Science.gov

Sample records for human hacat cells

  1. Cytogenotoxicity of selected organophosphate insecticides on HaCaT keratinocytes and NL-20 human bronchial cells.

    PubMed

    Arteaga-Gómez, Eduardo; Rodríguez-Levis, Alejandra; Cortés-Eslava, Josefina; Arenas-Huertero, Francisco; Valencia-Quintana, Rafael; Gómez-Arroyo, Sandra

    2016-02-01

    Organophosphate insecticides (OI) are widely used. To humans the main routes of exposure are skin and inhalation. For this, keratinocytes (HaCaT) and bronchial cells (NL-20) were used as cell culture models to evaluate the effects of OI. The aim of this study was to evaluate the effect of four OI on HaCaT and NL-20 cells: azinphos-methyl, (AM); parathion-methyl (PM); omethoate (OM); and methamidophos (MET). Cells were exposed to 0.1, 1 and 10 μg/μL of each. Results showed a decrease in cell viability in both cell lines. Viability of the NL-20 cell line decreased with the three concentrations of OM. All differences were significant (p < 0.05). Genotoxic damage, evaluated through the comet assay, was observed in both cell lines with AM. NL-20 cell line was more sensitive than HaCaT. Higher concentrations of the insecticides except MET, induced cell death. MET caused DNA damage in HaCaT cells at all concentrations. Differences were significant (p < 0.05). Both cell lines revealed the presence of single membrane vacuoles of different sizes when exposed to 1 μg/μL of each insecticide. Quantitative real time-polymerase chain reaction (RT-qPCR) showed an increase of BN1 gene in HaCaT by effect of AM and MET at 1 μg/μL. In conclusion, all the insecticides induced different levels of cyto and genotoxic effects in both cell lines. PMID:26688254

  2. Cytotoxic Effect of the Genus Sinularia Extracts on Human SCC25 and HaCaT Cells

    PubMed Central

    Wang, Guey-Horng; Chou, Tzung-Han; Lin, Rong-Jyh; Sheu, Jyh-Horng; Wang, Shih-Hao; Liang, Chia-Hua

    2009-01-01

    Soft corals of the genus Sinularia are being increasingly adopted to treat a wide variety of disease processes. However, the mechanism underlying its activity against human oral cancer cells is poorly understood. This study evaluates the cyototoxicity effects of the genus Sinularia extracts (S. grandilobata, S. parva, S. triangula, S. scabra, S. nanolobata and S. gibberosa) by SCC25 and HaCaT cells. The cell adhesion assay indicates that extracts reduce the cell attachment. Extracts exhibit a dose-dependent cytotoxic effect using MTS assay.Treatment of extracts to observe the morphological alterations in cells, membrane blebbing, nuclear condensation, and apoptotic bodies is demonstrated. Flow cytometry shows that extracts sensitized the cells in the G0/G1 and G2/M phases with a concomitant significantly increased sub-G1 fraction, suggesting cell death by apoptosis. Extracts of the genus Sinularia thus apparently cause apoptosis of SCC25 and HaCaT cells, and warrant further research investigating the possible antioral cancer compounds in these soft corals. PMID:20130779

  3. Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line.

    PubMed

    Zanette, Caterina; Pelin, Marco; Crosera, Matteo; Adami, Gianpiero; Bovenzi, Massimo; Larese, Francesca Filon; Florio, Chiara

    2011-08-01

    For their antibacterial activity, silver nanoparticles (Ag NPs) are largely used in various commercially available products designed to come in direct contact with the skin. In this study we investigated the effects of Ag NPs on skin using the human-derived keratinocyte HaCaT cell line model. Ag NPs caused a concentration- and time-dependent decrease of cell viability, with IC(50) values of 6.8 ± 1.3 μM (MTT assay) and 12 ± 1.2 μM (SRB assay) after 7 days of contact. A 24h treatment, followed by a 6 day recovery period in Ag NPs-free medium, reduced cell viability with almost the same potency (IC(50)s of 15.3 ± 4.6 and 35 ± 20 μM, MTT and SRB assays, respectively). Under these conditions, no evidence of induction of necrotic events (propidium iodide assay) was found. Apocynin, NADPH-oxidase inhibitor, or N(G)-monomethyl-L-argynine, nitric oxide synthase inhibitor, did not prevent NPs-induced reduction of cell viability. TEM analysis of cells exposed to NPs for 24h revealed alteration of nuclear morphology but only a marginal presence of individual NPs inside the cells. These results demonstrate that on HaCaT keratinocytes a relatively short time of contact with Ag NPs causes a long-lasting inhibition of cell growth, not associated with consistent Ag NPs internalization. PMID:21501681

  4. Impact of Different Spa Waters on Inflammation Parameters in Human Keratinocyte HaCaT Cells

    PubMed Central

    Zöller, Nadja; Valesky, Eva; Hofmann, Matthias; Bereiter-Hahn, Jürgen; Bernd, August; Kaufmann, Roland; Meissner, Markus

    2015-01-01

    Background The treatment of different skin conditions with spa waters is a long tradition dating back to at least late Hellenism. Interestingly, independent scientific examinations studying the effect of spa waters are scarce. Objective In the present in vitro study, we compared the effect of culture media supplemented with (a) thermal spa waters (La Roche-Posay, Avène) and (b) two natural mineral drinking waters (Heppinger, Adelholzener) on physiological parameters in HaCaT keratinocytes. Methods The different medium preparations were investigated with regard to cell proliferation and cell damage. Moreover, the impact on inflammation parameters with and without ultraviolet B (UVB) irradiation was examined. Results Two popular thermal spring waters were found to suppress cell proliferation and cell damage. Moreover, these waters reversed the induction of interleukin-6, as measured using enzyme-linked immunosorbent assay and promoter transactivation, and the formation of reactive oxygen species after UVB stimulation. Of note, the two natural mineral waters, which are distributed as drinking waters, had some effect on the above-mentioned parameters but to a lesser extent. Conclusion In summary, our results show that spa waters, and particularly those derived from thermal springs, reduce parameters associated with inflammation. It seems likely that trace elements such as selenium and zinc are critical for the observed effects. PMID:26719640

  5. Microencapsulation-protected l-ascorbic acid for the application of human epithelial HaCaT cell proliferation.

    PubMed

    Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Gambari, R; Lee, K K-H; Chui, C-H

    2014-01-01

    l-ascorbic acid is an abundant water-soluble nutrient found in vegetables and fruits. It enhances the cell proliferation, which is helpful in wound healing process. However, it is relatively unstable and easily degraded under external environments including acidity, alkalinity, evaporation, heat, oxidization, light or moisture. Its storage remains challenged. This study reported the development of l-ascorbic acid microcapsules using the natural protein, gelatin, and the natural polysaccharide, agar, as the wall protection carrier. The physical properties including entrapment efficiency, particle size, surface morphology, chemical compositions and release profile were identified. The cell proliferation of l-ascorbic acid microcapsules was stronger than the free drug. Significant cell growth in microencapsulated l-ascorbic acid-treated human epithelial HaCaT cells was observed when compared with untreated control. Since cell proliferation and wound repair are closely related, it is believed that l-ascorbic acid microcapsules would effectively increase the potential effect of wound healing activity in human skin. PMID:24963963

  6. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR.

    PubMed

    Kar, Supratik; Gajewicz, Agnieszka; Roy, Kunal; Leszczynski, Jerzy; Puzyn, Tomasz

    2016-04-01

    Synthesis of novel nanoparticles should always be accompanied by a comprehensive assessment of risk to human health and to ecosystem. Application of in silico models is encouraged by regulatory authorities to fill the data gaps related to the properties of nanoparticles affecting the environment and human health. Interspecies toxicity correlations provide a tool for estimation of contaminant's sensitivity with known levels of uncertainty for a diverse pool of species. We propose here first interspecies cytotoxicity correlation models between Escherichia coli (prokaryotic system) and human keratinocyte cell line (HaCaT) (eukaryotic system) to assess the discriminatory features for cytotoxicity of metal oxide nanoparticles. The nano-QTTR models can be employed for extrapolating cytotoxicity to E. coli and human keratinocyte cell line (HaCaT) for metal nanoparticles when the data for the other species are available. Informative illustrations of the contributing mechanisms of toxic action of the metal oxide nanoparticles to the HaCaT cell line as well as to the E. coli are identified from the developed nano quantitative toxicity-toxicity relationship (nano-QTTR) models. PMID:26773833

  7. Eicosapentaenoic acid inhibits TNF-{alpha}-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    SciTech Connect

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul Chung, Jin Ho

    2008-04-04

    Eicosapentaenoic acid (EPA) is an omega-3 ({omega}-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-{kappa}B activation induced by tumor necrosis factor (TNF)-{alpha} or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-{alpha}-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-{alpha} induced MMP-9 expression by NF-{kappa}B-dependent pathway. Pretreatment of EPA inhibited TNF-{alpha}-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect I{kappa}B-{alpha} phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-{kappa}B. EPA inhibited TNF-{alpha}-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKK{alpha}-dependent event. Taken together, we demonstrate that EPA inhibits TNF-{alpha}-induced MMP-9 expression through inhibition of p38 and Akt activation.

  8. Chlorpyrifos induces NLRP3 inflammasome and pyroptosis/apoptosis via mitochondrial oxidative stress in human keratinocyte HaCaT cells.

    PubMed

    Jang, Yoonjeong; Lee, Ah Young; Jeong, Sang-Hee; Park, Kyung-Hun; Paik, Min-Kyoung; Cho, Nam-Joon; Kim, Ji-Eun; Cho, Myung-Haing

    2015-12-01

    Chlorpyrifos (CPF) has been widely used around the world as a pesticide for both agricultural and residential application. Although various studies have reported toxicity and health-related effects from CPF exposure, the molecular mechanism of CPF toxicity to skin has not been well-characterized. The present study determined the potential mechanism involved in skin toxicity of CPF using the HaCaT human skin keratinocyte cell line. After treating to HaCaT cells, CPF triggered reactive oxygen species (ROS) generation and mitochondrial oxidative stress. We focused on NLRP3 inflammasome, known to induce innate immune response. We used mitochondrial ROS (mROS) scavenger mitoTEMPO to demonstrate a role for mROS in NLRP3 inflammasome and programmed cell death induced by CPF. Our results showed that CPF provoked NLRP3 inflammasome and pyroptosis/apoptosis via an increase of mROS in HaCaT cells. This study proposes that CPF induces innate immune response and skin inflammation through activating the NLRP3 inflammasome in skin epithelial cells. CPF may lead to cutaneous disease conditions and antioxidants could be proposed for therapy against skin exposure to CPF. PMID:26435000

  9. Protective effect of Vaccinium myrtillus extract against UVA- and UVB-induced damage in a human keratinocyte cell line (HaCaT cells).

    PubMed

    Calò, Rossella; Marabini, Laura

    2014-03-01

    Recently, the field of skin protection have shown a considerable interest in the use of botanicals. Vaccinium myrtillus contains several polyphenols and anthocyanins with multiple pharmacological properties. The purpose of our study was to examine whether a water-soluble V. myrtillus extract (dry matter 12.4%; total polyphenols 339.3mg/100 g fw; total anthocyanins 297.4 mg/100 g fw) was able to reduce UVA- and UVB-induced damage using a human keratinocyte cell line (HaCaT). HaCaT cells were pretreated for 1h with extract in a serum-free medium and then irradiated with UVA (8-40 J/cm(2)) and UVB (0.008-0.72 J/cm(2)) rays. All experiments were performed 24h after the end of irradiation, except for oxidative stress tests. The extract was able to reduce the UVB-induced cytotoxicity and genotoxicity (studied by comet and micronucleous assays) at lower doses. V. myrtillus extract reduced lipid peroxidation UVB-induced, but had no effect against the ROS UVB-produced. With UVA-induced damage V. myrtillus reduced genotoxicity as well as the unbalance of redox intracellular status. Moreover our extract reduced the UVA-induced apoptosis, but had no effect against the UVB one. V. myrtillus extract showed its free radical scavenging properties reducing oxidative stress and apoptotic markers, especially in UVA-irradiated cells. PMID:24577051

  10. HaCaT cell proliferation influenced by melatonin.

    PubMed

    Hipler, U-C; Fischer, T W; Elsner, P

    2003-01-01

    The hormone melatonin is characterized by numerous pharmacological effects. The influence of melatonin on the growth of the human hair follicle was shown in previous investigations. In the present study, the effects of melatonin were investigated by means of proliferation tests of HaCaT keratinocytes using the [3H]thymidine incorporation, a fluorescence assay with Hoechst dye 33342 and the ATP bioluminescence assay. The aim of the study was to find melatonin concentrations suitable for treatments of the skin and whether there is a cytotoxic effect on HaCaT cells. The different proliferative activity of melatonin depending on its concentration and the time of incubation could be shown in all investigations. PMID:14528062

  11. Interaction of Mycobacterium leprae with the HaCaT human keratinocyte cell line: new frontiers in the cellular immunology of leprosy.

    PubMed

    Lyrio, Eloah C D; Campos-Souza, Ivy C; Corrêa, Luiz C D; Lechuga, Guilherme C; Verícimo, Maurício; Castro, Helena C; Bourguignon, Saulo C; Côrte-Real, Suzana; Ratcliffe, Norman; Declercq, Wim; Santos, Dilvani O

    2015-07-01

    Leprosy is a chronic granulomatous disease caused by Mycobacterium leprae affecting the skin and peripheral nerves. Despite M. leprae invasion of the skin and keratinocytes importance in innate immunity, the interaction of these cells in vitro during M. leprae infection is poorly understood. Conventional and fluorescence optical microscopy, transmission electronic microscopy, flow cytometry and ELISA were used to study the in vitro interaction of M. leprae with the HaCaT human keratinocyte cell line. Keratinocytes uptake of M. leprae is described, and modulation of the surface expression of CD80 and CD209, cathelicidin expression and TNF-α and IL-1β production of human keratinocytes are compared with dendritic cells and macrophages during M. leprae interaction. This study demonstrated that M. leprae interaction with human keratinocytes enhanced expression of cathelicidin and greatly increased TNF-α production. The highest spontaneous expression of cathelicidin was by dendritic cells which are less susceptible to M. leprae infection. In contrast, keratinocytes displayed low spontaneous cathelicidin expression and were more susceptible to M. leprae infection than dendritic cells. The results show, for the first time, an active role for keratinocytes during infection by irradiated whole cells of M. leprae and the effect of vitamin D on this process. They also suggest that therapies which target cathelicidin modulation may provide novel approaches for treatment of leprosy. PMID:25828729

  12. Modulation of viability and apoptosis of UVB-exposed human keratinocyte HaCaT cells by aqueous methanol extract of laver (Porphyra yezoensis).

    PubMed

    Kim, Saerong; You, Dong Hun; Han, Taejun; Choi, Eun-Mi

    2014-12-01

    We investigated the effect of 80% methanol extract of laver (Porphyra yezoensis) on the UVB-exposed HaCaT cells, human keratinocytes. The laver extract showed absorbance spectrum characteristic of porphyra-334 or shinorine, major mycosporine-like amino acids (MAAs) in red algae, and contained phenolic compounds. UVB exposure decreased cell viability and increased apoptotic cell fractions, and it also decreased the ratio of reduced (GSH) to oxidized glutathione (GSSG) and the total glutathione content. Post-treatment with the laver extract significantly increased the net viability and also the apoptotic cell fractions of UVB-exposed cells. The extract caused increase in GSH/GSSG ratio, yet it exacerbated the decrease in glutathione content in the UVB-exposed cells. These effects of the laver extract were also manifested in the sham-exposed cells, suggesting that those effects might be general phenomena caused by the laver extract. The extract treatment enhanced the UVB-induced phosphorylation of JNK and ERK, affecting more the latter. Our results suggest that the post-treatment with laver extract may protect UVB-exposed skin cells not only by increasing overall cell proliferation but also by enhancing apoptosis of damaged cells, via activating JNK and ERK signaling pathways, in which modulation of the content and redox status of glutathione may take significant parts. PMID:25463682

  13. Protective effect of 3,4-dihydroxybenzoic acid isolated from Cladophora wrightiana Harvey against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes.

    PubMed

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Hyun, Chang Lim; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2014-03-01

    The aim of the present study was to elucidate the protective properties of 3,4-dihydroxybenzoic acid (DBA) isolated from Cladophora wrightiana Harvey (a green alga) against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. DBA exhibited scavenging actions against the 1,1-diphenyl-2-picrylhydrazyl radical, the superoxide anion, and the hydroxyl radical. Furthermore, DBA decreased the levels of intracellular reactive oxygen species generated by hydrogen peroxide or UVB treatment of the cells. DBA also decreased the UVB-augmented levels of phospho-histone H2A.X and the extent of comet tail formation, which are both indications of DNA damage. In addition, the compound safeguarded keratinocytes from UVB-induced injury by reversing the production of apoptotic bodies, overturning the disruption of mitochondrial membrane potential, increasing the expression of the anti-apoptotic protein, B-cell lymphoma 2, and decreasing the expression of the pro-apoptotic proteins, Bcl-2-associated X and cleaved caspase-3. Taken together, these results demonstrate that DBA isolated from a green alga protects human keratinocytes against UVB-induced oxidative stress and apoptosis. PMID:24414942

  14. Basic Red 51, a permitted semi-permanent hair dye, is cytotoxic to human skin cells: Studies in monolayer and 3D skin model using human keratinocytes (HaCaT).

    PubMed

    Zanoni, Thalita B; Tiago, Manoela; Faião-Flores, Fernanda; de Moraes Barros, Silvia B; Bast, Aalt; Hageman, Geja; de Oliveira, Danielle Palma; Maria-Engler, Silvya S

    2014-06-01

    The use of hair dyes is closely associated with the increase of cancer, inflammation and other skin disorders. The recognition that human skin is not an impermeable barrier indicates that there is the possibility of human systemic exposure. The carcinogenic potential of hair dye ingredients has attracted the attention of toxicologists for many decades, mainly due to the fact that some ingredients belong to the large chemical family of aromatic amines. Herein, we investigated the cytotoxicity of Basic Red 51 (BR51) in immortalized human keratinocytes (HaCaT). BR51 is a temporary hair dye that belongs to the azo group (NN); the cleavage of this bond may result in the release of toxic aromatic amines. The half maximal effective concentration (EC50) in HaCaT cells is 13μg/mL. BR51 induced a significant decrease on expression of p21 in a dose dependent manner. p53 was not affected, whereas BR51 decreased procaspase 8 and cleaved procaspase 9. These results proved that caspase 3 is fully involved in BR51-induced apoptosis. The dye was also able to stop this cell cycle on G2 in sub-toxic doses. Moreover, we reconstructed a 3D artificial epidermis using HaCaT cells; using this model, we observed that BR51 induced cell injury and cells were undergoing apoptosis, considering the fragmented nuclei. Subsequently, BR51 induced reactive oxygen species (ROS) leading to an increase on the levels of 8-oxo-dG. In conclusion, we provide strong evidence that consumer and/or professional exposure to BR51 poses risk to human health. PMID:24657526

  15. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    PubMed

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. PMID:26590114

  16. Human relevance of an in vitro gene signature in HaCaT for skin sensitization.

    PubMed

    van der Veen, Jochem W; Hodemaekers, Henny; Reus, Astrid A; Maas, Wilfred J M; van Loveren, Henk; Ezendam, Janine

    2015-02-01

    The skin sensitizing potential of chemicals is mainly assessed using animal methods, such as the murine local lymph node assay. Recently, an in vitro assay based on a gene expression signature in the HaCaT keratinocyte cell line was proposed as an alternative to these animal methods. Here, the human relevance of this gene signature is assessed through exposure of freshly isolated human skin to the chemical allergens dinitrochlorobenzene (DNCB) and diphenylcyclopropenone (DCP). In human skin, the gene signature shows similar direction of regulation as was previously observed in vitro, suggesting that the molecular processes that drive expression of these genes are similar between the HaCaT cell line and freshly isolated skin, providing evidence for the human relevance of the gene signature. PMID:25236440

  17. Modulation of keratin 1, 10 and involucrin expression as part of the complex response of the human keratinocyte cell line HaCaT to ultraviolet radiation

    PubMed Central

    Moravcová, Martina; Libra, Antonín; Dvořáková, Jana; Víšková, Alena; Muthný, Tomáš; Velebný, Vladimír

    2013-01-01

    Skin exposure to ultraviolet (UV) light evokes a complex stress response in keratinocytes. Keratin filament organization provides structural stability and mechanical integrity of keratinocytes. Involucrin is a transglutaminase substrate protein contributing to the formation of insoluble cornified envelopes. However, a more complex role for keratins and involucrin has been proposed, including the regulation of cell stress response. The aim was to evaluate modulations of keratin 1, 10 and involucrin expression in HaCaT in the light of the complex response of these cells to UV-B radiation, including effects on c-Jun and matrix metalloproteinase 1 (MMP-1) gene expression and production of interleukin (IL) 6 and 8. A UV-B (300±5 nm) dose of 10 mJ/cm2 was selected since this dose resulted in a partial decrease in cell viability in contrast to higher UV-B doses, which induced complete cell death 48 h after treatment. The UV-B radiation induced significant expression of keratin 1 and 10 and decreased expression of involucrin. This was accompanied by increased expression of c-Jun and MMP-1 and IL-6 and IL-8 production. The data suggest that the expression of keratin 1, 10 and involucrin is modulated in HaCaT keratinocytes as a part of the complex stress response to UV radiation. PMID:24678259

  18. Role of HuR and p38MAPK in ultraviolet B-induced post-transcriptional regulation of COX-2 expression in the human keratinocyte cell line HaCaT.

    PubMed

    Fernau, Niklas S; Fugmann, Dominik; Leyendecker, Martin; Reimann, Kerstin; Grether-Beck, Susanne; Galban, Stefanie; Ale-Agha, Niloofar; Krutmann, Jean; Klotz, Lars-Oliver

    2010-02-01

    COX-2 (cyclooxygenase-2) is a pivotal player in inflammatory processes, and ultraviolet radiation is a known stimulus for COX-2 expression in skin cells. Here, an induction of COX-2 expression in HaCaT human keratinocytes was observed only upon exposure of cells to UVB (280-320 nm) but not to UVA radiation (320-400 nm), as demonstrated by reverse transcription-PCR and Western blotting. Prostaglandin E(2) levels were elevated in cell culture supernatants of HaCaT cells exposed to UVB. COX-2 mRNA stability was dramatically increased by UVB irradiation. Both the stabilization of COX-2 mRNA and the enhancement of COX-2 steady-state mRNA and protein levels caused by UVB were prevented both by inhibition and small interfering RNA-induced depletion of p38(MAPK), a kinase strongly activated upon exposure to UVB, suggesting p38(MAPK)-dependent mRNA stabilization as a mechanism of UVB-induced COX-2 expression. A dramatic decrease in COX-2 expression induced by UVB was elicited by small interfering RNA-based depletion of a stress-responsive mRNA stabilizing protein regulated by p38(MAPK), i.e. HuR; UVB-induced elevation of COX-2 mRNA and protein levels coincided with an accumulation of HuR in the cytoplasm and was attenuated in cells depleted of HuR. Moreover, UVB-induced generation of prostaglandin E(2) by HaCaT cells was blunted by HuR depletion, suggesting that stress kinases (such as p38(MAPK)) as well as HuR are excellent targets for approaches aiming at interfering with induction of COX-2 expression by UVB. PMID:19917608

  19. Role of HuR and p38MAPK in Ultraviolet B-induced Post-transcriptional Regulation of COX-2 Expression in the Human Keratinocyte Cell Line HaCaT*

    PubMed Central

    Fernau, Niklas S.; Fugmann, Dominik; Leyendecker, Martin; Reimann, Kerstin; Grether-Beck, Susanne; Galban, Stefanie; Ale-Agha, Niloofar; Krutmann, Jean; Klotz, Lars-Oliver

    2010-01-01

    COX-2 (cyclooxygenase-2) is a pivotal player in inflammatory processes, and ultraviolet radiation is a known stimulus for COX-2 expression in skin cells. Here, an induction of COX-2 expression in HaCaT human keratinocytes was observed only upon exposure of cells to UVB (280–320 nm) but not to UVA radiation (320–400 nm), as demonstrated by reverse transcription-PCR and Western blotting. Prostaglandin E2 levels were elevated in cell culture supernatants of HaCaT cells exposed to UVB. COX-2 mRNA stability was dramatically increased by UVB irradiation. Both the stabilization of COX-2 mRNA and the enhancement of COX-2 steady-state mRNA and protein levels caused by UVB were prevented both by inhibition and small interfering RNA-induced depletion of p38MAPK, a kinase strongly activated upon exposure to UVB, suggesting p38MAPK-dependent mRNA stabilization as a mechanism of UVB-induced COX-2 expression. A dramatic decrease in COX-2 expression induced by UVB was elicited by small interfering RNA-based depletion of a stress-responsive mRNA stabilizing protein regulated by p38MAPK, i.e. HuR; UVB-induced elevation of COX-2 mRNA and protein levels coincided with an accumulation of HuR in the cytoplasm and was attenuated in cells depleted of HuR. Moreover, UVB-induced generation of prostaglandin E2 by HaCaT cells was blunted by HuR depletion, suggesting that stress kinases (such as p38MAPK) as well as HuR are excellent targets for approaches aiming at interfering with induction of COX-2 expression by UVB. PMID:19917608

  20. Association of Chromosomal Alterations with Arsenite-Induced Tumorigenicity of Human HaCaT Keratinocytes in Nude Mice

    PubMed Central

    Chien, Chia-Wen; Chiang, Ming-Chang; Ho, I-Ching; Lee, Te-Chang

    2004-01-01

    Inorganic arsenic is a well-documented human carcinogen. Chronic low-dose exposure to inorganic arsenic is associated with an increased incidence of a variety of cancers, including skin, lung, bladder, and liver cancer. Because genetic alterations often occur during cancer development, the objective of this study was to explore what types of genetic alterations were induced by chronic exposure of human HaCaT cells to arsenic. After 20 passages in the presence of inorganic trivalent arsenite at concentrations of 0.5 or 1 μM, HaCaT cells had higher intracellular levels of glutathione, became more resistance to arsenite, and showed an increased frequency of micronuclei. Furthermore, the previously nontumorigenic HaCaT cells became tumorigenic, as shown by subcutaneous injection into Balb/c nude mice. Cell lines derived from the tumors formed by injection of arsenite-exposed HaCaT cells into nude mice expressed higher levels of keratin 6, a proliferation marker of keratinocytes, than did parental HaCaT cells, whereas the expression of keratins 5, 8, and 10 was significantly decreased. Comparative genomic hybridization demonstrated chromosomal alterations in the 11 cell lines derived from these tumors; all 11 showed significant loss of chromosome 9q, and seven showed significant gain of chromosome 4q. The present results show that long-term exposure to low doses of arsenite transformed nontumorigenic human keratinocytes to cells that were tumorigenic in nude mice and that chromosomal alterations were observed in all cell lines established from the tumors. PMID:15579417

  1. Expression of VEGFR-2 on HaCaT cells is regulated by VEGF and plays an active role in mediating VEGF induced effects

    SciTech Connect

    Yang Xiaohong; Man Xiaoyong; Cai Suiqing; Yao Yonggang; Bu Zhangyu; Zheng Min . E-mail: minz@zju.edu.cn

    2006-10-13

    Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 play important roles in mitogenesis and chemotaxis of endothelial cells. In normal human skin, VEGF is expressed and secreted by epidermal keratinocytes. Emerging data suggest that keratinocyte-derived VEGF targets other cell types besides the dermal endothelial cells. We have recently showed that keratinocytes from human normal skin expressed all five known VEGF receptors and co-receptors (neuropilin 1 and 2). To define the functional significance of VEGFR-2 in epidermis, we examined its role in a keratinocyte cell line, HaCaT cells, in response to VEGF treatment. Expression of VEGFR-2 on HaCaT cells was confirmed at both RNA and protein levels and was regulated by VEGF{sub 165} treatment. Treatment of HaCaT cells with VEGF{sub 165} induced tyrosine-autophosphorylation of VEGFR-2 and phosphorylation of PLC-{gamma} and p44/42 MAPK in a time-dependent manner. Preincubation with a neutralizing antibody for VEGFR-2 (MAB3571) completely abrogated these phosphorylation effects. Furthermore, VEGF{sub 165} stimulated proliferation and migration of HaCaT cells, and this effect was significantly blocked by a pretreatment with MAB3571. Neutralizing VEGFR-2 in HaCaT cells increased cell adhesion during culture. Our results suggest that VEGFR-2 expressed on HaCaT cells plays a crucial role in VEGF-mediated regulation of cell activity.

  2. Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes.

    PubMed

    Li, Keyou; Yang, Wenhua; Li, Zhe; Jia, Wangwang; Li, Jiazhou; Zhang, Pengfei; Xiao, Tiancun

    2016-05-01

    Psoriasis is a chronic skin disease that affects approximately 2% of the world's population. Conventional therapeutic approaches are not effective or necessarily safe for treating symptoms due to the serious side effects and resistance to currently prescribed drugs. Traditionally, in oriental medicine, apricot seed (Semen Armeniacae amarum) is used to treat skin diseases. However, the underlying mechanism of action has not been systematically elucidated. In the present study, the anti-proliferative effect of bitter apricot essential oil (BAEO) on cultured HaCaT cells was evaluated and the mechanism of action investigated. BAEO was isolated by hydrodistillation, and gas chromatography-mass spectrometry (GC-MS) analysis identified benzaldehyde (75.35%), benzoic acid (6.21%) and mandelonitrile (5.38%). HaCaT cell growth, measured by sulforhodamine B assay (SRB), was inhibited by BAEO with an IC50 value of 142.45 μg/ml. Apoptosis of HaCaT cells treated with BAEO was detected by cell cycle, flow cytometry, and western blot analyses. These measurements revealed G0/G1 cell cycle arrest, elevated numbers of early and late stage apoptotic cells, and caspases-3/8/9 and PARP activation. Z-VAD-FMK, a broad-spectrum caspase inhibitor, attenuated BAEO-induced apoptosis. Also, increased Bax and decreased Bcl-2 levels suggest that BAEO-induced apoptosis is mediated through both death receptor and mitochondrial pathways. Moreover, reduced Rel/NF-κB levels suggest that BAEO-mediated apoptosis is also associated with inhibition of the NF-κB pathway. These data suggest that BAEO is a naturally occurring material that functions as a potent pro-apoptotic factor for human keratinocytes. Thus, it is a promising candidate to treat psoriasis. PMID:26971222

  3. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes

    PubMed Central

    Chang, Jae Won; Park, Keun Hyung; HWANG, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways. PMID:24078877

  4. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells

    PubMed Central

    Fernando, Pattage Madushan Dilhara Jayatissa; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Hewage, Susara Ruwan Kumara Madduma; Chae, Sung Wook; Hyun, Jin Won

    2016-01-01

    This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases. PMID:26759705

  5. Identification of cytoprotective constituents of the flower buds of Tussilago farfara against glucose oxidase-induced oxidative stress in mouse fibroblast NIH3T3 cells and human keratinocyte HaCaT cells.

    PubMed

    Kang, Unwoo; Park, Jiyoung; Han, Ah-Reum; Woo, Mi Hee; Lee, Je-Hyun; Lee, Sang Kook; Chang, Tong-Shin; Woo, Hyun Ae; Seo, Eun Kyoung

    2016-04-01

    A new cytoprotective compound, 1-[(4S)-3,4-dihydro-4-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl]-ethanone (1) was isolated from the flower buds of Tussilago farfara L. (Compositae), together with eight known compounds, 3,4-dicaffeoyl isoquinic acid (2), trans-cinnamic acid (3), 4-hydroxyacetophenone (4), 4,5-dicaffeoylquinic acid methyl ester (5), 3,5-dicaffeoylquinic acid methyl ester (6), 4-hydroxybenzoic acid (7), isoquercetrin (8), and ligucyperonol (9). Compounds 2-4 were found in this plant for the first time. The isolates 1-9, were tested for their cytoprotective activities against glucose oxidase-induced oxidative stress in mouse fibroblast NIH3T3 cells and human keratinocyte HaCaT cells. Among them, 1 and 3 showed significant cytoprotective activities as determined by MTT assay and lactate dehydrogenase leakage, indicating their possibility as the potent cytoprotective agents. The structure of 1 was determined by spectroscopic data analysis including 1D- and 2D-NMR experiments, and its absolute configuration was elucidated by a circular dichroism. PMID:26983826

  6. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells.

    PubMed

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-08-01

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue(®) and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm(2)) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm(2)). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10(-4) M (MTT assay), 3.8 × 10(-5) M (AlamarBlue(®) assay), and 7.6 × 10(-4) M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure. PMID:26262634

  7. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    PubMed Central

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay), 3.8 × 10−5 M (AlamarBlue® assay), and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure. PMID:26262634

  8. Youngiasides A and C Isolated from Youngia denticulatum Inhibit UVB-Induced MMP Expression and Promote Type I Procollagen Production via Repression of MAPK/AP-1/NF-κB and Activation of AMPK/Nrf2 in HaCaT Cells and Human Dermal Fibroblasts.

    PubMed

    Kim, Myungsuk; Park, Young Gyun; Lee, Hee-Ju; Lim, Sue Ji; Nho, Chu Won

    2015-06-10

    This study investigated the effects of youngiaside A (YA), youngiaside C (YC), and Youngia denticulatum extract (YDE) on extrinsic aging and assessed its molecular mechanisms in UVB-irradiated HaCaT keratinocytes and human dermal fibroblasts (HDFs). The results showed that YA, YC, and YDE decreased matrix metalloproteinase (MMP) expression and production in HaCaT cell and HDFs and increased collagen expression and production in HDFs. In addition, YA, YC, and YDE significantly increased antioxidant enzyme expression, thereby down-regulating UVB-induced reactive oxygen species (ROS) production and ROS-induced mitogen-activated protein kinase (MAPK) and activator protein-1 (AP-1) signaling in HaCaT cells. Furthermore, YA, YC, and YDE reduced phosphorylation of IκBα and IKKα/β, blocked nuclear factor-κB (NF-κB) p65 nuclear translocation, and strongly suppressed pro-inflammatory mediators. Finally, YA, YC, and YDE augmented UVB-induced adenosine monophosphate activated protein kinase (AMPK) phosphorylation and YA and YC did not inhibit MMP-1 production in AMPK inhibitor or nuclear factor-erythroid 2-related factor-2 (Nrf2) siRNA-treated HaCaT cells. The results suggest that these compounds could be potential therapeutic agents for prevention and treatment of skin photoaging. PMID:25994852

  9. Protective Effect of Garlic on Cellular Senescence in UVB-Exposed HaCaT Human Keratinocytes.

    PubMed

    Kim, Hye Kyung

    2016-01-01

    Ultraviolet (UV) irradiation generates reactive oxygen species (ROS) in the cells, which induces the cellular senescence and photoaging. The present study investigated the protective effects of garlic on photo-damage and cellular senescence in UVB-exposed human keratinocytes, HaCaT cells. An in vitro cell free system was used to examine the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and nitric oxide (NO). The effect of garlic extract on ROS formation, MMP-1 protein and mRNA expressions, cytokines such as interleukin (IL)-1β and IL-6, senescence associated-β-galactosidase (SA-β-gal) activity, and silent information regulator T1 (SIRT1) activity were determined in UVB-irradiated HaCaT cells. Garlic exhibited strong DPPH radical and NO scavenging activity in cell free system exhibiting IC50 values of 2.50 mg/mL and 4.38 mg/mL, respectively. Garlic pretreatment attenuated the production of UVB-induced intracellular ROS. MMP-1 level, which has been known to be induced by ROS, was dramatically elevated by UVB irradiation, and UVB-induced MMP-1 mRNA and protein expressions were significantly reduced by garlic treatment (50 µg/mL) comparable to those of UV-unexposed control cells. UV-induced pro-inflammatory cytokine productions (IL-6 and IL-1β) were significantly inhibited by pretreatment with garlic in a dose-dependent manner. SA-β-gal activity, a classical biomarker of cellular senescence, and SIRT1 activity, which has attracted attention as an anti-aging factor in recent years, were ameliorated by garlic treatment in UV-irradiated HaCaT cells. The present study provides the first evidence of garlic inhibiting UVB-induced photoaging as a result of augmentation of cellular senescence in HaCaT human keratinocytes. PMID:27483310

  10. Protective Effect of Garlic on Cellular Senescence in UVB-Exposed HaCaT Human Keratinocytes

    PubMed Central

    Kim, Hye Kyung

    2016-01-01

    Ultraviolet (UV) irradiation generates reactive oxygen species (ROS) in the cells, which induces the cellular senescence and photoaging. The present study investigated the protective effects of garlic on photo-damage and cellular senescence in UVB-exposed human keratinocytes, HaCaT cells. An in vitro cell free system was used to examine the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and nitric oxide (NO). The effect of garlic extract on ROS formation, MMP-1 protein and mRNA expressions, cytokines such as interleukin (IL)-1β and IL-6, senescence associated-β-galactosidase (SA-β-gal) activity, and silent information regulator T1 (SIRT1) activity were determined in UVB-irradiated HaCaT cells. Garlic exhibited strong DPPH radical and NO scavenging activity in cell free system exhibiting IC50 values of 2.50 mg/mL and 4.38 mg/mL, respectively. Garlic pretreatment attenuated the production of UVB-induced intracellular ROS. MMP-1 level, which has been known to be induced by ROS, was dramatically elevated by UVB irradiation, and UVB-induced MMP-1 mRNA and protein expressions were significantly reduced by garlic treatment (50 µg/mL) comparable to those of UV-unexposed control cells. UV-induced pro-inflammatory cytokine productions (IL-6 and IL-1β) were significantly inhibited by pretreatment with garlic in a dose-dependent manner. SA-β-gal activity, a classical biomarker of cellular senescence, and SIRT1 activity, which has attracted attention as an anti-aging factor in recent years, were ameliorated by garlic treatment in UV-irradiated HaCaT cells. The present study provides the first evidence of garlic inhibiting UVB-induced photoaging as a result of augmentation of cellular senescence in HaCaT human keratinocytes. PMID:27483310

  11. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra. PMID:25779384

  12. Ethanol Extract of Cirsium japonicum var. ussuriense Kitamura Exhibits the Activation of Nuclear Factor Erythroid 2-Related Factor 2-dependent Antioxidant Response Element and Protects Human Keratinocyte HaCaT Cells Against Oxidative DNA Damage

    PubMed Central

    Yoo, Ok-Kyung; Choi, Bu Young; Park, Jin-Oh; Lee, Ji-Won; Park, Byoung-Kwon; Joo, Chul Gue; Heo, Hyo-Jung; Keum, Young-Sam

    2016-01-01

    Keratinocytes are constantly exposed to extracellular insults, such as ultraviolet B, toxic chemicals and mechanical stress, all of which can facilitate the aging of keratinocytes via the generation of intracellular reactive oxygen species (ROS). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a critical role in protecting keratinocytes against oxidants and xenobiotics by binding to the antioxidant response element (ARE), a cis-acting element existing in the promoter of most phase II cytoprotective genes. In the present study, we have attempted to find novel ethanol extract(s) of indigenous plants of Jeju island, Korea that can activate the Nrf2/ARE-dependent gene expression in human keratinocyte HaCaT cells. As a result, we identified that ethanol extract of Cirsium japonicum var. ussuriense Kitamura (ECJUK) elicited strong stimulatory effect on the ARE-dependent gene expression. Supporting this observation, we found that ECJUK induced the expression of Nrf2, hemoxygenase-1, and NAD(P)H:quinone oxidoreductase-1 and this event was correlated with Akt1 phosphorylation. We also found that ECJUK increased the intracellular reduced glutathione level and suppressed 12-O-tetradecanoylphorbol acetate-induced 8-hydroxyguanosine formation without affecting the overall viability. Collectively, our results provide evidence that ECJUK can protect against oxidative stress-mediated damages through the activation of Nrf2/ARE-dependent phase II cytoprotective gene expression. PMID:27051652

  13. Metabolic activation of pyrrolizidine alkaloids leading to phototoxicity and photogenotoxicity in human HaCaT keratinocytes.

    PubMed

    Wang, Chia-Chi; Xia, Qingsu; Li, Meng; Wang, Shuguang; Zhao, Yuewei; Tolleson, William H; Yin, Jun-Jie; Fu, Peter P

    2014-01-01

    Pyrrolizidine alkaloids, produced by a large number of poisonous plants with wide global distribution, are associated with genotoxicity, tumorigenicity, and hepatotoxicity in animals and humans. Mammalian metabolism converts pyrrolizidine alkaloids to reactive pyrrolic metabolites (dehydropyrrolizidine alkaloids) that form covalent protein and DNA adducts. Although a mechanistic understanding is currently unclear, pyrrolizidine alkaloids can cause secondary (hepatogenous) photosensitization and induce skin cancer. In this study, the phototoxicity of monocrotaline, riddelliine, dehydromonocrotaline, dehydroriddelliine, and dehydroretronecine (DHR) in human HaCaT keratinocytes under ultraviolet A (UVA) irradiation was determined. UVA irradiation of HaCaT cells treated with dehydromonocrotaline, dehydroriddelline, and DHR resulted in increased release of lactate dehydrogenase and enhanced photocytotoxicity proportional to the UVA doses. UVA-induced photochemical DNA damage also increased proportionally with dehydromonocrotaline and dehydroriddelline. UVA treatment potentiated the formation of 8-hydroxy-2'-deoxyguanosine DNA adducts induced by dehydromonocrotaline in HaCaT skin keratinocytes. Using electron spin resistance trapping, we found that UVA irradiation of dehydromonocrotaline and dehydroriddelliine generates reactive oxygen species (ROS), including hydroxyl radical, singlet oxygen, and superoxide, and electron transfer reactions, indicating that cytotoxicity and genotoxicity of these compounds could be mediated by ROS. Our results suggest that dehydropyrrolizidine alkaloids formed or delivered to the skin cause pyrrolizidine alkaloid-induced secondary photosensitization and possible skin cancer. PMID:25436474

  14. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways

    PubMed Central

    JING, HUILING; SUN, WENYAN; FAN, JINGHUA; ZHANG, YANMIN; YANG, JIAO; JIA, JINJING; LI, JICHANG; GUO, JIAQI; LUO, SUJU; ZHENG, YAN

    2016-01-01

    Shikonin, which is a major ingredient of the traditional Chinese herb Lithospermum erythrorhizon, possesses various biological functions, including antimicrobial, anti-inflammatory, and antitumor activities. The present study aimed to determine the molecular mechanisms underlying the effects of shikonin on HaCaT cell apoptosis. Treatment with shikonin significantly inhibited the viability of HaCaT cells in a dose- and time-dependent manner, and promoted cell cycle arrest at G0/G1 phase and apoptosis. In addition, shikonin treatment reduced the mitochondrial membrane potential and induced reactive oxygen species generation. The results of a western blot analysis demonstrated that shikonin significantly activated caspase 3 expression, downregulated B-cell lymphoma 2 (Bcl-2) expression, and upregulated Bcl-2-associated X protein and Bcl-2 homologous antagonist killer expression in a dose-dependent manner in HaCaT cells. Furthermore, shikonin decreased extracellular signal-regulated kinase (Erk) and Akt phosphorylation. These results indicated that shikonin may exert its anti-proliferative effects by inducing apoptosis via activation of the mitochondrial signaling pathway and inactivation of the Akt and Erk pathways in HaCaT cells. Therefore, the present study suggested that shikonin may have potential as a component of therapeutic strategies for the treatment of skin diseases. PMID:26935874

  15. Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line.

    PubMed

    Baccarin, Thaisa; Mitjans, Montserrat; Ramos, David; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-01

    There has been an increase in the use of botanicals as skin photoprotective agents. Pomegranate (Punica granatum L.) is well known for its high concentration of polyphenolic compounds and for its antioxidant and anti-inflammatory properties. The aim of this study was to analyze the photoprotection provided by P. granatum seed oil nanoemulsion entrapping the polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in the keratinocyte HaCaT cell line. For this purpose, HaCaT cells were pretreated for 1h with nanoemulsions in a serum-free medium and then irradiated with UVB (90-200 mJ/cm(2)) rays. Fluorescence microscopy analysis provided information about the cellular internalization of the nanodroplets. We also determined the in vitro SPF of the nanoemulsions and evaluated their phototoxicity using the 3T3 Neutral Red Uptake Phototoxicity Test. The nanoemulsions were able to protect the cells' DNA against UVB-induced damage in a concentration dependent manner. Nanodroplets were internalized by the cells but a higher proportion was detected along the cell membrane. The SPF obtained (~25) depended on the concentration of the ethyl acetate fraction and pomegranate seed oil in the nanoemulsion. The photoprotective formulations were classified as non-phototoxic. In conclusion, nanoemulsions entrapping the polyphenol-rich ethyl acetate fraction show potential for use as a sunscreen product. PMID:26406978

  16. PCB153 reduces telomerase activity and telomere length in immortalized human skin keratinocytes (HaCaT) but not in human foreskin keratinocytes (NFK)

    SciTech Connect

    Senthilkumar, P.K.; Robertson, L.W.; Ludewig, G.

    2012-02-15

    Polychlorinated biphenyls (PCBs), ubiquitous environmental pollutants, are characterized by long term-persistence in the environment, bioaccumulation, and biomagnification in the food chain. Exposure to PCBs may cause various diseases, affecting many cellular processes. Deregulation of the telomerase and the telomere complex leads to several biological disorders. We investigated the hypothesis that PCB153 modulates telomerase activity, telomeres and reactive oxygen species resulting in the deregulation of cell growth. Exponentially growing immortal human skin keratinocytes (HaCaT) and normal human foreskin keratinocytes (NFK) were incubated with PCB153 for 48 and 24 days, respectively, and telomerase activity, telomere length, superoxide level, cell growth, and cell cycle distribution were determined. In HaCaT cells exposure to PCB153 significantly reduced telomerase activity, telomere length, cell growth and increased intracellular superoxide levels from day 6 to day 48, suggesting that superoxide may be one of the factors regulating telomerase activity, telomere length and cell growth compared to untreated control cells. Results with NFK cells showed no shortening of telomere length but reduced cell growth and increased superoxide levels in PCB153-treated cells compared to untreated controls. As expected, basal levels of telomerase activity were almost undetectable, which made a quantitative comparison of treated and control groups impossible. The significant down regulation of telomerase activity and reduction of telomere length by PCB153 in HaCaT cells suggest that any cell type with significant telomerase activity, like stem cells, may be at risk of premature telomere shortening with potential adverse health effects for the affected organism. -- Highlights: ► Human immortal (HaCaT) and primary (NFK) keratinocytes were exposed to PCB153. ► PCB153 significantly reduced telomerase activity and telomere length in HaCaT. ► No effect on telomere length and

  17. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  18. Thrombomodulin exerts cytoprotective effect on low-dose UVB-irradiated HaCaT cells

    SciTech Connect

    Iwata, Masahiro; Kawahara, Ko-ichi; Kawabata, Hisashi; Ito, Takashi; Mera, Kentaro; Biswas, Kamal Krishna; Tancharoen, Salunya; Higashi, Yuko; Kikuchi, Kiyoshi; Hashiguchi, Teruto

    2008-12-12

    Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein that performs antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. It is also expressed in epidermal keratinocytes. We found that a physiological dose (10 mJ/cm{sup 2}) of mid-wavelength ultraviolet irradiation (UVB) significantly induced TM expression via the p38mitogen-activated protein kinase (MAPK)/cyclic AMP response element (CRE) signaling pathway in the epidermal keratinocyte cell line HaCaT; this shows that TM regulates the survival of HaCaT cells. SB203580, a p38MAPK inhibitor, significantly decreased TM expression and the viability of cells exposed to UVB. Furthermore, overexpression of TM markedly increased cell viability, and it was abrogated by TM small interfering RNA (siRNA), suggesting that TM may play an important role in exerting cytoprotective effect on epidermal keratinocytes against low-dose UVB.

  19. Up-regulation of keratin 17 expression in human HaCaT keratinocytes by interferon-gamma.

    PubMed

    Bonnekoh, B; Huerkamp, C; Wevers, A; Geisel, J; Sebök, B; Bange, F C; Greenhalgh, D A; Böttger, E C; Krieg, T; Mahrle, G

    1995-01-01

    The immortalized human keratinocyte cell line HaCaT was used to assess the effect of interferon-gamma (IFN-gamma) on expression of keratin K17. Both IFN-gamma and K17 have been implicated in the pathophysiology of psoriasis. Western and quantitative enzyme-linked immunosorbent assay analyses demonstrated increasing induction of K17 protein by 48 h exposure to IFN-gamma at concentrations of 10, 50, and 250 U/ml. At 50 U/ml IFN-gamma, immunohistochemical analysis revealed numerous K17-positive foci, whereas in situ hybridization demonstrated K17 message in the majority of cells. In addition, at low (5 U/ml) concentrations of IFN-gamma, cell proliferation and protein synthesis decreased, as determined by 3H-thymidine labeling and 14C-amino acid uptake. These data suggest that aberrant K17 expression observed in psoriatic lesions may be a consequence of IFN-gamma overexpression, and that the HaCaT cell line may be a useful in vitro model system to elucidate the underlying mechanisms. PMID:7528246

  20. PCB153 reduces Telomerase Activity and Telomere Length in Immortalized Human Skin Kerantinocytes (HaCaT) but not in Human Foreskin Keratinocytes (NFK)

    PubMed Central

    Senthilkumar, P.K.; Robertson, L.W.; Ludewig, G.

    2012-01-01

    Polychlorinated Biphenyls (PCBs), ubiquitous environmental pollutants, are characterized by long term-persistence in the environment, bioaccumulation, and biomagnification in the food chain. Exposure to PCBs may cause various diseases, affecting many cellular processes. Deregulation of the telomerase and the telomere complex leads to several biological disorders. We investigated the hypothesis that PCB153 modulates telomerase activity, telomeres and reactive oxygen species resulting in the deregulation of cell growth. Exponentially growing immortal human skin keratinocytes (HaCaT) and normal human foreskin keratinocytes (NFK) were incubated with PCB153 for 48 and 24 days, respectively, and telomerase activity, telomere length, superoxide level, cell growth, and cell cycle distribution were determined. In HaCaT cells exposure to PCB153 significantly reduced telomerase activity, telomere length, cell growth and increased intracellular superoxide levels from day 6 to day 48, suggesting that superoxide may be one of the factors regulating telomerase activity, telomere length and cell growth compared to untreated control cells. Results with NFK cells showed no shortening of telomere length but reduced cell growth and increased superoxide levels in PCB153-treated cells compared to untreated controls. As expected, basal levels of telomerase activity were almost undetectable, which made a quantitative comparison of treated and control groups impossible. The significant down regulation of telomerase activity and reduction of telomere length by PCB153 in HaCaT cells suggest that any cell type with significant telomerase activity, like stem cells, may be at risk of premature telomere shortening with potential adverse health effects for the affected organism. PMID:22210444

  1. Oxidative Stress Mediates Chemical Hypoxia- Induced Injury and Inflammation by Activating NF-κb-COX-2 Pathway in HaCaT Cells

    PubMed Central

    Yang, Chuntao; Ling, Hongzhong; Zhang, Meifen; Yang, Zhanli; Wang, Xiuyu; Zeng, Fanqin; Wang, Chuhuai; Feng, Jianqiang

    2011-01-01

    Hypoxia of skin is an important physiopathological process in many diseases, such as pressure ulcer, diabetic ulcer, and varicose ulcer. Although cellular injury and inflammation have been involved in hypoxia-induced dermatic injury, the underlying mechanisms remain largely unknown. This study was conducted to investigate the effects of cobalt chloride (CoCl2), a hypoxia-mimicking agent, on human skin keratinocytes (HaCaT cells) and to explore the possible molecular mechanisms. Exposure of HaCaT cells to CoCl2 reduced cell viability and caused overproduction of reactive oxygen species (ROS) and oversecretion of interleukin-6 (IL-6) and interleukin-8 (IL-8). Importantly, CoCl2 exposure elicited overexpression of cyclooxygenase-2 (COX-2) and phosphorylation of nuclear factor-kappa B (NF-κB) p65 subunit. Inhibition of COX-2 by NS-398, a selective inhibitor of COX-2, significantly repressed the cytotoxicity, as well as secretion of IL-6 and IL-8 induced by CoCl2. Inhibition of NF-κB by PDTC (a selective inhibitor of NF-κB) or genetic silencing of p65 by RNAi (Si-p65), attenuated not only the cytotoxicity and secretion of IL-6 and IL-8, but also overexpression of COX- 2 in CoCl2-treated HaCaT cells. Neutralizing anti-IL-6 or anti-IL-8 antibody statistically alleviated CoCl2-induced cytotoxicity in HaCaT cells. N-acetyl-L-cysteine (NAC), a well characterized ROS scavenger, obviously suppressed CoCl2-induced cytotoxicity in HaCaT cells, as well as secretion of IL-6 and IL-8. Additionally, NAC also repressed overexpression of COX-2 and phosphorylation of NF-κB p65 subunit induced by CoCl2 in HaCaT cells. In conclusion, our results demonstrated that oxidative stress mediates chemical hypoxia-induced injury and inflammatory response through activation of NF-κB–COX-2 pathway in HaCaT cells. PMID:21533553

  2. Synergistic augmentation of ATP-induced interleukin-6 production by arsenite in HaCaT cells.

    PubMed

    Sumi, Daigo; Asao, Masashi; Okada, Hideta; Yogi, Kuniko; Miyataka, Hideki; Himeno, Seiichiro

    2016-06-01

    Chronic arsenic exposure causes cutaneous diseases such as hyperkeratosis and skin cancer. However, little information has been available regarding the molecular mechanisms underlying these symptoms. Because extracellular ATP and interleukin-6 (IL-6) are involved in pathological aspects of cutaneous diseases, we examined whether sodium arsenite (As(III)) affects ATP-induced IL-6 production in human epidermal keratinocyte HaCaT cells. The results showed that the addition of As(III) into the medium of HaCaT cells dose dependently increased the production of IL-6 induced by extracellular ATP, although As(III) alone had no effect on IL-6 production. To elucidate the mechanism of the synergistic effect of As(III) on IL-6 production by extracellular ATP, we next examined the phosphorylation of p38, ERK and epidermal growth factor receptor (EGFR), since we found that these signaling molecules were stimulated by exposure to extracellular ATP. The results indicated that ATP-induced phosphorylation of p38, ERK and EGFR was synergistically enhanced by co-exposure to As(III). To clarify the mechanisms underlying the enhanced phosphorylation of p38, ERK and EGFR by As(III), we explored two possible mechanisms: the inhibition of extracellular ATP degradation and the inhibition of protein tyrosine phosphatases (PTPs) activity by As(III). The degradation of extracellular ATP was not changed by As(III), whereas the activity of PTPs was significantly inhibited by As(III). Our results suggest that As(III) augments ATP-induced IL-6 production in HaCaT cells through enhanced phosphorylation of the EGFR and p38/ERK pathways, which is associated with the inhibition of PTPs activity. PMID:26104857

  3. Anti-inflammatory effects of tectroside on UVB-induced HaCaT cells.

    PubMed

    Kim, Sung-Bae; Kang, Ok-Hwa; Joung, Dae-Ki; Mun, Su-Hyun; Seo, Yun-Soo; Cha, Mi-Ran; Ryu, Shi-Yong; Shin, Dong-Won; Kwon, Dong-Yeul

    2013-06-01

    Ultraviolet B (UVB) irradiation causes skin damage and inflammation by inducing the secretion of various cytokines, which are immune regulators produced by cells. To prevent skin inflammation, keratinocytes that have been irreversibly damaged by UVB must be eliminated through apoptosis. Ixeris dentata (I. dentata) (family Asteraceae) is a perennial medicinal herb indigenous to Korea. It is used in Korea, China and Japan to treat indigestion, pneumonia, diabetes, hepatitis, contusions and tumors. Guaiane-type sesquiterpene lactones were isolated from the whole extract of I. dentata. This led to the isolation of the anti-inflammatory sesquiterpene lactone compound tectroside (TES), which was tested on a human keratinocyte cell line. To determine the anti-inflammatory effects of TES, we examined its influence on UVB-induced pro-inflammatory cytokine production in human keratinocytes (HaCaT cells) by observing these cells in the presence or absence of TES. In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction and western blot analysis to evaluate the activation of mitogen-activated protein kinases (MAPKs). TES inhibited UVB-induced production of the pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in a dose-dependent manner. In addition, TES inhibited the expression of cyclooxygenase (COX)-2 and the phosphorylation of c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) MAPKs, suggesting that it inhibits the secretion of the pro-inflammatory cytokines IL-6 and IL-8 and COX-2 expression by blocking MAPK phosphorylation. These results suggest that TES can potentially protect against UVB-induced skin inflammation. PMID:23588209

  4. Protective Effects of Minor Components of Curcuminoids on Hydrogen Peroxide-Treated Human HaCaT Keratinocytes.

    PubMed

    Liu, Yuh-Hwa; Lin, Yin-Shiou; Huang, Yu-Wei; Fang, Sheng-Uei; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-05-11

    Hydrogen peroxide, one of the reactive oxygen species (ROS), can cause intracellular oxidative stress associated with skin aging and/or photoaging. Curcumin, a polyphenol in turmeric, has been reported to exhibit biological activity. In this study, five naturally occurring curcuminoids [curcumin, demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), monohydroxy-DMC, and monohydroxy-BDMC] were used to investigate their protective roles against hydrogen peroxide-induced oxidative stress in the immortalized human keratinocyte cell lines (HaCaT cells). These five curcuminoids at 10 μM, but not at 5 μM, were shown to exhibit cytotoxicities toward HaCaT keratinocytes. Therefore, a 5 μM concentration of the five curcuminoids was selected for further investigations. Cells were pretreated with or without curcuminoids for 2.5 h before 24-h hydrogen peroxide (150 μM) treatments. Pretreatments with the minor components monohydroxy-DMC or monohydroxy-BDMC, but not curcumin, DMC, and BDMC, showed protective activity, elevating cell viability compared to cells with direct hydrogen peroxide treatments. Pretreatments with monohydroxy-DMC and monohydroxy-BDMC showed the best protective effects, reducing apoptotic cell populations and intracellular ROS, as demonstrated by flow cytometry, as well as reducing the changes of the mitochondrial membrane potential compared to cells with direct hydrogen peroxide treatments. The pretreatments with monohydroxy-DMC and monohydroxy-BDMC reduced c-jun and c-fos mRNA expression and p53 tumor suppressor protein expression and increased HO-1 protein expression and glutathione peroxidase (GPx) activity, respectively, compared to cells with direct hydrogen peroxide treatments. The five curcuminoids exhibited similar hydrogen peroxide-scavenging activity in vitro. It was proposed that monohydroxy-DMC and monohydroxy-BDMC could induce antioxidant defense systems better than curcumin, DMC, or BDMC could against hydrogen peroxide-induced oxidative

  5. Loss of CAR promotes migration and proliferation of HaCaT cells, and accelerates wound healing in rats via Src-p38 MAPK pathway

    PubMed Central

    Su, Linlin; Fu, Lanqing; Li, Xiaodong; Zhang, Yue; Li, Zhenzhen; Wu, Xue; Li, Yan; Bai, Xiaozhi; Hu, Dahai

    2016-01-01

    The coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule mostly localized to cell-cell contacts in epithelial and endothelial cells. CAR is known to regulate tumor progression, however, its physiological role in keratinocyte migration and proliferation, two essential steps in re-epithelialization during wound healing, has less been investigated. Here we showed that CAR was predominantly expressed in the epidermis of human skin, CAR knockdown by RNAi significantly accelerated HaCaT cell migration and proliferation. In addition, knockdown of CAR in vitro increased p-Src, p-p38, and p-JNK protein levels; however, Src inhibitor PP2 prevented the increase of p-Src and p-p38 induced by CAR RNAi, but not p-JNK, and decelerated cell migration and proliferation. More intriguingly, in vivo CAR RNAi on the skin area surrounding the wounds on rat back visually accelerated wound healing and re-epithelialization process, while treatment with PP2 or p38 inhibitor SB203580 obviously inhibited these effects. By contrast, overexpressing CAR in HaCaT cells significantly decelerated cell migration and proliferation. Above results demonstrate that suppression of CAR could accelerate HaCaT cell migration and proliferation, and promote wound healing in rat skin, probably via Src-p38 MAPK pathway. CAR thus might serve as a novel therapeutic target for facilitating wound healing. PMID:26804208

  6. MicroRNA-184 Promotes Proliferation and Inhibits Apoptosis in HaCaT Cells: An In Vitro Study.

    PubMed

    Bi, Xiaodong; Cao, Yu; Chen, Rixin; Liu, Chengyin; Chen, Jinghong; Min, Dongfang

    2016-01-01

    BACKGROUND This study aimed to investigate the role of miR-184 in the proliferation and apoptosis of keratinocyte (HaCaT cells). MATERIAL AND METHODS HaCaT cells were cultured in a growth medium. The miR-184 was transfected with siRNA, then cell viability and apoptosis were assayed by MTT and flow cytometry, respectively. The colony-forming efficacy of HaCaT cells were detected as well. mRNA expressions of basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-β1 were measured with RT-PCR. The expressions of apoptosis-related proteins caspase-3 and Bcl-x in HaCaT cells were determined by Western blot. RESULTS After miR-184 was transfected with siRNA, cell viability and colony forming ability decreased significantly, and apoptosis was significantly increased. The expressions of growth factors TGF-β1 and bFGF mRNAs, as well as apoptosis-related proteins Bcl-x, in HaCaT cells declined significantly after miR-184 was transfected with siRNA. In addition, the expression of pro-apoptotic protein caspase-3 increased significantly. CONCLUSIONS Our results suggest distinct roles of miR-184 during the growth, proliferation, and apoptosis of keratinocytes. PMID:27571235

  7. ER signaling is activated to protect human HaCaT keratinocytes from ER stress induced by environmental doses of UVB

    SciTech Connect

    Mera, Kentaro; Kawahara, Ko-ichi; Tada, Ko-ichi; Kawai, Kazuhiro; Hashiguchi, Teruto; Maruyama, Ikuro; Kanekura, Takuro

    2010-06-25

    Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-L{alpha}, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10 mJ/cm{sup 2} irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm{sup 2} UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.

  8. Chromium III histidinate exposure modulates antioxidant gene expression in HaCaT human keratinocytes exposed to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the toxicity of hexavalent chromium is well established, trivalent Cr (Cr(III)) is an essential nutrient involved in insulin and glucose homeostasis. Recently, antioxidant effects of chromium (III) histidinate (Cr(III)His) were reported in HaCaT human keratinocytes exposed to oxidative stress...

  9. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes.

    PubMed

    Mishra, Sakshi; Tewari, Prachi; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2016-11-01

    Among food contaminants, mycotoxins are toxic to both human and animal health. Our prior studies suggest that Deoxynivalenol (DON), a mycotoxin, behaves as a tumor promoter by inducing edema, hyperplasia, ODC activity and activation of MAPK's in mouse skin. In this study, topical application of DON, 336 and 672 nmol significantly enhanced ROS levels, DNA damage and apoptosis with concomitant downregulation of Ki-67, cyclin D, cyclin E, cyclin A and cyclin-dependent kinases (CDK4 and CDK2) thereby resulting in tumor initiation in mouse skin. Further, the elucidation of molecular mechanisms of tumor initiation by DON (0.42-3.37 nmol/ml) in HaCaT keratinocytes, revealed (i) enhanced ROS generation with cell cycle phase arrest in G0/G1 phase, (ii) increase in levels of 8-OxoG (6-24 hr) and γH2AX protein, (iii) significant enhancement in oxidative stress marker enzymes LPO, GSH, GR with concomitant decrease in antioxidant enzymes catalase, GPx, GST, SOD and mitochondrial membrane potential after DON (1.68 nmol) treatment, (iv) suppression of Nrf2 translocation to nucleus, enhanced phosphorylation with subsequent activation ERK1/2, p38 and JNK MAPK's following DON (1.68 nmol) treatment, (v) overexpression of c-jun, c-fos proteins, upregulation of Bax along with downregulation of Bcl-2 proteins, (vi) increase in cytochrome-c, caspase-9, caspase-3 and poly ADP ribose polymerase levels leads to apoptosis. Pretreatment of superoxide dismutase, mannitol and ethanol to HaCaT cells resulted in significant reduction in ROS levels and apoptosis indicating the role of superoxide and hydroxyl radicals in DON induced apoptosis as an early event and skin tumor initiation as a late event. PMID:27389473

  10. Glycolic Acid Silences Inflammasome Complex Genes, NLRC4 and ASC, by Inducing DNA Methylation in HaCaT Cells.

    PubMed

    Tang, Sheau-Chung; Yeh, Jih-I; Hung, Sung-Jen; Hsiao, Yu-Ping; Liu, Fu-Tong; Yang, Jen-Hung

    2016-03-01

    AHAs (α-hydroxy acids), including glycolic acid (GA), have been widely used in cosmetic products and superficial chemical peels. Inflammasome complex has been shown to play critical roles in inflammatory pathways in human keratinocytes. However, the anti-inflammatory mechanism of GA is still unknown. The aim of this study is to investigate the relationship between the expression of the inflammasome complex and epigenetic modification to elucidate the molecular mechanism of the anti-inflammatory effect of GA in HaCaT cells. We evaluated NLRP3, NLRC4, AIM2, and ASC inflammasome complex gene expression on real-time polymerase chain reaction (PCR). Methylation changes were detected in these genes following treatment with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) with or without the addition of GA using methylation-specific PCR (MSP). GA inhibited the expressions of these inflammasome complex genes, and the decreases in the expressions of mRNA were reversed by 5-Aza treatment. Methylation was detected in NLRC4 and ASC on MSP, but not in NLRP3 or AIM2. GA decreased NLRC4 and ASC gene expression by increasing not only DNA methyltransferase 3B (DNMT-3B) protein level, but also total DNMT activity. Furthermore, silencing of DNMT-3B (shDNMT-3B) increased the expressions of NLRC4 and ASC. Our data demonstrated that GA treatment induces hypermethylation of promoters of NLRC4 and ASC genes, which may subsequently lead to the hindering of the assembly of the inflammasome complex in HaCaT cells. These results highlight the anti-inflammatory potential of GA-containing cosmetic agents in human skin cells and demonstrate for the first time the role of aberrant hypermethylation in this process. PMID:26784358

  11. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes

    PubMed Central

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Yao, Cheng Wen; Zheng, Jian; Kim, Seong Min; Hyun, Chang Lim; Ahn, Yong Seok; Hyun, Jin Won

    2014-01-01

    We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280–320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation. PMID:24753819

  12. Potential irritation of lysine derivative surfactants by hemolysis and HaCaT cell viability.

    PubMed

    Sanchez, L; Mitjans, M; Infante, M R; Vinardell, M P

    2006-02-01

    Surfactants represent one of the most common constituents in topical pharmaceutical and cosmetic applications or cleansers. Since adverse skin and ocular reactions can be caused by them, it is important to evaluate damaging effects. Amino acid-based surfactants deserve particular attention because of their low toxicity and environmental friendly properties. New lysine derivative surfactants associated with heavy and light counterions were tested. The ocular irritancy was assessed by hemolysis, and photohemolysis was employed to evaluate their phototoxicity. Cytotoxicity on HaCaT cells was determined by neutral red uptake and MTT assay to predict skin irritation. All lysine derivative surfactants were less hemolytic and thus less eye-irritating than the commercial surfactants used as model irritants. No phototoxic effects were found. All surfactants presented cytotoxic effects as demonstrated by decrease of neutral red uptake and reduction of MTT salt, with clear concentration-effect profiles. However, the rates of cytotoxicity on HaCaT for the new surfactants suggested that they were less cytotoxic and then, less skin-irritating than the reference ones; surfactants with heavy counterions were the less cytotoxic. The anionic surfactants investigated in the present work may constitute a promising class of surfactants given their low irritancy potential for pharmaceutical and cosmetic preparations. PMID:16135402

  13. miR-198 Represses the Proliferation of HaCaT Cells by Targeting Cyclin D2

    PubMed Central

    Wang, Jian; Dan, Guorong; Shangguan, Tao; Hao, Han; Tang, Ran; Peng, Kaige; Zhao, Jiqing; Sun, Huiqin; Zou, Zhongmin

    2015-01-01

    Background: MiR-198 has been considered as an inhibitor of cell proliferation, invasion, migration and a promoter of apoptosis in most cancer cells, while its effect on non-cancer cells is poorly understood. Methods: The effect of miR-198 transfection on HaCaT cell proliferation was firstly detected using Cell Count Kit-8 and the cell cycle progression was analyzed by flow cytometry. Using bioinformatics analyses and luciferase assay, a new target of miR-198 was searched and identified. Then, the effect of the new target gene of miR-198 on cell proliferation and cell cycle was also detected. Results: Here we showed that miR-198 directly bound to the 3′-UTR of CCND2 mRNA, which was a key regulator in cell cycle progression. Overexpressed miR-198 repressed CCND2 expression at mRNA and protein levels and subsequently led to cell proliferation inhibition and cell cycle arrest in the G1 phase. Transfection ofSiCCND2 in HaCaT cells showed similar inhibitory effects on cell proliferation and cell cycle progression. Conclusion: In conclusion, we have identified that miR-198 inhibited HaCaT cell proliferation by directly targeting CCND2. PMID:26225959

  14. Anti-inflammatory actions of herbal formula Gyejibokryeong-hwan regulated by inhibiting chemokine production and STAT1 activation in HaCaT cells.

    PubMed

    Jeong, Soo-Jin; Lim, Hye-Sun; Seo, Chang-Seob; Jin, Seong-Eun; Yoo, Sae-Rom; Lee, Nari; Shin, Hyeun-Kyoo

    2015-01-01

    Gyejibokryeong-hwan (GJBRH; Keishi-bukuryo-gan in Japan and Guizhi Fuling Wan in China) is a traditional herbal formula comprising five medicinal herbs and is used to treat climacteric syndrome. GJBRH has been shown to exhibit biological activity against diabetes, diabetic nephropathy, atherosclerosis, ischemia, and cancer. However, there is no scientific evidence of its activities against skin inflammation, including atopic dermatitis. We used the HaCaT human keratinocyte cell line to investigate the effects of GJBRH on skin inflammation. No significant cytotoxicity was observed in cells treated with GJBRH up to a concentration of 1000 µg/mL. Exposure to the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) significantly increased HaCaT cell production of the following chemokines: macrophage-derived chemokine (MDC)/CCL22; regulated on activation, normal T-cell expressed and secreted (RANTES)/CCL5; and interleukin-8 (IL-8). In contrast, GJBRH significantly reduced the production of MDC, RANTES, and IL-8 compared with control cells simulated with TNF-α and IFN-γ. Consistently, GJBRH suppressed the mRNA expression of MDC, RANTES, and IL-8 in TNF-α and IFN-γ-treated cells. Treatment with GJBRH markedly inhibited phosphorylation of signal transducer and activator of transcription 1 (STAT1) in HaCaT cells stimulated with TNF-α and IFN-γ. Our findings indicate that GJBRH impairs TNF-α and IFN-γ-mediated inflammatory chemokine production and STAT1 phosphorylation in keratinocytes. We suggest that GJBRH may be a potent therapeutic agent for inflammatory skin disorders. PMID:25757924

  15. A mechanism for nano-titanium dioxide-induced cytotoxicity in HaCaT cells under UVA irradiation.

    PubMed

    Xue, Chengbin; Luo, Wen; Yang, Xiang Liang

    2015-01-01

    Nano-TiO2 has been reported to be an efficient photocatalyst, which is able to produce reactive oxygen species (ROS) under UVA irradiation. In this study, we investigated the effects of nano-TiO2 on the cytotoxicity, induction of apoptosis, and the putative pathways of its actions in HaCaT cells. We show that nano-TiO2 is a potent inducer of apoptosis and that it transduces the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT) and activating Caspase-3 from HaCaT cells. ROS production, mitochondrial alteration, and subsequent apoptotic cell death in nano-TiO2-treated cells were blocked by the MPT pore-blocker cyclosporin A. Taken together, our data indicate that nano-TiO2 induces the ROS-mediated MPT and resultant Caspase-3 activation. PMID:25822594

  16. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    PubMed

    Thompson, Benjamin C; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer. PMID:25658450

  17. Effects of topical corticosteroids on cell proliferation, cell cycle progression and apoptosis: in vitro comparison on HaCaT.

    PubMed

    Guichard, Alexandre; Humbert, Philippe; Tissot, Marion; Muret, Patrice; Courderot-Masuyer, Carole; Viennet, Céline

    2015-02-20

    Topical-corticosteroids are mainly used for the treatment of inflammatory or hyperproliferative skin diseases. The in vivo assay to rank topical-corticosteroids potency, based on the skin blanching, is not adapted to compare their anti-proliferative efficacy. We have compared the antiproliferative effect of six topical-corticosteroids on a model of hyperproliferant keratinocytes (HaCaT). Betamethasone-dipropionate; clobetasol-propionate; betamethasone-valerate; desonide; hydrocortisone-butyrate and hydrocortisone-base, at different concentrations (10(-8)-10(-4)M) have been compared. HaCaT proliferation has been evaluated by MTT-assay and the mechanism of the death was evaluated by annexin V/propidium iodide staining and cell cycle phases analysis. Topical corticosteroids reduced cell growth in a dose-dependent manner. At 10(-4)M, betamethasone dipropionate was the most antiproliferative compound while hydrocortisone-butyrate was the less. Hydrocortisone-base which is usually considered as the less potent topical-corticosteroids showed a clear cytotoxic effect. Betamethasone-dipropionate and betamethasone-valerate induced more apoptosis than necrosis whereas the reverse has been observed for other topical-corticosteroids. All topical-corticosteroids, except clobetasol-propionate, arrested cell cycle mainly in G2-phase. Clobetasol-propionate arrested cell cycle in S-phase population. At 10(-8)M, topical-corticosteroids induced HaCaT proliferation. In terms of antiproliferative effect at 10(-4)M, we propose to rank topical corticosteroids as follow: betamethasone-dipropionate>desonide≥betamethasone-valerate=hydrocortisone-base=clobetasol-propionate>hydrocortisone-butyrate. This classification differs from the current ranking, based on the vasoconstrictive effect, but is more adapted for hyperproliferative disease treatment. PMID:25556056

  18. Saponins from the roots of Platycodon grandiflorum suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and NF-κB/AP-1-dependent signaling in HaCaT cells.

    PubMed

    Hwang, Yong Pil; Kim, Hyung Gyun; Choi, Jae Ho; Han, Eun Hee; Kwon, Kwang-Il; Lee, Young Chun; Choi, Jun Min; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-12-01

    Saponins from the roots of Platycodon grandiflorum (CKS) have been shown to exhibit many pharmacological activities, including anti-cancer and anti-inflammatory activities and antioxidant effects. However, anti-skin photoaging effects of CKS have not yet been reported. In this study, we investigated the protective effects of CKS against UVA damage on immortalized human keratinocytes (HaCaT). We then explored the inhibitory effects of CKS on UVA-induced MMP-1 and investigated the molecular mechanism underlying those effects. CKS increased the cell viability and inhibited reactive oxygen species (ROS) production in HaCaT cells exposed to UVA irradiation. Pre-treatment of HaCaT cells with CKS inhibited UVA-induced production of MMP-1 and MMP-9. In addition, CKS decreased UVA-induced expression of the inflammatory cytokines IL-1β and IL-6. Western blot analysis further revealed that CKS markedly suppressed the enhancement of collagen degradation in UVA-exposed HaCaT cells. CKS also suppressed UVA-induced activation of NF-κB or c-Jun and c-Fos, and the phosphorylation of MAPKs, which are upstream modulators of NF-κB and AP-1. PMID:22005258

  19. Antidiabetics and diuretics show phototoxicity in HaCaT cells

    NASA Astrophysics Data System (ADS)

    Selvaag, Edgar; Petersen, Anita B.; Gniadecki, Robert; Thorn, Tine; Wulf, Hans Christian

    2001-10-01

    The antidiabetics tolbutamide, glibenclamide, and glipizide, and the diuretics bendroflumethiazide, butizide, furosemide, hydrochlorothiazide, and trichlormethiazide were investigated for potential phototoxicity in the HaCaT cell line. The cells were incubated with the drugs and then exposed to UVA1 irradiation. The effects of the antioxidants L-ascorbic acid, and (alpha) -tocopherol on oxidative DNA damage were assessed. Bendroflumethiazide, furosemide, hydrochlorothiazide, trichlormethiazide, or tolbutamide induced dose-dependent phototoxicity. Cells incubated with bendroflumethiazide, tolbutamide, and glibenclamide, and irradiated with UVA1 demonstrated an increased oxidative DNA damage. Pre-treatment with L-ascorbic acid, or (alpha) -tocopherol, suppressed the UVA-induced DNA damage in cells incubated with 1 mM of bendroflumethiazide, furosemide, glibenclamide, glipizide, tolbutamide, and trichloromethiazide, further implying the involvement of reactive oxygen species in the phototoxic DNA damage. These results may indicate a link between phototoxic and photocancerogenic potential of the sulfonamide-derived oral antidiabetic and diuretic drugs, as it has previously been recognized for psoralen, chlorpromazine, and fluoroquinolones. Excessive exposure to UV light may be deleterious for patients treated with these drugs.

  20. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    PubMed

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-01

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. PMID:24704449

  1. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  2. Human keratinocyte line HaCaT metabolizes 1alpha-hydroxyvitamin D3 and vitamin D3 to 1alpha,25-dihydroxyvitamin D3 (calcitriol).

    PubMed

    Lehmann, B; Pietzsch, J; Kämpf, A; Meurer, M

    1998-11-01

    Cultured human keratinocytes have the property to hydroxylate exogenous 25-hydroxyvitamin D3 (25OHD3) at the C-1alpha position thus producing 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). In this study we investigated whether keratinocytes can also hydroxylate vitamin D3 and one of its metabolites at the C-25 position. We could demonstrate that HaCaT keratinocytes can metabolize 1alpha-hydroxyvitamin D3 (1alpha-OHD3) and vitamin D3 to 1alpha,25(OH)2D3. Identification of the generated product as 1alpha,25(OH)2D3 was based on its elution pattern in two different high performance liquid chromatography systems, on its specific binding in a calf thymus receptor assay and on its gas chromatography-mass spectrometry characteristics. The hydroxylation of vitamin D3 to 1alpha,25(OH)2D3 was dose- and time-dependent. Bovine serum albumin added up to 1.5% (w/v) to the culture medium greatly increased the hydroxylation rates. These results show that HaCaT cells have the capacity to hydroxylate vitamin D3 at the C-1/25 positions. The generation of endogenous 1alpha,25(OH)2D3 from vitamin D3 within the skin may indicate a novel pathway which is of importance for the regulation of epidermal cell growth and differentiation. PMID:9833978

  3. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    SciTech Connect

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  4. Gq protein mediates UVB-induced cyclooxygenase-2 expression by stimulating HB-EGF secretion from HaCaT human keratinocytes

    SciTech Connect

    Seo, MiRan; Juhnn, Yong-Sung

    2010-03-05

    Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the {alpha} subunit of Gq protein (G{alpha}q) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active G{alpha}q (G{alpha}qQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of G{alpha}q with shRNA in HaCaT human keratinocytes. G{alpha}q was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipase C (PLC), protein kinase C{delta} (PKC{delta}), and matrix metaloprotease-2 (MMP-2). Moreover, G{alpha}qQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that G{alpha}q mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKC{delta} and MMP-2 in HaCaT cells.

  5. Identification of copper/zinc superoxide dismutase as a nitric oxide-regulated gene in human (HaCaT) keratinocytes: implications for keratinocyte proliferation.

    PubMed

    Frank, S; Kämpfer, H; Podda, M; Kaufmann, R; Pfeilschifter, J

    2000-03-15

    Recent studies have demonstrated an induction of expression of inducible nitric oxide synthase that is associated with several inflammatory diseases of the skin. To define the mechanisms of action of nitric oxide (NO) in the skin, we attempted to identify genes that are regulated by NO in keratinocytes. Using the human keratinocyte cell line HaCaT as a model system, we identified a Cu/Zn superoxide dismutase (SOD) that was strongly induced by high concentrations (500 microM) of NO-donating agents ¿S-nitrosoglutathione, sodium nitroprusside and (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1,2 -diolate (DETA-NO)¿, but not by serum or by single recombinant growth factors and inflammatory cytokines or by treatment with superoxide anions. Furthermore, endogenously produced NO increased the expression of Cu/Zn SOD mRNA in keratinocytes. Moreover, treatment of HaCaT cells with NO was associated with a biphasic effect on cell proliferation, because low doses (100 microM) of different NO donors (S-nitrosoglutathione and DETA-NO) mediated a proliferative signal to the cells, whereas high concentrations (500 microM) were cytostatic. To determine a possible correlation between the close regulation of Cu/Zn SOD expression and proliferation by NO in keratinocytes, we established a cell line (psp1CZ1N) carrying a human Cu/Zn SOD cDNA under the control of a ponasterone-inducible promoter construct. Ponasterone-induced overexpression of Cu/Zn SOD caused a cytostatic effect in proliferating psp1CZ1N cells. We therefore suggest that the up-regulation of Cu/Zn SOD expression by NO establishes an inhibitory mechanism on keratinocyte proliferation. PMID:10698699

  6. The photoprotective effects of 2-benzoyl-3-phenylquinoxaline 1,4-dioxide against UVB-induced damage in HaCaT cells.

    PubMed

    Mouawad, Joe; Saadeh, Fadi; Tabosh, Hayat Al; Haddadin, Makhluf J; Gali-Muhtasib, Hala

    2016-08-01

    With the increasing levels of atmospheric ozone depletion, there has been much concern about the causal effects of high levels of ultraviolet radiation reaching the Earth's surface on skin cancer. This has led to growing interest in identifying new active ingredients for use in commercial sunscreens. In our study, the chemical compound 2-benzoyl-3-phenylquinoxaline 1,4-dioxide (BPQ) prepared by the Beirut reaction was tested for its ability to protect a human keratinocyte cell line (HaCaT) against ultraviolet B radiation (280-315 nm). We show that BPQ exhibited strong absorbance in the UVB range, with an overall absorption spectrum very similar to that of Padimate-O, a well-known active ingredient used in commercial sunscreens. HaCaT cells, which were irradiated with UVB in the presence of multiple doses of BPQ, exhibited, in a dose-dependent fashion, a significantly higher viability and lower oxidative stress levels than cells irradiated in the absence of drug. Our results show that BPQ is a potential photoprotective drug that holds great promise for use as an active ingredient in commercial sunscreens. PMID:27377483

  7. INDUCTION OF CELL PROLIFERATION AND APOPTOSIS IN HL60 AND HACAT CELLS BY ARSENIC, ARSENATE, AND ARSENIC-CONTAMINATED DRINKING WATER

    EPA Science Inventory

    Induction of cell proliferation and apoptosis in HL-60 and HaCaT cells by arsenite, arsenate and arsenic-contaminated drinking water. T-C. Zhang, M. Schmitt, J. L. Mumford National Research Council, Washington DC and U.S. Environmental Protection Agency, NHEERL, Research Triangle...

  8. Apoptosis-induced cell death due to oleanolic acid in HaCaT keratinocyte cells--a proof-of-principle approach for chemopreventive drug development.

    PubMed

    George, V Cijo; Kumar, D R Naveen; Suresh, P K; Kumar, R Ashok

    2012-01-01

    Oleanolic acid (OA) is a naturally occurring triterpenoid in food materials and is a component of the leaves and roots of Olea europaea, Viscum album L., Aralia chinensis L. and more than 120 other plant species. There are several reports validating its antitumor activity against different cancer cells apart from its hepatoprotective activity. However, antitumor activity against skin cancer has not been studied well thus far. Hence the present study of effects of OA against HaCaT (immortalized keratinocyte) cells--a cell-based epithelial model system for toxicity/ethnopharmacology-based studies--was conducted. Radical scavenging activity (DPPH·) and FRAP were determined spectrophotometrically. Proliferation was assessed by XTT assay at 24, 48 and 72 hrs with exposure to various concentrations (12.5-200 μM) of OA. Apoptotic induction potential of OA was demonstrated using a cellular DNA fragmentation ELISA method. Morphological studies were also carried out to elucidate its antitumor potential. The results revealed that OA induces apoptosis by altering cellular morphology as well as DNA integrity in HaCaT cells in a dose-dependent manner, with comparatively low cytotoxicity. The moderate toxicity observed in HaCaT cells, with induction of apoptosis, possibly suggests greater involvement of programmed-cell death-mediated mechanisms. We conclude that OA has relatively low toxicity and has the potential to induce apoptosis in HaCaT cells and hence provides a substantial and sound scientific basis for further validation studies. PMID:22901164

  9. The Protecting Effect of Deoxyschisandrin and Schisandrin B on HaCaT Cells against UVB-Induced Damage.

    PubMed

    Hou, Wei; Gao, Wei; Wang, Datao; Liu, Qingxiu; Zheng, Siwen; Wang, Yingping

    2015-01-01

    Schisandra chinensis is a traditional Chinese medicine that has multiple biological activities, including antioxidant, anticancer, tonic, and anti-aging effects. Deoxyschisandrin (SA) and schisandrin B (SB), the two major lignans isolated from S. chinensis, exert high antioxidant activities in vitro and in vivo by scavenging free radicals, such as reactive oxygen species (ROS). Ultraviolet B-ray (UVB) radiation induces the production of ROS and DNA damage, which eventually leads to cell death by apoptosis. However, it is unknown whether SA or SB protects cells against UVB-induced cellular DNA damage. Our study showed that both SA and SB effectively protected HaCaT cells from UVB-induced cell death by antagonizing UVB-mediated production of ROS and induction of DNA damage. Our results showed that both SA and SB significantly prevented UVB-induced loss of cell viability using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assays showed that the production of ROS following UVB exposure was inhibited by treatment with SA and SB. Moreover, SA and SB decreased the UVB-induced DNA damage in HaCaT cells by comet assays. In addition, SA and SB also prevented UVB-induced cell apoptosis and the cleavage of caspase-3, caspase-8 and caspase-9. In a word, our results imply that the antioxidants SA and SB could protect cells from UVB-induced cell damage via scavenging ROS. PMID:25978330

  10. Effects of Ginger Phenylpropanoids and Quercetin on Nrf2-ARE Pathway in Human BJ Fibroblasts and HaCaT Keratinocytes

    PubMed Central

    Schadich, Ermin; Hlaváč, Jan; Volná, Tereza; Varanasi, Lakshman; Hajdúch, Marián; Džubák, Petr

    2016-01-01

    Quercetin and phenylpropanoids are well known chemoprotective compounds identified in many plants. This study was aimed at determining their effects on activation of Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response element (Nrf2-ARE) signalling pathway and expression of its important downstream effector phase II detoxification enzyme glutathione-S-transferase P1 (GSTP1) in BJ foreskin fibroblasts and skin HaCaT keratinocytes. Cell lines and their corresponding Nrf2-ARE luciferase reporter cells were treated by ginger phenylpropanoids and quercetin for 10 h and the level of Nrf2 activity was subsequently determined. Both, ginger phenylpropanoids and quercetin, significantly increased the level of Nrf2 activity. Subsequent western blot analyses of proteins showed the increased expression level of glutathione-S-transferase P1 (GSTP1) in BJ cells but not in HaCaT cells. Such phenomenon of unresponsive downstream target expression in HaCaT cells was consistent with previous studies showing a constitutive expression of their GSTP1. Thus, while both ginger phenylpropanoids and quercetin have the property of increasing the level of Nrf2 both in HaCaT and in BJ cells, their effects on its downstream signalling were mediated only in BJ cells. PMID:26942188

  11. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

    PubMed Central

    Lee, Su Jeong; Park, Jeen-Woo

    2014-01-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells. [BMB Reports 2014; 47(4): 209-214] PMID:24286310

  12. Morphological and biochemical analysis by atomic force microscopy and scanning near-field optical microscopy techniques of human keratinocytes (HaCaT) exposed to extremely low frequency 50 Hz magnetic field

    NASA Astrophysics Data System (ADS)

    Rieti, Sabrina; Manni, Vanessa; Lisi, Antonella; Grimaldi, Settimio; Generosi, Renato; Luce, Marco; Perfetti, Paolo; Cricenti, Antonio; Pozzi, Deleana; Giuliani, Livio

    2002-10-01

    We studied the effect of the interaction of electromagnetic radiation with human keratinocytes (HaCaT), at low (50 Hz, 1 mT) frequency using both atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques. AFM analysis showed modifications in shape and morphology in exposed cells, while SNOM indirect immunofluorescence analysis revealed an increase of segregation of β4 integrin (an adhesion marker) in the cell membrane of the same cells, suggesting that a higher percentage of the exposed cells shows a modified pattern of this adhesion marker.

  13. Sargassum fulvellum Protects HaCaT Cells and BALB/c Mice from UVB-Induced Proinflammatory Responses

    PubMed Central

    Lee, Chan; Park, Gyu Hwan; Ahn, Eun Mi; Park, Chan-Ik; Jang, Jung-Hee

    2013-01-01

    Ultraviolet (UV) radiation has been reported to induce cutaneous inflammation such as erythema and edema via induction of proinflammatory enzymes and mediators. Sargassum fulvellum is a brown alga of Sargassaceae family which has been demonstrated to exhibit antipyretic, analgesic, antiedema, antioxidant, antitumor, fibrinolytic, and hepatoprotective activities. The purpose of this study is to investigate anti-inflammatory effects of ethylacetate fraction of ethanol extract of Sargassum fulvellum (SFE-EtOAc) in HaCaT keratinocytes and BALB/c mice. In HaCaT cells, SFE-EtOAc effectively inhibited UVB-induced cytotoxicity (60 mJ/cm2) and the expression of proinflammatory proteins such as cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS). Furthermore, SFE-EtOAc significantly reduced UVB-induced production of proinflammatory mediators including prostaglandin E2 (PGE2) and nitric oxide (NO). In BALB/c mice, topical application of SFE-EtOAc prior to UVB irradiation (200 mJ/cm2) effectively suppressed the UVB-induced protein expression of COX-2, iNOS, and TNF-α and subsequently attenuated generation of PGE2 and NO as well. In another experiment, SFE-EtOAc pretreatment suppressed UVB-induced reactive oxygen species production and exhibited an antioxidant potential by upregulation of antioxidant enzymes such as catalase and Cu/Zn-superoxide dismutase in HaCaT cells. These results suggest that SFE-EtOAc could be an effective anti-inflammatory agent protecting against UVB irradiation-induced skin damages. PMID:23935680

  14. Sargassum fulvellum Protects HaCaT Cells and BALB/c Mice from UVB-Induced Proinflammatory Responses.

    PubMed

    Lee, Chan; Park, Gyu Hwan; Ahn, Eun Mi; Park, Chan-Ik; Jang, Jung-Hee

    2013-01-01

    Ultraviolet (UV) radiation has been reported to induce cutaneous inflammation such as erythema and edema via induction of proinflammatory enzymes and mediators. Sargassum fulvellum is a brown alga of Sargassaceae family which has been demonstrated to exhibit antipyretic, analgesic, antiedema, antioxidant, antitumor, fibrinolytic, and hepatoprotective activities. The purpose of this study is to investigate anti-inflammatory effects of ethylacetate fraction of ethanol extract of Sargassum fulvellum (SFE-EtOAc) in HaCaT keratinocytes and BALB/c mice. In HaCaT cells, SFE-EtOAc effectively inhibited UVB-induced cytotoxicity (60 mJ/cm(2)) and the expression of proinflammatory proteins such as cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS). Furthermore, SFE-EtOAc significantly reduced UVB-induced production of proinflammatory mediators including prostaglandin E2 (PGE2) and nitric oxide (NO). In BALB/c mice, topical application of SFE-EtOAc prior to UVB irradiation (200 mJ/cm(2)) effectively suppressed the UVB-induced protein expression of COX-2, iNOS, and TNF-α and subsequently attenuated generation of PGE2 and NO as well. In another experiment, SFE-EtOAc pretreatment suppressed UVB-induced reactive oxygen species production and exhibited an antioxidant potential by upregulation of antioxidant enzymes such as catalase and Cu/Zn-superoxide dismutase in HaCaT cells. These results suggest that SFE-EtOAc could be an effective anti-inflammatory agent protecting against UVB irradiation-induced skin damages. PMID:23935680

  15. Periplogenin induces necroptotic cell death through oxidative stress in HaCaT cells and ameliorates skin lesions in the TPA- and IMQ-induced psoriasis-like mouse models.

    PubMed

    Zhang, Wen-Jing; Song, Zhen-Bo; Bao, Yong-Li; Li, Wen-Liang; Yang, Xiao-Guang; Wang, Qi; Yu, Chun-Lei; Sun, Lu-Guo; Huang, Yan-Xin; Li, Yu-Xin

    2016-04-01

    Psoriasis is a multifactorial skin disease that inconveniences many patients. Considering the side effects and drug resistance of the current therapy, it is urgent to discover more effective and safer anti-psoriatic drugs. In the present study, we screened over 250 traditional Chinese medicine compounds for their ability to inhibit the cell viability of cultured human HaCaT keratinocytes, a psoriasis-relevant in vitro model, and found that periplogenin was highly effective. Mechanistic studies revealed that apoptosis and autophagy were not induced by periplogenin in HaCaT cells. However, periplogenin caused PI to permeate into cells, increased lactate LDH release and rapidly increased the number of necrotic cells. Additionally, the typical characteristics of necrosis were observed in the periplogenin-treated HaCaT cells. Notably, the necroptosis inhibitor Nec-1 and NSA were able to rescue the cells from necrotic cell death, supporting that necroptosis was involved in periplogenin-induced cell death. Furthermore, the ROS levels were elevated in the periplogenin-treated cells, NAC (an antioxidant) and Nec-1 could inhibit the ROS levels, and NAC could attenuate necroptotic cell death, indicating that the periplogenin-induced necroptotic cell death was mediated by oxidative stress. More importantly, in the murine models of TPA-induced epidermal hyperplasia and IMQ-induced skin inflammation, topical administration of periplogenin ameliorated skin lesions and inflammation. In sum, our results indicate, for the first time, that periplogenin is a naturally occurring compound with potent anti-psoriatic effects in vitro and in vivo, making it a promising candidate for future drug research. PMID:26850986

  16. The marine toxin palytoxin induces necrotic death in HaCaT cells through a rapid mitochondrial damage.

    PubMed

    Pelin, Marco; Sosa, Silvio; Pacor, Sabrina; Tubaro, Aurelia; Florio, Chiara

    2014-09-17

    Palytoxin (PLTX) is one of the most toxic algal biotoxin known so far. It transforms the Na(+)/K(+)-ATPase into a cationic channel inducing a massive intracellular Na(+) influx. However, from a mechanistic point of view, the features and the intracellular pathways leading to PLTX-induced cell death are still not completely characterized. This study on skin HaCaT keratinocytes demonstrates that PLTX induces necrosis since propidium iodide uptake was observed already after 1 h toxin exposure, an effect that was not lowered by toxin removal. Furthermore, necrotic-like morphological alterations were evidenced by confocal microscopy. Apoptosis occurrence was excluded since no caspases 3/7, caspase 8, and caspase 9 activation as well as no apoptotic bodies formation were recorded. Necrosis was preceded by a very early mitochondrial damage as indicated by JC-1 fluorescence shift, recorded already after 5 min toxin exposure. This shift was totally abolished when Na(+) and Ca(2+) ions were withdrawn from culture medium, whereas cyclosporine-A was ineffective, excluding the occurrence of a controlled biochemical response. These results clearly establish necrosis as the primary mechanism for PLTX-induced cell death in HaCaT cells. The rapidity of mitochondrial damage and the consequent irreversible necrosis rise serious concerns about the very fast onset of PLTX toxic effects. PMID:25066017

  17. Rhodomyrtone as a potential anti-proliferative and apoptosis inducing agent in HaCaT keratinocyte cells.

    PubMed

    Chorachoo, Julalak; Saeloh, Dennapa; Srichana, Teerapol; Amnuaikit, Thanaporn; Musthafa, Khadar Syed; Sretrirutchai, Somporn; Voravuthikunchai, Supayang P

    2016-02-01

    Psoriasis is a skin disease associated with hyperproliferation and abnormal differentiation of keratinocytes. Available approaches using synthetic drugs for the treatment of severe psoriasis may cause side effects. Alternatively, plant-derived compounds are now receiving much attention as alternative candidates for the treatment of psoriasis. In this study, the effects of rhodomyrtone, a bioactive plant extract isolated from Rhodomyrtus tomentosa leaves on the proliferation, growth arrest, and apoptosis of HaCaT keratinocytes were investigated. Percentage anti-proliferative activity of rhodomyrtone on HaCaT cells at concentrations of 2-32µg/ml after 24, 48, and 72h ranged from 13.62-61.61%, 50.59-80.16%, and 61.82-85.34%, respectively. In a scratch assay, rhodomyrtone at 2 and 4µg/ml significantly delayed closure of a wound by up to 61.78%, and 71.65%, respectively, after 24h incubation. HaCaT keratinocytes treated with rhodomyrtone showed chromatin condensation and fragmentation of nuclei when stained with Hoechst 33342. This indicated that rhodomyrtone induced apoptosis in the keratinocytes. In addition, flow cytometric analysis demonstrated an increase in the percentage of apoptosis of keratinocytes after treatment with rhodomyrtone at 2-32µg/ml from 1.2-10%, 8.2-35.4%, and 21.0-77.8% after 24, 48, and 72h, respectively, compared with the control. To further develop the compound as a potential anti-psoriasis agent, a rhodomyrtone formulation was prepared and subjected to skin irritation tests in rabbits. The formulation caused no skin irritation including such as erythema and edema. The results indicated that rhodomyrtone had the potential as a promising candidate for further development as a natural anti-psoriasis agent. PMID:26687635

  18. Characterization of palytoxin binding to HaCaT cells using a monoclonal anti-palytoxin antibody.

    PubMed

    Pelin, Marco; Boscolo, Sabrina; Poli, Mark; Sosa, Silvio; Tubaro, Aurelia; Florio, Chiara

    2013-03-01

    Palytoxin (PLTX) is the reference compound for a group of potent marine biotoxins, for which the molecular target is Na+/K+-ATPase. Indeed, ouabain (OUA), a potent blocker of the pump, is used to inhibit some PLTX effects in vitro. However, in an effort to explain incomplete inhibition of PLTX cytotoxicity, some studies suggest the possibility of two different binding sites on Na+/K+-ATPase. Hence, this study was performed to characterize PLTX binding to intact HaCaT keratinocytes and to investigate the ability of OUA to compete for this binding. PLTX binding to HaCaT cells was demonstrated by immunocytochemical analysis after 10 min exposure. An anti-PLTX monoclonal antibody-based ELISA showed that the binding was saturable and reversible, with a K(d) of 3 × 10-10 M. However, kinetic experiments revealed that PLTX binding dissociation was incomplete, suggesting an additional, OUA-insensitive, PLTX binding site. Competitive experiments suggested that OUA acts as a negative allosteric modulator against high PLTX concentrations (0.3-1.0 × 10-7 M) and possibly as a non-competitive antagonist against low PLTX concentrations (0.1-3.0 × 10-9 M). Antagonism was supported by PLTX cytotoxicity inhibition at OUA concentrations that displaced PLTX binding (1 × 10-5 M). However, this inhibition was incomplete, supporting the existence of both OUA-sensitive and -insensitive PLTX binding sites. PMID:23442788

  19. Protective Effect of Diphlorethohydroxycarmalol against Ultraviolet B Radiation-Induced DNA Damage by Inducing the Nucleotide Excision Repair System in HaCaT Human Keratinocytes

    PubMed Central

    Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Lee, Nam Ho; Hyun, Jin Won

    2015-01-01

    We investigated the protective properties of diphlorethohydroxycarmalol (DPHC), a phlorotannin, against ultraviolet B (UVB) radiation-induced cyclobutane pyrimidine dimers (CPDs) in HaCaT human keratinocytes. The nucleotide excision repair (NER) system is the pathway by which cells identify and repair bulky, helix-distorting DNA lesions such as ultraviolet (UV) radiation-induced CPDs and 6-4 photoproducts. CPDs levels were elevated in UVB-exposed cells; however, this increase was reduced by DPHC. Expression levels of xeroderma pigmentosum complementation group C (XPC) and excision repair cross-complementing 1 (ERCC1), which are essential components of the NER pathway, were induced in DPHC-treated cells. Expression of XPC and ERCC1 were reduced following UVB exposure, whereas DPHC treatment partially restored the levels of both proteins. DPHC also increased expression of transcription factor specificity protein 1 (SP1) and sirtuin 1, an up-regulator of XPC, in UVB-exposed cells. DPHC restored binding of the SP1 to the XPC promoter, which is reduced in UVB-exposed cells. These results indicate that DPHC can protect cells against UVB-induced DNA damage by inducing the NER system. PMID:26404324

  20. Angelica archengelica extract induced perturbation of rat skin and tight junctional protein (ZO-1) of HaCaT cells

    PubMed Central

    Kaushal, N.; Naz, S.; Tiwary, AK.

    2011-01-01

    Background and purpose of the study Herbal enhancers compared to the synthetic ones have shown less toxis effects. Coumarins have been shown at concentrations inhibiting phospoliphase C-Y (Phc-Y) are able to enhance tight junction (TJ) permeability due to hyperpoalation of Zonolous Occludense-1 (ZO-1) proteins. The purpose of this study was to evaluate the influence of ethanolic extract of Angelica archengelica (AA-E) which contain coumarin on permeation of repaglinide across rat epidermis and on the tight junction plaque protein ZO-1 in HaCaT cells. Methods Transepidermal water loss (TEWL) from the rat skin treated with different concentrations of AA-E was assessed by Tewameter. Scanning and Transmission Electron Microscopy (TEM) on were performed on AA-E treated rat skin portions. The possibility of AA-E influence on the architecture of tight junctions by adverse effect on the cytoplasmic ZO-1 in HaCaT cells was investigated. Finally, the systemic delivery of repaglinide from the optimized transdermal formulation was investigated in rats. Results The permeation of repaglinide across excised rat epidermis was 7-fold higher in the presence of AA-E (5% w/v) as compared to propylene glycol:ethanol (7:3) mixture. The extract was found to perturb the lipid microconstituents in both excised and viable rat skin, although, the effect was less intense in the later. The enhanced permeation of repaglinide across rat epidermis excised after treatment with AA-E (5% w/v) for different periods was in concordance with the high TEWL values of similarly treated viable rat skin. Further, the observed increase in intercellular space, disordering of lipid structure and corneocyte detachment indicated considerable effect on the ultrastructure of rat epidermis. Treatment of HaCaT cell line with AA-E (0.16% w/v) for 6 hrs influenced ZO-1 as evidenced by reduced immunofluorescence of anti-TJP1 (ZO-1) antibody in Confocal Laser Scanning Microscopy studies (CLSM) studies. The plasma

  1. Therapeutic and cytotoxic effects of the novel antipsoriasis codrug, naproxyl-dithranol, on HaCaT cells.

    PubMed

    Lau, Wing Man; Ng, Keng Wooi; White, Alex W; Heard, Charles M

    2011-12-01

    A novel topical codrug, naproxyl-dithranol (Nap-DTH), in which dithranol and naproxen are linked via an ester in a 1:1 ratio to form a single chemical entity, was synthesized. The antiproliferative, anti-inflammatory and toxic effects of Nap-DTH were assessed, at the cellular level, using various in vitro methods. Cultured HaCaT keratinocytes were treated with Nap-DTH, and the cellular effects were compared with those of the parent compounds, individually and as a 1:1 mixture of naproxen:dithranol to mimic 1:1 in situ liberation from Nap-DTH. The results demonstrate that Nap-DTH did not modify proliferation and only exhibited slight toxic effects after 24 h at concentrations >21 μM. At a lower concentration (3.4 μM), Nap-DTH did not alter cell proliferation or inflammation, which suggests that the codrug is therapeutically inert. Relating to this, the 1:1 mixture of naproxen:dithranol exhibited the lowest toxic effect and the highest antiproliferative effect on HaCaT keratinocytes compared to dithranol at the same concentration. Moreover, the 1:1 mixture exhibited a reduced inflammatory effect compared to dithranol alone, as reflected by the upregulation of cyclooxygenase-2 by 45% and 136%, respectively. In spite of the 1:1 mixture showing a greater downregulation of Ki-67 and a 2-fold reduction of proliferating cell nuclear antigen (both cellular markers of proliferation) than dithranol, dithranol showed a much greater induction of cleaved caspase-3 protein expression (upregulated by 287%, compared to 85% for the 1:1 mixture). This suggests that when dithranol was administered with naproxen, inhibition of cell growth plays a more important role in the antiproliferation effects than the induction of apoptotic cell death. These results confirm that the codrug would lead to a better therapeutic profile and fewer adverse effects compared to its parent compounds. PMID:21882816

  2. Polypeptide from Chlamys farreri modulates UVB-induced activation of NF-kappaB signaling pathway and protection HaCaT cells from apoptosis.

    PubMed

    Liu, Xiaojin; Zhang, Zhengyang; Li, Ping; Zhu, Li; Wang, Yuejun; Wang, Chunbo

    2009-02-25

    Polypeptide from Chlamys farreri (PCF) possesses strong antioxidant and photochemo-preventive properties. Our previous study has preliminarily demonstrated that PCF could reduce the intracellular reactive oxygen species (ROS) production and protect UVB-induced HaCaT cells apoptosis. But the anti-apoptotic effects of PCF on components of cell signaling pathways leading to gene expression has not been clearly established. In this study we determined whether PCF affords protection of HaCaT cells against UVB-mediated activation of nuclear factor kappa B signal pathway, which is involved in apoptosis. The result showed that pretreatment of UVB-induced HaCaT cells with PCF, ROS scavenger NAC and NF-kappaB inhibitor MG132 effectively suppressed the apoptosis of HaCaT cells. PCF inhibited UVB-induced activation and translocation of NF-kappaB/p65 to nucleus, which was mediated through inhibition of phosphorylation/degradation and decreasing mRNA expression of IkappaBalpha and also blocking activation of IKKalpha in a dose-dependent manner. Furthermore, we observed that NAC also inhibited UVB-induced activation of NF-kappaB/p65 through decreasing the degradation and phosphorylation of IkappaBalpha. We concluded that the activation of NF-kappaB signal pathway played an important role in UVB-induced apoptosis, and PCF likely exerted its anti-apoptotic effect in HaCaT cells through decreasing intracellular ROS level and modulating the NF-kappaB signaling pathway. PMID:19056432

  3. Exploring the mode of action of dithranol therapy for psoriasis: a metabolomic analysis using HaCaT cells.

    PubMed

    Hollywood, Katherine A; Winder, Catherine L; Dunn, Warwick B; Xu, Yun; Broadhurst, David; Griffiths, Christopher E M; Goodacre, Royston

    2015-08-01

    Psoriasis is a common, immune-mediated inflammatory skin disease characterized by red, heavily scaled plaques. The disease affects over one million people in the UK and causes significant physical, psychological and societal impact. There is limited understanding regarding the exact pathogenesis of the disease although it is believed to be a consequence of genetic predisposition and environmental triggers. Treatments vary from topical therapies, such as dithranol, for disease of limited extent (<5% body surface area) to the new immune-targeted biologic therapies for severe psoriasis. Dithranol (also known as anthralin) is a topical therapy for psoriasis believed to work by inhibiting keratinocyte proliferation. To date there have been no metabolomic-based investigations into psoriasis. The HaCaT cell line is a model system for the epidermal keratinocyte proliferation characteristic of psoriasis and was thus chosen for study. Dithranol was applied at therapeutically relevant doses to HaCaT cells. Following the optimisation of enzyme inactivation and metabolite extraction, gas chromatography-mass spectrometry was employed for metabolomics as this addresses central metabolism. Cells were challenged with 0-0.5 μg mL(-1) in 0.1 μg mL(-1) steps and this quantitative perturbation generated data that were highly amenable to correlation analysis. Thus, we used a combination of traditional principal components analysis, hierarchical cluster analysis, along with correlation networks. All methods highlighted distinct metabolite groups, which had different metabolite trajectories with respect to drug concentration and the interpretation of these data established that cellular metabolism had been altered significantly and provided further clarification of the proposed mechanism of action of the drug. PMID:26018604

  4. A decisive function of transforming growth factor-β/Smad signaling in tissue morphogenesis and differentiation of human HaCaT keratinocytes

    PubMed Central

    Buschke, Susanne; Stark, Hans-Jürgen; Cerezo, Ana; Prätzel-Wunder, Silke; Boehnke, Karsten; Kollar, Jasmin; Langbein, Lutz; Heldin, Carl-Henrik; Boukamp, Petra

    2011-01-01

     The mechanism by which transforming growth factor-β (TGFβ) regulates differentiation in human epidermal keratinocytes is still poorly understood. To assess the role of Smad signaling, we engineered human HaCaT keratinocytes either expressing small interfering RNA against Smads2, 3, and 4 or overexpressing Smad7 and verified impaired Smad signaling as decreased Smad phosphorylation, aberrant nuclear translocation, and altered target gene expression. Besides abrogation of TGFβ-dependent growth inhibition in conventional cultures, epidermal morphogenesis and differentiation in organotypic cultures were disturbed, resulting in altered tissue homeostasis with suprabasal proliferation and hyperplasia upon TGFβ treatment. Neutralizing antibodies against TGFβ, similar to blocking the actions of EGF-receptor or keratinocyte growth factor, caused significant growth reduction of Smad7-overexpressing cells, thereby demonstrating that epithelial hyperplasia was attributed to TGFβ-induced “dermis”-derived growth promoting factors. Furthermore impaired Smad signaling not only blocked the epidermal differentiation process or caused epidermal-to-mesenchymal transition but induced a switch to a complex alternative differentiation program, best characterized as mucous/intestinal-type epithelial differentiation. As the same alternative phenotype evolved from both modes of Smad-pathway interference, and reduction of Smad7-overexpression caused reversion to epidermal differentiation, our data suggest that functional TGFβ/Smad signaling, besides regulating epidermal tissue homeostasis, is not only essential for terminal epidermal differentiation but crucial in programming different epithelial differentiation routes. PMID:21289094

  5. 1,4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes.

    PubMed

    Klaus, Viola; Hartmann, Tobias; Gambini, Juan; Graf, Peter; Stahl, Wilhelm; Hartwig, Andrea; Klotz, Lars-Oliver

    2010-04-15

    Selected biological effects of 1,4-naphthoquinone, menadione (2-methyl-1,4-naphthoquinone) and structurally related quinones from natural sources--the 5-hydroxy-naphthoquinones juglone, plumbagin and the 2-hydroxy-naphthoquinones lawsone and lapachol--were studied in human keratinocytes (HaCaT). 1,4-naphthoquinone and menadione as well as juglone and plumbagin were highly cytotoxic, strongly induced reactive oxygen species (ROS) formation and depleted cellular glutathione. Moreover, they induced oxidative DNA base damage and accumulation of DNA strand breaks, as demonstrated in an alkaline DNA unwinding assay. Neither lawsone nor lapachol (up to 100 microM) were active in any of these assays. Cytotoxic and oxidative action was paralleled by stimulation of stress signaling: all tested quinones except lawsone and lapachol strongly induced phosphorylation of the epidermal growth factor receptor (EGFR) and the related ErbB2 receptor tyrosine kinase. EGFR activation by plumbagin, juglone and menadione was attenuated by a superoxide dismutase mimetic, indicating that ROS-related mechanisms contribute to EGFR activation by these naphthoquinones. PMID:20153715

  6. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation.

    PubMed

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2014-08-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ's role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα. PMID:25019995

  7. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants.

    PubMed

    Usta, Julnar; Hachem, Yassmine; El-Rifai, Omar; Bou-Moughlabey, Yolla; Echtay, Karim; Griffiths, David; Nakkash-Chmaisse, Hania; Makki, Rajaa Fakhoury

    2013-02-01

    We investigate in this study the biochemical effects on cells in culture of two commonly used fragrance chemicals: lyral and lilial. Whereas both chemicals exerted a significant effect on primary keratinocyte(s), HaCat cells, no effect was obtained with any of HepG2, Hek293, Caco2, NIH3T3, and MCF7 cells. Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Lipoic acid protected HaCat cells against the decrease in viability induced by either compound. Dehydrogenation of lyral and lilial produce α,β-unsaturated aldehydes, that reacts with lipoic acid requiring proteins resulting in their inhibition. We propose lyral and lilial as toxic to mitochondria that have a direct effect on electron transport chain, increase ROS production, derange mitochondrial membrane potential, and decrease cellular ATP level, leading thus to cell death. PMID:22940465

  8. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    SciTech Connect

    Liang Pengfei; Jiang Bimei; Yang Xinghua; Xiao Xianzhong Huang Xu; Long Jianhong; Zhang Pihong; Zhang Minghua; Xiao Muzhang; Xie Tinghong; Huang Xiaoyuan

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.

  9. Biological and molecular mechanisms of sulfur mustard analogue-induced toxicity in JB6 and HaCaT cells: possible role of ataxia telangiectasia-mutated/ataxia telangiectasia-Rad3-related cell cycle checkpoint pathway.

    PubMed

    Tewari-Singh, Neera; Gu, Mallikarjuna; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2010-06-21

    Effective medical treatment and preventive measures for chemical warfare agent sulfur mustard (HD)-caused incapacitating skin toxicity are lacking, because of limited knowledge of its mechanism of action. The proliferating basal epidermal cells are primary major sites of attack during HD-caused skin injury. Therefore, employing mouse JB6 and human HaCaT epidermal cells, here, we investigated the molecular mechanism of HD analogue 2-chloroethyl ethyl sulfide (CEES)-induced skin cytotoxicity. As compared to the control, up to 1 mM CEES treatment of these cells for 2, 4, and 24 h caused dose-dependent decreases in cell viability and proliferation as measured by DNA synthesis, together with S and G2-M phase arrest in cell cycle progression. Mechanistic studies showed phosphorylation of DNA damage sensors and checkpoint kinases, ataxia telangiectasia-mutated (ATM) at ser1981 and ataxia telangiectasia-Rad3-related (ATR) at ser428 within 30 min of CEES exposure, and modulation of S and G2-M phase-associated cell cycle regulatory proteins, which are downstream targets of ATM and ATR kinases. Hoechst-propidium iodide staining demonstrated that CEES-induced cell death was both necrotic and apoptotic in nature, and the latter was induced at 4 and 24 h of CEES treatment in HaCaT and JB6 cells, respectively. An increase in caspase-3 activity and both caspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage coinciding with CEES-caused apoptosis in both cell lines suggested the involvement of the caspase pathway. Together, our findings suggest a DNA-damaging effect of CEES that activates ATM/ATR cell cycle checkpoint signaling as well as caspase-PARP pathways, leading to cell cycle arrest and apoptosis/necrosis in both JB6 and HaCaT cells. The identified molecular targets, quantitative biomarkers, and epidermal cell models in this study have the potential and usefulness in rapid development of effective prophylactic and therapeutic interventions against HD-induced skin toxicity

  10. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    PubMed Central

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  11. Polypeptide from Chlamys farreri inhibits UVB-induced apoptosis of HaCaT cells via iNOS/NO and HSP90

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyang; Liu, Xiaojin; Liu, Tuo; Yan, Lin; Wang, Yuejun; Wang, Chunbo

    2009-09-01

    Polypeptide from Chlamys farreri (PCF) is a novel marine bioactive product that was isolated from the gonochoric Chinese scallop Chlamys farreri, and was found to be an effective antioxidant in our recent studies. In this study, we investigated the effect of PCF on ultraviolet B (UVB)-induced apoptosis of HaCaT cells and the intracellular signaling pathways involved. Pretreatment with the inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea sulfate inhibited UVB-induced apoptosis, indicating that iNOS and NO play important roles in apoptosis. On the other hand, the inhibition of UVB-induced apoptosis in the immortalized keratinocyte (HaCaT) cells by PCF was estimated using a DNA ladder. PCF treatment inhibited UVB-induced iNOS activation, as determined by RT-PCR, NO production, as determined by ESR, and up-regulated heat shock protein (HSP) 90 activation, as determined by Western blotting. Our results indicate that iNOS and NO are involved in UVB-induced apoptosis of HaCaT cells and the protective effect of PCF against UVB irradiation is exerted by suppressing the expression of iNOS, followed by inhibition of NO release and enhanced activation of HSP90.

  12. Salmon and king crab trypsin stimulate interleukin-8 and matrix metalloproteinases via protease-activated receptor-2 in the skin keratinocytic HaCaT cell line.

    PubMed

    Bhagwat, Sampada S; Larsen, Anett K; Winberg, Jan-Olof; Seternes, Ole-Morten; Bang, Berit E

    2014-07-01

    Occupational skin symptoms are prevalent among the workers of the seafood processing industry. In this study we investigate the role of salmon (Salmo salar) and king crab trypsin (Paralithodes camtschaticus) as inducers of inflammation in skin via secretion of inflammatory mediators. Human skin keratinocytes (HaCaT cells) were exposed to purified salmon and king crab trypsin. We observed that salmon trypsin enhanced the secretion of IL-8 and MMP-2 and crab trypsin enhanced the secretion of IL-8, MMP-2 and MMP-9 in a dose dependent manner. As protease activated receptors (PAR)-2 in skin are known to play an important role in physiology and pathology, we explored the involvement of these receptors in mediating the release of interleukin (IL)-8 and matrix metalloproteinase (MMP)-2 and -9 subsequent to exposure of skin keratinocytes to salmon and crab trypsin. In addition we observed that salmon and crab trypsin exhibit individual differences in stimulating the release of these inflammatory mediators. Finally, using specific small interfering RNA (siRNA) against PAR-2, we confirmed that the increase in secretion of IL-8, MMP-2 and MMP-9 in skin keratinocytes following exposure to salmon and crab trypsin was mediated via activation of PAR-2. These results suggest that exposure to proteases from the seafood may lead to inflammatory reactions in skin. PMID:24795235

  13. Light-Induced Cytotoxicity of 16 Polycyclic Aromatic Hydrocarbons on the US EPA Priority Pollutant List in Human Skin HaCaT Keratinocytes: Relationship Between Phototoxicity and Excited State Properties

    PubMed Central

    Wang, Shuguang; Sheng, Yinghong; Feng, Manliang; Leszczynski, Jerzy; Wang, Lei; Tachikawa, Hiroyasu; Yu, Hongtao

    2013-01-01

    The photocytotoxicity of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority pollutant list of the United States Environmental Protection Agency (US EPA) were tested in human skin HaCaT keratinocytes. A selected PAH was mixed with HaCaT cells and irradiated with a solar simulator lamp for a dose equivalent to 5 min of outdoor sunlight and the cell viability was determined immediately and also after 24 h of incubation. For the cells without incubation after the treatments, it is found that all PAHs with three rings or less, except anthracene, are not photocytotoxic, while the four or five-ring PAHs (except chrysene), benz[a]anthracene, dibenzo[a,h]anthracene, benzo[ghi]perylene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[b]fluorenthene, fluorenthene, and pyrene, are photocytotoxic to the human skin HaCaT keratinocytes. If the cells were incubated for 24 h after the treatments, the photocytotoxic effect of the PAHs was greatly amplified in comparison to the nonincubated cells. For the 24 h incubated cells, all PAHs except naphthalene exhibit photocytotoxicity to some extent. Exposure to 5 μM of the 4- and 5-ring PAHs (except chrysene) and 3-ring anthracene more than 80% of the cells lose viability. The photocytotoxicity of the PAHs correlates well with several of their excited state properties: light absorption, excited singlet-state energy, excited triplet-state energy, and HOMO-LUMO energy gap. All the photocytotoxic PAHs absorb light at >300 nm, in the solar UVB and UVA region. There is a threshold for each of the three excited state descriptors of a photocytotoxic PAH: singlet energy <355 kJ/mol (corresponding to 337 nm light), triplet energy <230 kJ/mol (corresponding to 520 nm light), HOMO-LUMO gap <3.6 eV (corresponding to 344 nm light) obtained at the Density Functional Theory B3LYP/6-31G(d) level. PMID:17497637

  14. Metabolomics of silver nanoparticles toxicity in HaCaT cells: structure-activity relationships and role of ionic silver and oxidative stress.

    PubMed

    Carrola, Joana; Bastos, Verónica; Jarak, Ivana; Oliveira-Silva, Rui; Malheiro, Eliana; Daniel-da-Silva, Ana L; Oliveira, Helena; Santos, Conceição; Gil, Ana M; Duarte, Iola F

    2016-10-01

    The widespread use of silver nanoparticles (AgNPs) is accompanied by a growing concern regarding their potential risks to human health, thus calling for an increased understanding of their biological effects. The aim of this work was to systematically study the extent to which changes in cellular metabolism were dependent on the properties of AgNPs, using NMR metabolomics. Human skin keratinocytes (HaCaT cells) were exposed to citrate-coated AgNPs of 10, 30 or 60 nm diameter and to 30 nm AgNPs coated either with citrate (CIT), polyethylene glycol (PEG) or bovine serum albumin (BSA), to assess the influence of NP size and surface chemistry. Overall, CIT-coated 60 nm and PEG-coated 30 nm AgNPs had the least impact on cell viability and metabolism. The role of ionic silver and reactive oxygen species (ROS)-mediated effects was also studied, in comparison to CIT-coated 30 nm particles. At concentrations causing an equivalent decrease in cell viability, Ag(+ )ions produced a change in the metabolic profile that was remarkably similar to that seen for AgNPs, the main difference being the lesser impact on the Krebs cycle and energy metabolism. Finally, this study newly reported that while down-regulated glycolysis and disruption of energy production were common to AgNPs and H2O2, the impact on some metabolic pathways (GSH synthesis, glutaminolysis and the Krebs cycle) was independent of ROS-mediated mechanisms. In conclusion, this study shows the ability of NMR metabolomics to define subtle biochemical changes induced by AgNPs and demonstrates the potential of this approach for rapid, untargeted screening of pre-clinical toxicity of nanomaterials in general. PMID:27144425

  15. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    PubMed Central

    Di Grazia, Antonio; Cappiello, Floriana; Imanishi, Akiko; Mastrofrancesco, Arianna; Picardo, Mauro; Paus, Ralf; Mangoni, Maria Luisa

    2015-01-01

    One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025–4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers. PMID:26068861

  16. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    SciTech Connect

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2014-08-08

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.

  17. 2,3-Dimethoxy-2′-hydroxychalcone ameliorates TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness via NF-kappaB inhibition and HO-1 induction in HaCaT cells

    PubMed Central

    Kim, Hyejin; Youn, Gi Soo; An, Soo Yeon; Kwon, Hyeok Yil; Choi, Soo Young; Park, Jinseu

    2016-01-01

    Up-regulation of adhesion molecules plays an important role in the infiltration of leukocytes into the skin during the development of various inflammatory skin diseases, such as atopic dermatitis. In this study, we investigated the modulatory effects of 2,3-dimethoxy-2′-hydroxychalcone (DMHC) on tumor necrosis factor (TNF)-α-induced intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesiveness, as well as the molecular mechanisms underlying its action in the HaCaT human keratinocyte cell line. Pre-treating HaCaT cells with DMHC significantly suppressed TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness. DMHC inhibited TNF-α-induced activation of NF-ᴋB. In addition, DMHC induced HO-1 expression as well as NRF2 activation. Furthermore, HO-1 knockdown using siRNA reversed the inhibitory effect of DMHC on TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that DMHC may inhibit TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes by suppressing the signaling cascades leading to NF-ᴋB activation and inducing HO-1 expression in keratinocytes. [BMB Reports 2016; 49(1): 57-62] PMID:26277982

  18. Label-free and non-invasive discrimination of HaCaT and melanoma cells in a co-culture model by hyperspectral confocal reflectance microscopy.

    PubMed

    Bertani, Francesca R; Botti, Elisabetta; Ferrari, Luisa; Mussi, Valentina; Costanzo, Antonio; D'Alessandro, Marco; Cilloco, Francesco; Selci, Stefano

    2016-06-01

    A novel hyperspectral confocal microscopy method to separate different cell populations in a co-culture model is presented here. The described methodological and instrumental approach allows discrimination of different cell types using a non-invasive, label free method with good accuracy with a single cell resolution. In particular, melanoma cells are discriminated from HaCaT cells by hyperspectral confocal imaging, principal component analysis and optical frequencies signing, as confirmed by fluorescence labelling cross check. The identification seems to be quite robust to be insensitive to the cellular shape within the studied samples, enabling to separate cells according to their cytotype down to a single cell sensitivity. Set of hyperspectral images of melanoma-keratinocytes co-culture model (left), score plot of principal component analysis and spectral analysis of principal components coefficients (center), label-free spectral identification of cell populations (right). PMID:26375607

  19. Butein, a tetrahydroxychalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes

    PubMed Central

    Seo, Won Yong; Youn, Gi Soo; Choi, Soo Young; Park, Jinseu

    2015-01-01

    Up-regulation of cell adhesion molecules and proinflammatory cytokines contributes to enhanced monocyte adhesiveness and infiltration into the skin, during the pathogenesis of various inflammatory skin diseases, including atopic dermatitis. In this study, we examined the anti-inflammatory effects of butein, a tetrahydroxychalcone, and its action mechanisms using TNF-α-stimulated keratinocytes. Butein significantly inhibited TNF-α-induced ICAM-I expression and monocyte adhesion in human keratinocyte cell line HaCaT. Butein also decreased TNF-α-induced pro-inflammatory mediators, such as IL-6, IP-10 and MCP-1, in HaCaT cells. Butein decreased TNF-α-induced ROS generation in a dose-dependent manner in HaCaT cells. In addition, treatment of HaCaT cells with butein suppressed TNF-α-induced MAPK activation. Furthermore, butein suppressed TNF-α-induced NF-kappaB activation. Overall, our results indicate that butein has immunomodulatory activities by inhibiting expression of proinflammatory mediators in keratinocytes. Therefore, butein may be used as a therapeutic agent for the treatment of inflammatory skin diseases. [BMB Reports 2015; 48(9): 495-500] PMID:25541056

  20. Influence of USP laser radiation on cell morphology: HaCat and MG-63 cell lines for bone and soft tissue modelling in dentistry

    NASA Astrophysics Data System (ADS)

    Meister, Joerg; Schelle, Florian; Beier, Imke; Bourauel, Christoph; Frentzen, Matthias; Kraus, Dominik

    Due to the high intensities of USP laser radiation, the interaction with matter is always attended with a plasma formation. Therefore the surrounding tissue can be influenced by heat generation and additional light emission from the UV up to the near and mid infrared. In dentistry it is of importance that the treatment of bone and soft tissues, i.e. oral mucosa, with a USP laser should not cause any kind of morphological changes on the cell level leading to a delayed wound healing or cell mutation. HaCaT keratinocyte cells were used for epidermal (soft tissue) and MG-63 osteoblast-like cells for hard tissue (bone) modelling. Cell growing was realized on glas cover slips. Irradiation was carried out with a USP Nd:YVO4 laser having a center wavelength at 1064 nm. Based on the pulse duration of 8 ps and a pulse repetition rate of 500 kHz the laser emits an average power of 9 W. For efficiency testing of cell removal on glas cover slips, 1, 5, 25, 50 and 75 repetitions of the scanning pattern (scan loops) were used. Heat distribution during laser irradiation was measured with an infrared camera system. Subsequently haematoxylin staining and SEM investigations were used to analyse the morphological changes. Differences of cell removal efficiency were observed with repetitions <=25. Irradiated areas with repetitions >=50 were cell-free. Additionally, repetitions >=25 showed side effects for both cell lines. Cell destruction in both cell lines could be verified using the haematoxylin staining and the SEM pictures.

  1. Selective loss of PMA-stimulated expression of matrix metalloproteinase 1 in HaCaT keratinocytes is correlated with the inability to induce mitogen-activated protein family kinases.

    PubMed Central

    Sudbeck, B D; Baumann, P; Ryan, G J; Breitkopf, K; Nischt, R; Krieg, T; Mauch, C

    1999-01-01

    Many cell types, including fibroblasts and primary keratinocytes, increase matrix metalloproteinase 1 (MMP-1) production in response to agonists such as growth factors and phorbol esters. However, the spontaneously transformed human keratinocyte cell line HaCaT, although it increases MMP-1 production in response to epidermal growth factor (EGF), does not respond similarly to stimulation with PMA. This phenomenon occurs even though HaCaT cells remain proliferatively responsive to both agonists, suggesting a HaCaT-specific defect in a PMA-mediated signal transduction pathway. Using an inside-out approach to elucidate the source of this defect, we found that EGF, but not PMA, stimulated MMP-1 promoter activity in transiently transfected HaCaT keratinocytes. In addition, an assessment of fibroblast and HaCaT c-fos and c-jun gene expression after exposure to EGF and PMA showed that although both agonists increased the expression of c-fos and c-jun mRNA in fibroblasts, only EGF did so in HaCaT keratinocytes. Finally, we looked at the activation of mitogen-activated protein (MAP) family kinases after stimulation with EGF or PMA and found that both agonists increased the phosphorylation and activation of fibroblast extracellular signal-regulated protein kinase and c-Jun N-terminal kinase, but only EGF activated the same kinase activities in HaCaT cells. Further, the EGF-mediated increase in MMP-1 gene expression was inhibited by the MAP kinase/ERK kinase (MEK)-specific inhibitor PD98059 and the p38 kinase-specific inhibitor SB203580. Our evidence indicates that although HaCaT MAP kinases are functional, they are not properly regulated in response to the activation of protein kinase C, and that the defect that bars HaCaT MMP-1 expression in response to stimulation with PMA lies before MAP kinase activation. PMID:10085241

  2. The modulatory effect of ellagic acid and rosmarinic acid on ultraviolet-B-induced cytokine/chemokine gene expression in skin keratinocyte (HaCaT) cells.

    PubMed

    Lembo, Serena; Balato, Anna; Di Caprio, Roberta; Cirillo, Teresa; Giannini, Valentina; Gasparri, Franco; Monfrecola, Giuseppe

    2014-01-01

    Ultraviolet radiation (UV) induces an increase in multiple cutaneous inflammatory mediators. Ellagic acid (EA) and rosmarinic acid (RA) are natural anti-inflammatory and immunomodulatory compounds found in many plants, fruits, and nuts. We assessed the ability of EA and RA to modulate IL-1β, IL-6, IL-8, IL-10, MCP-1, and TNF-α gene expression in HaCaT cells after UVB irradiation. Cells were treated with UVB (100 mJ/cm(2)) and simultaneously with EA (5 μM in 0.1% DMSO) or RA (2.7 μM in 0.5% DMSO). Moreover, these substances were added to the UVB-irradiated cells 1 h or 6 h before harvesting, depending on the established UVB-induced cytokine expression peak. Cytokine gene expression was examined using quantitative real time polymerase chain reaction. RA produced a significant reduction in UVB-induced expression of IL-6, IL-8, MCP-1, and TNF-α when applied at the same time as irradiation. EA showed milder effects compared with RA, except for TNF-α. Both substances decreased IL-6 expression, also when applied 5 h after irradiation, and always produced a significant increase in UVB-induced IL-10 expression. Our findings suggest that EA and RA are able to prevent and/or limit the UVB-induced inflammatory cascade, through a reduction in proinflammatory mediators and the enhancement of IL-10, with its protective function. PMID:25162011

  3. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—Generation of reactive oxygen species and cell damage

    SciTech Connect

    Yin, Jun-Jie; Liu, Jun; Ehrenshaft, Marilyn; Roberts, Joan E.; Fu, Peter P.; Mason, Ronald P.; Zhao, Baozhong

    2012-08-15

    Nano-sized titanium dioxide (TiO{sub 2}) is among the top five widely used nanomaterials for various applications. In this study, we determine the phototoxicity of TiO{sub 2} nanoparticles (nano-TiO{sub 2}) with different molecular sizes and crystal forms (anatase and rutile) in human skin keratinocytes under UVA irradiation. Our results show that all nano-TiO{sub 2} particles caused phototoxicity, as determined by the MTS assay and by cell membrane damage measured by the lactate dehydrogenase (LDH) assay, both of which were UVA dose- and nano-TiO{sub 2} dose-dependent. The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. The level of photocytotoxicity and cell membrane damage is mainly dependent on the level of reactive oxygen species (ROS) production. Using polyunsaturated lipids in plasma membranes and human serum albumin as model targets, and employing electron spin resonance (ESR) oximetry and immuno-spin trapping as unique probing methods, we demonstrated that UVA irradiation of nano-TiO{sub 2} can induce significant cell damage, mediated by lipid and protein peroxidation. These overall results suggest that nano-TiO{sub 2} is phototoxic to human skin keratinocytes, and that this phototoxicity is mediated by ROS generated during UVA irradiation. Highlights: ► We evaluate the phototoxicity of nano-TiO{sub 2} with different sizes and crystal forms. ► The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. ► The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. ► ESR oximetry and immuno-spin trapping techniques confirm UVA-induced cell damage. ► Phototoxicity is mediated by ROS generated during UVA irradiation of nano-TiO{sub 2}.

  4. Protective properties of ginsenoside Rb3 against UV-B radiation-induced oxidative stress in HaCaT keratinocytes.

    PubMed

    Oh, Sun-Joo; Oh, Yuri; Ryu, In Wang; Kim, Kyunghoon; Lim, Chang-Jin

    2015-01-01

    This work aimed to evaluate the skin anti-photoaging properties of ginsenoside Rb3 (Rb3), one of the main protopanaxdiol-type ginsenosides from ginseng, in HaCaT keratinocytes. The skin anti-photoaging activity was assessed by analyzing the levels of reactive oxygen species (ROS), pro-matrix metalloproteinase-2 (proMMP-2), pro-matrix metalloproteinase-9 (proMMP-9), total glutathione (GSH), and superoxide dismutase (SOD) activity as well as cell viability in HaCaT keratinocytes under UV-B irradiation. When HaCaT keratinocytes were exposed to Rb3 prior to UV-B irradiation, Rb3 exhibited suppressive activities on UV-B-induced ROS, proMMP-2, and proMMP-9 enhancements. On the contrary, Rb3 displayed enhancing activities on UV-B-reduced total GSH and SOD activity levels. Rb3 could not interfere with cell viabilities in UV-B-irradiated HaCaT keratinocytes. Rb3 plays a protective role against UV-B-induced oxidative stress in human HaCaT keratinocytes, proposing its potential skin anti-photoaging properties. PMID:26287932

  5. Redox Mechanisms of AVS022, an Oriental Polyherbal Formula, and Its Component Herbs in Protection against Induction of Matrix Metalloproteinase-1 in UVA-Irradiated Keratinocyte HaCaT Cells

    PubMed Central

    Pluemsamran, Thanyawan; Tripatara, Pinpat; Phadungrakwittaya, Rattana; Akarasereenont, Pravit; Laohapand, Tawee

    2013-01-01

    Ayurved Siriraj HaRak (AVS022) formula has been used for topical remedy of dermatologic disorders. Oxidative stress induced by ultraviolet (UV) A irradiation could be implicated in photoaged skin through triggering matrix metalloproteinase-1 (MMP-1). We, therefore, explored the antioxidant mechanisms by which AVS022 formulation and its individual components protected against UVA-dependent MMP-1 upregulation in keratinocyte HaCaT cells. TLC analysis revealed the presence of multiple phenolics including gallic acid (GA) in the AVS022 extracts. We demonstrated that pretreatment with the whole formula and individual herbal components except T. triandra protected against increased MMP-1 activity in irradiated HaCaT cells. Moreover, all herbal extracts and GA, used as the reference compound, were able to reverse cytotoxicity, oxidant production, glutathione (GSH) loss, and inactivation of catalase and glutathione peroxidase (GPx). F. racemosa was observed to yield the strongest abilities to abolish UVA-mediated induction of MMP-1 and impairment of antioxidant defenses including GSH and catalase. Our observations suggest that upregulation of endogenous antioxidants could be the mechanisms by which AVS022 and its herbal components suppressed UVA-stimulated MMP-1 in HaCaT cells. In addition, pharmacological actions of AVS022 formula may be attributed to the antioxidant potential of its components, in particular F. racemosa, and several phenolics including GA. PMID:24171043

  6. Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles.

    PubMed

    Maher, Marcus A; Byrne, Hugh J

    2016-07-01

    The mechanism of cellular uptake by endocytosis and subsequent oxidative stress has been identified as the paradigm for the toxic response of cationically surface charged nanoparticles. In an attempt to circumvent the process, the effect of increased cellular membrane permeability on the uptake mechanisms of poly(amidoamine) dendrimers generations 4 (G4) and 6 (G6) in vitro was investigated. Immortalised, non-cancerous human keratinocyte (HaCaT) cells were treated with DL-buthionine-(S,R)-sulfoximine (BSO). Active uptake of the particles was monitored using fluorescence microscopy to identify and quantify endosomal activity and resultant oxidative stress, manifested as increased levels of reactive oxygen species, monitored using the carboxy-H2DCFDA dye. Dose-dependent cytotoxicity for G4 and G6 exposure was registered using the cytotoxicity assays Alamar Blue and MTT, from 6 to 72 h. Reduced uptake by endocytosis is observed for both dendrimer species. A dramatic change, compared to untreated cells, is observed in the cytotoxic and oxidative stress response of the BSO-treated cells. The significantly increased mitochondrial activity, dose-dependent antioxidant behaviour and reduced degree of endocytosis for both dendrimer generations, in BSO-treated cells, indicate enhanced permeability of the cell membrane, resulting in the passive, diffusive uptake of dendrimers, replacing endocytosis as the primary uptake mechanism. The complex MTT response reflects the importance of glutathione in maintaining redox balance within the mitochondria. The study highlights the importance of regulation of this redox balance for cell metabolism but also points to the potential of controlling the nanoparticle uptake mechanisms, and resultant cytotoxicity, with implications for nanomedicine. PMID:27209595

  7. Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones reduce oxidative damage in ultraviolet B-irradiated HaCaT cells via a p38MAPK-independent mechanism

    PubMed Central

    Guo, Yan; Sun, Juan; Ye, Juan; Ma, Wenyu; Yan, Hualing; Wang, Gang

    2016-01-01

    Objective To investigate whether Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones exert apoptosis-inhibiting effects in ultraviolet B (UVB)-irradiated HaCaT cells. Methods We divided HaCaT cells into low radiation UVB and high radiation UVB groups. Low radiation UVB and high radiation UVB groups were further divided into a control group, UVB radiation group (UVB group), S. tridactyla Sch. Bip.-derived polysaccharides and flavones low-dose group, and S. tridactyla Sch. Bip.-derived polysaccharides and flavones high-dose group. Cell viability and morphology were assayed by MTT and trypan blue staining. Superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity test kits were used to detect superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity, respectively. Cell apoptosis, intracellular Ca2+ levels, and mitochondrial membrane potential (Δψ) were detected by flow cytometry. Protein levels were analyzed by Western blotting and immunofluorescence. Results S. tridactyla Sch. Bip.-derived polysaccharides and flavones were found to increase the absorbance of MTT, decrease cell death, alleviate the degree of cell edema, restore the cell morphology, reduce cell death fragments and chip phenomenon, increase superoxide dismutase activity, glutathione content, and catalase activity while decreasing the content of malondialdehyde, lowering the population of apoptotic cells, reducing the intracellular Ca2+ fluorescence, increasing the mitochondrial membrane potential (Δψ), increasing the expressions of p-38, p-53, Bcl-2, and decreasing the expressions of Bax and active-caspase-3. Conclusion S. tridactyla Sch. Bip.-derived polysaccharides and flavones can reduce cell apoptosis to protect HaCaT cells from oxidative damage after UVB irradiation; however, this effect does not occur via the p38MAPK pathway. PMID:26855564

  8. Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice.

    PubMed

    Lee, Chan; Park, Gyu Hwan; Ahn, Eun Mi; Kim, Bo-Ae; Park, Chan-Ik; Jang, Jung-Hee

    2013-04-01

    Acute exposure to ultraviolet (UV) radiation causes pro-inflammatory responses via diverse mechanisms including oxidative stress. Codium fragile is a green alga of Codiales family and has been reported to exhibit anti-edema, anti-allergic, anti-protozoal and anti-mycobacterial activities. In this study, we have investigated a novel anti-inflammatory potential of C. fragile using in vitro cell culture as well as in vivo animal models. In HaCaT cells, buthanol and ethylacetate fractions of 80% methanol C. fragile extract (CFB or CFE) and a single compound, clerosterol (CLS) isolated from CFE attenuated UVB (60 mJ/cm(2))-induced cytotoxicity and reduced expression of pro-inflammatory proteins including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF- α). Moreover, CFB, CFE and CLS effectively suppressed UVB-induced production of pro-inflammatory mediators such as prostaglandin E2 (PGE2) and nitric oxide (NO). In another experiment, topical application of CFB, CFE or CLS prior to UVB irradiation (200 mJ/cm(2)) on BALB/c mice, inhibited the UVB-elevated protein levels of COX-2, iNOS, and TNF-α. Furthermore, CFB, CFE and CLS suppressed oxidative damages caused by UVB irradiation for example lipid peroxidation and/or protein carbonylation, which seemed to be mediated by up-regulation of antioxidant defense enzymes. These results suggest that C. fragile could be an effective therapeutic agent providing protection against UVB-induced inflammatory and oxidative skin damages. PMID:23396144

  9. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies.

    PubMed

    Severino, Patrícia; Chaud, Marco V; Shimojo, Andrea; Antonini, Danilo; Lancelloti, Marcelo; Santana, Maria Helena A; Souto, Eliana B

    2015-05-01

    Polymyxins are a group of antibiotics with a common structure of a cyclic peptide with a long hydrophobic tail. Polymyxin B sulphate (PLX) has cationic charge, which is an obstacle for the efficient loading into Solid Lipid Nanoparticles (SLN). In the present paper, we describe an innovative method to load PLX into SLN to achieve the sustained release of the drug. PLX was firstly cross-linked with sodium alginate (SA) at different ratios (1:1, 1:2 and 1:3 SA/PLX), and loaded into SLN produced by high pressure homogenization (HPH). Optimized SLN were produced applying 500bar pressure and 5 homogenization cycles. The best results were obtained with SA/PLX (1:1), recording 99.08±1.2% for the association efficiency of the drug with SA, 0.99±10g for the loading capacity and 212.07±5.84% degree of swelling. The rheological profile of aqueous SA solution followed the typical behaviour of concentrated polymeric solutions, whereas aqueous SA/PLX solution exhibited a gel-like dynamic behaviour. Micrographs show that SA/PLX depicted a porous and discontinuous amorphous phase in different ratios. The encapsulation efficiency of SA/PLX (1:1) in SLN, the mean particle diameter, polydispersity index and zeta potential were, respectively, 82.7±5.5%; 439.5±20.42nm, 0.241±0.050 and -34.8±0.55mV. The effect of SLN on cell viability was checked in HaCat and NIH/3T3 cell lines, and the minimal inhibitory concentrations (MIC) were determined in Pseudomonas aeruginosa strains. SA/PLX-loaded SLN were shown to be less toxic than free PLX. Minimal inhibitory concentrations (MIC) showed the presence of the cross-linker polymer-drug complex, and SLN were shown to enhance MIC in the evaluated strains. PMID:25863712

  10. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells

    NASA Astrophysics Data System (ADS)

    Le, M.; Mothersill, C. E.; Seymour, C. B.; Ahmad, S. B.; Armstrong, A.; Rainbow, A. J.; McNeill, F. E.

    2015-08-01

    The luminescence intensity of 340+/- 5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to 90Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1× {{10}4} cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8× {{10}3}+/- 2.5× {{10}3} counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for 90Y activities 14 to 703 μCi where a positive relationship between photoemission and 90Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1× {{10}4} cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  11. Anti-Inflammatory Effect of Quercetagetin, an Active Component of Immature Citrus unshiu, in HaCaT Human Keratinocytes

    PubMed Central

    Kang, Gyeoung-Jin; Han, Sang-Chul; Ock, Jong-Woo; Kang, Hee-Kyoung; Yoo, Eun-Sook

    2013-01-01

    Citrus fruit contain various flavonoids that have multiple biological activities. However, the content of these flavonoids are changed during maturation and immature Citrus is known to contain larger amounts than mature. Chemokines are significant mediators for cell migration, while thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well known as the typical inflammatory chemokines in atopic dermatitis (AD), a pruritic and chronic inflammatory skin disease. We reported recently that the EtOH extract of immature Citrus unshiu inhibits TARC and MDC production. Therefore, we investigated the activity of flavonoids contained in immature Citrus on TARC and MDC levels. As a result, among the various flavonoids, quercetagetin has stronger inhibitory effects on the protein and mRNA expression of TARC and MDC than other flavonoids. Quercetagetin particularly has better activity on TARC and MDC level than quercetin. In HPLC analysis, the standard peak of quercetagetin matches the peaks of extract of immature C. unshiu. This suggests that quercetagetin is an anti-inflammatory component in immature C. unshiu. PMID:24009872

  12. Mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors sensitize reduced glucocorticoid response mediated by TNF{alpha} in human epidermal keratinocytes (HaCaT)

    SciTech Connect

    Onda, Kenji . E-mail: knjond@ps.toyaku.ac.jp; Nagashima, Masahiro; Kawakubo, Yo; Inoue, Shota; Hirano, Toshihiko; Oka, Kitaro

    2006-12-08

    Glucocorticoids (GCs) are essential drugs administered topically or systematically for the treatment of autoimmune skin diseases such as pemphigus. However, a certain proportion of patients does not respond well to GCs. Although studies on the relationship between cytokines and GC insensitivity in local tissues have attracted attention recently, little is known about the underlying mechanism(s) for GC insensitivity in epidermal keratinocytes. Here, we report that tumor necrosis factor (TNF) {alpha} reduces GC-induced transactivation of endogenous genes as well as a reporter plasmid which contains GC responsive element (GRE) in human epidermal keratinocyte cells (HaCaT). The GC insensitivity by TNF{alpha} was not accompanied by changes in mRNA expressions of GR isoforms ({alpha} or {beta}). However, we observed that mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors (PD98059 and U0126) significantly sensitized the GC-induced transactivation of anti-inflammatory genes (glucocorticoid-induced leucine zipper (GILZ) and mitogen-activated protein kinase phosphatase (MKP)-1) and FK506 binding protein (FKBP) 51 gene in the presence of TNF{alpha}. Additionally, we observed that TNF{alpha} reduced prednisolone (PSL)-dependent nuclear translocation of GR, which was restored by pre-treatment of MEK-1 inhibitors. This is the first study demonstrating a role of the MEK-1/ERK cascade in TNF{alpha}-mediated GC insensitivity. Our data suggest that overexpression of TNF{alpha} leads to topical GC insensitivity by reducing GR nuclear translocation in keratinocytes, and our findings also suggest that inhibiting the MEK-1/ERK cascade may offer a therapeutic potential for increasing GC efficacy in epidermis where sufficient inflammatory suppression is required.

  13. Essential role of an activator protein-2 (AP-2)/specificity protein 1 (Sp1) cluster in the UVB-mediated induction of the human vascular endothelial growth factor in HaCaT keratinocytes.

    PubMed Central

    Brenneisen, Peter; Blaudschun, Ralf; Gille, Jens; Schneider, Lars; Hinrichs, Ralf; Wlaschek, Meinhard; Eming, Sabine; Scharffetter-Kochanek, Karin

    2003-01-01

    Chronic sun exposure of the skin has long been postulated to enhance cutaneous angiogenesis, resulting in highly vascularized skin cancers. As the UVB component of sunlight is a major contributor to photocarcinogenesis, we aimed to explore the effects of UVB radiation on vascular endothelial growth factor (VEGF) gene expression, using the immortalized keratinocyte cell line HaCaT as a model for transformed premalignant epithelial cells. In the present paper, we studied the molecular mechanism of UVB-induced VEGF providing a major angiogenic activity in tumour progression and invasion. After 12-24 h of UVB irradiation, a 2.4- to 2.7-fold increase in endogenous VEGF protein level was measured, correlating with an up to 2.5-fold induction of promoter-based reporter gene constructs of VEGF. Furthermore, we identified a GC-rich UVB-responsive region between -87 and -65 bp of the VEGF promoter. In electrophoretic mobility-shift assays, this region binds Sp1-dependent protein complexes constitutively and an additional UVB-inducible protein complex distinct from Sp1 protein. The transcription factor AP-2 (activator protein-2) was detected as a component of the UVB-inducible protein complex. The critical role of the AP-2/Sp1 (specificity protein 1) cluster was supported by demonstration of a significant reduction of UVB-mediated promoter activity upon deletion of this recognition site. The specificity of this region for UVB irradiation was demonstrated using PMA, which increased VEGF activity in HaCaT cells after transient transfection of the deleted promoter construct. In conclusion, our data clarified regulatory mechanisms of UVB-dependent VEGF stimulation which may be critical for angiogenic processes in the skin. PMID:12358602

  14. Photoprotective effect of arctiin against ultraviolet B-induced damage in HaCaT keratinocytes is mediated by microRNA expression changes.

    PubMed

    Cha, Hwa Jun; Lee, Ghang Tai; Lee, Kwang Sik; Lee, Kun Kook; Hong, Jin Tae; Lee, Na Kyeong; Kim, Soo-Yeon; Lee, Bo Mi; An, In-Sook; Hahn, Hyung Jin; Ahn, Kyu Joong; Lee, Su-Jae; An, Sungkwan; Bae, Seunghee

    2014-09-01

    Human keratinocytes are located in the outermost skin layer and thus particularly vulnerable to ultraviolet B (UVB) radiation exposure. Previous studies have focused on the cellular and molecular perspectives of UVB-induced keratinocyte damage. In the present study, it was demonstrated that pretreatment with the phytochemical arctiin, one of the lignin compounds, protects human HaCaT keratinocytes from UVB-mediated damage. Biochemical assays revealed that UVB-induced cytotoxicity and cell death were significantly reduced in arctiin-pretreated HaCaT cells. In addition, arctiin promoted the wound healing and DNA repair properties of keratinocytes. The photoprotective effects of arctiin were associated with changes in the expression levels of specific microRNAs (miRNAs) in HaCaT cells. A bioinformatics analysis demonstrated that the miRNAs were functionally involved in cancer, cell cycle, and Wnt and mitogen-activated protein kinase signaling pathways. In the present study, the results from the cellular and molecular assays demonstrated a novel role for arctiin in UVB protection in keratinocytes, which is mediated by miRNA responses and the suppression of UVB-induced cell death. Furthermore, arctiin is implicated as a potential chemopreventive agent through UVB protection of keratinocytes. PMID:24926940

  15. Cellular localization of BARF1 oncoprotein and its cell stimulating activity in human epithelial cell.

    PubMed

    Sakka, Emna; Zur Hausen, Axel; Houali, Karim; Liu, Haying; Fiorini, Sylvie; Ooka, Tadamasa

    2013-06-01

    BARF1 gene encoded by Epstein-Barr virus is capable of immortalizing the primary monkey epithelial cells and of inducing malignant transformation in human EBV-negative B cell lines as well as rodent fibroblast. This oncoprotein is a secreted protein capable of acting as a powerful mitogen. We have studied the effect of BARF1 protein in transfected or BARF1 protein treated human HaCaT epithelial cells. In BARF1-transfected cells, cell growth was activated and its protein was found both in culture medium and cellular compartment (membrane, cytoplasm and nuclei). When purified BARF1 protein was exogenously added in the cell culture medium of HaCaT cells in absence of fetal calf serum led to its entrance into cells and its intracellular localization in cytoplasm, nuclear periphery and nuclei at 14h treatment, determined by confocal and immunoelectron microscopy. Cell fractionation confirmed its nuclear localization. Nuclear localization was observed in both systems. More interestingly, purified BARF1 protein p29 exogenously added in the cell culture medium activated cell passage of G1 to S phase. S phase activation by its autocrine activity and its tumorigenic activity would be associated with the development of EBV-associated carcinomas. PMID:23458996

  16. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells.

    PubMed

    Alarifi, Saud; Ali, Daoud; Verma, Ankit; Alakhtani, Saad; Ali, Bahy A

    2013-07-01

    The wide scale use of copper oxide nanoparticles (CuONPs) due to their unique properties and important applications in magnetic, thermal, electrical, sensor devices, and cosmetics makes human beings more prone to the exposure of CuONPs and its potential adverse effects. Exposure to such nanoparticles is mainly through skin and inhalation. Therefore, the aim of the present study was to assess the apoptotic and genotoxic potential of CuONPs (50 nm) in the human skin epidermal (HaCaT) cells and its underlying mechanism of cellular toxicity. Significant decreases in cell viability were observed with CuONPs exposure in a dose- and time-dependent manner and also induced significant reduction in glutathione and induction in lipid peroxidation, catalase, and superoxide dismutase in HaCaT cells. A significant increase in caspase-3 activity was observed with CuONPs exposure in HaCaT cells indicating apoptosis. Apoptosis or necrosis was confirmed with fluorescent staining (acridine orange and propidium iodide). The CuONPs also induced DNA damage that was mediated by oxidative stress. This study investigating the effects of CuONPs in human skin cells has provided valuable insights into the mechanism of potential toxicity induced by CuONPs. PMID:23667135

  17. Orange peel extract, containing high levels of polymethoxyflavonoid, suppressed UVB-induced COX-2 expression and PGE2 production in HaCaT cells through PPAR-γ activation.

    PubMed

    Yoshizaki, Norihiro; Fujii, Takahiro; Masaki, Hitoshi; Okubo, Takeshi; Shimada, Kunio; Hashizume, Ron

    2014-10-01

    Ultraviolet light (UV) induces an inflammatory response in the skin by cyclooxygenase (COX)-2 expression and prostaglandin (PG) E2 production. Citrus peel has been used as a natural medicine. It contains polymethoxyflavonoids (PMFs) as a major ingredient, which have anti-inflammatory activity. We obtained orange peel extract containing high levels of PMFs. The extract suppressed UVB-induced COX-2 expression and PGE2 production in HaCaT cells. Furthermore, it was found that this extract acted as a peroxisome proliferator-activated receptor (PPAR)-γ agonist. The suppression of UVB-induced COX-2 expression by this extract was inhibited by GW 9662 and T0070907, which are both PPAR-γ antagonists. It is therefore suggested that orange peel extract, containing high levels of PMFs, suppresses UVB-induced COX-2 expression and PGE2 production through PPAR-γ. Hence, these extracts could provide useful protection against or alleviation of UV damage. PMID:25234831

  18. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    NASA Technical Reports Server (NTRS)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  19. Amarogentin Displays Immunomodulatory Effects in Human Mast Cells and Keratinocytes

    PubMed Central

    Wölfle, Ute; Haarhaus, Birgit; Schempp, Christoph M.

    2015-01-01

    Keratinocytes express the bitter taste receptors TAS2R1 and TAS2R38. Amarogentin as an agonist for TAS2R1 and other TAS2Rs promotes keratinocyte differentiation. Similarly, mast cells are known to express bitter taste receptors. The aim of this study was to assess whether bitter compounds display immunomodulatory effects on these immunocompetent cells in the skin, so that they might be a target in chronic inflammatory diseases such as atopic dermatitis and psoriasis. Here, we investigated the impact of amarogentin on substance P-induced release of histamine and TNF-α from the human mast cell line LAD-2. Furthermore, the effect of amarogentin on HaCaT keratinocytes costimulated with TNF-α and histamine was investigated. Amarogentin inhibited in LAD-2 cells substance P-induced production of newly synthesized TNF-α, but the degranulation and release of stored histamine were not affected. In HaCaT keratinocytes histamine and TNF-α induced IL-8 and MMP-1 expression was reduced by amarogentin to a similar extent as with azelastine. In conclusion amarogentin displays immunomodulatory effects in the skin by interacting with mast cells and keratinocytes. PMID:26600671

  20. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes.

    PubMed

    Pattarachotanant, Nattaporn; Rakkhitawatthana, Varaporn; Tencomnao, Tewin

    2014-01-01

    Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17), was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K17 in a dose-dependent manner through JAK/STAT pathway as demonstrated by an observation of reduced phosphorylation of STAT3 (p-STAT3). The inhibitory activity of G. superba extract was more potent than that of C. roseus. The Pearson's correlation between K17 and cell viability was shown positive. Taken together, the extracts of G. superba and C. roseus may be developed as alternative therapies for psoriasis. PMID:25435888

  1. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes

    PubMed Central

    Pattarachotanant, Nattaporn; Rakkhitawatthana, Varaporn

    2014-01-01

    Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17), was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K17 in a dose-dependent manner through JAK/STAT pathway as demonstrated by an observation of reduced phosphorylation of STAT3 (p-STAT3). The inhibitory activity of G. superba extract was more potent than that of C. roseus. The Pearson's correlation between K17 and cell viability was shown positive. Taken together, the extracts of G. superba and C. roseus may be developed as alternative therapies for psoriasis. PMID:25435888

  2. Protective effects of citrus and rosemary extracts on UV-induced damage in skin cell model and human volunteers.

    PubMed

    Pérez-Sánchez, A; Barrajón-Catalán, E; Caturla, N; Castillo, J; Benavente-García, O; Alcaraz, M; Micol, V

    2014-07-01

    Ultraviolet radiation absorbed by the epidermis is the major cause of various cutaneous disorders, including photoaging and skin cancers. Although topical sunscreens may offer proper skin protection, dietary plant compounds may significantly contribute to lifelong protection of skin health, especially when unconsciously sun UV exposed. A combination of rosemary and citrus bioflavonoids extracts was used to inhibit UV harmful effects on human HaCaT keratinocytes and in human volunteers after oral intake. Survival of HaCaT cells after UVB radiation was higher in treatments using the combination of extracts than in those performed with individual extracts, indicating potential synergic effects. The combination of extracts also decreased UVB-induced intracellular radical oxygen species (ROS) and prevented DNA damage in HaCaT cells by comet assay and decreased chromosomal aberrations in X-irradiated human lymphocytes. The oral daily consumption of 250 mg of the combination by human volunteers revealed a significant minimal erythema dose (MED) increase after eight weeks (34%, p<0.05). Stronger protection was achieved after 12 weeks (56%, p<0.01). The combination of citrus flavonoids and rosemary polyphenols and diterpenes may be considered as an ingredient for oral photoprotection. Their mechanism of action may deserve further attention. PMID:24815058

  3. Aberrantly Expressed Genes in HaCaT Keratinocytes Chronically Exposed to Arsenic Trioxide

    PubMed Central

    Udensi, Udensi K.; Cohly, Hari H.P.; Graham-Evans, Barbara E.; Ndebele, Kenneth; Garcia-Reyero, Natàlia; Nanduri, Bindu; Tchounwou, Paul B.; Isokpehi, Raphael D.

    2011-01-01

    Inorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic arsenic are not completely understood. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene function annotation will identify aberrantly expressed genes in HaCaT keratinocyte cell line after chronic treatment with arsenic trioxide. Microarray data analysis identified 14 up-regulated genes and 21 down-regulated genes in response to arsenic trioxide. The expression of 4 up-regulated genes and 1 down-regulated gene were confirmed by qRT-PCR. The up-regulated genes were AKR1C3 (Aldo-Keto Reductase family 1, member C3), IGFL1 (Insulin Growth Factor-Like family member 1), IL1R2 (Interleukin 1 Receptor, type 2), and TNFSF18 (Tumor Necrosis Factor [ligand] SuperFamily, member 18) and down-regulated gene was RGS2 (Regulator of G-protein Signaling 2). The observed over expression of TNFSF18 (167 fold) coupled with moderate expression of IGFL1 (3.1 fold), IL1R2 (5.9 fold) and AKR1C3 (9.2 fold) with a decreased RGS2 (2.0 fold) suggests that chronic arsenic exposure could produce sustained levels of TNF with modulation by an IL-1 analogue resulting in chronic immunologic insult. A concomitant decrease in growth inhibiting gene (RGS2) and increase in AKR1C3 may contribute to chronic inflammation leading to metaplasia, which may eventually lead to carcinogenicity in the skin keratinocytes. Also, increased expression of IGFL1 may trigger cancer development and progression in HaCaT keratinocytes. PMID:21461292

  4. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    PubMed Central

    Hofmann, Ute; Priem, Melanie; Bartzsch, Christine; Winckler, Thomas; Feller, Karl-Heinz

    2014-01-01

    In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B' promoter were constructed. Exposure of HaCaT sensor cells to 25 μM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ∼300-fold induction of transcript level of the gene coding for heat shock protein HSP70B'. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B' gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B' promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 μM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (μTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings. PMID:24967604

  5. Effects of lunar and mars dust simulants on HaCaT keratinocytes and CHO-K1 fibroblasts

    NASA Astrophysics Data System (ADS)

    Rehders, Maren; Grosshäuser, Bianka B.; Smarandache, Anita; Sadhukhan, Annapurna; Mirastschijski, Ursula; Kempf, Jürgen; Dünne, Matthias; Slenzka, Klaus; Brix, Klaudia

    2011-04-01

    Exposure to lunar dust during Apollo missions resulted in occasional reports of ocular, respiratory and dermal irritations which showed that lunar dust has a risk potential for human health. This is caused by its high reactivity as well as its small size, leading to a wide distribution also inside habitats. Hence, detailed information regarding effects of extraterrestrial lunar dusts on human health is required to best support future missions to moon, mars or other destinations. In this study, we used several methods to assess the specific effects of extraterrestrial dusts onto mammalian skin by exposing HaCaT keratinocytes and CHO-K1 fibroblasts to dusts simulating lunar or mars soils. These particular cell types were chosen because the skin protects the human body from potentially harmful substances and because a well orchestrated program ensures proper wound healing. Keratinocytes and fibroblasts were exposed to the dusts for different durations of time and their effects on morphology and viability of the cells were determined. Cytotoxicity was measured using the MTT assay and by monitoring culture impedance, while phalloidin staining of the actin cytoskeleton was performed to address structural integrity of the cells which was also investigated by propidium iodide intake. It was found that the effects of the two types of dust simulants on the different features of both cell lines varied to a considerable extent. Moreover, proliferation of HaCaT keratinocytes, as analyzed by Ki67 labeling, was suppressed in sub-confluent cultures exposed to lunar dust simulant. Furthermore, experimental evidence is provided for a delay in regeneration of keratinocyte monolayers from scratch-wounding when exposed to lunar dust simulant. The obtained results will facilitate further investigations of dust exposure during wound healing and will ease risk assessment studies e.g., for lunar lander approaches. The investigations will help to determine safety measures to be taken during

  6. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    PubMed Central

    Nie, W.; Deters, A. M.

    2013-01-01

    Xyloglucans (XGs) of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw) and copper complex precipitation (TSc). Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT) and fibroblasts (NHDF) in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration. PMID:24106497

  7. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways.

    PubMed

    Nie, W; Deters, A M

    2013-01-01

    Xyloglucans (XGs) of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw) and copper complex precipitation (TSc). Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT) and fibroblasts (NHDF) in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration. PMID:24106497

  8. Increased expression of the histamine H4 receptor following differentiation and mediation of the H4 receptor on interleukin-8 mRNA expression in HaCaT keratinocytes.

    PubMed

    Suwa, Eriko; Yamaura, Katsunori; Sato, Shiori; Ueno, Koichi

    2014-02-01

    Recent in vivo studies have demonstrated involvement of the histamine H4 receptor in pruritus and skin inflammation. We previously reported that an H4 receptor antagonist attenuated scratching behaviour and improved skin lesions in an experimental model of atopic dermatitis. We also reported the expression of the H4 receptor in human epidermal tissues. In this study, we investigated the expression of H4 receptor mRNA and the function of the receptor in a culture system that mimics in vivo inflammation on the HaCaT human keratinocyte cell line. Increased expression of the H4 receptor was observed in HaCaT cells following differentiation. Treatment of HaCaT cells with histamine and TNFα enhanced the mRNA expression of interleukin (IL)-8. These increases in expression were significantly inhibited by the H4 receptor antagonist JNJ7777120. Our results indicate that IL-8 mRNA expression might be enhanced by histamine and TNFα via H4 receptor stimulation in keratinocytes. PMID:24372819

  9. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  10. Temporins A and B stimulate migration of HaCaT keratinocytes and kill intracellular Staphylococcus aureus.

    PubMed

    Di Grazia, Antonio; Luca, Vincenzo; Segev-Zarko, Li-Av T; Shai, Yechiel; Mangoni, Maria Luisa

    2014-05-01

    The growing number of microbial pathogens resistant to available antibiotics is a serious threat to human life. Among them is the bacterium Staphylococcus aureus, which colonizes keratinocytes, the most abundant cell type in the epidermis. Its intracellular accumulation complicates treatments against resulting infections, mainly due to the limited diffusion of conventional drugs into the cells. Temporins A (Ta) and B (Tb) are short frog skin antimicrobial peptides (AMPs). Despite extensive studies regarding their antimicrobial activity, very little is known about their activity on infected cells or involvement in various immunomodulatory functions. Here we show that Tb kills both ATCC-derived and multidrug-resistant clinical isolates of S. aureus within infected HaCaT keratinocytes (80% and 40% bacterial mortality, respectively) at a nontoxic concentration, i.e., 16 μM, whereas a weaker effect is displayed by Ta. Furthermore, the peptides prevent killing of keratinocytes by the invading bacteria. Further studies revealed that both temporins promote wound healing in a monolayer of HaCaT cells, with front speed migrations of 19 μm/h and 12 μm/h for Ta and Tb, respectively. Migration is inhibited by mitomycin C and involves the epidermal growth factor receptor (EGFR) signaling pathway. Finally, confocal fluorescence microscopy indicated that the peptides diffuse into the cells. By combining antibacterial and wound-healing activities, Ta and Tb may act as multifunctional mediators of innate immunity in humans. Particularly, their nonendogenous origin may reduce microbial resistance to them as well as the risk of autoimmune diseases in mammals. PMID:24514087

  11. Extinction of the HPV18 upstream regulatory region in cervical carcinoma cells after fusion with non-tumorigenic human keratinocytes under non-selective conditions.

    PubMed Central

    Rösl, F; Achtstätter, T; Bauknecht, T; Hutter, K J; Futterman, G; zur Hausen, H

    1991-01-01

    'Universal fuser' clones of a human papillomavirus type 16 positive cervical carcinoma cell line (SiHa) were established to study the effect of a non-tumorigenic fusion partner on the regulation of a stably integrated chloramphenicol acetyltransferase (CAT) gene controlled by the HPV18 upstream regulatory region under non-selective conditions. The CAT expressing cells were fused with both non-tumorigenic, spontaneously immortalized human keratinocytes (HaCaT) and non-modified SiHa cells. The resulting hybrids were characterized by restriction enzyme fragment length polymorphism analysis and flow cytometry. While the non-selectable, HPV18-driven indicator gene is constitutively expressed in SiHa cells, the CAT activity is extinguished in SiHa x HaCaT cells, but still present in SiHa x SiHa hybrids. Examination of the cytokeratin expression pattern reveals that the keratinocyte phenotype seems not only to be dominant in terms of the extinction of the HPV18 regulatory region but also by the conservation of most of the differentiation markers of the non-tumorigenic fusion partner. Cycloheximide treatment and intracellular competition experiments using the transient COS7 fusion-amplification technique are accompanied by the reactivation of the marker gene in previously CAT- SiHa x HaCaT hybrids. These data strongly suggest that trans-acting negative regulatory factors derived from the non-malignant human keratinocytes are responsible for the extinction phenomenon. Images PMID:1709093

  12. Aronia melanocarpa Concentrate Ameliorates Pro-Inflammatory Responses in HaCaT Keratinocytes and 12-O-Tetradecanoylphorbol-13-Acetate-Induced Ear Edema in Mice.

    PubMed

    Goh, Ah Ra; Youn, Gi Soo; Yoo, Ki-Yeon; Won, Moo Ho; Han, Sang-Zin; Lim, Soon Sung; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-07-01

    Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases. PMID:27331630

  13. POF1B localizes to desmosomes and regulates cell adhesion in human intestinal and keratinocyte cell lines.

    PubMed

    Crespi, Arianna; Bertoni, Alessandra; Ferrari, Ilaria; Padovano, Valeria; Della Mina, Pamela; Berti, Emilio; Villa, Antonello; Pietrini, Grazia

    2015-01-01

    By means of morphological and biochemical criteria, we here provide evidence for the localization and function of premature ovarian failure, 1B (POF1B) in desmosomes. In monolayers of Caco-2 intestinal cells and in stratified HaCaT keratinocytes, endogenous POF1B colocalized with desmoplakin at desmosome plaques and in cytoplasmic particles aligned along intermediate filaments (IFs). POF1B predominantly co-fractionated with desmosomes and IF components and exhibited properties characteristic of desmosomes (i.e., detergent insolubility and calcium independence). The role of NH2 and COOH domains in the association of POF1B with desmosomes and IFs was revealed by transient expression of the truncated protein in Caco-2 cells and in cells lacking desmosomes. The function of POF1B in desmosomes was investigated in HaCaT keratinocytes stably downregulated for POF1B expression. Transmission electron microscopy analysis revealed a decrease in desmosome number and size, and desmosomes of the downregulated keratinocytes displayed weak electron-dense plaques. Desmosome alterations were associated with defects in cell adhesion, as revealed by the reduced resistance to mechanical stress in the dispase fragmentation assay. Moreover, desmosome localization of POF1B was restricted to granular layers in human healthy epidermis, whereas it largely increased in hyperproliferative human skin diseases, thus demonstrating the localization of POF1B also in desmosomes of multistratified epithelia. PMID:25084053

  14. CYTOTOXICITY AND PHOTOTOXICITY OF TITANIUM AND CERIUM DIOXIDE NANOPARTICLES IN HUMAN KERATINOCYTE HaCaT CELLS

    EPA Science Inventory

    The skin is a potential exposure site to metal oxide nanoparticles because of their use in commercial products such as sunscreens and potential release into the environment. This study assessed cytotoxicity and phototoxicity of titanium dioxide (size range 22 to 214 nm) and ceri...

  15. Protective effect of Disporum sessile D.Don extract against UVB-induced photoaging via suppressing MMP-1 expression and collagen degradation in human skin cells.

    PubMed

    Mohamed, Mohamed Antar Aziz; Jung, Mira; Lee, Sang Min; Lee, Tae Hoon; Kim, Jiyoung

    2014-04-01

    In the present study, we report that Disporum sessile D.Don herbal extract (DDE) possesses anti-skin photoaging effect through inhibition of MMP-1 mRNA and protein expression levels and increase collagen production in UVB-irradiated human dermal fibroblast cells (NHDF). To delineate the molecular mechanism by which DDE inhibited MMP-1 expression, immortal human keratinocytes cells (HaCaT) have been used. We have found that DDE inhibited UVB-induced MMP-1 mRNA and protein expression levels in HaCaT cells through inhibition of UVB-induced activation of NF-κB in HaCaT cells. Inhibitors of NF-κB (Bay11-7082), and mitogen-activated protein kinases such as extracellular regulated kinase (PD98059), c-Jun N-terminal kinase (SP600125), and p38 (SB203580) suppressed expression of MMP-1, and phosphorylation of these signaling molecules were attenuated by DDE. DDE also inhibited phosphorylation of IKKα and IκBα, and reduced nuclear translocation of NF-κB. Our results also demonstrated that DDE inhibited NF-κB driven expression of luciferase reporter gene and the DNA binding of NF-κB to its cognate binding site in UV-irradiated cells. Therefore, these results strongly suggest that DDE can be utilized as a potential agent for prevention and treatment of skin photoaging. PMID:24705373

  16. The effect of resveratrol and its methylthio-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes.

    PubMed

    Krajka-Kuźniak, Violetta; Szaefer, Hanna; Stefański, Tomasz; Sobiak, Stanisław; Cichocki, Michał; Baer-Dubowska, Wanda

    2014-09-01

    Resveratrol is the most extensively studied stilbene derivative. We previously showed that methylthiostilbenes were more effective inhibitors of CYP1A1 and 1B1 activity than resveratrol. In this study, we investigated whether resveratrol and its methylthio-substituted derivatives, i.e. 3-M-4'-MTS (S2), 3,5-DM-4'-MTS (S5) and 3,4,5-TM-4'-MTS (S7) could activate Nrf2 signaling in the mouse epidermis and in human keratinocytes. Western blot analysis showed translocation of Nrf2 from the cytosol to the nucleus in both models. All of the tested stilbenes increased GST activity, but resveratrol was the most effective inducer. Moreover, only resveratrol increased the protein level of GSTP in the mouse epidermis. GSTM was enhanced in HaCaT cells after the treatment with derivatives S2 and S5. The same effect was observed for GSTP in the case of compound S2. Resveratrol and its derivatives reduced the NQO2 protein level in HaCaT cells. Thus, it is possible that increased expression of GSTP or GSTM and GST activity was linked with NQO2 inhibition in these cells. The results of this study indicate that resveratrol and its methylthioderivatives activate Nrf2 not only in the mouse epidermis, but also in human keratinocytes. Upregulating GST isozymes might be particularly important for deactivating chemical carcinogens, such as PAH. PMID:25169438

  17. Zinc-metallothionein genoprotective effect is independent of the glutathione depletion in HaCaT keratinocytes after solar light irradiation.

    PubMed

    Jourdan, Eric; Marie Jeanne, Richard; Régine, Steiman; Pascale, Guiraud

    2004-06-01

    UV radiations are the major environmental factors that induce DNA damage of skin cells either by direct absorption (UVB), or after inducing an oxidative stress (UVA and UVB). Cells maintain a reducing intracellular environment to avoid genomic damage. MTs have been expected not only to control metal homeostasis but also counteract the glutathione (GSH) depletion induced by oxidative stress because of their high thiol content. Induction and redistribution of MTs in cultured human keratinocytes (HaCaT) in response to SSL, is an important cellular defense mechanism against DNA damage. Reduced glutathione (GSH) is another way of cellular protection against UV-induced oxidative stress. This study which extend our previous finding focused on the relation between intracellular GSH and Zn genoprotective effects after solar irradiation. HaCaT cells, depleted or not in GSH by a chemical treatment were used to compare MTs induction by Northern blot, expression by Western blot and localization using immunocytochemistry. Zn genoprotection experiments after SSL irradiation was carried out by the comet assay. We demonstrated that in absence of GSH, Zn-MTs could protect DNA after SSL irradiation and that GSH depletion has no effect on MTs induction and localization. Nuclear Zn-MTs could be responsible for this observed genoprotection in GSH depleted cells. So the GSH/Zn and the MT/Zn systems could be two independent but interacting mechanisms of cellular protection against SSL injury. PMID:15156574

  18. Dioxinodehydroeckol protects human keratinocyte cells from UVB-induced apoptosis modulated by related genes Bax/Bcl-2 and caspase pathway.

    PubMed

    Ryu, BoMi; Ahn, Byul-Nim; Kang, Kyong-Hwa; Kim, Young-Sang; Li, Yong-Xin; Kong, Chang-Suk; Kim, Se-Kwon; Kim, Dong Gyu

    2015-12-01

    Although ultraviolet B (UVB) has a low level of skin penetration, it readily results in epidermal sunburn of keratinocytes that are destined to apoptosis after sun expose, and leads to DNA damage. Dioxinodehydroeckol (DHE), a phlorotannin from Ecklonia cava has been explored for its preventive activity against UVB-induced apoptosis in human keratinocyte (HaCaT) cells; however, the protective effects of treatment with low doses of DHE on UVB-damaged cells post-UVB exposure and their underlying mechanisms still remain unclear. The HaCaT cells were exposed to 20 mJcm(-2) of UVB irradiation which is the minimal erythema dose (MED) for individuals to be able to tan, and the expression levels of Bax/Bcl-2 and caspase-3,-8, -9 which are associated genes with apoptosis were investigated when we either treated cells with DHE doses after UVB irradiation or exposed them to UVB only. Our results suggest insight into proposed mechanistic pathway of protective activity of DHE on the HaCaT cells from UVB-induced apoptosis, indicating the benefit of DHE as a repair agent for skin damage against UVB. PMID:26529485

  19. Antioxidant Biomarkers from Vanda coerulea Stems Reduce Irradiated HaCaT PGE-2 Production as a Result of COX-2 Inhibition

    PubMed Central

    Simmler, Charlotte; Antheaume, Cyril; Lobstein, Annelise

    2010-01-01

    Background In our investigations towards the isolation of potentially biologically active constituents from Orchidaceae, we carried out phytochemical and biological analyses of Vanda species. A preliminary biological screening revealed that Vanda coerulea (Griff. ex. Lindl) crude hydro-alcoholic stem extract displayed the best DPPH /•OH radical scavenging activity and in vitro inhibition of type 2 prostaglandin (PGE-2) release from UVB (60 mJ/cm2) irradiated HaCaT keratinocytes. Principal Findings Bio-guided fractionation and phytochemical analysis led to the isolation of five stilbenoids: imbricatin (1) methoxycoelonin (2) gigantol (3) flavidin (4) and coelonin (5). Stilbenoids (1–3) were the most concentrated in crude hydro-alcoholic stem extract and were considered as Vanda coerulea stem biomarkers. Dihydro-phenanthropyran (1) and dihydro-phenanthrene (2) displayed the best DPPH/•OH radical scavenging activities as well as HaCaT intracellular antioxidant properties (using DCFH-DA probe: IC50 8.8 µM and 9.4 µM, respectively) compared to bibenzyle (3) (IC50 20.6 µM). In turn, the latter showed a constant inhibition of PGE-2 production, stronger than stilbenoids (1) and (2) (IC50 12.2 µM and 19.3 µM, respectively). Western blot analysis revealed that stilbenoids (1–3) inhibited COX-2 expression at 23 µM. Interestingly, stilbenoids (1) and (2) but not (3) were able to inhibit human recombinant COX-2 activity. Conclusions Major antioxidant stilbenoids (1–3) from Vanda coerulea stems displayed an inhibition of UVB-induced COX-2 expression. Imbricatin (1) and methoxycoelonin (2) were also able to inhibit COX-2 activity in a concentration-dependent manner thereby reducing PGE-2 production from irradiated HaCaT cells. Our studies suggest that stilbenoids (1–3) could be potentially used for skin protection against the damage caused by UVB exposure. PMID:21060890

  20. Characterization of prenyl protein transferase enzymes in a human keratinocyte cell line.

    PubMed

    MacNulty, E E; Ryder, N S

    1996-02-01

    Prenylation is a post-translational modification of proteins that involves the attachment of an isoprenoid group derived from mevalonic acid, either 15-carbon farnesyl or 20-carbon geranylgeranyl, to a specific carboxy-terminal domain of acceptor proteins. Three prenyl transferase enzymes have been identified so far. In this paper we report the presence of two prenyl transferases in the HaCaT human keratinocyte cell line. Chromatography of a cytosolic extract from these cells resolved a farnesyl protein transferase (FPT) and geranylgeranyl protein transferase-I (GGPT-I) whose activities were measured using a novel peptide-based assay. Both enzymes were inhibited dose dependently by zaragozic acids A and C. Zaragozic acid C was more active towards the FPT than GGPT-I while zaragozic acid A inhibited both enzymes with similar potency. Incubation of HaCaT cell homogenates with [3H] prenyl precursors resulted in the labelling of a number of proteins which was increased when the cells were pretreated with an inhibitor of hydroxymethylglutaryl CoA reductase. Given the role of prenylated proteins in proliferative and inflammatory processes, our finding that prenyl transferases capable of prenylating endogenous substrates are also present in keratinocytes suggests that these enzymes might provide novel therapeutic targets of dermatological importance. PMID:8605230

  1. The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line.

    PubMed

    Bastos, V; Ferreira de Oliveira, J M P; Brown, D; Jonhston, H; Malheiro, E; Daniel-da-Silva, A L; Duarte, I F; Santos, C; Oliveira, H

    2016-05-13

    Surface coating of silver nanoparticles may influence their toxicity, in a way yet to decipher. In this study, human keratinocytes (HaCaT cells) were exposed for 24 and 48h to well-characterized 30nm AgNPs coated either with citrate (Cit30 AgNPs) or with poly(ethylene glycol) (PEG30 AgNPs), and assessed for cell viability, reactive oxygen species (ROS), cytokine release, apoptosis and cell cycle dynamics. The results showed that Cit30 AgNPs and PEG30 AgNPs decreased cell proliferation and viability, the former being more cytotoxic. The coating molecules per se were not cytotoxic. Moreover, Ag(+) release and ROS production were similar for both AgNP types. Cit30 AgNPs clearly induced apoptotic death, while cells exposed to PEG30 AgNPs appeared to be at an earlier phase of apoptosis, supported by changes in BAX, BCL2 and CASP-3 expressions. Concerning the impact on cell cycle dynamics, both Cit30 and PEG30 AgNPs affected cell cycle regulation of HaCaT cells, but, again, citrate-coating induced more drastic effects, showing earlier downregulation of cyclin B1 gene and cellular arrest at the G2 phase. Overall, this study has shown that the surface coating of AgNPs influences their toxicity by differently regulating cell-cycle and cell death mechanisms. PMID:27021274

  2. Induction of differentiation-associated changes in established human cells by infection with adeno-associated virus type 2.

    PubMed Central

    Klein-Bauernschmitt, P; zur Hausen, H; Schlehofer, J R

    1992-01-01

    The nonpathogenic human defective parvovirus adeno-associated virus (AAV) type 2 induced differentiation-associated antigens in cells of the human leukemia cell line HL60 (CD 67), as well as in two different lines of immortalized human keratinocytes, HaCaT and HPK Ia cells (involucrin and cytokeratin 10). Simultaneously, expression of the c-myc and c-myb oncogenes and the retinoblastoma gene was down regulated whereas c-fos expression increased in infected cells. These data point to the potential of AAV to induce functions related to the differentiation pathway in different types of human cells. This phenomenon may be involved in the reported oncosuppressive properties of AAV infections. Images PMID:1318400

  3. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    SciTech Connect

    Huang, Li-Wen; Hsieh, Bau-Shan; Cheng, Hsiao-Ling; Hu, Yu-Chen; Chang, Wen-Tsan; Chang, Kee-Lung

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  4. Cytoprotective responses in HaCaT keratinocytes exposed to high doses of curcumin.

    PubMed

    Lundvig, Ditte M S; Pennings, Sebastiaan W C; Brouwer, Katrien M; Mtaya-Mlangwa, Matilda; Mugonzibwa, Emeria; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2015-08-15

    Wound healing is a complex process that involves the well-coordinated interactions of different cell types. Topical application of high doses of curcumin, a plant-derived polyphenol, enhances both normal and diabetic cutaneous wound healing in rodents. For optimal tissue repair interactions between epidermal keratinocytes and dermal fibroblasts are essential. We previously demonstrated that curcumin increased reactive oxygen species (ROS) formation and apoptosis in dermal fibroblasts, which could be prevented by pre-induction of the cytoprotective enzyme heme oxygenase (HO)-1. To better understand the effects of curcumin on wound repair, we now assessed the effects of high doses of curcumin on the survival of HaCaT keratinocytes and the role of the HO system. We exposed HaCaT keratinocytes to curcumin in the presence or absence of the HO-1 inducers heme (FePP) and cobalt protoporphyrin (CoPP). We then assessed cell survival, ROS formation, and caspase activation. Curcumin induced caspase-dependent apoptosis in HaCaT keratinocytes via a ROS-dependent mechanism. Both FePP and CoPP induced HO-1 expression, but only FePP protected against curcumin-induced ROS formation and caspase-mediated apoptosis. In the presence of curcumin, FePP but not CoPP induced the expression of the iron scavenger ferritin. Together, our data show that the induction of ferritin, but not HO, protects HaCaT keratinocytes against cytotoxic doses of curcumin. The differential response of fibroblasts and keratinocytes to high curcumin doses may provide the basis for improving curcumin-based wound healing therapies. PMID:26071936

  5. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage.

    PubMed

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-07-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death. PMID:26157553

  6. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

    PubMed Central

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-01-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death. PMID:26157553

  7. Cytotoxic effect and mechanism inducing cell death of α-mangostin liposomes in various human carcinoma and normal cells.

    PubMed

    Benjakul, Ruthairat; Kongkaneramit, Lalana; Sarisuta, Narong; Moongkarndi, Primchanien; Müller-Goymann, Christel C

    2015-09-01

    The aims of this study were to develop α-mangostin liposomes as well as to evaluate their physicochemical properties and cytotoxic activity. α-Mangostin liposomes were prepared using the reverse-phase evaporation method with lipid composition of phosphatidylcholine to cholesterol at 7 : 3 molar ratios; their physicochemical properties and antiproliferative activity were assessed using an MTT assay in four human carcinoma cells [that is, human lung epithelial carcinoma (Calu-3), human colon carcinoma (HT-29), human breast carcinoma (MCF-7), and human colon carcinoma (Caco-2) cells], and two human normal cells [that is, human dermal fibroblasts (HDF) and human adult low-calcium elevated temperature (HaCaT) keratinocytes]. Determinations of morphological changes and oligonucleosomal DNA fragments were also carried out. The liposomal dispersions obtained were unilamellar vesicles as confirmed by cryotransmission and freeze-fracture electron microscopy with a particle size of 114 nm and a ζ potential of -2.56 mV. The P-NMR spectra showed that α-mangostin molecules orientated in the phospholipid bilayer membrane. The α-mangostin could appreciably be entrapped with an efficiency and loading of 81 and 4%, respectively. The antiproliferative activity of α-mangostin liposomes in various cancer and normal cells showed a dose-dependent inhibition in all treated cell lines. The antiproliferative effect of α-mangostin liposomes was found to be associated with apoptosis, with differences in sensitivity among the cell lines treated. PMID:25811966

  8. Ispaghula (Plantago ovata) seed husk polysaccharides promote proliferation of human epithelial cells (skin keratinocytes and fibroblasts) via enhanced growth factor receptors and energy production.

    PubMed

    Deters, A M; Schröder, K R; Smiatek, T; Hensel, Andreas

    2005-01-01

    Endogenous carbohydrates, especially oligo- and polysaccharides, participate in the regulation of a broad range of biological activities, e. g., signal transduction, inflammation, fertilisation, cell-cell-adhesion and act as in vivo markers for the determination of cell types. In the present study, water-soluble (WS) and gel-forming polysaccharides (GF) of ispaghula seed husk (Plantago ovata Forsskal, Plantaginaceae) were characterised as neutral and acidic arabinoxylans and tested under in vitro conditions for regulating activities on cell physiology of human keratinocytes and human primary fibroblasts. Only water-soluble polysaccharides exhibited strong and significant effects on cell physiology of keratinocytes and fibroblasts. Proliferation of cells of the spontaneously immortalised keratinocyte cell line HaCaT was significantly up-regulated in a dose-independent manner. Analysis of activated signal pathways by RNA analysis proved an effect of the acidic arabinoxylan on the expression of keratinocyte growth factor (KGF) in HaCaT cells. Differentiation behaviour of normal human keratinocytes (NHK) determined by involucrin was slightly influenced, due to the enhanced cell proliferation, leading to a cell-cell-mediated indirect induction of early differentiation. WS did not influence late differentiation, as determined by keratin K1 and K10 titres. PMID:15678371

  9. Epidermal Growth Factor Receptor Transactivation Is Required for Mitogen-Activated Protein Kinase Activation by Muscarinic Acetylcholine Receptors in HaCaT Keratinocytes

    PubMed Central

    Ockenga, Wymke; Kühne, Sina; Bocksberger, Simone; Banning, Antje; Tikkanen, Ritva

    2014-01-01

    Non-neuronal acetylcholine plays a substantial role in the human skin by influencing adhesion, migration, proliferation and differentiation of keratinocytes. These processes are regulated by the Mitogen-Activated Protein (MAP) kinase cascade. Here we show that in HaCaT keratinocytes all five muscarinic receptor subtypes are expressed, but M1 and M3 are the subtypes involved in mitogenic signaling. Stimulation with the cholinergic agonist carbachol leads to activation of the MAP kinase extracellular signal regulated kinase, together with the protein kinase Akt. The activation is fully dependent on the transactivation of the epidermal growth factor receptor (EGFR), which even appears to be the sole pathway for the muscarinic receptors to facilitate MAP kinase activation in HaCaT cells. The transactivation pathway involves a triple-membrane-passing process, based on activation of matrix metalloproteases, and extracellular ligand release; whereas phosphatidylinositol 3-kinase, Src family kinases or protein kinase C do not appear to be involved in MAP kinase activation. Furthermore, phosphorylation, ubiquitination and endocytosis of the EGF receptor after cholinergic transactivation are different from that induced by a direct stimulation with EGF, suggesting that ligands other than EGF itself mediate the cholinergic transactivation. PMID:25421240

  10. Differential Effects of Phosphatase Inhibitors on the Calcium Homeostasis and Migration of HaCaT Keratinocytes

    PubMed Central

    Oláh, Tamás; Vincze, János; Gáll, Tamás; Balogh, Enikő; Nagy, Gábor; Bátori, Róbert; Lontay, Beáta; Erdődi, Ferenc; Csernoch, Laszlo

    2013-01-01

    Changes in intracellular calcium concentration ([Ca2+]i) as well as in the phosphorylation state of proteins have been implicated in keratinocyte wound healing revealed in scratch assays. Scratching confluent HaCaT monolayers decreased the number of cells displaying repetitive Ca2+ oscillations as well as the frequency of their Ca2+-transients in cells close to the wounded area and initiated migration of the cells into the wound bed. In contrast, calyculin-A (CLA) and okadaic acid (OA), known cell permeable inhibitors of protein phosphatase-1 and 2A, increased the level of resting [Ca2+]i and suppressed cell migration and wound healing of HaCaT cells. Furthermore, neither CLA nor OA influenced how scratching affected Ca2+ oscillations. It is assumed that changes in and alterations of the phosphorylation level of Ca2+-transport and contractile proteins upon phosphatase inhibition mediates cell migration and wound healing. PMID:23646108

  11. Gardenia jasminoides Extract Attenuates the UVB-Induced Expressions of Cytokines in Keratinocytes and Indirectly Inhibits Matrix Metalloproteinase-1 Expression in Human Dermal Fibroblasts

    PubMed Central

    Seok, Jin Kyung; Suh, Hwa-Jin

    2014-01-01

    Ultraviolet radiation (UV) is a major cause of photoaging, which also involves inflammatory cytokines and matrix metalloproteinases (MMP). The present study was undertaken to examine the UVB-protecting effects of yellow-colored plant extracts in cell-based assays. HaCaT keratinocytes were exposed to UVB in the absence or presence of plant extracts, and resulting changes in cell viability and inflammatory cytokine expression were measured. Of the plant extracts tested, Gardenia jasminoides extract showed the lowest cytotoxicity and dose-dependently enhanced the viabilities of UVB-exposed cells. Gardenia jasminoides extract also attenuated the mRNA expressions of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in HaCaT cells stimulated by UVB. Conditioned medium from UVB-exposed HaCaT cells was observed to stimulate MMP-1 protein expression in human dermal fibroblasts, and this effect was much smaller for the conditioned medium of HaCaT cells exposed to UVB in the presence of Gardenia jasminoides extract. Gardenia jasminoides extract also exhibited antioxidative and antiapoptotic effects in HaCaT cells exposed to UVB. These results indicated that UVB-induced injury and inflammatory responses of skin cells can be attenuated by yellow-colored plant extracts, such as Gardenia jasminoides extract. PMID:24711853

  12. Protective properties of ginsenoside Rb1 against UV-B radiation-induced oxidative stress in human dermal keratinocytes.

    PubMed

    Oh, Sun-Joo; Kim, Kyunghoon; Lim, Chang-Jin

    2015-06-01

    Ginsenosides, also known as ginseng saponins, are responsible for most pharmacological effect of ginseng. Ginsenoside Rb1 (Rb1) exerts a variety of pharmacological properties, including anti-inflammatory, antistress, anti-aging and anti-neurodegenerative activities. The aim of the present work was to assess the skin anti-photoaging properties of Rb1 in human dermal keratinocyte HaCaT cells. The anti-photoaging activity was evaluated by analyzing the levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs) as well as cell viability for HaCaT cells under UV-B irradiation. Rb1 was able to suppress the ROS levels which were elevated under UV-B irradiation, and unable to influence cellular survival in UV-B-irradiated HaCaT cells. Rb1 diminished the enhancement of MMP-2 gelatinolytic activity in conditioned medium, which corresponded with the decreased MMP-2 protein levels in both conditioned medium and cellular lysate prepared from UV-B-irradiated HaCaT cultures. Rb1 could restore the total glutathione (GSH) and superoxide dismutase (SOD) activity diminished in UV-B-irradiated HaCaT cells. Ginsenoside Rb1 possesses skin anti-photoaging properties through scavenging ROS and decreasing MMP-2 levels possibly by enhancing antioxidant activity in keratinocytes under UV-B irradiation. PMID:26189299

  13. Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis

    SciTech Connect

    Raesaenen, Kati; Vaheri, Antti

    2010-06-10

    The role of paracrine tumor-stroma regulation in the progression of cancer is under intense investigation. Activated fibroblasts are key components of the tumor microenvironment providing the soluble factors mediating the regulation. Nemosis is an experimental model to study these parameters: formation of a multicellular spheroid activates fibroblasts and leads to increased production of soluble factors involved in the promotion of growth and motility. Role of nemosis was investigated in the tumorigenesis of HaCaT derivatives representing skin carcinoma progression. Conditioned medium from fibroblast spheroids increased proliferation rate of HaCaT derivatives. Expression of proliferation marker Ki-67 increased significantly in benign A5 and low-grade malignant II-4 cells, but did not further increase in the metastatic RT3 cells. Expression of p63, keratinocyte stem cell marker linked to cancer progression, was augmented by medium from nemotic fibroblasts; this increase was also seen in RT3 cells. Scratch-wound healing of the keratinocytes was enhanced in response to fibroblast nemosis. Neutralizing antibodies against growth factors inhibited wound healing to some extent; the response varied between benign and malignant keratinocytes. Migration and invasion were enhanced by conditioned medium from nemotic fibroblasts in benign and low-grade malignant cells. RT3 keratinocyte migration was further augmented, but invasion was not, indicating their intrinsic capacity to invade. Our data demonstrate that fibroblast nemosis increases proliferation and motility of HaCaT keratinocyte derivatives, and thus nemosis can be used as a model to study the role of soluble factors secreted by fibroblasts in tumor progression.

  14. Vitamin D Induces Cyclooxygenase 2 Dependent Prostaglandin E2 Synthesis in HaCaT Keratinocytes.

    PubMed

    Ravid, Amiram; Shenker, Ohad; Buchner-Maman, Efrat; Rotem, Carmela; Koren, Ruth

    2016-04-01

    The active metabolite of vitamin D calcitriol and its analogs are well-known for their anti-inflammatory action in the skin, while their main side effect associated with topical treatment of inflammatory disorders is irritant contact dermatitis. Prostaglandin E2 (PGE2 ) is pro-inflammatory at the onset of inflammation and anti-inflammatory at its resolution. We hypothesized that induction of PGE2 synthesis by calcitriol in epidermal keratinocytes may contribute both to its pro-inflammatory and anti-inflammatory effects on the skin. Treatment of human immortalized HaCaT keratinocytes with calcitriol (3-100 nM, 2-24 h) increased PGE2 production due to increased mRNA and protein expression of COX-2, but not to increase of COX-1 or release of arachidonic acid. The effect of calcitriol on COX-2 mRNA was observed also in primary human keratinocytes. The increase in COX-2 mRNA is associated with COX-2 transcript stabilization. Calcitriol exerts this effect by a rapid (2 h) and protein synthesis independent mode of action that is dependent on PKC and Src kinase activities. Treatment with a COX-2 inhibitor partially prevented the attenuation of the keratinocyte inflammatory response by calcitriol. We conclude that upregulation of COX-2 expression with the consequent increase in PGE2 synthesis may be one of the mechanisms explaining the Janus face of calcitriol as both a promoter and attenuator of cutaneous inflammation. J. Cell. Physiol. 231: 837-843, 2016. © 2015 Wiley Periodicals, Inc. PMID:26280673

  15. Quercitrin protects against ultraviolet B-induced cell death in vitro and in an in vivo zebrafish model.

    PubMed

    Yang, Hye-Mi; Ham, Young-Min; Yoon, Weon-Jong; Roh, Seong Woon; Jeon, You-Jin; Oda, Tatsuya; Kang, Sung-Myung; Kang, Min-Cheol; Kim, Eun-A; Kim, Daekyung; Kim, Kil-Nam

    2012-09-01

    Chronic exposure of skin to ultraviolet (UV) B radiation induces oxidative stress, which in turn, plays a crucial role in the induction of skin aging. The search for strategies to reverse skin aging is being constantly pursued. Here, the cytoprotective effect of quercitrin (QR) on UVB-induced cell injury in HaCaT human keratinocytes and in the zebrafish was investigated. Intracellular reactive oxygen species (ROS) generated by the exposure of HaCaT cells to UVB radiation were significantly decreased after treatment with QR, and significantly so with QR at 50 μM. As a result, QR reduced UVB-induced cell death and apoptosis in HaCaT cells. QR similarly reduced UVB-induced ROS generation and cell death in live zebrafish. PMID:22727929

  16. Effects of lunar and mars dust on HaCaT keratinocytes and CHO-K1 fibroblasts

    NASA Astrophysics Data System (ADS)

    Brix, Klaudia; Slenzka, Klaus; Rehders, Maren; Sadhukhan, Annapurna; Mistry, Rima; Duenne, Matthias; Kempf, Juergen

    Exposure to lunar dust during Apollo missions resulted in occasional reports of ocular, respira-tory and dermal irritations which showed that lunar dust has a risk potential for human health. This is caused by its high reactivity as well as its small size, leading to a wide distribution also inside habitats. Hence, detailed information regarding effects of lunar dust on human health is required to best support future missions to moon. In this study, we used different methods to assess the specific effects of lunar dust onto mammalian skin by exposing HaCaT keratinocytes and CHO-K1 fibroblasts to dusts simulating lunar or mars soils. These particular cell types were chosen because the skin protects the human body from potentially harmful substances and since a well orchestrated program ensures proper repair in cases of wounding. Keratinocytes and fibroblasts were exposed to the dusts for different durations of time and their effects on morphology, metabolic state, survival and proliferation of the cells were determined. Cytotoxi-city and proliferation were measured using the MTT assay, metabolic activity was analyzed by vital staining of mitochondria, and phalloidin staining of the actin cytoskeleton was performed to address structural integrity of the cells. It was found that the effects of the two types of soils on the different features of both cell lines varied to considerable extent, and that lunar and mars dust were specific in their effects. The obtained results will facilitate detailed inves-tigations of dust exposure during wound healing and will ease risk assessment studies for e.g. lunar lander approaches. The investigations will help to assess the risks and to determine safety measures to be taken during extraterrestrial expeditions in order to minimize risks to human health associated with exposure of human skin to dust contaminants.

  17. Stages of Cell Cannibalism--Entosis--in Normal Human Keratinocyte Culture.

    PubMed

    Garanina, A S; Khashba, L A; Onishchenko, G E

    2015-11-01

    Entosis is a type of cell cannibalism during which one cell penetrates into another cell and usually dies inside it. Researchers mainly pay attention to initial and final stages of entosis. Besides, tumor cells in suspension are the primary object of studies. In the present study, we investigated morphological changes of both cells-participants of entosis during this process. The substrate-dependent culture of human normal keratinocytes HaCaT was chosen for the work. A combination of light microscopy and scanning electron microscopy was used to prove that one cell was completely surrounded by the plasma membrane of another cell. We investigated such "cell-in-cell" structures and described the structural and functional changes of both cells during entosis. The outer cell nucleus localization and shape were changed. Gradual degradation of the inner cell nucleus and of the junctions between the inner and the outer cells was revealed. Moreover, repeated redistribution of the outer cell membrane organelles (Golgi apparatus, lysosomes, mitochondria, and autophagosomes), rearrangement of its cytoskeleton, and change in the lysosomal, autophagosomal, and mitochondrial state in both entotic cells were observed during entosis. On the basis of these data, we divided entosis into five stages that make it possible to systematize description of this type of cell death. PMID:26615438

  18. Empetrum nigrum var. japonicum Extract Suppresses Ultraviolet B-Induced Cell Damage via Absorption of Radiation and Inhibition of Oxidative Stress

    PubMed Central

    Kim, Ki Cheon; Kim, Daeshin; Kim, Sang Cheol; Jung, Eunsun; Park, Deokhoon; Hyun, Jin Won

    2013-01-01

    This study focused on the protective actions of Empetrum nigrum against ultraviolet B (UVB) radiation in human HaCaT keratinocytes. An ethyl acetate extract of E. nigrum (ENE) increased cell viability decreased by exposure to UVB rays. ENE also absorbed UVB radiation and scavenged UVB-induced intracellular reactive oxygen species (ROS) in HaCaT keratinocytes. In addition, ENE shielded HaCaT keratinocytes from damage to cellular components (e.g., peroxidation of lipids, modification of proteins, and breakage of DNA strands) following UVB irradiation. Furthermore, ENE protected against UVB-induced apoptotic cell death, as determined by a reduction in the numbers of apoptotic bodies and sub-G1 hypodiploid cells, as well as by the recovery of mitochondrial membrane potential. The results of the current study therefore suggest that ENE safeguards human keratinocytes against UVB-induced cellular damage via the absorption of UVB ray and scavenging of UVB-generated ROS. PMID:23476710

  19. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    SciTech Connect

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-08-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  20. Paracrine Effects of Adipose-Derived Stem Cells on Keratinocytes and Dermal Fibroblasts

    PubMed Central

    Lee, Seung Ho; Jin, Sang Yun; Song, Jin Seok; Seo, Kyle K.

    2012-01-01

    Background Adipose-derived stem cells (ASCs) are mesenchymal stem cells that have recently been applied to tissue repair and regeneration. Keratinocytes and dermal fibroblasts play key roles in cutaneous wound healing. Objective We investigated the paracrine effects of ASCs on HaCaT cells (i.e., immortalized human keratinocytes) and human dermal fibroblasts to explore the mechanism of the effects of ASCs on cutaneous wound healing. Methods HaCaT cells and primary cultured human dermal fibroblasts were treated with 50% conditioned medium of ASCs (ASC-CM). Viability, in vitro wound healing, and fibroblast-populated collagen lattice contraction assays were conducted, and reverse transcription-polymerase chain reaction (RT-PCR) for the type I procollagen α1 chain gene was performed. Results The proliferation of HaCaT cells and fibroblasts was increased by ASC-CM in the viability assay. ASC-CM promoted in vitro wound healing of HaCaT cells and increased the contraction of the fibroblast-populated collagen lattice. RT-PCR showed that the transcription of the type I procollagen α1 chain gene in fibroblasts was upregulated by ASC-CM. Conclusion The stimulatory effect of ASC on cutaneous wound healing may be partially mediated by paracrine effects of ASCs on other skin cells. Application of ASCs or ASC-derived molecules could be an innovative therapeutic approach in the treatment of chronic wounds and other conditions. PMID:22577262

  1. Dose Dependent Effect of Iso-Octane on HaCaT: A Model Study

    PubMed Central

    Das, Lopamudra; Das, Soumen; Chatterjee, Jyotirmoy

    2015-01-01

    Objective: Improved understanding of cytotoxicity under chemical assaults may be achieved by multimodal analysis of cellular morphology, viability, molecular expressions, and biophysical properties. Materials and Methods: In this study dose-dependent effects of an organic solvent (OS), iso-octane (IO), known to cause skin irritation, has been explored multimodally for understanding its effect on structural and functional profile of normal epithelial cell population in vitro. Results: Under IO exposures, after 5 h there was a sharp decrease in viability of HaCaT with increasing doses which may be due to disruption in cellular association noted via immunocytochemical study and was further supported by the decreased expression of E-cadherin at transcriptomic level. Dislocation of E-cadherin from membrane to the cytoplasm occurred with increasing doses. The dose-dependent changes in varied aspects of bioelectrical properties, having plausible correlation with cellular viability, association, and adherence were noteworthy at 5 h of IO exposure. Evaluation of biomechanical properties by micropipette aspiration showed a distinct change in cellular stiffness in terms of increase in suction force and post-suction alteration in cellular shape. The cells became stiffer and fragile with increasing IO doses. Conclusion: Present study explicated dose–dependent cytotoxicity of IO on HaCaT and explored the usefulness of this approach to develop in vitro model system to evaluate epithelial toxicity with level-free markers. PMID:26862266

  2. Hydrogen water intake via tube-feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro

    PubMed Central

    2013-01-01

    Background Pressure ulcer (PU) is common in immobile elderly patients, and there are some research works to investigate a preventive and curative method, but not to find sufficient effectiveness. The aim of this study is to clarify the clinical effectiveness on wound healing in patients with PU by hydrogen-dissolved water (HW) intake via tube-feeding (TF). Furthermore, normal human dermal fibroblasts OUMS-36 and normal human epidermis-derived cell line HaCaT keratinocytes were examined in vitro to explore the mechanisms relating to whether hydrogen plays a role in wound-healing at the cellular level. Methods Twenty-two severely hospitalized elderly Japanese patients with PU were recruited in the present study, and their ages ranged from 71.0 to 101.0 (86.7 ± 8.2) years old, 12 male and 10 female patients, all suffering from eating disorder and bedridden syndrome as the secondary results of various underlying diseases. All patients received routine care treatments for PU in combination with HW intake via TF for 600 mL per day, in place of partial moisture replenishment. On the other hand, HW was prepared with a hydrogen-bubbling apparatus which produces HW with 0.8-1.3 ppm of dissolved hydrogen concentration (DH) and −602 mV to −583 mV of oxidation-reduction potential (ORP), in contrast to reversed osmotic ultra-pure water (RW), as the reference, with DH of < 0.018 ppm and ORP of +184 mV for use in the in vitro experimental research. In in vitro experiments, OUMS-36 fibroblasts and HaCaT keratinocytes were respectively cultured in medium prepared with HW and/or RW. Immunostain was used for detecting type-I collagen reconstruction in OUMS-36 cells. And intracellular reactive oxygen species (ROS) were quantified by NBT assay, and cell viability of HaCaT cells was examined by WST-1 assay, respectively. Results Twenty-two patients were retrospectively divided into an effective group (EG, n = 12) and a less effective group (LG, n = 10) according to

  3. Role for heat shock protein 90α in the proliferation and migration of HaCaT cells and in the deep second-degree burn wound healing in mice.

    PubMed

    Zhang, Yue; Bai, Xiaozhi; Wang, Yunchuan; Li, Na; Li, Xiaoqiang; Han, Fei; Su, Linlin; Hu, Dahai

    2014-01-01

    Inflammation, proliferation, and tissue remodeling are essential steps for wound healing. The hypoxic wound microenvironment promotes cell migration through a hypoxia--heat shock protein 90 alpha (Hsp90α)--low density lipoprotein receptor-related protein-1 (LRP-1) autocrine loop. To elucidate the role of this autocrine loop on burn wound healing, we investigated the expression profile of Hsp90α at the edge of burn wounds and found a transient increase in both mRNA and protein levels. Experiments performed with a human keratinocyte cell line--HaCaT also confirmed above results. 17-dimethylaminoethylamino-17demethoxygeldanamycin hydrochloride (17-DMAG), an Hsp90α inhibitor, was used to further evaluate the function of Hsp90α in wound healing. Consistently, topical application of Hsp90α in the early stage of deep second-degree burn wounds led to reduced inflammation and increased tissue granulation, with a concomitant reduction in the size of the wound at each time point tested (p<0.05). Consequently, epidermal cells at the wound margin progressed more rapidly causing an expedited healing process. In conclusion, these results provided a rationale for the therapeutic effect of Hsp90α on the burn wound management. PMID:25111496

  4. Mechanism of interleukin-1α transcriptional regulation of S100A9 in a human epidermal keratinocyte cell line

    PubMed Central

    Bando, Mika; Zou, Xianqiong; Hiroshima, Yuka; Kataoka, Masatoshi; Ross, Karen F; Shinohara, Yasuo; Nagata, Toshihiko; Herzberg, Mark C; Kido, Jun-ichi

    2013-01-01

    S100A9 is a calcium-binding protein and subunit of antimicrobial calprotectin complex (S100A8/A9). Produced by neutrophils, monocytes/ macrophages and keratinocytes, S100A9 expression increases in response to inflammation. For example, IL-1α produced by epithelial cells acts autonomously on the same cells to induce expression of S100A8/A9 and cellular differentiation. Whereas it is well known that IL-1α and members of the IL-10 family of cytokines upregulate S100A8 and S100A9 in several cell lineages, the pathway and mechanism of IL-1α-dependent transcriptional control of S100A9 in epithelial cells is not established. Modeled using human epidermal keratinocytes (HaCaT cells), IL-1α stimulated phosphorylation of p38 MAPK and induced S100A9 expression, which was blocked by IL-1 receptor antagonist, RNAi suppression of p38, or a p38 MAPK inhibitor. Transcription of S100A9 in HaCaT cells depended on nucleotides -94 to -53 in the upstream promoter region, based upon use of deletion constructs and luciferase reporter activity. Within the responsive promoter region, IL-1α increased the binding activity of CCAAT/enhancer binding protein β (C/EBPβ). Mutated C/EBPβ binding sequences or C/EBPβ-specific siRNA inhibited the S100A9 transcriptional response. Hence, IL-1α is strongly suggested to increase S100A9 expression in a human epidermal keratinocyte cell line by signaling through the IL-1 receptor and p38 MAPK, increasing C/EBPβ-dependent transcriptional activity. PMID:23563247

  5. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells. PMID:27516266

  6. Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line.

    PubMed

    Chopra, Deepti; Ray, Lipika; Dwivedi, Ashish; Tiwari, Shashi Kant; Singh, Jyoti; Singh, Krishna P; Kushwaha, Hari Narayan; Jahan, Sadaf; Pandey, Ankita; Gupta, Shailendra K; Chaturvedi, Rajnish Kumar; Pant, Aditya Bhushan; Ray, Ratan Singh; Gupta, Kailash Chand

    2016-04-01

    Curcumin (Cur) has been demonstrated to have wide pharmacological window including anti-oxidant and anti-inflammatory properties. However, phototoxicity under sunlight exposure and poor biological availability limits its applicability. We have synthesized biodegradable and non-toxic polymer-poly (lactic-co-glycolic) acid (PLGA) encapsulated formulation of curcumin (PLGA-Cur-NPs) of 150 nm size range. Photochemically free curcumin generates ROS, lipid peroxidation and induces significant UVA and UVB mediated impaired mitochondrial functions leading to apoptosis/necrosis and cell injury in two different origin cell lines viz., mouse fibroblasts-NIH-3T3 and human keratinocytes-HaCaT as compared to PLGA-Cur-NPs. Molecular docking studies suggested that intact curcumin from nanoparticles, bind with BAX in BIM SAHB site and attenuate it to undergo apoptosis while upregulating anti-apoptotic genes like BCL2. Real time studies and western blot analysis with specific phosphorylation inhibitor of ERK1 and AKT1/2/3 confirm the involvement of ERK/AKT signaling molecules to trigger the survival cascade in case of PLGA-Cur-NPs. Our finding demonstrates that low level sustained release of curcumin from PLGA-Cur-NPs could be a promising way to protect the adverse biological interactions of photo-degradation products of curcumin upon the exposure of UVA and UVB. Hence, the applicability of PLGA-Cur-NPs could be suggested as prolonged radical scavenging ingredient in curcumin containing products. PMID:26803409

  7. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes.

    PubMed

    Varol, Mehmet; Türk, Ayşen; Candan, Mehmet; Tay, Turgay; Koparal, Ayşe Tansu

    2016-01-01

    Vulpinic and gyrophoric acids are known as ultraviolet filters for natural lichen populations because of their chemical structures. However, to the best of our knowledge, there has been no reference to their cosmetic potential for skin protection against ultraviolet B (UVB)-induced damage and, consequently, we propose to highlight their photoprotective profiles in human keratinocytes (HaCaT). Therefore, vulpinic acid and gyrophoric acid were isolated from acetone extracts of Letharia vulpina and Xanthoparmelia pokornyi, respectively. Their photoprotective activities on irradiated HaCaT cells and destructive effects on non-irradiated HaCaT cells were compared through in vitro experimentation: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, 4',6-diamino-2-phenylindole and tetramethylrhodamine B isothiocyanate-phalloidin staining protocols. Both of the lichen substances effectively prevented cytotoxic, apoptotic and cytoskeleton alterative activities of 2.5 J/cm(2) UVB in a dose-dependent manner. Moreover, vulpinic and gyrophoric acids showed no toxic, apoptotic or cytoskeleton alterative effects on non-irradiated HaCaT cells, except at high doses (≥400 μM) of gyrophoric acid. The findings suggest that vulpinic and gyrophoric acids can be promising cosmetic ingredients to photo-protect human skin cells and should therefore be further investigated by in vitro and in vivo multiple bioassays. PMID:26463741

  8. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    SciTech Connect

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-08-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  9. TR3 is preferentially expressed by bulge epithelial stem cells in human hair follicles.

    PubMed

    Xie, Lin; Yang, Ruifeng; Liu, Shujing; Lyle, Stephen; Cotsarelis, George; Xiang, Leihong; Zhang, Litao; Li, Bin; Wan, Miaojian; Xu, Xiaowei

    2016-01-01

    TR3 is an orphan member of the steroid/thyroid/retinoid nuclear receptor superfamily of transcription factors and it plays a pivotal role in regulating cell growth and apoptosis. The expression and function of TR3 in skin have not been well investigated. Using a cDNA expression assay, we discover that TR3 is significantly enriched in human telogen bulge compared with anagen bulb. Immunohistochemical staining confirms that TR3 is highly expressed in the bulge region of human hair follicles and it colocalizes with cytokeratin 15 (K15), an epithelial stem cell marker. To study the function of TR3 in the effect of androgens in keratinocytes, we treat HaCaT keratinocytes and primary human keratinocytes with dihydrotestosterone (DHT) and testosterone (T). The treated keratinocytes show a dose-dependent growth reduction to DHT and T. DHT increases the expression of TR3 in keratinocytes, associated with a concomitant increase of BAD and decrease of Bcl-2 expression. Knockdown TR3 expression by siRNA blocks the inhibitory effect of DHT on keratinocyte proliferation. Our results demonstrate that TR3 is localized to the stem cell compartment in the human hair follicles. Androgen increases TR3 expression in cultured keratinocytes. Our data suggest that TR3 mediates at least part of the inhibitory effect of androgens on keratinocytes. PMID:26707825

  10. TR3 is preferentially expressed by bulge epithelial stem cells in human hair follicles

    PubMed Central

    Xie, Lin; Yang, Ruifeng; Liu, Shujing; Lyle, Stephen; Cotsarelis, George; Xiang, Leihong; Zhang, Litao; Li, Bin; Wan, Miaojian; Xu, Xiaowei

    2016-01-01

    TR3 is an orphan member of the steroid/thyroid/retinoid nuclear receptor superfamily of transcription factors and it plays a pivotal role in regulating cell growth and apoptosis. The expression and function of TR3 in skin have not been well investigated. Using a cDNA expression assay, we discover that TR3 is significantly enriched in human telogen bulge compared with anagen bulb. Immunohistochemical staining confirms that TR3 is highly expressed in the bulge region of human hair follicles and it colocalizes with cytokeratin 15 (K15), an epithelial stem cell marker. To study the function of TR3 in the effect of androgens in keratinocytes, we treat HaCaT keratinocytes and primary human keratinocytes with dihydrotestosterone (DHT) and testosterone (T). The treated keratinocytes show a dose-dependent growth reduction to DHT and T. DHT increases the expression of TR3 in keratinocytes, associated with a concomitant increase of BAD and decrease of Bcl-2 expression. Knockdown TR3 expression by siRNA blocks the inhibitory effect of DHT on keratinocyte proliferation. Our results demonstrate that TR3 is localized to the stem cell compartment in the human hair follicles. Androgen increases TR3 expression in cultured keratinocytes. Our data suggest that TR3 mediates at least part of the inhibitory effect of androgens on keratinocytes. PMID:26707825

  11. Remediation of textile azo dye acid red 114 by hairy roots of Ipomoea carnea Jacq. and assessment of degraded dye toxicity with human keratinocyte cell line.

    PubMed

    Jha, Pamela; Jobby, Renitta; Desai, N S

    2016-07-01

    Bioremediation has proven to be the most desirable and cost effective method to counter textile dye pollution. Hairy roots (HRs) of Ipomoea carnea J. were tested for decolourization of 25 textile azo dyes, out of which >90% decolourization was observed in 15 dyes. A diazo dye, Acid Red 114 was decolourized to >98% and hence, was chosen as the model dye. A significant increase in the activities of oxidoreductive enzymes was observed during decolourization of AR114. The phytodegradation of AR114 was confirmed by HPLC, UV-vis and FTIR spectroscopy. The possible metabolites were identified by GCMS as 4- aminobenzene sulfonic acid 2-methylaniline and 4- aminophenyl 4-ethyl benzene sulfonate and a probable pathway for the biodegradation of AR114 has been proposed. The nontoxic nature of the metabolites and toxicity of AR114 was confirmed by cytotoxicity tests on human keratinocyte cell line (HaCaT). When HaCaT cells were treated separately with 150 μg mL(-1) of AR114 and metabolites, MTT assay showed 50% and ≈100% viability respectively. Furthermore, flow cytometry data showed that, as compared to control, the cells in G2-M and death phase increased by 2.4 and 3.6 folds respectively on treatment with AR114 but remained unaltered in cells treated with metabolites. PMID:26971029

  12. Phloxine B phototoxicity: a mechanistic study using HaCaT keratinocytes.

    PubMed

    Inbaraj, Johnson J; Kukielczak, Barbara M; Chignell, Colin F

    2005-01-01

    Phloxine B (PhB) (2',4',5',7'-tetrabromo-4,5,6,7-tetrachlorofluorescein; D&C Red No. 28) is a red dye found in drugs, cosmetics and foods; it is also currently being evaluated as a phototoxin for the potential control of fruit flies. Previous studies have shown that PhB is an efficient photosensitizer of damage to cellular membranes; thus, exposure of the skin to the dye and sunlight or artificial light may result in phototoxicity. Therefore, we have studied the phototoxicity of PhB and its structural analogue 2',7'-dichlorofluorescein (DCF) to HaCaT keratinocytes. Anaerobic visible irradiation (>400 nm) of PhB generated a semiquinone type radical, as detected by direct electron paramagnetic resonance. Aerobic visible irradiation of a reaction mixture containing PhB, the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and nicotinamide adenine dinucleotide (reduced) generated a superoxide dismutase-sensitive DMPO/O(2)(.-) adduct. Irradiation of PhB and DCF in D(2)O generated singlet oxygen with quantum yields of 0.59 and 0.06, respectively. PhB was much more phototoxic than DCF when cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Visible irradiation of HaCaT keratinocytes in the presence of PhB (5 micro M) resulted in a 90% decrease in cell viability. 3beta-Hydroxy-5alpha-cholest-6-ene-5-hydroperoxide, a singlet oxygen photoproduct of cholesterol, was isolated from HaCaT keratinocytes irradiated in the presence of PhB. Furthermore, PhB phototoxicity was inhibited by histidine and cysteine, quenchers of singlet oxygen. PhB (0.5 microM) and light irradiation also resulted in DNA damage, as measured by the Comet assay. The phototoxicity mechanism of PhB most probably initially involves a Type-II reaction with free radicals playing a minor role. However, secondary oxidative species such as radicals generated as a result of lipid peroxidation may serve to further promote oxidative

  13. Protective Effect of Processed Panax ginseng, Sun Ginseng on UVB-irradiated Human Skin Keratinocyte and Human Dermal Fibroblast

    PubMed Central

    Lee, Hyejin; Lee, Joo Yeop; Song, Kyu Choon; Kim, Jinhee; Park, Jeong Hill; Chun, Kwang-Hoon; Hwang, Gwi Seo

    2012-01-01

    In this study, we investigated the protective effects of processed Panax ginseng, sun ginseng (SG) against the UVB-irradiation on epidermal keratinocytes and dermal fibroblasts. Pretreatment of SG in HaCaT keratinocytes and human dermal fibroblasts reduced UVB-induced cell damage as seen by reduced lactate dehydrogenase release. We also found that SG restored the UVB-induced decrease in anti-apoptotic gene expression (bcl-2 and bcl-xL) in these cells, indicating that SG has an anti-apoptotic effect and thus can protect cells from cell death caused by strong UVB radiation. In addition, SG inhibited the excessive expression of c-jun and c-fos gene by the UVB in HeCaT cells and human dermal fibroblasts. We also demonstrated that SG may exert an anti-inflammatory activity by reducing the nitric oxide production and inducible nitric oxide synthase mRNA synthesis in HaCaT keratinocytes and human dermal fibroblasts. This was further supported by its inhibitory effects on the elevated cyclooxygenase-2 and tumor necrosis factor-α transcription which was induced by UVB-irradiation in HaCaT cells. In addition, SG may have anti-aging property in terms of induction of procollagen gene expression and inhibition of the matrix metalloprotease-1 gene expression caused by UVBexposure. These findings suggest that SG can be a potential agent that may protect against the dermal cell damage caused by UVB. PMID:23717106

  14. Dieckol, a Component of Ecklonia cava, Suppresses the Production of MDC/CCL22 via Down-Regulating STAT1 Pathway in Interferon-γ Stimulated HaCaT Human Keratinocytes

    PubMed Central

    Kang, Na-Jin; Koo, Dong-Hwan; Kang, Gyeoung-Jin; Han, Sang-Chul; Lee, Bang-Won; Koh, Young-Sang; Hyun, Jin-Won; Lee, Nam-Ho; Ko, Mi-Hee; Kang, Hee-Kyoung; Yoo, Eun-Sook

    2015-01-01

    Macrophage-derived chemokine, C-C motif chemokine 22 (MDC/CCL22), is one of the inflammatory chemokines that controls the movement of monocytes, monocyte-derived dendritic cells, and natural killer cells. Serum and skin MDC/CCL22 levels are elevated in atopic dermatitis, which suggests that the chemokines produced from keratinocytes are responsible for attracting inflammatory lymphocytes to the skin. A major signaling pathway in the interferon-γ (IFN-γ)-stimulated inflammation response involves the signal transducers and activators of transcription 1 (STAT1). In the present study, we investigated the anti-inflammatory effect of dieckol and its possible action mechanisms in the category of skin inflammation including atopic dermatitis. Dieckol inhibited MDC/CCL22 production induced by IFN-γ (10 ng/mL) in a dose dependent manner. Dieckol (5 and 10 μM) suppressed the phosphorylation and the nuclear translocation of STAT1. These results suggest that dieckol exhibits anti-inflammatory effect via the down-regulation of STAT1 activation. PMID:25995822

  15. Dieckol, a Component of Ecklonia cava, Suppresses the Production of MDC/CCL22 via Down-Regulating STAT1 Pathway in Interferon-γ Stimulated HaCaT Human Keratinocytes.

    PubMed

    Kang, Na-Jin; Koo, Dong-Hwan; Kang, Gyeoung-Jin; Han, Sang-Chul; Lee, Bang-Won; Koh, Young-Sang; Hyun, Jin-Won; Lee, Nam-Ho; Ko, Mi-Hee; Kang, Hee-Kyoung; Yoo, Eun-Sook

    2015-05-01

    Macrophage-derived chemokine, C-C motif chemokine 22 (MDC/CCL22), is one of the inflammatory chemokines that controls the movement of monocytes, monocyte-derived dendritic cells, and natural killer cells. Serum and skin MDC/CCL22 levels are elevated in atopic dermatitis, which suggests that the chemokines produced from keratinocytes are responsible for attracting inflammatory lymphocytes to the skin. A major signaling pathway in the interferon-γ (IFN-γ)-stimulated inflammation response involves the signal transducers and activators of transcription 1 (STAT1). In the present study, we investigated the anti-inflammatory effect of dieckol and its possible action mechanisms in the category of skin inflammation including atopic dermatitis. Dieckol inhibited MDC/CCL22 production induced by IFN-γ (10 ng/mL) in a dose dependent manner. Dieckol (5 and 10 μM) suppressed the phosphorylation and the nuclear translocation of STAT1. These results suggest that dieckol exhibits anti-inflammatory effect via the down-regulation of STAT1 activation. PMID:25995822

  16. Traditional Herbal Formula Banhasasim-tang Exerts Anti-Inflammatory Effects in RAW 264.7 Macrophages and HaCaT Keratinocytes

    PubMed Central

    Lim, Hye-Sun; Kim, Yeji; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2015-01-01

    Banhasasim-tang (BHSST) is a Korean traditional herbal formula comprising eight medicinal herbs. The aim of the present study was to investigate the anti-inflammatory effect of BHSST using macrophage and keratinocyte cell lines. First, we evaluated the effects of BHSST on inflammatory mediator and cytokine production in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. BHSST markedly inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), and interleukin- (IL-) 6. BHSST significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and phosphorylated nuclear factor-kappa B (NF-κB) p65 in RAW 264.7 cells. Second, we examined whether BHSST influences the production of chemokines and STAT1 phosphorylation in tumor necrosis factor-α/interferon-γ TI-stimulated HaCaT keratinocytes. BHSST significantly suppressed the production of RANTES/CCL5, TARC/CCL17, MDC/CCL22, and IL-8 in TI-stimulated HaCaT cells. BHSST also suppressed TI-induced phosphorylation of STAT1 in HaCaT cells. These results suggest that BHSST may be useful as an anti-inflammatory agent, especially for inflammatory skin diseases. PMID:25838833

  17. Responses of human cells to ZnO nanoparticles: a gene transcription study†

    PubMed Central

    Moos, Philip J.; Olszewski, Kyle; Honeggar, Matthew; Cassidy, Pamela; Leachman, Sancy; Woessner, David; Cutler, N. Shane; Veranth, John M.

    2013-01-01

    The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells. PMID:21769377

  18. Comparative toxicities of bismuth oxybromide and titanium dioxide exposure on human skin keratinocyte cells.

    PubMed

    Gao, Xiaoya; Wang, Yawen; Peng, Shiqi; Yue, Bin; Fan, Caimei; Chen, Weiyi; Li, Xiaona

    2015-09-01

    Nano-sized bismuth oxybromide (BiOBr) particles are being considered for applications within the semiconductor industry. However, little is known about their potential impact on human health. In this study, we comparatively investigated the cytotoxicity of BiOBr and titanium dioxide (TiO2) nanoparticles (NPs) using human skin keratinocyte cell line (HaCaT) as a research model. Results indicate that lamellar-shaped BiOBr (length: 200 nm, width: 150 nm, and an average thickness: around 15 nm) has less toxic effects on cell viability and intracellular organelles than TiO2 (P25) NPs. BiOBr mainly induced late cell apoptosis, while for TiO2, both early apoptosis and late apoptosis were involved. Cell cycle arrest was found in cells on both NPs exposure, and more prominent in TiO2-treated cells. More cellular uptake was achieved after TiO2 exposure, particularly at 10 μg mL(-1), presence of TiO2 resulted in more than 2-fold increase in cellular granularity compared with BiOBr. Furthermore, TiO2 had a high potential to generate intracellular reactive oxygen species (ROS) in cells, where a 2.7-fold increase in TiO2 group and 2.0-fold increase in BiOBr group at the same concentration of 25 μg mL(-1). Higher cellular uptake and ROS stimulation should contribute to the more hazards of TiO2 than BiOBr NPs. This knowledge is a crucial component in the environmental and human hazard assessment of BiOBr and TiO2 NPs. PMID:25917605

  19. Amitosis in human adrenal cells.

    PubMed

    Magalhães, M C; Pignatelli, D; Magalhães, M M

    1991-04-01

    Adrenal pieces obtained from 3 female and 2 male patients showed morphological figures of amitosis in adrenal zona reticularis cells. Such aspects were observed in both normal and hyperactive adrenals. Nuclei appeared constricted, heavily stained, with coarse chromatin, sometimes scattered among cytoplasmic organelles, but never marginating in crescentic caps. Cleavage of the cells originated two halves with a nucleolus in each pole. Binucleated cells were also seen in zona reticularis. The meaning of amitosis in human adrenal is discussed. PMID:1802124

  20. Gold Nano Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells

    PubMed Central

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-01-01

    Breast cancer presents greatest challenge in health care in today’s world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube’s D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 minutes of photothermal therapy treatment by 1.5 W/cm2 power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly. PMID:21842867

  1. The crucial role of IL-22 and its receptor in thymus and activation regulated chemokine production and T-cell migration by house dust mite extract.

    PubMed

    Jang, Mirim; Kim, Hyemin; Kim, Yejin; Choi, Jiyea; Jeon, Jane; Hwang, Youngil; Kang, Jae Seung; Lee, Wang Jae

    2016-08-01

    House dust mite (HDM) is known as one of the factors that causes atopic dermatitis (AD). Interleukin (IL)-22 and thymus and activation regulated chemokine (TARC) are related to skin inflammatory disease and highly expressed in AD lesions. However, the effects of HDM on IL-22 production in T cells and on TARC production and IL-22Rα receptor expression in keratinocytes are unknown. To identify the role of HDM in keratinocytes and T cells, we investigated IL-22Rα expression and TARC production in the human keratinocyte cell line HaCaT and IL-22 production in T cells treated with HDM extract as well as their roles in HDM-induced skin inflammation. HDM extract not only increased IL-22Rα expression and TARC production in HaCaT but also enhanced IL-22, tumor necrosis factor (TNF)-α and interferon (IFN)-γ production in T cells. The HDM extract-induced IL-22 from T cells significantly increased the production of IL-1α, IL-6 and TARC in HaCaT cells. In addition, we found that TARC produced in HDM extract-treated HaCaT induced T-cell recruitment. These results suggest that there is a direct involvement of HDM extract-induced IL-22 in TARC production and T-cell migration. Taken together, TARC production in HaCaT through the interaction between IL-22 and IL-22Rα facilitates T-cell migration. These data show one of the reasons for inflammation in the skin lesions of AD patients. PMID:26914146

  2. Extracts from Calendula officinalis offer in vitro protection against H2 O2 induced oxidative stress cell killing of human skin cells.

    PubMed

    Alnuqaydan, Abdullah M; Lenehan, Claire E; Hughes, Rachel R; Sanderson, Barbara J

    2015-01-01

    The in vitro safety and antioxidant potential of Calendula officinalis flower head extracts was investigated. The effect of different concentrations (0.125, 0.5, 1.0, 2.0 and 5.0% (v/v)) of Calendula extracts on human skin cells HaCaT in vitro was explored. Doses of 1.0% (v/v) (0.88 mg dry weight/mL) or less showed no toxicity. Cells were also exposed to the Calendula extracts for either 4, 24 or 48 h before being exposed to an oxidative insult (hydrogen peroxide H2 O2 ) for 1 h. Using the MTT cytotoxicity assay, it was observed that two independent extracts of C. officinalis gave time-dependent and concentration-dependent H2 O2 protection against induced oxidative stress in vitro using human skin cells. Pre-incubation with the Calendula extracts for 24 and 48 h increased survival relative to the population without extract by 20% and 40% respectively following oxidative challenge. The antioxidant potential of the Calendula extracts was confirmed using a complimentary chemical technique, the DPPH(●) assay. Calendula extracts exhibited free radical scavenging abilities. This study demonstrates that Calendula flower extracts contain bioactive and free radical scavenging compounds that significantly protect against oxidative stress in a human skin cell culture model. PMID:25266574

  3. Skin anti-photoaging properties of ginsenoside Rh2 epimers in UV-B-irradiated human keratinocyte cells.

    PubMed

    Oh, Sun-Joo; Lee, Sihyeong; Choi, Woo-Yong; Lim, Chang-Jin

    2014-09-01

    Ginseng, one of the most widely used herbal medicines, has a wide range of therapeutic and pharmacological applications. Ginsenosides are the major bioactive ingredients of ginseng, which are responsible for various pharmacological activities of ginseng. Ginsenoside Rh2, known as an antitumour ginsenoside, exists as two different stereoisomeric forms, 20(S)-ginsenoside Rh2 [20(S)-Rh2] and 20(R)-ginsenoside Rh2 [20(R)-Rh2]. This work aimed to assess and compare skin anti-photoaging activities of 20(S)-Rh2 and 20(R)-Rh2 in UV-B-irradiated HaCat cells. 20(S)-Rh2, but not 20(R)-Rh2, was able to suppress UV-B-induced ROS production in HaCat cells. Both stereoisomeric forms could not modulate cellular survival and NO level in UV-B-irradiated HaCat cells. Both 20(S)-Rh2 and 20(R)-Rh2 exhibited suppressive effects on UV-B-induced MMP-2 activity and expression in HaCat cells. In brief, the two stereoisomers of ginsenoside Rh2, 20(S)-Rh2 and 20(R)-Rh2, possess skin anti-photoaging effects but possibly in different fashions. PMID:25116621

  4. SIV replication in human cells

    PubMed Central

    Sakuma, Ryuta; Takeuchi, Hiroaki

    2012-01-01

    Current human immunodeficiency virus type 1 pandemic is believed to originate from cross-species transmission of simian immunodeficiency virus (SIV) into human population. Such cross-species transmission, however, is not efficient in general, because viral replication is modulated by host cell factors, with the species-specificity of these factors affecting viral tropism. An understanding of those host cell factors that affect viral replication contributes to elucidation of the mechanism for determination of viral tropism. This review will focus an anti-viral effect of ApoB mRNA editing catalytic subunit, tripartite motif protein 5 alpha, and cyclophilins on SIV replication and provide insight into the mechanism of species-specific barriers against viral infection in human cells. It will then present our current understanding of the mechanism that may explain zoonotic transmission of retroviruses. PMID:22679440

  5. IgG and IgA with potential microbial-binding activity are expressed by normal human skin epidermal cells.

    PubMed

    Jiang, Dongyang; Ge, Jing; Liao, Qinyuan; Ma, Junfan; Liu, Yang; Huang, Jing; Wang, Chong; Xu, Weiyan; Zheng, Jie; Shao, Wenwei; Lee, Gregory; Qiu, Xiaoyan

    2015-01-01

    The innate immune system of the skin is thought to depend largely on a multi-layered mechanical barrier supplemented by epidermis-derived antimicrobial peptides. To date, there are no reports of antimicrobial antibody secretion by the epidermis. In this study, we report the expression of functional immunoglobulin G (IgG) and immunoglobulin A (IgA), previously thought to be only produced by B cells, in normal human epidermal cells and the human keratinocyte line HaCaT. While B cells express a fully diverse Ig, epidermal cell-expressed IgG or IgA showed one or two conservative VHDJH rearrangements in each individual. These unique VDJ rearrangements in epidermal cells were found neither in the B cell-derived Ig VDJ databases published by others nor in our positive controls. IgG and IgA from epidermal cells of the same individual had different VDJ rearrangement patterns. IgG was found primarily in prickle cells, and IgA was mainly detected in basal cells. Both epidermal cell-derived IgG and IgA showed potential antibody activity by binding pathogens like Staphylococcus aureus, the most common pathogenic skin bacteria, but the microbial-binding profile was different. Our data indicates that normal human epidermal cells spontaneously express IgG and IgA, and we speculate that these Igs participate in skin innate immunity. PMID:25625513

  6. Identification of Key Proteins in Human Epithelial Cells Responding to Bystander Signals From Irradiated Trout Skin

    PubMed Central

    Smith, Richard; Wang, Jiaxi; Seymour, Colin; Mothersill, Carmel; Howe, Orla

    2015-01-01

    Radiation-induced bystander signaling has been found to occur in live rainbow trout fish (Oncorhynchus mykiss). This article reports identification of key proteomic changes in a bystander reporter cell line (HaCaT) grown in low-dose irradiated tissue-conditioned media (ITCM) from rainbow trout fish. In vitro explant cultures were generated from the skin of fish previously exposed to low doses (0.1 and 0.5 Gy) of X-ray radiation in vivo. The ITCM was harvested from all donor explant cultures and placed on recipient HaCaT cells to observe any change in protein expression caused by the bystander signals. Proteomic methods using 2-dimensional (2D) gel electrophoresis and mass spectroscopy were employed to screen for novel proteins expressed. The proteomic changes measured in HaCaT cells receiving the ITCM revealed that exposure to 0.5 Gy induced an upregulation of annexin A2 and cingulin and a downregulation of Rho-GDI2, F-actin-capping protein subunit beta, microtubule-associated protein RP/EB family member, and 14-3-3 proteins. The 0.1 Gy dose also induced a downregulation of Rho-GDI2, hMMS19, F-actin-capping protein subunit beta, and microtubule-associated protein RP/EB family member proteins. The proteins reported may influence apoptotic signaling, as the results were suggestive of an induction of cell communication, repair mechanisms, and dysregulation of growth signals. PMID:26673684

  7. Individual and Complementary Effects of Human Papillomavirus Oncogenes on Epithelial Cell Proliferation and Differentiation.

    PubMed

    Bergner, Sven; Halec, Gordana; Schmitt, Markus; Aubin, François; Alonso, Angel; Auvinen, Eeva

    2016-01-01

    Previous studies on human papillomavirus (HPV) type 16 protein functions have established the oncogenic nature of three viral proteins: E5, E6 and E7. Here we have studied the functions of these proteins by functional deletion of the individual E5, E6 or E7, or both E6 and E7 oncogenes in the context of the whole viral genome. These mutants, or the intact wild-type genome, were expressed from the natural viral promoters along with differentiation of epithelial HaCaT cells in three-dimensional collagen raft cultures. High episomal viral copy numbers were obtained using a transfection-based loxp-HPV16-eGFP-N1 vector system. All epithelial equivalents carrying the different HPV type 16 genomes showed pronounced hyperplastic and dysplastic morphology. Particularly the E7 oncogene, with contribution of E6, was shown to enhance cell proliferation. Specifically, the crucial role of E7 in HPV-associated hyperproliferation was clearly manifested. Based on morphological characteristics, immunohistochemical staining for differentiation and proliferation markers, and low expression of E1^E4, we propose that our raft culture models produce cervical intraepithelial neoplasia (CIN)1 and CIN2-like tissue. Our experimental setting provides an alternative tool to study concerted functions of HPV proteins in the development of epithelial dysplasia. PMID:26636751

  8. Artesunate induces G0/G1 cell cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells.

    PubMed

    Jiang, Zhongyong; Chai, Jin; Chuang, Henry Hon Fung; Li, Shifeng; Wang, Tianran; Cheng, Yi; Chen, Wensheng; Zhou, Deshan

    2012-07-01

    The anticancer effects of artesunate (ART) have been well documented. However, its potential against skin cancer has not been explored yet. Herein we reported that 60 μmol/l ART effectively inhibited A431 (human epidermoid carcinoma cells) growth but not that of HaCaT (normal human keratinocyte cells). Our results revealed that ART induced cell cycle arrest at G0/G1 phase through the downregulation of cyclin A1, cyclin B, cyclin D1, Cdk2, Cdk4, and Cdk6. This correlated with the upregulation of p21 and p27. The 5-bromodeoxyuridine incorporation assay also indicated that ART treatment reduced DNA synthesis in a time-dependent manner. Furthermore, ART induced mitochondrial apoptosis, as evidenced by annexin V/propidium iodide staining and western blot analysis. Interestingly, ART-induced apoptosis diminished under iron-deficient conditions but intensified under iron-overload conditions. Taken together, these findings demonstrated the potential of ART in treating skin cancer through the induction of G0/G1 cell cycle arrest and iron-mediated mitochondrial apoptosis and supported further investigations in other test systems. PMID:22421370

  9. Human Adrenocortical Carcinoma Cell Lines

    PubMed Central

    Wang, Tao; Rainey, William E.

    2011-01-01

    Summary The human adrenal cortex secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids are produced from unique cell types located within the three distinct zones of the adrenal cortex. Disruption of adrenal steroid production results in a variety of diseases that can lead to hypertension, metabolic syndrome, infertility and androgen excess. The adrenal cortex is also a common site for the development of adenomas, and rarely the site for the development of carcinomas. The adenomas can lead to diseases associated with adrenal steroid excess, while the carcinomas are particularly aggressive and have a poor prognosis. In vitro cell culture models provide an important tool to examine molecular and cellular mechanisms controlling both the normal and pathologic function of the adrenal cortex. Herein we discuss the human adrenocortical cell lines and their use as model systems for adrenal studies. PMID:21924324

  10. Oligonucleotide uptake in cultured keratinocytes: influence of confluence, cationic liposomes, and keratinocyte cell type.

    PubMed

    White, P J; Fogarty, R D; McKean, S C; Venables, D J; Werther, G A; Wraight, C J

    1999-05-01

    The success of anti-sense strategies has been limited, at least in part, by the poor uptake of these agents into the target cells. In keratinocytes, there is conflicting evidence as to the amount and location of oligonucleotide uptake into these cells, with variable proportions of cells reported to take up oligodeoxynucleotide, and also cytoplasmic and nuclear localization reported. In this study, the uptake of oligodeoxynucleotides in cultured normal human keratinocytes and the HaCaT cell line was quantitated in the presence of various lipids designed to enhance uptake and in varying culture conditions. About 12% of cells in a confluent normal human keratinocyte culture showed nuclear uptake, with a small and variable proportion showing cytoplasmic localization after 24 h incubation with 1 microM oligodeoxynucleotide. Uptake of oligodeoxynucleotide was found to be increased by liposome encapsulation (to a maximum of 28.1% +/- 2.1% of cells), low confluence (39.5% +/- 2.5%), and further increased by a combination of the two conditions (55.4% +/- 4.3%). HaCaT cell populations showed sparse but consistent uptake of oligodeoxynucleotide, with about 1% of cells showing nuclear localization in the presence of 1 microM oligodeoxynucleotide, increasing to 13.5% +/- 4.9% in the presence of cationic lipid (Tfx-50) in low confluence HaCaT monolayers. We conclude that normal keratinocytes exhibit reliable, substantial uptake of oligonucleotides in conditions controlled for confluence and aided by liposome encapsulation. PMID:10233759

  11. Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway

    SciTech Connect

    Li Qin; Suen, T.-C.; Sun Hong; Arita, Adriana; Costa, Max

    2009-03-01

    Nickel compounds are carcinogenic to humans and have been shown to alter epigenetic homeostasis. The c-Myc protein controls 15% of human genes and it has been shown that fluctuations of c-Myc protein alter global epigenetic marks. Therefore, the regulation of c-Myc by nickel ions in immortalized but not tumorigenic human bronchial epithelial Beas-2B cells was examined in this study. It was found that c-Myc protein expression was increased by nickel ions in non-tumorigenic Beas-2B and human keratinocyte HaCaT cells. The results also indicated that nickel ions induced apoptosis in Beas-2B cells. Knockout of c-Myc and its restoration in a rat cell system confirmed the essential role of c-Myc in nickel ion-induced apoptosis. Further studies in Beas-2B cells showed that nickel ion increased the c-Myc mRNA level and c-Myc promoter activity, but did not increase c-Myc mRNA and protein stability. Moreover, nickel ion upregulated c-Myc in Beas-2B cells through the MEK/ERK pathway. Collectively, the results demonstrate that c-Myc induction by nickel ions occurs via an ERK-dependent pathway and plays a crucial role in nickel-induced apoptosis in Beas-2B cells.

  12. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  13. Identification of TRAPPC8 as a Host Factor Required for Human Papillomavirus Cell Entry

    PubMed Central

    Ishii, Yoshiyuki; Nakahara, Tomomi; Kataoka, Michiyo; Kusumoto-Matsuo, Rika; Mori, Seiichiro; Takeuchi, Takamasa; Kukimoto, Iwao

    2013-01-01

    Human papillomavirus (HPV) is a non-enveloped virus composed of a circular DNA genome and two capsid proteins, L1 and L2. Multiple interactions between its capsid proteins and host cellular proteins are required for infectious HPV entry, including cell attachment and internalization, intracellular trafficking and viral genome transfer into the nucleus. Using two variants of HPV type 51, the Ma and Nu strains, we have previously reported that MaL2 is required for efficient pseudovirus (PsV) transduction. However, the cellular factors that confer this L2 dependency have not yet been identified. Here we report that the transport protein particle complex subunit 8 (TRAPPC8) specifically interacts with MaL2. TRAPPC8 knockdown in HeLa cells yielded reduced levels of reporter gene expression when inoculated with HPV51Ma, HPV16, and HPV31 PsVs. TRAPPC8 knockdown in HaCaT cells also showed reduced susceptibility to infection with authentic HPV31 virions, indicating that TRAPPC8 plays a crucial role in native HPV infection. Immunofluorescence microscopy revealed that the central region of TRAPPC8 was exposed on the cell surface and colocalized with inoculated PsVs. The entry of Ma, Nu, and L2-lacking PsVs into cells was equally impaired in TRAPPC8 knockdown HeLa cells, suggesting that TRAPPC8-dependent endocytosis plays an important role in HPV entry that is independent of L2 interaction. Finally, expression of GFP-fused L2 that can also interact with TRAPPC8 induced dispersal of the Golgi stack structure in HeLa cells, a phenotype also observed by TRAPPC8 knockdown. These results suggest that during viral intracellular trafficking, binding of L2 to TRAPPC8 inhibits its function resulting in Golgi destabilization, a process that may assist HPV genome escape from the trans-Golgi network. PMID:24244674

  14. Complementation of human papillomavirus type 16 E6 and E7 by Jagged1-specific Notch1-phosphatidylinositol 3-kinase signaling involves pleiotropic oncogenic functions independent of CBF1;Su(H);Lag-1 activation.

    PubMed

    Veeraraghavalu, Karthikeyan; Subbaiah, Vanitha K; Srivastava, Sweta; Chakrabarti, Oishee; Syal, Ruchi; Krishna, Sudhir

    2005-06-01

    We have analyzed the induction and role of phosphatidylinositol 3-kinase (PI3K) by Notch signaling in human papillomavirus (HPV)-derived cancers. Jagged1, in contrast to Delta1, is preferentially upregulated in human cervical tumors. Jagged1 and not Delta1 expression sustained in vivo tumors by HPV16 oncogenes in HaCaT cells. Further, Jagged1 expression correlates with the rapid induction of PI3K-mediated epithelial-mesenchymal transition in both HaCaT cells and a human cervical tumor-derived cell line, suggestive of Delta1;Serrate/Jagged;Lag2 ligand-specific roles. Microarray analysis and dominant-negatives reveal that Notch-PI3K oncogenic functions can be independent of CBF1;Su(H);Lag-1 activation and instead relies on Deltex1, an alternative Notch effector. PMID:15919944

  15. Complementation of Human Papillomavirus Type 16 E6 and E7 by Jagged1-Specific Notch1-Phosphatidylinositol 3-Kinase Signaling Involves Pleiotropic Oncogenic Functions Independent of CBF1;Su(H);Lag-1 Activation†

    PubMed Central

    Veeraraghavalu, Karthikeyan; Subbaiah, Vanitha K.; Srivastava, Sweta; Chakrabarti, Oishee; Syal, Ruchi; Krishna, Sudhir

    2005-01-01

    We have analyzed the induction and role of phosphatidylinositol 3-kinase (PI3K) by Notch signaling in human papillomavirus (HPV)-derived cancers. Jagged1, in contrast to Delta1, is preferentially upregulated in human cervical tumors. Jagged1 and not Delta1 expression sustained in vivo tumors by HPV16 oncogenes in HaCaT cells. Further, Jagged1 expression correlates with the rapid induction of PI3K-mediated epithelial-mesenchymal transition in both HaCaT cells and a human cervical tumor-derived cell line, suggestive of Delta1;Serrate/Jagged;Lag2 ligand-specific roles. Microarray analysis and dominant-negatives reveal that Notch-PI3K oncogenic functions can be independent of CBF1;Su(H);Lag-1 activation and instead relies on Deltex1, an alternative Notch effector. PMID:15919944

  16. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-01

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest. PMID:18522846

  17. Cytotoxicity testing of silver-containing burn treatments using primary and immortal skin cells.

    PubMed

    Boonkaew, Benjawan; Kempf, Margit; Kimble, Roy; Cuttle, Leila

    2014-12-01

    A novel burn wound hydrogel dressing has been previously developed which is composed of 2-acrylamido-2-methylpropane sulfonic acid sodium salt with silver nanoparticles (silver AMPS). This study compared the cytotoxicity of this dressing to the commercially available silver products; Acticoat™, PolyMem Silver(®) and Flamazine™ cream. Human keratinocytes (HaCaT and primary HEK) and normal human fibroblasts (NHF) were exposed to dressings incubated on Nunc™ polycarbonate inserts for 24, 48 and 72h. Four different cytotoxicity assays were performed including; Trypan Blue cell count, MTT, Celltiter-Blue™ and Toluidine Blue surface area assays. The results were expressed as relative cell viability compared to an untreated control. The cytotoxic effects of Acticoat™ and Flamazine™ cream were dependent on exposure time and cell type. After 24h exposure, Acticoat™ and Flamazine™ cream were toxic to all tested cell lines. Surprisingly, HaCaTs treated with Acticoat™ and Flamazine™ had an improved ability to survive at 48 and 72h while HEKs and NHFs had no improvement in survival with any treatment. The novel silver hydrogel and PolyMem Silver(®) showed low cytotoxicity to all tested cell lines at every time interval and these results support the possibility of using the novel silver hydrogel as a burn wound dressing. Researchers who rely on HaCaT cells as an accurate keratinocyte model should be aware that they can respond differently to primary skin cells. PMID:24767717

  18. Advanced oxidative protein products induced human keratinocyte apoptosis through the NOX-MAPK pathway.

    PubMed

    Sun, Baihui; Ding, Ruoting; Yu, Wenlin; Wu, Yanhong; Wang, Bulin; Li, Qin

    2016-07-01

    Impaired wound healing is a major diabetes-related complication. Keratinocytes play an important role in wound healing. Multiple factors have been proposed that can induce dysfunction in keratinocytes. The focus of present research is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing human immortalized keratinocyte (HaCaT) cell apoptosis and the cellular mechanism underlying the proapoptotic effect of AOPPs. HaCaT cells were treated with increasing concentrations of AOPP-human serum albumin or for increasing time durations. The cell viability was measured using the thiazolyl blue tetrazolium bromide method, and flow cytometry was used to assess the rate of cell apoptosis. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed through a confocal laser scanning microscope system, and the level of ROS generation was determined using a microplate reader. Nicotinamide adenine dinucleotide phosphate oxidase (NOX)4, extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), and apoptosis-related downstream protein interactions were investigated using the Western blot analysis. We found that AOPPs triggered HaCaT cell apoptosis and MMP loss. After AOPP treatment, intracellular ROS generation increased in a time- and dose-dependent manner. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and poly(ADP-ribose) polymerase (PARP)-1 were activated, whereas anti-apoptotic Bcl-2 protein was downregulated. AOPPs also increased NOX4, ERK1/2, and p38 MAPK expression. Taken together, these findings suggest that extracellular AOPP accumulation triggered NOX-dependent ROS production, which activated ERK1/2 and p38 MAPK, and induced HaCaT cell apoptosis by activating caspase 3 and PARP-1. PMID:27155970

  19. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  20. The role of plant metabolism in the mutagenic and cytotoxic effects of four organophosphorus insecticides in Salmonella typhimurium and in human cell lines.

    PubMed

    Cortés-Eslava, Josefina; Gómez-Arroyo, Sandra; Arenas-Huertero, Francisco; Flores-Maya, Saúl; Díaz-Hernández, Martha E; Calderón-Segura, María Elena; Valencia-Quintana, Rafael; Espinosa-Aguirre, Jesús Javier; Villalobos-Pietrini, Rafael

    2013-08-01

    This study used a cell/microbe co-incubation assay to evaluate the effect of four organophosphorus insecticides (parathion-methyl, azinphos-methyl, omethoate, and methamidophos) metabolized by coriander (Coriandrum sativum). The reverse mutation of Salmonella typhimurium strains TA98 and TA100 was used as an indicator of genetic damage. Treatments with these insecticides inhibited peroxidase activity in plant cells by between 17% (omethoate) and 98% (azinphos-methyl) and decreased plant protein content by between 36% (omethoate) and 99.6% (azinphos-methyl). Azinphos-methyl was the most toxic when applied directly. In the Ames test, treatments applied directly to strain TA100 killed the bacteria; however, the presence of plant metabolism detoxified the system and permitted the growth of bacteria. In strain TA98, plant metabolites of insecticides were mutagenic. This result suggests that the tested pesticides produce mutations through frameshifting. The same pesticides were applied to human skin (HaCaT) and lung (NL-20) cell lines to evaluate their effects on cell viability. Pesticides applied directly were more cytotoxic than the combination of pesticide plus coriander metabolic fraction. Omethoate and methamidophos did not affect the viability of HaCaT cells, but azinphos-methyl and parathion-methyl at 100 and 1000μgmL(-1) significantly decreased viability (p<0.05). The NL-20 cell line was remarkably sensitive to the direct application of insecticides. All of the treatment conditions caused decreases in NL-20 cell viability (e.g., viability decreased to 12.0% after parathion-methyl treatment, to 14.7% after azinphos-methyl treatment, and to 6.9% after omethoate treatment). Similar to the Ames test, all of the insecticides showed decreased toxicity in human cells when they were cultured in the presence of plant metabolism. In conclusion, when the studied organophosphorus insecticides were plant-metabolized, they induced mutations in the bacterial strain TA98. In

  1. [Effect of plant hormones on the components of secretory pathway in human normal and tumor cells].

    PubMed

    Vil'danova, M S; Savitskaia, M A; Onishchenko, G E; Smirnova, E A

    2014-01-01

    Plant hormones play a key role in plant growth and differentiation. Many hormones are known as potential antitumor agents, yet others appear to affect the secretory activity and are produced by mammalian cells as pro-inflammatory cytokines. The goal of this research was to study the effect of abscisic and gibberellic acids on the secretory system of human cultured epidermoid carcinoma cells A431 and keratinocytes HaCat. Immunocytochemical and morphometric analysis demonstrated that subtoxic concentration of plant hormones induced the broadening of the ER network and increased the size of Golgi complex. Electron microscopy studies confirmed the hypertrophic changes of the Golgi apparatus, specifically, the swelling of cisternae in the trans-compartment of dictyosomes after exposure to abscisic acid, and swelling of cis- and trans-compartment of dictyosomes after exposure to abscisic acid, and swelling of cis- and trans-compartments of dictyosomes after exposure to gibberellic acid. Using of Click-iT technique allowed to detect the elevation of the total protein synthesis only in A431 cells exposed to abscisic acid. Cumulative data suggests that, under these conditions, the hypertrophy of Golgi apparatus may reflect the enhanced secretory activity of cells. In other experiments, the hypertrophy of Golgi is not related to increased protein synthesis and therefore may suggest the stress-related changes of ER and Golgi apparatus. Our results demonstrate that morphologically similar reaction of cellular organelles, such as hypertrophy of Golgi apparatus, is the result of different functional activities, and that molecular mechanisms underlying the changes induced in cells need further investigations. PMID:25696996

  2. Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway

    PubMed Central

    Chen, Xu; Li, Min; Li, Li; Xu, Song; Huang, Dan; Ju, Mei; Huang, Ju; Chen, Kun; Gu, Heng

    2016-01-01

    Trehalose is a natural disaccharide that is found in a diverse range of organisms but not in mammals. Autophagy is a process which mediates the sequestration, lysosomal delivery and degradation of proteins and organelles. Studies have shown that trehalose exerts beneficial effects through inducing autophagy in mammalian cells. However, whether trehalose or other saccharides can activate autophagy in keratinocytes is unknown. Here, we found that trehalose treatment increased the LC3-I to LC3-II conversion, acridine orange-stained vacuoles and GFP-LC3B (LC3B protein tagged with green fluorescent protein) puncta in the HaCaT human keratinocyte cell line, indicating autophagy induction. Trehalose-induced autophagy was also observed in primary keratinocytes and the A431 epidermal cancer cell line. mTOR signalling was not affected by trehalose treatment, suggesting that trehalose induced autophagy through an mTOR-independent pathway. mTOR-independent autophagy induction was also observed in HaCaT and HeLa cells treated with sucrose or raffinose but not in glucose, maltose or sorbitol treated HaCaT cells, indicating that autophagy induction was not a general property of saccharides. Finally, although trehalose treatment had an inhibitory effect on cell proliferation, it had a cytoprotective effect on cells exposed to UVB radiation. Our study provides new insight into the saccharide-mediated regulation of autophagy in keratinocytes. PMID:27328819

  3. Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway.

    PubMed

    Chen, Xu; Li, Min; Li, Li; Xu, Song; Huang, Dan; Ju, Mei; Huang, Ju; Chen, Kun; Gu, Heng

    2016-01-01

    Trehalose is a natural disaccharide that is found in a diverse range of organisms but not in mammals. Autophagy is a process which mediates the sequestration, lysosomal delivery and degradation of proteins and organelles. Studies have shown that trehalose exerts beneficial effects through inducing autophagy in mammalian cells. However, whether trehalose or other saccharides can activate autophagy in keratinocytes is unknown. Here, we found that trehalose treatment increased the LC3-I to LC3-II conversion, acridine orange-stained vacuoles and GFP-LC3B (LC3B protein tagged with green fluorescent protein) puncta in the HaCaT human keratinocyte cell line, indicating autophagy induction. Trehalose-induced autophagy was also observed in primary keratinocytes and the A431 epidermal cancer cell line. mTOR signalling was not affected by trehalose treatment, suggesting that trehalose induced autophagy through an mTOR-independent pathway. mTOR-independent autophagy induction was also observed in HaCaT and HeLa cells treated with sucrose or raffinose but not in glucose, maltose or sorbitol treated HaCaT cells, indicating that autophagy induction was not a general property of saccharides. Finally, although trehalose treatment had an inhibitory effect on cell proliferation, it had a cytoprotective effect on cells exposed to UVB radiation. Our study provides new insight into the saccharide-mediated regulation of autophagy in keratinocytes. PMID:27328819

  4. Nuclear expression of Rac1 in cervical premalignant lesions and cervical cancer cells

    PubMed Central

    2012-01-01

    Background Abnormal expression of Rho-GTPases has been reported in several human cancers. However, the expression of these proteins in cervical cancer has been poorly investigated. In this study we analyzed the expression of the GTPases Rac1, RhoA, Cdc42, and the Rho-GEFs, Tiam1 and beta-Pix, in cervical pre-malignant lesions and cervical cancer cell lines. Methods Protein expression was analyzed by immunochemistry on 102 cervical paraffin-embedded biopsies: 20 without Squamous Intraepithelial Lesions (SIL), 51 Low- grade SIL, and 31 High-grade SIL; and in cervical cancer cell lines C33A and SiHa, and non-tumorigenic HaCat cells. Nuclear localization of Rac1 in HaCat, C33A and SiHa cells was assessed by cellular fractionation and Western blotting, in the presence or not of a chemical Rac1 inhibitor (NSC23766). Results Immunoreacivity for Rac1, RhoA, Tiam1 and beta-Pix was stronger in L-SIL and H-SIL, compared to samples without SIL, and it was significantly associated with the histological diagnosis. Nuclear expression of Rac1 was observed in 52.9% L-SIL and 48.4% H-SIL, but not in samples without SIL. Rac1 was found in the nucleus of C33A and SiHa cells but not in HaCat cells. Chemical inhibition of Rac1 resulted in reduced cell proliferation in HaCat, C33A and SiHa cells. Conclusion Rac1 is expressed in the nucleus of epithelial cells in SILs and cervical cancer cell lines, and chemical inhibition of Rac1 reduces cellular proliferation. Further studies are needed to better understand the role of Rho-GTPases in cervical cancer progression. PMID:22443139

  5. Relevance of reactive oxygen species in the induction of 8-oxo-2'-deoxyguanosine in HaCaT keratinocytes.

    PubMed

    Riemschneider, Stephan; Podhaisky, Hans-Peter; Klapperstück, Thomas; Wohlrab, Wolfgang

    2002-01-01

    There is growing evidence that solar radiation-induced oxidative DNA damage may play an important role in carcinogenesis of the skin. One substantial modification in this context is the oxidation of the guanine base to 8-oxo-2'-deoxyguanosine. Using HaCaT keratinocytes, measurement of the 8-oxo-2'-deoxyguanosine content in this study was performed by flow cytometry on whole cells. Hydrogen peroxide and hydroxyl radicals seem not to be involved in the process of this DNA alteration. However, our results demonstrate that ultraviolet A can cause DNA damage at guanine sites primarily via photosensitized reactions. Although singlet oxygen can also lead to 8-oxo-2'-deoxyguanosine, the major mechanism seems to be based on formation of the guanylcation radical through excited riboflavin and can therefore proceed without the involvement of reactive oxygen species. PMID:12430729

  6. Neoplastic transformation of human cells

    NASA Technical Reports Server (NTRS)

    Goth-Goldstein, Regine

    1995-01-01

    The goal of this project was to gain a better understanding of the cellular mechanisms of cancer induction by ionizing radiation as a risk assessment for workers subjected to high LET irradiation such as that found in space. The following ions were used for irradiation: Iron, Argon, Neon, and Lanthanum. Two tests were performed: growth in low serum and growth in agar were used as indicators of cell transformation. The specific aims of this project were to: (1) compare the effectiveness of various ions on degree of transformation of a single dose of the same RBE; (2) determine if successive irradiations with the same ion (Ge 600 MeV/u) increases the degree of transformation; (3) test if clones with the greatest degree of transformation produce tumors in nude mice; and (4) construct a cell hybrid of a transformed and control (non-transformed) clone. The cells used for this work are human mammary epithelial cells with an extended lifespan and selected for growth in MEM + 10% serum.

  7. Discrimination of skin sensitizers from non-sensitizers by interleukin-1α and interleukin-6 production on cultured human keratinocytes.

    PubMed

    Jung, Daun; Che, Jeong-Hwan; Lim, Kyung-Min; Chun, Young-Jin; Heo, Yong; Seok, Seung Hyeok

    2016-09-01

    In vitro testing methods for classifying sensitizers could be valuable alternatives to in vivo sensitization testing using animal models, such as the murine local lymph node assay (LLNA) and the guinea pig maximization test (GMT), but there remains a need for in vitro methods that are more accurate and simpler to distinguish skin sensitizers from non-sensitizers. Thus, the aim of our study was to establish an in vitro assay as a screening tool for detecting skin sensitizers using the human keratinocyte cell line, HaCaT. HaCaT cells were exposed to 16 relevant skin sensitizers and 6 skin non-sensitizers. The highest dose used was the dose causing 75% cell viability (CV75) that we determined by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The levels of extracellular production of interleukin-1α (IL-1α) and IL-6 were measured. The sensitivity of IL-1α was 63%, specificity was 83% and accuracy was 68%. In the case of IL-6, sensitivity: 69%, specificity: 83% and accuracy: 73%. Thus, this study suggests that measuring extracellular production of pro-inflammatory cytokines IL-1α and IL-6 by human HaCaT cells may potentially classify skin sensitizers from non-sensitizers. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26691653

  8. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  9. The expression of keratinocyte growth factor receptor (FGFR2-IIIb) correlates with the high proliferative rate of HaCaT keratinocytes.

    PubMed

    Nagy, Nikoletta; Bata-Csörgo, Zsuzsanna; Kopasz, Norbert; Szeg, Csilla; Pivarcsi, Andor; Koreck, Andrea; Dobozy, Attila; Kemény, Lajos; Széll, Márta

    2006-08-01

    Keratinocyte growth factor receptor (KGFR = FGFR2-IIIb) is a tyrosine kinase receptor expressed by keratinocytes, which mediates the effects of fibroblast growth factors (FGF). There are contradictory data in the literature regarding the role of FGFR2-IIIb during the proliferation/differentiation programme of keratinocytes. In this study, we aimed to investigate whether overexpression of FGFR2-IIIb may have a role in the regulation of keratinocyte proliferation. We analysed the expression of FGFR2-IIIb in an in vitro HaCaT model system representing different stages of proliferation and differentiation of keratinocytes. Real-time RT-PCR and Western blot analyses demonstrated a correlation between FGFR2-IIIb mRNA and protein expression and the proportion of cells in S/G2/M phase in synchronized HaCaT keratinocytes and thus with proliferation activity (r = 0.96). After treatment with the antipsoriatic drug, dithranol, FGFR2-IIIb is downregulated dose dependently both at mRNA and protein levels. Moreover, when the rate of proliferation is decreased by the lack of cell attachment to the culturing surface, FGFR2-IIIb mRNA (P = 0.0315) and protein expressions were also reduced (P = 0.0242), while a differentiation marker, keratin 10, mRNA (P = 0.0003) and protein levels (P = 0.001) were increased (r = -0.92). Based on our results we conclude that FGFR2-IIIb expression in HaCaT keratinocytes corresponds with the proliferative activation of the cells and is not related to the differentiation programme. PMID:16842598

  10. The impact of extracellular syntaxin4 on HaCaT keratinocyte behavior

    SciTech Connect

    Kadono, Nanako; Miyazaki, Takafumi; Okugawa, Yoji; Nakajima, Kiichiro; Hirai, Yohei

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer A subpopulation of syntaxin4 localizes extracellularly in the keratinocytes. Black-Right-Pointing-Pointer Epimorphin and syntaxin4 confer the resistance to the oxidative stress. Black-Right-Pointing-Pointer Epimorphin suppresses and syntaxin4 accelerates the CCE formation. Black-Right-Pointing-Pointer The antagonistic peptide to syntaxin4 blocks the syntaxin4-dependent CCE formation. -- Abstract: Syntaxin4 belongs to t-SNARE protein family and functions as a vesicular fusion mediator in the plasma membrane in a wide variety of cell types. This protein resembles another family member, epimorphin, a subpopulation of which has been shown to be secreted extracellularly in order to exert signaling functions. Here, we demonstrate the secretion of syntaxin4 via a non-classical pathway and its extracellular functions by using the functionally normal keratinocyte HaCaT. Extracellularly presented syntaxin4 appeared to elicit many cell responses similar to epimorphin with an important exception: it clearly facilitated keratinocyte cornification. The circularized peptide ST4n1 was synthesized from the putative functional core of syntaxin4 (a.a. 103-108), which is equivalent to the previously generated antagonist of epimorphin, and neutralized this contradictory effect. Intriguingly, an epimorphin mutant (EP4M) in which the functional core was replaced by that of syntaxin4 behaved like epimorphin, which was again antagonized by ST4n1. Electrophoresis-based analyses demonstrated the distinct structure of syntaxin4 compared to epimorphin or EP4M. These results revealed, for the first time, the extracellular role of syntaxin4 and shed light on the division of the extracellular effects exerted by epimorphin and syntaxin4 on keratinocyte cornification.

  11. Approaches to Study Human T Cell Development.

    PubMed

    Dolens, Anne-Catherine; Van de Walle, Inge; Taghon, Tom

    2016-01-01

    Not only is human T cell development characterized by unique changes in surface marker expression, but it also requires specific growth factors and conditions to mimic and study T cell development in vitro. In this chapter, we provide an overview of the specific aspects that need attention when performing T cell differentiation cultures with human progenitors. PMID:26294413

  12. Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts.

    PubMed

    Ramos-Jerz, Maria Del R; Villanueva, Socorro; Jerz, Gerold; Winterhalter, Peter; Deters, Alexandra M

    2013-01-01

    Methanolic avocado (Persea americana Mill., Lauraceae) seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF). The methanol-water partition (M) from avocado seeds and HSCCC fraction 3 (M.3) were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes. PMID:24371457

  13. Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts

    PubMed Central

    Ramos-Jerz, Maria del R.; Villanueva, Socorro; Jerz, Gerold; Winterhalter, Peter; Deters, Alexandra M.

    2013-01-01

    Methanolic avocado (Persea americana Mill., Lauraceae) seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF). The methanol-water partition (M) from avocado seeds and HSCCC fraction 3 (M.3) were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes. PMID:24371457

  14. Constitutive phenolics of Harpephyllum caffrum (Anacardiaceae) and their biological effects on human keratinocytes.

    PubMed

    Nawwar, Mahmoud; Hussein, Sahar; Ayoub, Nahla; Hashim, Amani; El-Sharawy, Reham; Lindequist, Urlike; Harms, Manualle; Wende, Kristian

    2011-12-01

    Assessment of the UV protecting potential of an aqueous methanol leaf extract of Harpephyllum caffrum proved that it possesses a distinct radical scavenging effect and inhibits the production of the proinflammatory cytokine IL-6 by human keratinocytes (HaCaT cells) following UV radiation. Phytochemical investigation of this extract led to isolation and structural determination of the hitherto unknown phenolics, kaempferol 3-O-(2″-sulphatogalactopyranoside), its quercetin analogue and 3-methoxyellagic acid 4-O-galactopyranoside in addition to 18 known phenolic compounds. The structures were determined by spectroscopic and conventional methods of analysis. Flavonoid sulphatoglycosides which have been rarely found in nature were major phenolic constituents of this plant, and this is the first report of the isolation of any of them from Anacardiaceae. The extract was found to diminish UV phototoxic reaction of keratinocytes. However, the isolated kaempferol sulphatogalactopyranoside did not interact with UVB triggered IL-6 production of HaCaT keratinocytes. PMID:21907269

  15. TELOMERE AND TELOMERASE MODULATION BY BERGAMOT POLYPHENOLIC FRACTION IN EXPERIMENTAL PHOTOAGEING IN HUMAN KERATINOCYTES.

    PubMed

    Nisticò, S; Ehrlich, J; Gliozzi, M; Maiuolo, J; Del Duca, E; Muscoli, C; Mollace, V

    2015-01-01

    Photoageing represents the addition of extrinsic chronic ultraviolet radiation-induced damage on intrinsic ageing and accounts for most age-associated changes in skin appearance. In this study, we evaluated the effect of 38% BPF, a highly concentrated extract of the bergamot fruit (Citrus bergamia) on UVB-induced photoageing by examining inflammatory cytokine expression, telomere length/telomerase alterations and cellular viability in human immortalized HaCaT keratinocytes. Our results suggest that 38% BPF protects HaCaT cells against UVB-induced oxidative stress and markers of photoageing in a dose-dependent manner and could be a useful supplement in skin care products. Together with antioxidant properties, BPF, a highly concentrated extract of the bergamot fruit, appears to modulate basic cellular signal transduction pathways leading to anti-proliferative, anti-aging and immune modulating responses. PMID:26403416

  16. Effect of Culture Supernatant Derived from Trichophyton Rubrum Grown in the Nail Medium on the Innate Immunity-related Molecules of HaCaT

    PubMed Central

    Huang, Xin-Zhu; Liang, Pan-Pan; Ma, Han; Yi, Jin-Ling; Yin, Song-Chao; Chen, Zhi-Rui; Li, Mei-Rong; Lai, Wei; Chen, Jian

    2015-01-01

    Background: Trichophyton rubrum is superficial fungi characteristically confined to dead keratinized tissues. These observations suggest that the soluble components released by the fungus could influence the host immune response in a cell in contact-free manner. Therefore, this research aimed to analyze whether the culture supernatant derived from T. rubrum grown in the nail medium could elicit the immune response of keratinocyte effectively. Methods: The culture supernatants of two strains (T1a, TXHB) were compared for the β-glucan concentrations and their capacity to impact the innate immunity of keratinocytes. The β-glucan concentrations in the supernatants were determined with the fungal G-test kit and protein concentrations with bicinchoninic acid protein quantitative method, then HaCaT was stimulated with different concentrations of culture supernatants by adopting morphological method to select a suitable dosage. Expressions of host defense genes were assessed by quantitative polymerase chain reaction after the HaCaT was stimulated with the culture supernatants. Data were analyzed with one-way analysis of variance, followed by the least significant difference test. Results: The T. rubrum strains (T1a and TXHB) released β-glucan of 87.530 ± 37.581 pg/ml and 15.747 ± 6.453 pg/ml, respectively into the media. The messenger RNA (mRNA) expressions of toll-like receptor-2 (TLR2), TLR4, and CARD9 were moderately up-regulated in HaCaT within 6-h applications of both supernatants. HaCaT cells were more responsive to T1a than TXHB. The slight increase of dendritic cells-specific intercellular adhesion molecule 3-grabbing nonintegrin expression was faster and stronger, induced by T1a supernatant than TXHB. The moderate decreases of RNase 7, the slight up-regulations of Dectin-1 and interleukin-8 at the mRNA level were detected only in response to T1a rather than TXHB. After a long-time contact, all the elevated defense genes decreased after 24 h. Conclusion: The

  17. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  18. Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes.

    PubMed

    Inbaraj, J Johnson; Chignell, Colin F

    2004-01-01

    Juglone (5-hydroxy-1,4-naphthoquinone) and plumbagin (5-hydroxy-3-methyl-1,4-naphthoquinone) are yellow pigments found in black walnut (Juglans regia). Herbal preparations derived from black walnut have been used as hair dyes and skin colorants in addition to being applied topically for the treatment of acne, inflammatory diseases, ringworm, and fungal, bacterial, or viral infections. We have studied the cytotoxicity of these quinones to HaCaT keratinocytes. Exposure to juglone or plumbagin (1-20 microM) resulted in a concentration-dependent decrease in cell viability. The cytotoxicity of these quinones is due to two different mechanisms, namely, redox cycling and reaction with glutathione (GSH). Redox cycling results in the generation of the corresponding semiquinone radicals, which were detected by electron paramagnetic resonance. Incubation of keratinocytes with the quinones generated hydrogen peroxide (H(2)O(2)) and resulted in the oxidation of GSH to GSSG. Depletion of GSH by buthionine sulfoximine enhanced semiquinone radical production, increased H(2)O(2) generation, and produced greater cytotoxicity, suggesting that GSH plays an important protective role. Both quinones decreased the intracellular levels of GSH. However, plumbagin stoichiometrically converted GSH to GSSG, indicating that redox cycling is its main metabolic pathway. In contrast, much of the GSH lost during juglone exposure, especially at the higher concentrations (10 and 20 microM), did not appear as GSSG, suggesting that the cytotoxicity of this quinone may also involve nucleophilic addition to GSH. Our findings indicate that topical preparations containing juglone and plumbagin should be used with care as their use may damage the skin. However, it is probable that the antifungal, antiviral, and antibacterial properties of these quinones are the result of redox cycling. PMID:14727919

  19. Association of toxicity of sorafenib and sunitinib for human keratinocytes with inhibition of signal transduction and activator of transcription 3 (STAT3).

    PubMed

    Yamamoto, Kazuhiro; Mizumoto, Atsushi; Nishimura, Kohji; Uda, Atsushi; Mukai, Akira; Yamashita, Kazuhiko; Kume, Manabu; Makimoto, Hiroo; Bito, Toshinori; Nishigori, Chikako; Nakagawa, Tsutomu; Hirano, Takeshi; Hirai, Midori

    2014-01-01

    Hand-foot skin reaction is a most common multi-kinase inhibitor-related adverse event. This study aimed to examine whether the toxicity of sorafenib and sunitinib for human keratinocytes was associated with inhibiting signal transduction and activator of transcription 3 (STAT3). We studied whether STAT3 activity affects sorafenib- and sunitinib-induced cell growth inhibition in HaCaT cells by WST-8 assay. Stattic enhanced the cell-growth inhibitory and apoptotic effects of sorafenib and sunitinib. HaCaT cells transfected with constitutively-active STAT3 (STAT3C) were resistant to the sorafenib- and sunitinib-induced cell growth inhibition. STAT3 activity decreased after short-term treatment with sorafenib and sunitinib in a dose-dependent manner and recovered after long-term treatment with sorafenib and sunitinib at low doses. Moreover, the expression of survivin and bcl-2 decreased after treatment with sorafenib and sunitinib was concomitant with variations in STAT3 activity. Sorafenib-induced STAT3 inhibition was mediated by regulation via MAPK pathways in HaCaT cells, while sunitinib-induced STAT3 inhibition was not. Thus, STAT3 activation mediating apoptosis suppressors may be a key factor in sorafenib and sunitinib-induced keratinocyte cytotoxicity. PMID:25013907

  20. Protective effect of trehalose-loaded liposomes against UVB-induced photodamage in human keratinocytes

    PubMed Central

    EMANUELE, ENZO; BERTONA, MARCO; SANCHIS-GOMAR, FABIAN; PAREJA-GALEANO, HELIOS; LUCIA, ALEJANDRO

    2014-01-01

    Trehalose, a naturally occurring non-reducing disaccharide, is known to act as a major protein stabilizer that can reduce ultraviolet B (UVB)-induced corneal damage when topically applied to the eye. However, due to the low skin permeability of trehalose, which makes the development of topical formulations difficult, its use as a skin photoprotective agent has been limited. Previous findings demonstrated that liposomes may significantly improve the intracellular delivery of trehalose. Therefore, the present study aimed to assess the protective effects of trehalose-loaded liposomes against UVB-induced photodamage using the immortalized human keratinocyte cell line, HaCaT. The effects were also compared to those of the common skin photoprotective compounds, including L-carnosine, L-(+)-ergothioneine, L-ascorbic acid and DL-α-tocopherol. The levels of cyclobutane pyrimidine dimers, 8-hydroxy-2′-deoxyguanosine and protein carbonylation in HaCaT cells were used as biological markers of UVB-induced damage. Compared to other compounds, trehalose-loaded liposomes showed the highest efficacy in reducing the levels of the three markers following UVB irradiation of HaCaT cells (all P<0.001 when compared to each of the four other photoprotective compounds). Therefore, these findings indicate that there may be a clinical application for trehalose-loaded liposomes, and further studies should be performed to assess the potential usefulness in skin photoprotection and the prevention of non-melanoma skin cancer. PMID:25054023

  1. Symmetry breaking in human neuroblastoma cells.

    PubMed

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-01-01

    Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367

  2. Symmetry breaking in human neuroblastoma cells

    PubMed Central

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-01-01

    Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367

  3. Adenophora remotiflora protects human skin keratinocytes against UVB-induced photo-damage by regulating antioxidative activity and MMP-1 expression

    PubMed Central

    2016-01-01

    BACKGROUND/OBJECTIVES Chronic ultraviolet (UV) exposure-induced reactive oxygen species (ROS) are commonly involved in the pathogenesis of skin damage by activating the metalloproteinases (MMP) that break down type I collagen. Adenophora remotiflora (AR) is a perennial wild plant that inhabits Korea, China, and Japan. The present study investigated the protective effects of AR against UVB-induced photo-damage in keratinocytes. MATERIALS/METHODS An in vitro cell-free system was used to examine the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and nitric oxide (NO). The effect of AR on ROS formation, antioxidant enzymes, elastase, MMP-1 level, and mRNA expression of MMP-1 were determined in UVB-irradiated human keratinocyte HaCaT cells. RESULTS AR demonstrated strong DPPH free radical and NO scavenging activity in a cell-free system exhibiting IC50 values of 1.88 mg/mL and 6.77 mg/mL, respectively. AR pretreatment dose-dependently attenuated the production of UVB-induced intracellular ROS, and antioxidant enzymes (catalase and superoxide dismutase) were enhanced in HaCaT cells. Furthermore, pretreatment of AR prevented UVB-induced elastase and collagen degradation by inhibiting the MMP-1 protein level and mRNA expression. Accordingly, AR treatment elevated collagen content in UVB-irradiated HaCaT cells. CONCLUSION The present study provides the first evidence of AR inhibiting UVB-induced ROS production and induction of MMP-1 as a result of augmentation of antioxidative activity in HaCaT human keratinocytes. These results suggest that AR might act as an effective inhibitor of UVB-modulated signaling pathways and might serve as a photo-protective agent. PMID:27478542

  4. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  5. The Chloroform Fraction of Carpinus tschonoskii Leaves Inhibits the Production of Inflammatory Mediators in HaCaT Keratinocytes and RAW264.7 Macrophages.

    PubMed

    Kang, Gyeoung-Jin; Kang, Na-Jin; Han, Sang-Chul; Koo, Dong-Hwan; Kang, Hee-Kyoung; Yoo, Byoung-Sam; Yoo, Eun-Sook

    2012-12-01

    Inflammation is the immune system's response to infection and injury-related disorders, and is related to pro-inflammatory factors (NO, PGE2, cytokines, etc.) produced by inflammatory cells. Atopic dermatitis (AD) is a representative inflammatory skin disease that is characterized by increasing serum levels of inflammatory chemokines, including macrophage-derived chemokine (MDC). Carpinus tschonoskii is a member of the genus Carpinus. We investigated the anti-inflammatory activity of C. tschonoskii by studying the effects of various solvent fractions prepared from its leaves on inflammatory mediators in HaCaT and RAW264.7 cells. We found that the chloroform fraction of C. tschonoskii inhibited MDC at both the protein and mRNA levels in HaCaT cells, acting via the inhibition of STAT1 in the IFN-γ signaling pathway. In addition, the chloroform fraction significantly suppressed the expression of inflammatory factors induced by lipopolysaccharide stimulation, except COX-2 and TNF-α. These results suggest that the chloroform fraction of C. tschonoskii leaves may include a component with potential anti-inflammatory activity. PMID:24278618

  6. Human B-1 cells take the stage

    PubMed Central

    Rothstein, Thomas L.; Griffin, Daniel O.; Holodick, Nichol E.; Quach, Tam D.; Kaku, Hiroaki

    2013-01-01

    B-1cells play critical roles in defending against microbial invasion and in housekeeping removal of cellular debris. B-1cells secrete natural antibody and manifest functions that influence T cell expansion and differentiation and in these and other ways differ from conventional B-2 cells. B-1-cells were originally studied in mice where they are easily distinguished from B-2cells, but their identity in the human system remained poorly defined for many years. Recently, functional criteria for human B-1cells were established on the basis of murine findings, and reverse engineering resulted in identification of the phenotypic profile, CD20+CD27+CD43+CD70−, for B-1cells found in both umbilical cord blood and adult peripheral blood. Human B-1cells may contribute to multiple disease states through production of autoantibody and stimulation/modulation of T cell activity. Human B-1cells could be a rich source of antibodies useful in treating diseases present in elderly populations where natural antibody protection may have eroded. Manipulation of human B-1cell numbers and/or activity may be a new avenue for altering T cell function and treating immune dyscrasias. PMID:23692567

  7. Skin metabolism of aminophenols: Human keratinocytes as a suitable in vitro model to qualitatively predict the dermal transformation of 4-amino-2-hydroxytoluene in vivo

    SciTech Connect

    Goebel, C. Hewitt, N.J.; Kunze, G.; Wenker, M.; Hein, D.W.; Beck, H.; Skare, J.

    2009-02-15

    4-Amino-2-hydroxytolune (AHT) is an aromatic amine ingredient in oxidative hair colouring products. As skin contact occurs during hair dyeing, characterisation of dermal metabolism is important for the safety assessment of this chemical class. We have compared the metabolism of AHT in the human keratinocyte cell line HaCaT with that observed ex-vivo in human skin and in vivo (topical application versus oral (p.o.) and intravenous (i.v.) route). Three major metabolites of AHT were excreted, i.e. N-acetyl-AHT, AHT-sulfate and AHT-glucuronide. When 12.5 mg/kg AHT was applied topically, the relative amounts of each metabolite were altered such that N-acetyl-AHT product was the major metabolite (66% of the dose in comparison with 37% and 32% of the same applied dose after i.v. and p.o. administration, respectively). N-acetylated products were the only metabolites detected in HaCaT cells and ex-vivo whole human skin discs for AHT and p-aminophenol (PAP), an aromatic amine known to undergo N-acetylation in vivo. Since N-acetyltransferase 1 (NAT1) is the responsible enzyme, kinetics of AHT was further compared to the standard NAT1 substrate p-aminobenzoic acid (PABA) in the HaCaT model revealing similar values for K{sub m} and V{sub max}. In conclusion NAT1 dependent dermal N-acetylation of AHT represents a 'first-pass' metabolism effect in the skin prior to entering the systemic circulation. Since the HaCaT cell model represents a suitable in vitro assay for addressing the qualitative contribution of the skin to the metabolism of topically-applied aromatic amines it may contribute to a reduction in animal testing.

  8. Cell culture: Progenitor cells from human brain after death

    NASA Astrophysics Data System (ADS)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  9. The interaction between Staphylococcus aureus SdrD and desmoglein 1 is important for adhesion to host cells

    PubMed Central

    Askarian, Fatemeh; Ajayi, Clement; Hanssen, Anne-Merethe; van Sorge, Nina M.; Pettersen, Ingvild; Diep, Dzung B.; Sollid, Johanna U. E.; Johannessen, Mona

    2016-01-01

    Staphylococcus aureus is known as a frequent colonizer of the skin and mucosa. Among bacterial factors involved in colonization are adhesins such as the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Serine aspartate repeat containing protein D (SdrD) is involved in adhesion to human squamous cells isolated from the nose. Here, we identify Desmoglein 1 (Dsg1) as a novel interaction partner for SdrD. Genetic deletion of sdrD in S. aureus NCTC8325-4 through allelic replacement resulted in decreased bacterial adherence to Dsg1- expressing HaCaT cells in vitro. Complementary gain-of-function was demonstrated by heterologous expression of SdrD in Lactococcus lactis, which increased adherence to HaCaT cells. Also ectopic expression of Dsg1 in HEK293 cells resulted in increased adherence of S. aureus NCTC8325-4 in vitro. Increased adherence of NCTC8325-4, compared to NCTC8325-4ΔsdrD, to the recombinant immobilized Dsg1 demonstrated direct interaction between SdrD and Dsg1. Specificity of SdrD interaction with Dsg1 was further verified using flow cytometry and confirmed binding of recombinant SdrD to HaCaT cells expressing Dsg1 on their surface. These data demonstrate that Dsg1 is a host ligand for SdrD. PMID:26924733

  10. HIV-1 propagates in human neuroblastoma cells.

    PubMed

    Shapshak, P; Sun, N C; Resnick, L; Thornthwaite, J T; Schiller, P; Yoshioka, M; Svenningsson, A; Tourtellotte, W W; Imagawa, D T

    1991-01-01

    A major question in the pathogenesis of AIDS encephalopathy and dementia is whether HIV-1 directly infects cells of the central nervous system (CNS). The propagation of HIV was attempted in six cell lines: three related and three unrelated to the nervous system. HIV was able to propagate in two human neuroblastoma cell lines and a lymphocytic cell line control but did not result in infections of African green monkey kidney cells, human cervix carcinoma cells, and one human brain astrocytoma cell line. Neuroblastoma cell lines infected with HIV showed peaks of reverse transcriptase activity at 10-14 days postinfection. After prolonged growth in cell cultures, one of the neuroblastoma cell lines showed multiphasic virus production, additional high peaks of reverse transcriptase activity, 20-fold greater than the first, lasting from 36 to 74 days and 110 to 140 days postinfection. The presence of HIV was confirmed by p24 antigen capture. The neuroblastoma cell lines had weak but detectable levels of CD4 immunoreactivity by immunoperoxidase and flow immunocytometric analysis. Although no T4-specific RNA sequences were detected by hybridization of Northern blots of total and poly A-selected RNA extracted from the two neuroblastoma cell lines by using a T4 specific complimentary DNA probe, monoclonal antibodies to the CD4 receptor blocked HIV infection in both neuroblastoma cell lines. Thus, the infection of neuroblastoma cells by HIV occurs in part by a CD4-dependent mechanism. Passaging the neuroblastoma cell lines weekly and bimonthly resulted in similar cell cycle-DNA content patterns for the more permissive cell line and with significant numbers of cells in the S phase. HIV-infected neuroblastoma cell lines provide an in vitro model for the evaluation of virus-host cell interactions and may be useful in addressing the issue of the persistence of HIV in the human CNS. PMID:1704060

  11. HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation

    PubMed Central

    2013-01-01

    Background Radiation-induced skin injury remains a serious concern during radiotherapy. Cu/Zn-superoxide dismutase (Cu/Zn-SOD, SOD1) is a conserved enzyme for scavenging superoxide radical in cells. Because of the integrity of cell membranes, exogenous molecule is not able to be incorporated into cells, which limited the application of natural SOD1. The aim of this study was to evaluate the protective role of HIV-TAT protein transduction domain mediated protein transduction of SOD1 (TAT-SOD1) against ionizing radiation. Methods The recombinant TAT-SOD1 and SOD1 were obtained by prokaryotic–based protein expression system. The transduction effect and biological activity of TAT-SOD1 was measured by immunofluorescence and antioxidant capability assays in human keratinocyte HaCaT cells. Mito-Tracker staining, reactive oxygen species (ROS) generation assay, cell apoptosis analysis and malondialdehyde (MDA) assay were used to access the protective effect of TAT- SOD1. Results Uptake of TAT-SOD1 by HaCaT cells retained its biological activity. Compared with natural SOD1, the application of TAT-SOD1 significantly enhanced the viability and decreased the apoptosis induced by X-ray irradiation. Moreover, TAT-SOD1 reduced ROS and preserved mitochondrial integrity after radiation exposure in HaCaT cells. Radiation-induced γH2AX foci, which are representative of DNA double strand breaks, were decreased by pretreatment with TAT-SOD1. Furthermore, subcutaneous application of TAT-SOD1 resulted in a significant decrease in 45 Gy electron beam-induced ROS and MDA concentration in the skins of rats. Conclusions This study provides evidences for the protective role of TAT-SOD1 in alleviating radiation-induced damage in HaCaT cells and rat skins, which suggests a new therapeutic strategy for radiation-induced skin injury. PMID:24175971

  12. Human Pulmonary Endothelial Cells in Culture

    PubMed Central

    Johnson, Alice R.

    1980-01-01

    Endothelial cells were cultured from various different human vessels, including aortas, pulmonary, ovarian, and umbilical arteries, and pulmonary, ovarian, and umbilical veins. The cultured cells were identified as endothelial cells by the presence of Factor VIII antigen and antiotensin I converting enzyme (kininase II). They retained these markers for at least five passages in culture, and some cells had them for seven passages or more. Endothelial cells from the various vessels were compared with respect to their ability to metabolize angiotensins I and II and bradykinin. Cells from arteries had three to five times the angiotensin I converting enzyme activity as cells from veins. The activity of angiotensinase A (aspartyl aminopeptidase) had a similar distribution, and cells from arteries were consistently more active than cells from veins. Cultures of endothelial cells from pulmonary and umbilical vessels formed prostacyclin in response to mechanical stimulation. Media from cell monolayers that were subjected to a change of medium and gentle agitation inhibited aggregation of human platelets. This inhibitory activity was generated within 2-5 min, and it was not formed by cells that were treated with indomethacin or tranylcypromine. Addition of prostaglandin (PG)H2 to indomethacin-treated cells restored the ability to form the inhibitor, but cells treated with tranylcypromine were not responsive to PGH2. In experiments where [14C]arachidonic acid was added to the cells before stimulation, the major metabolite identified by thin-layer chromatography was 6-keto PGF1α. Thus, it appears that pulmonary endothelial cells, as well as umbilical cord cells, can form prostacyclin. In experiments comparing the ability of arterial and venous cells to form prostacyclin, arterial cells were more active than venous cells. These studies of cells from various human vessels suggest that the vascular origin of cultured endothelial cells determines how they metabolize vasoactive

  13. Hepatic Differentiation from Human Ips Cells Using M15 Cells.

    PubMed

    Umeda, Kahoko; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies. PMID:25417065

  14. Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer

    PubMed Central

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L.; Wolf, Don; Mitalipov, Shoukhrat

    2013-01-01

    SUMMARY Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state. PMID:23683578

  15. Stereoselective suppressive effects of protopanaxadiol epimers on UV-B-induced reactive oxygen species and matrix metalloproteinase-2 in human dermal keratinocytes.

    PubMed

    Oh, Sun-Joo; Lee, Sihyeong; Kho, Ye Eun; Kim, Kyunghoon; Jin, Chang Duck; Lim, Chang-Jin

    2015-01-01

    This study aimed to assess the skin-related anti-photoaging activities of the 2 epimeric forms of protopanaxadiol (PPD), 20(S)-PPD and 20(R)-PPD, in cultured human keratinocytes (HaCaT cells). The anti-photoaging activity was evaluated by analyzing the levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs), as well as cell viability for HaCaT cells under UV-B irradiation. The activities for MMP-2 and -1 in conditioned medium were determined using gelatin zymography, and MMP-2 protein in the conditioned medium was detected using Western blot analysis. 20(S)-PPD, but not 20(R)-PPD, suppressed UV-B-induced ROS elevation. Neither of the epimers, at the concentrations used, exhibited cytotoxicity, irrespective of UV-B irradiation. 20(S)-PPD, but not 20(R)-PPD, exhibited an inhibitory effect on UV-B-induced MMP-2 activity and expression in HaCaT cells. In brief, only 20(S)-PPD, a major metabolic product of PPD-type ginsenosides, inhibits UV-B-induced ROS and MMP-2 elevation, implying its stereospecific anti-photoaging activity on the skin. PMID:25405256

  16. Photosensitized 2-amino-3-hydroxypyridine-induced mitochondrial apoptosis via Smac/DIABLO in human skin cells.

    PubMed

    Goyal, Shruti; Amar, Saroj Kumar; Dwivedi, Ashish; Mujtaba, Syed Faiz; Kushwaha, Hari Narayan; Chopra, Deepti; Pal, Manish Kumar; Singh, Dhirendra; Chaturvedi, Rajnish Kumar; Ray, Ratan Singh

    2016-04-15

    The popularity of hair dyes use has been increasing regularly throughout the world as per the demand of hair coloring fashion trends and other cosmetic products. 2-Amino-3-hydroxypyridine (A132) is widely used as a hair dye ingredient around the world. We are reporting first time the phototoxicity mechanism of A132 under ambient environmental UV-B radiation. It showed maximum absorption in UV-B region (317 nm) and forms a photoproduct within an hour exposure of UV-B irradiation. Photocytotoxicity of A132 in human keratinocytes (HaCaT) was measured by mitochondrial (MTT), lysosomal (NRU) and LDH assays which illustrated the significant reduction in cell viability. The role of reactive oxygen species (ROS) generation for A132 phototoxicity was established photo- chemically as well as intracellularly. Noteworthy, formation of tail DNA (comet assay), micronuclei and cyclobutane pyrimidine dimers (CPDs) (immunocytochemistry) formation confirmed the photogenotoxic potential of dye. Cell cycle study (sub-G1peak) and staining with EB/AO revealed the cell cycle arrest and apoptosis. Further, mitochondrial mediated apoptosis was corroborated by reduced MMP, release of cytochrome c and upregulation of caspase-3. Release of mitochondrial Smac/DIABLO in cytoplasm demonstrated the caspase dependent apoptotic cell death by photolabile A132 dye. In-addition increased Bax/Bcl2 ratio again proved the apoptosis. Thus, study suggests that A132 induces photogenotoxicity, phototoxicity and apoptotic cell death through the involvement of Smac/DIABLO in mitochondrial apoptosis via caspase dependent manner. Therefore, the long term use of A132 dye and sunlight exposure jointly increased the oxidative stress in skin which causes premature hair loss, damage to progenitor cells of hair follicles. PMID:26933830

  17. Human neuroepithelial cells express NMDA receptors.

    PubMed

    Sharp, Christopher D; Fowler, M; Jackson, T H; Houghton, J; Warren, A; Nanda, A; Chandler, I; Cappell, B; Long, A; Minagar, A; Alexander, J S

    2003-11-13

    L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1) cerebral endothelial barrier and 2) cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells) have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR) expression via immunohistochemistry and murine neuroepithelial cell line (V1) were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease. PMID:14614784

  18. Vascular Potential of Human Pluripotent Stem Cells

    PubMed Central

    Iacobas, Ionela; Vats, Archana; Hirschi, Karen K.

    2010-01-01

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathologic processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and pre-clinical studies to human trials. PMID:20453170

  19. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  20. Unique multipotent cells in adult human mesenchymal cell populations

    PubMed Central

    Kuroda, Yasumasa; Kitada, Masaaki; Wakao, Shohei; Nishikawa, Kouki; Tanimura, Yukihiro; Makinoshima, Hideki; Goda, Makoto; Akashi, Hideo; Inutsuka, Ayumu; Niwa, Akira; Shigemoto, Taeko; Nabeshima, Yoko; Nakahata, Tatsutoshi; Nabeshima, Yo-ichi; Fujiyoshi, Yoshinori; Dezawa, Mari

    2010-01-01

    We found adult human stem cells that can generate, from a single cell, cells with the characteristics of the three germ layers. The cells are stress-tolerant and can be isolated from cultured skin fibroblasts or bone marrow stromal cells, or directly from bone marrow aspirates. These cells can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo. When transplanted into immunodeficient mice by local or i.v. injection, the cells integrated into damaged skin, muscle, or liver and differentiated into cytokeratin 14-, dystrophin-, or albumin-positive cells in the respective tissues. Furthermore, they can be efficiently isolated as SSEA-3(+) cells. Unlike authentic ES cells, their proliferation activity is not very high and they do not form teratomas in immunodeficient mouse testes. Thus, nontumorigenic stem cells with the ability to generate the multiple cell types of the three germ layers can be obtained through easily accessible adult human mesenchymal cells without introducing exogenous genes. These unique cells will be beneficial for cell-based therapy and biomedical research. PMID:20421459

  1. Toxicity of diuron in human cancer cells.

    PubMed

    Huovinen, Marjo; Loikkanen, Jarkko; Naarala, Jonne; Vähäkangas, Kirsi

    2015-10-01

    Diuron is a substituted phenylurea used as a herbicide to control broadleaf and grass weeds and as a biocidal antifouling agent. Diuron is carcinogenic in rat urinary bladder and toxic to the reproductive system of oysters, sea urchins and lizards. The few studies carried out in human cells do not include the genotoxicity of diuron. We have investigated the toxicity of diuron in human breast adenocarcinoma (MCF-7) and human placental choriocarcinoma (BeWo) cells. The production of reactive oxygen species (ROS) was statistically significantly increased in both cell lines but only at the highest 200 μM concentration. Diuron clearly reduced the viability of BeWo, but not MCF-7 cells. The relative cell number was decreased in both cell lines indicative of inhibition of cell proliferation. In the Comet assay, diuron increased DNA fragmentation in MCF-7 but not in BeWo cells. The expressions of p53 protein, a marker for cell stress, and p21 protein, a transcriptional target of p53, were increased, but only in MCF-7 cells. In conclusion, our results suggest that diuron is cytotoxic and potentially genotoxic in a tissue-specific manner and that ROS play a role in its toxicity. Thus, exposure to diuron may exert harmful effects on fetal development and damage human health. PMID:26086120

  2. Benign Mesenchymal Stromal Cells in Human Sarcomas

    PubMed Central

    Morozov, Alexei; Downey, Robert J.; Healey, John; Moreira, Andre L.; Lou, Emil; Leung, Roland; Edgar, Mark; Singer, Samuel; LaQuaglia, Michael; Maki, Robert G.; Moore, Malcolm A.S.

    2010-01-01

    Purpose Recent evidence suggests that at least some sarcomas arise through aberrant differentiation of mesenchymal stromal cells (MSCs), but MSCs have never been isolated directly from human sarcoma specimens. Experimental Design We examined human sarcoma cell lines and primary adherent cultures derived from human sarcoma surgical samples for features of MSCs. We further characterized primary cultures as either benign or malignant by the presence of tumor-defining genetic lesions and tumor formation in immunocompromised mice. Results We show that a dedifferentiated liposarcoma cell line DDLS8817 demonstrates fat, bone and cartilage trilineage differentiation potential characteristic of MSCs. Primary sarcoma cultures have the morphology, surface immunophenotype and differentiation potential characteristic of MSCs. Surprisingly, many of these cultures are benign as they do not form tumors in mice and lack sarcoma-defining genetic lesions. Consistent with the recently proposed pericyte origin of MSCs in normal human tissues, sarcoma-derived benign MSCs express markers of pericytes and cooperate with endothelial cells in tube formation assays. In human sarcoma specimens, a subset of CD146-positive microvascular pericytes express CD105, an MSC marker, while malignant cells largely do not. In an in vitro co-culture model, sarcoma-derived benign MSCs as well as normal human pericytes markedly stimulate the growth of sarcoma cell lines. Conclusions Sarcoma-derived benign MSCs/pericytes represent a previously undescribed stromal cell type in sarcoma which may contribute to tumor formation. PMID:21138865

  3. Immortalisation of human urothelial cells.

    PubMed

    Petzoldt, J L; Leigh, I M; Duffy, P G; Sexton, C; Masters, J R

    1995-01-01

    A cell line derived from the urothelium lining the ureter of a 12-year-old girl was immortalised using a temperature-sensitive SV40 large T-antigen gene construct, and designated UROtsa. Following immortalisation, UROtsa cells expressed SV40 large T-antigen, but did not acquire characteristics of neoplastic transformation, including growth in soft agar or the development of tumours in nude mice. Metaphase spreads had a normal chromosomal appearance and number. UROtsa cells remained permissive for cell growth at 39 degrees C, indicating that they did not retain temperature sensitivity. UROtsa provides an in vitro model of "normal" urothelium. PMID:8788275

  4. Reprogramming of human somatic cells by bacteria.

    PubMed

    Ito, Naofumi; Ohta, Kunimasa

    2015-05-01

    In general, it had been believed that the cell fate restriction of terminally differentiated somatic cells was irreversible. In 1952, somatic cell nuclear transfer (SCNT) was introduced to study early embryonic development in frogs. So far, various mammalian species have been successfully cloned using the SCNT technique, though its efficiency is very low. Embryonic stem (ES) cells were the first pluripotent cells to be isolated from an embryo and have a powerful potential to differentiate into more than 260 types of cells. The generation of induced pluripotent stem (iPS) cells was a breakthrough in stem cell research, and the use of these iPS cells has solved problems such as low efficiency and cell fate restriction. These cells have since been used for clinical application, disease investigation, and drug selection. As it is widely accepted that the endosymbiosis of Archaea into eukaryotic ancestors resulted in the generation of eukaryotic cells, we examined whether bacterial infection could alter host cell fate. We previously showed that when human dermal fibroblast (HDF) cells were incorporated with lactic acid bacteria (LAB), the LAB-incorporated HDF cells formed clusters and expressed a subset of common pluripotent markers. Moreover, LAB-incorporated cell clusters could differentiate into cells derived from each of the three germinal layers both in vivo and in vitro, indicating successful reprogramming of host HDF cells by LAB. In the current review, we introduce the existing examples of cellular reprogramming by bacteria and discuss their nuclear reprogramming mechanisms. PMID:25866152

  5. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  6. UVA-induced epigenetic regulation of P16(INK4a) in human epidermal keratinocytes and skin tumor derived cells.

    PubMed

    Chen, I-Peng; Henning, Stefan; Faust, Alexandra; Boukamp, Petra; Volkmer, Beate; Greinert, Rüdiger

    2012-01-01

    UVA-radiation (315-400 nm) has been demonstrated to be capable of inducing DNA damage and is regarded as a carcinogen. While chromosomal aberrations found in UVA-irradiated cells and skin tumors provided evidence of the genetic involvement in UVA-carcinogenesis, its epigenetic participation is still illusive. We thus analysed the epigenetic patterns of 5 specific genes that are involved in stem cell fate (KLF4, NANOG), telomere maintenance (hTERT) and tumor suppression in cell cycle control (P16(INK4a), P21(WAFI/CIPI)) in chronically UVA-irradiated HaCaT human keratinocytes. A striking reduction of the permissive histone mark H3K4me3 has been detected in the promoter of P16(INK4a) (4-fold and 9-fold reduction for 10 and 15 weeks UVA-irradiated cells, respectively), which has often been found deregulated in skin cancers. This alteration in histone modification together with a severe promoter hypermethylation strongly impaired the transcription of P16(INK4a) (20-fold and 40-fold for 10 weeks and 15 weeks UVA-irradiation, respectively). Analysis of the skin tumor-derived cells revealed the same severe impairment of the P16(INK4a) transcription attributed to promoter hypermethylation and enrichment of the heterochromatin histone mark H3K9me3 and the repressive mark H3K27me3. Less pronounced UVA-induced epigenetic alterations were also detected for the other genes, demonstrating for the first time that UVA is able to modify transcription of skin cancer associated genes by means of epigenetic DNA and histone alterations. PMID:21986889

  7. Protective effects of the thiol compounds GSH and NAC against sulfur mustard toxicity in a human keratinocyte cell line.

    PubMed

    Balszuweit, Frank; Menacher, Georg; Schmidt, Annette; Kehe, Kai; Popp, Tanja; Worek, Franz; Thiermann, Horst; Steinritz, Dirk

    2016-02-26

    Sulfur mustard (SM) is a chemical warfare agent causing blistering, inflammation and ulceration of the skin. Thiol compounds such as glutathione (GSH) and N-acetylcysteine (NAC) have been suggested as potential antidotes. We investigated SM toxicity in a human keratinocyte cell line (HaCaT) and used GSH and NAC to counteract its cytotoxic effects. Cells were treated with 1, 5 or 10mM GSH or NAC and exposed to 30, 100 or 300μM SM. Different treatment regimens were applied to model extra- and intra-cellular GSH/NAC effects on SM toxicity. Necrosis, apoptosis and interleukin-6 and -8 levels were determined 24h post-exposure. Necrosis and apoptosis increased with SM dose. Interleukin-6 and -8 production peaked at 100μM and decreased at 300μM probably due to reduced ability for interleukin biosynthesis. Intracellular GSH/NAC diminished necrosis induced by 100μM SM. Extracellular GSH/NAC protected against necrosis and apoptosis induced by 100 and 300μM SM. Interleukin-6 and -8 production, induced by 100μM SM was reduced by GSH/NAC. However, low-dose GSH/NAC treatment of cells exposed to 300μM SM led to increased interleukin production. Thus, moderately poisoned cells are mostly responsible for SM-induced secretion of pro-inflammatory cytokines. GSH and NAC treatment can reduce SM-induced toxic effects. Protective effects were more pronounced by extracellular GSH or NAC administration. Rescue of severely poisoned cells may result in a strong secretion of pro- inflammatory cytokines. In summary, thiol compounds such as GSH or NAC constitute a promising approach to improve the therapy for SM injury. Additional intervention to prevent adverse effects of interleukin production might be beneficial. PMID:26361990

  8. The fate of human Treg cells.

    PubMed

    Battaglia, Manuela; Roncarolo, Maria Grazia

    2009-06-19

    In this issue of Immunity, Miyara et al. (2009) demonstrate that FoxP3(+) cells in human peripheral blood are heterogeneous in function, and CD45RA expression defines their different stages of differentiation. PMID:19538927

  9. Loss of CRABP-II Characterizes Human Skin Poorly Differentiated Squamous Cell Carcinomas and Favors DMBA/TPA-Induced Carcinogenesis.

    PubMed

    Passeri, Daniela; Doldo, Elena; Tarquini, Chiara; Costanza, Gaetana; Mazzaglia, Donatella; Agostinelli, Sara; Campione, Elena; Di Stefani, Alessandro; Giunta, Alessandro; Bianchi, Luca; Orlandi, Augusto

    2016-06-01

    Retinol and its derivatives play an important role in epidermal growth and differentiation and represent chemopreventive agents in nonmelanoma skin cancer. Retinoic acid binding protein II (CRABP-II) is a cytoplasmic receptor that critically regulates all-trans-retinoic acid (ATRA) trafficking. We documented the marked reduced expression of CRABP-II and its promoter methylation in human poorly differentiated squamous cell carcinomas. To investigate the role of CRABP-II in skin carcinogenesis we used skin lesion induction by dimethylbenz[a]anthracene/12-O-tetradecanoyl-phorbol-13-acetate in CRABP-II-knockout C57BL/6 mice. We observed earlier and more diffuse epidermal dysplasia, greater incidence and severity of tumors, reduced expression of cytokeratin 1/cytokeratin 10 and involucrin, increased proliferation, and impaired ATRA inhibition of tumor promotion compared with wild-type animals. CRABP-II-transfected HaCaT, FaDu, and A431 cells showed expression of differentiation markers, retinoic acid receptor-β/-γ signaling, ATRA sensitivity, and suppression of EGFR/v-akt murine thymoma viral oncogene homolog 1 (AKT) pathways in a fatty acid binding protein 5/peroxisome proliferator-activated receptor-β/-δ-independent manner. The opposite was true in keratinocytes isolated from CRABP-II-knockout mice. Finally, CRABP-II accumulation induced ubiquitination-associated reduction of EGFR. Our results showed reduced CRABP-II expression in human poorly differentiated squamous cell carcinomas, and its gene deletion favored experimental skin carcinogenesis and impaired ATRA antitumor efficacy, likely modulating EGFR/AKT pathways and retinoic acid receptor-β/-γ signaling. Therapeutic interventions aimed at restoring CRABP-II-mediated signaling may amplify therapeutic retinoid efficacy in nonmelanoma skin cancer. PMID:26945879

  10. Germ cell quantitation in human testicular biopsy.

    PubMed

    Sinha Hikim, A P; Chakraborty, J; Jhunjhunwala, J S

    1985-01-01

    Quantitative analysis of human seminiferous epithelium was carried out using an improved method of glutaraldehyde and osmium fixation with plastic embedding. Part of each biopsy specimen was fixed in Bouin's fixative and embedded in paraffin for comparison. Epon embedded tissue had very little artifactual damage compared with paraffin embedded tissue sections. The germ cell to Sertoli cell ratios were determined by counting the various germ cells per "unit" tubular area. Data obtained by this method reflect a remarkable stability of Sertoli cell number and germ cell-Sertoli cell ratios both between biopsies from different individuals and between biopsies from right and left testes from the same individual. Agreement between the present results and those of earlier studies based on paraffin embedded testicular specimens supports the validity of this method of germ cell quantitation of human testicular biopsy samples. PMID:3927550

  11. REPLICATIVE POTENTIAL OF HUMAN NATURAL KILLER CELLS

    PubMed Central

    Fujisaki, Hiroyuki; Kakuda, Harumi; Imai, Chihaya; Mullighan, Charles G.; Campana, Dario

    2009-01-01

    The replicative potential of human CD56+ CD3− natural killer (NK) cells is unknown. We found that by exposing NK cells to the leukemic cell line K562 genetically modified to express 4-1BB ligand and interleukin 15 (K562-mb15-41BBL), they expanded for up to 30 population doublings, achieving numbers that ranged from 1.6 × 105 to 1.2 × 1011 percent (median, 5.9 × 106 percent; n = 7) of those originally seeded. However, NK cells eventually became unresponsive to stimulation and died. Their demise could be suppressed by enforcing the expression of the human telomerase reverse transcriptase (TERT) gene. TERT-overexpressing NK cells continued to proliferate in response to K562-mb15-41BBL stimulation for more than 1 year of culture, while maintaining a normal karyotype and genotype. Long-lived NK cells had high cytotoxicity against myeloid and T-lineage leukemic cells. They remained susceptible to genetic manipulation, becoming highly cytotoxic to B-lineage leukemic cells after expression of anti-CD19 signaling receptors. Thus, human NK cells have a replicative potential similar to that of T lymphocytes and their lifespan can be significantly prolonged by an increase in TERT activity. We suggest that the methods described here should have many applications in studies of NK cell biology and NK cell-based therapies. PMID:19344420

  12. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  13. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes

    PubMed Central

    Varma, Sandeep R.; Sivaprakasam, Thiyagarajan O.; Mishra, Abheepsa; Kumar, L. M. Sharath; Prakash, N. S.; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  14. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes.

    PubMed

    Varma, Sandeep R; Sivaprakasam, Thiyagarajan O; Mishra, Abheepsa; Kumar, L M Sharath; Prakash, N S; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body's vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  15. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies. PMID:23642054

  16. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-01-01

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. PMID:26840224

  17. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients. PMID:26828436

  18. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  19. Growth of gold nanoparticles in human cells.

    PubMed

    Anshup, Anshup; Venkataraman, J Sai; Subramaniam, Chandramouli; Kumar, R Rajeev; Priya, Suma; Kumar, T R Santhosh; Omkumar, R V; John, Annie; Pradeep, T

    2005-12-01

    Gold nanoparticles of 20-100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, with human cells grown to approximately 80% confluency yielded systematic growth of nanoparticles over a period of 96 h. The cells, stained due to nanoparticle growth, were adherent to the bottom of the wells of the tissue culture plates, with their morphology preserved, indicating that the cell membrane was intact. Transmission electron microscopy of ultrathin sections showed the presence of nanoparticles within the cytoplasm and in the nucleus, the latter being much smaller in dimension. Scanning near field microscopic images confirmed the growth of large particles within the cytoplasm. Normal cells gave UV-visible signatures of higher intensity than the cancer cells. Differences in the cellular metabolism of cancer and noncancer cells were manifested, presumably in their ability to carry out the reduction process. PMID:16316080

  20. Bioinformatics construction of the human cell surfaceome

    PubMed Central

    da Cunha, J. P. C.; Galante, P. A. F.; de Souza, J. E.; de Souza, R. F.; Carvalho, P. M.; Ohara, D. T.; Moura, R. P.; Oba-Shinja, S. M.; Marie, S. K. N.; Silva, W. A.; Perez, R. O.; Stransky, B.; Pieprzyk, M.; Moore, J.; Caballero, O.; Gama-Rodrigues, J.; Habr-Gama, A.; Kuo, W. P.; Simpson, A. J.; Camargo, A. A.; Old, Lloyd J.; de Souza, S. J.

    2009-01-01

    Cell surface proteins are excellent targets for diagnostic and therapeutic interventions. By using bioinformatics tools, we generated a catalog of 3,702 transmembrane proteins located at the surface of human cells (human cell surfaceome). We explored the genetic diversity of the human cell surfaceome at different levels, including the distribution of polymorphisms, conservation among eukaryotic species, and patterns of gene expression. By integrating expression information from a variety of sources, we were able to identify surfaceome genes with a restricted expression in normal tissues and/or differential expression in tumors, important characteristics for putative tumor targets. A high-throughput and efficient quantitative real-time PCR approach was used to validate 593 surfaceome genes selected on the basis of their expression pattern in normal and tumor samples. A number of candidates were identified as potential diagnostic and therapeutic targets for colorectal tumors and glioblastoma. Several candidate genes were also identified as coding for cell surface cancer/testis antigens. The human cell surfaceome will serve as a reference for further studies aimed at characterizing tumor targets at the surface of human cells. PMID:19805368

  1. Human stem cells for craniomaxillofacial reconstruction.

    PubMed

    Jalali, Morteza; Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor; Pauklin, Siim; Vallier, Ludovic

    2014-07-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction. PMID:24564584

  2. Human Stem Cells for Craniomaxillofacial Reconstruction

    PubMed Central

    Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor

    2014-01-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction. PMID:24564584

  3. Paracrine effects of haematopoietic cells on human mesenchymal stem cells

    PubMed Central

    Zhou, Shuanhu

    2015-01-01

    Stem cell function decline during ageing can involve both cell intrinsic and extrinsic mechanisms. Bone and blood formation are intertwined in bone marrow, therefore haematopoietic cells and bone cells could be extrinsic factors for each other. In this study, we assessed the paracrine effects of extrinsic factors from haematopoietic cells on human mesenchymal stem cells (MSCs). Our data showed that haematopoietic cells stimulate proliferation, osteoblast differentiation and inhibit senescence of MSCs; TNF-α, PDGF-β, Wnt1, 4, 6, 7a and 10a, sFRP-3 and sFRP-5 are dominantly expressed in haematopoietic cells; the age-related increase of TNF-α in haematopoietic cells may perform as a negative factor in the interactions of haematopoietic cells on MSCs via TNF-α receptors and then activating NF-κB signaling or Wnt/β-catenin signaling to induce senescence and reduce osteoblast differentiation in MSCs. In conclusion, our data demonstrated that there are paracrine interactions of haematopoietic cells on human MSCs; immunosenescence may be one of the extrinsic mechanisms by which skeletal stem cell function decline during human skeletal ageing. PMID:26030407

  4. Human Keratinocytes Are Vanilloid Resistant

    PubMed Central

    Pecze, László; Szabó, Kornélia; Széll, Márta; Jósvay, Katalin; Kaszás, Krisztián; Kúsz, Erzsébet; Letoha, Tamás; Prorok, János; Koncz, István; Tóth, András; Kemény, Lajos; Vizler, Csaba; Oláh, Zoltán

    2008-01-01

    Background Use of capsaicin or resiniferatoxin (RTX) as analgesics is an attractive therapeutic option. RTX opens the cation channel inflammatory pain/vanilloid receptor type 1 (TRPV1) permanently and selectively removes nociceptive neurons by Ca2+-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted molecular surgery have shown neither obvious behavioral, nor pathological side effects. Methods To address this paradox, we assessed the vanilloid sensitivity of the HaCaT human keratinocyte cell line and primary keratinocytes from skin biopsies. Results Although both cell types express TRPV1 mRNA, neither responded to vanilloids with Ca2+-cytotoxicity. Only ectopic overproduction of TRPV1 rendered HaCaT cells sensitive to low doses (1–50 nM) of vanilloids. The TRPV1-mediated and non-receptor specific Ca2+-cytotoxity ([RTX]>15 µM) could clearly be distinguished, thus keratinocytes were indeed resistant to vanilloid-induced, TRPV1-mediated Ca2+-entry. Having a wider therapeutic window than capsaicin, RTX was effective in subnanomolar range, but even micromolar concentrations could not kill human keratinocytes. Keratinocytes showed orders of magnitudes lower TRPV1 mRNA level than sensory ganglions, the bona fide therapeutic targets in human pain management. In addition to TRPV1, TRPV1b, a dominant negative splice variant was also noted in keratinocytes. Conclusion TRPV1B expression, together with low TRPV1 expression, may explain the vanilloid paradox: even genuinely TRPV1 mRNA positive cells can be spared with therapeutic (up to micromolar) doses of RTX. This additional safety information might be useful for planning future human clinical trials. PMID:18852901

  5. Endocrine Cell Clustering During Human Pancreas Development

    PubMed Central

    Jeon, Jongmin; Correa-Medina, Mayrin; Ricordi, Camillo; Edlund, Helena; Diez, Juan A.

    2009-01-01

    The development of efficient, reproducible protocols for directed in vitro differentiation of human embryonic stem (hES) cells into insulin-producing β cells will benefit greatly from increased knowledge regarding the spatiotemporal expression profile of key instructive factors involved in human endocrine cell generation. Human fetal pancreases 7 to 21 weeks of gestational age, were collected following consent immediately after pregnancy termination and processed for immunostaining, in situ hybridization, and real-time RT-PCR expression analyses. Islet-like structures appear from approximately week 12 and, unlike the mixed architecture observed in adult islets, fetal islets are initially formed predominantly by aggregated insulin- or glucagon-expressing cells. The period studied (7–22 weeks) coincides with a decrease in the proliferation and an increase in the differentiation of the progenitor cells, the initiation of NGN3 expression, and the appearance of differentiated endocrine cells. The present study provides a detailed characterization of islet formation and expression profiles of key intrinsic and extrinsic factors during human pancreas development. This information is beneficial for the development of efficient protocols that will allow guided in vitro differentiation of hES cells into insulin-producing cells. (J Histochem Cytochem 57:811–824, 2009) PMID:19365093

  6. Signaling hierarchy regulating human endothelial cell development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  7. Human embryonic stem cells and lung regeneration

    PubMed Central

    Varanou, A; Page, C P; Minger, S L

    2008-01-01

    Human embryonic stem cells are pluripotent cells derived from the inner cell mass of preimplantation stage embryos. Their unique potential to give rise to all differentiated cell types has generated great interest in stem cell research and the potential that it may have in developmental biology, medicine and pharmacology. The main focus of stem cell research has been on cell therapy for pathological conditions with no current methods of treatment, such as neurodegenerative diseases, cardiac pathology, retinal dysfunction and lung and liver disease. The overall aim is to develop methods of application either of pure cell populations or of whole tissue parts to the diseased organ under investigation. In the field of pulmonary research, studies using human embryonic stem cells have succeeded in generating enriched cultures of type II pneumocytes in vitro. On account of their potential of indefinite proliferation in vitro, embryonic stem cells could be a source of an unlimited supply of cells available for transplantation and for use in gene therapy. Uncovering the ability to generate such cell types will expand our understanding of biological processes to such a degree that disease understanding and management could change dramatically. PMID:18724383

  8. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.

    PubMed

    Itani, Hana A; McMaster, William G; Saleh, Mohamed A; Nazarewicz, Rafal R; Mikolajczyk, Tomasz P; Kaszuba, Anna M; Konior, Anna; Prejbisz, Aleksander; Januszewicz, Andrzej; Norlander, Allison E; Chen, Wei; Bonami, Rachel H; Marshall, Andrew F; Poffenberger, Greg; Weyand, Cornelia M; Madhur, Meena S; Moore, Daniel J; Harrison, David G; Guzik, Tomasz J

    2016-07-01

    Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II. PMID:27217403

  9. Intrinsic radiation resistance in human chondrosarcoma cells

    SciTech Connect

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A. . E-mail: joseph-buckwalter@uiowa.edu

    2006-07-28

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16{sup ink4a}, one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16{sup ink4a} contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16{sup ink4a} expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16{sup ink4a} expression on chondrosarcoma cell resistance to low-dose {gamma}-irradiation (1-5 Gy). p16{sup ink4a} expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16{sup ink4a} transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16{sup ink4a} plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas.

  10. Engineering tissue from human embryonic stem cells

    PubMed Central

    Metallo, CM; Azarin, SM; Ji, L; De Pablo, JJ; Palecek, SP

    2008-01-01

    Abstract Recent advances in human embryonic stem cell (hESC) biology now offer an alternative cell source for tissue engineers, as these cells are capable of proliferating indefinitely and differentiating to many clinically relevant cell types. Novel culture methods capable of exerting spatial and temporal control over the stem cell microenvironment allow for more efficient expansion of hESCs, and significant advances have been made toward improving our understanding of the biophysical and biochemical cues that direct stem cell fate choices. Effective production of lineage specific progenitors or terminally differentiated cells enables researchers to incorporate hESC derivatives into engineered tissue constructs. Here, we describe current efforts using hESCs as a cell source for tissue engineering applications, highlighting potential advantages of hESCs over current practices as well as challenges which must be overcome. PMID:18194458

  11. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice

    PubMed Central

    Wege, Anja K; Schmidt, Marcus; Ueberham, Elke; Ponnath, Marvin; Ortmann, Olaf; Brockhoff, Gero; Lehmann, Jörg

    2014-01-01

    Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγnull (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4+ T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy. PMID:24870377

  12. The cytotoxicity of OPA-modified CdSe/ZnS core/shell quantum dots and its modulation by silibinin in human skin cells.

    PubMed

    Zheng, Hong; Chen, Guangchun; Song, Fangming; DeLouise, Lisa A; Lou, Ziyang

    2011-10-01

    Quantum dots (QDs) have emerged as alternative or complementary tools to organic fluorescent dyes currently used in bioimaging. QDs hold several advantages over conventional fluorescent dyes including greater photostability and a wider range of excitation/emission wavelengths. However, recent work suggests that QDs exert deleterious effects on cellular processes which could obscure bioassay results. This study examined the toxicity of octylamine-poly(acrylic acid) (OPA) modified CdSe/ZnS quantum dots (QDs) and a pharmacological means of preventing QD-induced cell death. Cell viability and the flow cytometry were used to access the toxicity of OPA-modified CdSe/ZnS QDs to human skin cells following a 24-h exposure. It is found that concentrations leading to a 50% reduction in malignant melanoma cell viability (TC50) for two OPA-QDs (QD545 and QD605) are 102.1, 57.3 nM in A375 cells and 67.2, 55.0 nM in A375.S2 cells, respectively. Moreover, QD545 and QD605 show low cytotoxic response in HaCaT keratinocyte cells with TC50 values of 818.2 nM and 162.0 nM, respectively. Silibinin, a natural product derived from milkweed thistle, is known for its powerful antioxidant and membrane stabilizing properties. Pretreatment of cells with silibinin, significantly reduced QD-induced cell death in A375 and A375-S2 cells. These findings suggest that QD cytotoxicity is sensitive to cell types and that pretreatment with antioxidants, such as the natural product silibinin, can modulate QD-induced cytotoxicity. PMID:22195482

  13. Clinical translation of human neural stem cells

    PubMed Central

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  14. Clinical translation of human neural stem cells.

    PubMed

    Tsukamoto, Ann; Uchida, Nobuko; Capela, Alexandra; Gorba, Thorsten; Huhn, Stephen

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  15. Baicalein increases keratin 1 and 10 expression in HaCaT keratinocytes via TRPV4 receptor activation.

    PubMed

    Huang, Kuo-Feng; Ma, Kuo-Hsing; Liu, Pei-Shan; Chen, Bo-Wei; Chueh, Sheau-Huei

    2016-08-01

    In this study, we characterized the effect of baicalein on the regulation of keratinocyte differentiation and proliferation, which are abnormal in atopic dermatitis or psoriasis. Treatment of HaCaT keratinocytes with 10 μm baicalein slightly inhibited cell growth, caused morphological differentiation and increased expression of keratins 1 and 10 (K1/K10) without affecting ROS generation, cytochrome c release or apoptosis. Baicalein treatment caused growth arrest in G0 /G1 phase and also induced Ca(2+) influx via TRPV4 receptor activation. Phosphorylation of ERK, Akt and p38 MAPK, but not JNK, was increased by baicalein, and inhibition of phosphorylation of ERK, but not that of Akt or p38 MAPK, blocked the baicalein-induced increase in K1/K10 expression, suggesting that ERK activation is involved in this increase. Removal of extracellular Ca(2+) or blockade of Ca(2+) influx by pharmacological inhibition or silencing of the TRPV4 receptor did not affect growth arrest, ROS generation or apoptosis, but inhibited baicalein-induced ERK phosphorylation and K1/K10 expression. Thus, baicalein treatment increases differentiation, and decreases proliferation, of keratinocytes. The mechanism of differentiation of keratinocytes is distinct from that of proliferation, the former being Ca(2+) dependent and the latter Ca(2+) independent. PMID:27060689

  16. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    PubMed

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-01

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  17. Cell mechanics and human disease states

    NASA Astrophysics Data System (ADS)

    Suresh, Subra

    2006-03-01

    This presentation will provide summary of our very recent studies exploring the effects of biochemical factors, influenced by foreign organisms or in vivo processes, on intracellular structural reorganization, single-cell mechanical response and motility of a population of cells in the context of two human diseases: malaria induced by Plasmodium falciparum merozoites that invade red blood cells, and gastrointestinal cancer metastasis involving epithelial cells. In both cases, particular attention will be devoted to systematic changes induced in specific molecular species in response to controlled alterations in disease state. The role of critical proteins in influencing the mechanical response of human red bloods during the intra-erythrocytic development of P. falciparum merozoites has also been assessed quantitatively using specific protein knock-out experiments by recourse to gene inactivation methods. Single-cell mechanical response characterization entails such tools as optical tweezers and mechanical plate stretchers whereas cell motility assays and cell-population biorheology characterization involves microfluidic channels. The experimental studies are accompanied by three-dimensional computational simulations at the continuum and mesoscopic scales of cell deformation. An outcome of such combined experimental and computational biophysical studies is the realization of how chemical factors influence single-cell mechanical response, cytoadherence, the biorheology of a large population of cells through microchannels representative of in vivo conditions, and the onset and progression of disease states.

  18. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences.

    PubMed

    Mangerich, Aswin; Debiak, Malgorzata; Birtel, Matthias; Ponath, Viviane; Balszuweit, Frank; Lex, Kirsten; Martello, Rita; Burckhardt-Boer, Waltraud; Strobelt, Romano; Siegert, Markus; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Bürkle, Alexander

    2016-02-26

    Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of

  19. Gammaherpesvirus Infection of Human Neuronal Cells

    PubMed Central

    Jha, Hem Chandra; Mehta, Devan; Lu, Jie; El-Naccache, Darine; Shukla, Sanket K.; Kovacsics, Colleen; Kolson, Dennis

    2015-01-01

    ABSTRACT Gammaherpesviruses human herpesvirus 4 (HHV4) and HHV8 are two prominent members of the herpesvirus family associated with a number of human cancers. HHV4, also known as Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus prevalent in 90 to 95% of the human population, is clinically associated with various neurological diseases such as primary central nervous system lymphoma, multiple sclerosis, Alzheimer’s disease, cerebellar ataxia, and encephalitis. However, the possibility that EBV and Kaposi’s sarcoma-associated herpesvirus (KSHV) can directly infect neurons has been largely overlooked. This study has, for the first time, characterized EBV infection in neural cell backgrounds by using the Sh-Sy5y neuroblastoma cell line, teratocarcinoma Ntera2 neurons, and primary human fetal neurons. Furthermore, we also demonstrated KSHV infection of neural Sh-Sy5y cells. These neuronal cells were infected with green fluorescent protein-expressing recombinant EBV or KSHV. Microscopy, genetic analysis, immunofluorescence, and Western blot analyses for specific viral antigens supported and validated the infection of these cells by EBV and KSHV and showed that the infection was efficient and productive. Progeny virus produced from infected neuronal cells efficiently infected fresh neuronal cells, as well as peripheral blood mononuclear cells. Furthermore, acyclovir was effective at inhibiting the production of virus from neuronal cells similar to lymphoblastoid cell lines; this suggests active lytic replication in infected neurons in vitro. These studies represent a potentially new in vitro model of EBV- and KSHV-associated neuronal disease development and pathogenesis. PMID:26628726

  20. Mitochondrial and lipogenic effects of vitamin D on differentiating and proliferating human keratinocytes.

    PubMed

    Consiglio, Marco; Viano, Marta; Casarin, Stefania; Castagnoli, Carlotta; Pescarmona, Gianpiero; Silvagno, Francesca

    2015-10-01

    Even in cells that are resistant to the differentiating effects of vitamin D, the activated vitamin D receptor (VDR) can downregulate the mitochondrial respiratory chain and sustain cell growth through enhancing the activity of biosynthetic pathways. The aim of this study was to investigate whether vitamin D is effective also in modulating mitochondria and biosynthetic metabolism of differentiating cells. We compared the effect of vitamin D on two cellular models: the primary human keratinocytes, differentiating and sensitive to the genomic action of VDR, and the human keratinocyte cell line HaCaT, characterized by a rapid growth and resistance to vitamin D. We analysed the nuclear translocation and features of VDR, the effects of vitamin D on mitochondrial transcription and the consequences on lipid biosynthetic fate. We found that the negative modulation of respiratory chain is a general mechanism of action of vitamin D, but at high doses, the HaCaT cells became resistant to mitochondrial effects by upregulating the catabolic enzyme CYP24 hydroxylase. In differentiating keratinocytes, vitamin D treatment promoted intracellular lipid deposition, likewise the inhibitor of respiratory chain stigmatellin, whereas in proliferating HaCaT, this biosynthetic pathway was not inducible by the hormone. By linking the results on respiratory chain and lipid accumulation, we conclude that vitamin D, by suppressing respiratory chain transcription in all keratinocytes, is able to support both the proliferation and the specialized metabolism of differentiating cells. Through mitochondrial control, vitamin D can have an essential role in all the metabolic phenotypes occurring in healthy and diseased skin. PMID:26010336

  1. Capsaicin induces immunogenic cell death in human osteosarcoma cells

    PubMed Central

    Jin, Tao; Wu, Hongyan; Wang, Yanlin; Peng, Hao

    2016-01-01

    Immunogenic cell death (ICD) is characterized by the early surface exposure of calreticulin (CRT). As a specific signaling molecule, CRT on the surface of apoptotic tumor cells mediates the recognition and phagocytosis of tumor cells by antigen presenting cells. To date, only a small quantity of anti-cancer chemicals have been found to induce ICD, therefore it is clinically important to identify novel chemicals that may induce ICD. The purpose of the present study is to explore the function of capsaicin in inducing ICD. In the current study, MTT assays were used to examine the growth inhibiting effects of MG-63 cells when they were treated with capsaicin or cisplatin. Mitochondrial membrane potential and western blot analysis were used to investigate capsaicin- and cisplatin-induced apoptosis. In addition, the effects of capsaicin and cisplatin were evaluated for their abilities in inducing calreticulin membrane translocation and mediating ICD in human osteosarcoma cells (MG-63). The results demonstrated that capsaicin and cisplatin can induce the apoptosis of MG-63 cells. However, only capsaicin induced a rapid translocation of CRT from the intracellular space to the cell surface. Treatment with capsaicin increased phagocytosis of MG-63 cells by dendritic cells (DCs), and these MG-63-loaded DCs could efficiently stimulate the secretion of IFN-γ by lymphocytes. These results identify capsaicin as an anti-cancer agent capable of inducing ICD in human osteosarcoma cells in vitro. PMID:27446273

  2. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various...

  3. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various...

  4. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various...

  5. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various...

  6. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various...

  7. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    PubMed Central

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  8. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  9. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  10. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing. PMID:22509834

  11. Insights into the impact of silver nanoparticles on human keratinocytes metabolism through NMR metabolomics.

    PubMed

    Carrola, Joana; Bastos, Verónica; Ferreira de Oliveira, José Miguel P; Oliveira, Helena; Santos, Conceição; Gil, Ana M; Duarte, Iola F

    2016-01-01

    Due to their antimicrobial properties, silver nanoparticles (AgNPs) are increasingly incorporated into consumer goods and medical products. Their potential toxicity to human cells is however a major concern, and there is a need for improved understanding of their effects on cell metabolism and function. Here, Nuclear Magnetic Resonance (NMR) metabolomics was used to investigate the metabolic profile of human epidermis keratinocytes (HaCaT cell line) exposed for 48 h to 30 nm citrate-stabilized spherical AgNPs (10 and 40 μg/mL). Intracellular aqueous extracts, organic extracts and extracellular culture medium were analysed to provide an integrated view of the cellular metabolic response. The specific metabolite variations, highlighted through multivariate analysis and confirmed by spectral integration, suggested that HaCaT cells exposed to AgNPs displayed upregulated glutathione-based antioxidant protection, increased glutaminolysis, downregulated tricarboxylic acid (TCA) cycle activity, energy depletion and cell membrane modification. Importantly, most metabolic changes were apparent in cells exposed to a concentration of AgNPs which did not affect cell viability at significant levels, thus underlying the sensitivity of NMR metabolomics to detect early biochemical events, even in the absence of a clear cytotoxic response. It can be concluded that NMR metabolomics is an important new tool in the field of in vitro nanotoxicology. PMID:26344855

  12. Cell-in-cell structures are involved in the competition between cells in human tumors.

    PubMed

    Sun, Qiang; Huang, Hongyan; Overholtzer, Michael

    2015-01-01

    The engulfment of live cells may represent a mechanism of cell death. We reported that E-cadherin (epithelial cadherin) expression in human cancer cells favors the formation of cell-in-cell structures through the mechanism known as entosis, and that entosis contributes to a form of cellular competition in heterogeneous cancer cell populations. PMID:27308493

  13. Cell-in-cell structures are involved in the competition between cells in human tumors

    PubMed Central

    Sun, Qiang; Huang, Hongyan; Overholtzer, Michael

    2015-01-01

    The engulfment of live cells may represent a mechanism of cell death. We reported that E-cadherin (epithelial cadherin) expression in human cancer cells favors the formation of cell-in-cell structures through the mechanism known as entosis, and that entosis contributes to a form of cellular competition in heterogeneous cancer cell populations. PMID:27308493

  14. Phospholipid composition of cultured human endothelial cells.

    PubMed

    Murphy, E J; Joseph, L; Stephens, R; Horrocks, L A

    1992-02-01

    Detailed analyses of the phospholipid compositions of cultured human endothelial cells are reported here. No significant differences were found between the phospholipid compositions of cells from human artery, saphenous and umbilical vein. However, due to the small sample sizes, relatively large standard deviations for some of the phospholipid classes were observed. A representative composition of endothelial cells is: phosphatidylcholine 36.6%, choline plasmalogen 3.7%, phosphatidylethanolamine 10.2%, ethanolamine plasmalogen 7.6%, sphingomyelin 10.8%, phosphatidylserine 7.1%, lysophosphatidylcholine 7.5%, phosphatidylinositol 3.1%, lysophosphatidylethanolamine 3.6%, phosphatidylinositol 4,5-bisphosphate 1.8%, phosphatidic acid 1.9%, phosphatidylinositol 4-phosphate 1.5%, and cardiolipin 1.9%. The cells possess high choline plasmalogen and lysophosphatidylethanolamine contents. The other phospholipids are within the normal biological ranges expected. Phospholipids were separated by high-performance liquid chromatography and quantified by lipid phosphorus assay. PMID:1315902

  15. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  16. A human gallbladder adenocarcinoma cell line.

    PubMed

    Morgan, R T; Woods, L K; Moore, G E; McGavran, L; Quinn, L A; Semple, T U

    1981-06-01

    A continuous cell line, COLO 346, was established from a liver metastasis in a patient with adenocarcinoma of the gallbladder. COLO 346 grew as an adherent monolayer of pleomorphic epithelioid cells. COLO 346 cells produced esterone, but no estradiol, progesterone, or cortisol. No adrenocorticotropic hormones, beta-subunit of human chorionic gonadotropin, carcinoembryonic antigen, or alpha-fetoprotein production by the cells was detected. Cell doubling time was 36 h. Seven allelic isozymes were assayed. COLO 346 had a chromosome mode of 74 at 21 months postestablishment with 6 marker chromosomes present in 100% of the cells analyzed. COLO 346 has been in continuous culture for over 2 yr and is available to other investigators for their studies. PMID:7262900

  17. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  18. Neutron irradiation of human melanoma cells.

    PubMed

    Brown, K; Mountford, M H; Allen, B J; Mishima, Y; Ichihashi, M; Parsons, P

    1989-01-01

    The biological characteristics and in vitro radiosensitivity of melanoma cells to thermal neutrons were investigated as a guide to the effectiveness of boron neutron capture therapy. Plateau phase cultures of three human malignant melanoma-established cell lines were examined for cell density at confluence, doubling time, cell cycle parameters, chromosome constitution, and melanin content. Cell survival dose-response curves, for cells preincubated in the presence or absence of p-boronophenylalanine. HCl (10B1-BPA), were measured over the dose range 0.6-8.0 Gy (N + gamma). The neutron fluence rate was 2.6 x 10(9) n/cm2/s and the total dose rate 3.7 Gy/h (31% gamma). Considerable differences were observed in the morphology and cellular properties of the cell lines. Two cell lines (96E and 96L) were amelanotic, and one was melanotic (418). An enhanced killing for neutron irradiation was found only for the melanotic cells after 20 h preincubation with 10 micrograms/ml 10B1-BPA. In view of the doubling times of the cell lines of about 23 h (96E and 96L) or of 36 h (418), it seems likely that an increased boron uptake, and hence increased radiosensitivity, might result if the preincubation period with 10B1-BPA is extended to several hours longer than the respective cell cycle times. PMID:2798324

  19. Genetic Manipulation of Human Embryonic Stem Cells.

    PubMed

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells. PMID:25520283

  20. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  1. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Shaw, Paul N; Hewavitharana, Amitha K; Hodson, Mark P

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study

  2. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Shaw, Paul N.; Hewavitharana, Amitha K.; Hodson, Mark P.

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study

  3. Enriched retinal ganglion cells derived from human embryonic stem cells

    PubMed Central

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  4. Enriched retinal ganglion cells derived from human embryonic stem cells.

    PubMed

    Gill, Katherine P; Hung, Sandy S C; Sharov, Alexei; Lo, Camden Y; Needham, Karina; Lidgerwood, Grace E; Jackson, Stacey; Crombie, Duncan E; Nayagam, Bryony A; Cook, Anthony L; Hewitt, Alex W; Pébay, Alice; Wong, Raymond C B

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  5. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland

    PubMed Central

    Slominski, Andrzej T.; Kim, Tae-Kang; Shehabi, Haleem Z.; Tang, Edith; Benson, Heather A. E.; Semak, Igor; Lin, Zongtao; Yates, Charles R.; Wang, Jin; Li, Wei; Tuckey, Robert C.

    2014-01-01

    We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)2D2, 1,20(OH)2D2, 25(OH)D2 and 1,25(OH)2D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)2D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)2D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity. PMID:24382416

  6. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland.

    PubMed

    Slominski, Andrzej T; Kim, Tae-Kang; Shehabi, Haleem Z; Tang, Edith K Y; Benson, Heather A E; Semak, Igor; Lin, Zongtao; Yates, Charles R; Wang, Jin; Li, Wei; Tuckey, Robert C

    2014-03-01

    We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)₂D2, 1,20(OH)₂D2, 25(OH)D2 and 1,25(OH)₂D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)₂D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)₂D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity. PMID:24382416

  7. Advances in Human B Cell Phenotypic Profiling

    PubMed Central

    Kaminski, Denise A.; Wei, Chungwen; Qian, Yu; Rosenberg, Alexander F.; Sanz, Ignacio

    2012-01-01

    To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort. PMID:23087687

  8. Human embryonic stem cells: preclinical perspectives

    PubMed Central

    Deb, Kaushik Dilip; Sarda, Kanchan

    2008-01-01

    Human embryonic stem cells (hESCs) have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic. PMID:18230169

  9. Human norovirus culture in B cells.

    PubMed

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-12-01

    Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h. PMID:26513671

  10. Human norovirus culture in B cells

    PubMed Central

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-01-01

    Human noroviruses (HunoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HunoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HunoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-sydney HunoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HunoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. analysis of infection or attachment samples, including rna extraction and rt-qpcr, requires ~6 h. PMID:26513671

  11. Statins impair glucose uptake in human cells

    PubMed Central

    Nowis, Dominika; Malenda, Agata; Furs, Karolina; Oleszczak, Bozenna; Sadowski, Radoslaw; Chlebowska, Justyna; Firczuk, Malgorzata; Bujnicki, Janusz M; Staruch, Adam D; Zagozdzon, Radoslaw; Glodkowska-Mrowka, Eliza; Szablewski, Leszek; Golab, Jakub

    2014-01-01

    Objective Considering the increasing number of clinical observations indicating hyperglycemic effects of statins, this study was designed to measure the influence of statins on the uptake of glucose analogs by human cells derived from liver, adipose tissue, and skeletal muscle. Design Flow cytometry and scintillation counting were used to measure the uptake of fluorescently labeled or tritiated glucose analogs by differentiated visceral preadipocytes, skeletal muscle cells, skeletal muscle myoblasts, and contact-inhibited human hepatocellular carcinoma cells. A bioinformatics approach was used to predict the structure of human glucose transporter 1 (GLUT1) and to identify the presence of putative cholesterol-binding (cholesterol recognition/interaction amino acid consensus (CRAC)) motifs within this transporter. Mutagenesis of CRAC motifs in SLC2A1 gene and limited proteolysis of membrane GLUT1 were used to determine the molecular effects of statins. Results Statins significantly inhibit the uptake of glucose analogs in all cell types. Similar effects are induced by methyl-β-cyclodextrin, which removes membrane cholesterol. Statin effects can be rescued by addition of mevalonic acid, or supplementation with exogenous cholesterol. Limited proteolysis of GLUT1 and mutagenesis of CRAC motifs revealed that statins induce conformational changes in GLUTs. Conclusions Statins impair glucose uptake by cells involved in regulation of glucose homeostasis by inducing cholesterol-dependent conformational changes in GLUTs. This molecular mechanism might explain hyperglycemic effects of statins observed in clinical trials. PMID:25452863

  12. Fir honeydew honey flavonoids inhibit TNF-α-induced MMP-9 expression in human keratinocytes: a new action of honey in wound healing.

    PubMed

    Majtan, Juraj; Bohova, Jana; Garcia-Villalba, Rocio; Tomas-Barberan, Francisco A; Madakova, Zuzana; Majtan, Tomas; Majtan, Viktor; Klaudiny, Jaroslav

    2013-09-01

    Matrix metalloproteinase-9 (MMP-9) appears to be a major protease responsible for the degradation of matrix and growth-promoting agents in chronic wounds. Honey has been successfully used for treating non-healing wounds associated with infections. However, the mechanisms of its action at the cellular level have remained poorly understood. The aim of this study was to investigate the effect of fir honeydew honey on TNF-α-induced MMP-9 expression and secretion from human keratinocytes (HaCaT) and to identify the honey component(s) responsible for a discovered effect. A C18 solid-phase column was used for preparation of honey aqueous extract (HAE). Expression and production of MMP-9 by HaCaT cells were determined by reverse transcription-PCR, gelatine zymography and Western blot analysis using a polyclonal antibody against MMP-9. We found that HAE inhibited TNF-α-induced production of MMP-9 in keratinocytes in a dose-dependent manner at both the mRNA and protein levels. Apigenin and kaempferol, identified flavonoids in HAE, markedly inhibited MMP-9 production from HaCaT and epidermal keratinocytes. Taken together, fir honeydew honey, which contains certain flavonoids, prevents TNF-α-induced proteolytic activity in cutaneous inflammation. Thus, our findings provide clear evidence that honey may serve as a natural treatment for dermatological problems associated with a persistent inflammation. PMID:23812412

  13. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  14. Wound-healing plants from TCM: in vitro investigations on selected TCM plants and their influence on human dermal fibroblasts and keratinocytes.

    PubMed

    Wang, Ruxi; Lechtenberg, Matthias; Sendker, Jandirk; Petereit, Frank; Deters, Alexandra; Hensel, Andreas

    2013-01-01

    Wound-healing plants from Traditional Chinese Medicine and described for wound healing in the Pharmacopoeia of People's Republic of China (2005 ed.) were investigated by in vitro bioassay on human skin cells. Therefore water and EtOH-water extracts (6:4, v/v) from 12 plants were tested on human primary dermal fibroblasts (pNHDF) and human HaCaT keratinocyte cell line by quantification of cell viability (MTT assay) and cellular proliferation (BrdU incorporation ELISA). No functional activity was found for extracts from Achyranthis bidentatae rhizoma, Cimicifugae rhizoma, Corydalis rhizoma, Gardeniae fructus, Houttuyniae herba, Lonicerae japonicae caulis, Paeoniae rubrae radix and Rehmanniae radix. Extracts from Notoginseng radix et rhizoma, Angelicae sinensis radix and Lonicerae japonicae flos showed moderate activity, while extracts from Moutan cortex (the root bark of Paeonia suffruticosa Andr., Ranunculaceae) increased cell viability of HaCaT keratinocytes and pNHDF in a dose-dependent manner significantly. Bioassay-guided fractionation yielded paeonol 1, the flavan-3-ols catechin 2 and epicatechin-3-O-gallate 3, the dimeric proanthocyanidin epicatechin-(4β→8)-catechin 4, a mixture of trigalloyl-glucoses 5 and 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG) 6. The proanthocyanidin-containing fractions as well as PGG-containing fractions contributed substantially to the stimulating effects. Especially PGG-containing fractions enhanced cell viability and cellular proliferation of HaCaT keratinocytes at concentration of 100nM. From these data we conclude that indication claims for TCM herbal materials must be carefully investigated in order to establish evidence-driven use of such plants. In case of Moutan cortex skin cell stimulating effects have clearly been proven. These effects can be related to the polyphenol fractions of condensed and hydrolysable tannins. PMID:23266731

  15. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  16. Henipavirus pathogenesis in human respiratory epithelial cells.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz; Rockx, Barry

    2013-03-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  17. Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions.

    PubMed

    Debiak, Malgorzata; Lex, Kirsten; Ponath, Viviane; Burckhardt-Boer, Waltraud; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Mangerich, Aswin; Bürkle, Alexander

    2016-02-26

    Sulfur mustard (SM) is a bifunctional alkylating agent with a long history of use as a chemical weapon. Although its last military use is dated for the eighties of the last century, a potential use in terroristic attacks against civilians remains a significant threat. Thus, improving medical therapy of mustard exposed individuals is still of particular interest. PARP inhibitors were recently brought into the focus as a potential countermeasure for mustard-induced pathologies, supported by the availability of efficient compounds successfully tested in cancer therapy. PARP activation after SM treatment was reported in several cell types and tissues under various conditions; however, a detailed characterization of this phenomenon is still missing. This study provides the basis for such studies by developing and optimizing experimental conditions to investigate poly(ADP-ribosyl)ation (PARylation) in HaCaT keratinocytes upon treatment with the monofunctional alkylating agent 2-chloroethyl ethyl sulfide ("half mustard", CEES). By using an immunofluorescence-based approach, we show that optimization of experimental conditions with regards to the type of solvent, dilution factors and treatment procedure is essential to obtain a homogenous PAR staining in HaCaT cell cultures. Furthermore, we demonstrate that different CEES treatment protocols significantly influence the cytotoxicity profiles of treated cells. Using an optimized treatment protocol, our data reveals that CEES induces a dose- and time-dependent dynamic PARylation response in HaCaT cells that could be completely blocked by treating cells with the clinically relevant pharmacological PARP inhibitor ABT888 (also known as veliparib). Finally, siRNA experiments show that CEES-induced PAR formation is predominantly due to the activation of PARP1. In conclusion, this study provides a detailed analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to study the

  18. Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans

    PubMed Central

    Fadini, Gian Paolo; Albiero, Mattia; Vigili de Kreutzenberg, Saula; Boscaro, Elisa; Cappellari, Roberta; Marescotti, Mariacristina; Poncina, Nicol; Agostini, Carlo; Avogaro, Angelo

    2013-01-01

    OBJECTIVE Diabetes mellitus (DM) increases cardiovascular risk, at least in part, through shortage of vascular regenerative cells derived from the bone marrow (BM). In experimental models, DM causes morphological and functional BM alterations, but information on BM function in human DM is missing. Herein, we sought to assay mobilization of stem and proangiogenic cells in subjects with and without DM. RESEARCH DESIGN AND METHODS In a prospective trial (NCT01102699), we tested BM responsiveness to 5 μg/kg human recombinant granulocyte colony–stimulating factor (hrG-CSF) in 24 individuals with DM (10 type 1 and 14 type 2) and 14 individuals without DM. Before and 24 h after hrG-CSF, we quantified circulating stem/progenitor cells and total and differential white blood cell counts. We also evaluated in vivo the proangiogenic capacity of peripheral blood mononuclear cells using the Matrigel plug assay. RESULTS In response to hrG-CSF, levels of CD34+ cells and other progenitor cell phenotypes increased in subjects without DM. Patients with DM had significantly impaired mobilization of CD34+, CD133+, and CD34+CD133+ hematopoietic stem cells and CD133+KDR+ endothelial progenitors, independently of potential confounders. The in vivo angiogenic capacity of peripheral blood mononuclear cells significantly increased after hrG-CSF in control subjects without DM, but not in patients with DM. DM was also associated with the inability to upregulate CD26/DPP-4 on CD34+ cells, which is required for the mobilizing effect of granulocyte colony–stimulating factor. CONCLUSIONS Stem and proangiogenic cell mobilization in response to hrG-CSF is impaired in DM, possibly because of maladaptive CD26/DPP-4 regulation. These alterations may hamper tissue repair and favor the development of cardiovascular complications. PMID:23111057

  19. Primary Bioassay of Human Myeloma Stem Cells

    PubMed Central

    Hamburger, Anne; Salmon, Sydney E.

    1977-01-01

    The ability to clone primary tumors in soft agar has proven useful in the study of the kinetics and biological properties of tumor stem cells. We report the development of an in vitro assay which permits formation of colonies of human monoclonal plasma cells in soft agar. Colony growth has been observed from bone marrow aspirates from 75% of the 70 patients with multiple myeloma or related monoclonal disorders studied. Growth was induced with either 0.02 ml of human type O erythrocytes or 0.25 ml of medium conditioned by the adherent spleen cells of mineral oil-primed BALB/c mice. 5-500 colonies appeared after 2-3 wk in culture yielding a plating efficiency of 0.001-0.1%. The number of myeloma colonies was proportional to the number of cells plated between concentrations of 105-106 and back-extrapolated through zero, suggesting that colonies were clones derived from single myeloma stem cells. Morphological, histochemical, and functional criteria showed the colonies to consist of immature plasmablasts and mature plasma cells. 60-80% of cells picked from colonies contained intracytoplasmic monoclonal immunoglobulin. Colony growth was most easily achieved from the bone marrow cells of untreated patients or those in relapse. Only 50% of bone marrow samples from patients in remission were successfully cultured. Tritiated thymidine suicide studies provided evidence that for most myeloma patients, a very high proportion of myeloma colony-forming cells was actively in transit through the cell cycle. Velocity sedimentation at 1 g showed myeloma stem cells sedimented in a broad band with a peak at 13 mm/h. Antibody to granulocyte colony-stimulating factor did not reduce the number or size of the colonies. Increased numbers of myeloma colonies were seen when the marrow was depleted of colony-stimulating factor elaborating adherent cells before plating. This bioassay should prove useful in studying the in vitro biological behavior of certain bone marrow-derived (B)-cell

  20. How to make a human germ cell.

    PubMed

    Cooke, Paul S; Nanjappa, Manjunatha K

    2015-01-01

    How the primordial germ cell (PGC) lineage, which eventually gives rise to spermatozoa in males and oocytes in females, is established in the developing mammalian embryo has been a critical topic in both developmental and reproductive biology for many years. There have been significant breakthroughs over the past two decades in establishing both the source of PGCs and the factors that regulate the specification of this lineage in mice, [1] but our understanding of the factors that control PGC development in the human is rudimentary. The SRY-related HMG-box (SOX) family of transcription factors consists of 20 genes in humans and mice that are involved in the maintenance of pluripotency, male sexual development, and other processes. A recent paper in Cell has identified one member of this family, SOX17, as an essential factor for inducing the PGC lineage in humans. [2] Surprisingly, this protein does not appear to have a role in PGC specification in mice. This work not only introduces a new and important player to the field of germ cell specification, but also emphasizes the uniqueness of human PGC development compared to more extensively studied mouse models. PMID:25791734

  1. DNA repair responses in human skin cells

    SciTech Connect

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  2. Genome Editing in Human Pluripotent Stem Cells.

    PubMed

    Smith, Cory; Ye, Zhaohui; Cheng, Linzhao

    2016-01-01

    Pluripotent stem cells (PSCs), defined by their capacity for self-renewal and differentiation into all cell types, are an integral tool for basic biological research and disease modeling. However, full use of PSCs for research and regenerative medicine requires the ability to precisely edit their DNA to correct disease-causing mutations and for functional analysis of genetic variations. Recent advances in DNA editing of human stem cells (including PSCs) have benefited from the use of designer nucleases capable of making double-strand breaks (DSBs) at specific sequences that stimulate endogenous DNA repair. The clustered, regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has become the preferred designer nuclease for genome editing in human PSCs and other cell types. Here we describe the principles for designing a single guide RNA to uniquely target a gene of interest and describe strategies for disrupting, inserting, or replacing a specific DNA sequence in human PSCs. The improvements in efficiency and ease provided by these techniques allow individuals to precisely engineer PSCs in a way previously limited to large institutes and core facilities. PMID:27037079

  3. Gemcitabine induces cell senescence in human pancreatic cancer cell lines.

    PubMed

    Song, Yao; Baba, Tomohisa; Mukaida, Naofumi

    2016-08-26

    Patients with pancreatic ductal adenocarcinoma (PDAC) commonly require chemotherapy because they frequently develop metastatic disease or locally advanced tumors. Gemcitabine, an analogue of cytosine arabinoside, is commonly used for PDAC treatment. We observed that gemcitabine induced senescence phenotypes characterized by enhanced senescence-associated β-galactosidase (SA β-Gal) staining and increased expression of senescence-associated molecules in two human pancreatic cancer cell lines, Miapaca-2 and Panc-1, which exhibit resistance to gemcitabine but not L3.pl cells with a high sensitivity to gemcitabine. Gemcitabine-induced cell senescence can be inhibited by reactive oxygen species inhibitor, N-acetyl cysteine. Although gemcitabine also enhanced CXCL8 expression, anti-CXCL8 antibody failed to reduce gemcitabine-induced increases in SA β-Gal-positive cell numbers. These observations would indicate that cell senescence can proceed independently of CXCL8 expression, a characteristic feature of senescence-associated secretion phenotype. PMID:27311854

  4. Cloning of human lung cancer cells.

    PubMed Central

    Walls, G. A.; Twentyman, P. R.

    1985-01-01

    We have carried out a comparison of two different methods for cloning human lung cancer cells. The method of Courtenay & Mills (1978) generally gave higher plating efficiencies (PE) than the method of Carney et al. (1980). The number of colonies increased with incubation time in both methods and the weekly medium replenishment in the Courtenay method was advantageous for longer incubation times of several weeks. In the Courtenay method, the use of August rat red blood cells (RBC) and low oxygen tension were both found to be necessary factors for maximum plating efficiency. The usefulness of heavily irradiated feeder cells in improving PE is less certain; each cell type may have its own requirement. PMID:3904799

  5. Differentiation of human innate lymphoid cells (ILCs).

    PubMed

    Juelke, Kerstin; Romagnani, Chiara

    2016-02-01

    During the last years, a high complexity in innate lymphoid lineages now collectively referred to as innate lymphoid cells (ILCs) has been revealed. ILCs can be grouped according to their effector functions and transcriptional requirements into three main groups, termed group 1, 2 and 3 ILCs. The differentiation of ILC lineages from hematopoietic precursors and the molecular switches guiding their developmental fate have started to be characterized both in mice and humans. In this review, we discuss the origin, differentiation stages and plasticity of human ILC subsets as well as the signals that drive ILC lineage commitment and acquisition of their unique effector programs. PMID:26707651

  6. Interleukin-4 receptor α-based hybrid peptide effectively induces antitumor activity in head and neck squamous cell carcinoma.

    PubMed

    Seto, Kahori; Shoda, Junichi; Horibe, Tomohisa; Warabi, Eiji; Ishige, Kazunori; Yamagata, Kenji; Kohno, Masayuki; Yanagawa, Toru; Bukawa, Hiroki; Kawakami, Koji

    2013-06-01

    Interleukin-4 receptor α (IL-4Rα) is highly expressed on the surface of various human solid tumors including head and neck squamous cell carcinoma (HNSCC). We designed a novel IL-4Rα-lytic hybrid peptide composed of a binding peptide to IL-4Rα and a cell-lytic peptide. In the present study, we evaluated the antitumor activity of the IL-4Rα-lytic hybrid peptide as a novel molecular-targeted therapy in HNSCC. Immunoblot analysis revealed that IL-4Rα was expressed in all tested HNSCC cell lines (HSC-2, HSC-3, HSC-4, Ca9-22 and OSC-19), but not in a human normal keratinocyte (HaCaT) cell line. Immunohistochemical expression levels of IL-4Rα in HNSCC tissues were higher compared to those in normal epithelial tissue. The IL-4Rα-lytic hybrid peptide showed cytotoxic activity in all five cancer cell lines with a concentration that killed 50% of all cells (IC50) as low as 10 µM. HaCaT cells were less sensitive to this peptide with an IC50 of >30 µM. In addition, intratumoral administration of IL-4Rα-lytic hybrid peptide significantly inhibited tumor growth in a xenograft model of human HNSCC in vivo. These results indicate that the IL-4Rα-lytic hybrid peptide may serve as a potent agent to provide a novel therapy for patients with HNSCC. PMID:23563734

  7. Niacin protects against UVB radiation-induced apoptosis in cultured human skin keratinocytes

    PubMed Central

    LIN, FUQUAN; XU, WEN; GUAN, CUIPING; ZHOU, MIAONI; HONG, WEISONG; FU, LIFANG; LIU, DONGYIN; XU, AIE

    2012-01-01

    Niacin and its related derivatives have been shown to have effects on cellular activities. However, the molecular mechanism of its reduced immunosuppressive effects and photoprotective effects remains unclear. In this study, we investigated the molecular mechanism of the photoprotective effect of niacin in ultraviolet (UV)-irradiated human skin keratinocytes (HaCaT cells). We found that niacin effectively suppressed the UV-induced cell death and cell apoptosis of HaCaT cells. Existing data have shown that AKT activation is involved in the cell survival process. Yet, the potential mechanism of niacin in protection against UV-induced skin damage has thus far not fully been eluvidated. We observed that niacin pretreatment enhances UV induced activation of AKT (Ser473 phosphorylation) as well as that of the downstream signal mTOR (S6 and 4E-BP1 phosphorylation). The PI3K/AKT inhibitor, LY294002, and the mTOR inhibitor, rapamycin, largely neutralized the protective effects of niacin, suggesting that AKT and downstream signaling mTOR/S6 activation are necessary for the niacin-induced protective effects against UV-induced cell death and cell apoptosis. Collectively, our data suggest that niacin may be utilized to prevent UV-induced skin damage and provide a novel mechanism of its photoprotective effects against the UV radiation of sunlight by modulating both AKT and downstream mTOR signaling pathways. PMID:22246168

  8. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  9. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  10. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  11. Data on keratin expression in human cells cultured with Australian native plant extracts.

    PubMed

    Adams, Damian H; Shou, Qingyao; Wohlmuth, Hans; Cowin, Allison J

    2016-06-01

    Australian native plants have a long history of therapeutic use in indigenous cultures particularly for the treatment of wounds. We analysed 14 plant derived compounds from the species Pilidiostigma glabrum, Myoporum montanum, Geijera parviflora, and Rhodomyrtus psidioides for keratin 1, 5, 10 and 14 supporting the research article "Native Australian plant extracts differentially induce Collagen I and Collagen III in vitro and could be important targets for the development of new wound healing therapies" [5]. An in situ immunofluorescence assay was used in a 96 well tissue culture plate format to measure keratin expression in immortalised human keratinocytes (HaCaTs) exposed Australian native plant compounds to NMR spectra for the plant extracts are included in this article as is quantitative fluorescent intensity data of keratin 1, 5, 10 and 14 expression. PMID:27077086

  12. The first recombinant human coagulation factor VIII of human origin: human cell line and manufacturing characteristics

    PubMed Central

    Casademunt, Elisabeth; Martinelle, Kristina; Jernberg, Mats; Winge, Stefan; Tiemeyer, Maya; Biesert, Lothar; Knaub, Sigurd; Walter, Olaf; Schröder, Carola

    2012-01-01

    Introduction Since the early 1990s, recombinant human clotting factor VIII (rhFVIII) produced in hamster cells has been available for haemophilia A treatment. However, the post-translational modifications of these proteins are not identical to those of native human FVIII, which may lead to immunogenic reactions and the development of inhibitors against rhFVIII. For the first time, rhFVIII produced in a human host cell line is available. Aim We describe here the establishment of the first human production cell line for rhFVIII and the manufacturing process of this novel product. Methods and results A human cell line expressing rhFVIII was derived from human embryonic kidney (HEK) 293 F cells transfected with an FVIII expression plasmid. No virus or virus-like particles could be detected following extensive testing. The stringently controlled production process is completely free from added materials of animal or human origin. Multistep purification employing a combination of filtration and chromatography steps ensures the efficient removal of impurities. Solvent/detergent treatment and a 20 nm pore size nanofiltration step, used for the first time in rhFVIII manufacturing, efficiently eliminate any hypothetically present viruses. In contrast to hamster cell-derived products, this rhFVIII product does not contain hamster-like epitopes, which might be expected to be immunogenic. Conclusions HEK 293 F cells, whose parental cell line HEK 293 has been used by researchers for decades, are a suitable production cell line for rhFVIII and will help avoid immunogenic epitopes. A modern manufacturing process has been developed to ensure the highest level of purity and pathogen safety. PMID:22690791

  13. Characterization of Human Astrovirus Cell Entry

    PubMed Central

    Méndez, Ernesto; Muñoz-Yañez, Claudia; Sánchez-San Martín, Claudia; Aguirre-Crespo, Gabriela; Baños-Lara, M. del Rocio; Gutierrez, Michelle; Espinosa, Rafaela; Acevedo, Yunuén; Arias, Carlos F.

    2014-01-01

    Human astroviruses (HAstV) are a frequent cause of gastroenteritis in young children and immunocompromised patients. To understand the early steps of HAstV infection in the highly permissive Caco-2 cell line, the binding and entry processes of the virus were characterized. The half-time of virus binding to the cell surface was about 10 min, while virus decapsidation took around 130 min. Drugs affecting clathrin-mediated endocytosis, endosome acidification, and actin filament polymerization, as well as those that reduce the presence of cholesterol in the cell membrane, decreased the infectivity of the virus. The infection was also reduced by silencing the expression of the clathrin heavy chain (CHC) by RNA interference or by overexpression of dominant-negative mutants of dynamin 2 and Eps15. Furthermore, the entry of HAstV apparently depends on the maturation of endosomes, since the infection was reduced by silencing the expression of Rab7, a small GTPase involved in the early- to late-endosome maturation. Altogether, our results suggest that HAstV enters Caco-2 cells using a clathrin-dependent pathway and reaches late endosomes to enter cells. Here, we have characterized the mechanism used by human astroviruses, important agents of gastroenteritis in children, to gain entry into their host cells. Using a combination of biochemical and genetic tools, we found that these viruses enter Caco-2 cells using a clathrin-dependent endocytic pathway, where they most likely need to travel to late endosomes to reach the cytoplasm and begin their replication cycle. PMID:24335315

  14. Inner Ear Hair Cell-Like Cells from Human Embryonic Stem Cells

    PubMed Central

    Ronaghi, Mohammad; Nasr, Marjan; Ealy, Megan; Durruthy-Durruthy, Robert; Waldhaus, Joerg; Diaz, Giovanni H.; Joubert, Lydia-Marie; Oshima, Kazuo

    2014-01-01

    In mammals, the permanence of many forms of hearing loss is the result of the inner ear's inability to replace lost sensory hair cells. Here, we apply a differentiation strategy to guide human embryonic stem cells (hESCs) into cells of the otic lineage using chemically defined attached-substrate conditions. The generation of human otic progenitor cells was dependent on fibroblast growth factor (FGF) signaling, and protracted culture led to the upregulation of markers indicative of differentiated inner ear sensory epithelia. Using a transgenic ESC reporter line based on a murine Atoh1 enhancer, we show that differentiated hair cell-like cells express multiple hair cell markers simultaneously. Hair cell-like cells displayed protrusions reminiscent of stereociliary bundles, but failed to fully mature into cells with typical hair cell cytoarchitecture. We conclude that optimized defined conditions can be used in vitro to attain otic progenitor specification and sensory cell differentiation. PMID:24512547

  15. Inner ear hair cell-like cells from human embryonic stem cells.

    PubMed

    Ronaghi, Mohammad; Nasr, Marjan; Ealy, Megan; Durruthy-Durruthy, Robert; Waldhaus, Joerg; Diaz, Giovanni H; Joubert, Lydia-Marie; Oshima, Kazuo; Heller, Stefan

    2014-06-01

    In mammals, the permanence of many forms of hearing loss is the result of the inner ear's inability to replace lost sensory hair cells. Here, we apply a differentiation strategy to guide human embryonic stem cells (hESCs) into cells of the otic lineage using chemically defined attached-substrate conditions. The generation of human otic progenitor cells was dependent on fibroblast growth factor (FGF) signaling, and protracted culture led to the upregulation of markers indicative of differentiated inner ear sensory epithelia. Using a transgenic ESC reporter line based on a murine Atoh1 enhancer, we show that differentiated hair cell-like cells express multiple hair cell markers simultaneously. Hair cell-like cells displayed protrusions reminiscent of stereociliary bundles, but failed to fully mature into cells with typical hair cell cytoarchitecture. We conclude that optimized defined conditions can be used in vitro to attain otic progenitor specification and sensory cell differentiation. PMID:24512547

  16. Cell Culture Assay for Human Noroviruses [response

    SciTech Connect

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  17. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    SciTech Connect

    Hashimoto, Naohiro . E-mail: nao@nils.go.jp; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-10-06

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate.

  18. Changes of epidermal cell morphology and keratin expression induced by inhibitors of protein kinase C.

    PubMed

    Hegemann, L; Wevers, A; Bonnekoh, B; Mahrle, G

    1992-03-01

    Several lines of evidence show protein kinase C as being involved in various regulatory processes in keratinocyte biology, e.g. proliferation and differentiation. In the present study, we investigated the effects of three different inhibitors of protein kinase C, staurosporine, CP 46'665-1, and tiflucarbine, on cell morphology and keratin expression in a non-tumorigenic human keratinocyte cell line (HaCaT cells). Staurosporine, being the most potent inhibitor of protein kinase C activity in vitro, and CP 46'665-1 induced morphological transformation to a fibroblast-like cell shape. In contrast, no changes in cell morphology were observed after exposure to tiflucarbine. The investigation of keratin expression in HaCaT cells grown in the presence of the different compounds revealed the following changes: After 72 h of cultivation, keratins 8 and 18 were still expressed in treated cells, whereas expression of keratin 13 was decreased as compared to control cells. Immunoblotting to detect vimentin demonstrated its absence in treated and control cells. Since tiflucarbine is known as a dual protein kinase C/calmodulin inhibitor whereas staurosporine and CP 46'665-1 do not antagonize calmodulin function, it might be possible that not only protein kinase C but also calmodulin is involved in the process leading to the morphological changes. PMID:1376142

  19. Proteoglycans from human umbilical vein endothelial cells.

    PubMed

    Griesmacher, A; Hennes, R; Keller, R; Greiling, H

    1987-10-01

    Human umbilical vein endothelial cells were incubated with [35S]sulphate and investigated for their proteoglycan production. By gel chromatography, ion-exchange chromatography and CsCl density-gradient centrifugation we obtained preparative amounts of the endothelial proteoheparan sulphate HSI and of proteochondroitin sulphate from the conditioned medium of mass-cultured human umbilical vein endothelial cells. Approximately 90% of the 35S-labeled material in the endothelial cell conditioned medium was proteochondroitin sulphate. This molecule, with a molecular mass of 180-200 kDa, contains four side-chains of 35-40 kDa and a core protein of 35-40 kDa. Two proteoheparan sulphate forms (HSI and HSII) from the conditioned medium were distinguished by molecular mass and transport kinetics from the cell layer to the medium in pulse-chase experiments. One major form (HSI), with an approximate molecular mass of 160-200 kDa a core protein of 55-60 kDa and three to four polysaccharide side-chains of 35 kDa each, was found enriched in the cellular membrane pellet. Another proteoheparan sulphate (HSII), with polysaccharide moieties of 20 kDa, is enriched in the subendothelial matrix (substratum). PMID:2959475

  20. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation.

    PubMed

    Friedman, Robb; Betancur, Monica; Boissel, Laurent; Tuncer, Hande; Cetrulo, Curtis; Klingemann, Hans

    2007-12-01

    The Wharton's jelly of the umbilical cord is rich in mesenchymal stem cells (UC-MSCs) that fulfill the criteria for MSCs. Here we describe a novel, simple method of obtaining and cryopreserving UC-MSCs by extracting the Wharton's jelly from a small piece of cord, followed by mincing the tissue and cryopreserving it in autologous cord plasma to prevent exposure to allogeneic or animal serum. This direct freezing of cord microparticles without previous culture expansion allows the processing and freezing of umbilical cord blood (UCB) and UC-MSCs from the same individual on the same day on arrival in the laboratory. UC-MSCs produce significant concentrations of hematopoietic growth factors in culture and augment hematopoietic colony formation when co-cultured with UCB mononuclear cells. Mice undergoing transplantation with limited numbers of human UCB cells or CD34(+) selected cells demonstrated augmented engraftment when UC-MSCs were co-transplanted. We also explored whether UC-MSCs could be further manipulated by transfection with plasmid-based vectors. Electroporation was used to introduce cDNA and mRNA constructs for GFP into the UC-MSCs. Transfection efficiency was 31% for cDNA and 90% for mRNA. These data show that UC-MSCs represent a reliable, easily accessible, noncontroversial source of MSCs. They can be prepared and cryopreserved under good manufacturing practices (GMP) conditions and are able to enhance human hematopoietic engraftment in SCID mice. Considering their cytokine production and their ability to be easily transfected with plasmid-based vectors, these cells should have broad applicability in human cell-based therapies. PMID:18022578

  1. Human Embryonic Stem Cells and Cardiac Repair

    PubMed Central

    Zhu, Wei-Zhong; Hauch, Kip; Xu, Chunhui; Laflamme, Michael A.

    2008-01-01

    The muscle lost after a myocardial infarction is replaced with non-contractile scar tissue, often initiating heart failure. Whole-organ cardiac transplantation is the only currently available clinical means of replacing the lost muscle, but this option is limited by the inadequate supply of donor hearts. Thus, cell-based cardiac repair has attracted considerable interest as an alternative means of ameliorating cardiac injury. Because of their tremendous capacity for expansion and unquestioned cardiac potential, pluripotent human embryonic stem cells (hESCs) represent an attractive candidate cell source for obtaining cardiomyocytes and other useful mesenchymal cell types for such therapies. hESC-derived cardiomyocytes (hESC-CMs) exhibit a committed cardiac phenotype and robust proliferative capacity, and recent testing in rodent infarct models indicates that they can partially remuscularize injured hearts and improve contractile function. Although the latter successes give good reason for optimism, considerable challenges remain to the successful application of hESCs to cardiac repair, including the need for preparations of high cardiac purity, improved methods of delivery, and approaches to overcome immune rejection and other causes of graft cell death. This review will describe the phenotype of hESC-CMs and preclinical experience with these cells and will consider strategies to overcoming the aforementioned challenges. PMID:18657407

  2. Human cell culture in a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  3. Human proximal tubule cells form functional microtissues.

    PubMed

    Prange, Jenny A; Bieri, Manuela; Segerer, Stephan; Burger, Charlotte; Kaech, Andres; Moritz, Wolfgang; Devuyst, Olivier

    2016-04-01

    The epithelial cells lining the proximal tubules of the kidney mediate complex transport processes and are particularly vulnerable to drug toxicity. Drug toxicity studies are classically based on two-dimensional cultures of immortalized proximal tubular cells. Such immortalized cells are dedifferentiated, and lose transport properties (including saturable endocytic uptake) encountered in vivo. Generating differentiated, organotypic human microtissues would potentially alleviate these limitations and facilitate drug toxicity studies. Here, we describe the generation and characterization of kidney microtissues from immortalized (HK-2) and primary (HRPTEpiC) human renal proximal tubular epithelial cells under well-defined conditions. Microtissue cultures were done in hanging drop GravityPLUS™ culture plates and were characterized for morphology, proliferation and differentiation markers, and by monitoring the endocytic uptake of albumin. Kidney microtissues were successfully obtained by co-culturing HK-2 or HRPTEpiC cells with fibroblasts. The HK-2 microtissues formed highly proliferative, but dedifferentiated microtissues within 10 days of culture, while co-culture with fibroblasts yielded spherical structures already after 2 days. Low passage HRPTEpiC microtissues (mono- and co-culture) were less proliferative and expressed tissue-specific differentiation markers. Electron microscopy evidenced epithelial differentiation markers including microvilli, tight junctions, endosomes, and lysosomes in the co-cultured HRPTEpiC microtissues. The co-cultured HRPTEpiC microtissues showed specific uptake of albumin that could be inhibited by cadmium and gentamycin. In conclusion, we established a reliable hanging drop protocol to obtain functional kidney microtissues with proximal tubular epithelial cell lines. These microtissues could be used for high-throughput drug and toxicology screenings, with endocytosis as a functional readout. PMID:26676951

  4. Vitamin D derivatives enhance cytotoxic effects of H2O2 or cisplatin on human keratinocytes.

    PubMed

    Piotrowska, Anna; Wierzbicka, Justyna; Ślebioda, Tomasz; Woźniak, Michał; Tuckey, Robert C; Slominski, Andrzej T; Żmijewski, Michał A

    2016-06-01

    Although the skin production of vitamin D is initiated by ultraviolet radiation type B (UVB), the role vitamin D plays in antioxidative or pro-oxidative responses remains to be elucidated. We have used immortalized human HaCaT keratinocytes as a model of proliferating epidermal cells to test the influence of vitamin D on cellular response to H2O2 or the anti-cancer drug, cisplatin. Incubation of keratinocytes with 1,25(OH)2D3 or its low calcemic analogues, 20(OH)D3, 21(OH)pD or calcipotriol, sensitized cells to ROS resulting in more potent inhibition of keratinocyte proliferation by H2O2 in the presence of vitamin D compounds. These results were supported by cell cycle and apoptosis analyses, and measurement of the mitochondrial transmembrane potentials (MMP), however some unique properties of individual secosteroids were observed. Furthermore, in HaCaT keratinocytes treated with H2O2, 1,25(OH)2D3, 21(OH)pD and calcipotriol stimulated the expression of SOD1 and CAT genes, but not SOD2, indicating a possible role of mitochondria in ROS-modulated cell death. 1,25(OH)2D3 also showed a short-term, protective effect on HaCaT keratinocytes, as exemplified by the inhibition of apoptosis and the maintenance of MMP. However, with prolonged incubation with H2O2 or cisplatin, 1,25(OH)2D3 caused an acceleration in the death of the keratinocytes. Therefore, we propose that lead vitamin D derivatives can protect the epidermis against neoplastic transformation secondary to oxidative or UV-induced stress through activation of vitamin D-signaling. Furthermore, our data suggest that treatment with low calcemic vitamin D analogues or the maintenance of optimal level of vitamin D by proper supplementation, can enhance the anticancer efficacy of cisplatin. PMID:27083311

  5. Human umbilical cord perivascular cells (HUCPVC)

    PubMed Central

    Zebardast, Nazlee; Lickorish, David

    2010-01-01

    Human bone marrow mesenchymal stem cells (hBM-MSC) have recently been employed in the clinical treatment of challenging skin defects. We have described an MSC population that can be easily harvested from human umbilical cord perivascular tissue, human umbilical cord perivascular cells (HUCPVC), which exhibit a higher proliferative rate and frequency than hBM-MSC. Our objective was to establish whether HUCPVC could promote healing of full thickness murine skin defects, and thus find utility as a cell source for dermal repair. To this end, bilateral full thickness defects were created on the dorsum of Balb/c nude mice. Fibrin was used as delivery vehicle for 1 × 106 PKH67-labeled HUCPVC with contralateral controls receiving fibrin only. Epifluorescent and brightfield microscopic evaluation of the wound site was carried out at 3 and 7 days while mechanical testing of wounds was carried out at 3, 7 and 10 days. Our results show that by 3 days, marked contraction of the wound was observed in the fibrin controls whilst the HUCPVC samples exhibited neither collapse nor contraction of the defect, and the dermal repair tissue was considerably thicker and more organized. By 7 days, complete re-epithelialization of the HUCPVC wounds was observed whilst in the controls re-epithelialization was limited to the wound margins. Wound strength was significantly increased in the HUCPVC treatment group by 3 and 7 days but no statistical difference was seen at 10 days. We conclude that HUCPVCs accelerate early wound healing in full thickness skin defects and thus represent a putative source of human MSCs for use in dermal tissue engineering. PMID:21220956

  6. 3 CFR - Guidelines for Human Stem Cell Research

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Guidelines apply to the expenditure of NIH funds for research using human embryonic stem cells and certain uses of human induced pluripotent stem cells. The Guidelines are based on the principles that responsible research with human embryonic stem cells has the potential to improve our understanding of...

  7. Human somatic cell nuclear transfer is alive and well.

    PubMed

    Cibelli, Jose B

    2014-06-01

    In this issue, Chung et al. (2014) generate human embryonic stem cells by fusing an adult somatic cell to a previously enucleated human oocyte, in agreement with recent reports by the Mitalipov and Egli groups. We can now safely say that human somatic cell nuclear transfer is alive and well. PMID:24905159

  8. Efficient Generation Human Induced Pluripotent Stem Cells from Human Somatic Cells with Sendai-virus

    PubMed Central

    Choi, In Young; Lim, HoTae; Lee, Gabsang

    2014-01-01

    A few years ago, the establishment of human induced pluripotent stem cells (iPSCs) ushered in a new era in biomedicine. Potential uses of human iPSCs include modeling pathogenesis of human genetic diseases, autologous cell therapy after gene correction, and personalized drug screening by providing a source of patient-specific and symptom relevant cells. However, there are several hurdles to overcome, such as eliminating the remaining reprogramming factor transgene expression after human iPSCs production. More importantly, residual transgene expression in undifferentiated human iPSCs could hamper proper differentiations and misguide the interpretation of disease-relevant in vitro phenotypes. With this reason, integration-free and/or transgene-free human iPSCs have been developed using several methods, such as adenovirus, the piggyBac system, minicircle vector, episomal vectors, direct protein delivery and synthesized mRNA. However, efficiency of reprogramming using integration-free methods is quite low in most cases. Here, we present a method to isolate human iPSCs by using Sendai-virus (RNA virus) based reprogramming system. This reprogramming method shows consistent results and high efficiency in cost-effective manner. PMID:24798302

  9. Cytogenetic analysis of human somatic cell haploidization.

    PubMed

    Galat, V; Ozen, S; Rechitsky, S; Kuliev, A; Verlinsky, Y

    2005-02-01

    Despite recent interest in the derivation of female and male gametes through somatic cell nuclear transfer, there is still insufficient data on chromosomal analysis of these gametes resulting from haploidization, especially involving a human nuclear donor and recipient oocytes. The objective of this study was to investigate the fidelity of chromosomal separation during haploidization of human cumulus cells by in-vitro matured human enucleated MII oocytes. A total of 129 oocytes were tested 4-7, 8-14, or 15-21 h after nuclear transfer (NT) followed by electro-stimulation, resulting in 71.3% activation efficiency on average. Haploidization was documented by the formation of two separate groups of chromosomes, originating from either polar body/pronucleus (PB/PN), or only 2PN, which were tested by 5-colour FISH, or DNA analysis for copy number of chromosomes 13, 16, 18, 21, 22 and X. Two PN were formed more frequently than PB/PN, irrespective of incubation time. In agreement with recent reports on mouse oocytes, as many as 90.2% of the resulting haploid sets tested showed abnormal chromosome segregation, suggesting unsuitability of the resulting artificial gametes for practical application at the present time. PMID:15823223

  10. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass.

    PubMed

    Guo, Ge; von Meyenn, Ferdinand; Santos, Fatima; Chen, Yaoyao; Reik, Wolf; Bertone, Paul; Smith, Austin; Nichols, Jennifer

    2016-04-12

    Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals. PMID:26947977

  11. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass

    PubMed Central

    Guo, Ge; von Meyenn, Ferdinand; Santos, Fatima; Chen, Yaoyao; Reik, Wolf; Bertone, Paul; Smith, Austin; Nichols, Jennifer

    2016-01-01

    Summary Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals. PMID:26947977

  12. Chemo-protective and regenerative effects of diarylheptanoids from the bark of black alder (Alnus glutinosa) in human normal keratinocytes.

    PubMed

    Dinić, Jelena; Ranđelović, Teodora; Stanković, Tijana; Dragoj, Miodrag; Isaković, Aleksandra; Novaković, Miroslav; Pešić, Milica

    2015-09-01

    Medicinal plants are recognized from ancient times as a source of diverse therapeutic agents and many of them are used as dietary supplements. Comprehensive approaches are needed that would identify bioactive components with evident activity against specific indications and provide a better link between science (ethno-botany, chemistry, biology and pharmacology) and market. Recently, the bark of black alder (Alnus glutinosa) appeared at market in the form of food supplement for treatment of different skin conditions. This study aimed to evaluate protective effects of two diarylheptanoids isolated from the bark of black alder: platyphylloside, 5(S)-1,7-di(4-hydroxyphenyl)-3-heptanone-5-O-β-D-glucopyranoside (1) and its newly discovered analog 5(S)-1,7-di(4-hydroxyphenyl)-5-O-β-D-[6-(E-p-coumaroylglucopyranosyl)]heptane-3-one (2) towards doxorubicin damaging activity. To that end, we employed HaCaT cells, non-cancerous human keratinocytes commonly used for skin regenerative studies. Diarylheptanoids significantly antagonized the effects of doxorubicin by lowering the sensitivity of HaCaT cells to this drug. Compound 2 prevented doxorubicin-induced cell death by activating autophagy. Both 1 and 2 protected HaCaT cells against doxorubicin-induced DNA damage. They significantly promoted migration and affected F-actin distribution. These results indicate that chemo-protective effects of diarylheptanoids may occur at multiple subcellular levels. Therefore, diarylheptanoids 1 and 2 could be considered as protective agents for non-cancerous dividing cells during chemotherapy. PMID:26162555

  13. Glutathione peroxidase-1 inhibits UVA-induced AP-2{alpha} expression in human keratinocytes

    SciTech Connect

    Yu Lei; Venkataraman, Sujatha; Coleman, Mitchell C.; Spitz, Douglas R.; Wertz, Philip W.; Domann, Frederick E. . E-mail: frederick-domann@uiowa.edu

    2006-12-29

    In this study, we found a role for H{sub 2}O{sub 2} in UVA-induced AP-2{alpha} expression in the HaCaT human keratinocyte cell line. UVA irradiation not only increased AP-2{alpha}, but also caused accumulation of H{sub 2}O{sub 2} in the cell culture media, and H{sub 2}O{sub 2} by itself could induce the expression of AP-2{alpha}. By catalyzing the removal of H{sub 2}O{sub 2} from cells through over-expression of GPx-1, induction of AP-2{alpha} expression by UVA was abolished. Induction of transcription factor AP-2{alpha} by UVA had been previously shown to be mediated through the second messenger ceramide. We found that not only UVA irradiation, but also H{sub 2}O{sub 2} by itself caused increases of ceramide in HaCaT cells, and C2-ceramide added to cells induced the AP-2{alpha} signaling pathway. Finally, forced expression of GPx-1 eliminated UVA-induced ceramide accumulation as well as AP-2{alpha} expression. Taken together, these findings suggest that GPx-1 inhibits UVA-induced AP-2{alpha} expression by suppressing the accumulation of H{sub 2}O{sub 2}.

  14. Landscape of transcription in human cells

    PubMed Central

    Djebali, Sarah; Davis, Carrie A.; Merkel, Angelika; Dobin, Alex; Lassmann, Timo; Mortazavi, Ali M.; Tanzer, Andrea; Lagarde, Julien; Lin, Wei; Schlesinger, Felix; Xue, Chenghai; Marinov, Georgi K.; Khatun, Jainab; Williams, Brian A.; Zaleski, Chris; Rozowsky, Joel; Röder, Maik; Kokocinski, Felix; Abdelhamid, Rehab F.; Alioto, Tyler; Antoshechkin, Igor; Baer, Michael T.; Bar, Nadav S.; Batut, Philippe; Bell, Kimberly; Bell, Ian; Chakrabortty, Sudipto; Chen, Xian; Chrast, Jacqueline; Curado, Joao; Derrien, Thomas; Drenkow, Jorg; Dumais, Erica; Dumais, Jacqueline; Duttagupta, Radha; Falconnet, Emilie; Fastuca, Meagan; Fejes-Toth, Kata; Ferreira, Pedro; Foissac, Sylvain; Fullwood, Melissa J.; Gao, Hui; Gonzalez, David; Gordon, Assaf; Gunawardena, Harsha; Howald, Cedric; Jha, Sonali; Johnson, Rory; Kapranov, Philipp; King, Brandon; Kingswood, Colin; Luo, Oscar J.; Park, Eddie; Persaud, Kimberly; Preall, Jonathan B.; Ribeca, Paolo; Risk, Brian; Robyr, Daniel; Sammeth, Michael; Schaffer, Lorian; See, Lei-Hoon; Shahab, Atif; Skancke, Jorgen; Suzuki, Ana Maria; Takahashi, Hazuki; Tilgner, Hagen; Trout, Diane; Walters, Nathalie; Wang, Huaien; Wrobel, John; Yu, Yanbao; Ruan, Xiaoan; Hayashizaki, Yoshihide; Harrow, Jennifer; Gerstein, Mark; Hubbard, Tim; Reymond, Alexandre; Antonarakis, Stylianos E.; Hannon, Gregory; Giddings, Morgan C.; Ruan, Yijun; Wold, Barbara; Carninci, Piero; Guigó, Roderic; Gingeras, Thomas R.

    2013-01-01

    Summary Eukaryotic cells make many types of primary and processed RNAs that are found either in specific sub-cellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic sub-cellular localizations are also poorly understood. Since RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modifications and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations taken together prompt to a redefinition of the concept of a gene. PMID:22955620

  15. Mechanobiology of Human Pluripotent Stem Cells

    PubMed Central

    Earls, Jonathan K.; Jin, Sha

    2013-01-01

    Human pluripotent stem cells (hPSCs) are self-renewing and have the potential to differentiate into any cell type in the body, making them attractive cell sources for applications in tissue engineering and regenerative medicine. However, in order for hPSCs to find use in the clinic, the mechanisms underlying their self-renewal and lineage commitment must be better understood. Many technologies that have been developed for the maintenance and directed differentiation of hPSCs involve the use of soluble growth factors, but recent studies suggest that other elements of the hPSC microenvironment also influence the growth and differentiation of hPSCs. This includes the influences of cell–cell interactions, substrate mechanics, cellular interactions with extracellular matrix, as well as the nanotopography of the substrate and physical forces such as shear stress, cyclic mechanical strain, and compression. In this review, we highlight the recent progress of this area of research and discuss ways in which the mechanical cues may be incorporated into hPSC culture regimes to improve methods for expanding and differentiating hPSCs. PMID:23472616

  16. Innate Immunity in Human Embryonic Stem Cells: Comparison with Adult Human Endothelial Cells

    PubMed Central

    Badiger, Rekha; Paul-Clark, Mark; Moreno, Laura; Lendvai, Zsuzsanna; Wright, Jamie S.; Ali, Nadire N.; Harding, Sian E.; Mitchell, Jane A.

    2010-01-01

    Treatment of human disease with human embryonic stem cell (hESC)-derived cells is now close to reality, but little is known of their responses to physiological and pathological insult. The ability of cells to respond via activation of Toll like receptors (TLR) is critical in innate immune sensing in most tissues, but also extends to more general danger sensing, e.g. of oxidative stress, in cardiomyocytes. We used biomarker release and gene-array analysis to compare responses in hESC before and after differentiation, and to those in primary human endothelial cells. The presence of cardiomyocytes and endothelial cells was confirmed in differentiated cultures by immunostaining, FACS-sorting and, for cardiomyocytes, beating activity. Undifferentiated hESC did not respond with CXCL8 release to Gram positive or Gram negative bacteria, or a range of PAMPs (pathogen associated molecular patterns) for TLRs 1-9 (apart from flagellin, an activator of TLR5). Surprisingly, lack of TLR-dependent responses was maintained over 4 months of differentiation of hESC, in cultures which included cardiomyocytes and endothelial cells. In contrast, primary cultures of human aortic endothelial cells (HAEC) demonstrated responses to a broad range of PAMPs. Expression of downstream TLR signalling pathways was demonstrated in hESC, and IL-1β, TNFα and INFγ, which bypass the TLRs, stimulated CXCL8 release. NFκB pathway expression was also present in hESC and NFκB was able to translocate to the nucleus. Low expression levels of TLRs were detected in hESC, especially TLRs 1 and 4, explaining the lack of response of hESC to the main TLR signals. TLR5 levels were similar between differentiated hESC and HAEC, and siRNA knockdown of TLR5 abolished the response to flagellin. These findings have potential implications for survival and function of grafted hESC-derived cells. PMID:20463927

  17. Human Pluripotent Stem Cells for Modelling Human Liver Diseases and Cell Therapy

    PubMed Central

    Dianat, Noushin; Steichen, Clara; Vallier, Ludovic; Weber, Anne; Dubart-Kupperschmitt, Anne

    2013-01-01

    The liver is affected by many types of diseases, including metabolic disorders and acute liver failure. Orthotopic liver transplantation (OLT) is currently the only effective treatment for life-threatening liver diseases but transplantation of allogeneic hepatocytes has now become an alternative as it is less invasive than OLT and can be performed repeatedly. However, this approach is hampered by the shortage of organ donors, and the problems related to the isolation of high quality adult hepatocytes, their cryopreservation and their absence of proliferation in culture. Liver is also a key organ to assess the pharmacokinetics and toxicology of xenobiotics and for drug discovery, but appropriate cell culture systems are lacking. All these problems have highlighted the need to explore other sources of cells such as stem cells that could be isolated, expanded to yield sufficiently large populations and then induced to differentiate into functional hepatocytes. The presence of a niche of “facultative” progenitor and stem cells in the normal liver has recently been confirmed but they display no telomerase activity. The recent discovery that human induced pluripotent stem cells can be generated from somatic cells has renewed hopes for regenerative medicine and in vitro disease modelling, as these cells are easily accessible. We review here the present progresses, limits and challenges for the generation of functional hepatocytes from human pluripotent stem cells in view of their potential use in regenerative medicine and drug discovery. PMID:23444872

  18. T helper cell activation and human retroviral pathogenesis.

    PubMed Central

    Copeland, K F; Heeney, J L

    1996-01-01

    T helper (Th) cells are of central importance in regulating many critical immune effector mechanisms. The profile of cytokines produced by Th cells correlates with the type of effector cells induced during the immune response to foreign antigen. Th1 cells induce the cell-mediated immune response, while Th2 cells drive antibody production. Th cells are the preferential targets of human retroviruses. Infections with human T-cell leukemia virus (HTLV) or human immunodeficiency virus (HIV) result in the expansion of Th cells by the action of HTLV (adult T-cell leukemia) or the progressive loss of T cells by the action of HIV (AIDS). Both retrovirus infections impart a high-level activation state in the host immune cells as well as systemically. However, diverging responses to this activation state have contrasting effects on the Th-cell population. In HIV infection, Th-cell loss has been attributed to several mechanisms, including a selective elimination of cells by apoptosis. The induction of apoptosis in HIV infection is complex, with many different pathways able to induce cell death. In contrast, infection of Th cells with HTLV-1 affords the cell a protective advantage against apoptosis. This advantage may allow the cell to escape immune surveillance, providing the opportunity for the development of Th-cell cancer. In this review, we will discuss the impact of Th-cell activation and general immune activation on human retrovirus expression with a focus upon Th-cell function and the progression to disease. PMID:8987361

  19. Studies in human skin epithelial cell carcinogenesis

    SciTech Connect

    Lehman, T.A.

    1987-01-01

    Metabolism and DNA adduct formation of benzo(a)pyrene (BP) by human epidermal keratinocytes pretreated with inhibitors or inducer of cytochrame P450 was studied. To study DNA adduct analysis, cultures were pretreated as described above, and then treated with non-radiolabeled BP. DNA was prepared from these cultures, digested to the nucleotide level, and /sup 32/P-postlabeled for adduct analysis. Cultures pretreated with BHA, 7,8-BF or disulfiralm formed significantly fewer BPDE I-dB adducts than non-pretreated cultures, while cultures pretreated with MeBHA formed more BPDE-I-dG adducts. MeBHA increased BP activation and adduct formation inhuman keratinocyte in cultures by inducing a specific isoenzyme of cytochrome P450 which preferentially increases the oxidative metabolism of BP to 7,8 diol BP and 7,8 diol BP to BPDE I. To approximate an in vivo human system, metabolism of BPDE I by human skin xenografts treated with cell cycles modulators was studied. When treated with BPDE I, specific carcinogen-DNA adducts were formed. Separation and identification of these adducts by the /sup 32/P-postlabeling technique indicated that the 7R- and 7S-BPDE I-dG adducts were the major adducts.

  20. Inhibition of Human Colon Cancer Growth by Antibody-Directed Human LAK Cells in SCID Mice

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Nakada, Tetsuya; Puisieux, Isabelle

    1993-03-01

    Advanced human colon cancer does not respond to lymphokine-activated killer (LAK) cells. In order to direct cytotoxic cells to the tumor, human LAK cells linked with antibodies to a tumor cell surface antigen were tested with established hepatic metastases in severe combined immunodeficient (SCID) mice. These cells had increased uptake into the tumor and suppression of tumor growth as compared with LAK cells alone, thereby improving the survival of tumor-bearing mice. Thus, tumor growth can be inhibited by targeted LAK cells, and SCID mice can be used to test the antitumor properties of human effector cells.

  1. The effect of cell phones on human health

    NASA Astrophysics Data System (ADS)

    Abu-Isbeih, Ibrahim N.; Saad, Dina

    2011-10-01

    The effect of cell phone radiation on human health is the subject of recent interest and study, as a result of the enormous increase in cell phone usage throughout the world. Cell phones use electromagnetic radiation in the microwave range, which some believe may be harmful to human health. Other digital wireless systems, such as data communication networks, produce similar radiation. The objective of this survey is to review the effects of cell phones on human health: A large body of research exists, both epidemiological and experimental, in non-human animals and in humans, of which the majority shows no definite causative relationship between exposure to cell phones and harmful biological effects in humans. This is often paraphrased simply as the balance of evidence showing no harm to humans from cell phones, although a significant number of individual studies do suggest such a relationship, or are inconclusive.

  2. Cordycepin Suppresses Thymic Stromal Lymphopoietin Expression via Blocking Caspase-1 and Receptor-Interacting Protein 2 Signaling Pathways in Mast Cells.

    PubMed

    Yoou, Myoung-schook; Jin, Mu Hyun; Lee, So Young; Lee, Sang Hwa; Kim, Byunghyun; Roh, Seok Seon; Choi, In Hwa; Lee, Myeong Soo; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-01-01

    Cordycepin (3'-deoxyadenosine) is one of the active components isolated from Cordyceps militaris, and has been shown to have anti-inflammatory, anti-oxidant, anti-aging, and anti-cancer effects. Mast cell-derived thymic stromal lymphopoietin (TSLP) plays an important role in the pathogenesis of allergic inflammatory reactions. Here, we investigated the regulatory effect and mechanisms of cordycepin on the expression of TSLP in the human mast cell line, HMC-1 cells, and in the human keratinocyte cell line, HaCaT cells. Cordycepin significantly decreased the production and mRNA expression of TSLP through the inhibition of caspase-1 and nuclear factor-κB activation. Cordycepin also significantly reduced the phosphorylation of receptor-interacting protein 2 and inhibitory kappa B (IκB) kinase β. Cordycepin significantly decreased the production and mRNA expression of interleukin (IL)-8, IL-1β, IL-6, and tumor necrosis factor-α in activated HMC-1 cells. Moreover, cordycepin significantly decreased the levels of TSLP in activated HaCaT cells. Our studies suggest that cordycepin can be applied to the treatment of allergic inflammatory diseases exacerbated by TSLP. PMID:26725432

  3. Human Naive Embryonic Stem Cells: How Full Is the Glass?

    PubMed

    Wang, Yixuan; Gao, Shaorong

    2016-03-01

    Human naive embryonic stem cells in the ground state of pluripotency provide a new opportunity to study human developmental biology and potential clinical applications. Two studies now report related work in human naive stem cell derivation and DNA methylation analysis, with one reporting some differences from oocyte and blastocyst profiles. PMID:26942847

  4. Trichloroethylene toxicity in a human hepatoma cell line

    SciTech Connect

    Thevenin, E.; McMillian, J.

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  5. Characterization of coordinated immediate responses by p16INK4A and p53 pathways in UVB-irradiated human skin cells.

    PubMed

    Abd Elmageed, Zakaria Y; Gaur, Rajiv L; Williams, Mandy; Abdraboh, Mohamed E; Rao, Prakash N; Raj, Madhwa H G; Ismail, Fathi M; Ouhtit, Allal

    2009-01-01

    While the precise mechanisms of melanoma development are unknown, recent in vivo studies have revealed that the p16(Ink4a)/Rb pathway is disrupted in melanomagenesis. Here, we characterize the role of p16/Rb in coordinating the early events in UVB-irradiated skin. Foreskins and melanoma cell cultures were irradiated with low and high acute UVB doses and examined for cell-cycle- and apoptosis-associated genes. In melanoma cells, low UVB dose upregulated p16, p53, and p21 expression levels in Malme-3M, and high UVB dose accentuated the expression of p53 and p21(Cip1/Waf1), in particular; however, in SkMel-28 cells only p16 expression was upregulated in response to UV irradiation. In HaCaT cells, high UVB dose caused dramatic increase in p53 expression followed by upregulation of p21(Cip1/Waf1) and Bax, and downregulation of Bcl-2 leading to apoptosis. In HaCaT cells, reinstatement of p16 pathway restored cell-cycle arrest in response to low dose. Foreskin organ culture experiments confirmed our in vitro cell results. These data indicate that the p53 and p16 pathways respond independently to UVB insult. The p16 pathway is favored at low doses and results in cell-cycle arrest; the p53 pathway is more responsive to higher doses and induces apoptosis depending on p53 mutation status. PMID:18719612

  6. Generation of induced pluripotent stem cells from human blood.

    PubMed

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage. PMID:19299331

  7. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  8. Assessment of Lemon Balm (Melissa officinalis L.) Hydrogels: Quality and Bioactivity in Skin Cells

    PubMed Central

    Ramanauskienė, Kristina; Stelmakiene, Ada; Majienė, Daiva

    2015-01-01

    The aim of the study was to design gels with lemon balm extract, assess their quality, and investigate the effect of rosmarinic acid on skin cells in normal conditions and under oxidative stress. Methods. The quantities of rosmarinic acid (RA) released from gels were evaluated by applying the HPLC technique. HaCaT cell viability was assessed by using the MTT method. ROS generation was measured using DCFH-DA dye. The results showed that the gelling material affected the release of RA content from gels. Lower and slower RA content release was determined in carbomer-based gels. After 6 hours of biopharmaceutical research in vitro, at least 4% of RA was released from the gel. The results of the biological studies on HaCaT cells demonstrated that, in the oxidative stress conditions, RA reduced intracellular ROS amounts to 28%; 0.25–0.5 mg/mL of RA increased cell viability by 10–24% and protected cells from the damage caused by H2O2. Conclusions. According to research results, it is appropriate to use a carbomer as the main gelling material, and its concentration should not exceed 1.0%. RA, depending on the concentration, reduces the amount of intracellular ROS and enhances cell viability in human keratinocytes in oxidative stress conditions. PMID:26600864

  9. Assessment of Lemon Balm (Melissa officinalis L.) Hydrogels: Quality and Bioactivity in Skin Cells.

    PubMed

    Ramanauskienė, Kristina; Stelmakiene, Ada; Majienė, Daiva

    2015-01-01

    The aim of the study was to design gels with lemon balm extract, assess their quality, and investigate the effect of rosmarinic acid on skin cells in normal conditions and under oxidative stress. Methods. The quantities of rosmarinic acid (RA) released from gels were evaluated by applying the HPLC technique. HaCaT cell viability was assessed by using the MTT method. ROS generation was measured using DCFH-DA dye. The results showed that the gelling material affected the release of RA content from gels. Lower and slower RA content release was determined in carbomer-based gels. After 6 hours of biopharmaceutical research in vitro, at least 4% of RA was released from the gel. The results of the biological studies on HaCaT cells demonstrated that, in the oxidative stress conditions, RA reduced intracellular ROS amounts to 28%; 0.25-0.5 mg/mL of RA increased cell viability by 10-24% and protected cells from the damage caused by H2O2. Conclusions. According to research results, it is appropriate to use a carbomer as the main gelling material, and its concentration should not exceed 1.0%. RA, depending on the concentration, reduces the amount of intracellular ROS and enhances cell viability in human keratinocytes in oxidative stress conditions. PMID:26600864

  10. Derivation and differentiation of haploid human embryonic stem cells.

    PubMed

    Sagi, Ido; Chia, Gloryn; Golan-Lev, Tamar; Peretz, Mordecai; Weissbein, Uri; Sui, Lina; Sauer, Mark V; Yanuka, Ofra; Egli, Dieter; Benvenisty, Nissim

    2016-04-01

    Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development. PMID:26982723

  11. Interleukin 7 independent development of human B cells.

    PubMed Central

    Prieyl, J A; LeBien, T W

    1996-01-01

    Mammalian hematopoietic stem cell (HSC) commitment and differentiation into lymphoid lineage cells proceed through a series of developmentally restricted progenitor compartments. A complete understanding of this process, and how it differs from HSC commitment and differentiation into cells of the myeloid/erythroid lineages, requires the development of model systems that support HSC commitment to the lymphoid lineages. We now describe a human bone marrow stromal cell culture that preferentially supports commitment and differentiation of human HSC to CD19+ B-lineage cells. Fluorescence activated cell sorterpurified CD34++/lineage-cells were isolated from fetal bone marrow and cultured on human fetal bone marrow stromal cells in serum-free conditions containing no exogenous cytokines. Over a period of 3 weeks, CD34++/lineage- cells underwent commitment, differentiation, and expansion into the B lineage. Progressive changes included: loss of CD34, acquisition of and graded increases in the level of cell surface CD19, and appearance of immature B cells expressing mu/kappa or mu/lambda cell surface Ig receptors. The tempo and phenotype of B-cell development was not influenced by the addition of IL-7 (10 ng/ml), or by the addition of goat anti-IL-7 neutralizing antibody. These results indicate a profound difference between mouse and human in the requirement for IL-7 in normal B-cell development, and provide an experimental system to identify and characterize human bone marrow stromal cell-derived molecules crucial for human B lymphopoiesis. PMID:8816803

  12. Data defining markers of human neural stem cell lineage potential

    PubMed Central

    Oikari, Lotta E.; Okolicsanyi, Rachel K.; Griffiths, Lyn R.; Haupt, Larisa M.

    2016-01-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in “Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination” (Oikari et al. 2015) [1]. PMID:26958640

  13. FOXP3+ regulatory T cells in the human immune system.

    PubMed

    Sakaguchi, Shimon; Miyara, Makoto; Costantino, Cristina M; Hafler, David A

    2010-07-01

    Forkhead box P3 (FOXP3)(+) regulatory T (T(Reg)) cells are potent mediators of dominant self tolerance in the periphery. But confusion as to the identity, stability and suppressive function of human T(Reg) cells has, to date, impeded the general therapeutic use of these cells. Recent studies have suggested that human T(Reg) cells are functionally and phenotypically diverse. Here we discuss recent findings regarding human T(Reg) cells, including the ontogeny and development of T(Reg) cell subsets that have naive or memory phenotypes, the unique mechanisms of suppression mediated by T(Reg) cell subsets and factors that regulate T(Reg) cell lineage commitment. We discuss future studies that are needed for the successful therapeutic use of human T(Reg) cells. PMID:20559327

  14. Data defining markers of human neural stem cell lineage potential.

    PubMed

    Oikari, Lotta E; Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M

    2016-06-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in "Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination" (Oikari et al. 2015) [1]. PMID:26958640

  15. Human Pancreatic β-Cell G1/S Molecule Cell Cycle Atlas

    PubMed Central

    Fiaschi-Taesch, Nathalie M.; Kleinberger, Jeffrey W.; Salim, Fatimah G.; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E.; Takane, Karen K.; Scott, Donald K.; Stewart, Andrew F.

    2013-01-01

    Expansion of pancreatic β-cells is a key goal of diabetes research, yet induction of adult human β-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human β-cell. Here, we provide a comprehensive immunocytochemical “atlas” of G1/S control molecules in the human β-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the β-cell. More importantly, and in contrast to anticipated results, the human β-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human β-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human β-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human β-cells to proliferation. Thus, in addition to known obstacles to human β-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human β-cell represents an unanticipated obstacle to therapeutic human β-cell expansion. PMID:23493570

  16. Cell Trivision of Hyperploid Cells

    PubMed Central

    Nagy, Gabor; Kiraly, Gabor; Turani, Melinda

    2013-01-01

    Malignant transformation is likely to render cells hyperploid, primarily tetraploid. We have measured the frequency of division into three rather than two daughter cells as a function of ploidy. Such trivisions were followed in near-tetraploid uveal melanoma (UM), hypotetraploid HaCaT (<4 N), hypertriploid HeLa (>3 N), and in near-diploid (∼2 N) lung epithelial cell lines by time-lapse image analyses. A stepwise analysis of cytokinesis revealed higher frequency of cell trivisions relative to divisions in hyperploid HeLa (1:24, 4%), HaCaT (1:126, 8%), and UM (1:186, 0.5%) cells. The occurrence of trivision was significantly lower in near-diploid endothelial cells (1:1400, 0.07%). We have previously observed the phenomenon of trivision in HaCaT cells treated with heavy metal lead, and here we describe that trivision is a spontaneous process taking place without genotoxic treatment. Beside re-diploidization by trivision, the hyperploid state decreases the cell size of the daughter cells and is likely to increase the time of cytokinesis. On the basis of the results, it is hypothesized that among other cancer-related causes, hyperploidy could be related to cell trivision, could cause random aneuploidy, and could generate new cancer-specific karyotypes. PMID:24093497

  17. Direct reprogramming of human neural stem cells by OCT4.

    PubMed

    Kim, Jeong Beom; Greber, Boris; Araúzo-Bravo, Marcos J; Meyer, Johann; Park, Kook In; Zaehres, Holm; Schöler, Hans R

    2009-10-01

    Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors (OCT4 (also called POU5F1), SOX2, c-Myc and KLF4). We previously reported that Oct4 alone is sufficient to reprogram directly adult mouse neural stem cells to iPS cells. Here we report the generation of one-factor human iPS cells from human fetal neural stem cells (one-factor (1F) human NiPS cells) by ectopic expression of OCT4 alone. One-factor human NiPS cells resemble human embryonic stem cells in global gene expression profiles, epigenetic status, as well as pluripotency in vitro and in vivo. These findings demonstrate that the transcription factor OCT4 is sufficient to reprogram human neural stem cells to pluripotency. One-factor iPS cell generation will advance the field further towards understanding reprogramming and generating patient-specific pluripotent stem cells. PMID:19718018

  18. Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lin, Ching-Yen; Chen, Yih-Yuan; Chen, Ping-Tzu; Tseng, Ya-Shih

    2016-01-01

    Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation. PMID:27385117

  19. Vitis vinifera seeds extract for the modulation of cytosolic factors BAX-α and NF-kB involved in UVB-induced oxidative stress and apoptosis of human skin cells

    PubMed Central

    DECEAN, HANA; FISCHER-FODOR, EVA; TATOMIR, CORINA; PERDE-SCHREPLER, MARIA; SOMFELEAN, LIDIA; BURZ, CLAUDIA; HODOR, TUDOR; ORASAN, REMUS; VIRAG, PIROSKA

    2016-01-01

    Background and aims The depletion of the ozone layer allows overexposure of the skin to UV radiation, which is prolonged due to the increasing life expectancy, together with inappropriate life habits contribute to the increasing incidence of cutaneous malignancies. Plant extracts with antioxidant capacities are frequently employed as a means to protect skin against ultraviolet (UV) radiations, thus preventing skin cancers. In the present study we assessed a red grape seed extract (GSE) potential capacities to reduce ultraviolet B (UVB) radiation-induced reactive oxygen species (ROS) and subsequent apoptosis in a human keratinocytes cell line (HaCaT). We identified molecules and pathways modulated by the GSE through which this may exert its photoprotective effect. Methods The GSE was standardized according to its polyphenolic content and the most important biologically active compounds, such as epigallocatechin and epicatechin, catechin hydrate, procyanidin B and gallic acid were evidenced by high-performance liquid chromatography. According to the plant extract cytotoxicity on the HaCaT cell line, two concentrations were selected for testing from the non-toxic range: GSE1 (37.5 μgEqGA/ml) and GSE2 (75 μgEqGA/ml). The level of ROS was evaluated with CM-H2DCFDA assay, while apoptosis, Bax-α and NF-kβ p65 proteins with ELISA and confirmed by western-blot. Results Both concentrations of the extract decreased the level of ROS in UVB-irradiated keratinocytes (p<0.001), whereas apoptosis and Bax-α pro-apoptotic protein were only reduced by the higher concentration (GSE2). The NF-kB p65 protein level registered increasing values in time after UVB exposure of the cells, while the tested plant extract re-established its level when its smaller concentration was used (GSE1). Conclusion These results encourage further studies on this extract in order to identify other molecules and pathways through which this extract might exert its beneficial effects and also recommend

  20. Proteolysis of insulin-like growth factor-binding protein-3 by human skin keratinocytes in culture in comparison to that in skin interstitial fluid: the role and regulation of components of the plasmin system.

    PubMed

    Xu, S; Savage, P; Burton, J L; Sansom, J; Holly, J M

    1997-06-01

    Proteolysis of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) is an important determinant of IGF action on cells. We have investigated this in a human skin keratinocyte cell line HaCaT. Although these cells did not normally produce an active IGFBP-3 protease, addition of plasminogen resulted in a dose-dependent proteolysis of endogenous and exogenous IGFBP-3, producing fragments similar to those cleaved by skin interstitial fluid, but different from those generated by plasmin. Protease inhibitor profiles suggested the enzyme in the conditioned medium to be a calcium-dependent serine protease. Exogenous IGFBP-3 either inhibited or slightly stimulated IGF-I-induced cell proliferation when it was coincubated or preincubated with the cells, respectively. Both effects were attenuated in the presence of plasminogen. Preincubation of cells with IGF-I or long R3 IGF-I divergently changed plasminogen activator inhibitor-1 and -2 secretion, but only IGF-I blocked IGFBP-3 proteolysis. Such inhibition was also observed in a cell-free protease assay. IGF-I, however, had no effect on plasmin-induced IGFBP-3 degradation. Together, these data indicate that an IGFBP-3 protease similar to that in skin interstitial fluid is generated in plasminogen-treated HaCaT cells, and it attenuates the effects of IGFBP-3 on IGF action. IGF-I, probably by coupling with IGFBP-3, can protect it from the action of this protease. PMID:9177397

  1. A Novel Controllable Hydrogen Sulfide-Releasing Molecule Protects Human Skin Keratinocytes Against Methylglyoxal-Induced Injury and Dysfunction

    PubMed Central

    Yang, Chun-tao; Zhao, Yu; Xian, Ming; Li, Jian-hua; Dong, Qi; Bai, Hong-bo; Xu, Ji-de; Zhang, Mei-fen

    2014-01-01

    Background/Aim Delayed wound healing is a common skin complication of diabetes, which is associated with keratinocyte injury and dysfunction. Levels of methylglyoxal (MGO), an α-dicarbonyl compound, are elevated in diabetic skin tissue and plasma, while levels of hydrogen sulfide (H2S), a critical gaseous signaling molecule, are reduced. Interestingly, the gas has shown dermal protection in our previous study. To date, there is no evidence demonstrating whether MGO affects keratinocyte viability and function or H2S donation abolishes these effects and improves MGO-related impairment of wound healing. The current study was conducted to examine the effects of MGO on the injury and function in human skin keratinocytes and then to evaluate the protective action of a novel H2S-releasing molecule. Methods An N-mercapto-based H2S donor (NSHD)-1 was synthesized and its ability to release H2S was observed in cell medium and cells, respectively. HaCaT cells, a cell line of human skin keratinocyte, were exposed to MGO to establish an in vitro diabetic wound healing model. NSHD-1 was added to the cells before MGO exposure and the improvement of cell function was observed in respect of cellular viability, apoptosis, oxidative stress, mitochondrial membrane potential (MMP) and behavioral function. Results Treatment with MGO decreased cell viability, induced cellular apoptosis, increased intracellular reactive oxygen species (ROS) content and depressed MMP in HaCaT cells. The treatment also damaged cell behavioral function, characterized by decreased cellular adhesion and migration. The synthesized H2S-releasing molecule, NSHD-1, was able to increase H2S levels in both cell medium and cells. Importantly, pretreatment with NSHD-1 inhibited MGO-induced decreases in cell viability and MMP, increases in apoptosis and ROS accumulation in HaCaT cells. The pretreatment was also able to improve adhesion and migration function. Conclusion These results demonstrate that the novel

  2. Generation of Human iNKT Cell Lines

    PubMed Central

    Li, Xiangming; Tsuji, Moriya; Schneck, Jonathan; Webb, Tonya J.

    2016-01-01

    Natural killer T (NKT) cells comprise an important immunoregulatory T cell subset and express cell surface proteins characteristic of both natural killer cells and T cells. Invariant NKT (iNKT) cells are activated by lipid antigen presented in the context of CD1d molecules, in contrast to classic T cell subsets, which recognize peptide antigens presented by MHC molecules. Following activation, iNKT cells rapidly secrete large amounts of cytokines and can lyse tumor cells and virally infected cells; however, iNKT cells are reduced in patients with autoimmune disease and cancer. The potential to characterize and investigate the prospective use of iNKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human iNKT cells. In this protocol, we describe a method to generate and propagate primary human iNKT cells. Specifically, primary iNKT cells were isolated from human peripheral blood mononuclear cells (PBMC), and then expanded periodically with irradiated α-GalCer loaded autologous immature dendritic cells (DC) in the presence of human IL-2.

  3. Development and function of human innate immune cells in a humanized mouse model

    PubMed Central

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

    2014-01-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

  4. Effects of fiber density and plasma modification of nanofibrous membranes on the adhesion and growth of HaCaT keratinocytes.

    PubMed

    Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie

    2015-01-01

    It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. PMID:25085812

  5. Development and characterization of a new human hepatic cell line.

    PubMed

    Ramboer, Eva; De Craene, Bram; De Kock, Joey; Berx, Geert; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics. PMID:26869867

  6. Development and characterization of a new human hepatic cell line

    PubMed Central

    Ramboer, Eva; De Craene, Bram; De Kock, Joey; Berx, Geert; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics. PMID:26869867

  7. Vasoactive-intestinal-Peptide (vip) modulates the growth fraction of epithelial skin cells.

    PubMed

    Wollina, U; Bonnekoh, B; Mahrle, G

    1992-06-01

    Using the human keratinocyte cell line HaCaT, modifications of the growth fraction due to vasoactive intestinal peptide (VIP) were determined by immunostaining with monoclonal antibody Ki67. In addition, the expression of VIP receptor and epidermal growth factor (EGF) receptor have been analysed. VIP (10-(7) to 10-(11) M) produced an almost doubling of the total number of Ki67-positive cells in cultures with 2% fetal calf serum (FCS), wheras it was ineffective in FCS-free and 10% FCS cultures. The nuclear Ki67-staining patterns were classified into four categories. In FCS-free cultures VIP induced a shift from type III (light nucleus, staining nuclei) to type II (multiple, intensely stained spots). In cultures with 2% FCS, VIP induced a shift from type II to type III. VIP receptor expression was facilitated by VIP, when cells were grown in a medium supplemented with 10% FCS. VIP increased EGF receptor expression in FCS-free cultures but decreased the number EGF receptor-positive cells in experiments with 2% FCS. In conclusion, VIP is capable to modulate the growth fraction and receptor expression of HaCaT cells in vitro. The effects are dependent on the concentration of FCS within the culture medium. The findings might be of interest for keratinocyte pathology in general and dermatooncology in particular. PMID:21584504

  8. Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells.

    PubMed

    Jones, Anna J; Gokhale, Paul J; Allison, Thomas F; Sampson, Barry; Athwal, Sharan; Grant, Simon; Andrews, Peter W; Allen, Nicholas D; Case, C Patrick

    2015-01-01

    Maternal exposure during pregnancy to toxins can occasionally lead to miscarriage and malformation. It is currently thought that toxins pass through the placental barrier, albeit bi-layered in the first trimester, and damage the fetus directly, albeit at low concentration. Here we examined the responses of human embryonic stem (hES) cells in tissue culture to two metals at low concentration. We compared direct exposures with indirect exposures across a bi-layered model of the placenta cell barrier. Direct exposure caused increased DNA damage without apoptosis or a loss of cell number but with some evidence of altered differentiation. Indirect exposure caused increased DNA damage and apoptosis but without loss of pluripotency. This was not caused by metal ions passing through the barrier. Instead the hES cells responded to signalling molecules (including TNF-α) secreted by the barrier cells. This mechanism was dependent on connexin 43 mediated intercellular 'bystander signalling' both within and between the trophoblast barrier and the hES colonies. These results highlight key differences between direct and indirect exposure of hES cells across a trophoblast barrier to metal toxins. It offers a theoretical possibility that an indirectly mediated toxicity of hES cells might have biological relevance to fetal development. PMID:26170169

  9. Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells

    PubMed Central

    Jones, Anna J; Gokhale, Paul J; Allison, Thomas F; Sampson, Barry; Athwal, Sharan; Grant, Simon; Andrews, Peter W; Allen, Nicholas D; Patrick Case, C

    2015-01-01

    Maternal exposure during pregnancy to toxins can occasionally lead to miscarriage and malformation. It is currently thought that toxins pass through the placental barrier, albeit bi-layered in the first trimester, and damage the fetus directly, albeit at low concentration. Here we examined the responses of human embryonic stem (hES) cells in tissue culture to two metals at low concentration. We compared direct exposures with indirect exposures across a bi-layered model of the placenta cell barrier. Direct exposure caused increased DNA damage without apoptosis or a loss of cell number but with some evidence of altered differentiation. Indirect exposure caused increased DNA damage and apoptosis but without loss of pluripotency. This was not caused by metal ions passing through the barrier. Instead the hES cells responded to signalling molecules (including TNF-α) secreted by the barrier cells. This mechanism was dependent on connexin 43 mediated intercellular ‘bystander signalling’ both within and between the trophoblast barrier and the hES colonies. These results highlight key differences between direct and indirect exposure of hES cells across a trophoblast barrier to metal toxins. It offers a theoretical possibility that an indirectly mediated toxicity of hES cells might have biological relevance to fetal development. PMID:26170169

  10. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    PubMed Central

    Huang, Yajing; Wu, Yanming; Chang, Xinwen; Li, Yan; Wang, Kai; Duan, Tao

    2016-01-01

    Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs) are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy. PMID:26949402

  11. Eliminating malignant contamination from therapeutic human spermatogonial stem cells

    PubMed Central

    Dovey, Serena L.; Valli, Hanna; Hermann, Brian P.; Sukhwani, Meena; Donohue, Julia; Castro, Carlos A.; Chu, Tianjiao; Sanfilippo, Joseph S.; Orwig, Kyle E.

    2013-01-01

    Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4–contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC–/CD49e– (putative spermatogonia) and EpCAM–/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC–/CD49e– fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to–nude mouse xenotransplantation. The EpCAM–/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression. PMID:23549087

  12. Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells.

    PubMed

    Lin, Hao Daniel; Fong, Chui Yee; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff

    2014-08-01

    Several groups have reported that primitive mesenchymal stem cells from the gelatinous matrix of the Wharton's jelly of the human umbilical cord (hWJSCs) possess tumoricidal properties and inhibit the growth of solid tumours such as human mammary carcinoma, ovarian carcinoma and osteosarcoma. This unique characteristic led to the hypothesis that hWJSCs serve as a natural defence against migrating cancer cells from mother to fetus thus explaining why tumorigenesis in the fetus is rare. However, it is not known whether non-solid malignant hematopoietic cells are also inhibited by hWJSCs and what the exact tumoricidal mechanisms are. We therefore evaluated the influence of hWJSCs and its extracts on Burkitt's lymphoma cells. Cell proliferation (BrdU and Ki67+), viability (MTT) and cell death (Annexin V-Propidium iodide and live/dead) assays showed significant inhibition of lymphoma cell growth after 48 h exposure to hWJSCs or its extracts compared to controls. Increased cell death was observed at sub-G1 and S and decreased proliferation at G2/M phases of the mitotic cycle. Superoxide dismutase and hydrogen peroxide activity were significantly increased and glutathione peroxidase significantly decreased in treated lymphoma cells. Time lapse imaging and confocal z-stack images showed yellow fluorescent in situ hybridization (FISH) signals of lymphoma cell Y chromosomes within the cytoplasm of female red labelled hWJSCs. We hypothesize that the growth of lymphoma cells is inhibited by the molecules secreted by hWJSCs that use oxidative stress pathways to induce cell death followed by engulfment of the apoptotic remains of the lymphoma cells by the hWJSCs. PMID:24789672

  13. Propagation of Human Embryonic Stem Cells on Human Amniotic Fluid Cells as Feeder Cells in Xeno-Free Culture Conditions

    PubMed Central

    Jung, Juwon; Baek, Jin Ah; Seol, Hye Won; Choi, Young Min

    2016-01-01

    Human embryonic stem cells (hESCs) have been routinely cultured on mouse embryonic fibroblast feederlayers with a medium containing animal materials. For clinical application of hESCs, animal-derived products from the animal feeder cells, animal substrates such as gelatin or Matrigel and animal serum are strictly to be eliminated in the culture system. In this study, we performed that SNUhES32 and H1 were cultured on human amniotic fluid cells (hAFCs) with KOSR XenoFree and a humanized substrate. All of hESCs were relatively well propagated on hAFCs feeders with xeno-free conditions and they expressed pluripotent stem cell markers, alkaline phosphatase, SSEA-4, TRA1-60, TRA1-81, Oct-4, and Nanog like hESCs cultured on STO or human foreskin fibroblast feeders. In addition, we observed the expression of nonhuman N-glycolylneuraminic acid (Neu5GC) molecules by flow cytometry, which was xenotransplantation components of contamination in hESCs cultured on animal feeder conditions, was not detected in this xeno-free condition. In conclusion, SNUhES32 and H1 could be maintained on hAFCs for humanized culture conditions, therefore, we suggested that new xenofree conditions for clinical grade hESCs culture will be useful data in future clinical studies. PMID:27294211

  14. Stem Cells: A Renaissance in Human Biology Research.

    PubMed

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options. PMID:27315475

  15. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells

    PubMed Central

    Dingwall, Steve; Lee, Jung Bok; Guezguez, Borhane; Fiebig, Aline; McNicol, Jamie; Boreham, Douglas; Collins, Tony J.; Bhatia, Mick

    2015-01-01

    Studies have implicated that a small sub-population of cells within a tumour, termed cancer stem cells (CSCs), have an enhanced capacity for tumour formation in multiple cancers and may be responsible for recurrence of the disease after treatment, including radiation. Although comparisons have been made between CSCs and bulk-tumour, the more important comparison with respect to therapy is between tumour-sustaining CSC versus normal stem cells that maintain the healthy tissue. However, the absence of normal known counterparts for many CSCs has made it difficult to compare the radiation responses of CSCs with the normal stem cells required for post-radiotherapy tissue regeneration and the maintenance of tissue homeostasis. Here we demonstrate that transformed human embryonic stem cells (t-hESCs), showing features of neoplastic progression produce tumours resistant to radiation relative to their normal counterpart upon injection into immune compromised mice. We reveal that t-hESCs have a reduced capacity for radiation induced cell death via apoptosis and exhibit altered cell cycle arrest relative to hESCs in vitro. t-hESCs have an increased expression of BclXL in comparison to their normal counterparts and re-sensitization of t-hESCs to radiation upon addition of BH3-only mimetic ABT737, suggesting that overexpression of BclXL underpins t-hESC radiation insensitivity. Using this novel discovery platform to investigate radiation resistance in human CSCs, our study indicates that chemotherapy targeting Bcl2-family members may prove to be an adjuvant to radiotherapy capable of targeting CSCs. PMID:26082437

  16. Comparative mutagenesis of human cells in vivo and in vitro

    SciTech Connect

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  17. Closing in on Mass Production of Mature Human Beta Cells.

    PubMed

    Kieffer, Timothy J

    2016-06-01

    Human pluripotent stem cell differentiation protocols based on mimicking developmental pathways are getting close to generating fully fledged pancreatic endocrine cells, including insulin-producing beta cells. However, challenges remain in identifying pathways to trigger the attainment of robust glucose responsiveness that occurs postnatally in beta cells. PMID:27257758

  18. The Evolution of Human Cells in Terms of Protein Innovation

    PubMed Central

    Sardar, Adam J.; Oates, Matt E.; Fang, Hai; Forrest, Alistair R.R.; Kawaji, Hideya; Gough, Julian; Rackham, Owen J.L.

    2014-01-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type–specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type–specific domain architectures. PMID:24692656

  19. Generation of functional hepatocytes from human spermatogonial stem cells

    PubMed Central

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  20. Generation of functional hepatocytes from human spermatogonial stem cells.

    PubMed

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-02-23

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  1. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    PubMed Central

    Ham, Hyoungjun; Billadeau, Daniel D.

    2013-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process. PMID:24478771

  2. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  3. Human liver endothelial cells, but not macrovascular or microvascular endothelial cells, engraft in the mouse liver.

    PubMed

    Filali, Ebtisam El; Hiralall, Johan K; van Veen, Henk A; Stolz, Donna B; Seppen, Jurgen

    2013-01-01

    Liver cell transplantation has had limited clinical success so far, partly due to poor engraftment of hepatocytes. Instead of hepatocytes. other cell types, such as endothelial cells, could be used in ex vivo liver gene therapy. The goal of the present study was to compare the grafting and repopulation capacity of human endothelial cells derived from various tissues. Human endothelial cells were isolated from adult and fetal livers using anti-human CD31 antibody-conjugated magnetic beads. Human macrovascular endothelial cells were obtained from umbilical vein. Human microvascular endothelial cells were isolated from adipose tissue. Cells were characterized using flow cytometry. Liver engraftment and repopulation of endothelial cells was studied after intrasplenic transplantation in monocrotaline-treated immunodeficient mice. Following transplantation, human liver endothelial cells engrafted throughout the mouse liver. With immunoscanning electron microscopy, fenestrae in engrafted human liver endothelial cells were identified, a characteristic feature of liver sinusoidal endothelial cells. In contrast, CD31-negative liver cells, human macrovascular and microvascular endothelial cells were not capable of repopulating mouse liver. Characterization of human liver, macrovascular, and microvascular endothelial cells demonstrated expression of CD31, CD34, and CD146 but not CD45. Our study shows that only human liver endothelial cells, but not macro- and microvascular endothelial cells, have the unique capacity to engraft and repopulate the mouse liver. These results indicate that mature endothelial cells cannot transdifferentiate in vivo and thus do not exhibit phenotypic plasticity. Our results have set a basis for further research to the potential of human liver endothelial cells in liver-directed cell and gene therapy. PMID:23044355

  4. Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

    PubMed Central

    Ansarullah; Free, Colette; Christopherson, Jenica; Chen, Quanhai; Gao, Jie; Liu, Chengyang; Naji, Ali; Rabinovitch, Alex; Guo, Zhiguang

    2016-01-01

    Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human islet graft function in the mice was evaluated by nonfasting glucose levels, oral glucose tolerance, and removal of the grafts. Immunostaining for insulin, glucagon, and BrdU or Ki67 was performed in islet grafts to evaluate α- and β-cell replication. Insulin and CK19 immunostaining was performed to evaluate β-cell neogenesis. Four weeks after human islet transplantation, 71% of PSN632408-treated mice achieved normoglycaemia compared with 24% of vehicle-treated mice. Also, oral glucose tolerance was significantly improved in the PSN632408-treated mice. PSN632408 treatment significantly increased both human α- and β-cell areas in islet grafts and stimulated α- and β-cell replication. In addition, β-cell neogenesis was induced from pancreatic duct cells in the islet grafts. Our results demonstrated that activation of GPR119 increases β-cell mass by stimulating human β-cell replication and neogenesis. Therefore, GPR119 activators may qualify as therapeutic agents to increase human β-cell mass in patients with diabetes. PMID:27413754

  5. Activin A programs the differentiation of human TFH cells.

    PubMed

    Locci, Michela; Wu, Jennifer E; Arumemi, Fortuna; Mikulski, Zbigniew; Dahlberg, Carol; Miller, Andrew T; Crotty, Shane

    2016-08-01

    Follicular helper T cells (TFH cells) are CD4(+) T cells specialized in helping B cells and are associated both with protective antibody responses and autoimmune diseases. The promise of targeting TFH cells therapeutically has been limited by fragmentary understanding of extrinsic signals that regulate the differentiation of human TFH cells. A screen of a human protein library identified activin A as a potent regulator of TFH cell differentiation. Activin A orchestrated the expression of multiple genes associated with the TFH program, independently or in concert with additional signals. TFH cell programming by activin A was antagonized by the cytokine IL-2. Activin A's ability to drive TFH cell differentiation in vitro was conserved in non-human primates but not in mice. Finally, activin-A-induced TFH programming was dependent on signaling via SMAD2 and SMAD3 and was blocked by pharmacological inhibitors. PMID:27376469

  6. Phenotypic variability in human skin mast cells.

    PubMed

    Babina, Magda; Guhl, Sven; Artuc, Metin; Trivedi, Neil N; Zuberbier, Torsten

    2016-06-01

    Mast cells (MCs) are unique constituents of the human body. While inter-individual differences may influence the ways by which MCs operate in their skin habitat, they have not been surveyed in a comprehensive manner so far. We therefore set out to quantify skin MC variability in a large cohort of subjects. Pathophysiologically relevant key features were quantified and correlated: transcripts of c-kit, FcεRIα, FcεRIβ, FcεRIγ, histidine decarboxylase, tryptase, and chymase; surface expression of c-Kit, FcεRIα; activity of tryptase, and chymase; histamine content and release triggered by FcεRI and Ca(2+) ionophore. While there was substantial variability among subjects, it strongly depended on the feature under study (coefficient of variation 33-386%). Surface expression of FcεRI was positively associated with FcεRIα mRNA content, histamine content with HDC mRNA, and chymase activity with chymase mRNA. Also, MC signature genes were co-regulated in distinct patterns. Intriguingly, histamine levels were positively linked to tryptase and chymase activity, whereas tryptase and chymase activity appeared to be uncorrelated. FcεRI triggered histamine release was highly variable and was unrelated to FcεRI expression but unexpectedly tightly correlated with histamine release elicited by Ca(2+) ionophore. This most comprehensive and systematic work of its kind provides not only detailed insights into inter-individual variability in MCs, but also uncovers unexpected patterns of co-regulation among signature attributes of the lineage. Differences in MCs among humans may well underlie clinical responses in settings of allergic reactions and complex skin disorders alike. PMID:26706922

  7. Analysis of lead toxicity in human cells

    PubMed Central

    2012-01-01

    Background Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. Results We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were altered in subjects with high

  8. Arsenic, cadmium, mercury and nickel stimulate cell growth via NADPH oxidase activation.

    PubMed

    Mohammadi-Bardbori, Afshin; Rannug, Agneta

    2014-11-10

    Exposure to metals and metalloids including arsenic, cadmium, mercury, and nickel has been a worldwide health problem for several decades. The aim of this study was to learn how metal-induced oxidative stress triggers cell proliferation, a process of great significance for cancer. NADPH oxidase (NOX) activity and cell proliferation were measured as endpoints in both NOX-deficient and NOX-proficient cells. The X chromosome linked CGD (X-CGD) human promyelocytic leukemia PLB-985 cells lacking gp91phox and the X-CGD cells re-transfected with gp91phox (X-CGD-gp91(phox)) were used together with immortalized human keratinocyte cells (HaCaT). The cells were exposed to different concentrations of the metals alone or together with the NOX inhibitor, diphenyleneiodonium (DPI). We found that the studied metals increased NOX activity. They stimulated cell proliferation in HaCaT and X-CGD-gp91(phox) cells at concentrations below 1μM but not in the X-CGD cells that lack functional NOX. Addition of DPI attenuated the metal-induced cell proliferation. At concentrations above 1μM these metals inhibited cell proliferation. Based on these findings, we propose that many environmental pollutants, including metals and also endogenous NOX-activators such as oxidants and growth factors, interfere with cell growth kinetics by increasing the levels of the diffusible molecule H2O2. Here, we provide evidence that NOXs is central to the mechanism of metal-mediated reactive oxygen species production and stimulation of cell proliferation. PMID:25446860

  9. A Cell-Based Approach to the Human Proteome Project

    NASA Astrophysics Data System (ADS)

    Kelleher, Neil L.

    2012-10-01

    The general scope of a project to determine the protein molecules that comprise the cells within the human body is framed. By focusing on protein primary structure as expressed in specific cell types, this concept for a cell-based version of the Human Proteome Project (CB-HPP) is crafted in a manner analogous to the Human Genome Project while recognizing that cells provide a primary context in which to define a proteome. Several activities flow from this articulation of the HPP, which enables the definition of clear milestones and deliverables. The CB-HPP highlights major gaps in our knowledge regarding cell heterogeneity and protein isoforms, and calls for development of technology that is capable of defining all human cell types and their proteomes. The main activities will involve mapping and sorting cell types combined with the application of beyond the state-of-the art in protein mass spectrometry.

  10. Establishment, characterization, and successful adaptive therapy against human tumors of NKG cell, a new human NK cell line.

    PubMed

    Cheng, Min; Ma, Juan; Chen, Yongyan; Zhang, Jianhua; Zhao, Weidong; Zhang, Jian; Wei, Haiming; Ling, Bin; Sun, Rui; Tian, Zhigang

    2011-01-01

    Natural killer (NK) cells play important roles in adoptive cellular immunotherapy against certain human cancers. This study aims to establish a new human NK cell line and to study its role for adoptive cancer immunotherapy. Peripheral blood samples were collected from 54 patients to establish the NK cell line. A new human NK cell line, termed as NKG, was established from a Chinese male patient with rapidly progressive non-Hodgkin's lymphoma. NKG cells showed LGL morphology and were phenotypically identified as CD56(bright) NK cell with CD16(-), CD27(-), CD3(-), αβTCR(-), γδTCR(-), CD4(-), CD8(-), CD19(-), CD161(-), CD45(+), CXCR4(+), CCR7(+), CXCR1(-), and CX3CR1(-). NKG cells showed high expression of adhesive molecules (CD2, CD58, CD11a, CD54, CD11b, CD11c), an array of activating receptors (NKp30, NKp44, NKp46, NKG2D, NKG2C), and cytolysis-related receptors and molecules (TRAIL, FasL, granzyme B, perforin, IFN-γ). The cytotoxicity of NKG cells against tumor cells was higher than that of the established NK cell lines NK-92, NKL, and YT. NKG cell cytotoxicity depended on the presence of NKG2D and NKp30. When irradiated with 8 Gy, NKG cells were still with high cytotoxicity and activity in vitro and with safety in vivo, but without proliferation. Further, the irradiated NKG cells exhibited strong cytotoxicity against human primary ovarian cancer cells in vitro, and against human ovarian cancer in a mouse xenograft model. The adoptive transfer of NKG cells significantly inhibited the ovarian tumor growth, decreased the mortality rate and prolonged the survival, even in cases of advanced diseases. A number of NKG cells were detected in the ovarian tumor tissues during cell therapy. In use of the new human NK cell line, NKG would a promising cellular candidate for adoptive immunotherapy of human cancer. PMID:21669033

  11. Nucleosome Organization in Human Embryonic Stem Cells

    PubMed Central

    Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a “ground state” of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this “ground state” by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of

  12. Delivery of iron to human cells by bovine transferrin. Implications for the growth of human cells in vitro.

    PubMed Central

    Young, S P; Garner, C

    1990-01-01

    Following suggestions that transferrin present in fetal-bovine serum, a common supplement used in tissue-culture media, may not bind well to human cells, we have isolated the protein and investigated its interaction with both human and bovine cells. Bovine transferrin bound to a human cell line, K562, at 4 degrees C with a kd of 590 nM, whereas human transferrin bound with a kd of 3.57 nM, a 165-fold difference. With a bovine cell line, NBL4, bovine transferrin bound with the higher affinity, kd 9.09 nM, whereas human transferrin bound with a kd of 41.7 nM, only a 5-fold difference. These values were reflected in an 8.6-fold difference in the rate of iron delivery by the two proteins to human cells, whereas delivery to bovine cells was the same. Nevertheless, the bovine transferrin was taken up by the human cells by a specific receptor-mediated process. Human cells cultured in bovine diferric transferrin at 40 micrograms/ml, the concentration expected in the presence of 10% fetal-bovine serum, failed to thrive, whereas cells cultured in the presence of human transferrin proliferated normally. These results suggest that growth of human cells in bovine serum could give rise to a cellular iron deficiency, which may in turn lead to the selection of clones of cells adapted for survival with less iron. This has important consequences for the use of such cells as models, since they may have aberrant iron-dependent pathways and perhaps other unknown alterations in cell function. PMID:2302189

  13. Development of human B cells and antibodies following human hematopoietic stem cell transplantation to Rag2(-/-)γc(-/-) mice.

    PubMed

    Tanner, Anne; Hallam, Steven J; Nielsen, Stanton J; Cuadra, German I; Berges, Bradford K

    2015-06-01

    Humanized mice represent a valuable model system to study the development and functionality of the human immune system. In the RAG-hu mouse model highly immunodeficient Rag2(-/-)γc(-/-) mice are transplanted with human CD34(+) hematopoietic stem cells, resulting in human hematopoiesis and a predominant production of B and T lymphocytes. Human adaptive immune responses have been detected towards a variety of antigens in humanized mice but both cellular and humoral immune responses tend to be weak and sporadically detected. The underlying mechanisms for inconsistent responses are poorly understood. Here, we analyzed the kinetics of human B cell development and antibody production in RAG-hu mice to better understand the lack of effective antibody responses. We found that T cell levels in blood did not significantly change from 8 to 28 weeks post-engraftment, while B cells reached a peak at 14 weeks. Concentrations of 3 antibody classes (IgM, IgG, IgA) were found to be at levels about 0.1% or less of normal human levels, but human antibodies were still detected up to 32 weeks after engraftment. Human IgM was detected in 92.5% of animals while IgG and IgA were detected in about half of animals. We performed flow cytometric analysis of human B cells in bone marrow, spleen, and blood to examine the presence of precursor B cells, immature B cells, naïve B cells, and plasma B cells. We detected high levels of surface IgM(+) B cells (immature and naïve B cells) and low levels of plasma B cells in these organs, suggesting that B cells do not mature properly in this model. Low levels of human T cells in the spleen were observed, and we suggest that the lack of T cell help may explain poor B cell development and antibody responses. We conclude that human B cells that develop in humanized mice do not receive the signals necessary to undergo class-switching or to secrete antibody effectively, and we discuss strategies to potentially overcome these barriers. PMID:25843523

  14. Human embryonic stem cell differentiation toward regional specific neural precursors.

    PubMed

    Erceg, Slaven; Ronaghi, Mohammad; Stojković, Miodrag

    2009-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration. PMID:18845761

  15. Human Embryonic Stem Cell Differentiation Toward Regional Specific Neural Precursors

    PubMed Central

    Erceg, Slaven; Ronaghi, Mohammad; Stojković, Miodrag

    2009-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration. PMID:18845761

  16. Trichloroethylene-mediated cytotoxicity in human epidermal keratinocytes is mediated by the rapid accumulation of intracellular calcium: Interception by naringenin.

    PubMed

    Ali, F; Khan, A Q; Khan, R; Sultana, S

    2016-02-01

    Industrial solvents pose a significant threat to the humankind. The mechanisms of their toxicity still remain in debate. Trichloroethylene (TCE) is a widespread industrial solvent responsible for severe liver dysfunction, cutaneous toxicity in occupationally exposed humans. We utilized an in vitro system of human epidermal keratinocyte (HaCaT) cells in this study to avoid complex cell and extracellular interactions. We report the cytotoxicity of organic solvent TCE in HaCaT and its reversal by a natural flavanone, naringenin (Nar). The cytotoxicity was attributed to the rapid intracellular free calcium (Ca(2+)) release, which might lead to the elevation of protein kinase C along with robust free radical generation, instability due to energy depletion, and sensitization of intracellular stress signal transducer nuclear factor κB. These effects were actually seen to induce significant amount of genomic DNA fragmentation. Furthermore, all these effects of TCE were effectively reversed by the treatment of Nar, a natural flavanone. Our studies identify intracellular Ca as a unique target used by organic solvents in the cytotoxicity and highlight the Ca(2+) ion stabilizer properties of Nar. PMID:25855085

  17. Transformation of human cells by DNAs ineffective in transformation of NIH 3T3 cells

    SciTech Connect

    Sutherland, B.M.; Bennett, P.B.; Freeman, A.G.; Moore, S.P.; Strickland, P.T.

    1985-04-01

    Neonatal human foreskin fibroblasts can be transformed to anchorage-independent growth by transfection with DNAs inefficient in transforming NIH 3T3 cells. Human cells transfected with DNA from GM 1312, a multiple myeloma cell line, or MOLT-4, a permanent lymphoblast line, grow without anchorage at a much higher frequency than do the parental cells and their DNAs can transform human cell recipients to anchorage-independent growth; they have extended but not indefinite life spans and are nontumorigenic. Human fibroblasts are also transformed by DNAs from two multiple myeloma lines that also transform 3T3 cells; however, restriction analysis suggests that different transforming genes in this DNA are acting in the human and murine systems. These results indicate that the human cell transfection system allows detection of transforming genes not effective in the 3T3 system and points out the possibility of detection of additional transforming sequences even in DNAs that do transform murine cells.

  18. Cultures of mast cell-like (MCL) cells from human pleural exudate cells.

    PubMed

    Krüger, G; Sterry, W; Czarnetzki, B M

    1983-03-01

    Under special culture conditions, rat peritoneal macrophages have previously been shown to transform into mast cells. This method has been adapted here to the human species. Adherent large mononuclear cells from human pleural exudates were cultured in a medium supplemented with horse serum (30%) and fibroblast supernatants (30%). Metachromatic staining (toluidine blue, pH 3.6) of cytoplasmic granules appeared first in a small percentage of cells by days 5-6 of culture and reached a high intensity in 50% of the cells between days 12-22. Histamine levels within the cells increased by a factor of 7 during this same time period and the cell size by a factor of 3. Cultures could be maintained for about three weeks, since viability and total cell number decreased on extended culture. The data suggest that mononuclear cells in inflammatory exudates can transform into mast cell-like cells under the influence of high levels of specific conditioning factors in their microenvironment. PMID:6824794

  19. Isolation and in vitro differentiation of human erythroid precursor cells.

    PubMed

    Kim, H C; Marks, P A; Rifking, R A; Maniatis, G M; Bank, A

    1976-05-01

    There is decreased beta-globin production in beta-thalassemic reticulocytes and nucleated erythroid cells. In this study, we have examined whether unbalanced globin synthesis is expressed at all stages of human erythroid cell maturation. In order to determine the pattern of globin synthesis in early erythroid cells during erythroid cell maturation, an in vitro culture system using human bone marrow erythroid precursor cells has been developed. Early erythroid precursor cells (proerythroblasts and basophilic erythroblasts) have been isolated from nonthalassemic and thalassemic human bone marrows by lysing more mature erythroid cells, using complement and a rabbit antiserum prepared against normal human red cells. In the presence of erythropoietin, differentiation and proliferation of erythroid cells in demonstrable in liquid suspension culture for 24-48 hr, as determined by morphological criteria and by an increase in globin synthesis. The ratio of alpha- to beta-globin chain synthesis in nonthalassemic cells in approximately 1 at all stages of erythroid cell differentiation during culture. In cells from four patients with homozygous beta- thalassemia there is decreased beta-globin synthesis compared to alpha-globin synthesis, both in early erythroid precursor cells and during their maturation in culture. These findings indicate that unbalanced globin chain synthesis is expressed at all stages of red cell maturation in homozygous beta-thalassemia. PMID:1260133

  20. Regulatory networks define phenotypic classes of human stem cell lines

    PubMed Central

    Müller, Franz-Josef; Laurent, Louise C.; Kostka, Dennis; Ulitsky, Igor; Williams, Roy; Lu, Christina; Park, In-Hyun; Rao, Mahendra S.; Shamir, Ron; Schwartz, Philip H.; Schmidt, Nils O.; Loring, Jeanne F.

    2008-01-01

    Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal, and adult sources have been called stem cells, even though they range from pluripotent cells, typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation, to adult stem cell lines, which can generate a far more limited repertory of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine1, 2 have highlighted the need for a general, reproducible method for classification of these cells3. We report here the creation and analysis of a database of global gene expression profiles (“Stem Cell Matrix”) that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent, and differentiated cell types. Using an unsupervised clustering method4, 5 to categorize a collection of ~150 cell samples, we discovered that pluripotent stem cell lines group together, while other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis6 we uncovered a protein-protein network (“PluriNet”) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas, and induced pluripotent cells). Analysis of published data showed that the PluriNet appears to be a common characteristic of pluripotent cells, including mouse ES and iPS cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotence and self-renewal are under tight control by specific molecular networks. PMID:18724358

  1. Human white blood cells contain cyclobutyl pyrimidine dimer photolyase

    SciTech Connect

    Sutherland, B.M.; Bennett, P.V.

    1995-10-10

    Although enzymatic photoreactivation of cyclobutyl pyrimidine dimers in DNA is present in almost all organisms, its presence in placental mammals is controversial. We tested human white blood cells for photolyase by using three defined DNAs (suprecoiled pET-2, nonsupercoiled bacteriphage {lambda}, and a defined-sequence 287-bp oligonucleotide), two dimer-specific endonucleases (T4 endonuclease V and UV endonuclease from Micrococcus luteus), and three assay methods. We show that human white blood cells contain photolyase that can photorepair pyrimidine dimers in defined supercoiled and linear DNAs and in a 287-bp oligonucleotide and that human photolyase is active on genomic DNA in intact human cells. 44 refs., 3 figs.

  2. Human dental pulp stem cells: Applications in future regenerative medicine

    PubMed Central

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  3. Asbestos-associated chromosomal changes in human mesothelial cells

    SciTech Connect

    Lechner, J.F.; Tokiwa, T.; LaVeck, M.; Benedict, W.F.; Banks-Schlegel, S.; Yeager, H. Jr.; Banerjee, A.; Harris, C.C.

    1985-06-01

    Replicative cultures of human pleural mesothelial cells were established from noncancerous adult donors. The cells exhibited normal mesothelial cell characteristics including keratin, hyaluronic acid mucin, and long branched microvilli, and they retained the normal human karyotype until senescence. The mesothelial cells were 10 and 100 times more sensitive to the cytotoxic effects of asbestos fibers than normal human bronchial epithelial or fibroblastic cells, respectively. In addition, cultures of mesothelial cells that survived two cytotoxic exposures of amosite fibers were aneuploid with consistent specific chromosomal losses indicative of clonal origin. These aneuploid cells exhibit both altered growth control properties and a population doubling potential of >50 divisions beyond the culture life span (30 doublings) of the control cells.

  4. Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    PubMed Central

    Lu, Rong; Bian, Fang; Lin, Jing; Su, Zhitao; Qu, Yangluowa; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction. PMID:22723892

  5. Resident memory T cells in human health and disease

    PubMed Central

    Clark, Rachael A.

    2015-01-01

    Resident memory T cells are non-recirculating memory T cells that persist long term in epithelial barrier tissues, including the gastrointestinal tract, lung, skin and reproductive tract. Resident memory T cells persist in the absence of antigens, have impressive effector functions and provide rapid on-site immune protection against known pathogens in peripheral tissues. A fundamentally distinct gene expression program differentiates resident memory T cells from circulating T cells. Although these cells likely evolved to provide rapid immune protection against pathogens, autoreactive, aberrantly activated and malignant resident memory cells contribute to numerous human inflammatory diseases including mycosis fungoides and psoriasis. This review will discuss both the science and medicine of resident memory T cells, exploring how these cells contribute to healthy immune function and discussing what is known about how these cells contribute to human inflammatory and autoimmune diseases. PMID:25568072

  6. Derivation of three new human embryonic stem cell lines.

    PubMed

    Bradley, Cara K; Chami, Omar; Peura, Teija T; Bosman, Alexis; Dumevska, Biljana; Schmidt, Uli; Stojanov, Tomas

    2010-04-01

    Human embryonic stem cells are pluripotent cells capable of extensive self-renewal and differentiation to all cells of the embryo proper. Here, we describe the derivation and characterization of three Sydney IVF human embryonic stem cell lines not already reported elsewhere, designated SIVF001, SIVF002, and SIVF014. The cell lines display typical compact colony morphology of embryonic stem cells, have stable growth rates over more than 40 passages and are cytogenetically normal. Furthermore, the cell lines express pluripotency markers including Nanog, Oct4, SSEA3 and Tra-1-81, and are capable of generating teratoma cells derived from each of the three germ layers in immunodeficient mice. These experiments show that the cell lines constitute pluripotent stem cell lines. PMID:20198447

  7. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  8. On the development of extragonadal and gonadal human germ cells

    PubMed Central

    Heeren, A. Marijne; He, Nannan; de Souza, Aline F.; Goercharn-Ramlal, Angelique; van Iperen, Liesbeth; Roost, Matthias S.; Gomes Fernandes, Maria M.; van der Westerlaken, Lucette A. J.; Chuva de Sousa Lopes, Susana M.

    2016-01-01

    ABSTRACT Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception). Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where ‘adrenal’ and ‘ovarian’ germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human ‘adrenal’ germ cells until W22. By contrast, ‘ovarian’ germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development. PMID:26834021

  9. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  10. Generation of Human Melanocytes from Induced Pluripotent Stem Cells

    PubMed Central

    Okada, Yohei; Akamatsu, Wado; Kuwahara, Reiko; Ohyama, Manabu; Amagai, Masayuki; Matsuzaki, Yumi; Yamanaka, Shinya; Okano, Hideyuki; Kawakami, Yutaka

    2011-01-01

    Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC). These iPS cell lines were subsequently used to form embryoid bodies (EBs) and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma. PMID:21249204

  11. Human satellite cells have regenerative capacity and are genetically manipulable

    PubMed Central

    Marg, Andreas; Escobar, Helena; Gloy, Sina; Kufeld, Markus; Zacher, Joseph; Spuler, Andreas; Birchmeier, Carmen; Izsvák, Zsuzsanna; Spuler, Simone

    2014-01-01

    Muscle satellite cells promote regeneration and could potentially improve gene delivery for treating muscular dystrophies. Human satellite cells are scarce; therefore, clinical investigation has been limited. We obtained muscle fiber fragments from skeletal muscle biopsy specimens from adult donors aged 20 to 80 years. Fiber fragments were manually dissected, cultured, and evaluated for expression of myogenesis regulator PAX7. PAX7+ satellite cells were activated and proliferated efficiently in culture. Independent of donor age, as few as 2 to 4 PAX7+ satellite cells gave rise to several thousand myoblasts. Transplantation of human muscle fiber fragments into irradiated muscle of immunodeficient mice resulted in robust engraftment, muscle regeneration, and proper homing of human PAX7+ satellite cells to the stem cell niche. Further, we determined that subjecting the human muscle fiber fragments to hypothermic treatment successfully enriches the cultures for PAX7+ cells and improves the efficacy of the transplantation and muscle regeneration. Finally, we successfully altered gene expression in cultured human PAX7+ satellite cells with Sleeping Beauty transposon–mediated nonviral gene transfer, highlighting the potential of this system for use in gene therapy. Together, these results demonstrate the ability to culture and manipulate a rare population of human tissue-specific stem cells and suggest that these PAX7+ satellite cells have potential to restore gene function in muscular dystrophies. PMID:25157816

  12. Human pluripotent stem cell models of Fragile X syndrome.

    PubMed

    Bhattacharyya, Anita; Zhao, Xinyu

    2016-06-01

    Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. The causal mutation in FXS is a trinucleotide CGG repeat expansion in the FMR1 gene that leads to human specific epigenetic silencing and loss of Fragile X Mental Retardation Protein (FMRP) expression. Human pluripotent stem cells (PSCs), including human embryonic stem cells (ESCs) and particularly induced PSCs (iPSCs), offer a model system to reveal cellular and molecular events underlying human neuronal development and function in FXS. Human FXS PSCs have been established and have provided insight into the epigenetic silencing of the FMR1 gene as well as aspects of neuronal development. PMID:26640241

  13. [Research with human embryo stem cells. Foundations and judicial limits].

    PubMed

    Eser, Albin; Koch, Hans-Georg

    2004-01-01

    Research with human embryos, and particularly, the use for scientific purposes of human embryonic stem cells has given raise to different sort of problems at the international level. One of the most strict regulation in this field, is this lecture Professors Albin Eser and Hans-Georg Koch analyse the german legal framework in relation with the use of embryos and human embryonic stem cells for scientific purposes. PMID:15544142

  14. Rapid induction of senescence in human cervical carcinoma cells

    NASA Astrophysics Data System (ADS)

    Goodwin, Edward C.; Yang, Eva; Lee, Chan-Jae; Lee, Han-Woong; Dimaio, Daniel; Hwang, Eun-Seong

    2000-09-01

    Expression of the bovine papillomavirus E2 regulatory protein in human cervical carcinoma cell lines repressed expression of the resident human papillomavirus E6 and E7 oncogenes and within a few days caused essentially all of the cells to synchronously display numerous phenotypic markers characteristic of cells undergoing replicative senescence. This process was accompanied by marked but in some cases transient alterations in the expression of cell cycle regulatory proteins and by decreased telomerase activity. We propose that the human papillomavirus E6 and E7 proteins actively prevent senescence from occurring in cervical carcinoma cells, and that once viral oncogene expression is extinguished, the senescence program is rapidly executed. Activation of endogenous senescence pathways in cancer cells may represent an alternative approach to treat human cancers.

  15. DNA damage in human skin keratinocytes caused by multiwalled carbon nanotubes with carboxylate functionalization.

    PubMed

    McShan, Danielle; Yu, Hongtao

    2014-07-01

    Water-soluble carbon nanotubes have been found to be one of the most promising nanomaterials in biological- and biomedical-based applications. However, there have been major concerns on their ability to cause cellular and DNA damages upon exposure. In this work, we explore the toxic effects of three multiwalled carbon nanotubes (MWCNTs: nonpurified, purified and carboxylate-functionalized) on human skin keratinocytes (HaCaT). Cytotoxicity tests using the conventional thiazolyl blue tetrazolium bromide (MTT) and the water-soluble tetrazolium (WST-1) assays for 0.5 or 24 h exposure to 20 μg/mL of MWCNTs show that all three caused minimum cytotoxicity that is generally not statistically significant. Assessment of direct and oxidative DNA damages using both alkaline Comet assay and formamidopyrimidine DNA glycosylase-modified Comet assay reveals that the treatment with 20 μg/mL of MWCNTs does not cause significant direct DNA damages, but causes great amount of oxidative DNA damages in HaCaT cells. The oxidative DNA damage reaches the maximum amount at 4 h of incubation in Dulbecco's minimum essential medium, but decreases to the minimum at 8 and 24 h of incubation, indicating repair of the oxidative damages by the intrinsic DNA repair mechanism of the cells. PMID:23012341

  16. Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes

    PubMed Central

    2011-01-01

    Background Clarifying the physicochemical properties of nanomaterials is crucial for hazard assessment and the safe application of these substances. With this in mind, we analyzed the relationship between particle size and the in vitro effect of amorphous nanosilica (nSP). Specifically, we evaluated the relationship between particle size of nSP and the in vitro biological effects using human keratinocyte cells (HaCaT). Results Our results indicate that exposure to nSP of 70 nm diameter (nSP70) induced an elevated level of reactive oxygen species (ROS), leading to DNA damage. A markedly reduced response was observed using submicron-sized silica particles of 300 and 1000 nm diameter. In addition, cytochalasin D-treatment reduced nSP70-mediated ROS generation and DNA damage, suggesting that endocytosis is involved in nSP70-mediated cellular effects. Conclusions Thus, particle size affects amorphous silica-induced ROS generation and DNA damage of HaCaT cells. We believe clarification of the endocytosis pathway of nSP will provide useful information for hazard assessment as well as the design of safer forms of nSPs. PMID:21235812

  17. Humanized mice as a model to study human hematopoietic stem cell transplantation.

    PubMed

    Tanner, Anne; Taylor, Stephen E; Decottignies, Wittnee; Berges, Bradford K

    2014-01-01

    Hematopoietic stem cell (HSC) transplantation has the potential to treat a variety of human diseases, including genetic deficiencies, immune disorders, and to restore immunity following cancer treatment. However, there are several obstacles that prevent effective HSC transplantation in humans. These include finding a matched donor, having a sufficient number of cells for the transplant, and the potency of the cells in the transplant. Ethical issues prevent effective research in humans that could provide insight into ways to overcome these obstacles. Highly immunodeficient mice can be transplanted with human HSCs and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. As such, humanized mice serve as a model for human HSC transplantation. A variety of conditions have been analyzed for their impact on HSC transplantation to produce humanized mice, including the type and source of cells used in the transplant, the number of cells transplanted, the expansion of cells with various protocols, and the route of introduction of cells into the mouse. In this review, we summarize what has been learned about HSC transplantation using humanized mice as a recipient model and we comment on how these models may be useful to future preclinical research to determine more effective ways to expand HSCs and to determine their repopulating potential in vivo. PMID:23962058

  18. STELLA Facilitates Differentiation of Germ Cell and Endodermal Lineages of Human Embryonic Stem Cells

    PubMed Central

    Wongtrakoongate, Patompon; Jones, Mark; Gokhale, Paul J.; Andrews, Peter W.

    2013-01-01

    Stella is a developmentally regulated gene highly expressed in mouse embryonic stem (ES) cells and in primordial germ cells (PGCs). In human, the gene encoding the STELLA homologue lies on chromosome 12p, which is frequently amplified in long-term cultured human ES cells. However, the role played by STELLA in human ES cells has not been reported. In the present study, we show that during retinoic acid (RA)-induced differentiation of human ES cells, expression of STELLA follows that of VASA, a marker of germline differentiation. By contrast, human embryonal carcinoma cells express STELLA at a higher level compared with both karyotypically normal and abnormal human ES cell lines. We found that over-expression of STELLA does not interfere with maintenance of the stem cell state of human ES cells, but following retinoic acid induction it leads to up-regulation of germline- and endodermal-associated genes, whereas neural markers PAX6 and NEUROD1 are down-regulated. Further, STELLA over-expression facilitates the differentiation of human ES cells into BE12-positive cells, in which the expression of germline- and endodermal-associated genes is enriched, and suppresses differentiation of the neural lineage. Taken together, this finding suggests a role for STELLA in facilitating germline and endodermal differentiation of human ES cells. PMID:23457636

  19. The response of human and rodent cells to hyperthermia

    SciTech Connect

    Roizin-Towle, L.; Pirro, J.P. )

    1991-04-01

    Inherent cellular radiosensitivity in vitro has been shown to be a good predictor of human tumor response in vivo. In contrast, the importance of the intrinsic thermosensitivity of normal and neoplastic human cells as a factor in the responsiveness of human tumors to adjuvant hyperthermia has never been analyzed systematically. A comparison of thermal sensitivity and thermo-radiosensitization in four rodent and eight human-derived cell lines was made in vitro. Arrhenius plots indicated that the rodent cells were more sensitive to heat killing than the human, and the break-point was 0.5 degrees C higher for the human than rodent cells. The relationship between thermal sensitivity and the interaction of heat with X rays at low doses was documented by thermal enhancement ratios (TER's). Cells received either a 1 hr exposure to 43 degrees C or a 20 minute treatment at 45 degrees C before exposure to 300 kVp X rays. Thermal enhancement ratios ranged from 1.0 to 2.7 for human cells heated at 43 degrees C and from 2.1 to 5.3 for heat exposures at 45 degrees C. Thermal enhancement ratios for rodent cells were generally 2 to 3 times higher than for human cells, because of the fact that the greater thermosensitivity of rodent cells results in a greater enhancement of radiation damage. Intrinsic thermosensitivity of human cells has relevance to the concept of thermal dose; intrinsic thermo-radiosensitization of a range of different tumor cells is useful in documenting the interactive effects of radiation combined with heat.

  20. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  1. Generating trunk neural crest from human pluripotent stem cells

    PubMed Central

    Huang, Miller; Miller, Matthew L.; McHenry, Lauren K.; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages. PMID:26812940

  2. Human gamma delta T-cell recognition of Yersinia enterocolitica.

    PubMed Central

    Young, J L; Goodall, J C; Beacock-Sharp, H; Gaston, J S

    1997-01-01

    We have studied the human gamma delta T-cell response to Yersinia enterocolitica, a facultative intracellular bacterium which causes gastroenteritis and, particularly in human leucocyte antigen (HLA)-B27+ individuals, reactive arthritis (ReA). A marked proliferation of that cytotoxic gamma delta T cells is seen when Yersinia-infected lymphoblastoid cell lines or fixed intact Yersinia are added to cultures of mononuclear cells derived from the synovial fluid of ReA patients or from the peripheral blood of healthy donors. In contrast, heat-inactivated Yersinia fail to stimulate the gamma delta T-cell response. The gamma delta T-cell lines generated killed both autologous and allogeneic infected cell lines. Interestingly, a T-cell line generated from synovial fluid mononuclear cells (SFMC) killed infected autologous cell lines and a cell line matched for HLA-B27 less well than infected allogeneic target cells. gamma delta T-cell clones isolated from this line were found to express V gamma 9V delta 2 T-cell receptor (TCR) and also killed infected mismatched cells more efficiently than autologous targets. Moreover, from experiments using major histocompatability complex (MHC)-deficient cell lines, it was apparent that target cell recognition was MHC independent. Our results suggest that gamma delta T cells can be involved in immunity to Yersinia enterocolitica and should be taken into account when considering immunopathological mechanisms leading to reactive arthritis. PMID:9378487

  3. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  4. On human development: lessons from stem cell systems.

    PubMed

    Medvinsky, Alexander; Livesey, Frederick J

    2015-01-01

    In September 2014, over 100 scientists from around the globe gathered at Wotton House near London for the Company of Biologists' workshop 'From Stem Cells to Human Development'. The workshop covered diverse aspects of human development, from the earliest stages of embryogenesis to differentiation of mature cell types of all three germ layers from pluripotent cells. In this Meeting Review, we summarise some of the exciting data presented at the workshop and draw together the main themes that emerged. PMID:25516966

  5. Neoplastic transformation of human diploid fibroblast cells by chemical carcinogens

    PubMed Central

    Kakunaga, Takeo

    1978-01-01

    Cultured fibroblast cells derived from a skin biopsy sample taken from normal human adult were exposed to a potent carcinogen, 4-nitroquinoline 1-oxide. Alterations of cell growth pattern such as higher density and piling up of cells were noticed in some fractions of cultures that were successively subcultured after nitroquinoline oxide treatment. Morphologically altered cells retained this growth pattern and became established lines of transformed cells without showing the limited life-span characteristic of normal cells in culture. The transformed cells showed a higher saturation density and the ability to grow in soft agar, properties that are usually correlated with neoplastic transformation of cells in culture. Selection of preexisting transformed human cells as a mechanism of this observed transformation seemed unlikely because clones of these normal cells could also be used to assess the transforming effect of nitroquinoline oxide. Preliminary results suggest that numerous cell divisions were required for the development of the transformation after nitroquinoline oxide treatment of these human cells. When the transformed cell lines were injected subcutaneously into nude (athymic) mice, solid tumors were produced at the site of inoculation. Treatment with N-methyl-N′-nitro-N-nitrosoguanidine also induced cell transformation, in a manner similar to treatment with nitroquinoline oxide. However, transformation was not induced with (i) 4-aminoquinoline 1-oxide (a noncarcinogenic derivative of 4-nitroquinoline 1-oxide), (ii) 3-methylcholanthrene (a carcinogen that cannot be metabolically activated by the target cells employed), or (iii) the solvent dimethyl sulfoxide. Images PMID:418410

  6. Protective effects of ginseng leaf extract using enzymatic extraction against oxidative damage of UVA-irradiated human keratinocytes.

    PubMed

    Kim, Mi-Ryung; Lee, Hyun-Sun; Choi, Hyeon-Son; Kim, Sun Young; Park, Yooheon; Suh, Hyung Joo

    2014-06-01

    UVA is responsible for numerous biological effects on the skin, including premature aging characterized by wrinkles, leathery texture, and mottled pigmentation. The objective of this study was evaluating the protective effect of ginseng leaf extract prepared by Ultraflo L on skin from photodamage. Anti-wrinkle effect of ginseng leaf extract with or without Ultraflo L treatment were tested on human keratinocyte cells (HaCaT) irradiated with ultraviolet (UV) A. Ginseng leaves inhibited ROS generation, GHS depleti