptotic stimuli. We found that OP-A induced marked changes in the dynamic organization of the F-actin cytoskeleton, and inhibited the proliferation and migration of GBM cells, likely by inhibiting big conductance Ca(2+)-activated K(+) channel (BKCa) channel activity. Moreover, our results indicated that OP-A induced paraptosis-like cell death in GBM cells, which correlated with the vacuolization, possibly brought about by the swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). In addition, the OP-A-induced cell death did not involve the activation of caspases. We also showed that the expression of BKCa channels colocalized with these two organelles (mitochondria and ER) was affected in this programmed cell death pathway. Thus, this study reveals a novel mechanism of action associated with the anticancer effects of OP-A, which involves the induction of paraptosis through the disruption of internal potassium ion homeostasis. Our findings offer a promising therapeutic strategy to overcome the intrinsic resistance of GBM cells to proapoptotic stimuli. PMID:23538442

  15. Methylglyoxal (MGO) inhibits proliferation and induces cell death of human glioblastoma multiforme T98G and U87MG cells.

    PubMed

    Paul-Samojedny, Monika; Łasut, Barbara; Pudełko, Adam; Fila-Daniłow, Anna; Kowalczyk, Małgorzata; Suchanek-Raif, Renata; Zieliński, Michał; Borkowska, Paulina; Kowalski, Jan

    2016-05-01

    Glioblastoma multiforme (GBM) is the most malignant and invasive human brain tumor and it is characterized by a poor prognosis and short survival time. Current treatment strategies for GBM using surgery, chemotherapy and/or radiotherapy are ineffective. Thus new therapeutic strategies to target GBM are urgently needed. The effect of methylglyoxal (MGO) on the cell cycle, cell death and proliferation of human GBM cells was investigated. The T98G and U87MG cell lines were cultured in modified EMEM supplemented with 10% fetal bovine serum and maintained at 37°C in a humidified atmosphere of 5% CO2 in air. Cells were exposed to methylglyoxal (0.025mM) per 72h. The influence of MGO on T98G and U87MG cell cycle, proliferation and apoptosis was evaluated as well. Cell cycle phase distribution, proliferation, apoptosis were analyzed by flow cytometry. MGO causes changes in cell cycle and induces accumulation of G1/G0-phase cells and reduced fraction of cells in S and G2/M phases. We have also observed inhibition of cell proliferation and induction of apoptosis in cancer cells. We have also revealed that MGO induces senescence of U87MG but not T98G cells, but further studies are necessary in order to clarify and check mechanism of action of methylglyoxal and it Is a positive phenomenon for the treatment of GBM. PMID:27133062

  16. Acetate is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases

    PubMed Central

    Mashimo, Tomoyuki; Pichumani, Kumar; Vemireddy, Vamsidhara; Hatanpaa, Kimmo J.; Singh, Dinesh Kumar; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara G.; Kovacs, Zoltan; Foong, Chan; Huang, Zhiguang; Barnett, Samuel; Mickey, Bruce E.; DeBerardinis, Ralph J.; Tu, Benjamin P.; Maher, Elizabeth A.; Bachoo, Robert M.

    2015-01-01

    Glioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using 13C-NMR analysis of brain tumors resected from patients during infusion of 13C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-13C]acetate and can do so simultaneously with [1,6-13C]glucose oxidation. The tumors do not oxidize [U-13C]glutamine. In vivo oxidation of [1,2-13C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth. PMID:25525878

  17. Staphylococcus aureus Enterotoxin B Down-Regulates the Expression of Transforming Growth Factor-Beta (TGF-β) Signaling Transducers in Human Glioblastoma

    PubMed Central

    Akbari, Abolfazl; Farahnejad, Zohreh; Akhtari, Javad; Abastabar, Mahdi; Mobini, Gholam Reza; Mehbod, Amir Seied Ali

    2016-01-01

    Background It has been revealed that Staphylococcus aureus enterotoxin B (SEB) may feature anti-cancer and anti-metastatic advantages due to its ability to modify cell immunity processes and signaling pathways. Glioblastoma is one of the most aggressive human cancers; it has a high mortality nature, which makes it an attractive area for the development of novel therapies. Objectives We examined whether the SEB could exert its growth inhibitory effects on glioblastoma cells partially through the manipulation of a key tumor growth factor termed transforming growth factor-beta (TGF-β). Materials and Methods A human primary glioblastoma cell line, U87, was treated with different concentrations of SEB. The cell quantity was measured by the MTT assay at different exposure times. For molecular assessments, total ribonucleic acid (RNA) was extracted from either non-treated or SEB-treated cells. Subsequently, the gene expression of TGF-β transducers, smad2/3, at the messenger RNA (mRNA) level, was analyzed via a quantitative real-time polymerase chain reaction (qPCR) using the SYBR Green method. Significant differences between cell viability and gene expression levels were determined (Prism 5.0 software) using one-way analyses of variance (ANOVA) test. Results We reported that SEB could effectively down-regulate smad2/3 expression in glioblastoma cells at concentrations as quantity as 1 μg/mL and 2 μg/mL (P < 0.05 and P < 0.01, respectively). The SEB concentrations effective at regulating smad2/3 expression were correlated with those used to inhibit the proliferation of glioblastoma cells. Our results also showed that SEB was able to decrease smad2/3 expression at the mRNA level in a concentration- and time-dependent manner. Conclusions We suggested that SEB could represent an agent that can significantly decrease smad2/3 expression in glioblastoma cells, leading to moderate TGF-β growth signaling and the reduction of tumor cell proliferation. PMID:27540448

  18. 5-Iodo-2-Pyrimidinone-2'-Deoxyribose-Mediated Cytotoxicity and Radiosensitization in U87 Human Glioblastoma Xenografts

    SciTech Connect

    Kinsella, Timothy J. Kinsella, Michael T.; Seo, Yuji; Berk, Gregory

    2007-11-15

    Purpose: 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a novel orally administered (p.o.) prodrug of 5-iododeoxyuridine. Because p.o. IPdR is being considered for clinical testing as a radiosensitizer in patients with high-grade gliomas, we performed this in vivo study of IPdR-mediated cytotoxicity and radiosensitization in a human glioblastoma xenograft model, U87. Methods and Materials: Groups of 8 or 9 athymic male nude mice (6-8 weeks old) were implanted with s.c. U87 xenograft tumors (4 x 10{sup 6} cells) and then randomized to 10 treatment groups receiving increasing doses of p.o. IPdR (0, 100, 250, 500, and 1000 mg/kg/d) administered once daily (q.d.) x 14 days with or without radiotherapy (RT) (0 or 2 Gy/d x 4 days) on days 11-14 of IPdR treatment. Systemic toxicity was determined by body weight measurements during and after IPdR treatment. Tumor response was assessed by changes in tumor volumes. Results: IPdR alone at doses of {>=}500 mg/kg/d resulted in moderate inhibition of tumor growth. The combination of IPdR plus RT resulted in a significant IPdR dose-dependent tumor growth delay, with the maximum radiosensitization using {>=}500 mg/kg/d. IPdR doses of 500 and 1000 mg/kg/d resulted in transient 5-15% body weight loss during treatment. Conclusions: In U87 human glioblastoma s.c. xenografts, p.o. IPdR given q.d. x 14 days and RT given 2 Gy/d x 4 days (days 11-14 of IPdR treatment) results in a significant tumor growth delay in an IPdR dose-dependent pattern. The use of p.o. IPdR plus RT holds promise for Phase I/II testing in patients with high-grade gliomas.

  19. The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain.

    PubMed

    Walsh, D M; Tseng, B P; Rydel, R E; Podlisny, M B; Selkoe, D J

    2000-09-01

    The progressive aggregation and deposition of amyloid beta-protein (Abeta) in brain regions subserving memory and cognition is an early and invariant feature of Alzheimer's disease, the most common cause of cognitive failure in aged humans. Inhibiting Abeta aggregation is therapeutically attractive because this process is believed to be an exclusively pathological event. Whereas many studies have examined the aggregation of synthetic Abeta peptides under nonphysiological conditions and concentrations, we have detected and characterized the oligomerization of naturally secreted Abeta at nanomolar levels in cultures of APP-expressing CHO cells [Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., Koo, E. H., Rydell, R. E., Teplow, D. B., and Selkoe, D. J. (1995) J. Biol. Chem. 270, 9564-9570 (1); Podlisny, M. B., Walsh, D. M., Amarante, P., Ostaszewski, B. L., Stimson, E. R., Maggio, J. E., Teplow, D. B., and Selkoe, D. J. (1998) Biochemistry 37, 3602-3611 (2)]. To determine whether similar species occur in vivo, we probed samples of human cerebrospinal fluid (CSF) and detected SDS-stable dimers of Abeta in some subjects. Incubation of CSF or of CHO conditioned medium at 37 degrees C did not lead to new oligomer formation. This inability to induce oligomers extracellularly as well as the detection of oligomers in cell medium very early during the course of pulse-chase experiments suggested that natural Abeta oligomers might first form intracellularly. We therefore searched for and detected intracellular Abeta oligomers, principally dimers, in primary human neurons and in neuronal and nonneural cell lines. These dimers arose intracellularly rather than being derived from the medium by reuptake. The dimers were particularly detectable in neural cells: the ratio of intracellular to extracellular oligomers was much higher in brain-derived than nonbrain cells. We conclude that the pathogenically critical process of Abeta oligomerization begins intraneuronally. PMID

  20. Human Genome-Wide RNAi Screen for Host Factors That Modulate Intracellular Salmonella Growth

    PubMed Central

    Thornbrough, Joshua M.; Hundley, Tom; Valdivia, Raphael; Worley, Micah J.

    2012-01-01

    Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity. PMID:22701604

  1. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary

  2. Intracellular protozoan parasites of humans: the role of molecular chaperones in development and pathogenesis.

    PubMed

    Shonhai, Addmore; Maier, Alexander G; Przyborski, Jude M; Blatch, Gregory L

    2011-02-01

    Certain kinetoplastid (Leishmania spp. and Tryapnosoma cruzi) and apicomplexan parasites (Plasmodium falciparum and Toxoplasma gondii) are capable of invading human cells as part of their pathology. These parasites appear to have evolved a relatively expanded or diverse complement of genes encoding molecular chaperones. The gene families encoding heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp70) chaperones show significant expansion and diversity (especially for Leishmania spp. and T. cruzi), and in particular the Hsp40 family appears to be an extreme example of phylogenetic radiation. In general, Hsp40 proteins act as co-chaperones of Hsp70 chaperones, forming protein folding pathways that integrate with Hsp90 to ensure proteostasis in the cell. It is tempting to speculate that the diverse environmental insults that these parasites endure have resulted in the evolutionary selection of a diverse and expanded chaperone network. Hsp90 is involved in development and growth of all of these intracellular parasites, and so far represents the strongest candidate as a target for chemotherapeutic interventions. While there have been some excellent studies on the molecular and cell biology of Hsp70 proteins, relatively little is known about the biological function of Hsp70-Hsp40 interactions in these intracellular parasites. This review focuses on intracellular protozoan parasites of humans, and provides a critique of the role of heat shock proteins in development and pathogenesis, especially the molecular chaperones Hsp90, Hsp70 and Hsp40. PMID:20955165

  3. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

    PubMed Central

    Hasan, Md. Ashraful; Ahn, Won-Gyun

    2016-01-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca2+ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca2+]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca2+]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca2+]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca2+]i in human neutrophils was observed. In Ca2+-free buffer, NAC- and cysteine-induced [Ca2+]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca2+]i in human neutrophils occur through Ca2+ influx. NAC- and cysteine-induced [Ca2+]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na+-free HEPES, both NAC and cysteine induced a marked increase in [Ca2+]i in human neutrophils, arguing against the possibility that Na+-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca2+]i increasing activity. Our results show that NAC and cysteine induce [Ca2+]i increase through Ca2+ influx in human neutrophils via SKF96365- and ruthenium red-dependent way. PMID:27610031

  4. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils.

    PubMed

    Hasan, Md Ashraful; Ahn, Won-Gyun; Song, Dong-Keun

    2016-09-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca(2+) signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca(2+)]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca(2+)]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca(2+)]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca(2+)]i in human neutrophils was observed. In Ca(2+)-free buffer, NAC- and cysteine-induced [Ca(2+)]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca(2+)]i in human neutrophils occur through Ca(2+) influx. NAC- and cysteine-induced [Ca(2+)]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na(+)-free HEPES, both NAC and cysteine induced a marked increase in [Ca(2+)]i in human neutrophils, arguing against the possibility that Na(+)-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca(2+)]i increasing activity. Our results show that NAC and cysteine induce [Ca(2+)]i increase through Ca(2+) influx in human neutrophils via SKF96365- and ruthenium red-dependent way. PMID:27610031

  5. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model.

    PubMed

    Benedetti, Elisabetta; Antonosante, Andrea; d'Angelo, Michele; Cristiano, Loredana; Galzio, Renato; Destouches, Damien; Florio, Tiziana Marilena; Dhez, Anne Chloé; Astarita, Carlo; Cinque, Benedetta; Fidoamore, Alessia; Rosati, Floriana; Cifone, Maria Grazia; Ippoliti, Rodolfo; Giordano, Antonio; Courty, José; Cimini, Annamaria

    2015-12-01

    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma. PMID:26540346

  6. Hexane extract from Sargassum serratifolium inhibits the cell proliferation and metastatic ability of human glioblastoma U87MG cells.

    PubMed

    Kang, Chang-Won; Park, Min-Seok; Kim, Nan-Hee; Lee, Ji-Hyun; Oh, Chul-Woong; Kim, Hyeung-Rak; Kim, Gun-Do

    2015-11-01

    The present study is the first to demonstrate the anticancer effects of a hexane extract from the brown algae Sargassum serratifolium (HES) on human cancer cell lines, including glioblastoma U87MG, cervical cancer HeLa and gastric cancer MKN-28 cells, as well as liver cancer SK-HEP 1 cells. Among these cancer cell lines, U87MG cells were most sensitive to the cell death induced by HES. HES exhibited a cytotoxic effect on U87MG cells at concentrations of 14-16 µg/ml, yet an effect was not observed in human embryonic kidney HEK293 cells. The antiproliferative effects of HES were regulated by inhibition of the MAPK/ERK signaling pathway which plays a pivotal role in the proliferation of glioblastoma U87MG cells. In addition, treatment with HES led to cell morphological changes and cell cytoskeleton degradation through regulation of actin dynamic signaling. Furthermore, migration and invasion of the U87MG cells were inhibited by HES via suppression of matrix metalloproteinase (MMP)-2 and -9 expression. Thus, our results suggest that HES is a potential therapeutic agent which has anticancer effects on glioblastoma. PMID:26323587

  7. Enhanced antitumor efficacy of an oncolytic herpes simplex virus expressing an endostatin-angiostatin fusion gene in human glioblastoma stem cell xenografts.

    PubMed

    Zhang, Guobin; Jin, Guishan; Nie, Xiutao; Mi, Ruifang; Zhu, Guidong; Jia, William; Liu, Fusheng

    2014-01-01

    Viruses have demonstrated strong potential for the therapeutic targeting of glioblastoma stem cells (GSCs). In this study, the use of a herpes simplex virus carrying endostatin-angiostatin (VAE) as a novel therapeutic targeting strategy for glioblastoma-derived cancer stem cells was investigated. We isolated six stable GSC-enriched cultures from 36 human glioblastoma specimens and selected one of the stable GSCs lines for establishing GSC-carrying orthotopic nude mouse models. The following results were obtained: (a) VAE rapidly proliferated in GSCs and expressed endo-angio in vitro and in vivo 48 h and 10 d after infection, respectively; (b) compared with the control gliomas treated with rHSV or Endostar, the subcutaneous gliomas derived from the GSCs showed a significant reduction in microvessel density after VAE treatment; (c) compared with the control, a significant improvement was observed in the length of the survival of mice with intracranial and subcutaneous gliomas treated with VAE; (d) MRI analysis showed that the tumor volumes of the intracranial gliomas generated by GSCs remarkably decreased after 10 d of VAE treatment compared with the controls. In conclusion, VAE demonstrated oncolytic therapeutic efficacy in animal models of human GSCs and expressed an endostatin-angiostatin fusion gene, which enhanced antitumor efficacy most likely by restricting tumor microvasculature development. PMID:24755877

  8. Enhanced Antitumor Efficacy of an Oncolytic Herpes Simplex Virus Expressing an Endostatin–Angiostatin Fusion Gene in Human Glioblastoma Stem Cell Xenografts

    PubMed Central

    Zhang, Guobin; Jin, Guishan; Nie, Xiutao; Mi, Ruifang; Zhu, Guidong; Jia, William; Liu, Fusheng

    2014-01-01

    Viruses have demonstrated strong potential for the therapeutic targeting of glioblastoma stem cells (GSCs). In this study, the use of a herpes simplex virus carrying endostatin–angiostatin (VAE) as a novel therapeutic targeting strategy for glioblastoma-derived cancer stem cells was investigated. We isolated six stable GSC-enriched cultures from 36 human glioblastoma specimens and selected one of the stable GSCs lines for establishing GSC-carrying orthotopic nude mouse models. The following results were obtained: (a) VAE rapidly proliferated in GSCs and expressed endo–angio in vitro and in vivo 48 h and 10 d after infection, respectively; (b) compared with the control gliomas treated with rHSV or Endostar, the subcutaneous gliomas derived from the GSCs showed a significant reduction in microvessel density after VAE treatment; (c) compared with the control, a significant improvement was observed in the length of the survival of mice with intracranial and subcutaneous gliomas treated with VAE; (d) MRI analysis showed that the tumor volumes of the intracranial gliomas generated by GSCs remarkably decreased after 10 d of VAE treatment compared with the controls. In conclusion, VAE demonstrated oncolytic therapeutic efficacy in animal models of human GSCs and expressed an endostatin–angiostatin fusion gene, which enhanced antitumor efficacy most likely by restricting tumor microvasculature development. PMID:24755877

  9. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model

    PubMed Central

    d'Angelo, Michele; Cristiano, Loredana; Galzio, Renato; Destouches, Damien; Florio, Tiziana Marilena; Dhez, Anne Chloé; Astarita, Carlo; Cinque, Benedetta; Fidoamore, Alessia; Rosati, Floriana; Cifone, Maria Grazia; Ippoliti, Rodolfo; Giordano, Antonio; Courty, José; Cimini, Annamaria

    2015-01-01

    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma. PMID:26540346

  10. Intracellular synthesis of human parainfluenza type 3 virus-specified polypeptides.

    PubMed Central

    Wechsler, S L; Lambert, D M; Galinski, M S; Pons, M W

    1985-01-01

    The intracellular synthesis of human parainfluenza type 3 virus-specified polypeptides was examined by polyacrylamide gel electrophoresis of [35S]methionine-labeled cell extracts under reducing conditions. All of the virion structural proteins were detected in cell extracts, including: L, 180,000 molecular weight (180K); P, 83K; HN, 69K; NP, 66K; F0, 60K; F1, 51K; and M, 38K. P and NP were phosphorylated. HN and F were glycosylated. The kinetics of intracellular viral protein synthesis did not detect any early or late proteins. Pulse-chase experiments failed to detect any precursor-product relationships. No nonstructural proteins were detected. Images PMID:2987519

  11. Nuclear unphosphorylated STAT3 correlates with a worse prognosis in human glioblastoma.

    PubMed

    Rodrigues, Bruna R; Queiroz-Hazarbassanov, Nicolle; Lopes, Marilene H; Bleggi-Torres, Luis F; Suzuki, Sérgio; Cunha, Isabela W; Sanematsu, Paulo; Martins, Vilma R

    2016-06-01

    Glioblastoma (GBM) is currently the most aggressive form of brain tumor identified, and STAT3 is known to play an important role in gliomagenesis. Moreover, while several studies have used pharmacological approaches to modulate STAT3 activity, the results have been contradictory. In this study, expressions of STAT3, pSTAT3 (Y705), and pSTAT3 (S727) were evaluated using immunohistochemistry assays of tissue microarrays containing non-neoplastic tissue (NN, n=12), grade II astrocytomas (n=33), grade III astrocytomas (n=12), and GBM (n=85) specimens. In GBM specimens, STAT3 was overexpressed and exhibited greater nuclear localization compared with lower grade astrocytomas and NN. Conversely, nuclear localization of pSTAT3 (Y705) and pSTAT3 (S727) exhibited a similar phenotype in both GBMs and NNs. MET was also detected as a non-canonical pathway marker for STAT3. For tumors with higher levels of STAT3 nuclear localization, and not pSTAT3 (Y705) and pSTAT3 (S727), these specimens exhibited increased levels of MET expression. Thus, a non-canonical pathway may mediate a proportion of the STAT3 that translocates to the nucleus. Moreover, tumors which exhibited greater nuclear localization of STAT3 corresponded with patients that presented with lower rates of recurrence-free survival and overall survival. In contrast, the phosphorylated forms of STAT3 did not correlate with patient survival. These findings suggest that phosphorylation-independent mechanisms may mediate the nuclear translocation and activation of STAT3. Further studies are needed to identify the mechanisms involved, especially those that provide targets to achieve efficient inhibition and control of GBM progression. PMID:27013058

  12. PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells.

    PubMed

    Morjen, Maram; Kallech-Ziri, Olfa; Bazaa, Amine; Othman, Houcemeddine; Mabrouk, Kamel; Zouari-Kessentini, Raoudha; Sanz, Libia; Calvete, Juan José; Srairi-Abid, Najet; El Ayeb, Mohamed; Luis, José; Marrakchi, Naziha

    2013-01-01

    A novel Kunitz-type serine proteinase inhibitor, termed PIVL, was purified to homogeneity from the venom of the Tunisian snake Macrovipera lebetina transmediterranea. It is a monomeric polypeptide chain cross-linked by three disulfide linkages with an isotope-averaged molecular mass of 7691.7 Da. The 67-residue full-length PIVL sequence was deduced from a venom gland cDNA clone. Structurally, PIVL is built by a single Kunitz/BPTI-like domain. Functionally, it is able to specifically inhibit trypsin activity. Interestingly, PIVL exhibits an anti-tumor effect and displays integrin inhibitory activity without being cytotoxic. Here we show that PIVL is able to dose-dependently inhibit the adhesion, migration and invasion of human glioblastoma U87 cells. Our results also show that PIVL impairs the function of αvβ3 and to a lesser extent, the activity of αvβ6, αvβ5, α1β1 and α5β1 integrins. Interestingly, we demonstrate that the (41)RGN(43) motif of PIVL is likely responsible for its anti-cancer effect. By using time lapse videomicroscopy, we found that PIVL significantly reduced U87 cells motility and affected cell directionality persistence by 68%. These findings reveal novel pharmacological effects for a Kunitz-type serine proteinase inhibitor. PMID:23262217

  13. The silencing of adenine nucleotide translocase isoform 1 induces oxidative stress and programmed cell death in ADF human glioblastoma cells.

    PubMed

    Lena, Annalisa; Rechichi, Mariarosa; Salvetti, Alessandra; Vecchio, Donatella; Evangelista, Monica; Rainaldi, Giuseppe; Gremigni, Vittorio; Rossi, Leonardo

    2010-07-01

    Adenine nucleotide translocases (ANTs) are multitask proteins involved in several aspects of cell metabolism, as well as in the regulation of cell death/survival processes. We investigated the role played by ANT isoforms 1 and 2 in the growth of a human glioblastoma cell line (ADF cells). The silencing of ANT2 isoform, by small interfering RNA, did not produce significant changes in ADF cell viability. By contrast, the silencing of ANT1 isoform strongly reduced ADF cell viability by inducing a non-apoptotic cell death process resembling paraptosis. We demonstrated that cell death induced by ANT1 depletion cannot be ascribed to the loss of the ATP/ADP exchange function of this protein. By contrast, our findings indicate that ANT1-silenced cells experience oxidative stress, thus allowing us to hypothesize that the effect of ANT1-silencing on ADF is mediated by the loss of the ANT1 uncoupling function. Several studies ascribe a pro-apoptotic role to ANT1 as a result of the observation that ANT1 overexpression sensitizes cells to mitochondrial depolarization or to apoptotic stimuli. In the present study, we demonstrate that, despite its pro-apoptotic function at a high expression level, the reduction of ANT1 density below a physiological baseline impairs fundamental functions of this protein in ADF cells, leading them to undertake a cell death process. PMID:20528917

  14. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry

    PubMed Central

    Boisselier, Blandine; Peglion, Florent; Rousseau, Audrey; Colin, Carole; Idbaih, Ahmed; Marie, Yannick; Mokhtari, Karima; Thomas, Jean-Léon; Eichmann, Anne; Delattre, Jean-Yves; Maniotis, Andrew J.; Sanson, Marc

    2010-01-01

    Glioblastoma is one of the most angiogenic human tumours and endothelial proliferation is a hallmark of the disease. A better understanding of glioblastoma vasculature is needed to optimize anti-angiogenic therapy that has shown a high but transient efficacy. We analysed human glioblastoma tissues and found non-endothelial cell-lined blood vessels that were formed by tumour cells (vasculogenic mimicry of the tubular type). We hypothesized that CD133+ glioblastoma cells presenting stem-cell properties may express pro-vascular molecules allowing them to form blood vessels de novo. We demonstrated in vitro that glioblastoma stem-like cells were capable of vasculogenesis and endothelium-associated genes expression. Moreover, a fraction of these glioblastoma stem-like cells could transdifferentiate into vascular smooth muscle-like cells. We describe here a new mechanism of alternative glioblastoma vascularization and open a new perspective for the antivascular treatment strategy. PMID:20375132

  15. Decreased therapeutic effects of noscapine combined with imatinib mesylate on human glioblastoma in vitro and the effect of midkine

    PubMed Central

    2011-01-01

    Background Glioblastoma (GBM) develops resistance to the advances in chemotherapy leading to poor prognosis and life quality. Consequently, new treatment modalities are needed. Our aims were to investigate the effects of combined noscapine (NOS) and imatinib mesylate (IM) on human GBM in vitro and the role of midkine (MK) in this new combination treatment. Methods Monolayer and spheroid cultures of T98G human GBM cell line were used to evaluate the effects of IM (10 μM), Nos (10 μM) and their combination on cell proliferation and apoptotic indexes, cell cycle, the levels of antiapoptotic MK, MRP-1, p170, PFGFR-α, EGFR, bcl-2 proteins, apoptotic caspase-3 levels, morphology (SEM) and ultrastructure (TEM) for 72 hrs. Results were statistically analyzed using the Student's t-test. Results The combination group induced highest decrease in cell proliferation and apoptotic indexes, caspase-3 levels, MRP-1 and PDGFR-α levels. The decrease in p170 levels were lower than IM but higher that NOS. The highest increases were in EGFR, MK, bcl-2 and cAMP levels in the combination group. The G0+G1 cell cycle arrest at the end of 72nd hr was the lowest in the combination group. Apoptotic appearence was observed rarely both in the morphologic and ultrastructural evaluation of the combination group. In addition, autophagic vacuoles which were frequently observed in the IM group were observed rarely. Conclusions The combination of Nos with IM showed antagonist effect in T98G human GBM cells in vitro. This antagonist effect was correlated highly with MK levels. The effects of NOS on MRP-1, MK and receptor tyrosine kinase levels were firstly demonstrated in our report. In addition, we proposed that MK is one of the modulator in the switch of autophagy to cell death or survival/resistance. PMID:21651812

  16. Citrus bergamia Risso Elevates Intracellular Ca (2+) in Human Vascular Endothelial Cells due to Release of Ca (2+) from Primary Intracellular Stores.

    PubMed

    Kang, Purum; Han, Seung Ho; Moon, Hea Kyung; Lee, Jeong-Min; Kim, Hyo-Keun; Min, Sun Seek; Seol, Geun Hee

    2013-01-01

    The purpose of the present study is to examine the effects of essential oil of Citrus bergamia Risso (bergamot, BEO) on intracellular Ca(2+) in human umbilical vein endothelial cells. Fura-2 fluorescence was used to examine changes in intracellular Ca(2+) concentration [Ca(2+)]i . In the presence of extracellular Ca(2+), BEO increased [Ca(2+)]i , which was partially inhibited by a nonselective Ca(2+) channel blocker La(3+). In Ca(2+)-free extracellular solutions, BEO increased [Ca(2+)]i in a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca(2+). BEO-induced [Ca(2+)]i increase was partially inhibited by a Ca(2+)-induced Ca(2+) release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3)-gated Ca(2+) channel blocker, 2-aminoethoxydiphenyl borane (2-APB). BEO also increased [Ca(2+)]i in the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca(2+) uptake. In addition, store-operated Ca(2+) entry (SOC) was potentiated by BEO. These results suggest that BEO mobilizes Ca(2+) from primary intracellular stores via Ca(2+)-induced and IP3-mediated Ca(2+) release and affect promotion of Ca(2+) influx, likely via an SOC mechanism. PMID:24348719

  17. Prostaglandin E2 inhibits apoptosis in human neutrophilic polymorphonuclear leukocytes: role of intracellular cyclic AMP levels.

    PubMed

    Ottonello, L; Gonella, R; Dapino, P; Sacchetti, C; Dallegri, F

    1998-08-01

    Human neutrophilic polymorphonuclear leukocytes (neutrophils) are terminally differentiated cells that die by undergoing apoptosis. At present, the intracellular pathways governing this process are only partially known. In particular, although the adenylate cyclase-dependent generation of cyclic AMP (cAMP) has been implicated in the triggering of apoptosis in lymphoid cells, the role of the intracellular cAMP pathway in neutrophil apoptosis remains controversial. In the present study, we found that two cAMP-elevating agents, prostaglandin E2 (PGE2) and the phosphodiesterase type IV inhibitor RO 20-1724, inhibit neutrophil apoptosis without inducing cell necrosis. When administered in combination, PGE2 and RO 20-1724 displayed additive effects. Moreover, neutrophil apoptosis was inhibited by a membrane-permeable analog of cAMP, dibutyryl-cAMP, in a dose-dependent manner. Finally, treatment of neutrophils with the protein kinase A inhibitor H-89 prevented PGE2- and RO 20-1724-induced inhibition of cell apoptosis. In conclusion, taking into account that PGE2 and other cAMP-elevating agents are well known downregulators of neutrophil functions, our results suggest that conditions favoring a state of functional rest, such as intracellular cAMP elevation, prolong the life span of neutrophils by delaying apoptosis. PMID:9694511

  18. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers

    SciTech Connect

    Quintanar-Escorza, M.A.; Gonzalez-Martinez, M.T.; Navarro, L.; Maldonado, M.; Arevalo, B.; Calderon-Salinas, J.V. . E-mail: jcalder@cinvestav.mx

    2007-04-01

    Erythrocytes are the route of lead distribution to organs and tissues. The effect of lead on calcium homeostasis in human erythrocytes and other excitable cells is not known. In the present work we studied the effect of lead intoxication on the uptake and efflux (measured as (Ca{sup 2+}-Mg{sup 2+})-ATPase activity) of calcium were studied in erythrocytes obtained from lead-exposed workers. Blood samples were taken from 15 workers exposed to lead (blood lead concentration 74.4 {+-} 21.9 {mu}g/dl) and 15 non-exposed workers (9.9 {+-} 2 {mu}g/dl). In erythrocytes of lead-exposed workers, the intracellular free calcium was 79 {+-} 13 nM, a significantly higher concentration (ANOVA, P < 0.01) than the one detected in control (30 {+-} 9 nM). The enhanced intracellular free calcium was associated with a higher osmotic fragility and with important modifications in erythrocytes shape. The high intracellular free calcium in lead-exposed workers was also related to a 100% increase in calcium incorporation and to 50% reduction of (Ca{sup 2+}-Mg{sup 2+})-ATPase activity. Lipid peroxidation was 1.7-fold higher in erythrocytes of lead-exposed workers as compared with control. The alteration on calcium equilibrium in erythrocytes is discussed in light of the toxicological effects in lead-exposed workers.

  19. Quantitation of intracellular Mac-1 (CD11b/CD18) pools in human neutrophils.

    PubMed

    Jones, D H; Anderson, D C; Burr, B L; Rudloff, H E; Smith, C W; Krater, S S; Schmalstieg, F C

    1988-12-01

    The adhesive glycoprotein Mac-1 (CD11b/CD18) of the CD11/CD18 complex contributes to multiple neutrophil inflammatory functions. Activation of neutrophils by chemotactic stimuli results in a rapid, protein synthesis-independent increase in surface Mac-1 derived from incompletely defined intracellular compartments. Therefore, we developed a novel quantitative lectin immunoblot technique to define intracellular pools of Mac-1 in subcellular neutrophil fractions resolved on discontinuous Percoll gradients. In cavitates of unstimulated neutrophils, 30% and 26% of total Mac-1 was identified in beta [1.10 gm/ml; vitamin B12 binding protein (vit B12 B.P.)-rich] or pre-gamma (1.07 gm/ml; vit B12 B.P.-poor) granular fractions, respectively, whereas 24% was associated with the plasma membrane-rich gamma (1.06 gm/ml) fractions. N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation (10(-8) M, 15 min, 37 degrees C) significantly diminished Mac-1 in pre-gamma (-18% of total, P less than 0.05) but not beta fractions (+6% of total). Under these conditions, the content of Mac-1 in gamma fractions increased 13% in association with four- to eightfold increase in surface Mac-1 expression (OKM-1 binding). These findings suggest that chemotactic stimuli increase plasma membrane and/or surface Mac-1 on human neutrophils by mobilizing a novel intracellular granule pool. PMID:2903896

  20. Combined flow cytometric analysis of surface and intracellular antigens reveals surface molecule markers of human neuropoiesis.

    PubMed

    Turaç, Gizem; Hindley, Christopher J; Thomas, Ria; Davis, Jason A; Deleidi, Michela; Gasser, Thomas; Karaöz, Erdal; Pruszak, Jan

    2013-01-01

    Surface molecule profiles undergo dynamic changes in physiology and pathology, serve as markers of cellular state and phenotype and can be exploited for cell selection strategies and diagnostics. The isolation of well-defined cell subsets is needed for in vivo and in vitro applications in stem cell biology. In this technical report, we present an approach for defining a subset of interest in a mixed cell population by flow cytometric detection of intracellular antigens. We have developed a fully validated protocol that enables the co-detection of cluster of differentiation (CD) surface antigens on fixed, permeabilized neural cell populations defined by intracellular staining. Determining the degree of co-expression of surface marker candidates with intracellular target population markers (nestin, MAP2, doublecortin, TUJ1) on neuroblastoma cell lines (SH-SY5Y, BE(2)-M17) yielded a combinatorial CD49f(-)/CD200(high) surface marker panel. Its application in fluorescence-activated cell sorting (FACS) generated enriched neuronal cultures from differentiated cell suspensions derived from human induced pluripotent stem cells. Our data underlines the feasibility of using the described co-labeling protocol and co-expression analysis for quantitative assays in mammalian neurobiology and for screening approaches to identify much needed surface markers in stem cell biology. PMID:23826393

  1. Intracellular distribution of Fe3O4 nanoparticles in both human and mouse cells

    NASA Astrophysics Data System (ADS)

    Palihawadana Arachchige, Maheshika; Laha, Suvra; Rajagopal, Amulya; Kulkarni, Sanjana; Wang, Shuo; Flack, Amanda; Li, Chunying; Jena, Bhanu; Lawes, Gavin

    2014-03-01

    In recent years there has been an increasing interest in developing Fe3O4 nanoparticles for biomedical applications including targeted drug delivery and magnetic resonance imaging. Understanding of the intracellular distribution of these nanoparticles is crucial when considering these nanoparticles for specific applications. We have synthesized Fe3O4 nanoparticles having average size of 14 nm using a co-precipitation technique, which were coated with dextran. We studied the structural and morphological characteristics of the nanoparticles using x-ray diffraction, electron microscopy, dynamic light scattering, and zeta potential measurements. We also characterized the magnetic properties of the nanoparticles. In order to investigate the intracellular distribution of these Fe3O4 nanoparticles, we functionalized the dextran coated Fe3O4 nanoparticles with a fluorescent dye, Fluorescein isothiocyanate (FITC), and cultured them with both mouse insulinoma MIN 6 cells and human pancreatic MIA PaCa 2 cells. Using optical microscope we investigated the intracellular distribution of the nanoparticles and the effects on cell growth.

  2. Association of Human Antibodies to Arabinomannan With Enhanced Mycobacterial Opsonophagocytosis and Intracellular Growth Reduction

    PubMed Central

    Chen, Tingting; Blanc, Caroline; Eder, Anke Z.; Prados-Rosales, Rafael; Souza, Ana Camila Oliveira; Kim, Ryung S.; Glatman-Freedman, Aharona; Joe, Maju; Bai, Yu; Lowary, Todd L.; Tanner, Rachel; Brennan, Michael J.; Fletcher, Helen A.; McShane, Helen; Casadevall, Arturo; Achkar, Jacqueline M.

    2016-01-01

    Background. The relevance of antibodies (Abs) in the defense against Mycobacterium tuberculosis infection remains uncertain. We investigated the role of Abs to the mycobacterial capsular polysaccharide arabinomannan (AM) and its oligosaccharide (OS) fragments in humans. Methods. Sera obtained from 29 healthy adults before and after primary or secondary bacillus Calmette-Guerin (BCG) vaccination were assessed for Ab responses to AM via enzyme-linked immunosorbent assays, and to AM OS epitopes via novel glycan microarrays. Effects of prevaccination and postvaccination sera on BCG phagocytosis and intracellular survival were assessed in human macrophages. Results. Immunoglobulin G (IgG) responses to AM increased significantly 4–8 weeks after vaccination (P < .01), and sera were able to opsonize BCG and M. tuberculosis grown in both the absence and the presence of detergent. Phagocytosis and intracellular growth inhibition were significantly enhanced when BCG was opsonized with postvaccination sera (P < .01), and these enhancements correlated significantly with IgG titers to AM (P < .05), particularly with reactivity to 3 AM OS epitopes (P < .05). Furthermore, increased phagolysosomal fusion was observed with postvaccination sera. Conclusions. Our results provide further evidence for a role of Ab-mediated immunity to tuberculosis and suggest that IgG to AM, especially to some of its OS epitopes, could contribute to the defense against mycobacterial infection in humans. PMID:27056953

  3. The β-Hemolysin and Intracellular Survival of Streptococcus agalactiae in Human Macrophages

    PubMed Central

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches. PMID:23593170

  4. The interaction of bee products with temozolomide in human diffuse astrocytoma, glioblastoma multiforme and astroglia cell lines.

    PubMed

    Borawska, Maria H; Markiewicz-Żukowska, Renata; Naliwajko, Sylwia K; Moskwa, Justyna; Bartosiuk, Emilia; Socha, Katarzyna; Surażyński, Arkadiusz; Kochanowicz, Jan; Mariak, Zenon

    2014-01-01

    In the present study, we investigated the influence of extracts from Salix spp. honey (ESH), beebread (EBB), and royal jelly (ERJ) with and without temozolomide (TMZ) on cell lines derived from a patient with diffuse astrocytoma (DASC), human glioblastoma multiforme (U87MG), and normal human astroglia (SVGp12). DASC was identified by immunocytochemistry. TMZ (20 μM) in combination with ESH (30 μg/mL), EBB (50 μg/mL), and ERJ (30 μg/mL) has stronger cytotoxic activity on U87MG cells after 72 h (20.0, 26.5, and 29.3% of control, respectively) than TMZ alone (about 6% of control). An increase of the cytotoxic effect and inhibition of DNA synthesis in SVGp12 were detected after administering TMZ with the studied extracts. NF-κB p50 subunit was reduced in U87MG cells after treatment with ESH (70.9%) and ESH + TMZ (74.7%). A significant decline of MMP-9 and MMP-2 secretion in cultured U87MG was detected after incubation with EBB (42.9% and 73.0%, respectively) and EBB + TMZ (38.4% and 68.5%, respectively). In conclusion, the use of bee products may increase the cytotoxic effect of TMZ in U87MG but also in SVGp12 cell line. It is important to note that the U87MG cells were sensitive to natural bee products, although there was no influence of natural bee products on the DASC cells. PMID:25256634

  5. EGFR and c-Met Cross Talk in Glioblastoma and Its Regulation by Human Cord Blood Stem Cells12

    PubMed Central

    Velpula, Kiran Kumar; Dasari, Venkata Ramesh; Asuthkar, Swapna; Gorantla, Bharathi; Tsung, Andrew J

    2012-01-01

    Receptor tyrosine kinases (RTK) and their ligands control critical biologic processes, such as cell proliferation, migration, and differentiation. Aberrant expression of these receptor kinases in tumor cells alters multiple downstream signaling cascades that ultimately drive the malignant phenotype by enhancing tumor cell proliferation, invasion, metastasis, and angiogenesis. As observed in human glioblastoma (hGBM) and other cancers, this dysregulation of RTK networks correlates with poor patient survival. Epidermal growth factor receptor (EGFR) and c-Met, two well-known receptor kinases, are coexpressed in multiple cancers including hGBM, corroborating that their downstream signaling pathways enhance a malignant phenotype. The integration of c-Met and EGFR signaling in cancer cells indicates that treatment regimens designed to target both receptor pathways simultaneously could prove effective, though resistance to tyrosine kinase inhibitors continues to be a substantial obstacle. In the present study, we analyzed the antitumor efficacy of EGFR inhibitors erlotinib and gefitinib and c-Met inhibitor PHA-665752, along with their respective small hairpin RNAs (shRNAs) alone or in combination with human umbilical cord blood stem cells (hUCBSCs), in glioma cell lines and in animal xenograft models. We also measured the effect of dual inhibition of EGFR/c-Met pathways on invasion and wound healing. Combination treatments of hUCBSC with tyrosine kinase inhibitors significantly inhibited invasion and wound healing in U251 and 5310 cell lines, thereby indicating the role of hUCBSC in inhibition of RTK-driven cell behavior. Further, the EGFR and c-Met localization in glioma cells and hGBM clinical specimens indicated that a possible cross talk exists between EGFR and c-Met signaling pathway. PMID:23066446

  6. EGFR and c-Met Cross Talk in Glioblastoma and Its Regulation by Human Cord Blood Stem Cells.

    PubMed

    Velpula, Kiran Kumar; Dasari, Venkata Ramesh; Asuthkar, Swapna; Gorantla, Bharathi; Tsung, Andrew J

    2012-10-01

    Receptor tyrosine kinases (RTK) and their ligands control critical biologic processes, such as cell proliferation, migration, and differentiation. Aberrant expression of these receptor kinases in tumor cells alters multiple downstream signaling cascades that ultimately drive the malignant phenotype by enhancing tumor cell proliferation, invasion, metastasis, and angiogenesis. As observed in human glioblastoma (hGBM) and other cancers, this dysregulation of RTK networks correlates with poor patient survival. Epidermal growth factor receptor (EGFR) and c-Met, two well-known receptor kinases, are coexpressed in multiple cancers including hGBM, corroborating that their downstream signaling pathways enhance a malignant phenotype. The integration of c-Met and EGFR signaling in cancer cells indicates that treatment regimens designed to target both receptor pathways simultaneously could prove effective, though resistance to tyrosine kinase inhibitors continues to be a substantial obstacle. In the present study, we analyzed the antitumor efficacy of EGFR inhibitors erlotinib and gefitinib and c-Met inhibitor PHA-665752, along with their respective small hairpin RNAs (shRNAs) alone or in combination with human umbilical cord blood stem cells (hUCBSCs), in glioma cell lines and in animal xenograft models. We also measured the effect of dual inhibition of EGFR/c-Met pathways on invasion and wound healing. Combination treatments of hUCBSC with tyrosine kinase inhibitors significantly inhibited invasion and wound healing in U251 and 5310 cell lines, thereby indicating the role of hUCBSC in inhibition of RTK-driven cell behavior. Further, the EGFR and c-Met localization in glioma cells and hGBM clinical specimens indicated that a possible cross talk exists between EGFR and c-Met signaling pathway. PMID:23066446

  7. Influence of far upstream element binding protein 1 gene on chemotherapy sensitivity in human U251 glioblastoma cells

    PubMed Central

    Hong, Yang; Shi, Yu; Shang, Chao; Xue, Yixue

    2016-01-01

    Introduction The aim of this study was to determine the influence of the far upstream element binding protein 1 gene (FUBP1) on chemotherapy sensitivity in human U251 glioblastoma cells. Material and methods Real-time polymerase chain reaction (PCR) was used to determine the expression of the FUBP1 gene in 43 cases of human brain gliomas. Western blot analysis was used to determine the inhibitory effect of RNA interference on FUBP1 gene expression. Methyl thiazolyl tetrazolium assay (MTT) and flow cytometry methods were used to determine the growth inhibitory rate and apoptosis rate of the U251 cells with FUBP1 silencing. The growth inhibitory rate and apoptosis rate were further determined after treatment of those U251 cells with cisplatin (DDP). Results The expression of FUBP1 mRNA was up-regulated significantly in gliomas, 177.65% as much as in peri-cancerous tissues (p < 0.05). The expression of FUBP1 protein was inhibited significantly with siRNA-FUBP1 (p < 0.05). In FUBP1-silenced cells, the growth inhibitory rate increased from 1.4% to 29.5%, and the apoptosis rate increased from 2.68% to 5.84% (p < 0.05 for both). After treating with DDP at various concentrations (1, 3, 5 µg/ml), the growth inhibitory rate of FUBP1-silenced cells increased from 14.42%, 17.46% and 23.55% to 21.69%, 27.51% and 37.57%; the apoptosis rate increased from 8.85%, 14.37% and 18.21% to 13.25%, 18.46% and 26.52%. Conclusions The up-regulation of FUBP1 relates to the carcinogenesis of gliomas. FUBP1 silencing increases the growth inhibitory rate and apoptosis rate of the U251 cells, and enhances the chemotherapy sensitivity of U251 cells to DDP. PMID:26925132

  8. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.

    PubMed

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A Trey; Choi, Jungmin; Caradonna, Kacey L; Padmanabhan, Prasad; Ndegwa, David M; Temanni, M Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M; Burleigh, Barbara A

    2016-04-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  9. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection

    PubMed Central

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A. Trey; Choi, Jungmin; Caradonna, Kacey L.; Padmanabhan, Prasad; Ndegwa, David M.; Temanni, M. Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M.; Burleigh, Barbara A.

    2016-01-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  10. Laser microspectrofluorometry for measuring dynamic changes of intracellular free Ca2+ in human airway gland cells

    NASA Astrophysics Data System (ADS)

    Millot, Jean-Marc; Merten, M.; Sharonov, S.; Figarella, C.; Jacquot, J.; Manfait, Michel

    1996-01-01

    Intracellular Ca2+ is a ubiquitous second messenger that regulates a wide variety of cellular functions including secretion, transepithelial solute and fluid transport. Laser confocal microspectrofluorometry (DILOR, Lille, France) was applied to visualize fluorescence emission spectra of the Indo-1 for measuring the intracellular free Ca2+ levels ([Ca2+]i) in a human tracheal gland immortalized cell line (MM39 cell line). Under a 351 nm laser excitation (0.5 (mu) W), the intracellular spectrum was analyzed as a ratio of the emission intensities at 420 and 500 nm. Previously, the intracellular Ca2+ calibration has been performed to define the relation between the intensity ratio and [Ca2+]i. Dynamic changes of single-cell [Ca2+]i were measured either from one substrate-attached cell or from different adjacent cells in monolayer culture. Measurements of [Ca2+]i are taken successively in different subcellular locations (up to 10 measurement points). Each measurement cycle was repeated 60 times. To do so, an (X,Y) motorized stage coupled with a computer allowed us to store the (X,Y) positions of several chosen points for the laser radiation. Cells were monitored for about 10 min. After agonist stimulation. Upon stimulating with calcium ionophore, 4BrA23187 (1 (mu) M), [Ca2+]i increased immediately up to 10 fold from a resting value of 31 plus or minus 6 nM (n equals 36). Histamine (1 to 100 (mu) M) increased [Ca2+]i in a concentration dependent manner with levels of up to 88 nM and 140 nM for 1 (mu) M and 100 (mu) M concentration, respectively, followed by a smooth decay back to baseline. Removal of extracellular Ca2+ did not abolish the histamine-stimulation [Ca2+]i rise, suggesting that a part of Ca2+ mobilization comes from intracellular Ca2+ stores. These results show that the combined use of the UV microspectrofluorometry and Indo-1 is well adapted and straight forward for the measurement of rapid responses of substrate-attached cells during experiments of long

  11. MicroRNA-520b affects the proliferation of human glioblastoma cells by directly targeting cyclin D1.

    PubMed

    Liu, Xuchang; Wang, Fachen; Tian, Lin; Wang, Tongxin; Zhang, Wei; Li, Ben; Bai, Yun-An

    2016-06-01

    Glioblastoma (GBM) represents one of most common tumors in humans. However, the biological processes and molecular mechanisms of GBM are still unclear. It is known that microRNA-520b (miR-520b) participates in the development of various tumor progressions. The present study was to evaluate the level of miR-520b in GBM tissues and cells. We further investigated the molecular mechanisms of miR-520b in U87 and U251 cell lines. Here, our data showed that the expression levels of miR-520b were significantly reduced in clinical GBM tissues and cell lines. Accordingly, the expression levels of cyclin D1 were significantly increased in clinical GBM tissues and cell lines. Ectopic expression of miR-520b in U87 and U251 cells resulted in decreased cell proliferation and enhanced cell apoptosis. Further study characterized the 3' untranslated region (3'-UTR) of cyclin D1 gene as a direct target of miR-520b in U87 and U251 cells as determined by luciferase reporter assays. In addition, ectopic expression of miR-520b led to the down-regulation of phosphorylated retinoblastoma (p-Rb, a downstream effector of cyclin D1), while the overexpression of cyclin D1 reversed the miR-520b-induced inhibition of p-Rb expression. In conclusion, this study highlights the importance of miR-520b in regulating the proliferation and apoptosis of GBM by directly targeting cyclin D1, and miR-520b may represent a potential therapeutic strategy for GBM. PMID:26700671

  12. MiR-218 Inhibited Growth and Metabolism of Human Glioblastoma Cells by Directly Targeting E2F2.

    PubMed

    Zhang, Yaxuan; Han, Dongfeng; Wei, Wenjin; Cao, Wenping; Zhang, Rui; Dong, Qingsheng; Zhang, Junxia; Wang, Yingyi; Liu, Ning

    2015-11-01

    In recent years, microRNA has become a hotspot in research on diseases, especially in the initiation and progression of different types of cancer. In this study, we found that miR-218 could inhibit growth and metabolism in gliomas by directly targeting E2F2. First, we obtained data from the Chinese Glioma Genome Atlas (CGGA) database to analyze miR-218 expression in different grades of gliomas. The effects of miR-218 on cell cycle progression and cell proliferation in U87 and U251 cell lines were investigated by flow cytometry, specifically CCK8 assay and tablet cloning, respectively. Glucose consumption and lactate production of glioma cell lines were measured by correlative test kits. Furthermore, we used Western blot analysis and luciferase reporter assay to identify the direct and functional target of miR-218. Data from the CGGA database and real-time quantitative reverse transcription-PCR demonstrated that miR-218 was obviously reduced in human glioblastoma tissues, as well as in the cell lines. When miR-218 level was elevated in vitro, cell cycle progression was arrested in the G1 phase, and cell proliferation was dramatically inhibited. Both glucose consumption and lactate production of glioma cells were significantly reduced. Western blot analysis and luciferase reporter assay revealed that E2F2 was a direct target of miR-218 in glioma cells. This investigation demonstrated that elevated E2F2 expression could partly weaken the effect of miR-218 in vitro. This study also showed that miR-218 may be a repressor in glioma by directly targeting E2F2, as well as a potential therapeutic target in gliomas. PMID:26012781

  13. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells: prognostic significance and biological impact.

    PubMed

    Fornara, O; Bartek, J; Rahbar, A; Odeberg, J; Khan, Z; Peredo, I; Hamerlik, P; Bartek, J; Stragliotto, G; Landázuri, N; Söderberg-Nauclér, C

    2016-02-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express human cytomegalovirus (HCMV) proteins, and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study, we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs, a large fraction of CD133-positive cells expressed HCMV-IE, and higher co-expression of these two proteins predicted poor patient survival. Infection of GBM cells with HCMV led to upregulation of CD133 and other GSCS markers (Notch1, Sox2, Oct4, Nestin). HCMV infection also promoted the growth of GBM cells as neurospheres, a behavior typically displayed by GCSCs, and this phenotype was prevented by either chemical inhibition of the Notch1 pathway or by treatment with the anti-viral drug ganciclovir. GBM cells that maintained expression of HCMV-IE failed to differentiate into neuronal or astrocytic phenotypes. Our findings imply that HCMV infection induces phenotypic plasticity of GBM cells to promote GCSC features and may thereby increase the aggressiveness of this tumor. PMID:26138445

  14. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells.

    PubMed

    Liu, Gentao; Ying, Han; Zeng, Gang; Wheeler, Christopher J; Black, Keith L; Yu, John S

    2004-07-15

    It has recently been demonstrated that malignant glioma cells express certain known tumor-associated antigens, such as HER-2, gp100, and MAGE-1. To further determine the possible utilization of these antigens for glioma immunotherapy and as surrogate markers for specific tumor antigen cytotoxicity, we characterized the presence of mRNA and protein expression in 43 primary glioblastoma multiforme (GBM) cell lines and 7 established human GBM cell lines. HER-2, gp100, and MAGE-1 mRNA expression was detected in 81.4%, 46.5%, and 39.5% of the GBM primary cell lines, respectively. Using immunoreactive staining analysis by flow cytometry, HER-2, gp100, and MAGE-1 protein expression was detected in 76%, 45%, and 38% of the GBM primary cell lines, respectively. HLA-A1-restricted epitope specific for MAGE-1 peptide (EADPTGHSY) CTL clone B07 and HLA-A2-restricted epitope specific for HER-2 peptide (KIFGSLAFL) CTL clone A05 and gp100 peptide (ITDQVPFSV) CTL clone CK3H6 were used in this study. The specificity of CTL clone was verified by HLA/peptide tetramer staining. Three CTL clones could efficiently recognize GBM tumor cells in an antigen-specific and MHC class I-restricted manner. IFN-gamma treatment can dramatically increase MHC class I expression of GBM tumor cells and significantly increase CTL recognition of tumor cells. Treatment with the DNA hypomethylating agent 5-aza-2'-deoxycytidine induced and up-regulated the mRNA expression of MAGE-1 and epitope presentation by autologous MHC. These data indicate that HER-2, gp100, and MAGE-1 could be used as tumor antigen targets for surrogate assays for antigen-specific CTLs or to develop antigen-specific active immunotherapy strategies for glioma patients. PMID:15256472

  15. Histone Deacetylase Inhibitors Interact with Melanoma Differentiation Associated-7/Interleukin-24 to Kill Primary Human Glioblastoma Cells

    PubMed Central

    Hamed, Hossein A.; Yacoub, Adly; Park, Margaret A.; Archer, Kellie; Das, Swadesh K.; Sarkar, Devanand; Grant, Steven; Fisher, Paul B.

    2013-01-01

    We presently demonstrate that histone deacetylase inhibitors (HDACIs) enhance toxicity of melanoma differentiation-associated gene-7/interleukin 24 (mda-7/IL-24) in invasive primary human glioblastoma multiforme (GBM) cells. Additionally, a method is described to augment the efficacy of adenoviral delivery of mda-7/IL-24 in these cells. HDACIs synergized with melanoma differentiation-associated (MDA)-7/IL-24 killing GBM cells. Enhanced lethality correlated with increased autophagy that was dependent on the expression of ceramide synthase 6. HDACIs interacted with MDA-7/IL-24 prolonging generation of reactive oxygen species and Ca2+. Quenching of reactive oxygen species and Ca2+ blocked HDACI and MDA-7/IL-24 killing. In vivo MDA-7/IL-24 prolonged the survival of animals carrying orthotopic tumors, and HDACIs enhanced survival further. A serotype 5/3 adenovirus more effectively delivers mda-7/IL-24 to GBM tumors than a serotype 5 virus. Hence, we constructed a serotype 5/3 adenovirus that conditionally replicates in tumor cells expressing MDA-7/IL-24, in which the adenoviral early region 1A (E1A) gene was driven by the cancer-specific promoter progression elevated gene-3 [Ad.5/3 (INGN 241)-PEG-E1A-mda-7; also called Ad.5/3-CTV (cancer terminator virus)]. Ad.5/3-CTV increased the survival of mice carrying GBM tumors to a significantly greater extent than did a nonreplicative virus Ad.5/3-mda-7. Ad.5/3-CTV exhibited no toxicity in the brains of Syrian hamsters. Collectively our data demonstrate that HDACIs enhance MDA-7/IL-24 lethality, and adenoviral delivery of mda-7/IL-24 combined with tumor-specific viral replication is an effective preclinical GBM therapeutic. PMID:23661648

  16. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  17. Regulation of cAMP Intracellular Levels in Human Platelets Stimulated by 2-Arachidonoylglycerol.

    PubMed

    Signorello, Maria Grazia; Leoncini, Giuliana

    2016-05-01

    We demonstrated that in human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) decreased dose- and time-dependently cAMP intracellular levels. No effect on cAMP decrease induced by 2-AG was observed in the presence of the adenylate cyclase inhibitor SQ22536 as well in platelets pretreated with the thromboxane A2 receptor antagonist, SQ29548 or with aspirin, inhibitor of arachidonic acid metabolism through the cyclooxygenase pathway. An almost complete recovering of cAMP level was measured in platelets pretreated with the specific inhibitor of phosphodiesterase (PDE) 3A, milrinone. In platelets pretreated with LY294002 or MK2206, inhibitors of PI3K/AKT pathway, and with U73122, inhibitor of phospholipase C pathway, only a partial prevention was shown. cAMP intracellular level depends on synthesis by adenylate cyclase and hydrolysis by PDEs. In 2-AG-stimulated platelets adenylate cyclase activity seems to be unchanged. In contrast PDEs appear to be involved. In particular PDE3A was specifically activated, as milrinone reversed cAMP reduction by 2-AG. 2-AG enhanced PDE3A activity through its phosphorylation. The PI3K/AKT pathway and PKC participate to this PDE3A phosphorylation/activation mechanism as it was greatly inhibited by platelet pretreatment with LY294002, MK2206, U73122, or the PKC specific inhibitor GF109203X. Taken together these data suggest that 2-AG potentiates its power of platelet agonist reducing cAMP intracellular level. J. Cell. Biochem. 117: 1240-1249, 2016. © 2015 Wiley Periodicals, Inc. PMID:26460717

  18. Effect of intracellular loop 3 on intrinsic dynamics of human β2-adrenergic receptor

    PubMed Central

    2013-01-01

    Background To understand the effect of the long intracellular loop 3 (ICL3) on the intrinsic dynamics of human β2-adrenergic receptor, molecular dynamics (MD) simulations were performed on two different models, both of which were based on the inactive crystal structure in complex with carazolol (after removal of carazolol and T4-lysozyme). In the so-called loop model, the ICL3 region that is missing in available crystal structures was modeled as an unstructured loop of 32-residues length, whereas in the clipped model, the two open ends were covalently bonded to each other. The latter model without ICL3 was taken as a reference, which has also been commonly used in recent computational studies. Each model was embedded into POPC bilayer membrane with explicit water and subjected to a 1 μs molecular dynamics (MD) simulation at 310 K. Results After around 600 ns, the loop model started a transition to a “very inactive” conformation, which is characterized by a further movement of the intracellular half of transmembrane helix 6 (TM6) towards the receptor core, and a close packing of ICL3 underneath the membrane completely blocking the G-protein’s binding site. Concurrently, the binding site at the extracellular part of the receptor expanded slightly with the Ser207-Asp113 distance increasing to 18 Å from 11 Å, which was further elaborated by docking studies. Conclusions The essential dynamics analysis indicated a strong coupling between the extracellular and intracellular parts of the intact receptor, implicating a functional relevance for allosteric regulation. In contrast, no such transition to the “very inactive” state, nor any structural correlation, was observed in the clipped model without ICL3. Furthermore, elastic network analysis using different conformers for the loop model indicated a consistent picture on the specific ICL3 conformational change being driven by global modes. PMID:24206668

  19. Maintenance of Large Numbers of Virus Genomes in Human Cytomegalovirus-Infected T98G Glioblastoma Cells

    PubMed Central

    Duan, Ying-Liang; Ye, Han-Qing; Zavala, Anamaria G.; Yang, Cui-Qing; Miao, Ling-Feng; Fu, Bi-Shi; Seo, Keun Seok; Davrinche, Christian

    2014-01-01

    ABSTRACT After infection, human cytomegalovirus (HCMV) persists for life. Primary infections and reactivation of latent virus can both result in congenital infection, a leading cause of central nervous system birth defects. We previously reported long-term HCMV infection in the T98G glioblastoma cell line (1). HCMV infection has been further characterized in T98Gs, emphasizing the presence of HCMV DNA over an extended time frame. T98Gs were infected with either HCMV Towne or AD169-IE2-enhanced green fluorescent protein (eGFP) strains. Towne infections yielded mixed IE1 antigen-positive and -negative (Ag+/Ag−) populations. AD169-IE2-eGFP infections also yielded mixed populations, which were sorted to obtain an IE2− (Ag−) population. Viral gene expression over the course of infection was determined by immunofluorescent analysis (IFA) and reverse transcription-PCR (RT-PCR). The presence of HCMV genomes was determined by PCR, nested PCR (n-PCR), and fluorescence in situ hybridization (FISH). Compared to the HCMV latency model, THP-1, Towne-infected T98Gs expressed IE1 and latency-associated transcripts for longer periods, contained many more HCMV genomes during early passages, and carried genomes for a greatly extended period of passaging. Large numbers of HCMV genomes were also found in purified Ag− AD169-infected cells for the first several passages. Interestingly, latency transcripts were observed from very early times in the Towne-infected cells, even when IE1 was expressed at low levels. Although AD169-infected Ag− cells expressed no detectable levels of either IE1 or latency transcripts, they also maintained large numbers of genomes within the cell nuclei for several passages. These results identify HCMV-infected T98Gs as an attractive new model in the study of the long-term maintenance of virus genomes in the context of neural cell types. IMPORTANCE Our previous work showed that T98G glioblastoma cells were semipermissive to HCMV infection; virus

  20. Study of intracellular localization and traffic of newly synthesized ceruloplasmin receptor in cultured human fibroblasts.

    PubMed

    Sasina, L K; Puchkova, L V; Gaitskhoki, V S

    1998-10-01

    Ceruloplasmin (Cp) receptor in cells of non-hepatocyte lineage (human HT-1080 fibroblasts) is synthesized by membrane-bound polyribosomes and then becomes a resident of the plasma membrane. The intracellular traffic of [14C]Cp receptor was followed in pulse-chase experiments using specific antibodies. It was shown that pulse-labeled Cp receptor, after reaching the place of its residence in the plasma membrane, is retained there for 90 min and then appears in the cytosol. Immunoactive 20-kD fragments of Cp receptor were found in the culture medium 1.5 h later. The intracellular traffic of 125I-labeled Cp bound to the fibroblast cell surface was traced in parallel chase experiments. It was shown that the internalized Cp receptor was recovered from the floating fraction of the cytosol. Comparison of the dynamics of the retention of internalized [14C]Cp receptor and 125I-labeled Cp in the subcellular compartments demonstrated that the traffic of both proteins within the fibroblasts is coordinated in time and proceeds via a common route. The role of Cp receptor in copper uptake by non-hepatocyte cells is discussed. PMID:9864451

  1. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation

    PubMed Central

    Chaudhuri, Dipankar; Ghate, Nikhil Baban; Singh, Sudhir Shankar; Mandal, Nripendranath

    2015-01-01

    Background: Spondias pinnata has been reported for its efficient anticancer effects, but the studies were mostly focused on its extract. Objective: Since its bioactive compounds are largely unknown, this study was designed to characterize the lead components present in it and their anticancer activity against human glioblastoma cell line (U87). Materials and Methods: Major compounds from the ethyl acetate fraction were isolated by column chromatography and their anticancer potentials against U87 cells were evaluated. Furthermore, flow cytometric and immunoblotting analyses were performed to demonstrate the mechanism of apoptosis inducing activity of methyl gallate (MG) against U87 cell line. Results: Four major compounds were isolated from the ethyl acetate fraction. Amongst these, two compounds showed promising activities and with the help of different spectroscopic methods they were identified as gallic acid and MG. Flow cytometric studies revealed that MG-induced apoptosis in U87 cells dose-dependently; the same was confirmed by activation of caspases through cleavage of endogenous substrate poly (adenosine diphosphate-ribose) polymerase. MG treatment also induced the expression of p53 and B-cell lymphoma-2-associated X and cleavage of BH3 interacting-domain with a concomitant decrease in B-cell lymphoma-2 expression. Moreover, MG-induced sustained phosphorylation of extracellular signal-regulated kinase (ERK1/2) in U87 cells with no change in the phosphorylation of other mitogen-activated protein kinases (c-Jun N-terminal of stress-activated protein kinases, p38). Conclusion: MG is a potent antioxidant and it induces sustained ERK1/2 activation and apoptosis in human glioblastoma U87, and provide a rationale for evaluation of MG for other brain carcinoma cell lines for the advancement of glioblastoma therapy. PMID:25829764

  2. Improved Quantification, Propagation, Purification and Storage of the Obligate Intracellular Human Pathogen Orientia tsutsugamushi

    PubMed Central

    Giengkam, Suparat; Blakes, Alex; Utsahajit, Peemdej; Chaemchuen, Suwittra; Atwal, Sharanjeet; Blacksell, Stuart D.; Paris, Daniel H.; Day, Nicholas P. J.; Salje, Jeanne

    2015-01-01

    Background Scrub typhus is a leading cause of serious febrile illness in rural Southeast Asia. The causative agent, Orientia tsutsugamushi, is an obligate intracellular bacterium that is transmitted to humans by the bite of a Leptotrombidium mite. Research into the basic mechanisms of cell biology and pathogenicity of O. tsutsugamushi has lagged behind that of other important human pathogens. One reason for this is that O. tsutsugamushi is an obligate intracellular bacterium that can only be cultured in mammalian cells and that requires specific methodologies for propagation and analysis. Here, we have performed a body of work designed to improve methods for quantification, propagation, purification and long-term storage of this important but neglected human pathogen. These results will be useful to other researchers working on O. tsutsugamushi and also other obligate intracellular pathogens such as those in the Rickettsiales and Chlamydiales families. Methodology A clinical isolate of O. tsutsugamushi was grown in cultured mouse embryonic fibroblast (L929) cells. Bacterial growth was measured using an O. tsutsugamushi-specific qPCR assay. Conditions leading to improvements in viability and growth were monitored in terms of the effect on bacterial cell number after growth in cultured mammalian cells. Key results Development of a standardised growth assay to quantify bacterial replication and viability in vitro. Quantitative comparison of different DNA extraction methods. Quantification of the effect on growth of FBS concentration, daunorubicin supplementation, media composition, host cell confluence at infection and frequency of media replacement. Optimisation of bacterial purification including a comparison of host cell lysis methods, purification temperature, bacterial yield calculations and bacterial pelleting at different centrifugation speeds. Quantification of bacterial viability loss after long term storage and freezing under a range of conditions including

  3. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae.

    PubMed

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes; Fischer, Michael B; Weber, Viktoria

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence

  4. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae

    PubMed Central

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence

  5. Fangchinoline suppresses the growth and invasion of human glioblastoma cells by inhibiting the kinase activity of Akt and Akt-mediated signaling cascades.

    PubMed

    Guo, Bingyu; Xie, Peng; Su, Jingyuan; Zhang, Tingting; Li, Xiaoming; Liang, Guobiao

    2016-02-01

    Glioblastoma multiforme (GBM) is one of the most palindromic and malignant central nervous system neoplasms, and the current treatment is not effectual for GBM. Research of specific medicine for GBM is significant. Fangchinoline possesses a wide range of pharmacological activities and attracts more attentions due to its anti-tumor effects. In this study, two WHO grade IV human GBM cell lines (U87 MG and U118 MG) were exposed to fangchinoline, and we found that fangchinoline specifically inhibits the kinase activity of Akt and markedly suppresses the phosphorylation of Thr308 and Ser473 of Akt in human GBM cells. We also observed that fangchinoline inhibits tumor cell proliferation and invasiveness and induces apoptosis through suppressing the Akt-mediated signaling cascades, including Akt/p21, Akt/Bad, and Akt/matrix metalloproteinases (MMPs). These data demonstrated that fangchinoline exerts its anti-tumor effects in human glioblastoma cells, at least partly by inhibiting the kinase activity of Akt and suppressing Akt-mediated signaling cascades. PMID:26408176

  6. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    PubMed Central

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  7. TRIM28 and β-Actin Identified via Nanobody-Based Reverse Proteomics Approach as Possible Human Glioblastoma Biomarkers

    PubMed Central

    Jovčevska, Ivana; Zupanec, Neja; Kočevar, Nina; Cesselli, Daniela; Podergajs, Neža; Stokin, Clara Limbaeck; Myers, Michael P.; Muyldermans, Serge; Ghassabeh, Gholamreza Hassanzadeh; Motaln, Helena; Ruaro, Maria Elisabetta; Bourkoula, Evgenia; Turnšek, Tamara Lah; Komel, Radovan

    2014-01-01

    Malignant gliomas are among the rarest brain tumours, and they have the worst prognosis. Grade IV astrocytoma, known as glioblastoma multiforme (GBM), is a highly lethal disease where the standard therapies of surgery, followed by radiation and chemotherapy, cannot significantly prolong the life expectancy of the patients. Tumour recurrence shows more aggressive form compared to the primary tumour, and results in patient survival from 12 to 15 months only. Although still controversial, the cancer stem cell hypothesis postulates that cancer stem cells are responsible for early relapse of the disease after surgical intervention due to their high resistance to therapy. Alternative strategies for GBM therapy are thus urgently needed. Nanobodies are single-domain antigen-binding fragments of heavy-chain antibodies, and together with classical antibodies, they are part of the camelid immune system. Nanobodies are small and stable, and they share a high degree of sequence identity to the human heavy chain variable domain, and these characteristics offer them advantages over classical antibodies or antibody fragments. We first immunised an alpaca with a human GBM stem-like cell line prepared from primary GBM cultures. Next, a nanobody library was constructed in a phage-display vector. Using nanobody phage-display technology, we selected specific GBM stem-like cell binders through a number of affinity selections, using whole cell protein extracts and membrane protein-enriched extracts from eight different GBM patients, and membrane protein-enriched extracts from two established GBM stem-like cell lines (NCH644 and NCH421K cells). After the enrichment, periplasmic extract ELISA was used to screen for specific clones. These nanobody clones were recloned into the pHEN6 vector, expressed in Escherichia coli WK6, and purified using immobilised metal affinity chromatography and size-exclusion chromatography. Specific nanobody:antigen pairs were obtained and mass spectrometry

  8. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease.

    PubMed

    Dinca, Ana; Chien, Wei-Ming; Chin, Michael T

    2016-01-01

    Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects. PMID:26907261

  9. Accessibility to intracellular antigens within nutritionally deprived human mammary epithelial cells

    SciTech Connect

    Dairkee, S.H.; Puett, L.; Counelis, A.M.; Hackett, A.J. )

    1991-01-01

    The authors have previously demonstrated immunolocalization of antikeratin antibodies in apparently random subpopulations of malignant cells in fresh surgical specimens of breast carcinoma. The goal of the present study was to determine whether deficiencies in essential nutrients contribute toward cellular alterations in membrane integrity, consequently allowing antikeratin to bind to the cytoskeleton within live, unfixed cells. They have demonstrated here that in an in vitro model in which human mammary epithelial cells are subjected to an oxygen-glucose gradient, immunolocalization of antikeratin within the cells is observed in a dose-dependent manner in the depleted regions of the gradient, even though the cell appear to be morphologically unaltered. The potential use of antibodies to intracellular antigens for immunotargeting solid tumors and the use of this method in anti-body-loading studies toward understanding functional aspects of specific cellular antigens, as well as determining differential response of various cell types under these culture conditions, are discussed.

  10. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease

    PubMed Central

    Dinca, Ana; Chien, Wei-Ming; Chin, Michael T.

    2016-01-01

    Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects. PMID:26907261

  11. Elevated expression of chloride intracellular channel 1 is correlated with poor prognosis in human gliomas

    PubMed Central

    2012-01-01

    Background Chloride intracellular channel 1 (CLIC1) is expressed ubiquitously in human tissues and is involved in the regulation of cell cycle, cell proliferation and differentiation. Recent studies have shown that CLIC1 is highly expressed in several human malignant tumors. However, its roles in human gliomas are still unclear. The aim of this study was to investigate the clinicopathological significance and prognostic value of CLIC1 expression in human gliomas. Methods CLIC1 expression in human gliomas and nonneoplastic brain tissues was measured by real-time quantitative RT-PCR assay and immunohistochemistry. Its association with clinicopathological factors or prognosis in patients with gliomas was statistically analyzed. Results The expression of CLIC1 at both mRNA and protein levels was significantly increased in high-grade (Grade III~IV) glioma tissues compared with that in low-grade (Grade I~II) and nonneoplastic brain tissues, and was up-regulated with ascending tumor World Health Organization (WHO) grades. The elevated expression of CLIC1 protein was also significantly correlated with low Karnofsky performance score (KPS) (P=0.008). Moreover, both univariate and multivariate analysis shown that high CLIC1 expression was significantly associated with poor prognosis in patients with gliomas (P<0.001 and P=0.01, respectively). In particular, the elevated CLIC1 expression also correlated with shorter overall survival in different glioma subgroups stratified according to the WHO grading. Conclusions Our data provide the first evidence that CLIC1 expression might play an important role in the regulation of aggressiveness in human gliomas. The elevated expression of CLIC1 might represent a valuable prognostic marker for this disease. PMID:22578365

  12. Sulforhodamine 101 selectively labels human astrocytoma cells in an animal model of glioblastoma.

    PubMed

    Georges, Joseph F; Martirosyan, Nikolay L; Eschbacher, Jennifer; Nichols, Joshua; Tissot, Maya; Preul, Mark C; Feuerstein, Burt; Anderson, Trent; Spetzler, Robert F; Nakaji, Peter

    2014-05-01

    Sulforhodamine 101 (SR101) is a useful tool for immediate staining of astrocytes. We hypothesized that if the selectivity of SR101was maintained in astrocytoma cells, it could prove useful for glioma research. Cultured astrocytoma cells and acute slices from orthotopic human glioma (n=9) and lymphoma (n=6) xenografts were incubated with SR101 and imaged with confocal microscopy. A subset of slices (n=18) were counter-immunostained with glial fibrillary acidic protein and CD20 for stereological assessment of SR101 co-localization. SR101 differentiated astrocytic tumor cells from lymphoma cells. In acute slices, SR101 labeled 86.50% (±1.86; p<0.0001) of astrocytoma cells and 2.19% (±0.47; p<0.0001) of lymphoma cells. SR101-labeled astrocytoma cells had a distinct morphology when compared with in vivo astrocytes. Immediate imaging of human astrocytoma cells in vitro and in ex vivo rodent xenograft tissue labeled with SR101 can identify astrocytic tumor cells and help visualize the tumor margin. These features are useful in studying astrocytoma in the laboratory and may have clinical applications. PMID:24666692

  13. Small ubiquitin-like modifier 1-3 is activated in human astrocytic brain tumors and is required for glioblastoma cell survival

    PubMed Central

    Yang, Wei; Wang, Liangli; Roehn, Gabriele; Pearlstein, Robert D.; Ali-Osman, Francis; Pan, Hongjie; Goldbrunner, Roland; Krantz, Matthew; Harms, Christoph; Paschen, Wulf

    2013-01-01

    Small ubiquitin-like modifier (SUMO1, 2, 3) is a group of proteins that conjugate to lysine residues of target proteins thereby modifying their activity, stability, and subcellular localization. A large number of SUMO target proteins are transcription factors and other nuclear proteins involved in gene expression. Furthermore, SUMO conjugation plays key roles in genome stability, quality control of newly synthesized proteins, proteasomal degradation of proteins and DNA damage repair. Any marked increase in levels of SUMO-conjugated proteins is therefore expected to have a major impact on the fate of cells. We show here that SUMO conjugation is activated in human astrocytic brain tumors. Levels of both SUMO1- and SUMO2/3-conjugated proteins were markedly increased in tumor samples. The effect was least pronounced in low-grade astrocytoma (WHO Grade II) and most pronounced in glioblastoma multiforme (WHO Grade IV). We also found a marked rise in levels of Ubc9, the only SUMO conjugation enzyme identified so far. Blocking SUMO1-3 conjugation in glioblastoma cells by silencing their expression blocked DNA synthesis, cell growth and clonogenic survival of cells. It also resulted in DNA-PK-dependent phosphorylation of H2AX, indicative of DNA double-strand damage, and G2/M cell cycle arrest. Collectively, these findings highlight the pivotal role of SUMO conjugation in DNA damage repair processes and imply that the SUMO conjugation pathway could be a new target of therapeutic intervention aimed at increasing the sensitivity of glioblastomas to radio- and chemotherapy. PMID:23078246

  14. MiR-296-3p regulates cell growth and multi-drug resistance of human glioblastoma by targeting ether-à-go-go (EAG1).

    PubMed

    Bai, Yifeng; Liao, Hongzhan; Liu, Tianzhu; Zeng, Xiangping; Xiao, Faman; Luo, Luqiao; Guo, Hongbo; Guo, Linlang

    2013-02-01

    MicroRNAs (miRNAs) - short non-coding RNA molecules - post-transcriptionally regulate gene expressions and play crucial roles in diverse biological processes such as development, differentiation, apoptosis and proliferation. In order to investigate the possible role of miRNAs in the development of multi-drug resistance (MDR) in human glioblastoma, we first detected (by Western blotting, real-time polymerase chain reaction [RT-PCR] and immunohistochemistry) the expression of miR-296-3p and ether-à-go-go (EAG1 or KCNH1) in U251 cells, U251/imatinib mesylate (U251AR cells) and clinical specimens. The results showed that miR-296-3p was down-regulated in U251AR cells, concurrent with the up-regulation of EAG1 protein, compared with the parental U251 cell line. In vitro drug sensitivity assay demonstrated that over-expression of miR-296-3p sensitised glioblastoma (GBM) cells to anticancer drugs, whereas down-expression using antisense oligonucleotides conferred MDR. Ectopic expression of miR-296-3p reduced EAG1 expression and suppressed cell proliferation drug resistance, and the luciferase activity of an EAG1 3'-untranslated region-based reporter construct in U251AR cells, whereas EAG1 over-expression rescued the suppressive effect of miR-296-3p in U251AR cells. We also found that EAG1 was widely over-expressed and inversely correlated with miR-296-3p in clinical specimens. Taken together, our findings suggest that miR-296-3p may play a role of MDR in glioblastoma at least in part by targeting EAG1. PMID:22999387

  15. New perspectives in glioblastoma antiangiogenic therapy

    PubMed Central

    Popescu, Alisa Madalina; Purcaru, Stefana Oana; Alexandru, Oana

    2015-01-01

    Glioblastoma (GB) is highly vascularised tumour, known to exhibit enhanced infiltrative potential. One of the characteristics of glioblastoma is microvascular proliferation surrounding necrotic areas, as a response to a hypoxic environment, which in turn increases the expression of angiogenic factors and their signalling pathways (RAS/RAF/ERK/MAPK pathway, PI3K/Akt signalling pathway and WTN signalling cascade). Currently, a small number of anti-angiogenic drugs, extending glioblastoma patients survival, are available for clinical use. Most medications are ineffective in clinical therapy of glioblastoma due to acquired malignant cells or intrinsic resistance, angiogenic receptors cross-activation and redundant intracellular signalling, or the inability of the drug to cross the blood-brain barrier and to reach its target in vivo. Researchers have also observed that GB tumours are different in many aspects, even when they derive from the same tissue, which is the reason for personalised therapy. An understanding of the molecular mechanisms regulating glioblastoma angiogenesis and invasion may be important in the future development of curative therapeutic approaches for the treatment of this devastating disease. PMID:27358588

  16. Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines

    PubMed Central

    Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103

  17. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes.

    PubMed

    Trad, F S; Toner, M; Biggers, J D

    1999-06-01

    The accurate determination of the freezing conditions that promote intracellular ice formation (IIF) is crucial for designing cryopreservation protocols for cells. In this paper, the range of temperatures at which IIF occurs in human oocytes was determined. Fresh oocytes with a germinal vesicle, failed-to-fertilize (metaphase I and metaphase II stages) and polyspermic eggs were used for this study. The occurrence of IIF was first visualized at a cooling rate of 120 degrees C/min using a programmable thermal microscope stage connected to a videomicroscope. Then, with a cooling rate of 0.2 degrees C/min, the seeding temperature of the extracellular ice was modified to decrease the incidence of IIF and increase the survival rate of frozen-thawed human oocytes. After adding different cryoprotectants, the median temperature of IIF (TMED) was decreased by approximately 23 degrees C in mouse and only by approximately 6.5 degrees C in human oocytes. Using 1.5 M propylene glycol and seeding temperatures of -8.0, -6.0 and -4.5 degrees C, the incidence of IIF was 22/28 (78%), 8/24 (33%) and 0/33 (0%) and the 24 h post-thaw survival rate was 10/31(32%), 19/34 (56%) and 52/56 (93%) respectively. The results show that IIF occurs more readily in human oocytes, and that ice seeding between -6 degrees C and -8 degrees C triggers IIF in a large number of human oocytes. Undesirable IIF can be prevented and survival rates maximized by raising the seeding temperature as close as possible to the melting point of the solution, which in our instrument was -4.5 degrees C. PMID:10357978

  18. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  19. O-methylated theaflavins suppress the intracellular accumulation of triglycerides from terminally differentiated human visceral adipocytes.

    PubMed

    Tanaka, Yoshihisa; Kirita, Masanobu; Miyata, Satoshi; Abe, Yuko; Tagashira, Motoyuki; Kanda, Tomomasa; Maeda-Yamamoto, Mari

    2013-12-26

    A known O-methylated theaflavin, theaflavin 3-O-(3-O-methyl)gallate (3MeTF3G), and the new theaflavin 3-O-(3,5-di-O-methyl)gallate (3,5diMeTF3G) were synthesized via the O-methylation of theaflavin 3-O-gallate (TF3G). Both 3MeTF3G and 3,5diMeTF3G are more stable than TF3G at pH 7.5 in the order 3,5diMeTF3G > 3MeTF3G > TF3G. The inhibitory effects of these compounds on the intracellular accumulation of triglycerides from terminally differentiated human visceral adipocytes were investigated. Compound 3MeTF3G exhibited an inhibitory effect similar to that of TF3G at 3 μM and a slightly lower effect than that of TF3G at 10 μM. The result suggested that the degradants and oxidatively polymerized products of TF3G may also have inhibitory effects. For cells treated with 3,5diMeTF3G at 3 and 10 μM, intracellular triglyceride accumulation was dose dependent and significantly lower compared with that for other compounds. It was suggested that the higher effect of 3,5diMeTF3G was due to its higher stability and likely improved absorption owing to di-O-methylation. PMID:24308363

  20. Measurement of shear stress-mediated intracellular calcium dynamics in human dermal lymphatic endothelial cells

    PubMed Central

    Jafarnejad, M.; Cromer, W. E.; Kaunas, R. R.; Zhang, S. L.; Zawieja, D. C.

    2015-01-01

    The shear stress applied to lymphatic endothelial cells (LEC) by lymph flow changes dramatically under normal conditions as well as in response to disease conditions and immune reactions. In general, LEC are known to regulate the contraction frequency and strength of lymphatic pumping in response to shear stress. Intracellular calcium concentration ([Ca2+]i) is an important factor that regulates lymphatic contraction characteristics. In this study, we measured changes in the [Ca2+]i under different shear stress levels and determined the source of this calcium signal. Briefly, human dermal LEC were cultured in custom-made microchannels for 3 days before loading with 2 µM fura-2 AM, a ratiometric calcium dye to measure [Ca2+]i. Step changes in shear stress resulted in a rapid increase in [Ca2+]i followed by a gradual return to the basal level and sometimes below the initial baseline (45.2 ± 2.2 nM). The [Ca2+]i reached a peak at 126.2 ± 5.6 nM for 10 dyn/cm2 stimulus, whereas the peak was only 71.8 ± 5.4 nM for 1 dyn/cm2 stimulus, indicating that the calcium signal depends on the magnitude of shear stress. Removal of the extracellular calcium from the buffer or pharmocological blockade of calcium release-activated calcium (CRAC) channels significantly reduced the peak [Ca2+]i, demonstrating a role of extracellular calcium entry. Inhibition of endoplasmic reticulum (ER) calcium pumps showed the importance of intracellular calcium stores in the initiation of this signal. In conclusion, we demonstrated that the shear-mediated calcium signal is dependent on the magnitude of the shear and involves ER store calcium release and extracellular calcium entry. PMID:25617358

  1. Membrane potential difference and intracellular cation concentrations in human placental trophoblast cells in culture.

    PubMed Central

    Greenwood, S L; Clarson, L H; Sides, M K; Sibley, C P

    1996-01-01

    1. The electrochemical gradients for Na+ and K+ were assessed in a cell culture model of trophoblast differentiation. 2. Membrane potential difference (Em), intracellular water and Na+ and K+ contents were measured in choriocarcinoma cells (JAr cell line; 96% of which are undifferentiated trophoblast cells) and in mononucleate and multinucleate (differentiated) cytotrophoblast cells isolated from the human placenta at term. 3. There was a significant fall in Em from -57 mV in JAr cells, to -48 and -40 mV in mono-and multinucleate cytotrophoblast cells, respectively. Treatment with ouabain (1 mM for 15 min) depolarized the JAr cell membrane by 15 mV but did not affect cytotrophoblast cell membrane potential. 4. Intracellular K+ concentration was similar in JAr, mono- and multinucleate cytotrophoblast cells but Na+ concentration was higher in mononucleate cytotrophoblast cells compared with JAr cells. 5. Ouabain treatment (3 mM for 15 min) caused a small increase (4.5%) in cell water in mononucleate cytotrophoblast cells but lowered K+ (approximately 30%) and increased Na+ concentration (approximately 125%) in all the trophoblast cells studied. 6. The K+ equilibrium potential (EK) was more negative than Em in all cells and the difference between EK and Em was smaller in JAr cells (-25 mV) than in mono- and multinucleate cytotrophoblast cells (-33 and -43 mV, respectively). 7. The Na+ equilibrium potential (ENa) was positive in the trophoblast cells and the difference between ENa and Em was 122, 100 and 100 mV in JAr, mono- and multinucleate cytotrophoblast cells, respectively. 8. These results suggest that the electrochemical gradient for K+ is affected by the stage of trophoblast cell differentiation. In contrast, the electrochemical gradient for Na+ is similar in mono- and multinucleate cytotrophoblast cells. Images Figure 1 PMID:8734977

  2. Nickel Mobilizes Intracellular Zinc to Induce Metallothionein in Human Airway Epithelial Cells

    PubMed Central

    Nemec, Antonia A.; Leikauf, George D.; Pitt, Bruce R.; Wasserloos, Karla J.; Barchowsky, Aaron

    2009-01-01

    We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release. PMID:19097988

  3. UVB radiation induces an increase in intracellular zinc in human epidermal keratinocytes.

    PubMed

    Stork, Christian J; Martorano, Lisa M; Li, Yang V

    2010-10-01

    Ultraviolet (UV) radiation is known to cause oxidative stress, inflammation, DNA damage and apoptotic cell death; however, many details of these malign mechanism have yet to be elucidated. In this study, the exposure of adult human epidermal keratinocytes (HEKa) with UVB (>100 mJ/cm(2)) resulted in the significant increase of intracellular zinc that was released from its storage and was detected by fluorescent zinc indicators. Toxicity testing revealed that UVB-induced zinc release in HEKa is associated with HEKa cell death. Cells that showed elevated intracellular zinc fluorescence upon UVB exposure were also stained by propidium iodide (PI), a traditional viability indicator whose fluorescent signal is as a result of its intercalating with DNA fragments and is unaffected by zinc concentration, showing significant colocalization [Pearson's correlation coefficients r=0.956 (n=6)]. The cytotoxicity of zinc was also determined by an MTT assay after applying the exogenous zinc (ZnCl2) along with its ionophore pyrithione (20 microM) into HEKa culture medium. A significant reduction in cell viability as a function of both zinc concentration and exposure time was observed. The treatments of 1, 10 and 100 microM ZnCl2 with pyrithione demonstrated 2.3, 60 and 84% cell deaths, respectively (control 0.5%) after 30 min. ZnCl2 (100 microM) was also found to induce complete HEKa death after 1 h. Thus, the present study demonstrates that UVB irradiation-induced increased zinc is detrimental to HEKa viability, and zinc may be a necessary step in UVB-induced cell death signaling pathways. PMID:20818483

  4. Potent Inhibition of Human Immunodeficiency Virus Type 1 Replication by an Intracellular Anti-Rev Single-Chain Antibody

    NASA Astrophysics Data System (ADS)

    Duan, Lingxun; Bagasra, Omar; Laughlin, Mark A.; Oakes, Joseph W.; Pomerantz, Roger J.

    1994-05-01

    Human immunodeficiency virus type 1 (HIV-1) has a complex life cycle, which has made it a difficult target for conventional therapeutic modalities. A single-chain antibody moiety, directed against the HIV-1 regulatory protein Rev, which rescues unspliced viral RNA from the nucleus of infected cells, has now been developed. This anti-Rev single-chain construct (SFv) consists of both light and heavy chain variable regions of an anti-Rev monoclonal antibody, which, when expressed intracellularly within human cells, potently inhibits HIV-1 replication. This intracellular SFv molecule is demonstrated to specifically antagonize Rev function. Thus, intracellular SFv expression, against a retroviral regulatory protein, may be useful as a gene therapeutic approach to combat HIV-1 infections.

  5. Crucial involvement of xanthine oxidase in the intracellular signalling networks associated with human myeloid cell function

    PubMed Central

    Abooali, Maryam; Lall, Gurprit S.; Coughlan, Karen; Lall, Harjinder S.; Gibbs, Bernhard F.; Sumbayev, Vadim V.

    2014-01-01

    Xanthine oxidase (XOD) is an enzyme which plays a central role in purine catabolism by converting hypoxanthine into xanthine and then further into uric acid. Here we report that XOD is activated in THP-1 human myeloid cells in response to pro-inflammatory and growth factor stimulation. This effect occurred following stimulation of THP-1 cells with ligands of plasma membrane associated TLRs 2 and 4, endosomal TLRs 7 and 8 as well as stem cell growth factor (SCF). Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) transcription complexes were found to be responsible for XOD upregulation. Importantly, the mammalian target of rapamycin (mTOR), a major myeloid cell translation regulator, was also found to be essential for XOD activation. Specific inhibition of XOD by allopurinol and sodium tungstate led to an increase in intracellular AMP levels triggering downregulation of mTOR activation by phosphorylation of its T2446 residue. Taken together, our results demonstrate for the first time that XOD is not only activated by pro-inflammatory stimuli or SCF but also plays an important role in maintaining mTOR-dependent translational control during the biological responses of human myeloid cells. PMID:25200751

  6. Crucial involvement of xanthine oxidase in the intracellular signalling networks associated with human myeloid cell function.

    PubMed

    Abooali, Maryam; Lall, Gurprit S; Coughlan, Karen; Lall, Harjinder S; Gibbs, Bernhard F; Sumbayev, Vadim V

    2014-01-01

    Xanthine oxidase (XOD) is an enzyme which plays a central role in purine catabolism by converting hypoxanthine into xanthine and then further into uric acid. Here we report that XOD is activated in THP-1 human myeloid cells in response to pro-inflammatory and growth factor stimulation. This effect occurred following stimulation of THP-1 cells with ligands of plasma membrane associated TLRs 2 and 4, endosomal TLRs 7 and 8 as well as stem cell growth factor (SCF). Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) transcription complexes were found to be responsible for XOD upregulation. Importantly, the mammalian target of rapamycin (mTOR), a major myeloid cell translation regulator, was also found to be essential for XOD activation. Specific inhibition of XOD by allopurinol and sodium tungstate led to an increase in intracellular AMP levels triggering downregulation of mTOR activation by phosphorylation of its T2446 residue. Taken together, our results demonstrate for the first time that XOD is not only activated by pro-inflammatory stimuli or SCF but also plays an important role in maintaining mTOR-dependent translational control during the biological responses of human myeloid cells. PMID:25200751

  7. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    SciTech Connect

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra; Zupanska, Agata; Chouaib, Salem; Kaminska, Bozena . E-mail: bozenakk@nencki.gov.pl

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2 and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.

  8. Autophagy Induction by Endothelial-Monocyte Activating Polypeptide II Contributes to the Inhibition of Malignant Biological Behaviors by the Combination of EMAP II with Rapamycin in Human Glioblastoma

    PubMed Central

    Ma, Jun; Meng, Fanjie; Li, Shuai; Liu, Libo; Zhao, Lini; Liu, Yunhui; Hu, Yi; Li, Zhen; Yao, Yilong; Xi, Zhuo; Teng, Hao; Xue, Yixue

    2015-01-01

    This study aims to investigate the effect of endothelial-monocyte activating polypeptide II (EMAP II) on human glioblastoma (GBM) cells and glioblastoma stem cells (GSCs) as well as its possible mechanisms. In this study, EMAP II inhibited the cell viability and decreased the mitochondrial membrane potential in human GBM cells and GSCs, and autophagy inhibitor 3-methyl adenine (3-MA) blocked these effects. Autophagic vacuoles were formed in these cells after EMAP II treatment and this phenomenon was blocked by 3-MA. In addition, the up-regulation of microtubule-associated protein-1 light chain-3 (LC3)-II and the down-regulation of autophagic degraded substrate p62/SQSTM1 caused by EMAP II were observed. Cells treated with EMAP-II inhibited the PI3K/Akt/mTOR signal pathway, and PI3K/Akt agonist insulin-like growth factor-1 (IGF-1) blocked the effect of EMAP II on the expression of LC3-II and p62/SQSTM1. Cells exposed to EMAP-II experienced mitophagy and ER stress. Furthermore, the inhibition of cell proliferation, migration and invasion of GBM cells and GSCs were more remarkable by the combination of EMAP II and rapamycin than either agent alone in vitro and in vivo. The current study demonstrated that the cytotoxicity of EMAP II in human GBM cells and GSCs was induced by autophagy, accompanied by the inhibition of PI3K/Akt/mTOR signal pathway, mitophagy and ER stress. The combination of EMAP II with rapamycin demonstrated the inhibitory effect on the malignant biological behaviors of human GBM cells and GSCs in vitro and in vivo. PMID:26648842

  9. The Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus Replication

    PubMed Central

    Gariano, Grazia Rosaria; Dell'Oste, Valentina; Bronzini, Matteo; Gatti, Deborah; Luganini, Anna; De Andrea, Marco; Gribaudo, Giorgio; Gariglio, Marisa; Landolfo, Santo

    2012-01-01

    Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between −54 and −43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor. PMID:22291595

  10. Dual-modality fiber-optic imager (DFOI) for intracellular gene delivery in human cervical cancer cell

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Zhang, Jing; Gurbani, Saumya; Li, Min; Kang, Jin U.

    2013-03-01

    The most common optical method to validate intracellular gene delivery in cancer is to detect tagged fluorescence signals from the cells. However, fluorescent detection is usually performed in vitro due to the limitation of standard microscopes. Herein, we propose a highly sensitive dual-modality fiber-optic imager (DFOI), which enables in vivo fluorescence imaging. Our system uses a coherent fiber bundle based imager capable of simultaneously performing both confocal reflectance and fluorescent microscopy. Non-viral vectors targeting human cervical cancer cells (HeLa) were used to evaluate the performance. Preliminary results demonstrated the DFOI is promising for in vivo evaluation of intracellular gene delivery.

  11. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    PubMed

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM. PMID

  12. Changes in gluconeogenesis and intracellular lipid accumulation characterize uremic human hepatocytes ex vivo.

    PubMed

    Li, Meng; Ellis, Ewa; Johansson, Helene; Nowak, Greg; Isaksson, Bengt; Gnocchi, Davide; Parini, Paolo; Axelsson, Jonas

    2016-06-01

    It is well known that reduced glomerular filtration rate (GFR) leads to an increased risk of dyslipidemia, insulin resistance, and cardiovascular mortality. The liver is a central organ for metabolism, but its function in the uremic setting is still poorly characterized. We used human primary hepatocytes isolated from livers of nine donors with normal renal function to investigate perturbations in key metabolic pathways following exposure to uremic (n = 8) or healthy (n = 8) sera, and to serum-free control medium. Both uremic and healthy elicited consistent responses from hepatocytes from multiple donors and compared with serum-free control. However, at physiological insulin concentrations, uremic cells accumulated 56% more intracellular lipids. Also, when comparing uremic with healthy medium after culture, it contained more very-low-density lipoprotein-triglyceride and glucose. These changes were accompanied by decreased phosphorylation of AktS473 mRNA levels of key regulators of gluconeogenesis in uremic sera-treated hepatocytes such as phosphoenolpyruvate carboxykinase 1 and glucose 6-phosphate were elevated. We also found increased expression of 11β-hydroxysteroid dehydrogenase mRNA in uremic cells, along with high phosphorylation of downstream p53 and phospholipase C-γ1Y783 Thus our ex vivo data suggest that the uremic hepatocytes rapidly develop a glycogenic and lipogenic condition accompanied by perturbations in a large number of signaling networks. PMID:27056725

  13. Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils

    PubMed Central

    Rinchai, Darawan; Riyapa, Donporn; Buddhisa, Surachat; Utispan, Kusumawadee; Titball, Richard W; Stevens, Mark P; Stevens, Joanne M; Ogawa, Michinaga; Tanida, Isei; Koike, Masato; Uchiyama, Yasuo; Ato, Manabu; Lertmemongkolchai, Ganjana

    2015-01-01

    Neutrophils play a key role in the control of Burkholderia pseudomallei, the pathogen that causes melioidosis. Here, we show that survival of intracellular B. pseudomallei was significantly increased in the presence of 3-methyladenine or lysosomal cathepsin inhibitors. The LC3-flux was increased in B. pseudomallei-infected neutrophils. Concordant with this result, confocal microscopy analyses using anti-LC3 antibodies revealed that B. pseudomallei-containing phagosomes partially overlapped with LC3-positive signal at 3 and 6 h postinfection. Electron microscopic analyses of B. pseudomallei-infected neutrophils at 3 h revealed B. pseudomallei-containing phagosomes that occasionally fused with phagophores or autophagosomes. Following infection with a B. pseudomallei mutant lacking the Burkholderia secretion apparatus Bsa Type III secretion system, neither this characteristic structure nor bacterial escape into the cytosol were observed. These findings indicate that human neutrophils are able to recruit autophagic machinery adjacent to B. pseudomallei-containing phagosomes in a Type III secretion system-dependent manner. PMID:25996656

  14. Elevated intracellular Ca2+ reveals a functional membrane nucleotide pool in intact human red blood cells

    PubMed Central

    Tiffert, Teresa

    2011-01-01

    Elevated intracellular calcium generates rapid, profound, and irreversible changes in the nucleotide metabolism of human red blood cells (RBCs), triggered by the adenosine triphosphatase (ATPase) activity of the powerful plasma membrane calcium pump (PMCA). In the absence of glycolytic substrates, Ca2+-induced nucleotide changes are thought to be determined by the interaction between PMCA ATPase, adenylate kinase, and AMP-deaminase enzymes, but the extent to which this three-enzyme system can account for the Ca2+-induced effects has not been investigated in detail before. Such a study requires the formulation of a model incorporating the known kinetics of the three-enzyme system and a direct comparison between its predictions and precise measurements of the Ca2+-induced nucleotide changes, a precision not available from earlier studies. Using state-of-the-art high-performance liquid chromatography, we measured the changes in the RBC contents of ATP, ADP, AMP, and IMP during the first 35 min after ionophore-induced pump-saturating Ca2+ loads in the absence of glycolytic substrates. Comparison between measured and model-predicted changes revealed that for good fits it was necessary to assume mean ATPase Vmax values much higher than those ever measured by PMCA-mediated Ca2+ extrusion. These results suggest that the local nucleotide concentrations generated by ATPase activity at the inner membrane surface differed substantially from those measured in bulk cell extracts, supporting previous evidence for the existence of a submembrane microdomain with a distinct nucleotide metabolism. PMID:21948947

  15. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells.

    PubMed

    Kambhampati, Siva P; Mishra, Manoj K; Mastorakos, Panagiotis; Oh, Yumin; Lutty, Gerard A; Kannan, Rangaramanujam M

    2015-09-01

    Triamcinolone acetonide (TA) is a potent, intermediate-acting, steroid that has anti-inflammatory and anti-angiogenic activity. Intravitreal administration of TA has been used for diabetic macular edema, proliferative diabetic retinopathy and exudative age-related macular degeneration (AMD). However, the hydrophobicity, lack of solubility, and the side effects limit its effectiveness in the treatment of retinal diseases. In this study, we explore a PAMAM dendrimer-TA conjugate (D-TA) as a potential strategy to improve intracellular delivery and efficacy of TA to target cells. The conjugates were prepared with a high drug payload (∼ 21%) and were readily soluble in saline. Compared to free TA, D-TA demonstrated a significantly improved toxicity profile in two important target [microglial and human retinal pigment epithelium (RPE)] cells. The D-TA was ∼ 100-fold more effective than free TA in its anti-inflammatory activity (measured in microglia), and in suppressing VEGF production (in hypoxic RPE cells). Dendrimer-based delivery may improve the efficacy of TA towards both its key targets of inflammation and VEGF production, with significant clinical implications. PMID:25701805

  16. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways

    PubMed Central

    Lezhnina, Ksenia; Kovalchuk, Olga; Zhavoronkov, Alexander A.; Korzinkin, Mikhail B.; Zabolotneva, Anastasia A.; Shegay, Peter V.; Sokov, Dmitry G.; Gaifullin, Nurshat M.; Rusakov, Igor G.; Aliper, Alexander M.; Roumiantsev, Sergey A.; Alekseev, Boris Y.; Borisov, Nikolay M.; Buzdin, Anton A.

    2014-01-01

    We recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer. Using Illumina HT12v4 microarrays, we profiled gene expression in 17 cancer and seven non-cancerous bladder tissue samples. These experiments were done in two independent laboratories located in Russia and Canada. We calculated pathway activation strength values for the investigated transcriptomes and identified signaling pathways that were regulated differently in bladder cancer (BC) tissues compared with normal controls. We found, for both experimental datasets, 44 signaling pathways that serve as excellent new biomarkers of BC, supported by high area under the curve (AUC) values. We conclude that the OncoFinder approach is highly efficient in finding new biomarkers for cancer. These markers are mathematical functions involving multiple gene products, which distinguishes them from “traditional” expression biomarkers that only assess concentrations of single genes. PMID:25296972

  17. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells

    PubMed Central

    Kambhampati, Siva P.; Mishra, Manoj K.; Mastorakos, Panagiotis; Oh, Yumin; Lutty, Gerard A.; Kannan, Rangaramanujam M.

    2016-01-01

    Triamcinolone acetonide (TA) is a potent, intermediate-acting, steroid that has anti-inflammatory and anti-angiogenic activity. Intravitreal administration of TA has been used for diabetic macular edema, proliferative diabetic retinopathy and exudative age-related macular degeneration (AMD). However, the hydrophobicity, lack of solubility, and the side effects limit its effectiveness in the treatment of retinal diseases. In this study, we explore a PAMAM dendrimer-TA conjugate (D-TA) as a potential strategy to improve intracellular delivery and efficacy of TA to target cells. The conjugates were prepared with a high drug payload (~21%) and were readily soluble in saline. Compared to free TA, D-TA demonstrated a significantly improved toxicity profile in two important target [microglial and human retinal pigment epithelium (RPE)] cells. The D-TA was ~100-fold more effective than free TA in its anti-inflammatory activity (measured in microglia), and in suppressing VEGF production (in hypoxic RPE cells). Dendrimer-based delivery may improve the efficacy of TA towards both its key targets of inflammation and VEGF production, with significant clinical implications. PMID:25701805

  18. Concurrent therapy to enhance radiotherapeutic outcomes in glioblastoma

    PubMed Central

    2016-01-01

    Glioblastoma is one of the most fatal and incurable human cancers characterized by nuclear atypia, mitotic activity, intense microvascular proliferation and necrosis. The current standard of care includes maximal safe surgical resection followed by radiation therapy (RT) with concurrent and adjuvant temozolomide (TMZ). The prognosis remains poor with median survival of 14.6 months with RT plus TMZ. Majority will have a recurrence within 2 years from diagnosis despite adequate treatment. Radiosensitizers, radiotherapy dose escalation and altered fractionation have failed to improve outcome. The molecular biology of glioblastoma is complex and poses treatment challenges. High rate of mutation, genotypic and phenotypic heterogeneity, rapid development of resistance, existence of blood-brain barrier (BBB), multiple intracellular and intercellular signalling pathways, over-expression of growth factor receptors, angiogenesis and antigenic diversity renders the tumor cells differentially susceptible to various treatment modalities. Thus, the treatment strategies require personalised or individualized approach based on the characteristics of tumor. Several targeted agents have been evaluated in clinical trials but the results have been modest despite these advancements. This review summarizes the current standard of care, results of concurrent chemoradiation trials, evolving innovative treatments that use targeted therapy with standard chemoradiation or RT alone, outcome of various recent trials and future outlook. PMID:26904576

  19. Porphyromonas gingivalis Evasion of Autophagy and Intracellular Killing by Human Myeloid Dendritic Cells Involves DC-SIGN-TLR2 Crosstalk

    PubMed Central

    El-Awady, Ahmed R.; Miles, Brodie; Scisci, Elizabeth; Kurago, Zoya B.; Palani, Chithra D.; Arce, Roger M.; Waller, Jennifer L.; Genco, Caroline A.; Slocum, Connie; Manning, Matthew; Schoenlein, Patricia V.; Cutler, Christopher W.

    2015-01-01

    Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs. PMID:25679217

  20. Intracellular modification of /sup 125/I-labeled epidermal growth factor by normal human foreskin fibroblasts

    SciTech Connect

    Schaudies, R.P.; Savage, C.R. Jr.

    1986-02-01

    Intracellular processing of /sup 125/I-labeled epidermal growth factor (EGF) in normal human foreskin fibroblasts was examined after incubation with saturating concentrations of (/sup 125/I)EGF. This report describes the column chromatographic separation of multiple processed forms of EGF generated by human foreskin fibroblasts and their structural characterization. More than 95% of the cell-bound (/sup 125/I)EGF was converted into multiple forms, which were separated into four distinct peaks of radioactivity using columns of Bio-Gel P-150 equilibrated with 0.2% sodium dodecyl sulfate. These were designated peaks 1-4. Cellular generation of these four peaks was dependent on culture conditions. Differences in absolute and relative amounts of peaks 1-4 were observed as a function of time of incubation at 37 C. In addition, chromatographic profiles of cell-associated /sup 125/I varied in relation to cell density. The radioactivity in peak 1 comigrated with /sup 125/I-labeled native EGF on nondenaturing polyacrylamide gels (pH 9.5), whereas peaks 2 and 3 exhibited more rapid electrophoretic mobilities. Electrophoretic mobilities of the radioactivity in peaks 2 and 3 were indistinguishable from those of chemically prepared derivatives of (/sup 125/I)EGF which were lacking either one or six amino acid residues from the carboxyterminus, respectively. The EGF receptor bound the radioactive material in peak 2 with an affinity equal to or greater than that of EGF; however, the radioactivity in peak 3 was bound to a much lesser extent. The radiolabel in both peaks 2 and 3 was greater than 95% precipitable by antiserum to native EGF. The labeled material in peak 4 was composed of (/sup 125/I)monoiodotyrosine, /sup 125/I-, and an unidentified peptide. None of the radiolabeled compounds in peak 4 interacted with the EGF receptor or with antiserum to native EGF.

  1. Intracellular Adenosine Inhibits IgE-Dependent Degranulation of Human Skin Mast Cells

    PubMed Central

    Gomez, Gregorio; Nardone, Vincent; Lotfi-Emran, Sahar; Zhao, Wei; Schwartz, Lawrence B.

    2015-01-01

    Purpose Adenosine (ADO) can enhance and inhibit mast cell degranulation. Potentiation of degranulation occurs at relatively low concentrations of ADO (10−6–10−5 M) through triggering of A3AR, whereas, inhibition occurs at higher concentrations of ADO reportedly through triggering of A2aAR. However, the discrepancy in the concentration of ADO that inhibits degranulation and that required to trigger ADORs suggests a different mechanism. The purpose of this study is to determine the mechanism by which ADO inhibits human mast cell degranulation. Methods We compare the effectiveness of A2aAR specific antagonist ZM241385 and equilibrative nucleoside transporter inhibitors Dipyridamole and NBMPR in preventing ADO-mediated inhibition of FcεRI-induced degranulation of human skin mast cells (hSMCs). Western blotting is done to analyze the effect of ADO on FcεRI-induced Syk phosphorylation. Results Dipyridamole and NBMPR completely and dose-dependently prevented ADO from inhibiting FcεRI-induced degranulation in all hSMC preparations. In contrast, ZM241385 at 10−5 M was effective in only 3 of 10 hSMC preparations. Moreover, NBMPR was effective even in those hSMC preparations not responsive to ZM241385. ADO inhibited degranulation induced by FcεRI crosslinking, but not that induced by complement component 5a (C5a), Substance P or calcium ionophore. Accordingly, ADO significantly attenuated FcεRI-induced phosphorylation of Syk at the critical activating tyrosine (Y525). Conclusion Blocking the influx of ADO, but not A2aAR signals, is necessary and sufficient to prevent ADO from inhibiting FcεRI-induced mast cell degranulation. Thus, ADO specifically inhibits FcεRI-induced degranulation of hSMCs primarily by an intracellular mechanism that requires its influx via equilibrative nucleoside transporter 1 (ENT1). PMID:24122028

  2. Anatomic localization of O6-methylguanine DNA methyltransferase (MGMT) promoter methylated and unmethylated tumors: a radiographic study in 358 de novo human glioblastomas.

    PubMed

    Ellingson, Benjamin M; Cloughesy, Timothy F; Pope, Whitney B; Zaw, Taryar M; Phillips, Heidi; Lalezari, Shadi; Nghiemphu, Phioanh L; Ibrahim, Hassana; Naeini, Kourosh M; Harris, Robert J; Lai, Albert

    2012-01-16

    Promoter methylation of O6-methylguanine DNA methyltransferase (MGMT) is associated with a favorable prognosis in glioblastoma multiforme (GBM) and has been hypothesized to occur early in tumor transformation of glial cells. Thus, a possible link exists between the site of malignant transformation and MGMT promoter methylation status. Using the Analysis of Differential Involvement (ADIFFI) statistical mapping technique in a total of 358 patients with GBM, we demonstrate that human de novo GBMs occur in a high frequency contiguous with the posterior subventricular zone (SVZ); MGMT promoter methylated GBMs are lateralized to the left hemisphere, while MGMT unmethylated GBMs are lateralized to the right hemisphere; and tumors near the left temporal lobe have a significantly longer overall survival compared with tumors occurring elsewhere, independent of treatment or MGMT methylation status. PMID:22001163

  3. Activating transcription factor 3 is overexpressed in human glioma and its knockdown in glioblastoma cells causes growth inhibition both in vitro and in vivo

    PubMed Central

    MA, SIQI; PANG, CHANGHE; SONG, LAIJUN; GUO, FUYOU; SUN, HONGWEI

    2015-01-01

    Glioblastomas are highly malignant gliomas that are extremely invasive with high rates of recurrence and mortality. It has been reported that activating transcription factor 3 (ATF3) is expressed in elevated levels in multiple malignant tumors. The purpose of this study was to investigate the function of ATF3 in the development of glioma and its clinical significance. Immunohistochemical staining, western blot analysis and RT-qPCR revealed that the mRNA and protein levels of ATF3 and matrix metalloproteinase 2 (MMP2) were higher in the glioma than in the normal human brain tissues, and that their levels were proportional to the pathological grades. By contrast, the mRNA and protein levels of mammary serine protease inhibitor (maspin; SERPINB5) were significantly lower in the glioma than in the normal brain tissue, and maspin expression was inversely proportional to the glioma pathological grade. The transfection of U373MG glioblastoma cells with ATF3-siRNA induced a number of changes in cell behavior; the cell proliferative activity was decreased and flow cytometry revealed an increased proportion of cells arrested in the G0/G1 phase of the cell cycle. In addition, TUNEL staining indicated an increased proportion of cells undergoing apoptosis and Transwell assays revealed impaired cell mobility. The sizes of the tumors grown as xenografts in nude mice were also significantly reduced by treatment of host mice with ATF3-siRNA. Taken together, these results suggest that ATF3 promotes the progression of human gliomas. PMID:25872784

  4. Activating transcription factor 3 is overexpressed in human glioma and its knockdown in glioblastoma cells causes growth inhibition both in vitro and in vivo.

    PubMed

    Ma, Siqi; Pang, Changhe; Song, Laijun; Guo, Fuyou; Sun, Hongwei

    2015-06-01

    Glioblastomas are highly malignant gliomas that are extremely invasive with high rates of recurrence and mortality. It has been reported that activating transcription factor 3 (ATF3) is expressed in elevated levels in multiple malignant tumors. The purpose of this study was to investigate the function of ATF3 in the development of glioma and its clinical significance. Immunohistochemical staining, western blot analysis and RT-qPCR revealed that the mRNA and protein levels of ATF3 and matrix metalloproteinase 2 (MMP2) were higher in the glioma than in the normal human brain tissues, and that their levels were proportional to the pathological grades. By contrast, the mRNA and protein levels of mammary serine protease inhibitor (maspin; SERPINB5) were significantly lower in the glioma than in the normal brain tissue, and maspin expression was inversely proportional to the glioma pathological grade. The transfection of U373MG glioblastoma cells with ATF3-siRNA induced a number of changes in cell behavior; the cell proliferative activity was decreased and flow cytometry revealed an increased proportion of cells arrested in the G0/G1 phase of the cell cycle. In addition, TUNEL staining indicated an increased proportion of cells undergoing apoptosis and Transwell assays revealed impaired cell mobility. The sizes of the tumors grown as xenografts in nude mice were also significantly reduced by treatment of host mice with ATF3-siRNA. Taken together, these results suggest that ATF3 promotes the progression of human gliomas. PMID:25872784

  5. Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma.

    PubMed

    Costa, Bruno M; Smith, Justin S; Chen, Ying; Chen, Justin; Phillips, Heidi S; Aldape, Kenneth D; Zardo, Giuseppe; Nigro, Janice; James, C David; Fridlyand, Jane; Reis, Rui M; Costello, Joseph F

    2010-01-15

    HOXA genes encode critical transcriptional regulators of embryonic development that have been implicated in cancer. In this study, we documented functional relevance and mechanism of activation of HOXA9 in glioblastoma (GBM), the most common malignant brain tumor. Expression of HOXA genes was investigated using reverse transcription-PCR in primary gliomas and glioblastoma cell lines and was validated in two sets of expression array data. In a subset of GBM, HOXA genes are aberrently activated within confined chromosomal domains. Transcriptional activation of the HOXA cluster was reversible by a phosphoinostide 3-kinase (PI3K) inhibitor through an epigenetic mechanism involving histone H3K27 trimethylation. Functional studies of HOXA9 showed its capacity to decrease apoptosis and increase cellular proliferation along with tumor necrosis factor-related apoptosis-including ligand resistance. Notably, aberrant expression of HOXA9 was independently predictive of shorter overall and progression-free survival in two GBM patient sets and improved survival prediction by MGMT promoter methylation. Thus, HOXA9 activation is a novel, independent, and negative prognostic marker in GBM that is reversible through a PI3K-associated epigenetic mechanism. Our findings suggest a transcriptional pathway through which PI3K activates oncogenic HOXA expression with implications for mTOR or PI3K targeted therapies. PMID:20068170

  6. Reversing HOXA9 Oncogene Activation by PI3K Inhibition: Epigenetic Mechanism and Prognostic Significance in Human Glioblastoma

    PubMed Central

    Costa, Bruno M.; Smith, Justin S.; Chen, Ying; Chen, Justin; Phillips, Heidi S.; Aldape, Kenneth D.; Zardo, Giuseppe; Nigro, Janice; James, C. David; Fridlyand, Jane; Reis, Rui M.; Costello, Joseph F.

    2010-01-01

    HOXA genes encode critical transcriptional regulators of embryonic development that have been implicated in cancer. In this study, we documented functional relevance and mechanism of activation of HOXA9 in glioblastoma (GBM), the most common malignant brain tumor. Expression of HOXA genes was investigated using RT-PCR in primary gliomas and glioblastoma cell lines and was validated in two sets of expression array data. In a subset of GBM, HOXA genes are aberrantly activated within confined chromosomal domains. Transcriptional activation of the HOXA cluster was reversible by a PI3K inhibitor through an epigenetic mechanism involving histone H3K27 trimethylation. Functional studies of HOXA9 showed its capacity to decrease apoptosis and increase cellular proliferation along with TRAIL resistance. Notably, aberrant expression of HOXA9 was independently predictive of shorter overall and progression-free survival in two GBM patient sets, and improved survival prediction by MGMT promoter methylation. Thus, HOXA9 activation is a novel, independent and negative prognostic marker in GBM that is reversible through a PI3K-associated epigenetic mechanism. Our findings suggest a transcriptional pathway through which PI3K activates oncogenic HOXA expression with implications for mTOR or PI3K targeted therapies. PMID:20068170

  7. Intracellular scFvs against the viral E6 oncoprotein provoke apoptosis in human papillomavirus-positive cancer cells

    SciTech Connect

    Lagrange, Magali; Boulade-Ladame, Charlotte; Mailly, Laurent; Weiss, Etienne; Orfanoudakis, Georges; Deryckere, Francois . E-mail: francois.deryckere@esbs.u-strasbg.fr

    2007-09-21

    The E6 protein of human papillomavirus type 16 (16E6) is involved in the tumorigenesis of human cervical cells by targeting numerous cellular proteins. We have designed a strategy for neutralizing 16E6 based on the intracellular expression of single-chain Fv antibodies (scFvs) specific to 16E6. Recombinant adenovirus vectors were constructed to allow expression of two 16E6-binding scFvs and one 16E6-non-binding scFv in HPV16-positive and -negative cells. Expression of the scFvs provoked two types of effects: (i) inhibition of proliferation of all cell lines tested, this aspecific toxicity being likely due to the aggregation of unfolded scFvs; and (ii) apoptosis observed only in HPV16-positive cervical cancer cell lines after expression of 16E6-binding scFvs, this specific effect being proportional to the intracellular solubility of the scFvs. These data demonstrate the feasibility of intracellular immunization with anti-16E6 scFvs and highlight the importance of the solubility of the intracellular antibodies.

  8. Protein tyrosine kinase activity is essential for Fc gamma receptor-mediated intracellular killing of Staphylococcus aureus by human monocytes.

    PubMed Central

    Zheng, L; Nibbering, P H; Zomerdijk, T P; van Furth, R

    1994-01-01

    Our previous study revealed that the intracellular killing of Staphylococcus aureus by human monocytes after cross-linking Fc gamma receptor I (Fc gamma RI) or Fc gamma RII is a phospholipase C (PLC)-dependent process. The aim of the present study was to investigate whether protein tyrosine kinase (PTK) activity plays a role in the Fc gamma R-mediated intracellular killing of bacteria and activation of PLC in these cells. The results showed that phagocytosis of bacteria by monocytes was not affected by the PTK inhibitors genistein and tyrphostin-47. The intracellular killing of S. aureus by monocytes after cross-linking Fc gamma RII or Fc gamma RII with anti-Fc gamma R monoclonal antibody and a bridging antibody or with human immunoglobulin G (IgG) was inhibited by these compounds in a dose-dependent fashion. The production of O2- by monocytes after stimulation with IgG or IgG-opsonized S. aureus was almost completely blocked by the PTK inhibitor. These results indicate that inhibition of PTK impairs the oxygen-dependent bactericidal mechanisms of monocytes. Genistein and tyrphostin-47, which do not affect the enzymatic activity of purified PLC, prevented activation of PLC after cross-linking Fc gamma RI or Fc gamma RII, measured as an increase in the intracellular inositol 1,4,5-trisphosphate concentration. Cross-linking Fc gamma RI or Fc gamma RII induced rapid tyrosine phosphorylation of several proteins in monocytes, one of which was identified as PLC-gamma 1, and the phosphorylation could be completely blocked by PTK inhibitors, leading to the conclusion that activation of PLC after cross-linking Fc gamma R in monocytes is regulated by PTK activity. Together, these results demonstrate that PTK activity is essential for the activation of PLC which is involved in the Fc gamma R-mediated intracellular killing of S. aureus by human monocytes. Images PMID:7927687

  9. Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans

    PubMed Central

    Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Passos, Renata L. Freitas; Fonseca, Michele Atalla; Oliveira, Kenya Paula Moreira; Lima, Milene Rodrigues Malheiros; Guimarães, Juliana Bohen; Ferreira-Júnior, João Batista; Martini, Angelo R. P.; Lima, Nilo R. V.; Soares, Danusa Dias; Oliveira, Edilamar Menezes

    2010-01-01

    In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL−1; p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 ± 0.08, POST: 1.20 ± 0.15, 1 h POST: 1.17 ± 0.16 ng mL−1; p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 ± 0.02 vs. POST, 2.9 ± 0.9 density units, mean ± SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 ± 1.2 vs. POST, 4.4 ± 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = −0

  10. Unique intracellular activation of the potent anti-human immunodeficiency virus agent 1592U89.

    PubMed

    Faletto, M B; Miller, W H; Garvey, E P; St Clair, M H; Daluge, S M; Good, S S

    1997-05-01

    The anabolism of 1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, a selective inhibitor of human immunodeficiency virus (HIV), was characterized in human T-lymphoblastoid CD4+ CEM cells. 1592U89 was ultimately anabolized to the triphosphate (TP) of the guanine analog (-)-carbovir (CBV), a potent inhibitor of HIV reverse transcriptase. However, less than 2% of intracellular 1592U89 was converted to CBV, an amount insufficient to account for the CBV-TP levels observed. 1592U89 was anabolized to its 5'-monophosphate (MP) by the recently characterized enzyme adenosine phosphotransferase, but neither its diphosphate (DP) nor its TP was detected. The MP, DP, and TP of CBV were found in cells incubated with either 1592U89 or CBV, with CBV-TP being the major phosphorylated species. We confirmed that CBV is phosphorylated by 5'-nucleotidase and that mycophenolic acid increased the formation of CBV-TP from CBV 75-fold. However, mycophenolic acid did not stimulate 1592U89 anabolism to CBV-TP. The adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) did not inhibit CBV-TP formation from CBV or 1592U89, whereas the adenylate deaminase inhibitor 2'-deoxycoformycin selectively inhibited 1592U89 anabolism to CBV-TP and reversed the antiviral activity of 1592U89. 1592U89-MP was not a substrate for adenylate deaminase but was a substrate for a distinct cytosolic deaminase that was inhibited by 2'-deoxycoformycin-5'-MP. Thus, 1592U89 is phosphorylated by adenosine phosphotransferase to 1592U89-MP, which is converted by a novel cytosolic enzyme to CBV-MP. CBV-MP is then further phosphorylated to CBV-TP by cellular kinases. This unique activation pathway enables 1592U89 to overcome the pharmacokinetic and toxicological deficiencies of CBV while maintaining potent and selective anti-HIV activity. PMID:9145876

  11. Development of an Intracellular Screen for New Compounds Able To Inhibit Mycobacterium tuberculosis Growth in Human Macrophages

    PubMed Central

    Sorrentino, Flavia; Gonzalez del Rio, Ruben; Zheng, Xingji; Presa Matilla, Jesus; Torres Gomez, Pedro; Martinez Hoyos, Maria; Perez Herran, Maria Esther; Mendoza Losana, Alfonso

    2015-01-01

    Here we describe the development and validation of an intracellular high-throughput screening assay for finding new antituberculosis compounds active in human macrophages. The assay consists of a luciferase-based primary identification assay, followed by a green fluorescent protein-based secondary profiling assay. Standard tuberculosis drugs and 158 previously recognized active antimycobacterial compounds were used to evaluate assay robustness. Data show that the assay developed is a short and valuable tool for the discovery of new antimycobacterial compounds. PMID:26503663

  12. CELLULAR MULTITASKING: THE DUAL ROLE OF HUMAN CU-ATPASES IN COFACTOR DELIVERY AND INTRACELLULAR COPPER BALANCE

    PubMed Central

    Lutsenko, Svetlana; Gupta, Arnab; Burkhead, Jason L.; Zuzel, Vesna

    2008-01-01

    Summary The human copper-transporting ATPases (Cu-ATPases) are essential for dietary copper uptake, normal development and function of the CNS, and regulation of copper homeostasis in the body. In a cell, Cu-ATPases maintain the intracellular concentration of copper by transporting copper into intracellular exocytic vesicles. In addition, these P-type ATPases mediate delivery of copper to copper-dependent enzymes in the secretory pathway and in specialized cell compartments such as secretory granules or melanosomes. The multiple functions of human Cu-ATPase necessitate complex regulation of these transporters that is mediated through the presence of regulatory domains in their structure, posttranslational modification and intracellular trafficking, as well as interactions with the copper chaperone Atox1 and other regulatory molecules. In this review, we summarize the current information on the function and regulatory mechanisms acting on human Cu-ATPases ATP7A and ATP7B. Brief comparison with the Cu-ATPase orthologues from other species is included. PMID:18534184

  13. The response of a human bronchial epithelial cell line to histamine: Intracellular calcium changes and extracellular release of inflammatory mediators

    SciTech Connect

    Noah, T.L.; Paradiso, A.M.; Madden, M.C.; McKinnon, K.P.; Devlin, R.B. )

    1991-11-01

    Epithelial cells are likely to modulate inflammation and tissue repair in the airways, but the factors responsible for these processes remain unclear. Because human airway epithelia are infrequently available for in vitro studies, transformed epithelial cell lines are of interest as models. The authors therefore investigated the response of an SV-40/adenovirus-transformed human bronchial epithelial cell line (BEAS-2B) to histamine, a mediator with relevance for airway diseases. The intracellular calcium response to histamine (10(-4) M) was measured, using Fura-2 and microspectrofluorimetry. Histamine induced a transient increase in intracellular calcium that originated from intracellular sources; this effect was inhibited by the H1 receptor antagonist diphenhydramine, suggesting that BEAS cells retain functioning histamine receptors. BEAS cells were grown to confluence on microporous, collagen-coated filters, allowing measurement of vectorial release of soluble mediators. Monolayers exposed to histamine for 30 min released interleukin-6 and fibronectin in the apical direction, in a dose-dependent manner. Little eicosanoid production was induced by histamine, either in the apical or the basolateral direction, although BEAS cells constitutively produced small amounts of prostaglandin E2 and 15-HETE. However, these cells formed large amounts of eicosanoids in response to ozone exposure as a positive control. Comparison of their data with published reports for human airway epithelia in primary culture suggests that the BEAS cell line is, in a number of respects, a relevant model for the study of airway epithelial responses to a variety of stimuli.

  14. Nucleolipids of Canonical Purine ß‐d‐Ribo‐Nucleosides: Synthesis and Cytostatic/Cytotoxic Activities Toward Human and Rat Glioblastoma Cells

    PubMed Central

    Knies, Christine; Hammerbacher, Katharina; Kinscherf, Ralf

    2015-01-01

    Abstract We report on the synthesis of two series of canonical purine ß‐d‐ribonucleoside nucleolipids derived from inosine and adenosine, which have been characterized by elemental analyses, electrospray ionization mass spectrometry (ESI MS) as well as by 1H and 13C NMR, and pH‐dependent UV/Vis spectroscopy. A selection of the novel nucleolipids with different lipophilic moieties were first tested on their cytotoxic effect toward human macrophages. Compounds without a significant inhibitory effect on the viability of the macrophages were tested on their cytostatic/cytotoxic effect toward human astrocytoma/oligodendroglioma GOS‐3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. In order to additionally investigate the potential molecular mechanisms involved in the cytotoxic effects of the derivatives on GOS‐3 or BT4Ca cells, we evaluated the induction of apoptosis and observed the particular activity of the nucleolipid ethyl 3‐{4‐hydroxymethyl‐2‐methyl‐6‐[6‐oxo‐1‐(3,7,11‐trimethyl‐dodeca‐2,6,10‐trienyl)‐1,6‐dihydro‐purin‐9‐yl]‐tetrahydro‐furo[3,4‐d][1,3]dioxol‐2‐yl}propionate (8 c) toward both human and rat glioblastoma cell lines in vitro. PMID:27308225

  15. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium. PMID:10490972

  16. Trichloroethylene-mediated cytotoxicity in human epidermal keratinocytes is mediated by the rapid accumulation of intracellular calcium: Interception by naringenin.

    PubMed

    Ali, F; Khan, A Q; Khan, R; Sultana, S

    2016-02-01

    Industrial solvents pose a significant threat to the humankind. The mechanisms of their toxicity still remain in debate. Trichloroethylene (TCE) is a widespread industrial solvent responsible for severe liver dysfunction, cutaneous toxicity in occupationally exposed humans. We utilized an in vitro system of human epidermal keratinocyte (HaCaT) cells in this study to avoid complex cell and extracellular interactions. We report the cytotoxicity of organic solvent TCE in HaCaT and its reversal by a natural flavanone, naringenin (Nar). The cytotoxicity was attributed to the rapid intracellular free calcium (Ca(2+)) release, which might lead to the elevation of protein kinase C along with robust free radical generation, instability due to energy depletion, and sensitization of intracellular stress signal transducer nuclear factor κB. These effects were actually seen to induce significant amount of genomic DNA fragmentation. Furthermore, all these effects of TCE were effectively reversed by the treatment of Nar, a natural flavanone. Our studies identify intracellular Ca as a unique target used by organic solvents in the cytotoxicity and highlight the Ca(2+) ion stabilizer properties of Nar. PMID:25855085

  17. Human glioma cells transformed by IGF-I triple helix technology show immune and apoptotic characteristics determining cell selection for gene therapy of glioblastoma

    PubMed Central

    Ly, A; Duc, H T; Kalamarides, M; Trojan, L A; Pan, Y; Shevelev, A; François, J-C; Noël, T; Kane, A; Henin, D; Anthony, D D; Trojan, J

    2001-01-01

    Aims—Insulin-like growth factor type I (IGF-I) antisense cellular gene therapy of tumours is based on the following data: rat glioma or hepatoma cells transfected with the vector encoding IGF-I antisense cDNA lose their tumorigenicity and induce a tumour specific immune response involving CD8+ T cells. Recently, using the IGF-I triple helix approach in studies of tumorigenicity, major histocompatibility complex class I (MHC-I) antigens were demonstrated in rat glioma transfected cells. This study used comparative IGF-I antisense and triple helix technologies in human primary glioma cells to determine the triple helix strategy that would be most appropriate for the treatment of glioblastoma. Methods—The cells were transfected using the IGF-I triple helix expression vector, pMT-AG, derived from the pMT-EP vector. pMT-AG contains a cassette comprising a 23 bp DNA fragment transcribing a third RNA strand, which forms a triple helix structure within a target region of the human IGF-I gene. Using pMT-EP, vectors encoding MHC-I or B7 antisense cDNA were also constructed. Results—IGF-I triple helix transfected glioma cells are characterised by immune and apoptotic phenomena that appear to be related. The expression of MHC-I and B7 in transfected cells (analysed by flow cytometry) was accompanied by programmed cell death (detected by dUTP fluorescein terminal transferase labelling of nicked DNA and electron microscopic techniques). Cotransfection of these cells with MHC-I and B7 antisense vectors suppressed the expression of MHC-I and B7, and was associated with a pronounced decrease in apoptosis. Conclusion—When designing an IGF-I triple helix strategy for the treatment of human glioblastoma, the transfected tumour cells should have the following characteristics: the absence of IGF-I, thepresence of both MHC-I and B7 molecules, and signs of apoptosis. PMID:11477137

  18. TCGA Workshop: Genomics and Biology of Glioblastoma Multiforme (GBM) - TCGA

    Cancer.gov

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) held a workshop entitled, “Genomics and Biology of Glioblastoma Multiforme (GBM),” to review the initial GBM data from the TCGA pilot project.

  19. A placental growth factor-positively charged peptide potentiates the antitumor activity of interferon-gamma in human brain glioblastoma U87 cells

    PubMed Central

    Liu, Yu; Chen, Naifei; Yin, Hongmei; Zhang, Leilei; Li, Wei; Wang, Guanjun; Cui, Jiuwei; Yang, Bo; Hu, Ji-Fan

    2016-01-01

    Interferons have been marketed to treat hematological malignancies, but their efficacy in the treatment of solid tumors has been significantly hindered by low antitumor efficacy and numerous side effects. We used a “cDNA in-frame fragment” library screening method to identify short cDNA peptides that potentiate the anti-tumor activity of interferons. In this study, we synthesized a hybrid molecule by fusing a short positively charged peptide derived from placental growth factor-2 to the C-terminus of human IFNγ. Using the human brain glioblastoma U87 cell line as a model system, we found that the hybrid interferon exhibited significantly higher activity than did the wild-type IFNγ in inhibiting tumor cell growth. As compared with the unmodified IFNγ, the hybrid interferon was better at inhibiting cell invasion in a matri-gel assay and at decreasing tumor colony formation. The enhanced antitumor activity of the synthetic interferon was correlated with the activation of interferon pathway genes and the blockade of tumor cell division at the S-G2/M phase. This study demonstrates the potential of a synthetic IFNγ for use as a novel antitumor agent.

  20. CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells.

    PubMed

    Drachsler, M; Kleber, S; Mateos, A; Volk, K; Mohr, N; Chen, S; Cirovic, B; Tüttenberg, J; Gieffers, C; Sykora, J; Wirtz, C R; Mueller, W; Synowitz, M; Martin-Villalba, A

    2016-01-01

    Glioblastoma (GBM) is one of the most aggressive types of cancer with limited therapeutic options and unfavorable prognosis. Stemness and non-classical epithelial-to-mesenchymal transition (ncEMT) features underlie the switch from normal to neoplastic states as well as resistance of tumor clones to current therapies. Therefore, identification of ligand/receptor systems maintaining this privileged state is needed to devise efficient cancer therapies. In this study, we show that the expression of CD95 associates with stemness and EMT features in GBM tumors and cells and serves as a prognostic biomarker. CD95 expression increases in tumors and with tumor relapse as compared with non-tumor tissue. Recruitment of the activating PI3K subunit, p85, to CD95 death domain is required for maintenance of EMT-related transcripts. A combination of the current GBM therapy, temozolomide, with a CD95 inhibitor dramatically abrogates tumor sphere formation. This study molecularly dissects the role of CD95 in GBM cells and contributes the rational for CD95 inhibition as a GBM therapy. PMID:27124583

  1. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells

    PubMed Central

    Zappelli, Elisa; Marinelli, Luciana; Novellino, Ettore; Da Settimo, Federico; Taliani, Sabrina; Trincavelli, Maria L.; Martini, Claudia

    2016-01-01

    The development of multi-target drugs and irreversible modulators of deregulated signalling proteins is the major challenge for improving glioblastoma multiforme (GBM) treatment. Reversible single-target drugs are not sufficient to sustain a therapeutic effect over time and may favour the activation of alternative signalling pathways and the onset of resistance phenomena. Thus, a multi-target compound that has a long-lasting mechanism of action might have a greater and longer life span of anti-proliferative activity. Recently, a dual-target indol-3ylglyoxyldipeptide derivative, designed to bind to the Translocator Protein (TSPO) and reactivate p53 function via dissociation from its physiological inhibitor, murine double minute 2 (MDM2), has been developed as a potent GBM pro-apoptotic agent. In this study, this derivative was chemically modified to irreversibly bind MDM2 and TSPO. The new compound elicited a TSPO-mediated mitochondrial membrane dissipation and restored p53 activity, triggering a long-lasting apoptosis of GBM cells. These effects were sustained over time, involved a stable activation of extracellular signal regulated kinases and were specifically observed in cancer cells, in which these protein kinases are deregulated. Dual-targeting and irreversible binding properties combined in the same molecule may represent a useful strategy to overcome the time-limited effects elicited by classical chemotherapies. PMID:26761214

  2. CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells

    PubMed Central

    Drachsler, M; Kleber, S; Mateos, A; Volk, K; Mohr, N; Chen, S; Cirovic, B; Tüttenberg, J; Gieffers, C; Sykora, J; Wirtz, C R; Mueller, W; Synowitz, M; Martin-Villalba, A

    2016-01-01

    Glioblastoma (GBM) is one of the most aggressive types of cancer with limited therapeutic options and unfavorable prognosis. Stemness and non-classical epithelial-to-mesenchymal transition (ncEMT) features underlie the switch from normal to neoplastic states as well as resistance of tumor clones to current therapies. Therefore, identification of ligand/receptor systems maintaining this privileged state is needed to devise efficient cancer therapies. In this study, we show that the expression of CD95 associates with stemness and EMT features in GBM tumors and cells and serves as a prognostic biomarker. CD95 expression increases in tumors and with tumor relapse as compared with non-tumor tissue. Recruitment of the activating PI3K subunit, p85, to CD95 death domain is required for maintenance of EMT-related transcripts. A combination of the current GBM therapy, temozolomide, with a CD95 inhibitor dramatically abrogates tumor sphere formation. This study molecularly dissects the role of CD95 in GBM cells and contributes the rational for CD95 inhibition as a GBM therapy. PMID:27124583

  3. Intracellular transport of nanodiamond particles in human endothelial and epithelial cells.

    PubMed

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Studzian, Maciej; Michlewska, Sylwia; Balcerzak, Łucja; Skolimowski, Janusz; Kolago, Bogumiła; Bartosz, Grzegorz

    2014-08-01

    During the recent years nanodiamonds have been the subject of interest as possible means of targeted delivery of anticancer substances. Detonation nanodiamonds are attractive candidates for intracellular studies due to their synthesis methods, low cost, good biocompatibility and facile surface functionalizability. Our previous study, in which we used nanoparticles obtained by different methods showed the significance of size and way of production of nanodiamonds in their cellular effects. The aim of this study was to check the ability of surface-modified detonation nanodiamonds to reach intracellular compartments without degradation of the surface-conjugated drug or fluorescent marker. In this study we examined the penetration HUVEC-ST and A549 cells by detonation nanodiamonds (grain size <20 nm) modified by adding to, employing four pharmacological inhibitors of endocytosis, using optical, confocal and transmission electron microscopy We discuss the possibilities, the challenges of studying the endocytic pathways involved in cellular uptake of nanoparticles. Our results suggest that fluorescent nanomaterials are very promising for monitoring the intracellular fate of nanodiamonds. PMID:24882084

  4. Analysis of intracellular reducing levels in human hepatocytes on three-dimensional focusing microchip.

    PubMed

    Xu, Chunxiu; Cai, Longfei

    2014-02-01

    A novel three-dimensional hydrodynamic focusing microfluidic device integrated with high-throughput cell sampling and detection of intracellular contents is presented. It has a pivotal role in maintaining the reducing environment in cells. Intracellular reducing species such as vitamin C and glutathione in normal and tumor cells were labeled by a newly synthesized 2,2,6,6-tetramethyl-piperidine-1-oxyl-based fluorescent probe. Hepatocytes are adherent cells, which are prone to attaching to the channel surface. To avoid the attachment of cells on the channel surface, a single channel microchip with three sheath-flow channels located on both sides of and below the sampling channel was developed. Hydrostatic pressure generated by emptying the sample waste reservoir was used as driving force of fluid on the microchip. Owing to the difference between the liquid levels of the reservoirs, the labeled cells were three-dimensional hydrodynamically focused and transported from the sample reservoir to the sample waste reservoir. Hydrostatic pressure takes advantage of its ease of generation on a microfluidic chip without any external pressure pump, which drives three sheath-flow streams to constrain a sample flow stream into a narrow stream to avoid blockage of the sampling channel by adhered cells. The intracellular reducing levels of HepG2 cells and L02 cells were detected by home-built laser-induced fluorescence detector. The analysis throughput achieved in this microfluidic system was about 59-68 cells/min. PMID:23297173

  5. Space Flight Effects on Intracellular Ions in Sublingual Cells of Non-Human Primates

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Dotsenko, R.; Fung, P.; Navidi, M.; Silver, B.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    We have used a novel technique that quantifies minerals and electrolytes from smears of sublingual cells by x-ray microanalysis to monitor metabolic changes in bed rest subjects. Increases in intracellular calcium (Ca), phosphorus (P), and potassium (K) were characteristic of subjects whose exercise regimen was inadequate to maintain calcium metabolism. To test the effects of space flight on intracellular ions, we analyzed cells from 2-4 kg Rhesus monkeys before and after 2 weeks in space or chair restraint (CR). There were increases in sublingual cell Ca, P and K after space flight which paralleled the clinical estimates of metabolic status of the animals and exceeded the levels found during CR on R+11. Increases after 2 weeks CR were 26% in Ca, 6% in P and 29% in K. Species similarity ill responses of intracellular ions to inactivity imposed by bed rest, restraint or microgravity suggest that this innovative non-invasive technique would be a useful in-flight monitor of exercise countermeasures directed toward maintaining calcium balance.

  6. Catalytic activity of human carbonic anhydrase isoform IX is displayed both extra- and intracellularly.

    PubMed

    Klier, Michael; Jamali, Somayeh; Ames, Samantha; Schneider, Hans-Peter; Becker, Holger M; Deitmer, Joachim W

    2016-01-01

    Most carbonic anhydrases catalyse the reversible conversion of carbon dioxide to protons and bicarbonate, either as soluble cytosolic enzymes, in or at intracellular organelles, or at the extracellular face of the cell membrane as membrane-anchored proteins. Carbonic anhydrase isoform IX (CA IX), a membrane-bound enzyme with catalytic activity at the extracellular membrane surface, has come to prominence in recent years because of its association with hypoxic tissue, particularly tumours, often indicating poor prognosis. We have evaluated the catalytic activity of CA IX heterologously expressed in Xenopus laevis oocytes by measuring the amplitude and rate of cytosolic pH changes as well as pH changes at the outer membrane surface (pHs ) during addition and removal of 5% CO2 /25 mm HCO3-, and by mass spectrometry. Our results indicate both extracellular and intracellular catalytic activity of CA IX. Reduced rates of CO2 -dependent intracellular pH changes after knockdown of CA IX confirmed these findings in two breast cancer cell lines: MCF-7 and MDA-MB-231. Our results demonstrate a new function of CA IX that may be important in the search for therapeutic cancer drugs targeting CA IX. PMID:26470855

  7. Stereotactic Radiosurgery for Glioblastoma.

    PubMed

    Redmond, Kristin J; Mehta, Minesh

    2015-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and one of the most aggressive of all human cancers. GBM tumors are highly infiltrative and relatively resistant to conventional therapies. Aggressive management of GBM using a combination of surgical resection, followed by fractionated radiotherapy and chemotherapy has been shown to improve overall survival; however, GBM tumors recur in the majority of patients and the disease is most often fatal. There is a need to develop new treatment regimens and technological innovations to improve the overall survival of GBM patients. The role of stereotactic radiosurgery (SRS) for the treatment of GBM has been explored and is controversial. SRS utilizes highly precise radiation techniques to allow dose escalation and delivery of ablative radiation doses to the tumor while minimizing dose to the adjacent normal structures. In some studies, SRS with concurrent chemotherapy has shown improved local control with acceptable toxicities in select GBM patients. However, because GBM is a highly infiltrative disease, skeptics argue that local therapies, such as SRS, do not improve overall survival. The purpose of this article is to review the literature regarding SRS in both newly diagnosed and recurrent GBM, to describe SRS techniques, potential eligible SRS candidates, and treatment-related toxicities. In addition, this article will propose promising areas for future research for SRS in the treatment of GBM. PMID:26848407

  8. CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils.

    PubMed

    Carmo, Lívia A S; Bonjour, Kennedy; Ueki, Shigeharu; Neves, Josiane S; Liu, Linying; Spencer, Lisa A; Dvorak, Ann M; Weller, Peter F; Melo, Rossana C N

    2016-08-01

    Eosinophil activation leads to secretion of presynthesized, granule-stored mediators that determine the course of allergic, inflammatory, and immunoregulatory responses. CD63, a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) and present on the limiting membranes of eosinophil-specific (secretory) granules, is considered a potential surface marker for eosinophil degranulation. However, the intracellular secretory trafficking of CD63 in eosinophils and other leukocytes is not understood. Here, we provide a comprehensive investigation of CD63 trafficking at high resolution within human eosinophils stimulated with inflammatory stimuli, CCL11 and tumor necrosis factor α, which induce distinctly differing secretory processes in eosinophils: piecemeal degranulation and compound exocytosis, respectively. By using different transmission electron microscopy approaches, including an immunonanogold technique, for enhanced detection of CD63 at subcellular compartments, we identified a major intracellular pool of CD63 that is directly linked to eosinophil degranulation events. Transmission electron microscopy quantitative analyses demonstrated that, in response to stimulation, CD63 is concentrated within granules undergoing secretion by piecemeal degranulation or compound exocytosis and that CD63 tracks with the movements of vesicles and granules in the cytoplasm. Although CD63 was observed at the cell surface after stimulation, immunonanogold electron microscopy revealed that a strong CD63 pool remains in the cytoplasm. It is remarkable that CCL11 and tumor necrosis factor α triggered increased formation of CD63(+) large vesiculotubular carriers (eosinophil sombrero vesicles), which fused with granules in the process of secretion, likely acting in the intracellular translocation of CD63. Altogether, we identified active, intracellular CD63 trafficking connected to eosinophil granule-derived secretory pathways. This is important for understanding the

  9. A novel exon in the human Ca2+-activated Cl- channel Ano1 imparts greater sensitivity to intracellular Ca2.

    PubMed

    Strege, Peter R; Bernard, Cheryl E; Mazzone, Amelia; Linden, David R; Beyder, Arthur; Gibbons, Simon J; Farrugia, Gianrico

    2015-11-01

    Anoctamin 1 (Ano1; TMEM16A) is a Ca(2+)-activated Cl(-) channel (CACC) expressed in interstitial cells of Cajal. The mechanisms by which Ca(2+) regulates Ano1 are incompletely understood. In the gastrointestinal tract, Ano1 is required for normal slow wave activity and is involved in regulating cell proliferation. Splice variants of Ano1 have varying electrophysiological properties and altered expression in disease states. Recently, we identified a transcript for human Ano1 containing a novel exon-"exon 0" upstream of and in frame with exon 1. The electrophysiological properties of this longer Ano1 isoform are unknown. Our aim was to determine the functional contribution of the newly identified exon to the Ca(2+) sensitivity and electrophysiological properties of Ano1. Constructs with [Ano1(+0)] or without [Ano1(-0)] the newly identified exon were transfected into human embryonic kidney-293 cells. Voltage-clamp electrophysiology was used to determine voltage- and time-dependent parameters of whole cell Cl(-) currents between isoforms with varying concentrations of intracellular Ca(2+), extracellular anions, or Cl(-) channel inhibitors. We found that exon 0 did not change voltage sensitivity and had no impact on the relative permeability of Ano1 to most anions. Ano1(+0) exhibited greater changes in current density but lesser changes in kinetics than Ano1(-0) in response to varying intracellular Ca(2+). The CACC inhibitor niflumic acid inhibited current with greater efficacy and higher potency against Ano1(+0) compared with Ano1(-0). Likewise, the Ano1 inhibitor T16Ainh-A01 reduced Ano1(+0) more than Ano1(-0). In conclusion, human Ano1 containing exon 0 imparts its Cl(-) current with greater sensitivity to intracellular Ca(2+) and CACC inhibitors. PMID:26359375

  10. The parvoviral capsid controls an intracellular phase of infection essential for efficient killing of stepwise-transformed human fibroblasts.

    PubMed

    Paglino, Justin; Tattersall, Peter

    2011-07-20

    Members of the rodent subgroup of the genus Parvovirus exhibit lytic replication and spread in many human tumor cells and are therefore attractive candidates for oncolytic virotherapy. However, the significant variation in tumor tropism observed for these viruses remains largely unexplained. We report here that LuIII kills BJ-ELR 'stepwise-transformed' human fibroblasts efficiently, while MVM does not. Using viral chimeras, we mapped this property to the LuIII capsid gene, VP2, which is necessary and sufficient to confer the killer phenotype on MVM. LuIII VP2 facilitates a post-entry, pre-DNA-amplification step early in the life cycle, suggesting the existence of an intracellular moiety whose efficient interaction with the incoming capsid shell is critical to infection. Thus targeting of human cancers of different tissue-type origins will require use of parvoviruses with capsids that effectively make this critical interaction. PMID:21600623