Science.gov

Sample records for human hepatocyte cultures

  1. Enzyme induction in cryopreserved human hepatocyte cultures.

    PubMed

    Kafert-Kasting, Sabine; Alexandrova, Krassimira; Barthold, Marc; Laube, Britta; Friedrich, Gerhard; Arseniev, Lubomir; Hengstler, Jan G

    2006-03-15

    Freshly isolated human hepatocytes are considered as the gold standard for in vitro testing of drug candidates. Meanwhile also cryopreserved human hepatocyte suspensions are available. However, a drawback of these cells is the incalculability of attachment to the culture dish. Therefore, we established a technique freezing hepatocytes cultured on a collagen gel. After thawing damaged cells were removed to a certain extent by gentle washing with culture medium prior to adding an upper gel layer. The morphology of the resulting hepatocyte cultures could not be distinguished from that of non-frozen cells. However, basal activities of cytochrome P450 isoforms decreased in cryopreserved compared to non-frozen hepatocytes, as evidenced by analysis of testosterone hydroxylation (OHT) in positions 6beta, 16alpha, 2beta and 6alpha. Nevertheless, enzyme induction factors caused by 24 h incubation with 50 microM rifampicin were similar in cryopreserved and non-frozen hepatocytes. In cryopreserved hepatocytes rifampicin caused an increase in mean values of 6beta-OHT formation from 57.2 to 157.7 pmol/well/min (2.8-fold), compared to an increase from 115.8 to 269.1 pmol/well/min (2.3-fold) in non-frozen cells. Similarly, 16alpha- and 2beta-OHT showed induction factors of 2.4- and 2.3-fold in cryopreserved compared to 1.6- and 2.4-fold in non-frozen hepatocytes, respectively. In conclusion, human hepatocytes cryopreserved on collagen gels show a clear induction of CYP3A4 by rifampicin, although the basal activities are reduced compared to non-frozen cells. PMID:16473453

  2. Polarized location of SLC and ABC drug transporters in monolayer-cultured human hepatocytes.

    PubMed

    Le Vee, Marc; Jouan, Elodie; Noel, Gregory; Stieger, Bruno; Fardel, Olivier

    2015-08-01

    Human hepatocytes cultured in a monolayer configuration represent a well-established in vitro model in liver toxicology, notably used in drug transporter studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, remains however incompletely documented in these cultured hepatocytes. The present study was therefore designed to analyze transporter expression and location in such cells. Most of drug transporters were first shown to be present at notable mRNA levels in monolayer-cultured human hepatocytes. Cultured human hepatocytes, which morphologically exhibited bile canaliculi-like structures, were next demonstrated, through immunofluorescence staining, to express the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3 at their sinusoidal pole. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of monolayer-cultured human hepatocytes. Moreover, canalicular secretion of reference substrates for the efflux transporters bile salt export pump, MRP2 and P-glycoprotein as well as sinusoidal drug transporter activities were observed. This polarized and functional expression of drug transporters in monolayer-cultured human hepatocytes highlights the interest of using this human in vitro cell model in xenobiotic transport studies. PMID:25862123

  3. Maintenance of Hepatic Functions in Primary Human Hepatocytes Cultured on Xeno-Free and Chemical Defined Human Recombinant Laminins.

    PubMed

    Watanabe, Masaaki; Zemack, Helen; Johansson, Helene; Hagbard, Louise; Jorns, Carl; Li, Meng; Ellis, Ewa

    2016-01-01

    Refined methods for maintaining specific functions of isolated hepatocytes under xeno-free and chemical defined conditions is of great importance for the development of hepatocyte research and regenerative therapy. Laminins, a large family of heterotrimeric basement membrane adhesion proteins, are highly cell and tissue type specific components of the extracellular matrix and strongly influence the behavior and function of associated cells and/or tissues. However, detailed biological functions of many laminin isoforms are still to be evaluated. In this study, we determined the distribution of laminin isoforms in human liver tissue and isolated primary human hepatocytes by western blot analysis, and investigated the efficacy of different human recombinant laminin isoforms on hepatic functions during culture. Protein expressions of laminin-chain α2, α3, α4, β1, β3, γ1, and γ2 were detected in both isolated human hepatocytes and liver tissue. No α1 and α5 expression could be detected in liver tissue or hepatocytes. Hepatocytes were isolated from five different individual livers, and cultured on human recombinant laminin isoforms -111, -211, -221, -332, -411, -421, -511, and -521 (Biolamina AB), matrigel (extracted from Engelbreth-Holm-Swarm sarcoma), or collagen type IV (Collagen). Hepatocytes cultured on laminin showed characteristic hexagonal shape in a flat cell monolayer. Viability, double stranded DNA concentration, and Ki67 expression for hepatocytes cultured for six days on laminin were comparable to those cultured on EHS and Collagen. Hepatocytes cultured on laminin also displayed production of human albumin, alpha-1-antitrypsin, bile acids, and gene expression of liver-enriched factors, such as hepatocyte nuclear factor 4 alpha, glucose-6-phosphate, cytochrome P450 3A4, and multidrug resistance-associated protein 2. We conclude that all forms of human recombinant laminin tested maintain cell viability and liver-specific functions of primary human

  4. Cytotoxicity evaluation using cryopreserved primary human hepatocytes in various culture formats.

    PubMed

    Richert, Lysiane; Baze, Audrey; Parmentier, Céline; Gerets, Helga H J; Sison-Young, Rowena; Dorau, Martina; Lovatt, Cerys; Czich, Andreas; Goldring, Christopher; Park, B Kevin; Juhila, Satu; Foster, Alison J; Williams, Dominic P

    2016-09-01

    Sixteen training compounds selected in the IMI MIP-DILI consortium, 12 drug-induced liver injury (DILI) positive compounds and 4 non-DILI compounds, were assessed in cryopreserved primary human hepatocytes. When a ten-fold safety margin threshold was applied, the non-DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes (n=13 donors) in suspension and 14-days following repeat dose exposure (3 treatments) to an established 3D-microtissue co-culture (3D-MT co-culture, n=1 donor) consisting of human hepatocytes co-cultured with non-parenchymal cells (NPC). In contrast, only 5/12 DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes in suspension. Exposure of the 2D-sandwich culture human hepatocyte monocultures (2D-sw) for 3days resulted in the correct identification of 11/12 DILI-positive compounds, whereas exposure of the human 3D-MT co-cultures for 14days resulted in identification of 9/12 DILI-compounds; in addition to ximelagatran (also not identified by 2D-sw monocultures, Sison-Young et al., 2016), the 3D-MT co-cultures failed to detect amiodarone and bosentan. The sensitivity of the 2D human hepatocytes co-cultured with NPC to ximelagatran was increased in the presence of lipopolysaccharide (LPS), but only at high concentrations, therefore preventing its classification as a DILI positive compound. In conclusion (1) despite suspension human hepatocytes having the greatest metabolic capacity in the short term, they are the least predictive of clinical DILI across the MIP-DILI test compounds, (2) longer exposure periods than 72h of human hepatocytes do not allow to increase DILI-prediction rate, (3) co-cultures of human hepatocytes with NPC, in the presence of LPS during the 72h exposure period allow the assessment of innate immune system involvement of a given drug. PMID:27363785

  5. Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes.

    PubMed

    Li, Na; Bi, Yi-An; Duignan, David B; Lai, Yurong

    2009-01-01

    As sandwich cultured (SC) hepatocytes can repolarize to form bile canalicular networks, allowing active excretion of compounds in a vectorial manner, the model has been widely used for assessing the transporter related complexity of ADME/tox issues. A lack of quantitative information on transporter expression during cell culture has made in vitro to in vivo extrapolation of hepatobiliary transport difficult. In the present study, using our newly developed LC-MS/MS absolute quantitative methods, we determined the quantitative expression profile of three biliary transporters in SC rat and human hepatocytes. A significant shift of hepatobiliary transporter proteins was observed both in human and rat sandwich cultures. A decrease of BSEP/Bsep protein and an increase of BCRP/Bcrp protein were detected in both rat and human hepatocytes over time in culture. Interestingly, Mrp2 in rat hepatocytes was significantly diminished, while MRP2 constantly increased in human hepatocytes during the cell culture. Consequently, the interspecies difference between rat and human in absolute amount of MRP2/Mrp2 was minimized over time in culture. Following the sandwich culture, the species difference of hepatobiliary transporter protein between human and rat at day 5 post SC was diminished (MRP2/Mrp2), identical (BSEP/Bsep) or reversed (BCRP/Bcrp), compared to the in vivo situation. In addition, the absolute protein amount of BCRP/Bcrp or MRP2/Mrp2 was proportionally correlated with the intrinsic biliary clearance estimated in various lots of SC rat and human hepatocytes. The results revealed that absolute protein amount is a key determinant for hepatobiliary clearance and could provide fundamental support on extrapolation of biliary secretion from in vitro to in vivo. PMID:19545175

  6. Functional 3D human primary hepatocyte spheroids made by co-culturing hepatocytes from partial hepatectomy specimens and human adipose-derived stem cells.

    PubMed

    No, Da Yoon; Lee, Seung-A; Choi, Yoon Young; Park, DoYeun; Jang, Ju Yun; Kim, Dong-Sik; Lee, Sang-Hoon

    2012-01-01

    We have generated human hepatocyte spheroids with uniform size and shape by co-culturing 1∶1 mixtures of primary human hepatocytes (hHeps) from partial hepatectomy specimens and human adipose-derived stem cells (hADSCs) in concave microwells. The hADSCs in spheroids could compensate for the low viability and improve the functional maintenance of hHeps. Co-cultured spheroids aggregated and formed compact spheroidal shapes more rapidly, and with a significantly higher viability than mono-cultured spheroids. The liver-specific functions of co-cultured spheroids were greater, although they contained half the number of hepatocytes as mono-cultured spheroids. Albumin secretion by co-cultured spheroids was 10% higher on day 7, whereas urea secretion was similar, compared with mono-cultured spheroids. A quantitative cytochrome P450 assay showed that the enzymatic activity of co-cultured spheroids cultured for 9 days was 28% higher than that of mono-cultured spheroids. These effects may be due to the transdifferentiation potential and paracrine healing effects of hADSCs on hHeps. These co-cultured spheroids may be useful for creating artificial three-dimensional hepatic tissue constructs and for cell therapy with limited numbers of human hepatocytes. PMID:23236387

  7. Characterization of Liver-Specific Functions of Human Fetal Hepatocytes in Culture.

    PubMed

    Chinnici, Cinzia Maria; Timoneri, Francesca; Amico, Giandomenico; Pietrosi, Giada; Vizzini, Giovanni; Spada, Marco; Pagano, Duilio; Gridelli, Bruno; Conaldi, Pier Giulio

    2015-01-01

    This study was designed to assess liver-specific functions of human fetal liver cells proposed as a potential source for hepatocyte transplantation. Fetal liver cells were isolated from livers of different gestational ages (16-22 weeks), and the functions of cell preparations were evaluated by establishing primary cultures. We observed that 20- to 22-week-gestation fetal liver cell cultures contained a predominance of cells with hepatocytic traits that did not divide in vitro but were functionally competent. Fetal hepatocytes performed liver-specific functions at levels comparable to those of their adult counterpart. Moreover, exposure to dexamethasone in combination with oncostatin M promptly induced further maturation of the cells through the acquisition of additional functions (i.e., ability to store glycogen and uptake of indocyanine green). In some cases, particularly in cultures obtained from fetuses of earlier gestational ages (16-18 weeks gestation), cells with mature hepatocytic traits proved to be sporadic, and the primary cultures were mainly populated by clusters of proliferating cells. Consequently, the values of liver-specific functions detected in these cultures were low. We observed that a low cell density culture system rapidly prompted loss of the mature hepatocytic phenotype with downregulations of all the liver-specific functions. We found that human fetal liver cells can be cryopreserved without significant loss of viability and function and evaluated up to 1 year in storage in liquid nitrogen. They might, therefore, be suitable for cell banking and allow for the transplantation of large numbers of cells, thus improving clinical outcomes. Overall, our results indicate that fetal hepatocytes could be used as a cell source for hepatocyte transplantation. Fetal liver cells have been used so far to treat end-stage liver disease. Additional studies are needed to include these cells in cell-based therapies aimed to treat liver failure and inborn

  8. Three Dimensional Primary Hepatocyte Culture

    NASA Technical Reports Server (NTRS)

    Yoffe, Boris

    1998-01-01

    Our results demonstrated for the first time the feasibility of culturing PHH in microgravity bioreactors that exceeded the longest period obtained using other methods. Within the first week of culture, isolated hepatocytes started to form aggregates, which continuously increased in size (up to 1 cm) and macroscopically appeared as a multidimensional tissue-like assembly. To improve oxygenation and nutrition within the spheroids we performed experiments with the biodegradable nonwoven fiber-based polymers made from PolyGlycolic Acid (PGA). It has been shown that PGA scaffolds stimulate isolated cells to regenerate tissue with defined sizes and shapes and are currently being studied for various tissue-engineering applications. Our data demonstrated that culturing hepatocytes in the presence of PGA scaffolds resulted in more efficient cell assembly and formations of larger cell spheroids (up to 3 cm in length, see figure). The histology of cell aggregates cultured with PGA showed polymer fibers with attached hepatocytes. We initiated experiments to co-culture primary human hepatocytes with human microvascular endothelial cells in the bioreactor. The presence of endothelial cells in co-cultures were established by immunohistochemistry using anti-CD34 monoclonal Ab. Our preliminary data demonstrated that cultures of purified hepatocytes with human microvascular endothelial cells exhibited better growth and expressed higher levels of albumin MRNA for a longer period of time than cultures of ppfified, primary human hepatocytes cultured alone. We also evaluated microsomal deethylation activity of hepatocytes cultured in the presence of endothelial cells.In summary, we have established liver cell culture, which mimicked the structure and function of the parent tissue.

  9. Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals

    EPA Science Inventory

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...

  10. Genotoxic effects of alpha-hexachlorocyclohexane in primary cultures of rodent and human hepatocytes.

    PubMed

    Mattioli, F; Robbiano, L; Adamo, D; Federa, R; Martelli, A; Brambilla, G

    1996-01-01

    The genotoxicity of alpha-hexachlorocyclohexane (alpha-HCH) was evaluated in primary cultures of mouse, rat and human hepatocytes. DNA fragmentation was measured by the alkaline elution technique and DNA repair synthesis by quantitative autoradiography. A 20 h exposure to subtoxic concentrations ranging from 0.056 to 0.32 mM produced a dose-dependent frequency of DNA breaks in rat hepatocytes and in hepatocytes from four of five human donors, but not in mouse hepatocytes, DNA repair induction was absent in hepatocytes from all three species. The reduction in the frequency of DNA breaks observed in rat hepatocytes simultaneously exposed to metyrapone suggests that alpha-HCH is transformed into reactive species by a cytochrome P450-dependent reaction. The detection of DNA fragmentation but not of DNA repair synthesis may be tentatively explained by assuming that alpha-HCH behaves as a chemical eliciting short patch DNA repair, which is more easily revealed as genotoxic by the occurrence of DNA single-strand breaks. PMID:8671720

  11. Evaluation of human hepatocytes cultured by three-dimensional spheroid systems for drug metabolism.

    PubMed

    Ohkura, Takako; Ohta, Kunihiro; Nagao, Takuya; Kusumoto, Kumiko; Koeda, Akiko; Ueda, Tadayoshi; Jomura, Tomoko; Ikeya, Takeshi; Ozeki, Emiko; Wada, Kazuki; Naitoh, Kazushi; Inoue, Yukiko; Takahashi, Naoki; Iwai, Hisakazu; Arakawa, Hiroshi; Ogihara, Takuo

    2014-01-01

    We investigated the utility of three-dimensional (3D) spheroid cultures of human hepatocytes in discovering drug metabolites. Metabolites of acetaminophen, diclofenac, lamotrigine, midazolam, propranolol and salbutamol were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) to measure enzyme activities in this system cultured for 2 and 7 days. Sequential metabolic reactions by Phase I and then Phase II enzymes were found in diclofenac [CYP2C9 and UDP-glucuronyltransferases (UGTs)], midazolam (CYP3A4 and UGTs) and propranolol (CYP1A2/2D6 and UGTs). Moreover, lamotrigine and salbutamol were metabolized to lamotrigine-N-glucuronide and salbutamol 4-O-sulfate, respectively. These metabolites, which are human specific, could be observed in clinical studies, but not in conventional hepatic culture systems as in previous reports. Acetaminophen was metabolized to glucuronide and sulfate conjugates, and N-acetyl-p-benzo-quinoneimine (NAPQI) and its metabolites were not observed. In addition, mRNA of drug-metabolism enzymes [CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, UGT1A1, UGT2B7, sulfotransferase 1A1 (SULT1A1) and glutathione S-transferase pi 1 (GSTP1)], which were measured by qRT-PCR, were expressed in the human hepatocyte spheroids. In conclusion, these results suggest that human hepatocyte spheroids are useful in discovering drug metabolites. PMID:24695277

  12. Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues

    SciTech Connect

    Olsavsky, Katy M.; Page, Jeanine L.; Johnson, Mary C.; Zarbl, Helmut; Strom, Stephen C.; Omiecinski, Curtis J. . E-mail: cjo10@psu.edu

    2007-07-01

    Frequently, primary hepatocytes are used as an in vitro model for the liver in vivo. However, the culture conditions reported vary considerably, with associated variability in performance. In this study, we characterized the differentiation character of primary human hepatocytes cultured using a highly defined, serum-free two-dimensional sandwich system, one that configures hepatocytes with collagen I as the substratum together with a dilute extracellular matrix (Matrigel{sup TM}) overlay combined with a defined serum-free medium containing nanomolar levels of dexamethasone. Gap junctional communication, indicated by immunochemical detection of connexin 32 protein, was markedly enhanced in hepatocytes cultured in the Matrigel sandwich configuration. Whole genome expression profiling enabled direct comparison of liver tissues to hepatocytes and to the hepatoma-derived cell lines, HepG2 and Huh7. PANTHER database analyses were used to identify biological processes that were comparatively over-represented among probe sets expressed in the in vitro systems. The robustness of the primary hepatocyte cultures was reflected by the extent of unchanged expression character when compared directly to liver, with more than 77% of the probe sets unchanged in each of the over-represented categories, representing such genes as C/EBP{alpha}, HNF4{alpha}, CYP2D6, and ABCB1. In contrast, HepG2 and Huh7 cells were unchanged from the liver tissues for fewer than 48% and 55% of these probe sets, respectively. Further, hierarchical clustering of the hepatocytes, but not the cell lines, shifted from donor-specific to treatment-specific when the probe sets were filtered to focus on phenobarbital-inducible genes, indicative of the highly differentiated nature of the hepatocytes when cultured in a highly defined two-dimensional sandwich system.

  13. Long term cultures of primary human hepatocytes as an alternative to drug testing in animals.

    PubMed

    Ullrich, Anett; Stolz, Donna B; Ellis, Ewa C; Strom, Stephen C; Michalopoulos, George K; Hengstler, Jan G; Runge, Dieter

    2009-01-01

    Due to species differences, primary human hepatocytes are still the in vitro system of choice to analyse liver specific processes and functions. Human hepatocytes were cultured for several weeks in a serum-free two-dimensional culture system, which was used to study the effects of acetaminophen (APAP) on hepatocellular functions and vitality. Non-invasive determinations of albumin, urea and lactate dehydrogenase concentrations in cell culture supernatants allowed continuous monitoring for at least two weeks. APAP was applied every 4 days for 24 h. Each application reduced urea production by 25% and albumin synthesis by approximately 70% without any effects on cellular viability. After removal of the substance, hepatocellular functions returned to control levels within one (urea) to three (albumin) days. The repetitive analyses of APAP-mediated effects on cellular metabolism led to identical results for up to five cycles. The drug also caused reversible and repetitive ultrastructural modifications, in particular an almost complete replacement of rough endoplasmic reticulum by smooth endoplasmic reticulum and a massive degradation of glycogen stores. The data demonstrate the suitability of the culture system to serve as a model for repetitive testing of drug-mediated changes on hepatocellular functions, thereby reducing animal studies during drug development. PMID:20383475

  14. Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer.

    PubMed

    Bierwolf, Jeanette; Volz, Tassilo; Lütgehetmann, Marc; Allweiss, Lena; Riecken, Kristoffer; Warlich, Michael; Fehse, Boris; Kalff, Joerg C; Dandri, Maura; Pollok, Joerg-Matthias

    2016-05-01

    Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo. PMID:27068494

  15. Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer

    PubMed Central

    Bierwolf, Jeanette; Volz, Tassilo; Lütgehetmann, Marc; Allweiss, Lena; Riecken, Kristoffer; Warlich, Michael; Fehse, Boris; Kalff, Joerg C.; Dandri, Maura

    2016-01-01

    Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo. PMID:27068494

  16. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    SciTech Connect

    Marion, Tracy L.; Perry, Cassandra H.; St Claire, Robert L.; Brouwer, Kim L.R.

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  17. Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes.

    PubMed

    Oorts, Marlies; Baze, Audrey; Bachellier, Philippe; Heyd, Bruno; Zacharias, Thomas; Annaert, Pieter; Richert, Lysiane

    2016-08-01

    Drug-induced cholestasis (DIC) is recognized as one of the prime mechanisms for DILI. Hence, earlier detection of drug candidates with cholestatic signature is crucial. Recently, we introduced an in vitro model for DIC and evaluated its performance with several cholestatic drugs. We presently expand on the validation of this model by 14 training compounds (TCs) of the EU-EFPIA IMI project MIP-DILI. Several batches of human hepatocytes in sandwich-culture were qualified for DIC assessment by verifying the bile acid-dependent increase in sensitivity to the toxic effects of cyclosporin A. The cholestatic potential of the TCs was expressed by determining the drug-induced cholestasis index (DICI). A safety margin (SM) was calculated as the ratio of the lowest TC concentration with a DICI≤0.80 to the Cmax,total. Nefazodone, bosentan, perhexiline and troglitazone were flagged for cholestasis (SM<30). The hepatotoxic (but non-cholestatic) compounds, amiodarone, diclofenac, fialuridine and ximelagatran, and all non-hepatotoxic compounds were cleared as "safe" for DIC. Tolcapone and paracetamol yielded DICI-based SM values equal to or higher than those based on cytotoxicity, thus excluding DIC as a DILI mechanism. This hepatocyte-based in vitro assay provides a unique tool for early and reliable identification of drug candidates with cholestasis risk. PMID:27046439

  18. Drug metabolism by cultured human hepatocytes: how far are we from the in vivo reality?

    PubMed

    Ponsoda, Xavier; Donato, M Teresa; Perez-Cataldo, Gabriela; Gómez-Lechón, Maria José; Castell, José V

    2004-06-01

    The investigation of metabolism is an important milestone in the course of drug development. Drug metabolism is a determinant of drug pharmacokinetics variability in human beings. Fundamental to this are phenotypic differences, as well as genotypic differences, in the expression of the enzymes involved in drug metabolism. Genotypic variability is easy to identify by means of polymerase chain reaction-based or DNA chip-based methods, whereas phenotypic variability requires direct measurement of enzyme activities in liver, or, indirectly, measurement of the rate of metabolism of a given compound in vivo. There is a great deal of phenotypic variability in human beings, only a minor part being attributable to gene polymorphisms. Thus, enzyme activity measurements in a series of human livers, as well as in vivo studies with human volunteers, show that phenotypic variability is, by far, much greater than genotypic variability. In vitro models are currently used to investigate the hepatic metabolism of new compounds. Cultured human hepatocytes are considered to be the closest model to the human liver. However, the fact that hepatocytes are placed in a microenvironment that differs from that of the cells in the liver raises the question of to what extent drug metabolism variability observed in vitro actually reflects that in the liver in vivo. This issue has been examined by investigating the metabolism of the model compound, aceclofenac (an approved analgesic/anti-inflammatory drug), both in vitro and in vivo. Hepatocytes isolated from programmed liver biopsies were incubated with aceclofenac, and the metabolites formed were investigated by HPLC. The patients were given the drug during the course of clinical recovery, and the metabolites, largely present in urine, were analysed. In vitro and in vivo data from the same individual were compared. There was a good correlation between the in vitro and in vivo relative abundance of oxidised metabolites (4'-OH-aceclofenac + 4

  19. Use of Primary Rat and Human Hepatocyte Sandwich Cultures for Activation of Indirect Carcinogens: Monitoring of DNA Strand Breaks and Gene Mutations in Co-cultured Cells.

    PubMed

    Fahrig, R; Rupp, M; Steinkamp-Zucht, A; Bader, A

    1998-08-01

    Loss of cytochrome P-450 content is a common feature in conventional culture systems of primary hepatocytes. In contrast to the standard in vitro situation, in vivo each hepatocyte is exposed to an extracellular matrix (space of Disse) at two opposing basolateral surfaces. This in vivo symmetry has been reconstructed in vitro by culturing rat or human hepatocytes within two layers of collagen, thus forming a sandwich configuration. Activation of dimethylbenzanthracene (DMBA) or benzo[a]pyrene (BaP) was studied in rat and human hepatocytes. Genotoxic effects were studied in a three-dimensional co-culture model between sandwich hepatocytes and mammalian cells using the comet assay for detection of DNA strand breaks, and the HPRT test for detection of gene mutations. Sandwich hepatocytes generated active metabolites. The maintenance of metabolic properties in hepatocytes was dependent on extracellular matrix geometry. The number of DMBA- or BaP-induced genotoxic effects tended to be higher than in standard S-9 mix assays. While the ability to activate indirect carcinogens disappears within hours in primary hepatocytes, hepatocyte sandwich cultures enhance their ability to activate indirect carcinogens within 1 wk and retain this activity for up to 2 wk. This is the main advantage of the sandwich method over the more simple and conventional assays. While freshly isolated hepatocytes, regardless of whether in sandwich culture or in conventional assays, are injured by the isolation procedure and possess a corresponding reduced activation ability, hepatocytes in sandwich cultures recover over the course of a few days, and acquire a much higher ability to activate indirect carcinogens. Consequently, the indirect carcinogens BaP and DMBA, which were ineffective (BaP) or exhibited only weak effects (DMBA) at a concentration of 160nmol/ml in 1-2-day-old hepatocytes, were clearly effective (BaP) or showed about a threefold increase in genotoxicity (DMBA) in 8-day

  20. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    SciTech Connect

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-02-06

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPAR{alpha}) signaling. Furthermore, using PPAR{alpha} agonists and antagonists, we also analyzed the effect of PPAR{alpha} signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.

  1. Glucuronidation and Covalent Protein Binding of Benoxaprofen and Flunoxaprofen in Sandwich-Cultured Rat and Human Hepatocytes

    PubMed Central

    Dong, Jennifer Q.

    2009-01-01

    Benoxaprofen (BNX), a nonsteroidal anti-inflammatory drug (NSAID) that was withdrawn because of hepatotoxicity, is more toxic than its structural analog flunoxaprofen (FLX) in humans and rats. Acyl glucuronides have been hypothesized to be reactive metabolites and may be associated with toxicity. Both time- and concentration-dependent glucuronidation and covalent binding of BNX, FLX, and ibuprofen (IBP) were determined by exposing sandwich-cultured rat hepatocytes to each NSAID. The levels of glucuronide and covalent protein adduct measured in cells followed the order BNX > FLX > IBP. These results indicate that 1) BNX-glucuronide (G) is more reactive than FLX-G, and 2) IBP-G is the least reactive metabolite, which support previous in vivo studies in rats. The proportional increases of protein adduct formation for BNX, FLX, and IBP as acyl glucuronidation increased also support the hypothesis that part of the covalent binding of all three NSAIDs to hepatic proteins is acyl glucuronide-dependent. Moreover, theses studies confirmed the feasibility of using sandwich-cultured rat hepatocytes for studying glucuronidation and covalent binding to hepatocellular proteins. These studies also showed that these in vitro methods can be applied using human tissues for the study of acyl glucuronide reactivity. More BNX-protein adduct was formed in sandwich-cultured human hepatocytes than FLX-protein adduct, which not only agreed with its relative toxicity in humans but also was consistent with the in vitro findings using rat hepatocyte cultures. These data support the use of sandwich-cultured human hepatocytes as an in vitro screening model of acyl glucuronide exposure and reactivity. PMID:19773537

  2. Metabolism of benzo[a]pyrene by cultured human hepatocytes from multiple donors.

    PubMed

    Moore, C J; Gould, M N

    1984-12-01

    Primary hepatocyte cultures from six human donors were established and their abilities to metabolize the polycyclic aromatic hydrocarbon carcinogen benzo[a]pyrene (B[a]P) were examined. Cells from each donor were plated at similar densities (1 X 10(7) cells/100 mm dish). All cultures metabolized B[a]P to a significant extent (24-35 nmol in 24 h) and h.p.l.c. profiles of the organic solvent-soluble and glucuronidated B[a]P metabolites were obtained for all donors. The predominant extracellular organic solvent-soluble B[a]P metabolites were the 9,10- and 7,8-dihydrodiols, 9-hydroxy-B[a]P, and a mixture of tetrols, but the general ratios of these metabolites varied widely among the cells from different donors. In contrast, profiles were highly reproducible in cells from the same donor treated with B[a]P at either 8 or 24 h after initial plating. There was less variability in the amounts of specific B[a]P metabolites conjugated to glucuronic acid by cells from various donors. This variability could not be correlated with cell viability or overall levels of B[a]P metabolism. In addition, B[a]P metabolism by fresh and cryopreserved hepatocytes from the same donor was compared. While there was only a small reduction in the level of total B[a]P metabolism after cell freezing, there was a 3- to 5-fold increase in production of B[a]P-7,8-dihydrodiol, found both in the extracellular medium and as glucuronic acid conjugates, by the cryopreserved cells tested. PMID:6499110

  3. Expression and hepatobiliary transport characteristics of the concentrative and equilibrative nucleoside transporters in sandwich-cultured human hepatocytes

    PubMed Central

    Govindarajan, Rajgopal; Endres, Christopher J.; Whittington, Dale; LeCluyse, Edward; Pastor-Anglada, Marçal; Tse, Chung-Ming; Unadkat, Jashvant D.

    2008-01-01

    We previously reported that both the concentrative (hCNT) and equilibrative (hENT) nucleoside transporters are expressed in the human liver (21). Here we report a study that investigated the expression of these transporters (transcripts and proteins) and their role in the hepatobiliary transport of nucleosides/nucleoside drugs using sandwich-cultured human hepatocytes. In the hepatic tissue, the rank order of the mRNA expression of the transporters was hCNT1 ≈ hENT1 > hENT2 ≈ hCNT2 > hCNT3. In sandwich-cultured hepatocytes, the mRNA expression of hCNT2 and hENT2 was comparable to that in hepatic tissue, whereas the expression of corresponding transporters in the two-dimensional hepatocyte cultures was lower. Colocalization studies demonstrated predominant localization of these transporters at the sinusoidal membrane and of hENT1, hCNT1, and hCNT2 at the canalicular membrane. In the sandwich-cultured hepatocytes, ENTs were the major contributors to the transport of thymidine (hENT1, 63%; hENT2, 23%) or guanosine (hENT1, 53%; hENT2, 24%) into the hepatocytes followed by hCNT1 (10%) for thymidine or hCNT2 (23%) for guanosine. Although ribavirin was predominately transported (89%) into the hepatocytes by hENT1, fialuridine (FIAU) was transported by both hENT1 (30%) and hCNTs (61%). The extensively metabolized natural nucleosides were not effluxed into the bile, whereas significant biliary-efflux was observed of FIAU (19%), ribavirin (30%), and formycin B (35%). We conclude that the hepatic activity of hENT1 and hCNT1/2 transporters will determine the in vivo hepatic distribution and therefore the efficacy and/or toxicity of nucleoside drugs used to treat hepatic diseases. PMID:18635603

  4. Evaluation of Adverse Drug Properties with Cryopreserved Human Hepatocytes and the Integrated Discrete Multiple Organ Co-culture (IdMOCTM) System

    PubMed Central

    2015-01-01

    Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent the gold standard for in vitro evaluation of drug metabolism, drug-drug interactions, and hepatotoxicity. Successful cryopreservation of human hepatocytes enables this experimental system to be used routinely. The use of human hepatocytes to evaluate two major adverse drug properties: drug-drug interactions and hepatotoxicity, are summarized in this review. The application of human hepatocytes in metabolism-based drug-drug interaction includes metabolite profiling, pathway identification, P450 inhibition, P450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. A novel system, the Integrated Discrete Multiple Organ Co-culture (IdMOC) which allows the evaluation of nonhepatic toxicity in the presence of hepatic metabolism, is described. PMID:26191380

  5. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    SciTech Connect

    Atienzar, Franck A.; Novik, Eric I.; Gerets, Helga H.; Parekh, Amit; Delatour, Claude; Cardenas, Alvaro; MacDonald, James; Yarmush, Martin L.; Dhalluin, Stéphane

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  6. Xenobiotic-metabolizing enzyme and transporter gene expression in primary cultures of human hepatocytes modulated by ToxCast chemicals.

    PubMed

    Rotroff, Daniel M; Beam, Andrew L; Dix, David J; Farmer, Adam; Freeman, Kimberly M; Houck, Keith A; Judson, Richard S; LeCluyse, Edward L; Martin, Matthew T; Reif, David M; Ferguson, Stephen S

    2010-02-01

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the concentration- and time-response of the 320 ToxCast chemicals for changes in expression of genes regulated by nuclear receptors. Fourteen gene targets were monitored in quantitative nuclease protection assays: six representative cytochromes P-450, four hepatic transporters, three Phase II conjugating enzymes, and one endogenous metabolism gene involved in cholesterol synthesis. These gene targets are sentinels of five major signaling pathways: AhR, CAR, PXR, FXR, and PPARalpha. Besides gene expression, the relative potency and efficacy for these chemicals to modulate cellular health and enzymatic activity were assessed. Results demonstrated that the culture system was an effective model of chemical-induced responses by prototypical inducers such as phenobarbital and rifampicin. Gene expression results identified various ToxCast chemicals that were potent or efficacious inducers of one or more of the 14 genes, and by inference the 5 nuclear receptor signaling pathways. Significant relative risk associations with rodent in vivo chronic toxicity effects are reported for the five major receptor pathways. These gene expression data are being incorporated into the larger ToxCast predictive modeling effort. PMID:20574906

  7. Two compartment model of diazepam biotransformation in an organotypical culture of primary human hepatocytes

    SciTech Connect

    Acikgoez, Ali; Karim, Najibulla; Giri, Shibashish; Schmidt-Heck, Wolfgang; Bader, Augustinus

    2009-01-15

    Drug biotransformation is one of the most important parameters of preclinical screening tests for the registration of new drug candidates. Conventional existing tests rely on nonhuman models which deliver an incomplete metabolic profile of drugs due to the lack of proper CYP450 expression as seen in human liver in vivo. In order to overcome this limitation, we used an organotypical model of human primary hepatocytes for the biotransformation of the drug diazepam with special reference to metabolites in both the cell matrix phase and supernatant and its interaction of three inducers (phenobarbital, dexamethasone, aroclor 1254) in different time responses (1, 2, 4, 8, 24 h). Phenobarbital showed the strongest inducing effect in generating desmethyldiazepam and induced up to a 150 fold increase in oxazepam-content which correlates with the increased availability of the precursor metabolites (temazepam and desmethyldiazepam). Aroclor 1254 and dexamethasone had the strongest inducing effect on temazepam and the second strongest on oxazepam. The strong and overlapping inductive role of phenobarbital strengthens the participation of CYP2B6 and CYP3A in diazepam N-demethylation and CYP3A in temazepam formation. Aroclor 1254 preferentially generated temazepam due to the interaction with CYP3A and potentially CYP2C19. In parallel we represented these data in the form of a mathematical model with two compartments explaining the dynamics of diazepam metabolism with the effect of these other inducers in human primary hepatocytes. The model consists of ten differential equations, with one for each concentration c{sub i,j} (i = diazepam, temazepam, desmethyldiazepam, oxazepam, other metabolites) and one for each compartment (j = cell matrix phase, supernatant), respectively. The parameters p{sub k} (k = 1, 2, 3, 4, 13) are rate constants describing the biotransformation of diazepam and its metabolites and the other parameters (k = 5, 6, 7, 8, 9, 10, 11, 12, 14, 15) explain the

  8. Quantitative Nuclease Protection Assays (qNPA) as Windows into Chemical-Induced Adaptive Response in Cultures of Primary Human Hepatocytes (Concentration and Time-Response)

    EPA Science Inventory

    Cultures of primary human hepatocytes have been shown to be dynamic in vitro model systems that retain liver-like functionality (e.g. metabolism, transport, induction). We have utilized these culture models to interrogate 309 ToxCast chemicals. The study design characterized both...

  9. Primary-like human hepatocytes genetically engineered to obtain proliferation competence display hepatic differentiation characteristics in monolayer and organotypical spheroid cultures.

    PubMed

    Herzog, Natalie; Hansen, Max; Miethbauer, Sebastian; Schmidtke, Kai-Uwe; Anderer, Ursula; Lupp, Amelie; Sperling, Sebastian; Seehofer, Daniel; Damm, Georg; Scheibner, Katrin; Küpper, Jan-Heiner

    2016-03-01

    Primary human hepatocytes are in great demand during drug development and in hepatology. However, both scarcity of tissue supply and donor variability of primary cells create a need for the development of alternative hepatocyte systems. By using a lentivirus vector system to transfer coding sequences of Upcyte® proliferation genes, we generated non-transformed stable hepatocyte cultures from human liver tissue samples. Here, we show data on newly generated proliferation-competent HepaFH3 cells investigated as conventional two-dimensional monolayer and as organotypical three-dimensional (3D) spheroid culture. In monolayer culture, HepaFH3 cells show typical cobblestone-like hepatocyte morphology and anchorage-dependent growth for at least 20 passages. Immunofluorescence staining revealed that characteristic hepatocyte marker proteins cytokeratin 8, human serum albumin, and cytochrome P450 (CYP) 3A4 were expressed. Quantitative real-time PCR analyses showed that expression levels of analyzed phase I CYP enzymes were at similar levels compared to those of cultured primary human hepatocytes and considerably higher than in the liver carcinoma cell line HepG2. Additionally, transcripts for phase II liver enzymes and transporter proteins OATP-C, MRP2, Oct1, and BSEP were present in HepaFH3. The cells produced urea and converted model compounds such as testosterone, diclofenac, and 7-OH-coumarin into phases I and II metabolites. Interestingly, phases I and II enzymes were expressed at about the same levels in convenient monolayer cultures and complex 3D spheroids. In conclusion, HepaFH3 cells and related primary-like hepatocyte lines seem to be promising tools for in vitro research of liver functions and as test system in drug development and toxicology analysis. PMID:26715207

  10. Mechanistic Modeling of Pitavastatin Disposition in Sandwich-Cultured Human Hepatocytes: A Proteomics-Informed Bottom-Up Approach.

    PubMed

    Vildhede, Anna; Mateus, André; Khan, Elin K; Lai, Yurong; Karlgren, Maria; Artursson, Per; Kjellsson, Maria C

    2016-04-01

    Isolated human hepatocytes are commonly used to predict transporter-mediated clearance in vivo. Such predictions, however, do not provide estimations of transporter contributions and consequently do not allow predictions of the outcome resulting from a change in the activity of a certain transporter, for example, by inhibition or a genetic variant with reduced function. Pitavastatin is a drug that is heavily dependent on hepatic transporters for its elimination, and it is excreted mainly as unchanged drug in the bile. For this reason, pitavastatin was used as a model drug to demonstrate the applicability of a bottom-up approach to predict transporter-mediated disposition in sandwich-cultured human hepatocytes (SCHHs), allowing for the estimation of transporter contributions. Transport experiments in transfected human embryonic kidney cells (HEK293 cell lines) and inverted membrane vesicles overexpressing each of the relevant transport proteins were used to generate parameter estimates for the mechanistic model. By adjusting for differences in transporter abundance between the in vitro systems and individual SCHH batches, the model successfully predicted time profiles of medium and intracellular accumulation. Our predictions of pitavastatin bile accumulation could not be confirmed, however, because of a very low biliary excretion of pitavastatin in relation to the hepatic uptake in our SCHHs. This study is, to our knowledge, the first to successfully simulate transporter-mediated processes in a complex system such as SCHHs at the level of individual transport proteins using a bottom-up approach. PMID:26842596

  11. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data.

    PubMed

    Jones, Hannah M; Barton, Hugh A; Lai, Yurong; Bi, Yi-An; Kimoto, Emi; Kempshall, Sarah; Tate, Sonya C; El-Kattan, Ayman; Houston, J Brian; Galetin, Aleksandra; Fenner, Katherine S

    2012-05-01

    With efforts to reduce cytochrome P450-mediated clearance (CL) during the early stages of drug discovery, transporter-mediated CL mechanisms are becoming more prevalent. However, the prediction of plasma concentration-time profiles for such compounds using physiologically based pharmacokinetic (PBPK) modeling is far less established in comparison with that for compounds with passively mediated pharmacokinetics (PK). In this study, we have assessed the predictability of human PK for seven organic anion-transporting polypeptide (OATP) substrates (pravastatin, cerivastatin, bosentan, fluvastatin, rosuvastatin, valsartan, and repaglinide) for which clinical intravenous data were available. In vitro data generated from the sandwich culture human hepatocyte system were simultaneously fit to estimate parameters describing both uptake and biliary efflux. Use of scaled active uptake, passive distribution, and biliary efflux parameters as inputs into a PBPK model resulted in the overprediction of exposure for all seven drugs investigated, with the exception of pravastatin. Therefore, fitting of in vivo data for each individual drug in the dataset was performed to establish empirical scaling factors to accurately capture their plasma concentration-time profiles. Overall, active uptake and biliary efflux were under- and overpredicted, leading to average empirical scaling factors of 58 and 0.061, respectively; passive diffusion required no scaling factor. This study illustrates the mechanistic and model-driven application of in vitro uptake and efflux data for human PK prediction for OATP substrates. A particular advantage is the ability to capture the multiphasic plasma concentration-time profiles for such compounds using only preclinical data. A prediction strategy for novel OATP substrates is discussed. PMID:22344703

  12. Controlled and reversible induction of differentiation and activation of adult human hepatocytes by a biphasic culture technique

    PubMed Central

    Auth, Marcus K.H.; Boost, Kim A.; Leckel, Kerstin; Beecken, Wolf-Dietrich; Engl, Tobias; Jonas, Dietger; Oppermann, Elsie; Hilgard, Philip; Markus, Bernd H.; Bechstein, Wolf-Otto; Blaheta, Roman A.

    2005-01-01

    AIM: Clinical application of human hepatocytes (HC) is hampered by the progressive loss of growth and differentiation in vitro. The object of the study was to evaluate the effect of a biphasic culture technique on expression and activation of growth factor receptors and differentiation of human adult HC. METHODS: Isolated HC were sequentially cultured in a hormone enriched differentiation medium (DM) containing nicotinamide, insulin, transferrin, selenium, and dexame-thasone or activation medium (AM) containing hepatocyte growth factor (HGF), epidermal growth factor (EGF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression, distribution and activation of the HC receptors (MET and EGFR) and the pattern of characteristic cytokeratin (CK) filaments were measured by fluorometry, confocal microscopy and Western blotting. RESULTS: In the biphasic culture system, HC underwent repeated cycles of activation (characterized by expression and activation of growth factor receptors) and re-differentiation (illustrated by distribution of typical filaments CK-18 but low or absent expression of CK-19). In AM increased expression of MET and EGFR was associated with receptor translocation into the cytoplasm and induction of atypical CK-19. In DM low expression of MET and EGFR was localized on the cell membrane and CK-19 was reduced. Receptor phosphorylation required embedding of HC in collagen type I gel. CONCLUSION: Control and reversible modulation of growth factor receptor activation of mature human HC can be accomplished in vitro, when defined signals from the extracellular matrix and sequential growth stimuli are provided. The biphasic technique helps overcome de-differentiation, which occurs during continuous stimulation by means of growth factors. PMID:15810072

  13. Prediction of Drug-Induced Liver Injury in Micropatterned Co-cultures Containing iPSC-Derived Human Hepatocytes.

    PubMed

    Ware, Brenton R; Berger, Dustin R; Khetani, Salman R

    2015-06-01

    Primary human hepatocytes (PHHs) are a limited resource for drug screening, their quality for in vitro use can vary considerably across different lots, and a lack of available donor diversity restricts our understanding of how human genetics affect drug-induced liver injury (DILI). Induced pluripotent stem cell-derived human hepatocyte-like cells (iPSC-HHs) could provide a complementary tool to PHHs for high-throughput drug screening, and ultimately enable personalized medicine. Here, we hypothesized that previously developed iPSC-HH-based micropatterned co-cultures (iMPCCs) with murine embryonic fibroblasts could be amenable to long-term drug toxicity assessment. iMPCCs, created in industry-standard 96-well plates, were treated for 6 days with a set of 47 drugs, and multiple functional endpoints (albumin, urea, ATP) were evaluated in dosed cultures against vehicle-only controls to enable binary toxicity decisions. We found that iMPCCs correctly classified 24 of 37 hepatotoxic drugs (65% sensitivity), while all 10 non-toxic drugs tested were classified as such in iMPCCs (100% specificity). On the other hand, conventional confluent cultures of iPSC-HHs failed to detect several liver toxins that were picked up in iMPCCs. Results for DILI detection in iMPCCs were remarkably similar to published data in PHH-MPCCs (65% versus 70% sensitivity) that were dosed with the same drugs. Furthermore, iMPCCs detected the relative hepatotoxicity of structural drug analogs and recapitulated known mechanisms of acetaminophen toxicity in vitro. In conclusion, iMPCCs could provide a robust tool to screen for DILI potential of large compound libraries in early stages of drug development using an abundant supply of commercially available iPSC-HHs. PMID:25716675

  14. Improved Survival and Initiation of Differentiation of Human Induced Pluripotent Stem Cells to Hepatocyte-Like Cells upon Culture in William’s E Medium followed by Hepatocyte Differentiation Inducer Treatment

    PubMed Central

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-01-01

    Background Hepatocyte differentiation inducer (HDI) lacks both glucose and arginine, but is supplemented with galactose and ornithine, and is added together with other reagents such as apoptosis inhibitor and oncostatin M. Although human induced pluripotent stem (iPS) cells initiate hepatocyte differentiation, most die within 7 days. In this study, we investigated both HDI and conventional media for their potential to improve cell survival. Materials and Methods 201B7 iPS cells were cultured in conventional media. This consisted of three cycles of 5-day culture in William’s E (WE) medium, followed by a 2-day culture in HDI. Results Expression levels of α-feto protein (AFP) were higher in cells cultured in WE and in Dulbecco’s Modified Eagle’s Medium/Nutrient F-12 Ham (DF12). 201B7 cells expressed the highest AFP and albumin (ALB) when cultured in HDI for 2 days following 7-day culture in WE. After three cycles of 5-day culture in WE followed by 2 days in HDI, 201B7 cells expressed AFP and ALB 54 ± 2.3 (average ± standard deviation) and 73 ± 15.1 times higher, respectively, than those cultured in ReproFF (feeder-free condition). Conclusion 201B7 cells survived culture in WE for 7 days followed HDI for 2 days. After three cycles of culture under these conditions, hepatocyte differentiation was enhanced, as evidenced by increased AFP and ALB expression. PMID:27073925

  15. Nonsterol Isoprenoids Activate Human Constitutive Androstane Receptor in an Isoform-Selective Manner in Primary Cultured Mouse Hepatocytes.

    PubMed

    Rondini, Elizabeth A; Duniec-Dmuchowski, Zofia; Kocarek, Thomas A

    2016-04-01

    Our laboratory previously reported that accumulation of nonsterol isoprenoids following treatment with the squalene synthase inhibitor, squalestatin 1 (SQ1) markedly induced cytochrome P450 (CYP)2B1 mRNA and reporter activity in primary cultured rat hepatocytes, which was dependent on activation of the constitutive androstane receptor (CAR). The objective of the current study was to evaluate whether isoprenoids likewise activate murine CAR (mCAR) or one or more isoforms of human CAR (hCAR) produced by alternative splicing (SPTV, hCAR2; APYLT, hCAR3). We found that SQ1 significantly induced Cyp2b10 mRNA (∼3.5-fold) in primary hepatocytes isolated from both CAR-wild-type and humanized CAR transgenic mice, whereas the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin had no effect. In the absence of CAR, basal Cyp2b10 mRNA levels were reduced by 28-fold and the effect of SQ1 on Cyp2b10 induction was attenuated. Cotransfection with an expression plasmid for hCAR1, but not hCAR2 or hCAR3, mediated SQ1-induced CYP2B1 and CYP2B6 reporter activation in hepatocytes isolated from CAR-knockout mice. This effect was also observed following treatment with the isoprenoid trans,trans-farnesol. The direct agonist CITCO increased interaction of hCAR1, hCAR2, and hCAR3 with steroid receptor coactivator-1. However, no significant effect on coactivator recruitment was observed with SQ1, suggesting an indirect activation mechanism. Further results from an in vitro ligand binding assay demonstrated that neither farnesol nor other isoprenoids are direct ligands for hCAR1. Collectively, our findings demonstrate that SQ1 activates CYP2B transcriptional responses through farnesol metabolism in an hCAR1-dependent manner. Further, this effect probably occurs through an indirect mechanism. PMID:26798158

  16. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures.

    PubMed

    Liu, Jie; Lu, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C; Klaassen, Curtis D

    2014-10-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70-95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100μM. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na(+)-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OSTα/β were increased 10-100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective. PMID:25055961

  17. Modulation of aflatoxin B1-mediated genotoxicity in primary cultures of human hepatocytes by diindolylmethane, curcumin, and xanthohumols.

    PubMed

    Gross-Steinmeyer, Kerstin; Stapleton, Patricia L; Tracy, Julia H; Bammler, Theo K; Strom, Stephen C; Buhler, Donald R; Eaton, David L

    2009-12-01

    This study employed cultured human primary hepatocytes to investigate the ability of the putative chemopreventive phytochemicals curcumin (CUR), 3,3'-diindolylmethane (DIM), isoxanthohumol (IXN), or 8-prenylnaringenin (8PN) to reduce DNA adduct formation of the hepatocarcinogen aflatoxin B1 (AFB). Following 48 h of pretreatment, DIM and 8PN significantly increased AFB-DNA adduct levels, whereas CUR and IXN had no effect. DIM greatly enhanced the transcriptional expression of cytochrome P450 (CYP) 1A1 and CYP1A2 mRNA. Glutathione S-transferase mRNAs were not increased by any of the treatments. In vitro enzyme activity assays demonstrated that 8PN and DIM, but not CUR or IXN, inhibited human CYP1A1, CYP1A2, and CYP3A4 activities. To distinguish between treatment effects on transcription versus direct effects on enzyme activity for DIM, we evaluated the effects of pretreatment alone (transcriptional activation) versus cotreatment alone (enzyme inhibition). The results demonstrated that effects on gene expression, but not catalytic activity, are responsible for the observed effects of DIM on AFB-DNA adduct formation. The increase in AFB-DNA damage following DIM treatment may be explained through its substantial induction of CYP1A2 and/or its downregulation of GSTM1, both of which were significant. The increase in DNA damage by DIM raises potential safety risks for dietary supplements of DIM and its precursor indole-3-carbinol. PMID:19770484

  18. Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  19. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  20. Constrained spheroids for prolonged hepatocyte culture.

    PubMed

    Tong, Wen Hao; Fang, Yu; Yan, Jie; Hong, Xin; Hari Singh, Nisha; Wang, Shu Rui; Nugraha, Bramasta; Xia, Lei; Fong, Eliza Li Shan; Iliescu, Ciprian; Yu, Hanry

    2016-02-01

    Liver-specific functions in primary hepatocytes can be maintained over extended duration in vitro using spheroid culture. However, the undesired loss of cells over time is still a major unaddressed problem, which consequently generates large variations in downstream assays such as drug screening. In static culture, the turbulence generated by medium change can cause spheroids to detach from the culture substrate. Under perfusion, the momentum generated by Stokes force similarly results in spheroid detachment. To overcome this problem, we developed a Constrained Spheroids (CS) culture system that immobilizes spheroids between a glass coverslip and an ultra-thin porous Parylene C membrane, both surface-modified with poly(ethylene glycol) and galactose ligands for optimum spheroid formation and maintenance. In this configuration, cell loss was minimized even when perfusion was introduced. When compared to the standard collagen sandwich model, hepatocytes cultured as CS under perfusion exhibited significantly enhanced hepatocyte functions such as urea secretion, and CYP1A1 and CYP3A2 metabolic activity. We propose the use of the CS culture as an improved culture platform to current hepatocyte spheroid-based culture systems. PMID:26708088

  1. Hepatobiliary disposition in primary cultures of dog and monkey hepatocytes.

    PubMed

    Rose, Kelly A; Kostrubsky, Vsevolod; Sahi, Jasminder

    2006-01-01

    Hepatobiliary transporters are a major route for elimination of xenobiotics and endogenous products. In vitro hepatobiliary models have been reported for human and rat, but not for the other preclinical species used in safety evaluation. We have established methodologies for culturing dog and monkey hepatocytes with optimal bile canalicular formation and function, using a sandwich culture comprising rigid collagen substratum and gelled collagen overlay. Hepatic uptake utilizing sinusoidal transporters and biliary excretion through canalicular transporters were assessed using the bile salt taurocholate, salicylate (negative control), and the Bsep inhibitors cyclosporin A (CsA) and glyburide. There was significant taurocholate and salicylate canalicular efflux in dog and monkey hepatocytes, although the amount of salicylate transported was one thousandth that of taurocholate. Species differences were observed, as glyburide significantly inhibited taurocholate uptake in monkey (64% at 10 microM) but not dog hepatocytes, and inhibited taurocholate efflux in dog (100% at 10 microM) but not monkey hepatocytes. CsA did not inhibit bile salt uptake and significantly inhibited canalicular efflux in dog (at 0.1 microM) and monkey (at 1 and 10 microM) hepatocyte cultures. These results suggest that glyburide is a bile salt uptake inhibitor in monkey but not in dog hepatocytes and that CsA inhibits bile salt canalicular efflux but not basolateral uptake in these species. We have established dog and monkey hepatocytes in sandwich culture with intact bile canalicular formation and function. The differences observed in taurocholate transport between dog and monkey hepatocytes may be indicative of in vivo species differences. PMID:16749858

  2. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    SciTech Connect

    Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.; Thomas, David J.; Styblo, Miroslav

    2010-05-15

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [{sup 73}As]arsenite (iAs{sup III}; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs{sup III} to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs{sup III} than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs{sup III} was associated with inhibition of DMAs production by moderate concentrations of iAs{sup III} and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to

  3. Anti-apoptotic effects of novel phenolic antioxidant isolated from the Pacific oyster (Crassostrea gigas) on cultured human hepatocytes under oxidative stress.

    PubMed

    Fuda, Hirotoshi; Watanabe, Mitsugu; Hui, Shu-Ping; Joko, Sae; Okabe, Hiroaki; Jin, Shigeki; Takeda, Seiji; Miki, Emiko; Watanabe, Takayuki; Chiba, Hitoshi

    2015-06-01

    The antioxidant, and hepatoprotective properties of 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), a natural phenolic antioxidant isolated from the Pacific oyster, were defined using cultured human hepatocyte-derived cells (C3A). DHMBA showed no cytotoxicity at 62.5-500μM, as well as chlorogenic acid (CGA), vitamin C, and vitamin E. However, butylated hydroxytoluene, eicosapentaenoic acid, docosahexaenoic acid and catechin reduced cell viability. In the presence of the prooxidant 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), DHMBA at 125-500μM improved cell viability, whereas CGA had no effect. DNA ladder formation and flow-cytometric studies indicated that DHMBA inhibited AAPH-induced apoptosis and necrosis. CGA was ineffective. Thus, DHMBA is a novel, potent antioxidant, effectively protecting cultured hepatocytes from apoptosis and necrosis caused by oxidative stress. Additionally, the concentration of DHMBA was determined by mass spectrometry to be 24.4μmol/kg wet oyster meat, and three polyphenols (gentisic acid, daidzein, and matairesinol) were newly identified in the oyster extracts. PMID:25624228

  4. INTERINDIVIDUAL VARIATION IN THE METABOLISM OF ARSENIC IN HUMAN HEPATOCYTES

    EPA Science Inventory


    The liver is the major site for the enzymatic methylation of inorganic arsenic (iAs) in humans. Primary cultures of normal human hepatocytes isolated from tissue obtained at surgery or from donor livers have been used to study interindividual variation in the capacity of live...

  5. Human hepatocytes and endothelial cells in organotypic membrane systems.

    PubMed

    Salerno, Simona; Campana, Carla; Morelli, Sabrina; Drioli, Enrico; De Bartolo, Loredana

    2011-12-01

    The realization of organotypic liver model that exhibits stable phenotype is a major challenge in the field of liver tissue engineering. In this study we developed liver organotypic co-culture systems by using synthetic and biodegradable membranes with primary human hepatocytes and human umbilical vein endothelial cells (HUVEC). Synthetic membranes prepared by a polymeric blend constituted of modified polyetheretherketone (PEEK-WC) and polyurethane (PU) and biodegradable chitosan membranes were developed by phase inversion technique and used in homotypic and organotypic culture systems. The morphological and functional characteristics of cells in the organotypic co-culture membrane systems were evaluated in comparison with homotypic cultures and traditional systems. Hepatocytes in the organotypic co-culture systems exhibit compact polyhedral cells with round nuclei and well demarcated cell-cell borders like in vivo, as a result of heterotypic interaction with HUVECs. In addition HUVECs formed tube-like structures directly through the interactions with the membranes and hepatocytes and indirectly through the secretion of ECM proteins which secretion improved in the organotypic co-culture membrane systems. The heterotypic cell-cell contacts have beneficial effect on the hepatocyte albumin production, urea synthesis and drug biotransformation. The developed organotypic co-culture membrane systems elicit liver specific functions in vitro and could be applied for the realization of engineered liver tissues to be used in tissue engineering, drug metabolism studies and bioartificial liver devices. PMID:21871658

  6. Uptake and processing of human platelet factor 4 by hepatocytes

    SciTech Connect

    Rucinski, B.; Steward, G.J.; de Feo, P.A.; Boden, G.; Niewiarowski, S.

    1987-12-01

    We previously demonstrated rapid clearance of human platelet factor 4 (PF4) from rabbit and rat blood, its accumulation in the liver, and elimination of PF4 degradation products in urine. The purpose of the present experiments was to characterize interaction of PF4 with cultured rat hepatocytes. /sup 125/I-PF4 was taken up by hepatocytes reaching maximum at 180 min. The association of /sup 125/I-PF4 with hepatocytes was two times greater at 37/sup 0/C than at 4/sup 0/C. At 37/sup 0/C degradation of /sup 125/-PF4 by hepatocytes was also observed as indicated by the increase of /sup 125/I-PF4 radioactivity soluble in 6% trichloroacetic acid. By contrast, no uptake of /sup 125/I-..beta..-thromboglobulin antigen was observed. Autoradiography demonstrated that short incubation (5-20 min) of /sup 125/I-PF4 with hepatocytes results in the association of /sup 125/I-radioactivity with cell membranes while after longer incubation (60 min) radioactivity was also localized in the endosomes. Heparin inhibited binding and uptake of /sup 125/I-PF4 radioactivity by hepatocytes. We propose that part of PF4 released in the circulating blood by activated platelets is bound to the surface of hepatocytes and that it is further processed by these cells.

  7. Analysis of DNA strand breaks induced in rodent liver in vivo, hepatocytes in primary culture, and a human cell line by chlorinated acetic acids and chlorinated acetaldehydes

    SciTech Connect

    Chang, L.W.; Daniel, F.B. ); DeAngelo, A.B. )

    1992-01-01

    An alkaline unwinding assay was used to quantitate the induction of DNA strand breaks (DNA SB) in the livers of rats and mice treated in vivo, in rodent hepatocytes in primary culture, and in CCRF-CEM cells, a human lymphoblastic leukemia cell line, following treatment with tri-(TCA), di-(CA), and mono-(MCA) chloroacetic acid and their corresponding aldehydes, tri-(chloralhydrate, CH), di(DCAA) and mono-(CAA) chloroacetaldehyde. None of the chloracetic acids induced DNA SB in the livers of rats at 4 hr following a single administration of 1-10 mmole/kg. TCA (10 mmole/kg) and DCA (5 and 10 mmole/kg) did produce a small amount of strand breakage in mice (7% at 4hr) but not at 1 hr. N-nitrosodiethylamine (DENA), an established alkylating agent and a rodent hepatocarcinogen, produced DNA SB in the livers of both species. TCA, DCA, and MCA also failed to induce DNA strand breaks in splenocytes and epithelial cells derived from the stomach and duodenum of mice treated in vivo. None of the three chloroacetaldehydes induced DNA SB in either mouse or rat liver. These studies provide further evidence that the chloroacetic acids lack genotoxic activity not only in rodent liver, a tissue in that they induce tumors, but in a variety of other rodent tissues and cultured cell types. Two of the chloroacetaldehydes, DCAA and CAA, are direct acting DNA damaging agents in CCRF-CEM cells, but not in liver or splenocytes in vivo or in cultured hepatocytes. CH showed no activity in any system investigated. 58 refs., 6 figs., 2 tabs.

  8. Species-specific toxicity of troglitazone on rats and human by gel entrapped hepatocytes

    SciTech Connect

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2012-01-01

    Troglitazone, despite passing preclinical trials on animals, was shortly withdrawn from market due to its severe hepatotoxicity in clinic. As rat hepatocyte monolayer consistently showed sensitive troglitazone toxicity as human hepatocyte monolayer in contrast to the species-specific toxicity in vivo, this paper utilized both hepatocytes in three-dimensional culture of gel entrapment to reflect the species difference on hepatotoxicity. Rat hepatocytes in gel entrapment did not show obvious cellular damage even under a long-term exposure for 21 days while gel entrapped human hepatocytes significantly displayed oxidative stress, steatosis, mitochondrial damage and cell death at a short exposure for 4 days. As a result, the detected species-specific toxicity of troglitazone between gel entrapped rat and human hepatocytes consisted well with the situation in vivo but was in a sharp contrast to the performance of two hepatocytes by monolayer culture. Such contradictory toxicity of rat hepatocytes between monolayer and gel entrapment culture could be explained by the fact that troglitazone was cleared more rapidly in gel entrapment than in monolayer culture. Similarly, the differential clearance of troglitazone in rat and human might also explain its species-specific toxicity. Therefore, gel entrapment of hepatocytes might serve as a platform for evaluation of drug toxicity at early stage of drug development by reducing costs, increasing the likelihood of clinical success and limiting human exposure to unsafe drugs. -- Highlights: ► Species-specific toxicity of troglitazone reflected by rat/human hepatocytes ► 3D hepatocytes in 21 days’ long-term culture used for drug hepatotoxicity ► Oversensitive toxicity in hepatocyte monolayer by slow troglitazone clearance.

  9. Increased reprogramming of human fetal hepatocytes compared with adult hepatocytes in feeder-free conditions.

    PubMed

    Hansel, Marc C; Gramignoli, Roberto; Blake, William; Davila, Julio; Skvorak, Kristen; Dorko, Kenneth; Tahan, Veysel; Lee, Brian R; Tafaleng, Edgar; Guzman-Lepe, Jorge; Soto-Gutierrez, Alejandro; Fox, Ira J; Strom, Stephen C

    2014-01-01

    Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation. PMID:23394081

  10. Prediction of the metabolic clearance of benzophenone-2, and its interaction with isoeugenol and coumarin using cryopreserved human hepatocytes in primary culture.

    PubMed

    de Sousa, Georges; Teng, Sophie; Salle-Siri, Romain; Pery, Alexandre; Rahmani, Roger

    2016-04-01

    Benzophenone-2 (BP2) is widely used as a UV screen in both industrial products and cosmetic formulations, where it is frequently found associated with fragrance compounds, such as isoeugenol and coumarin. BP2 is now recognized as an endocrine disruptor, but to date, no information has been reported on its fate in humans. The intrinsic clearance (Clint) and metabolic interactions of BP2 were explored using cryopreserved human hepatocytes in primary cultures. In vitro kinetic experiments were performed to estimate the Michaelis-Menten parameters. The substrate depletion method demonstrated that isoeugenol was cleared more rapidly than BP2 or coumarin (Clint = 259, 94.7 and 0.40 μl/min/10(6) cells respectively). This vitro model was also used to study the metabolic interactions between BP2 and isoeugenol and coumarin. Coumarin exerted no effects on either isoeugenol or BP2 metabolism, because of its independent metabolic pathway (CYP2A6). Isoeugenol appeared to be a potent competitive substrate inhibitor of BP2 metabolism, equivalent to the specific UGT1A1 substrate: estradiol. Despite the fact that inhibition of UGT by xenobiotics is not usually considered to be a major concern, the involvement of UGT1A1 in BP2 metabolism may have pharmacokinetic and pharmacological consequences, due to the its polymorphisms in humans and its pure estrogenic effect. PMID:26829614

  11. Enhanced Metabolizing Activity of Human ES Cell-Derived Hepatocytes Using a 3D Culture System with Repeated Exposures to Xenobiotics.

    PubMed

    Kim, Jong Hyun; Jang, Yu Jin; An, Su Yeon; Son, Jeongsang; Lee, Jaehun; Lee, Gyunggyu; Park, Ji Young; Park, Han-Jin; Hwang, Dong-Youn; Kim, Jong-Hoon; Han, Jiyou

    2015-09-01

    Highly homogeneous and functional stem cell-derived hepatocyte-like cells (HLCs) are considered a promising option in the cell-based therapy of liver disease and the development of effective in vitro toxicity screening tools. However, the purity of cells and expression and/or activity of drug metabolizing enzymes in stem cell-derived HLCs are usually too low to be useful for clinical or in vitro applications. Here, we describe a highly optimized hepatic differentiation protocol, which produces >90% (BGO1 and CHA15) albumin-positive HLCs with no purification process from human embryonic stem cell lines. In addition, we show that hepatic enzyme gene expressions and activities were significantly improved by generating 3D spheroidal aggregate of HLCs, compared with 2D HLCs. The 3D differentiation method increased expression of nuclear receptors (NRs) that regulate the proper expression of key hepatic enzymes. Furthermore, significantly increased hepatic functions such as albumin and urea secretion were observed in 3D hepatic spheroids, compared with 2D HLCs. HLCs in the spheroid exhibited morphological and ultrastructural features of normal hepatocytes. Importantly, we show that repeated exposures to xenobiotics facilitated further functional maturation of HLC, as confirmed by increased expression of genes for drug metabolizing enzymes and transcription factors. In conclusion, the 3D culture system with repeated exposures to xenobiotics may be a new strategy for enhancing hepatic metabolizing ability of stem cell-derived HLCs as a cell source for in vitro high-throughput hepatotoxicity models. PMID:26089346

  12. Thyroid hormone effect in human hepatocytes.

    PubMed

    Miler, Eliana A; Ríos de Molina, María Del Carmen; Domínguez, Gabriela; Guerra, Liliana N

    2008-01-01

    We have already demonstrated that a combined treatment of methimazole and an antioxidant mixture improved the condition of hyperthyroid patients both biochemically and clinically. Elevated thyroid hormone levels might trigger signs and symptoms of hyperthyroidism through the increase of free radicals. To study the direct effect of thyroid hormone on cellular markers of oxidative stress, we carried out in vitro assays in which 0.1-20.0 nM T3 (6.5-1300.0 ng/dl) doses were added to culture media of the human hepatocyte cell line Hep G2 for 1-24 h. T3 increased malondialdehyde (MDA) and intracellular oxidized glutathione (GSSG) levels; SOD activity was also higher with hormone treatment, whereas catalase and glutathione peroxidase activities showed no variation at different T3 doses and during all experimental times. When ascorbic acid was added to the culture, the MDA level decreased and SOD activity was increased. With higher doses of T3 (e.g. 200 nM), cell death occurred (69% of apoptotic cells). The increase in SOD activity was not enough to overcome the effect of T3 since MDA and GSSG remained high during a 24-h experiment. We showed a beneficial effect of ascorbic acid when cells were exposed to a T3 dose of 20 nM, a higher level of hormone than that achieved in hyperthyroidism. PMID:18647489

  13. LIVER REGENERATION STUDIES WITH RAT HEPATOCYTES IN PRIMARY CULTURE

    EPA Science Inventory

    Adult rat parenchymal hepatocytes in primary culture can be induced to enter into DNA synthesis and mitosis. The optimal conditions for hepatocyte replication are low plating density (less than 10,000 cells/sq cm) and 50% serum from two-thirds partially hepatectomized rats (48 hr...

  14. Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures.

    PubMed

    Jackson, Jonathan P; Li, Linhou; Chamberlain, Erica D; Wang, Hongbing; Ferguson, Stephen S

    2016-09-01

    Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here "cryo-HepaRG") has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening. PMID:27338863

  15. Species Differences in Hepatobiliary Disposition of Taurocholic Acid in Human and Rat Sandwich-Cultured Hepatocytes: Implications for Drug-Induced Liver Injury

    PubMed Central

    Yang, Kyunghee; Pfeifer, Nathan D.; Köck, Kathleen

    2015-01-01

    The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance–associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug’s inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid

  16. Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury.

    PubMed

    Yang, Kyunghee; Pfeifer, Nathan D; Köck, Kathleen; Brouwer, Kim L R

    2015-05-01

    The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance-associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug's inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid exposure

  17. Metabolism of lipoproteins by human fetal hepatocytes

    SciTech Connect

    Carr, B.R.

    1987-12-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of (/sup 125/I)iodo-LDL and (/sup 125/I)iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. (/sup 125/I)Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas (/sup 125/I)iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues.

  18. Evaluation of the endothelin receptor antagonists ambrisentan, darusentan, bosentan, and sitaxsentan as substrates and inhibitors of hepatobiliary transporters in sandwich-cultured human hepatocytes.

    PubMed

    Hartman, J Craig; Brouwer, Kenneth; Mandagere, Arun; Melvin, Lawrence; Gorczynski, Richard

    2010-06-01

    To evaluate potential mechanisms of clinical hepatotoxicity, 4 endothelin receptor antagonists (ERAs) were examined for substrate activity and inhibition of hepatic uptake and efflux transporters in sandwich-cultured human hepatocytes. The 4 transporters studied were sodium-dependent taurocholate cotransporter (NTCP), organic anion transporter (OATP), bile salt export pump (BSEP), and multidrug resistance-associated protein 2 (MRP2). ERA transporter inhibition was examined using the substrates taurocholate (for NTCP and BSEP), [(3)H]estradiol-17beta-D-glucuronide (for OATP), and [2-D-penicillamine, 5-D-penicillamine]enkephalin (for MRP2). ERA substrate activity was evaluated using probe inhibitors ritonavir (OATP and BSEP), bromosulfalein (OATP), erythromycin (P-glycoprotein), probenecid (MRP2 and OATP), and cyclosporin (NTCP). ERAs were tested at 2, 20, and 100 micromol*L-1 for inhibition and at 2 micromol*L-1 as substrates. OATP, NTCP, or BSEP transport activity was not reduced by ambrisentan or darusentan. Bosentan and sitaxsentan attenuated NTCP transport at higher concentrations. Only sitaxsentan decreased OATP transport (52%), and only bosentan reduced BSEP transport (78%). MRP2 transport activity was unaltered. OATP inhibitors decreased influx of all ERAs. Darusentan influx was least affected (84%-100% of control), whereas bosentan was most affected (32%-58% of control). NTCP did not contribute to influx of ERAs. Only bosentan and darusentan were shown as substrates for both BSEP and P-glycoprotein efflux. All ERAs tested were substrates for at least one hepatic transporter. Bosentan and sitaxsentan, but not ambrisentan and darusentan, inhibited human hepatic transporters, which provides a potential mechanism for the increased hepatotoxicity observed for these agents in the clinical setting. PMID:20628435

  19. A food contaminant ochratoxin A suppresses pregnane X receptor (PXR)-mediated CYP3A4 induction in primary cultures of human hepatocytes.

    PubMed

    Doricakova, Aneta; Vrzal, Radim

    2015-11-01

    Ochratoxin A (OCHA) is a mycotoxin, which can be found in food such as coffee, wine, cereals, meat, nuts. Since it is absorbed via gastrointestinal tract, it is reasonable to anticipate that the liver will be the first organ to which OCHA comes into the contact before systemic circulation. Many xenobiotics are metabolically modified after the passage of the liver to biologically more active substances, sometimes with more harmful activity. Promoting own metabolism is often achieved via transcriptional regulation of biotransformation enzymes through ligand-activated transcription factors. Pregnane X receptor (PXR) belongs to such a group of regulators and it was demonstrated to be activated by many compounds of synthetic as well as natural origin. Our intention was to investigate if OCHA is capable of activating the PXR with consequent induction of PXR-regulated CYP3A4 gene. We found that OCHA does not activate PXR but displays antagonist-like behavior when combined with rifampicin (RIF) in gene reporter assay in human embryonal kidney cells (Hek293T). It was very weak inducer of CYP3A4 mRNA in primary cultures of human hepatocytes and it antagonized RIF-mediated CYP3A4 induction of mRNA as well as protein. In addition, it caused the decline of PXR protein as well as mRNA which was faster than that with actinomycin D, a transcription inhibitor. Since we found that OCHA induced the expression of miR-148a, which was described to regulate PXR expression, we conclude that antagonist-like behavior of OCHA is not due to the antagonism itself but due to the downregulation of PXR gene expression. Herein we provide important findings which bring a piece of puzzle into the understanding of mechanism of toxic action of ochratoxin A. PMID:26341324

  20. Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis

    SciTech Connect

    Ilowski, Maren; Kleespies, Axel; Toni, Enrico N. de; Donabauer, Barbara; Jauch, Karl-Walter; Hengstler, Jan G.; Thasler, Wolfgang E.

    2011-01-07

    Research highlights: {yields} ALR decreases cytochrome c release from mitochondria. {yields} ALR protects hepatocytes against apoptosis induction by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. {yields} ALR exerts a liver-specific anti-apoptotic effect. {yields} A possible medical usage of ALR regarding protection of liver cells during apoptosis inducing therapies. -- Abstract: Augmenter of liver regeneration (ALR) is known to support liver regeneration and to stimulate proliferation of hepatocytes. However, it is not known if ALR exerts anti-apoptotic effects in human hepatocytes and whether this protective effect is cell type specific. This is relevant, because compounds that protect the liver against apoptosis without undesired effects, such as protection of metastatic tumour cells, would be appreciated in several clinical settings. Primary human hepatocytes (phH) and organotypic cancer cell lines were exposed to different concentrations of apoptosis inducers (ethanol, TRAIL, anti-Apo, TGF-{beta}, actinomycin D) and cultured with or without recombinant human ALR (rhALR). Apoptosis was evaluated by the release of cytochrome c from mitochondria and by FACS with propidium iodide (PI) staining. ALR significantly decreased apoptosis induced by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. Further, the anti-apoptotic effect of ALR was observed in primary human hepatocytes and in HepG2 cells but not in bronchial (BC1), colonic (SW480), gastric (GC1) and pancreatic (L3.6PL) cell lines. Therefore, the hepatotrophic growth factor ALR acts in a liver specific manner with regards to both its mitogenic and its anti-apoptotic effect. Unlike the growth factors HGF and EGF, rhALR acts in a liver specific manner. Therefore, ALR is a promising candidate for further evaluation as a possible hepatoprotective factor in clinical settings.

  1. Generation of functional hepatocytes from human spermatogonial stem cells

    PubMed Central

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  2. Generation of functional hepatocytes from human spermatogonial stem cells.

    PubMed

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-02-23

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  3. Inhibition of hepatic organic anion-transporting polypeptide by RNA interference in sandwich-cultured human hepatocytes: an in vitro model to assess transporter-mediated drug-drug interactions.

    PubMed

    Liao, Mingxiang; Raczynski, Arek R; Chen, Michael; Chuang, Bei-Ching; Zhu, Qing; Shipman, Rob; Morrison, Jodi; Lee, David; Lee, Frank W; Balani, Suresh K; Xia, Cindy Q

    2010-09-01

    Organic anion-transporting polypeptides (OATPs), members of the SLCO/SLC21 family, mediate the transport of various endo- and xenobiotics. In human liver, OATP1B1, 1B3, and 2B1 are located at the basolateral membrane of hepatocytes and are involved in hepatic drug uptake and biliary elimination. Clinically significant drug-drug interactions (DDIs) mediated by hepatic OATPs have drawn great attention from clinical practitioners and researchers. However, there are considerable challenges to prospectively understanding the extent of OATP-mediated DDIs because of the lack of specific OATP inhibitors or substrates and the limitations of in vitro tools. In the present study, a novel RNA interference knockdown sandwich-cultured human hepatocyte model was developed and validated. Quantitative polymerase chain reaction, microarray and immunoblotting analyses, along with uptake assays, illustrated that the expression and transport activity of hepatic OATPs were reduced by small interfering (siRNA) efficiently and specifically in this model. Although OATP siRNA decreased only 20 to 30% of the total uptake of cerivastatin into human hepatocytes, it caused a 50% reduction in cerivastatin metabolism, which was observed by monitoring the formation of the two major metabolites of cerivastatin. The results suggest that coadministration of a drug that is a hepatic OATP inhibitor could significantly alter the pharmacokinetic profile of cerivastatin in clinical studies. Further studies with this novel model demonstrated that OATP and cytochrome P450 have a synergistic effect on cerivastatin-gemfibrozil interactions. The siRNA knockdown sandwich-cultured human hepatocytes may provide a new powerful model for evaluating DDIs. PMID:20516252

  4. 3D Cultivation Techniques for Primary Human Hepatocytes

    PubMed Central

    Bachmann, Anastasia; Moll, Matthias; Gottwald, Eric; Nies, Cordula; Zantl, Roman; Wagner, Helga; Burkhardt, Britta; Sánchez, Juan J. Martínez; Ladurner, Ruth; Thasler, Wolfgang; Damm, Georg; Nussler, Andreas K.

    2015-01-01

    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device.

  5. Loofa sponge as a scaffold for culture of rat hepatocytes.

    PubMed

    Chen, Jyh-Ping; Lin, Tsung-Cheng

    2005-01-01

    The dried fruit from Luffa cylindrica (loofa sponge, LS), which represents a new chitinous source material, was used as a 3-D scaffold for the culture of rat hepatocytes. With the macroporous structure and large pore size (ca. 800 microm) of LS, cell loading to the scaffold should be carried out by dynamic seeding with continuous shaking throughout the seeding period. Hepatocytes attach well to the surface of loofa fibers after seeding and maintain their round shapes. The initial ammonia removal and urea-N synthesis rates of hepatocytes immobilized within LS slightly decreased with increasing cell densities, but their metabolic activities were comparable to or better than those in monolayer culture on tissue culture polystyrene control surfaces. Both urea-N synthesis and albumin secretion rates could be maintained up to 7 days for cells immobilized within LS and spheroid-like cell aggregates could be found after the second day. PMID:15903271

  6. Biosynthesis, assembly and secretion of fibrinogen in cultured rat hepatocytes.

    PubMed Central

    Hirose, S; Oda, K; Ikehara, Y

    1988-01-01

    The biosynthesis, assembly and secretion of fibrinogen were investigated in cultured rat hepatocytes which were incubated with [35S]methionine. When initial rates of the synthesis of three fibrinogen subunits were compared, the A alpha-subunit was found to be synthesized significantly slower than the B beta- and gamma-subunits. Pulse-chase experiments revealed that the secreted fibrinogen contained different proportions of the newly synthesized subunits, depending upon the chase times. Radioactivity in the A alpha subunit, which initially had the highest level of the three, was rapidly decreased in parallel with the chase time. The gamma-subunit had an increasing amount of the radioactivity in the secreted molecule during the chase periods, whereas that in the B beta-subunit was gradually decreased at the later stages of chase. Analysis of intracellular components of fibrinogen confirmed that the nascent A alpha-subunit was most rapidly exhausted, and the gamma-subunit occupied the largest proportion among the non-assembled subunits at later stages of chase. Taken together, these results suggest that the synthesis of A alpha-subunit, which has the lowest rate, could be the rate-limiting step in the production and secretion of fibrinogen in cultured rat hepatocytes, in contrast with what has been proposed for human and rabbit fibrinogen, namely that the synthesis of B beta-subunit is the rate-limiting step. The results also indicate that there is a large intracellular pool of gamma-subunit. Images Fig. 2. Fig. 3. PMID:3401211

  7. Ethanol-induced phosphorylation of cytokeratin in cultured hepatocytes

    SciTech Connect

    Kawahara, Hiromu; Cadrin, M.; French, S.W. )

    1990-01-01

    The authors studied the effect of ethanol on the phosphorylation of cytokeratins (CKs) in cultured hepatocytes since CK filaments are resulted by phosphorylation and they are abnormal in alcoholic liver disease. Hepatocytes were obtained from 14-day-old rats and cultured for 48 hrs. The hepatocytes were exposed to ethanol for 30 min. The residual insoluble cytoskeletons were analyzed by two-dimensional gel electrophoresis and autoradiography. 2D gel electrophoresis showed CK 55 and CK 49 or 8 and 18 and actin. The CKs had several isoelectric variants. The most basic spot was the dominant protein which was not phosphorylated. The more acidic spots were phosphorylated. After ethanol treatment, the phosphorylation of CK 55 and CK 49 were markedly increased over controls. They compared these results, with the effect of vasopressin, TPA and db-cAMP on the phosphorylation of CKs. Vasopressin and TPA caused the phosphorylation of CK 55 and 49 but db-cAMP did not.

  8. Tetracycline-induced steatosis in primary canine hepatocyte cultures.

    PubMed

    Amacher, D E; Martin, B A

    1997-12-01

    Primary hepatocyte cultures prepared from male beagle dog liver were used to determine susceptibility of the canine liver to tetracycline-induced steatosis. The effects of the drug on mitochondrial lipid metabolism and intracellular triglyceride accumulation were monitored at the same time that steatosis was detected by light microscopy and quantitated using lipid-specific stains. Exposure of primary canine hepatocyte cultures to tetracycline for 24-48 h resulted in concentration-dependent, significant increases in the Oil Red O-stained lipid inclusions. Microscopic examination of the total stained areas suggested that increases over control levels were due primarily to the increase in the size of the lipid inclusions rather than in the number. Biochemical analyses for triglyceride content and histological staining with Nile red, another neutral lipid-specific dye, confirmed a specific increase in intracellular triglyceride following a 24-h exposure to noncytotoxic levels of tetracycline beta-oxidation studies based on the oxidation of [14C]palmitic acid or [14C]palmitoyl carnitine demonstrated a concentration-dependent inhibition of mitochondrial but not peroxisomal beta-oxidation in hepatocytes after a 24-h exposure to tetracycline. In vitro incubation of tetracycline with mitochondria isolated from dog liver showed similar concentration-dependent inhibition. This study clearly indicates that the canine hepatocyte is susceptible to tetracycline-induced steatosis. Triglyceride accumulation was concomitant with the inhibition of mitochondrial lipid metabolism, indicating that this is a primary mechanism leading to steatosis in dog hepatocytes following tetracycline exposure. PMID:9441722

  9. Generation of proliferating human hepatocytes using Upcyte® technology: characterisation and applications in induction and cytotoxicity assays.

    PubMed

    Burkard, Alexandra; Dähn, Caroline; Heinz, Stefan; Zutavern, Anne; Sonntag-Buck, Vera; Maltman, Daniel; Przyborski, Stefan; Hewitt, Nicola J; Braspenning, Joris

    2012-10-01

    1. We have developed a novel technique which causes primary human hepatocytes to proliferate by transducing them with genes that upregulate their proliferation. 2. Upcyte(®) hepatocytes did not form colonies in soft agar and are not immortalised anchorage-independent cells. Confluent cultures expressed liver-specific proteins, produced urea and stored glycogen. 3. CYP activities were low but similar to that in 5-day cultures of primary human hepatocytes. CYP1A2 and CYP3A4 were inducible; moreover, upcyte(®) hepatocytes predicted the in vivo induction potencies of known CYP3A4 inducers using the "relative induction score" prediction model. Placing cells into 3D culture increased their basal CYP2B6 and CYP3A4 basal activities and induction responses. 4. Phase 2 activities (UGTs, SULTs and GSTs) were comparable to activities in freshly isolated hepatocytes. 5. Upcyte(®) hepatocytes were markedly more sensitive to the hepatotoxin, α-amanitin, than HepG2 cells, indicating functional OATP1B3 uptake. The cytotoxicity of aflatoxin B(1), was decreased in upcyte(®) hepatocytes by co-incubation with the CYP3A4 inhibitor, ketoconazole. Upcyte(®) hepatocytes also differentiated between ten hepatotoxic and eight non-hepatotoxic compounds. 6. In conclusion, upcyte(®) hepatocyte cultures have a differentiated phenotype and exhibit functional phase 1 and 2 activities. These data support the use of upcyte(®) hepatocytes for CYP induction and cytotoxicity screening. PMID:22524704

  10. Follow-up to the pre-validation of a harmonised protocol for assessment of CYP induction responses in freshly isolated and cryopreserved human hepatocytes with respect to culture format, treatment, positive reference inducers and incubation conditions.

    PubMed

    Abadie-Viollon, Catherine; Martin, Hélène; Blanchard, Nadège; Pekthong, Dumrongsak; Bachellier, Philippe; Mantion, Georges; Heyd, Bruno; Schuler, Frantz; Coassolo, Philippe; Alexandre, Eliane; Richert, Lysiane

    2010-02-01

    We have compared induction responses of human hepatocytes to known inducers of CYP1A2, CYP2B6, CYP2C and CYP3A4/5 to determine whether the culture format, treatment regimen and/or substrate incubation conditions affected the outcome. CYP induction responses to prototypical inducers were equivalent regardless of pre-culture time (24h or 48h), plate format (60mm or 24-well plates) used or whether CYP activities were measured in microsomes or whole cell monolayers. Fold-induction of CYP3A4/5 by 1000muM PB and 10microM RIF were equivalent. In contrast, the fold-induction of CYP2B6 by PB was 3-fold higher that by 10microM RIF. In addition to inducing CYP1A2, 50microM OME also induced CYP3A4/5 in 50% of the donors tested. CYP2B6 was induced in 14 out of 21 donors by BNF; however CYP3A4/5 was unaffected by BNF in these donors. In order to confirm that donor-to-donor variation was not due to inter-laboratory differences, the induction responses of 5 different batches of cryopreserved human hepatocytes were compared in two different laboratories. The induction of CYP1A2, CYP2B6 and CYP3A4 measured in our laboratory were equivalent to those obtained by the commercial companies, proving good between-laboratory reproducibility. In conclusion, there is some flexibility in the treatment and incubation protocols for classical CYP induction assays on human hepatocytes. Both RIF and PB are suitable positive control inducers of CYP3A4/5 but PB may be more appropriate for CYP2B6 induction. BNF may be more appropriate for CYP1A2 induction than OME since, in contrast to the latter, it does not induce CYP3A4. Induction responses using hepatocytes from the same donor but in different labs can be expected to be similar. The good reproducibility of induction responses between laboratories using cryopreserved hepatocytes underlines the usefulness of these cells for these types of studies. PMID:19497360

  11. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion

    PubMed Central

    Montalbano, Mauro; Curcurù, Giuseppe; Shirafkan, Ali; Vento, Renza; Rastellini, Cristiana; Cicalese, Luca

    2016-01-01

    Isolation of hepatocytes from cirrhotic human livers and subsequent primary culture are important new tools for laboratory research and cell-based therapeutics in the study of hepatocellular carcinoma (HCC). Using such techniques, we have previously identified different subpopulations of human hepatocytes and among them one is showing a progressive transformation of hepatocytes in HCC-like cells. We have hypothesized that increasing the distance from the neoplastic lesion might affect hepatocyte function and transformation capacity. However, limited information is available in comparing the growth and proliferation of human hepatocytes obtained from different areas of the same cirrhotic liver in relation to their distance from the HCC lesion. In this study, hepatocytes from 10 patients with cirrhosis and HCC undergoing surgical resections from specimens obtained at a proximal (CP) and distal (CD) distance from the HCC lesion were isolated and placed in primary culture. CP hepatocytes (CP-Hep) were isolated between 1 to 3 cm (leaving at least 1cm margin to avoid cancer cells and/or satellite lesions), while CD hepatocytes (CD-Hep) were isolated from more than 5 cm or from the contralateral-lobe. A statistical model was built to analyze the proliferation rates of these cells and we evaluated expression of HCC markers (Glypican-3 (GPC3), αSmooth Muscle Actin (α-SMA) and PCNA). We observed a significant difference in proliferation and in-vitro growth showing that CP-Hep had a proliferation pattern and rate significantly different than CD-Hep. Based on these data, this model can provide information to predict growth of human hepatocytes in primary culture in relation to their pre-cancerous state with significant differences in the HCC markers expression. This model provides an important innovative tool for in-vitro analysis of HCC. PMID:27074018

  12. Cryopreserved human hepatocytes as alternative in vitro model for cytochrome p450 induction studies.

    PubMed

    Garcia, Martha; Rager, Joseph; Wang, Qing; Strab, Robert; Hidalgo, Ismael J; Owen, Albert; Li, Jibin

    2003-01-01

    Induction of cytochrome P450 (CYP) by drugs is one of major concerns for drug-drug interactions. Thus, the assessment of CYP induction by novel compounds is a vital component in the drug discovery and development processes. Primary human hepatocytes are the preferred in vitro model for predicting CYP induction in vivo. However, their use is hampered by the erratic supply of human tissue and donor-to-donor variability. Although cryopreserved hepatocytes have been recommended for short-term applications in suspension, their use in studies on induction of enzyme activity has been limited because of poor attachment and response to enzyme inducers. In this study, we report culture conditions that allowed the attachment of cryopreserved human hepatocytes and responsiveness to CYP inducers. We evaluated the inducibility of CYP1A1/2 and CYP3A4 enzymes in cryopreserved hepatocytes from three human donors. Cryopreserved human hepatocytes were cultured in serum-free medium for 4 d. They exhibited normal morphology and measurable viability as evaluated by the reduction of tetrazolium salts (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) by cellular dehydrogenases. Treatment with beta-naphthoflavone (10 microM) for 3 d increased ethoxyresorufin-O-deethylase activity (CYP1A1/2) by 6- to 11-fold over untreated cultures and increased CYP1A2 messenger ribonucleic acid (mRNA) expression by three- to eightfold. Similarly, treatment of cryopreserved human hepatocytes with rifampicin (25 microM) for 3 d increased testosterone 6 beta-hydroxylase activity (CYP3A4) by five- to eightfold over untreated cultures and increased CYP3A4 mRNA expression by four- to eightfold. The results suggest that cryopreserved human hepatocytes can be a suitable in vitro model for evaluating xenobiotics as inducers of CYP1A1/2 and CYP3A4 enzymes. PMID:14599235

  13. In Vitro Culture of Functionally Active Buffalo Hepatocytes Isolated by Using a Simplified Manual Perfusion Method

    PubMed Central

    Panda, Santanu; Bisht, Sonu; Malakar, Dhruba; Mohanty, Ashok K.; Kaushik, Jai K.

    2015-01-01

    Background In farm animals, there is no suitable cell line available to understand liver-specific functions. This has limited our understanding of liver function and metabolism in farm animals. Culturing and maintenance of functionally active hepatocytes is difficult, since they survive no more than few days. Establishing primary culture of hepatocytes can help in studying cellular metabolism, drug toxicity, hepatocyte specific gene function and regulation. Here we provide a simple in vitro method for isolation and short-term culture of functionally active buffalo hepatocytes. Results Buffalo hepatocytes were isolated from caudate lobes by using manual enzymatic perfusion and mechanical disruption of liver tissue. Hepatocyte yield was (5.3±0.66)×107 cells per gram of liver tissue with a viability of 82.3±3.5%. Freshly isolated hepatocytes were spherical with well contrasted border. After 24 hours of seeding onto fibroblast feeder layer and different extracellular matrices like dry collagen, matrigel and sandwich collagen coated plates, hepatocytes formed confluent monolayer with frequent clusters. Cultured hepatocytes exhibited typical cuboidal and polygonal shape with restored cellular polarity. Cells expressed hepatocyte-specific marker genes or proteins like albumin, hepatocyte nuclear factor 4α, glucose-6-phosphatase, tyrosine aminotransferase, cytochromes, cytokeratin and α1-antitrypsin. Hepatocytes could be immunostained with anti-cytokeratins, anti-albumin and anti α1-antitrypsin antibodies. Abundant lipid droplets were detected in the cytosol of hepatocytes using oil red stain. In vitro cultured hepatocytes could be grown for five days and maintained for up to nine days on buffalo skin fibroblast feeder layer. Cultured hepatocytes were viable for functional studies. Conclusion We developed a convenient and cost effective technique for hepatocytes isolation for short-term culture that exhibited morphological and functional characteristics of active

  14. Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro.

    PubMed

    Ng, Shengyong; March, Sandra; Galstian, Ani; Hanson, Kirsten; Carvalho, Tânia; Mota, Maria M; Bhatia, Sangeeta N

    2014-02-01

    Homeostasis of mammalian cell function strictly depends on balancing oxygen exposure to maintain energy metabolism without producing excessive reactive oxygen species. In vivo, cells in different tissues are exposed to a wide range of oxygen concentrations, and yet in vitro models almost exclusively expose cultured cells to higher, atmospheric oxygen levels. Existing models of liver-stage malaria that utilize primary human hepatocytes typically exhibit low in vitro infection efficiencies, possibly due to missing microenvironmental support signals. One cue that could influence the infection capacity of cultured human hepatocytes is the dissolved oxygen concentration. We developed a microscale human liver platform comprised of precisely patterned primary human hepatocytes and nonparenchymal cells to model liver-stage malaria, but the oxygen concentrations are typically higher in the in vitro liver platform than anywhere along the hepatic sinusoid. Indeed, we observed that liver-stage Plasmodium parasite development in vivo correlates with hepatic sinusoidal oxygen gradients. Therefore, we hypothesized that in vitro liver-stage malaria infection efficiencies might improve under hypoxia. Using the infection of micropatterned co-cultures with Plasmodium berghei, Plasmodium yoelii or Plasmodium falciparum as a model, we observed that ambient hypoxia resulted in increased survival of exo-erythrocytic forms (EEFs) in hepatocytes and improved parasite development in a subset of surviving EEFs, based on EEF size. Further, the effective cell surface oxygen tensions (pO2) experienced by the hepatocytes, as predicted by a mathematical model, were systematically perturbed by varying culture parameters such as hepatocyte density and height of the medium, uncovering an optimal cell surface pO2 to maximize the number of mature EEFs. Initial mechanistic experiments revealed that treatment of primary human hepatocytes with the hypoxia mimetic, cobalt(II) chloride, as well as a HIF-1

  15. Epigenetic Modifications as Antidedifferentiation Strategy for Primary Hepatocytes in Culture.

    PubMed

    Bolleyn, Jennifer; Fraczek, Joanna; Rogiers, Vera; Vanhaecke, Tamara

    2015-01-01

    A well-known problem of cultured primary hepatocytes is their rapid dedifferentiation. During the last years, several strategies to counteract this phenomenon have been developed, of which changing the in vitro environment is the most popular one. However, mimicking the in vivo setting in vitro by adding soluble media additives or the restoration of both cell-cell and cell-extracellular matrix contacts is not sufficient and only delays the dedifferentiation process instead of counteracting it. In this chapter, new strategies to prevent the deterioration of the liver-specific phenotype of primary hepatocytes in culture by targeting the (epi)genetic mechanisms that drive hepatocellular gene expression are described. PMID:26272144

  16. [Structural and functional polarity of porcine hepatocyte cultured spheroids].

    PubMed

    Lorenti, Alicia S; Hidalgo, Alejandra M; Barbich, Mariana R; Torres, José; Batalle, Juan; Izaguirre, María F; Fiorucci, María Paula; Casco, Víctor; Gadano, Adrián; Argibay, Pablo F

    2006-06-01

    Hepatocytes are epithelial cells that show a complex polarity in vivo. However, hepatocytes isolated and cultured in vitro normally lose both their differentiated properties and polarity. Culturing hepatocyte spheroids seems to be the accurate approach to maintain tissue level of organization. The structural and functionalpolarities of pig liver spheroids were analyzed in this work. Swine liver cells were isolated and cultured as spheroids. Their metabolic activity was proved through the metabolism of diazepam, ammonium and synthesis of albumin. Several structural features show the presence of polarity in the cells inside the spheroids. Reticular and collagen fibers, as well as Ck19(+) cells forming duct-like structures were found. _eta and _-catenins and pancadherins were positive in different regions of the spheroids, mainly in the outer cell layers, which have cuboidal epithelia features. The scanning electron microscopy showed a tightly compacted architecture, with smooth surface. The transmission electron microscopy analysis showed bile canaliculi with microvilli, tight junctions, zonula adherens and desmosome-like junctions. Well-maintained cellular organelles, as mitochondria, nucleus, nucleolus, peroxisomes, endoplasmic reticulum, were seen in the spheroids. A complex inner bile canaliculi network was shown by using a fluorescent bile acid analogue incorporated and excreted by the spheroids. Furthermore, excretion of a normal pattern of bile acids was demonstrated. The morphology and functionality of the spheroids may provide an appropriate model for applications where the maintenance of liver-specific functions is crucial, as a bioartificial liver device. PMID:16859079

  17. Evaluation of multiple mechanism-based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: Results from 152 marketed drugs with known liver injury profiles.

    PubMed

    Zhang, Jie; Doshi, Utkarsh; Suzuki, Ayako; Chang, Ching-Wei; Borlak, Jürgen; Li, Albert P; Tong, Weida

    2016-08-01

    We report here the results of a collaborative research program to develop a robust and reliable in vitro system to allow an accurate definition of the drug-induced liver injury (DILI) potential of new drug entities during drug development. The in vitro hepatotoxic potential of 152 drugs with known DILI profiles were evaluated in primary cultured human hepatocytes with four mechanistically-relevant endpoints: cellular ATP depletion, reactive oxygen species (ROS), glutathione (GSH) depletion, and caspase activation for apoptosis. The drugs, 80 in the testing set and 72 in the validation set, were classified based on serious clinical/regulatory outcomes as defined by reported acute liver failure, black-box warning, and/or withdrawal. The drugs were further sub-categorized for dominant types of liver injury. Logistic regression models were performed to calculate the area under the receiver operating characteristics curve (AUROC) and to evaluate the prediction potential of the selected endpoints for serious clinical/regulatory outcomes. The ROS/ATP ratio was found to yield an excellent AUROC in both the testing (0.8989, P < 0.0001) and validation set (0.8545, P < 0.0001), and was found to distinguish drugs associated with severe from non-severe DILI cases (p < 0.0001). The results suggest that evaluation of drugs in primary human hepatocytes using the ROS/ATP ratio endpoint may aid the definition of their potential to cause severe DILI. PMID:26581450

  18. Metabolism of ochratoxin A by primary cultures of rat hepatocytes.

    PubMed Central

    Hansen, C E; Dueland, S; Drevon, C A; Størmer, F C

    1982-01-01

    Association of ochratoxin A with cultured rat hepatocytes occurs at 4 degrees C, and the saturation level in the medium is 0.3 mM ochratoxin A, with maximal binding after 60 min. At 37 degrees C the level of cell-associated ochratoxin A increased up to 6 h and remained at 2 nmol of toxin per mg of cell protein for 30 h. With increasing concentrations of ochratoxin A, increasing amounts of the toxin accumulated in the cells; saturation occurred at a concentration of 0.3 mM. Ochratoxin A was metabolized by hepatocytes at 37 degrees. (4R)-4-Hydroxyochratoxin A appeared in the medium at a maximal level (about 30 nmol/mg of cell protein) at an ochratoxin A concentration of 0.25 mM after 48 h of incubation. Small amounts of (4S)-4-hydroxyochratoxin A were detected only after incubation for 22 h or longer. PMID:7103484

  19. 5α-Reductase Type 2 Regulates Glucocorticoid Action and Metabolic Phenotype in Human Hepatocytes.

    PubMed

    Nasiri, Maryam; Nikolaou, Nikolaos; Parajes, Silvia; Krone, Nils P; Valsamakis, George; Mastorakos, George; Hughes, Beverly; Taylor, Angela; Bujalska, Iwona J; Gathercole, Laura L; Tomlinson, Jeremy W

    2015-08-01

    Glucocorticoids and androgens have both been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); androgen deficiency in males, androgen excess in females, and glucocorticoid excess in both sexes are associated with NAFLD. Glucocorticoid and androgen action are regulated at a prereceptor level by the enzyme 5α-reductase type 2 (SRD5A2), which inactivates glucocorticoids to their dihydrometabolites and converts T to DHT. We have therefore explored the role of androgens and glucocorticoids and their metabolism by SRD5A2 upon lipid homeostasis in human hepatocytes. In both primary human hepatocytes and human hepatoma cell lines, glucocorticoids decreased de novo lipogenesis in a dose-dependent manner. Whereas androgen treatment (T and DHT) increased lipogenesis in cell lines and in primary cultures of human hepatocytes from female donors, it was without effect in primary hepatocyte cultures from men. SRD5A2 overexpression reduced the effects of cortisol to suppress lipogenesis and this effect was lost following transfection with an inactive mutant construct. Conversely, pharmacological inhibition using the 5α-reductase inhibitors finasteride and dutasteride augmented cortisol action. We have demonstrated that manipulation of SRD5A2 activity can regulate lipogenesis in human hepatocytes in vitro. This may have significant clinical implications for those patients prescribed 5α-reductase inhibitors, in particular augmenting the actions of glucocorticoids to modulate hepatic lipid flux. PMID:25974403

  20. 5α-Reductase Type 2 Regulates Glucocorticoid Action and Metabolic Phenotype in Human Hepatocytes

    PubMed Central

    Nasiri, Maryam; Nikolaou, Nikolaos; Parajes, Silvia; Krone, Nils P.; Valsamakis, George; Mastorakos, George; Hughes, Beverly; Taylor, Angela; Bujalska, Iwona J.; Gathercole, Laura L.

    2015-01-01

    Glucocorticoids and androgens have both been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); androgen deficiency in males, androgen excess in females, and glucocorticoid excess in both sexes are associated with NAFLD. Glucocorticoid and androgen action are regulated at a prereceptor level by the enzyme 5α-reductase type 2 (SRD5A2), which inactivates glucocorticoids to their dihydrometabolites and converts T to DHT. We have therefore explored the role of androgens and glucocorticoids and their metabolism by SRD5A2 upon lipid homeostasis in human hepatocytes. In both primary human hepatocytes and human hepatoma cell lines, glucocorticoids decreased de novo lipogenesis in a dose-dependent manner. Whereas androgen treatment (T and DHT) increased lipogenesis in cell lines and in primary cultures of human hepatocytes from female donors, it was without effect in primary hepatocyte cultures from men. SRD5A2 overexpression reduced the effects of cortisol to suppress lipogenesis and this effect was lost following transfection with an inactive mutant construct. Conversely, pharmacological inhibition using the 5α-reductase inhibitors finasteride and dutasteride augmented cortisol action. We have demonstrated that manipulation of SRD5A2 activity can regulate lipogenesis in human hepatocytes in vitro. This may have significant clinical implications for those patients prescribed 5α-reductase inhibitors, in particular augmenting the actions of glucocorticoids to modulate hepatic lipid flux. PMID:25974403

  1. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens.

    PubMed

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N

    2015-12-01

    The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development. PMID:26584444

  2. Helicobacter hepaticus Induces an Inflammatory Response in Primary Human Hepatocytes

    PubMed Central

    Kleine, Moritz; Worbs, Tim; Schrem, Harald; Vondran, Florian W. R.; Kaltenborn, Alexander; Klempnauer, Jürgen; Förster, Reinhold; Josenhans, Christine; Suerbaum, Sebastian; Bektas, Hüseyin

    2014-01-01

    Helicobacter hepaticus can lead to chronic hepatitis and hepatocellular carcinoma in certain strains of mice. Until now the pathogenic role of Helicobacter species on human liver tissue is still not clarified though Helicobacter species identification in human liver cancer was successful in case controlled studies. Therefore we established an in vitro model to investigate the interaction of primary human hepatocytes (PHH) with Helicobacter hepaticus. Successful co-culturing of PHH with Helicobacter hepaticus was confirmed by visualization of motile bacteria by two-photon-microscopy. Isolated human monocytes were stimulated with PHH conditioned media. Changes in mRNA expression of acute phase cytokines and proteins in PHH and stimulated monocytes were determined by Real-time PCR. Furthermore, cytokines and proteins were analyzed in PHH culture supernatants by ELISA. Co-cultivation with Helicobacter hepaticus induced mRNA expression of Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha, Interleukin-8 (IL-8) and Monocyte chemotactic protein-1 (MCP-1) in PHH (p<0.05) resulting in a corresponding increase of IL-8 and MCP-1 concentrations in PHH supernatants (p<0.05). IL-8 and IL-1β mRNA expression was induced in monocytes stimulated with Helicobacter hepaticus infected PHH conditioned media (p<0.05). An increase of Cyclooxygenase-2 mRNA expression was observed, with a concomitant increase of prostaglandin E2 concentration in PHH supernatants at 24 and 48 h (p<0.05). In contrast, at day 7 of co-culture, no persistent elevation of cytokine mRNA could be detected. High expression of intercellular adhesion molecule-1 on PHH cell membranes after co-culture was shown by two-photon-microscopy and confirmed by flow-cytomety. Finally, expression of Cytochrome P450 3A4 and albumin mRNA were downregulated, indicating an impairment of hepatocyte synthesis function by Helicobacter hepaticus presence. This is the first in vitro model demonstrating a pathogenic effect of a

  3. PURIFICATION AND BIOLOGICAL CHARACTERIZATION OF HUMAN HEPATOPOETIN A: A POLYPEPTIDE GROWTH FACTOR FOR HEPATOCYTES

    EPA Science Inventory

    We have previously reported that the presence of a high molecular weight polypeptide growth factor in the plasma of normal human or rat serum which stimulates DNA synthesis in primary cultures of normal rat hepatocytes. e referred to this activity as Hepatopoietin A (HPTA) (6,7)....

  4. Towards liver-directed gene therapy: retrovirus-mediated gene transfer into human hepatocytes.

    PubMed

    Grossman, M; Raper, S E; Wilson, J M

    1991-11-01

    Liver-directed gene therapy is being considered in the treatment of inherited metabolic diseases. One approach we are considering is the transplantation of autologous hepatocytes that have been genetically modified with recombinant retroviruses ex vivo. We describe, in this report, techniques for isolating human hepatocytes and efficiently transducing recombinant genes into primary cultures. Hepatocytes were isolated from tissue of four different donors, plated in primary culture, and exposed to recombinant retroviruses expressing either the LacZ reporter gene or the cDNA for rabbit LDL receptor. The efficiency of gene transfer under optimal conditions, as determined by Southern blot analysis, varied from a maximum of one proviral copy per cell to a minimum of 0.1 proviral copy per cell. Cytochemical assays were used to detect expression of the recombinant derived proteins, E. coli beta-galactosidase and rabbit LDL receptor. Hepatocytes transduced with the LDL receptor gene expressed levels of receptor protein that exceeded the normal endogenous levels. The ability to isolate and genetically modify human hepatocytes, as described in this report, is an important step towards the development of liver-directed gene therapies in humans. PMID:1767337

  5. Metabolic fate of desomorphine elucidated using rat urine, pooled human liver preparations, and human hepatocyte cultures as well as its detectability using standard urine screening approaches.

    PubMed

    Richter, Lilian H J; Kaminski, Yeda Rumi; Noor, Fozia; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Desomorphine is an opioid misused as "crocodile", a cheaper alternative to heroin. It is a crude synthesis product homemade from codeine with toxic byproducts. The aim of the present work was to investigate the metabolic fate of desomorphine in vivo using rat urine and in vitro using pooled human liver microsomes and cytosol as well as human liver cell lines (HepG2 and HepaRG) by Orbitrap-based liquid chromatography-high resolution-tandem mass spectrometry or hydrophilic interaction liquid chromatography. According to the identified metabolites, the following metabolic steps could be proposed: N-demethylation, hydroxylation at various positions, N-oxidation, glucuronidation, and sulfation. The cytochrome P450 (CYP) initial activity screening revealed CYP3A4 to be the only CYP involved in all phase I steps. UDP-glucuronyltransferase (UGT) initial activity screening showed that UGT1A1, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17 formed desomorphine glucuronide. Among the tested in vitro models, HepaRG cells were identified to be the most suitable tool for prediction of human hepatic phase I and II metabolism of drugs of abuse. Finally, desomorphine (crocodile) consumption should be detectable by all standard urine screening approaches mainly via the parent compound and/or its glucuronide assuming similar kinetics in rats and humans. PMID:27372715

  6. Alpha-naphthylisothiocyanate cytotoxicity in hepatocytes and other cultured cells

    SciTech Connect

    Bailie, M.B.; Roth, R.A. )

    1991-03-11

    Alpha-naphthylisothiocyanate (ANIT) is a model hepatotoxicant that causes injury to liver parenchymal and bile ductular cells in vivo. In this study, toxicity to various cells in culture was evaluated. In short term cultures of rat hepatocytes (HCs), a 4hr exposure to ANIT caused a concentration dependent increase in cytotoxicity as measured by lactate dehydrogenase (LDH) release. HCs cultured for 24hr or longer demonstrated a delay in ANIT-induced LDH release when compared to 2.5hr cultures. In addition, the magnitude of the cytotoxic response was greater in longer term cultures. The threshold for ANIT-induced cytotoxicity in HCs was between 20 and 63uM. In porcine endothelial cell cultures, ANIT cytotoxicity was similar to that seen in HCs. In two transformed cells lines, the Swiss 3T3 fibroblast and WB cell, a 24hr exposure to ANTI caused a concentration dependent increase in LDH release. Like the HCs, the threshold concentration was between 20 and 63uM. These results indicate that ANIT is directly cytotoxic to various cells in culture. Since endothelium and fibroblasts are deficient in cytochrome P-450 mixed function oxidase activity, ANIT toxicity in culture may be largely independent of this xenobiotic metabolizing system.

  7. Lab on a chip-based hepatic sinusoidal system simulator for optimal primary hepatocyte culture.

    PubMed

    Choi, Yoon Young; Kim, Jaehyung; Lee, Sang-Hoon; Kim, Dong-Sik

    2016-08-01

    Primary hepatocyte cultures have been used in studies on liver disease, physiology, and pharmacology. While they are an important tool for in vitro liver studies, maintaining liver-specific characteristics of hepatocytes in vitro is difficult, as these cells rapidly lose their unique characteristics and functions. Portal flow is an important condition to preserve primary hepatocyte functions and liver regeneration in vivo. We have developed a microfluidic chip that does not require bulky peripheral devices or an external power source to investigate the relationship between hepatocyte functional maintenance and flow rates. In our culture system, two types of microfluidic devices were used as scaffolds: a monolayer- and a concave chamber-based device. Under flow conditions, our chips improved albumin and urea secretion rates after 13 days compared to that of the static chips. Reverse transcription polymerase chain reaction demonstrated that hepatocyte-specific gene expression was significantly higher at 13 days under flow conditions than when using static chips. For both two-dimensional and three-dimensional culture on the chips, flow resulted in the best performance of the hepatocyte culture in vitro. We demonstrated that flow improves the viability and efficiency of long-term culture of primary hepatocytes and plays a key role in hepatocyte function. These results suggest that this flow system has the potential for long-term hepatocyte cultures as well as a technique for three-dimensional culture. PMID:27334878

  8. Expression of some hepatocyte-like functional properties of WRL-68 cells in culture.

    PubMed

    Gutiérrez-Ruiz, M C; Bucio, L; Souza, V; Gómez, J J; Campos, C; Cárabez, A

    1994-06-01

    Some morphologic and functional characteristics of an hepatic fetal human epithelial cell line (WRL-68 cells) were determined to validate the use of these cells as an in vitro hepatic model. WRL-68 cells have a morphologic structure similar to hepatocytes and hepatic primary cultures. They secrete alpha-feto protein and albumin and exhibit a cytokeratin pattern similar to other hepatic cultures. WRL-68 cells preserve the activity of some characteristic or specific liver enzymes or both used in clinical chemistry for the diagnosis of hepatic disorders, i.e. alanine amino transferase, aspartate amino transferase, gamma-glutamyl transpeptidase, and alkaline phosphatase. PMID:7522099

  9. Polygonal networks, "geodomes", of adult rat hepatocytes in primary culture.

    PubMed

    Mochizuki, Y; Furukawa, K; Mitaka, T; Yokoi, T; Kodama, T

    1988-01-01

    Polygonal networks, "geodomes", in cultured hepatocytes of adult rats were examined by both light and electron microscopy. On light microscopical examinations of specimens stained with Coomassie blue after the treatment with Triton X-100, the networks were detected 5 days after culture, which consisted of triangles arranged mainly in hexagonal patterns. They surrounded main cell body, looking like a headband, or were occasionally situated over nuclei, looking like a geodesic dome. Scanning electron microscopical observations after Triton treatment revealed that these structures were located underneath surface membrane. Transmission electron microscopical investigations revealed that the connecting fibers of networks consisted of microfilaments which radiated in a compact bundle from electron-dense vertices. PMID:3396075

  10. Subcellular distribution of lead in cultured rat hepatocytes

    SciTech Connect

    Mittelstaedt, R.A.; Pounds, J.G.

    1984-10-01

    A clear understanding of the sequence and molecular mechanism of the events involved in lead toxicity is hampered by a lack of information about lead compartmentation within the cell. As part of a continuing effort to identify the mechanism by which lead affects cellular functions, we examined the subcellular distribution of /sup 210/Pb in cultured hepatocytes. The cells were isolated, labeled, homogenized in sucrose-N-((2-hydroxyethyl)piperazine)-N'-2-ethanesulfonic acid buffer, and fractionated into mitochondrial, microsomal, and cytosolic components by differential centrifugation. Complete fractionation of the cells revealed that 71% of the cellular /sup 210/Pb was associated with the mitochondria, 5% with the microsomes, and 24% with the cytosol. A modified, rapid fractionation procedure indicated that 45% of the cellular lead was associated with both the mitochondria and the cytosol and 10% with the microsomes. When the cells were separated into total particulates and cytosol with a single centrifugation, 22% of the /sup 210/Pb was associated with the soluble fraction. The process of homogenization and fractionation of the isolated hepatocytes altered the intracellular distribution of /sup 210/Pb. This experimental approach to studying the localization of lead may be compromised by the redistribution of /sup 210/Pb during the extensive centrifugations and resuspensions required for subcellular fractionation and suggests that the subcellular distribution patterns of /sup 210/Pb obtained by the fractionation of cells reflects the distribution of lead in the homogenate rather than the distribution of /sup 210/Pb in the intact cell.

  11. Hormonal regulation of fibrinogen synthesis in cultured hepatocytes.

    PubMed

    Grieninger, G; Plant, P W; Liang, T J; Kalb, R G; Amrani, D; Mosesson, M W; Hertzberg, K M; Pindyck, J

    1983-06-27

    Most of what was originally known of the effects of hormones on fibrinogen synthesis was based, as noted above, on experiments involving surgical removal of endocrine glands. Some caution should be exercised when using such in vivo experiments to derive the hormonal requirements of fibrinogen synthesis, however, since multiple hormonal alterations often occur in these animals. The development of a variety of ex vivo systems has allowed investigators to more carefully control the hepatocellular environment. The work of several laboratories, including our own, has now made it clear that hormones and other agents directly stimulate hepatocellular synthesis of fibrinogen. From the studies summarized here, using chick embryo hepatocytes as a model, several generalizations emerge: Fibrinogen synthesis may be considered to be a "constitutive" liver function, since hepatocytes cultured without serum, hormones or other macromolecular supplements synthesize this protein at a basal rate for several days. Addition of certain hormones (e.g. T3, dexamethasone, insulin), individually and in physiological concentrations, elicits an increase in fibrinogen production, varying with each agent in onset, dose, minimum exposure required and accompanying effects on the synthesis of other plasma proteins. Glucocorticoids and thyroid hormones are similar in the selectivity of their stimulation (neither affects albumin or transferrin synthesis) but differ in that thyroid hormones need to be present for just a short "triggering" period. The stimulation of fibrinogen synthesis by insulin occurs only following prolonged exposure to concentrations 10-times higher than the very low doses to which albumin synthesis responds rapidly. PMID:6307104

  12. Three-dimensional culture model for analyzing crosstalk between adipose tissue and hepatocytes.

    PubMed

    Nishijima-Matsunobu, Aki; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Fujimoto, Kazuma; Toda, Shuji

    2013-06-01

    Systemic adipose tissue is involved in the pathophysiology of obesity-associated liver diseases. However, a method has not been established for analyzing the direct interaction between adipose tissue and hepatocytes. We describe a useful three-dimensional model comprising a collagen gel coculture system in which HepG2 hepatocytes are cultured on a gel layer with visceral adipose tissue fragments (VAT) or subcutaneous tissue samples (SAT). Male adipose tissues were obtained from 5-week-old Wistar rats and human autopsy cases. Cellular behavior was analyzed by electron microscopy, immunohistochemistry, Western blot, real-time reverse transcription plus the polymerase chain reaction and enzyme-linked immunosorbent assay. VAT significantly promoted lipid accumulation and apoptosis in HepG2 cells and suppressed their growth and differentiation compared with SAT. VAT produced higher concentrations of fatty acids (palmitate, oleate, linoleate) than SAT. HepG2 cells significantly decreased the production of these fatty acids in VAT. Only HepG2 cells treated with 250 μM palmitate replicated VAT-induced apoptosis. Neither VAT nor SAT affected lipotoxicity-associated signals of nuclear factor kappa B, c-Jun N-terminal kinase and inositol requiring enzyme-1α in HepG2 cells. HepG2 cells never affected adiponectin, leptin, or resistin production in VAT and SAT. The data indicate that our model actively creates adipose tissue and HepG2 hepatocyte interactions, suggesting that (1) VAT plays more critical roles in hepatocyte lipotoxicity than SAT; (2) palmitate but not adipokines, is partly involved in the mechanisms of VAT-induced lipotoxicity; (3) HepG2 cells might inhibit fatty acid production in VAT to protect themselves against lipotoxicity. Our model should serve in studies of interactions between adipose tissue and hepatocytes and of the mechanisms in obesity-related lipotoxicity and liver diseases. PMID:23512139

  13. High Content Analysis of Human Pluripotent Stem Cell Derived Hepatocytes Reveals Drug Induced Steatosis and Phospholipidosis

    PubMed Central

    Pradip, Arvind; Steel, Daniella; Jacobsson, Susanna; Holmgren, Gustav; Ingelman-Sundberg, Magnus; Sartipy, Peter; Björquist, Petter; Johansson, Inger; Edsbagge, Josefina

    2016-01-01

    Hepatotoxicity is one of the most cited reasons for withdrawal of approved drugs from the market. The use of nonclinically relevant in vitro and in vivo testing systems contributes to the high attrition rates. Recent advances in differentiating human induced pluripotent stem cells (hiPSCs) into pure cultures of hepatocyte-like cells expressing functional drug metabolizing enzymes open up possibilities for novel, more relevant human cell based toxicity models. The present study aimed to investigate the use of hiPSC derived hepatocytes for conducting mechanistic toxicity testing by image based high content analysis (HCA). The hiPSC derived hepatocytes were exposed to drugs known to cause hepatotoxicity through steatosis and phospholipidosis, measuring several endpoints representing different mechanisms involved in drug induced hepatotoxicity. The hiPSC derived hepatocytes were benchmarked to the HepG2 cell line and generated robust HCA data with low imprecision between plates and batches. The different parameters measured were detected at subcytotoxic concentrations and the order of which the compounds were categorized (as severe, moderate, mild, or nontoxic) based on the degree of injury at isomolar concentration corresponded to previously published data. Taken together, the present study shows how hiPSC derived hepatocytes can be used as a platform for screening drug induced hepatotoxicity by HCA. PMID:26880940

  14. Comparative Metabolism of Furan in Rodent and Human Cryopreserved Hepatocytes

    PubMed Central

    Gates, Leah A.; Phillips, Martin B.; Matter, Brock A.

    2014-01-01

    Furan is a liver toxicant and carcinogen in rodents. Although humans are most likely exposed to furan through a variety of sources, the effect of furan exposure on human health is still unknown. In rodents, furan requires metabolism to exert its toxic effects. The initial product of the cytochrome P450 2E1-catalyzed oxidation is a reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). BDA is toxic and mutagenic and consequently is considered responsible for the toxic effects of furan. The urinary metabolites of furan in rats are derived from the reaction of BDA with cellular nucleophiles, and precursors to these metabolites are detected in furan-exposed hepatocytes. Many of these precursors are 2-(S-glutathionyl)butanedial-amine cross-links in which the amines are amino acids and polyamines. Because these metabolites are derived from the reaction of BDA with cellular nucleophiles, their levels are a measure of the internal dose of this reactive metabolite. To compare the ability of human hepatocytes to convert furan to the same metabolites as rodent hepatocytes, furan was incubated with cryopreserved human and rodent hepatocytes. A semiquantitative liquid chromatography with tandem mass spectrometry assay was developed for a number of the previously characterized furan metabolites. Qualitative and semiquantitative analysis of the metabolites demonstrated that furan is metabolized in a similar manner in all three species. These results indicate that humans may be susceptible to the toxic effects of furan. PMID:24751574

  15. Maintenance of liver functions in rat hepatocytes cultured as spheroids in a rotating wall vessel.

    PubMed

    Brown, Lanika A; Arterburn, Linda M; Miller, Ana P; Cowger, Nancy L; Hartley, Sonya M; Andrews, Annette; Silber, Paul M; Li, Albert P

    2003-01-01

    Rat hepatocytes were cultured initially as spheroids on culture plates and then transferred into a rotating wall vessel (high-aspect ratio vessel [HARV]) for further culturing. Morphological evaluation based on electron microscopy showed that hepatocyte spheroids cultured for 30 d in the HARV had a compact structure with tight cell-cell junctions, numerous smooth and rough endoplasmic reticulum, intact mitochondria, and bile canaliculi lined with microvilli. The viability and differentiated properties of the hepatocytes cultured in the HARV were further substantiated by the presence of both phase I oxidation and phase II conjugation drug-metabolizing enzyme activities, as well as albumin synthesis. Homogenates prepared from freshly isolated hepatocytes and hepatocytes cultured in the HARV showed similar cytochrome P450 2B activities measured as pentoxyresorufin-O-dealkylase and testosterone 16beta-hydroxylase. Further, intact hepatocytes cultured in the HARV were found to metabolize chlorzoxazone to 6-hydroxychlorzoxazone; dextromethorphan to dextrorphan, 3-methoxymorphinan, and 3-hydroxymorphinan; midazolam to 1-hydroxymidazolam and 4-hydroxymidazolam; and 7-hydroxycoumarin to its glucuronide and sulfate conjugates. In conclusion, we found that hepatocyte spheroids could be cultured in a HARV to retain cellular and physiological properties of the intact liver, including drug-metabolizing enzyme activities, plasma protein production, and long-term (1 mo) maintenance of viability and cellular function. PMID:12892522

  16. Arsenite decreases CYP3A23 induction in cultured rat hepatocytes by transcriptional and translational mechanisms

    SciTech Connect

    Noreault, Trisha L.; Nichols, Ralph C.; Trask, Heidi W.; Wrighton, Steven A.; Sinclair, Peter R.; Evans, Ronald M.; Sinclair, Jacqueline F. . E-mail: JSINC@dartmouth.edu

    2005-12-01

    Arsenic is a naturally occurring, worldwide contaminant implicated in numerous pathological conditions in humans, including cancer and several forms of liver disease. One of the contributing factors to these disorders may be the alteration of cytochrome P450 (CYP) levels by arsenic. In rat and human hepatocyte cultures, arsenic, in the form of arsenite, decreases the induction of several CYPs. The present study investigated whether arsenite utilizes transcriptional or post-transcriptional mechanisms to decrease CYP3A23 in primary cultures of rat hepatocytes. In these cultures, a 6-h treatment with 5 {mu}M arsenite abolished dexamethasone (DEX)-mediated induction of CYP3A23 protein and activity, but did not inhibit general protein synthesis. However, arsenite treatment only reduced DEX-induced levels of CYP3A23 mRNA by 30%. The effects of arsenite on CYP3A23 transcription were examined using a luciferase reporter construct containing 1.4 kb of the CYP3A23 promoter. Arsenite caused a 30% decrease in DEX-induced luciferase expression of this reporter. Since arsenite abolished induction of CYP3A23 protein, but caused only a small decrease in CYP3A23 mRNA, the effects of arsenite on translation of CYP3A23 mRNA were investigated. Polysomal distribution analysis showed that arsenite decreased translation by decreasing the DEX-mediated increase in CYP3A23 mRNA association with polyribosomes. Arsenite did not decrease intracellular glutathione or increase lipid peroxidation, suggesting that the effect of arsenite on CYP3A23 does not involve oxidative stress. Overall, the results suggest that low-level arsenite decreases both transcription and translation of CYP3A23 in primary rat hepatocyte cultures.

  17. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity

    SciTech Connect

    Shen Chong; Meng Qin Schmelzer, Eva; Bader, Augustinus

    2009-07-15

    This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 {mu}M which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 {mu}M. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to {beta}-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs.

  18. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity.

    PubMed

    Shen, Chong; Meng, Qin; Schmelzer, Eva; Bader, Augustinus

    2009-07-15

    This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 muM which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 muM. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to beta-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs. PMID:19463838

  19. TOXIC INTERACTIONS BETWEEN CARBON TETRACHLORIDE AND CHLOROFORM IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    Primary cultures of adult rat hepatocytes were incubated (1.5-16 hr) with various concentrations of CC14 (<0.5 mM) and/or CHCl3 (<2.5 mM). gent dependent alterations in hepatocyte functions were assessed by measuring (1) [3H]choline incorporation into phosphatidylcholine (endopla...

  20. CO-CULTURE OF RAT EMBRYOS AND HEPATOCYTES: 'IN VITRO' DETECTION OF A PROTERATOGEN

    EPA Science Inventory

    Rat embryos removed from the dam on day 10 of pregnancy were successfully co-cultivated in vitro with primary cultures of rat, rabbit, or hamster hepatocytes. Embryos co-cultivated with hepatocytes developed normally, as did embryos exposed to a test chemical, cyclophosphamide. I...

  1. Applicability of second-generation upcyte® human hepatocytes for use in CYP inhibition and induction studies

    PubMed Central

    Ramachandran, Sarada D; Vivarès, Aurélie; Klieber, Sylvie; Hewitt, Nicola J; Muenst, Bernhard; Heinz, Stefan; Walles, Heike; Braspenning, Joris

    2015-01-01

    Human upcyte® hepatocytes are proliferating hepatocytes that retain many characteristics of primary human hepatocytes. We conducted a comprehensive evaluation of the application of second-generation upcyte® hepatocytes from four donors for inhibition and induction assays using a selection of reference inhibitors and inducers. CYP1A2, CYP2B6, CYP2C9, and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC50 values for each compound correctly classified them as potent inhibitors. Upcyte® hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9, and CYP3A4 inducers, confirming that they have functional AhR-, CAR-, and PXR-mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or noninducers of CYP3A4 and CYP2B6 were tested. There was a good fit of data from upcyte® hepatocytes to three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu/F2, and Cmax,u/Ind50. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were demonstrated. In conclusion, these data support the use of second-generation upcyte® hepatocytes for CYP inhibition and induction assays. Under the culture conditions used, these cells expressed CYP activities that were equivalent to or higher than those measured in primary human hepatocyte cultures, which could be inhibited or induced by prototypical CYP inhibitors and inducers, respectively. Moreover, they can be used to predict in vivo CYP3A4 induction potential using three prediction models. Bulk availability of cells from multiple donors makes upcyte® hepatocytes suitable for DDI screening, as well as more in-depth mechanistic investigations. PMID:26516577

  2. Vasopressin inhibits type-I collagen and albumin gene expression in primary cultures of adult rat hepatocytes

    SciTech Connect

    Chojkier, M.; Brenner, D.A.; Leffert, H.L.

    1989-06-05

    The mechanisms that regulate collagen gene expression in hepatic cells are poorly understood. Accelerated Ca2+ fluxes are associated with inhibiting collagen synthesis selectively in human fibroblasts. In suspension cultures of isolated hepatocytes, the Ca2+ agonist vasopressin increases cytosolic levels of free Ca2+. However, whether vasopressin's interactions with plasma membrane V1 receptors attenuate hepatic collagen production is unknown. We investigated this problem by studying vasopressin's effects on collagen synthesis and Ca2+ efflux in long-term primary cultures of differentiated and proliferation-competent adult rat hepatocytes. Twelve-day-old quiescent cultures were exposed to test substances and labeled with (5-3H)proline. Determinations of radioactivity in collagenase-sensitive and collagenase-resistant proteins were used to calculate the relative levels of collagen production. Synthetic (8-arg)vasopressin stimulated 45Ca2+ efflux within 1 min and inhibited hepatocyte collagen production within 3 h by 50%; overall rates of protein synthesis were not affected significantly. In cultures labeled with (35S)methionine, vasopressin also decreased the levels of newly synthesized and secreted albumin, but not fibrinogen, detected in specific immunoprecipitates analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Northern blot analyses using specific (32P)cDNA probes revealed 70% decreases in hybridizable levels of collagen alpha 1(I) mRNA in hepatocyte cultures treated with either vasopressin or Ca2+ ionophore A23187; hybridizable levels of albumin mRNA also fell approximately 50% following vasopressin treatment.

  3. Extracellular calcium protects cultured rat hepatocytes from injury caused by hypothermic preservation.

    PubMed

    Umeshita, K; Monden, M; Fujimori, T; Sakai, H; Gotoh, M; Okamura, J; Mori, T

    1988-04-01

    Effects of various preservation solutions were compared in an experimental hypothermic preservation model using cultured rat hepatocytes. Hepatocytes prepared by the collagenase perfusion method were cultured for 48 hr, then the medium in each culture dish was exchanged for various preservation solutions, and the dishes were hypothermically (0-2 degrees C) stored in a refrigerator for 12-72 hr. After the preservation period, the hepatocytes were cultured again at 37 degrees C for 2 hr. Hepatocytes' viability after 18-hr preservation and reculture was greater when they were preserved in "intracellular" rather than "extracellular" solutions. Even with Euro-Collins solution (intracellular solution), hepatocyte viability decreased to approximately 20% after 24-hr preservation, and an increase in the cellular lipid peroxide content was observed. However, when this solution contained a submillimolar concentration of calcium, lipid peroxidation was significantly suppressed and hepatocyte viability was dramatically improved. Vitamin E was almost equally effective and a marked synergistic effect was observed with calcium. Calcium was found to be capable of maintaining the cellular glutathione level during cold storage, which seems to suppress lipid peroxidation and consequently improve hepatocyte survival. PMID:3371055

  4. Scalable Differentiation of Human iPSCs in a Multicellular Spheroid-based 3D Culture into Hepatocyte-like Cells through Direct Wnt/β-catenin Pathway Inhibition.

    PubMed

    Pettinato, Giuseppe; Ramanathan, Rajesh; Fisher, Robert A; Mangino, Martin J; Zhang, Ning; Wen, Xuejun

    2016-01-01

    Treatment of acute liver failure by cell transplantation is hindered by a shortage of human hepatocytes. Current protocols for hepatic differentiation of human induced pluripotent stem cells (hiPSCs) result in low yields, cellular heterogeneity, and limited scalability. In the present study, we have developed a novel multicellular spheroid-based hepatic differentiation protocol starting from embryoid bodies of hiPSCs (hiPSC-EBs) for robust mass production of human hepatocyte-like cells (HLCs) using two novel inhibitors of the Wnt pathway. The resultant hiPSC-EB-HLCs expressed liver-specific genes, secreted hepatic proteins such as Albumin, Alpha Fetoprotein, and Fibrinogen, metabolized ammonia, and displayed cytochrome P450 activities and functional activities typical of mature primary hepatocytes, such as LDL storage and uptake, ICG uptake and release, and glycogen storage. Cell transplantation of hiPSC-EB-HLC in a rat model of acute liver failure significantly prolonged the mean survival time and resolved the liver injury when compared to the no-transplantation control animals. The transplanted hiPSC-EB-HLCs secreted human albumin into the host plasma throughout the examination period (2 weeks). Transplantation successfully bridged the animals through the critical period for survival after acute liver failure, providing promising clues of integration and full in vivo functionality of these cells after treatment with WIF-1 and DKK-1. PMID:27616299

  5. Inherent toxicity of organ preservation solutions to cultured hepatocytes.

    PubMed

    Rauen, Ursula; de Groot, Herbert

    2008-02-01

    Organ preservation solutions have been designed to protect grafts against the injury inflicted by cold ischemia. However, toxicity of University of Wisconsin (UW) solution during rewarming has been reported. Therefore, we here assessed the toxicity of UW, histidine-tryptophan-ketoglutarate (HTK), Euro-Collins, histidine-lactobionate (HL), sodium-lactobionate-sucrose and Celsior solutions in cultured hepatocytes under hypothermic (4 degrees C), intermediate (21 degrees C) and physiological (37 degrees C) conditions. Marked toxicity of UW, HTK, HL and Euro-Collins solutions was observed at both 37 and 21 degrees C. With the exception of UW solution, these solutions also increased cell injury during cold incubation (LDH release after 18 h at 4 degrees C: HTK 76+/-2%, Euro-Collins 78+/-17%, HL 81+/-15%; control: Krebs-Henseleit buffer 20+/-6%). Testing of individual components using modified Krebs-Henseleit buffers suggested that histidine and phosphate are responsible for (part of) this toxicity. These potential toxicities should be taken into account in the development of future preservation solutions. PMID:18022150

  6. Antiviral activity and host gene induction by tamarin and marmoset interferon-α and interferon-γ in the GBV-B primary hepatocyte culture model

    PubMed Central

    Chavez, Deborah; Guerra, Bernadette; Lanford, Robert E.

    2009-01-01

    GBV-B induces hepatitis in tamarins and marmosets and is a surrogate model for HCV infections. Here, we cloned and characterized the antiviral activity of tamarin and marmoset interferon (IFN)α and IFNγ. Potent antiviral activity was observed for tamarin and marmoset IFNα in primary hepatocyte cultures infected with GBV-B. The antiviral activity was greater in cultures exposed to IFNα prior to GBV-B infection, suggesting that either GBV-B was capable of inhibition of the antiviral activity of exogenous IFNα or that the preexisting endogenous IFN response to the virus reduced efficacy to exogenous IFNα. IFNγ also exhibited antiviral activity in GBV-B infected hepatocytes. The transcriptional response to IFNα in marmoset hepatocytes was characterized using human genome microarrays. Since the GBV-B hepatocyte culture model possesses a functional innate immune response, it will provide opportunities to explore the nature of the antiviral response to a virus closely related to HCV. PMID:19501869

  7. Cryopreservation of isolated human hepatocytes for transplantation: State of the art.

    PubMed

    Terry, Claire; Dhawan, Anil; Mitry, Ragai R; Hughes, Robin D

    2006-10-01

    Hepatocytes isolated from unused donor livers are being used for transplantation in patients with acute liver failure and liver-based metabolic defects. As large numbers of hepatocytes can be prepared from a single liver and hepatocytes need to be available for emergency and repeated treatment of patients it is essential to be able to cryopreserve and store cells with good thawed cell function. This review considers the current status of cryopreservation of human hepatocytes discussing the different stages involved in the process. These include pre-treatment of cells, freezing solution, cryoprotectants and freezing and thawing protocols. There are detrimental effects of cryopreservation on hepatocyte structure and metabolic function, including cell attachment, which is important to the engraftment of transplanted cells in the liver. Cryopreserved human hepatocytes have been successfully used in clinical transplantation, with evidence of replacement of missing function. Further optimisation of hepatocyte cryopreservation protocols is important for their use in hepatocyte transplantation. PMID:16793034

  8. Effects of culturing media on hepatocytes differentiation using Volvox sphere as co-culturing vehicle.

    PubMed

    Wu, Kun Lieh; Chang, Siou Han; Manousakas, Ioannis; Huang, Han Hsiang; Teong, Benjamin; Chuang, Chin Wen; Kuo, Shyh Ming

    2015-03-13

    Volvox sphere is a unique design to mimic natural volvox consists of a large outer-sphere that contains smaller inner-spheres, which provide three-dimensional (3D) environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in Volvox spheres and to evaluate the effects of two media, DMEM and DMEM/F12 on the cultured cells. The results of this study shows that the 3D Volvox sphere can successfully be applied for co-culture of MSCs and AML12 liver cells, and the MSCs are able to differentiate into hepatocyte-like cells expressing hepatocyte-specific markers including albumin (ALB), alpha feto-protein (AFP) and cytokeratin 18 (CK18) mRNA expressions and producing CK18 and ALB proteins. Interestingly, the MSCs expressed higher ALB, AFP and CK18 mRNA expression at the initial 7-day culture by using DMEM, whereas, the MSCs expressed more mRNA expressions from 7-day to 14-day by the usage of DMEM/F12. The result demonstrated that DMEM and DMEM/F12 media could affect MSCs behaviors during a 14-day culture. PMID:25681769

  9. Comparison of cryopreserved HepaRG cells with cryopreserved human hepatocytes for prediction of clearance for 26 drugs.

    PubMed

    Zanelli, Ugo; Caradonna, Nicola Pasquale; Hallifax, David; Turlizzi, Elisa; Houston, J Brian

    2012-01-01

    Prediction of clearance in drug discovery currently relies on human primary hepatocytes, which can vary widely in drug-metabolizing enzyme activity. Potential alternative in vitro models include the HepaRG cell (from immortalized hepatoma cells), which in culture can express drug-metabolizing enzymes to an extent comparable to that of primary hepatocytes. Utility of the HepaRG cell will depend on robust performance, relative to that of primary hepatocytes, in routine high-throughput analysis. In this study, we compared intrinsic clearance (CL(int)) in the recently developed cryopreserved HepaRG cell system with CL(int) in human cryopreserved pooled hepatocytes and with CL(int) in vivo for 26 cytochrome P450 substrate drugs. There was quantitative agreement between CL(int) in HepaRG cells and human hepatocytes, which was linear throughout the range of CL(int) (1-2000 ml · min(-1) · kg(-1)) and not dependent on particular cytochrome P450 involvement. Prediction of CL(int) in HepaRG cells was on average within 2-fold of in vivo CL(int) (using the well stirred liver model), but average fold error was clearance-dependent with greater underprediction (up to at least 5-fold) for the more highly cleared drugs. Recent reporting of this phenomenon in human hepatocytes was therefore confirmed with the hepatocytes used in this study, and hence the HepaRG cell system appears to share an apparently general tendency of clearance-limited CL(int) in cell models. This study shows the cryopreserved HepaRG cell system to be quantitatively comparable to human hepatocytes for prediction of clearance of drug cytochrome P450 substrates and to represent a promising alternative in vitro tool. PMID:21998403

  10. Blood-Compatible Polymer for Hepatocyte Culture with High Hepatocyte-Specific Functions toward Bioartificial Liver Development.

    PubMed

    Hoshiba, Takashi; Otaki, Takayuki; Nemoto, Eri; Maruyama, Hiroka; Tanaka, Masaru

    2015-08-19

    The development of bioartificial liver (BAL) is expected because of the shortage of donor liver for transplantation. The substrates for BAL require the following criteria: (a) blood compatibility, (b) hepatocyte adhesiveness, and (c) the ability to maintain hepatocyte-specific functions. Here, we examined blood-compatible poly(2-methoxyethyl acrylate) (PMEA) and poly(tetrahydrofurfuryl acrylate) (PTHFA) (PTHFA) as the substrates for BAL. HepG2, a human hepatocyte model, could adhere on PMEA and PTHFA substrates. The spreading of HepG2 cells was suppressed on PMEA substrates because integrin contribution to cell adhesion on PMEA substrate was low and integrin signaling was not sufficiently activated. Hepatocyte-specific gene expression in HepG2 cells increased on PMEA substrate, whereas the expression decreased on PTHFA substrates due to the nuclear localization of Yes-associated protein (YAP). These results indicate that blood-compatible PMEA is suitable for BAL substrate. Also, PMEA is expected to be used to regulate cell functions for blood-contacting tissue engineering. PMID:26258689

  11. U. v. -enhanced reactivation of u. v. -irradiated herpes virus by primary cultures of rat hepatocytes

    SciTech Connect

    Zurlo, J.; Yager, J.D. )

    1984-04-01

    Carcinogen treatment of cultured mammalian cells prior to infection with u.v.-irradiated virus results in enhanced virus survival and mutagenesis suggesting the induction of SOS-type processes. The development of a primary rat hepatocyte culture system is reported to investigate cellular responses to DNA damage which may be relevant to hepatocarcinogenesis in vivo. Enhanced reactivation of u.v.-irradiated Herpes simplex virus type 1 (HSV-1) occurred in hepatocytes irradiated with u.v. Cultured hepatocytes were pretreated with u.v. at the time of enhanced DNA synthesis. These treatments caused an inhibition followed by a recovery of DNA synthesis. At various times after pretreatment, the hepatocytes were infected with control or u.v.-irradiated HSV-1 at low multiplicity, and virus survival was measured. U.v.-irradiated HSV-1 exhibited the expected two-component survival curve in control or u.v. pretreated hepatocytes. The magnitude of enhanced reactivation of HSV-1 was dependent on the u.v. dose to the hepatocytes, the time of infection following u.v. pretreatment, and the level of DNA synthesis at the time of pretreatment. These results suggest that u.v. treatment of rat hepatocytes causes the induction of SOS-type functions tht may have a role in the initiation of hepatocarcinogenesis.

  12. Sex and strain differences in the hepatocyte primary culture/DNA repair test

    SciTech Connect

    McQueen, C.A.; Way, B.M. )

    1991-01-01

    The hepatocyte primary culture (HPC)/DNA repair test was developed using hepatocytes isolated from male F-344 rats. A number of genetic polymorphisms have been shown to occur in inbred strains of rats, which may lead to variation in biotransformation of xenobiotics resulting in differences in susceptibility to genotoxins. The effect of the strain utilized as a source of hepatocytes was investigated with female Lewis, F-344, and DA rats. Variation was observed when hepatocytes from the three strains were exposed to aflatoxin B{sub 1} (AFB{sub 1}). No clearcut strain differences were seen when cells were exposed to diethylnitrosamine (DEN) or 2-acetylaminofluorene. These results demonstrate that both the strain and the sex of the animal used as a source of hepatocytes can affect the HPC/DNA repair test.

  13. Culture of porcine hepatocytes or bile duct epithelial cells by inductive serum-free media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A serum-free, feeder-cell-dependent, selective culture system for the long-term culture of porcine hepatocytes or cholangiocytes was developed. Liver cells were isolated from 1 wk old pigs or young adult pigs (25 and 63 kg live weight) and were placed in primary culture on feeder-cell layers of mit...

  14. Changes in gluconeogenesis and intracellular lipid accumulation characterize uremic human hepatocytes ex vivo.

    PubMed

    Li, Meng; Ellis, Ewa; Johansson, Helene; Nowak, Greg; Isaksson, Bengt; Gnocchi, Davide; Parini, Paolo; Axelsson, Jonas

    2016-06-01

    It is well known that reduced glomerular filtration rate (GFR) leads to an increased risk of dyslipidemia, insulin resistance, and cardiovascular mortality. The liver is a central organ for metabolism, but its function in the uremic setting is still poorly characterized. We used human primary hepatocytes isolated from livers of nine donors with normal renal function to investigate perturbations in key metabolic pathways following exposure to uremic (n = 8) or healthy (n = 8) sera, and to serum-free control medium. Both uremic and healthy elicited consistent responses from hepatocytes from multiple donors and compared with serum-free control. However, at physiological insulin concentrations, uremic cells accumulated 56% more intracellular lipids. Also, when comparing uremic with healthy medium after culture, it contained more very-low-density lipoprotein-triglyceride and glucose. These changes were accompanied by decreased phosphorylation of AktS473 mRNA levels of key regulators of gluconeogenesis in uremic sera-treated hepatocytes such as phosphoenolpyruvate carboxykinase 1 and glucose 6-phosphate were elevated. We also found increased expression of 11β-hydroxysteroid dehydrogenase mRNA in uremic cells, along with high phosphorylation of downstream p53 and phospholipase C-γ1Y783 Thus our ex vivo data suggest that the uremic hepatocytes rapidly develop a glycogenic and lipogenic condition accompanied by perturbations in a large number of signaling networks. PMID:27056725

  15. NLRP3 inflammasome expression is driven by NF-κB in cultured hepatocytes.

    PubMed

    Boaru, Sorina Georgiana; Borkham-Kamphorst, Erawan; Van de Leur, Eddy; Lehnen, Eric; Liedtke, Christian; Weiskirchen, Ralf

    2015-03-13

    The inflammasomes are cytoplasmic multiprotein complexes that are responsible for activation of inflammatory reactions. In principle, there are four individual inflammasome branches (NLRP1, NLRP3, NLRC4/NALP4, and AIM2) that mediate the cleavage and activation of Caspase-1 and IL-1β that in turn lead to a complex network of cellular reactions initiating local and systemic inflammatory reactions. We have recently shown that NLRP3 expression is virtually absent in primary cultured hepatocytes and that in vitro the stimulation of hepatocytes with lipopolysaccharides results in strong activation of NLRP3 expression. We here demonstrate that this activation can be blocked by the NF-κB activation inhibitor QNZ or by infection with an adenoviral expression vector constitutively expressing a superrepressor of NF-κB. We show that QNZ blocks NF-κB-dependent expression of TNF-α, IL-1β and NLRP3. Likewise, the superrepressor of NF-κB prevents expression of NLRP3 and significantly reduces expression of inflammatory marker genes in liver cells. In a primary murine hepatoma cells, the concomitant depletion of NEMO and Caspase-8 resulted in a significant suppression of NLRP3 expression after Lipopolysaccharide challenge. Moreover, we demonstrate that a 1.3-kbp fragment located in close proximity of the most upstream transcriptional start site of the human NLRP3 gene that harbours one putative octamer NF-κB binding site renders LPS sensitivity in reporter gene assay. We conclude that NF-κB signalling is a necessary prerequisite for proper activation of the NLRP3 inflammasome in primary hepatocytes. PMID:25686493

  16. Human Embryonic and Rat Adult Stem Cells with Primitive Endoderm-Like Phenotype Can Be Fated to Definitive Endoderm, and Finally Hepatocyte-Like Cells

    PubMed Central

    Bose, Bipasha; Ordovas, Laura; Vanuytsel, Kim; Geraerts, Martine; Firpo, Meri; De Vos, Rita; Fevery, Johan; Nevens, Frederik; Hu, Wei-Shou; Verfaillie, Catherine M.

    2010-01-01

    Stem cell-derived hepatocytes may be an alternative cell source to treat liver diseases or to be used for pharmacological purposes. We developed a protocol that mimics mammalian liver development, to differentiate cells with pluripotent characteristics to hepatocyte-like cells. The protocol supports the stepwise differentiation of human embryonic stem cells (ESC) to cells with characteristics of primitive streak (PS)/mesendoderm (ME)/definitive endoderm (DE), hepatoblasts, and finally cells with phenotypic and functional characteristics of hepatocytes. Remarkably, the same protocol can also differentiate rat multipotent adult progenitor cells (rMAPCs) to hepatocyte-like cells, even though rMAPC are isolated clonally from cultured rat bone marrow (BM) and have characteristics of primitive endoderm cells. A fraction of rMAPCs can be fated to cells expressing genes consistent with a PS/ME/DE phenotype, preceding the acquisition of phenotypic and functional characteristics of hepatocytes. Although the hepatocyte-like progeny derived from both cell types is mixed, between 10–20% of cells are developmentally consistent with late fetal hepatocytes that have attained synthetic, storage and detoxifying functions near those of adult hepatocytes. This differentiation protocol will be useful for generating hepatocyte-like cells from rodent and human stem cells, and to gain insight into the early stages of liver development. PMID:20711405

  17. Comparison of human hepatoma HepaRG cells with human and rat hepatocytes in uptake transport assays in order to predict a risk of drug induced hepatotoxicity.

    PubMed

    Szabo, Monika; Veres, Zsuzsa; Baranyai, Zsolt; Jakab, Ferenc; Jemnitz, Katalin

    2013-01-01

    Human hepatocytes are the gold standard for toxicological studies but they have several drawbacks, like scarce availability, high inter-individual variability, a short lifetime, which limits their applicability. The aim of our investigations was to determine, whether HepaRG cells could replace human hepatocytes in uptake experiments for toxicity studies. HepaRG is a hepatoma cell line with most hepatic functions, including a considerable expression of uptake transporters in contrast to other hepatic immortalized cell lines. We compared the effect of cholestatic drugs (bosentan, cyclosporinA, troglitazone,) and bromosulfophthalein on the uptake of taurocholate and estrone-3-sulfate in human and rat hepatocytes and HepaRG cells. The substrate uptake was significantly slower in HepaRG cells than in human hepatocytes, still, in the presence of drugs we observed a concentration dependent decrease in uptake. In all cell types, the culture time had a significant impact not only on the uptake process but on the inhibitory effect of drugs too. The most significant drug effect was measured at 4 h after seeding. Our report is among the first concerning interactions of the uptake transporters in the HepaRG, at the functional level. Results of the present study clearly show that concerning the inhibition of taurocholate uptake by cholestatic drugs, HepaRG cells are closer to human hepatocytes than rat hepatocytes. In conclusion, we demonstrated that HepaRG cells may provide a suitable tool for hepatic uptake studies. PMID:23516635

  18. Enhancement of proliferation in a rat hepatocyte co-culture model after mitogenic stimulation.

    EPA Science Inventory

    Primary mouse and rat hepatocyte cultures have long been the gold standard for assessment of cellular changes following chemical exposure. While helpful for assessing proliferative and responses in vitro, these cultures are limited to 1 or 2 days of incubation. Our motivation was...

  19. EFFECT OF NONGENOTOXIC ENVIRONMENTAL CONTAMINATION ON CHOLESTEROL AND DNA SYNTHESIS IN CULTURED PRIMARY RAT HEPATOCYTES

    EPA Science Inventory

    The effect of certain reputedly non genotoxic agents on cholesterol and DNA synthesis was investigated in cultured rat primary hepatocytes and liver slices. epatocytes in culture were incubated for 48, 60, and 72 hrs with one of the following chemicals; namely, chloroform (CHCl3)...

  20. Assessing Concordance of Drug-Induced Transcriptional Response in Rodent Liver and Cultured Hepatocytes

    PubMed Central

    Sutherland, Jeffrey J.; Jolly, Robert A.; Goldstein, Keith M.; Stevens, James L.

    2016-01-01

    The effect of drugs, disease and other perturbations on mRNA levels are studied using gene expression microarrays or RNA-seq, with the goal of understanding molecular effects arising from the perturbation. Previous comparisons of reproducibility across laboratories have been limited in scale and focused on a single model. The use of model systems, such as cultured primary cells or cancer cell lines, assumes that mechanistic insights derived from the models would have been observed via in vivo studies. We examined the concordance of compound-induced transcriptional changes using data from several sources: rat liver and rat primary hepatocytes (RPH) from Drug Matrix (DM) and open TG-GATEs (TG), human primary hepatocytes (HPH) from TG, and mouse liver / HepG2 results from the Gene Expression Omnibus (GEO) repository. Gene expression changes for treatments were normalized to controls and analyzed with three methods: 1) gene level for 9071 high expression genes in rat liver, 2) gene set analysis (GSA) using canonical pathways and gene ontology sets, 3) weighted gene co-expression network analysis (WGCNA). Co-expression networks performed better than genes or GSA when comparing treatment effects within rat liver and rat vs. mouse liver. Genes and modules performed similarly at Connectivity Map-style analyses, where success at identifying similar treatments among a collection of reference profiles is the goal. Comparisons between rat liver and RPH, and those between RPH, HPH and HepG2 cells reveal lower concordance for all methods. We observe that the baseline state of untreated cultured cells relative to untreated rat liver shows striking similarity with toxicant-exposed cells in vivo, indicating that gross systems level perturbation in the underlying networks in culture may contribute to the low concordance. PMID:27028627

  1. Assessing Concordance of Drug-Induced Transcriptional Response in Rodent Liver and Cultured Hepatocytes.

    PubMed

    Sutherland, Jeffrey J; Jolly, Robert A; Goldstein, Keith M; Stevens, James L

    2016-03-01

    The effect of drugs, disease and other perturbations on mRNA levels are studied using gene expression microarrays or RNA-seq, with the goal of understanding molecular effects arising from the perturbation. Previous comparisons of reproducibility across laboratories have been limited in scale and focused on a single model. The use of model systems, such as cultured primary cells or cancer cell lines, assumes that mechanistic insights derived from the models would have been observed via in vivo studies. We examined the concordance of compound-induced transcriptional changes using data from several sources: rat liver and rat primary hepatocytes (RPH) from Drug Matrix (DM) and open TG-GATEs (TG), human primary hepatocytes (HPH) from TG, and mouse liver/HepG2 results from the Gene Expression Omnibus (GEO) repository. Gene expression changes for treatments were normalized to controls and analyzed with three methods: 1) gene level for 9071 high expression genes in rat liver, 2) gene set analysis (GSA) using canonical pathways and gene ontology sets, 3) weighted gene co-expression network analysis (WGCNA). Co-expression networks performed better than genes or GSA when comparing treatment effects within rat liver and rat vs. mouse liver. Genes and modules performed similarly at Connectivity Map-style analyses, where success at identifying similar treatments among a collection of reference profiles is the goal. Comparisons between rat liver and RPH, and those between RPH, HPH and HepG2 cells reveal lower concordance for all methods. We observe that the baseline state of untreated cultured cells relative to untreated rat liver shows striking similarity with toxicant-exposed cells in vivo, indicating that gross systems level perturbation in the underlying networks in culture may contribute to the low concordance. PMID:27028627

  2. Cytochrome P450 induction response in tethered spheroids as a three-dimensional human hepatocyte in vitro model.

    PubMed

    Xia, Lei; Hong, Xin; Sakban, Rashidah Binte; Qu, Yinghua; Singh, Nisha Hari; McMillian, Michael; Dallas, Shannon; Silva, Jose; Sensenhauser, Carlo; Zhao, Sylvia; Lim, Heng Keang; Yu, Hanry

    2016-02-01

    Cytochrome P450 (CYP) induction is a key risk factor of clinical drug-drug interactions that has to be mitigated in the early phases of drug discovery. Three-dimensional (3D) cultures of hepatocytes in vitro have recently emerged as a potentially better platform to recapitulate the in vivo liver structure and to maintain long-term hepatic functions as compared with conventional two-dimensional (2D) monolayer cultures. However, the majority of published studies on 3D hepatocyte models use rat hepatocytes and the response to CYP inducers between rodents and humans is distinct. In the present study, we constructed tethered spheroids on RGD/galactose-conjugated membranes as an in vitro 3D model using cryopreserved human hepatocytes. CYP3A4 mRNA expression in the tethered spheroids was induced to a significantly greater extent than those in the collagen sandwich cultures, indicating the transcriptional regulation was more sensitive to the CYP inducers in the 3D model. Induction of CYP1A2, CYP2B6 and CYP3A4 activities in the tethered spheroids were comparable to, if not higher than that observed in the collagen sandwich cultures. The membrane-based model is readily integrated into multi-well plates for higher-throughput drug testing applications, which might be an alternative model to screen the CYP induction potential in vitro with more physiological relevance. PMID:26201057

  3. Tumor necrosis factor-alpha-induced apoptosis in hepatocytes in long-term culture.

    PubMed Central

    Bour, E. S.; Ward, L. K.; Cornman, G. A.; Isom, H. C.

    1996-01-01

    Apoptosis occurs naturally in the liver and increases in specific pathogenic processes. We previously described the use of a chemically defined medium supplemented with epidermal growth factor and dimethylsulfoxide to maintain rat hepatocytes in a highly differentiated state for more than 30 days (long-term culture). In this study, we showed that hepatocytes in long-term dimethylsulfoxide culture have definite advantages over using cells in short-term culture (cells in culture for 2 to 4 days) to study apoptosis. We demonstrated that treatment with tumor necrosis factor (TNF)-alpha induced apoptosis (detected morphologically and by formation of an oligonucleosomal DNA ladder) only in hepatocytes that had been subjected to dimethylsulfoxide removal. Neither treatment with TNF-alpha alone or dimethylsulfoxide removal alone induced apoptosis. Apoptosis could be induced by concentrations as low as 500 U of TNF-alpha/ml. Although a DNA ladder was not detected by 12 hours after TNF-alpha treatment, it was easily identified by 24 hours. We conclude that this system can be used 1) to examine the underlying mechanism by which TNF-alpha causes apoptosis in hepatocytes and 2) to study induction of apoptosis in hepatocytes by other agents. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:8579111

  4. Characterization of lipid metabolism in a novel immortalized human hepatocyte cell line

    PubMed Central

    Green, Charlotte J.; Johnson, Deborah; Amin, Harsh D.; Sivathondan, Pamela; Silva, Michael A.; Wang, Lai Mun; Stevanato, Lara; McNeil, Catriona A.; Miljan, Erik A.; Sinden, John D.; Morten, Karl J.

    2015-01-01

    The development of hepatocyte cell models that represent fatty acid partitioning within the human liver would be beneficial for the study of the development and progression of nonalcoholic fatty liver disease (NAFLD). We sought to develop and characterize a novel human liver cell line (LIV0APOLY) to establish a model of lipid accumulation using a physiological mixture of fatty acids under low- and high-glucose conditions. LIV0APOLY cells were compared with a well-established cell line (HepG2) and, where possible, primary human hepatocytes. LIV0APOLY cells were found to proliferate and express some mature liver markers and were wild type for the PNPLA3 (rs738409) gene, whereas HepG2 cells carried the Ile148Met variant that is positively associated with liver fat content. Intracellular triglyceride content was higher in HepG2 than in LIV0APOLY cells; exposure to high glucose and/or exogenous fatty acids increased intracellular triglyceride in both cell lines. Triglyceride concentrations in media were higher from LIV0APOLY compared with HepG2 cells. Culturing LIV0APOLY cells in high glucose increased a marker of endoplasmic reticulum stress and attenuated insulin-stimulated Akt phosphorylation whereas low glucose and exogenous fatty acids increased AMPK phosphorylation. Although LIV0APOLY cells and primary hepatocytes stored similar amounts of exogenous fatty acids as triglyceride, more exogenous fatty acids were partitioned toward oxidation in the LIV0APOLY cells than in primary hepatocytes. LIV0APOLY cells offer the potential to be a renewable cellular model for studying the effects of exogenous metabolic substrates on fatty acid partitioning; however, their usefulness as a model of lipoprotein metabolism needs to be further explored. PMID:26126685

  5. Basal efflux of bile acids contributes to drug-induced bile acid-dependent hepatocyte toxicity in rat sandwich-cultured hepatocytes.

    PubMed

    Susukida, Takeshi; Sekine, Shuichi; Ogimura, Eiichiro; Aoki, Shigeki; Oizumi, Kumiko; Horie, Toshiharu; Ito, Kousei

    2015-10-01

    The bile salt export pump (BSEP or Bsep) functions as an apical transporter to eliminate bile acids (BAs) from hepatocytes into the bile. BSEP or Bsep inhibitors engender BA retention, suggested as an underlying mechanism of cholestatic drug-induced liver injury. We previously reported a method to evaluate BSEP-mediated BA-dependent hepatocyte toxicity by using sandwich-cultured hepatocytes (SCHs). However, basal efflux transporters, including multidrug resistance-associated proteins (MRP or Mrp) 3 and 4, also participate in BA efflux. This study examined the contribution of basal efflux transporters to BA-dependent hepatocyte toxicity in rat SCHs. The apical efflux of [(3)H]taurocholic acid (TC) was potently inhibited by 10 μM cyclosporine A (CsA), with later inhibition of basal [(3)H]TC efflux, while MK571 simultaneously inhibited both apical and basal [(3)H]TC efflux. CsA-induced BA-dependent hepatocyte toxicity was 30% at most at 10 μM CsA and ∼60% at 50 μM, while MK571 exacerbated hepatocyte toxicity at concentrations of ≥50 μM. Quinidine inhibited only basal [(3)H]TC efflux and showed BA-dependent hepatocyte toxicity in rat SCHs. Hence, inhibition of basal efflux transporters as well as Bsep may precipitate BA-dependent hepatocyte toxicity in rat SCHs. PMID:26055650

  6. DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes

    PubMed Central

    Nauwelaers, Gwendoline; Bessette, Erin E.; Gu, Dan; Tang, Yijin; Rageul, Julie; Fessard, Valérie; Yuan, Jian-Min; Yu, Mimi C.; Langouët, Sophie; Turesky, Robert J.

    2011-01-01

    DNA adduct formation of the aromatic amine, 4-aminobiphenyl (4-ABP), a known human carcinogen present in tobacco smoke, and the heterocyclic aromatic amines (HAAs), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), potential human carcinogens, which are also present in tobacco smoke or formed during the high-temperature cooking of meats, was investigated in freshly cultured human hepatocytes. The carcinogens (10 μM) were incubated with hepatocytes derived from eight different donors for time periods up to 24 h. The DNA adducts were quantified by liquid chromatography-electrospray ionization mass spectrometry with a linear quadrupole ion trap mass spectrometer. The principal DNA adducts formed for all of the carcinogens were N-(deoxyguanosin-8-yl) (dG-C8) adducts. The levels of adducts ranged from 3.4 to 140 adducts per 107 DNA bases. The highest level of adduct formation occurred with AαC, followed by 4-ABP, then by PhIP, MeIQx, and IQ. Human hepatocytes formed dG-C8-HAA-adducts at levels that were up to 100-fold greater than the amounts of adducts produced in rat hepatocytes. In contrast to HAA adducts, the levels of dG-C8-4-ABP adduct formation were similar in human and rat hepatocytes. These DNA binding data demonstrate that the rat, an animal model that is used for carcinogenesis bioassays, significantly underestimates the potential hepatic genotoxicity of HAAs in humans. The high level of DNA adducts formed by AαC, a carcinogen produced in tobacco smoke at levels that are up to 100-fold higher than the amounts of 4-ABP, is noteworthy. The possible causal role of AαC in tobacco-associated cancers warrants investigation. PMID:21456541

  7. Induction of glutathione-S-transferase activity by antioxidants in hepatocyte culture.

    PubMed

    Chen, L H; Shiau, C C

    1989-01-01

    Twelve male Sprague-Dawley rats were used for the study. Six rats were injected with benzo(a)pyrene (BP); the other six rats served as the control. Twenty-four hours after injection, hepatocytes were isolated and cultured. The cultured plates were divided into 5 groups and treated with absolute ethanol (control), butylated hydroxytoluene, vitamin E, ascorbic acid or vitamin Elascorbic acid. After 48 hours, the hepatocytes were harvested for enzyme activation determination. With both control and BP-injected rats, each antioxidant treatment significantly increased glutathione-S-transferase activity. The results suggest that antioxidants may have a detoxifying effect against BP-induced carcinogenesis. PMID:2817788

  8. Stimulation of fibrinogen synthesis in cultured rat hepatocytes by fibrinogen degradation product fragment D.

    PubMed Central

    LaDuca, F M; Tinsley, L A; Dang, C V; Bell, W R

    1989-01-01

    The direct stimulation of fibrinogen biosynthesis by fibrinogen degradation produces (FDPs) was studied in rat hepatocyte cultures. Pure rat FDP fragment D (FDP-D) (Mr 90,000) and FDP fragment E (FDP-E) (Mr 40,000) and mixtures of the two (FDP-DE) were added to rat hepatocytes cultured in serum-free hormonally defined medium. Hydrocortisone (20 microM) significantly increased synthesis of fibrinogen, as determined by incorporation of [35S]methionine. FDP-D and FDP-E did not increase fibrinogen synthesis in the presence of hydrocortisone. However, hepatocytes cultured without hydrocortisone displayed increased fibrinogen synthesis (2.0- to 2.8-fold) with FDP-D (2.6-6.7 microM) but not with FDP-E (5.7 microM). At these FDP concentrations the synthesis of albumin, haptoglobin, and transferrin was not increased. FDP-D-induced fibrinogen synthesis was inhibited (greater than 90%) by actinomycin D and cycloheximide, indicating that the increase in [35S]methionine incorporation was from de novo protein synthesis. The role of FDP-D was further substantiated by showing that FDP-D, but not FDP-E, bound to the hepatocytes. These data indicate that FDP-D, but not FDP-E, directly and specifically stimulates fibrinogen synthesis in rat hepatocytes; this stimulation does not require any additional serum or protein cofactors. Images PMID:2813424

  9. Distribution and origin of the basement membrane component perlecan in rat liver and primary hepatocyte culture.

    PubMed Central

    Rescan, P. Y.; Loréal, O.; Hassell, J. R.; Yamada, Y.; Guillouzo, A.; Clément, B.

    1993-01-01

    Basement membranes contain three major components (ie collagen IV, laminin, and the heparan sulfate proteoglycan termed perlecan). Although the distribution and origin of both collagen IV and laminin have been well documented in the liver, perlecan has been poorly investigated, so far. We have studied the distribution and cellular origin of perlecan in rat livers in various conditions as well as in hepatocyte primary culture. By immunolocalization in both adult and 18-day-old fetal liver, perlecan was found in portal spaces, around central veins, and throughout the lobule. Immunoelectron microscopy revealed its presence at the level of basement membranes surrounding bile ducts and blood vessels, and in the space of Disse discontinuously interacting with hepatocyte microvilli. Precursors of perlecan were detected in the rough endoplasmic reticulum of bile duct cells and both vascular and sinusoidal endothelial cells. Both hepatocytes and Ito cells were negative. Northern-blot analysis confirmed the lack of appreciable expression of perlecan in hepatocytes isolated from either fetal or adult livers. In 18-month-diethylnitrosamine-treated rat liver, perlecan was abundant in neoplastic nodules. Electron microscopic investigation revealed an almost continuous layer of perlecan in the space of Disse and intracellular staining in sinusoidal endothelial cells, only. Perlecan mRNAs were detectable in malignant nodules, and absent in hepatocytes from nontumorous areas. Hepatocytes expressed high levels of perlecan mRNAs only when put in culture. This expression was reduced in conditions that allow improvement of hepatocyte survival and function (ie addition of corticoids, dimethylsulfoxide or nicotinamide to the medium, or in coculture with liver epithelial cells from biliary origin). Immunolocalization by light and electron microscopy showed that deposition of the proteoglycan occurred in coculture, in basement membranelike structures located around hepatocyte cords. In

  10. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    SciTech Connect

    Junker, L.H.; Davis, R.A. )

    1989-12-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  11. Functionally Enhanced Human Stem Cell Derived Hepatocytes in Galactosylated Cellulosic Sponges for Hepatotoxicity Testing.

    PubMed

    Tasnim, Farah; Toh, Yi-Chin; Qu, Yinghua; Li, Huan; Phan, Derek; Narmada, Balakrishnan C; Ananthanarayanan, Abhishek; Mittal, Nikhil; Meng, Ryan Q; Yu, Hanry

    2016-06-01

    Pluripotent stem cell derived hepatocyte-like cells (hPSC-HLCs) are an attractive alternative to primary human hepatocytes (PHHs) used in applications ranging from therapeutics to drug safety testing studies. It would be critical to improve and maintain mature hepatocyte functions of the hPSC-HLCs, especially for long-term studies. If 3D culture systems were to be used for such purposes, it would be important that the system can support formation and maintenance of optimal-sized spheroids for long periods of time, and can also be directly deployed in liver drug testing assays. We report the use of 3-dimensional (3D) cellulosic scaffold system for the culture of hPSC-HLCs. The scaffold has a macroporous network which helps to control the formation and maintenance of the spheroids for weeks. Our results show that culturing hPSC-HLCs in 3D cellulosic scaffolds increases functionality, as demonstrated by improved urea production and hepatic marker expression. In addition, hPSC-HLCs in the scaffolds exhibit a more mature phenotype, as shown by enhanced cytochrome P450 activity and induction. This enables the system to show a higher sensitivity to hepatotoxicants and a higher degree of similarity to PHHs when compared to conventional 2D systems. These results suggest that 3D cellulosic scaffolds are ideal for the long-term cultures needed to mature hPSC-HLCs. The mature hPSC-HLCs with improved cellular function can be continually maintained in the scaffolds and directly used for hepatotoxicity assays, making this system highly attractive for drug testing applications. PMID:27157693

  12. Application of electroimmunoassay to the study of plasma protein synthesis in cultured hepatocytes.

    PubMed

    Grieninger, G; Pindyck, J; Hertzberg, K M; Mosesson, M W

    1979-01-01

    Electroimmunoassay has been applied to the study of plasma protein synthesis and secretion in liver cell cultures. The assay is performed on unconcentrated samples of culture medium containing the secreted plasma proteins and yields results within 2 hours. The characteristics of plasma protein production by the cultured hepatocytes coupled with the sensitivity of this assay permit the study of plasma protein in synthesis and its regulation by hormones and other agents without the routine use of radioisotopes. PMID:518014

  13. Potential interactions between HIV drugs, ritonavir and efavirenz and anticancer drug, nilotinib--a study in primary cultures of human hepatocytes that is applicable to HIV patients with cancer.

    PubMed

    Pillai, Venkateswaran C; Parise, Robert A; Christner, Susan M; Rudek, Michelle A; Beumer, Jan H; Venkataramanan, Raman

    2014-11-01

    Nilotinib is used to treat chronic myeloid leukemia (CML), and is metabolized by CYP3A. With a black-box warning for QT prolongation, which is exposure dependent, controlling for drug interactions is clinically relevant. Treatments of HIV patients with CML are with HAART drugs, ritonavir and efavirenz, may cause complex drug interactions through CYP3A inhibition or induction. We evaluated the interactions of ritonavir or efavirenz on nilotinib using human hepatocytes and compared these interactions with those of ketoconazole or rifampin, classical CYP3A inhibitor and inducer, respectively. Hepatocytes were treated with vehicle, ritonavir (10 μM), ketoconazole (10 μM), efavirenz (10 μM), or rifampin (10 μM) for 5 days. On day 5, nilotinib (3 μM) was coincubated for an additional 24-48 hours. The concentrations of nilotinib were quantitated in collected samples (combined lysate and medium) by LC-MS. Apparent intrinsic clearance (CL(int,app)) of nilotinib was lowered 5.8- and 3.1-fold, respectively, by ritonavir and ketoconazole. Efavirenz and rifampin increased the CL(int,app) of nilotinib by 2.1- and 4.1-fold, respectively. The clinically recommended dose (300 mg twice daily) of nilotinib may have to be reduced substantially (150 mg once daily) or increased (400 mg thrice daily), respectively, to achieve desired drug exposure, when ritonavir or efavirenz is co-administered. PMID:24846165

  14. In vitro biocompatibility of polypyrrole/PLGA conductive nanofiber scaffold with cultured rat hepatocytes

    NASA Astrophysics Data System (ADS)

    Chu, Xue-Hui; Xu, Qian; Feng, Zhang-Qi; Xiao, Jiang-Qiang; Li, Qiang; Sun, Xi-Tai; Cao, Yang; Ding, Yi-Tao

    2014-09-01

    To intruduce conductive biomaterial into liver tissue engineering, a conductive nanofiber scaffold, polypyrrole/poly(lactic-co-glycolic)acid(PLGA), was designed and prepared via electro-spinning and oxidative polymerization. Effects of the scaffold on hepatocyte adhesion, viability and function were then investigated. SEM revealed pseudopodium formation and abundant extracellular matrix on the surface of PLGA membrane and polypyrrole/PLGA membrane. The adhesion rate, cellular activity, urea synthesis and albumin secretion of the hepatocytes cultured on polypyrrole/PLGA group were similar to those on the PLGA group, but were significantly higher than those on the control group. There were no significant differences in concentrations of LDH and TNF-α among three groups. These results suggested the potential application of this conductive nanofiber scaffold as a suitable substratum for hepatocyte culturing in liver tissue engineering.

  15. Comparison of S9 mix and hepatocytes as external metabolizing systems in mammalian cell cultures: cytogenetic effects of 7,12-dimethylbenzanthracene and aflatoxin B1

    SciTech Connect

    Madle, E.; Tiedemann, G.; Madle, S.; Oett, A.; Kaufmann, G.

    1986-01-01

    Two external metabolizing systems, S9 mix from Aroclor-induced rat livers and freshly isolated hepatocytes, were used for activation in cultures of human lymphocytes and V79 cells. 7, 12-dimethylbenzanthracene (DMBA) and aflatoxin B1 (AFB1) were employed as indirectly acting reference mutagens. Mutagenic effects were measured by induction of sister chromatid exchange (SCE). With DMBA, SCE-inducing effects were found to be quite similar after activation by S9 mix and activation by hepatocytes. In contrast with AFB1, S9 activation led to a stronger SCE induction than hepatocyte activation in both target cells. The induction of chromosomal aberrations by AFB1 after activation by the two metabolizing systems was also analyzed in V79 cells. This experiment again revealed that AFB1 was more efficiently activated by S9 mix than by hepatocytes. The experiments have shown that the suitability of hepatocytes as an activation system is not restricted to microbial or eukaryotic point mutation assays, but that hepatocyte metabolism can also be successfully included in cytogenetic tests with short- and long-term cultures of mammalian target cells.

  16. Microstructured multi-well plate for three-dimensional packed cell seeding and hepatocyte cell culture

    PubMed Central

    Goral, Vasiliy N.; Au, Sam H.; Faris, Ronald A.; Yuen, Po Ki

    2014-01-01

    In this article, we present a microstructured multi-well plate for enabling three-dimensional (3D) high density seeding and culture of cells through the use of a standard laboratory centrifuge to promote and maintain 3D tissue-like cellular morphology and cell-specific functionality in vitro without the addition of animal derived or synthetic matrices or coagulants. Each well has microfeatures on the bottom that are comprised of a series of ditches/open microchannels. The dimensions of the microchannels promote and maintain 3D tissue-like cellular morphology and cell-specific functionality in vitro. After cell seeding with a standard pipette, the microstructured multi-well plates were centrifuged to tightly pack cells inside the ditches in order to enhance cell-cell interactions and induce formation of 3D cellular structures during cell culture. Cell-cell interactions were optimized based on cell packing by considering dimensions of the ditches/open microchannels, orientation of the microstructured multi-well plate during centrifugation, cell seeding density, and the centrifugal force and time. With the optimized cell packing conditions, we demonstrated that after 7 days of cell culture, primary human hepatocytes adhered tightly together to form cord-like structures that resembled 3D tissue-like cellular architecture. Importantly, cell membrane polarity was restored without the addition of animal derived or synthetic matrices or coagulants. PMID:25379107

  17. Effects of culture substrates and normal hepatic sinusoidal cells on in vitro hepatocyte synthesis of Apo-SAA.

    PubMed

    Subrahmanyan, L; Kisilevsky, R

    1988-03-01

    Primary hepatocyte cultures synthesize apo-SAA upon stimulation with supernatant from lipopolysaccharide (LPS)-treated macrophages. The matrices on which the hepatocytes were grown influence their basal apo-SAA synthetic capability. Fibronectin was superior. Coculturing hepatocytes with hepatic sinusoidal cells did not adversely affect the ability of hepatocytes to synthesize and secrete apo-SAA into the culture medium. In 72 h, clear islands of endothelial cells nestled in layers of hepatocytes. Both apo-SAA and apo-SAA were made in considerable quantities but no evidence could be obtained that the apo-SAA were free of apo-A-1. The coculturing of hepatocytes with liver sinusoidal cells, the site of ultimate AA deposition, is a first step in establishing an in vitro system for AA amyloidogenesis. PMID:3353686

  18. Regulation of Liver Enriched Transcription Factors in Rat Hepatocytes Cultures on Collagen and EHS Sarcoma Matrices

    PubMed Central

    Borlak, Jürgen; Singh, Prafull Kumar; Rittelmeyer, Ina

    2015-01-01

    Liver-enriched transcription factors (LETF) play a crucial role in the control of liver-specific gene expression and for hepatocytes to retain their molecular and cellular functions complex interactions with extra cellular matrix (ECM) are required However, during cell isolation ECM interactions are disrupted and for hepatocytes to regain metabolic competency cells are cultured on ECM substrata. The regulation of LETFs in hepatocytes cultured on different ECM has not been studied in detail. We therefore compared two common sources of ECM and evaluated cellular morphology and hepatocyte differentiation by investigating DNA binding activity of LETFs at gene specific promoters and marker genes of hepatic metabolism. Furthermore, we studied testosterone metabolism and albumin synthesis to assess the metabolic competence of cell cultures. Despite significant difference in morphological appearance and except for HNF1β (p<0.001) most LETFs and several of their target genes did not differ in transcript expression after Bonferroni adjustment when cultured on collagen or Matrigel. Nonetheless, Western blotting revealed HNF1β, HNF3α, HNF3γ, HNF4α, HNF6 and the smaller subunits of C/EBPα and C/EBPβ to be more abundant on Matrigel cultured cells. Likewise, DNA binding activity of HNF3α, HNF3β, HNF4α, HNF6 and gene expression of hepatic lineage markers were increased on Matrigel cultured hepatocytes. To further investigate hepatic gene regulation, the effects of Aroclor 1254 treatment, e.g. a potent inducer of xenobiotic defense were studied in vivo and in vitro. The gene expression of C/EBP-α increased in rat liver and hepatocytes cultured on collagen and this treatment induced DNA binding activity of HNF4α, C/EBPα and C/EBPβ and gene expression of CYP1A1 and CYP1A2 in vivo and in vitro. Taken collectively, two sources of ECM greatly affected hepatocyte morphology, activity of liver enriched transcription factors, hepatic gene expression and metabolic competency

  19. Robust generation of hepatocyte-like cells from human embryonic stem cell populations.

    PubMed

    Medine, Claire N; Lucendo-Villarin, Baltasar; Zhou, Wenli; West, Christopher C; Hay, David C

    2011-01-01

    Despite progress in modelling human drug toxicity, many compounds fail during clinical trials due to unpredicted side effects. The cost of clinical studies are substantial, therefore it is essential that more predictive toxicology screens are developed and deployed early on in drug development (Greenhough et al 2010). Human hepatocytes represent the current gold standard model for evaluating drug toxicity, but are a limited resource that exhibit variable function. Therefore, the use of immortalised cell lines and animal tissue models are routinely employed due to their abundance. While both sources are informative, they are limited by poor function, species variability and/or instability in culture (Dalgetty et al 2009). Pluripotent stem cells (PSCs) are an attractive alternative source of human hepatocyte like cells (HLCs) (Medine et al 2010). PSCs are capable of self renewal and differentiation to all somatic cell types found in the adult and thereby represent a potentially inexhaustible source of differentiated cells. We have developed a procedure that is simple, highly efficient, amenable to automation and yields functional human HLCs (Hay et al 2008 ; Fletcher et al 2008 ; Hannoun et al 2010 ; Payne et al 2011 and Hay et al 2011). We believe our technology will lead to the scalable production of HLCs for drug discovery, disease modeling, the construction of extra-corporeal devices and possibly cell based transplantation therapies. PMID:22064456

  20. Evaluation of a carp primary hepatocyte culture system for screening chemicals for oestrogenic activity.

    PubMed

    Bickley, L K; Lange, A; Winter, M J; Tyler, C R

    2009-09-14

    The presence of endocrine disrupting chemicals (EDCs) in the environment has driven the development of screening and testing assays to both identify chemicals with hormonal activity and evaluate their potential to cause adverse effects. As the number of animals used for research and regulatory purposes rises, and set against a desire to reduce animal testing, there is increased emphasis on the development and application of in vitro techniques to evaluate chemical risks to the environment. Induction of vitellogenin (VTG) in isolated fish liver cells has been used successfully to identify a wide range of EDCs, including both natural and synthetic oestrogens and a variety of other xenoestrogens. However, the vitellogenic response reported for hepatocytes in culture has been shown to vary widely, making comparisons between studies difficult. The work presented in this paper explored the variability of the vitellogenic response in primary cultures of common carp (Cyprinus carpio) hepatocytes following exposure to the model oestrogenic compound, 17beta-oestradiol (E2). As expected, variability in the vitellogenic response was observed, both in terms of the sensitivity and magnitude of VTG induction, for hepatocytes isolated from different fish. An apparent difference was observed in the response of isolated hepatocytes based on the sex of the donor fish; maximum levels of E2-stimulated VTG synthesis in hepatocytes derived from females appeared higher (1962 ng mL(-1)+/-487 [n=9] compared with 1194 ng mL(-1)+/-223 for hepatocytes from males [n=9]) and EC(50) values lower (1.61+/-0.4 microM E2 for females and 2.12+/-0.2 microM E2 for males). However, these differences were not statistically significant, likely in part due to the variation observed in the vitellogenic response. In particular, hepatocytes derived from female fish showed more variation than their male counterparts (the co-efficient of variation for females was 77% compared to 28% for males). Despite the

  1. Interactions of inhibitors of carnitine palmitoyltransferase I and fibrates in cultured hepatocytes.

    PubMed Central

    Gerondaes, P; Alberti, K G; Agius, L

    1988-01-01

    Culture of rat hepatocytes with etomoxir, an inhibitor of carnitine palmitoyltransferase I (CPT I), for 48 h, resulted in increased carnitine acetyltransferase (CAT) activity (74%), a marked decrease in CPT activity (82%) measured in detergent extracts, and increased activities of glucose-6-phosphate dehydrogenase (227%) and fructose-1,6-bisphosphatase (65%). Changes in CAT and CPT activities were not observed after 4 h culture with etomoxir. When hepatocytes were cultured with etomoxir and benzafibrate (a hypolipidaemic analogue of clofibrate) for 48 h, etomoxir prevented the 5-fold increase in CAT activity caused by bezafibrate, whereas bezafibrate suppressed the increase in glucose-6-phosphate dehydrogenase and fructose-bisphosphatase caused by etomoxir. However, bezafibrate did not prevent the suppression of CPT activity by etomoxir. Etomoxir inhibited palmitate beta-oxidation and ketogenesis after short-term (0-4 h) and long-term (48 h) exposure, but it caused accumulation of triacylglycerol in hepatocytes only after short-term exposure (0-4 h). These effects of etomoxir on fatty acid metabolism and suppression of CPT (after 48 h) were similar in periportal and perivenous hepatocytes, but the increases in CAT and glucose-6-phosphate dehydrogenase activities were higher in periportal than in perivenous cells. The effects of CPT I inhibitors on CAT activity and long-term suppression of CPT activity are probably mediated by independent mechanisms. PMID:3421940

  2. Human monocyte-derived cells with individual hepatocyte characteristics: a novel tool for personalized in vitro studies.

    PubMed

    Benesic, Andreas; Rahm, Nora L; Ernst, Samuel; Gerbes, Alexander L

    2012-06-01

    Gender, ethnicity and individual differences in hepatic metabolism have major impact on individual drug response, adverse events and attrition rate during drug development. Therefore, there is an urgent need for reliable test systems based on human cells. Yet, the use of primary human hepatocytes (PHHs) is restricted by limited availability, invasive preparation and short-term stability in culture. All other cellular approaches proposed so far have major disadvantages. We investigated whether peripheral human monocytes after cultivation according to our novel protocol (monocyte-derived hepatocyte-like cells (MH cells)) can serve as an in vitro model for hepatocyte metabolism. Enzyme activities, synthesis parameters (coagulation factor VII and urea) and cytochrome (CY) P450 activities and induction were investigated. Furthermore, MH cells were compared with PHH from the same donor. Using our protocol, we could generate cells that exhibit hepatocyte-like properties: These cells show 71±9% of specific ALT activity, 41±3% of CYP3A4 activity and 65±13% of factor VII secretion when compared with PHHs. Consequently, CYP-mediated acetaminophen toxicity and drug interactions could be shown. Moreover, the investigated parameters were stable in culture over at least 4 weeks. Furthermore, MH cells retain gender-specific and donor-specific CYP activities and toxicity profiles, respectively. MH cells show quantitative and qualitative approximation to human hepatocytes concerning CYP-metabolism and toxicity. Our data support individual prediction of toxicity and CYP metabolism. MH cells are a novel tool to investigate long-term hepatic toxicity, metabolism and drug interactions. PMID:22469698

  3. Trichostatin A, a critical factor in maintaining the functional differentiation of primary cultured rat hepatocytes

    SciTech Connect

    Henkens, Tom . E-mail: Tom.Henkens@vub.ac.be; Papeleu, Peggy; Elaut, Greetje; Vinken, Mathieu; Rogiers, Vera; Vanhaecke, Tamara

    2007-01-01

    Histone deacetylase inhibitors (HDI) have been shown to increase differentiation-related gene expression in several tumor-derived cell lines by hyperacetylating core histones. Effects of HDI on primary cultured cells, however, have hardly been investigated. In the present study, the ability of trichostatin A (TSA), a prototype hydroxamate HDI, to counteract the loss of liver-specific functions in primary rat hepatocyte cultures has been investigated. Upon exposure to TSA, it was found that the cell viability of the cultured hepatocytes and their albumin secretion as a function of culture time were increased. TSA-treated hepatocytes also better maintained cytochrome P450 (CYP)-mediated phase I biotransformation capacity, whereas the activity of phase II glutathione S-transferases (GST) was not affected. Western blot and qRT-PCR analysis of CYP1A1, CYP2B1 and CYP3A11 protein and mRNA levels, respectively, further revealed that TSA acts at the transcriptional level. In addition, protein expression levels of the liver-enriched transcription factors (LETFs) hepatic nuclear factor 4 alpha (HNF4{alpha}) and CCAAT/enhancer binding protein alpha (C/EBP{alpha}) were accordingly increased by TSA throughout culture time. In conclusion, these findings indicate that TSA plays a major role in the preservation of the differentiated hepatic phenotype in culture. It is suggested that the effects of TSA on CYP gene expression are mediated via controlling the expression of LETFs.

  4. Hepatocyte growth factor enhances the barrier function in primary cultures of rat brain microvascular endothelial cells.

    PubMed

    Yamada, Narumi; Nakagawa, Shinsuke; Horai, Shoji; Tanaka, Kunihiko; Deli, Maria A; Yatsuhashi, Hiroshi; Niwa, Masami

    2014-03-01

    The effects of hepatocyte growth factor (HGF) on barrier functions were investigated by a blood-brain barrier (BBB) in vitro model comprising a primary culture of rat brain capillary endothelial cells (RBEC). In order to examine the response of the peripheral endothelial cells to HGF, human umbilical vascular endothelial cells (HUVEC) and human dermal microvascular endothelial cells (HMVEC) were also treated with HGF. HGF decreased the permeability of RBEC to sodium fluorescein and Evans blue albumin, and dose-dependently increased transendothelial electrical resistance (TEER) in RBEC. HGF altered the immunochemical staining pattern of F-actin bands and made ZO-1 staining more distinct on the linear cell borders in RBEC. In contrast, HGF increased sodium fluorescein and Evans blue albumin permeability in HMVEC and HUVEC, and decreased TEER in HMVEC. In HMVEC, HGF reduced cortical actin bands and increased stress fiber density, and increased the zipper-like appearance of ZO-1 staining. Western blot analysis showed that HGF significantly increased the amount of ZO-1 and VE-cadherin. HGF seems to act on the BBB to strengthen BBB integrity. These findings indicated that cytoskeletal rearrangement and cell-cell adhesion, such as through VE-cadherin and ZO-1, are candidate mechanisms for the influence of HGF on the BBB. The possibility that HGF has therapeutic significance in protecting the BBB from damage needs to be considered. PMID:24370951

  5. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    SciTech Connect

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D.

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  6. Genomic responses to hepatitis B virus (HBV) infection in primary human hepatocytes

    PubMed Central

    Ancey, Pierre-Benoit; Testoni, Barbara; Gruffaz, Marion; Cros, Marie-Pierre; Durand, Geoffroy; Le Calvez-Kelm, Florence; Durantel, David; Herceg, Zdenko; Hernandez-Vargas, Hector

    2015-01-01

    Viral infections are able to modify the host's cellular programs, with DNA methylation being a biological intermediate in this process. The extent to which viral infections deregulate gene expression and DNA methylation is not fully understood. In the case of Hepatitis B virus (HBV), there is evidence for an interaction between viral proteins and the host DNA methylation machinery. We studied the ability of HBV to modify the host transcriptome and methylome, using naturally infected primary human hepatocytes to better mimic the clinical setting. Gene expression was especially sensitive to culture conditions, independently of HBV infection. However, we identified non-random changes in gene expression and DNA methylation occurring specifically upon HBV infection. There was little correlation between expression and methylation changes, with transcriptome being a more sensitive marker of time-dependent changes induced by HBV. In contrast, a set of differentially methylated sites appeared early and were stable across the time course experiment. Finally, HBV-induced DNA methylation changes were defined by a specific chromatin context characterized by CpG-poor regions outside of gene promoters. These data support the ability of HBV to modulate host cell expression and methylation programs. In addition, it may serve as a reference for studies addressing the genome-wide consequences of HBV infection in human hepatocytes. PMID:26565721

  7. Hepatocyte spheroid culture on fibrous scaffolds with grafted functional ligands as an in vitro model for predicting drug metabolism and hepatotoxicity.

    PubMed

    Yan, Shili; Wei, Jiaojun; Liu, Yaowen; Zhang, Hong; Chen, Jianmei; Li, Xiaohong

    2015-12-01

    The identification of a biologic substrate for maintaining hepatocyte functions is essential to provide reliable and predictable models for in vitro drug screening. In the current study, a three-dimensional culture of hepatocytes was established on highly porous fibrous scaffolds with grafted galactose and RGD to afford extensive cell-cell and cell-scaffold interactions spatially. The pore size and ligand densities indicated significant effects on the formation of hepatocyte spheroids in balancing the cell retention, adhesion, and migration on fibrous scaffolds. Fibrous scaffolds with an average pore size of 60 μm and surface grafting densities of galactose at 5.9 nmol/cm(2) and RGD at 6.9 pmol/cm(2) provided optimal microenvironments for hepatocyte infiltration and multicellular spheroid formation. Significant promotions were also demonstrated in the syntheses of albumin and urea and the activities of phase I (CYP 3A11 and CYP 2C9) and phase II enzymes. The in vitro metabolism tests on testosterone and acetaminophen by hepatocytes on the optimal scaffolds indicated the predicated clearance rates of 50.7 and 22.6 ml/min/kg, respectively, which were comparable to the in vivo values of rats. The in vitro hepatotoxicity tests on amiodarone hydrochloride and acetaminophen predicted the half maximal effective concentrations (EC50) to reflect the in vivo toxic plasma concentrations in human. In addition, the enzyme activities, predicted clearance rates and hepatotoxicity values of hepatocytes on the optimal scaffolds experienced sensitive responsiveness to specific inducers or inhibitors of CYP 3A11 and phase II enzymes, exhibiting in vivo-in vitro correlations to a certain extent. These results demonstrate the feasibility of hepatocyte spheroid culture on fibrous scaffolds as an potential in vitro testing model to predict the in vivo drug metabolism, hepatotoxicity, and drug-drug interactions. PMID:26409440

  8. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  9. COVALENT BINDING OF TRICHLOROETHYLENE TO PROTEINS IN HUMAN AND RAT HEPATOCYTES. (R826409)

    EPA Science Inventory

    The environmental contaminant and occupational solvent trichloroethylene is metabolized to a reactive intermediate that covalently binds to specific hepatic proteins in exposed mice and rats. In order to compare covalent binding between humans and rodents, primary hepatocyte c...

  10. Structural analysis of fibrinogen synthesized by cultured chicken hepatocytes in the presence or absence of dexamethasone.

    PubMed

    Amrani, D L; Plant, P W; Pindyck, J; Mosesson, M W; Grieninger, G

    1983-03-30

    Hepatocyte monolayers, derived from chick embryos and cultured in chemically defined medium without hormones, synthesize and secrete fibrinogen that resembles chicken plasma fibrinogen immunochemically and structurally. Addition of a synthetic glucocorticoid, dexamethasone, to the cultured cells resulted in an appreciable and relatively selective increase in fibrinogen synthesis. Autoradiography of fibrinogen that had been metabolically labelled with [35S]methionine and then subjected to SDS-polyacrylamide gel electrophoresis, unreduced or under disulfide-reducing conditions, revealed that only dimeric forms of fibrinogen, containing undegraded A alpha, B beta, and gamma chains, were secreted under stimulated and unstimulated culture conditions. PMID:6830818

  11. Effects of Trichostatin A on drug uptake transporters in primary rat hepatocyte cultures.

    PubMed

    Ramboer, Eva; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The present study was set up to investigate the effects of Trichostatin A (TSA), a prototypical epigenetic modifier, on the expression and activity of hepatic drug uptake transporters in primary cultured rat hepatocytes. To this end, the expression of the sinusoidal transporters sodium-dependent taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 4 (Oatp4) was monitored by real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblotting. The activity of the uptake transporters was analyzed using radiolabeled substrates and chemical inhibitors. Downregulation of the expression and activity of Oatp4 and Ntcp was observed as a function of the cultivation time and could not be counteracted by TSA. In conclusion, the epigenetic modifier TSA does not seem to exert a positive effect on the expression and activity of the investigated uptake transporters in primary rat hepatocyte cultures. PMID:26648816

  12. Morphological damage induced by Escherichia coli lipopolysaccharide in cultured hepatocytes: localization and binding properties.

    PubMed Central

    Pagani, R.; Portolés, M. T.; Díaz-Laviada, I.; Municio, A. M.

    1988-01-01

    Lipopolysaccharides (LPS) from Gram-negative bacteria are considered to be the responsible agents for the induction of endotoxic shock, affecting the liver as a target organ. In this study, the cell morphology and some biochemical properties of 24 h-culture-hepatocyte monolayers treated with Escherichia coli 0111:B4 lipopolysaccharide, were observed. Cell morphology was observed by scanning electron microscopy and immunofluorescence methods. LPS interaction induced an increase in rounded cells with diminished adhesion capacity. As biochemical parameters, albumin synthesis and 2-deoxyglucose uptake were measured. LPS decreased the hexose uptake in a dose-dependent manner. Binding of (14C)LPS to cultured hepatocytes showed that LPS binds to non-specific constituents of the membrane bilayer. Images Fig. 1 Fig. 2 Fig. 3 Fig. 7 PMID:3052562

  13. Utilization of supplemental methionine sources by primary cultures of chick hepatocytes

    SciTech Connect

    Dibner, J.J.

    1983-10-01

    Utilization of 2-hydroxy-4-(methylthio) butanoic acid (HMB) as a substrate for protein synthesis was studied by using primary cultures of chick liver cells. Cultures were prepared by enzymatic dissociation of livers from week old Hubbard broiler chicks and were maintained for 4 days under nonproliferative conditions. Hepatocyte differentiation was verified by using dexamethasone induction of tyrosine aminotransferase activity. Conversion of (14C)HMB to L-methionine was shown by chromatographic analysis of hepatocyte protein hydrolysate and incorporation into protein was proven by cycloheximide inhibition of synthesis. When incorporation of HMB was compared to that of DL-methionine (DLM) equimolar quantities of the two sources were found in liver cell protein. These results support, at a cellular level, the conclusion that HMB and DLM are biochemically equivalent sources of methionine for protein synthesis.

  14. Protectivity of blue honeysuckle extract against oxidative human endothelial cells and rat hepatocyte damage.

    PubMed

    Palíková, Irena; Valentová, Katerina; Oborná, Ivana; Ulrichová, Jitka

    2009-08-12

    The effect of Lonicera caerulea L. (blue honeysuckle) phenolic fraction (18.5% anthocyanins) on cell viability and against oxidative damage in low density lipoproteins (oxLDL), in rat microsomes and in primary cultures of rat hepatocytes and human umbilical vein endothelial cells (HUVEC), was tested. The phenolic fraction was nontoxic to rat hepatocytes and HUVEC at tested concentrations (1-1000 microg/mL) and time intervals up to 24 h inclusive. Phenolic fraction inhibited rat liver microsome peroxidation, induced by tert-butyl hydroperoxide (tBH), with IC(50) values of 160 +/- 20 microg/mL. The fraction at 0.5, 1.0, and 2.0 microg/mL delayed LDL oxidation, induced by Cu(2+), by 130 +/- 20%, 200 +/- 30%, and 400 +/- 10%, respectively. The treatment of HUVEC with oxidatively modified LDL induced an increase in lactate dehydrogenase (LDH) leakage and thiobarbituric acid reactive substances (TBARS) formation, and resulted in lower formazan formation from 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) uptake, most pronounced for 200 microg/mL (24 h oxidation) after 2 h of incubation. The protective effect of the phenolic fraction against cell damage caused by oxLDL was noted at 0.1 microg/mL for HUVEC and against tBH at 1000 microg/mL for both HUVEC and hepatocytes. The observed protective effects were probably due to the antioxidant properties of L. caerulea constituents, mainly anthocyanins. Microsome peroxidation and LDL oxidation inhibition results provide promising perspectives into the prevention of some oxidative stress-associated diseases. Other data are important in in vitro systems but seem to be accidental in vivo. PMID:19572653

  15. Inducing coproporphyria in rat hepatocyte cultures using cyclic AMP and cyclic AMP-releasing agents.

    PubMed

    De Matteis, Francesco; Harvey, Carolyn

    2005-07-01

    Cyclic AMP (c-AMP), added on its own to rat hepatocyte cultures, caused a marked accumulation of coproporphyrin III. The results obtained by comparing the effect of c-AMP to that of exogenous 5-aminolevulinate (ALA), and from adding c-AMP and ALA together, indicated that the coproporphyrinogen III metabolism was blocked, even though no inhibition of the relevant enzyme, coproporphyrinogen oxidase, could be demonstrated. Preferential accumulation of coproporphyrin could also be produced in cultures of rat hepatocytes by agents that raise the cellular levels of cyclic AMP, such as glucagon. The effect of supplementing the culture medium with triiodothyronine (T3) on the response of rat hepatocytes to c-AMP was also investigated. T3, which is known to stimulate mitochondrial respiration, uncoupling O2 consumption from ATP synthesis, produced a c-AMP-like effect when given on its own and potentiated the effect of c-AMP, with an apparent increase in the severity of the metabolic block. It is suggested that an oxidative mechanism may be activated in c-AMP and T3-induced coproporphyria, preferentially involving the mitochondrial compartment, leading to oxidation of porphyrinogen intermediates of haem biosynthesis, especially coproporphyrinogen. Coproporphyin, the fully oxidized aromatic derivative produced, cannot be metabolized and will therefore accumulate. PMID:15902420

  16. Long-term maintenance of taurocholate uptake by adult rat hepatocytes co-cultured with a liver epithelial cell line.

    PubMed

    Foliot, A; Glaise, D; Erlinger, S; Guguen-Guillouzo, C

    1985-01-01

    Taurocholate (TC) uptake by adult rat hepatocytes co-cultured with other rat liver epithelial cells (RLEC) was studied comparatively to hepatocytes in primary culture. Cells were cultured on Petri dishes for desired times prior to measuring their ability to transport TC. TC uptake was linear for 150 sec in both culture conditions. In hepatocytes cultured alone, the initial rate of TC uptake at an extracellular concentration of 100 microM was 0.19 +/- 0.02 nmole per min per 10(6) cells after 48 hr of culture and decreased by 75% after 4 to 6 days. In hepatocytes co-cultured with RLEC, the rate of uptake at 48 hr (0.31 +/- 0.01 nmole per min per 10(6) cells) was significantly higher than in hepatocytes cultured alone (p less than 0.01); in addition, TC uptake remained stable at an average rate of 0.17 +/- 0.01 nmole per min per 10(6) cells for up to 56 days. No detectable uptake was found in RLEC cultured alone. TC uptake exhibited both saturable (Vmax = 0.30 +/- 0.03 nmole per min per 10(6) cells and Km = 42.6 +/- 4.4 microM) and nonsaturable components. These kinetic parameters were similar to those previously reported in isolated hepatocytes and in short-term cultured hepatocytes. TC uptake exhibited sodium dependence and was significantly reduced when extracellular sodium was replaced by lithium and sucrose, or in the presence of 1 mM ouabain. After 18 days of co-culture, TC uptake had qualitatively the same characteristics as at 48 hr, with a saturable and a nonsaturable component.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3979952

  17. Biokinetics of chlorpromazine in primary rat and human hepatocytes and human HepaRG cells after repeated exposure.

    PubMed

    Broeders, Jessica J W; Parmentier, Céline; Truisi, Germaine L; Jossé, Rozenn; Alexandre, Eliane; Savary, Camille C; Hewitt, Philip G; Mueller, Stefan O; Guillouzo, André; Richert, Lysiane; van Eijkeren, Jan C H; Hermens, Joop L M; Blaauboer, Bas J

    2015-12-25

    Since drug induced liver injury is difficult to predict in animal models, more representative tests are needed to better evaluate these effects in humans. Existing in vitro systems hold great potential to detect hepatotoxicity of pharmaceuticals. In this study, the in vitro biokinetics of the model hepatotoxicant chlorpromazine (CPZ) were evaluated in three different liver cell systems after repeated exposure in order to incorporate repeated-dose testing into an in vitro assay. Primary rat and human hepatocytes, cultured in sandwich configuration and the human HepaRG cell line were treated daily with CPZ for 14 days. Samples were taken from medium, cells and well plastic at specific time points after the first and last exposure. The samples were analysed by HPLC-UV to determine the amount of CPZ in these samples. Based on cytotoxicity assays, the three models were tested at 1-2 μM CPZ, while the primary rat hepatocytes and the HepaRG cell line were in addition exposed to a higher concentration of 15-20 μM. Overall, the mass balance of CPZ decreased in the course of 24 h, indicating the metabolism of the compound within the cells. The largest decrease in parent compound was seen in the primary cultures; in the HepaRG cell cultures the mass balance only decreased to 50%. CPZ accumulated in the cells during the 14-day repeated exposure. Possible explanations for the accumulation of CPZ are a decrease in metabolism over time, inhibition of efflux transporters or binding to phospholipids. The biokinetics of CPZ differed between the three liver cell models and were influenced by specific cell properties as well as culture conditions. These results support the conclusion that in vitro biokinetics data are necessary to better interpret chemical-induced cytotoxicity data. PMID:25458484

  18. Characterization of the liver-macrophages isolated from a mixed primary culture of neonatal swine hepatocytes.

    PubMed

    Kitani, Hiroshi; Yoshioka, Miyako; Takenouchi, Takato; Sato, Mitsuru; Yamanaka, Noriko

    2014-01-01

    We recently developed a novel procedure to obtain liver-macrophages in sufficient number and purity using a mixed primary culture of rat and bovine hepatocytes. In this study, we aim to apply this method to the neonatal swine liver. Swine parenchymal hepatocytes were isolated by a two-step collagenase perfusion method and cultured in T75 culture flasks. Similar to the rat and bovine cells, the swine hepatocytes retained an epithelial cell morphology for only a few days and progressively changed into fibroblastic cells. After 5-13 days of culture, macrophage-like cells actively proliferated on the mixed fibroblastic cell sheet. Gentle shaking of the culture flask followed by the transfer and brief incubation of the culture supernatant resulted in a quick and selective adhesion of macrophage-like cells to a plastic dish surface. After rinsing dishes with saline, the attached macrophage-like cells were collected at a yield of 10(6) cells per T75 culture flask at 2-3 day intervals for more than 3 weeks. The isolated cells displayed a typical macrophage morphology and were strongly positive for macrophage markers, such as CD172a, Iba-1 and KT022, but negative for cytokeratin, desmin and α-smooth muscle actin, indicating a highly purified macrophage population. The isolated cells exhibited phagocytosis of polystyrene microbeads and a release of inflammatory cytokines upon lipopolysaccharide stimulation. This shaking and attachment method is applicable to the swine liver and provides a sufficient number of macrophages without any need of complex laboratory equipments. PMID:24707456

  19. Urokinase and type I plasminogen activator inhibitor production by normal human hepatocytes: modulation by inflammatory agents.

    PubMed

    Busso, N; Nicodeme, E; Chesne, C; Guillouzo, A; Belin, D; Hyafil, F

    1994-07-01

    We examined the effects of inflammatory cytokines (interleukin-1 beta, tumor necrosis factor-alpha and transforming growth factor-beta) on the plasminogen activator system (urokinase, tissue-type plasminogen activator, type 1 plasminogen activator inhibitor) in primary cultures of human hepatocytes. We show that interleukin-1 beta and tumor necrosis factor-alpha increase urokinase-type plasminogen activator production, reinforcing the concept that increased urokinase production is associated with inflammatory processes. By contrast, the same agents (i.e., interleukin-1 beta and tumor necrosis factor-alpha) do not stimulate plasminogen activator inhibitor type 1 production. This latter observation rules out hepatocytes as a major cellular source of plasmatic plasminogen activator inhibitor type 1 during acute-phase-related responses. Among the inflammatory agents used, transforming growth factor-beta was found to be the most effective modulator of both urokinase-type plasminogen activator and plasminogen activator inhibitor type 1, inducing severalfold increases of activity of urokinase-type plasminogen activator, antigen and the corresponding mRNA and increasing plasminogen activator inhibitor type 1 antigen and mRNA levels. Urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 modulation by transforming growth factor-beta may play a critical role in hepatic pathophysiology. PMID:8020888

  20. Effect of iprodione, a dicarboximide fungicide, on primary cultured rainbow trout (Oncorhynchus mykiss) hepatocytes.

    PubMed

    Radice, S; Ferraris, M; Marabini, L; Grande, S; Chiesara, E

    2001-09-01

    As is known from literature, iprodione, a dicarboximide fungicide, has a highly specific action, with a capacity to cause oxidative damage through production of free oxygen radicals (ROS), but it does not appear to be species selective. Since this substance is able to diffuse in water, evaluation of its capacity to induce oxidative damage in an aquatic organism such as the rainbow trout (Oncorhynchus mykiss) was considered of particular interest. A study was, therefore, undertaken to investigate the effect of iprodione on free radicals (ROS) and malondialdehyde (MDA) production, reduced glutathione (GSH) content and catalase activity (CAT), in primary cultured trout hepatocytes, following treatment with 0.2, 0.3 and 0.4 mM concentrations for a 24-h period. The iprodione 0.3 and 0.4 mM concentrations increased both ROS and MDA production and decreased GSH content and CAT activity. These results suggest that iprodione is able to produce oxidative damage in primary cultured fish hepatocytes, thus confirming that its action is specific, but not species selective. It is also well known that ROS production in fungi is due to interaction with the flavin enzyme NADPH cytochrome c reductase to the extent that the normal electron flow from NADPH to cytochrome c is blocked. In contrast, we observed that, in primary cultured trout hepatocytes, iprodione appears to have no effect on NADPH cytochrome c reductase activity. It is, therefore, possible to presume that the mechanism of oxidative damage in trout hepatocytes differs from that observed in fungi. Moreover, our experiments also demonstrate that iprodione is able to induce "in vitro" CYP1A1, leading to the conclusion that the production of ROS is due to this phenomenon. PMID:11451425

  1. Improved cryopreservation of human hepatocytes using a new xeno free cryoprotectant solution

    PubMed Central

    Saliem, Mohammed; Holm, Frida; Tengzelius, Rosita Bergström; Jorns, Carl; Nilsson, Lisa-Mari; Ericzon, Bo-Göran; Ellis, Ewa; Hovatta, Outi

    2012-01-01

    AIM: To optimize a xeno-free cryopreservation protocol for primary human hepatocytes. METHODS: The demand for cryopreserved hepatocytes is increasing for both clinical and research purposes. Despite several hepatocyte cryopreservation protocols being available, improvements are urgently needed. We first compared controlled rate freezing to polystyrene box freezing and did not find any significant change between the groups. Using the polystyrene box freezing, we compared two xeno-free freezing solutions for freezing of primary human hepatocytes: a new medium (STEM-CELLBANKER, CB), which contains dimethylsulphoxide (DMSO) and anhydrous dextrose, both permeating and non-permeating cryoprotectants, and the frequently used DMSO - University of Wisconsin (DMSO-UW) medium. The viability of the hepatocytes was assessed by the trypan blue exclusion method as well as a calcein-esterase based live-dead assay before and after cryopreservation. The function of the hepatocytes was evaluated before and after cryopreservation by assessing enzymatic activity of 6 major cytochrome P450 isoforms (CYPs): CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A7. RESULTS: The new cryoprotectant combination preserved hepatocyte viability significantly better than the standard DMSO-UW protocol (P < 0.01). There was no significant difference in viability estimation between both the trypan blue (TB) and the Live-Dead Assay methods. There was a correlation between viability of fresh hepatocytes and the difference in cell viability between CB and DMSO protocols (r2 = 0.69) using the TB method. However, due to high within-group variability in the activities of the major CYPs, any statistical between-group differences were precluded. Cryopreservation of human hepatocytes using the cryoprotectant combination was a simple and xeno-free procedure yielding better hepatocyte viability. Thus, it may be a better alternative to the standard DMSO-UW protocol. Estimating CYP activities did not seem to be a

  2. Low-shear modelled microgravity environment maintains morphology and differentiated functionality of primary porcine hepatocyte cultures.

    PubMed

    Nelson, Leonard J; Walker, Simon W; Hayes, Peter C; Plevris, John N

    2010-01-01

    Hepatocytes cultured in conventional static culture rapidly lose polarity and differentiated function. This could be explained by gravity-induced sedimentation, which prevents formation of complete three-dimensional (3D) cell-cell/cell-matrix interactions and disrupts integrin-mediated signals (including the most abundant hepatic integrin alpha(5)beta(1)), important for cellular polarity and differentiation. Cell culture in a low fluid shear modelled microgravity (about 10(-2) g) environment promotes spatial colocation/self-aggregation of dissociated cells and induction of 3D differentiated liver morphology. Previously, we demonstrated the utility of a NASA rotary bioreactor in maintaining key metabolic functions and 3D aggregate formation of high-density primary porcine hepatocyte cultures over 21 days. Using serum-free chemically defined medium, without confounding interactions of exogenous bioscaffolding or bioenhancing surface materials, we investigated features of hepatic cellular polarity and differentiated functionality, including expression of hepatic integrin alpha(5), as markers of functional morphology. We report here that in the absence of exogenous biomatrix scaffolding, hepatocytes cultured in serum-free chemically defined medium in a microgravity environment rapidly (<24 h) form macroscopic (2-5 mm), compacted 3D hepatospheroid structures consisting of a shell of glycogen-positive viable cells circumscribing a core of eosinophilic cells. The spheroid shell layers exhibited ultrastructural, morphological and functional features of differentiated, polarized hepatic tissue including strong expression of the integrin alpha(5) subunit, functional bile canaliculi, albumin synthesis, and fine ultrastructure reminiscent of in vivo hepatic tissue. The low fluid shear microgravity environment may promote tissue-like self-organization of dissociated cells, and offer advantages over spheroids cultured in conventional formats to delineate optimal conditions for

  3. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease.

    PubMed

    Bell, Catherine C; Hendriks, Delilah F G; Moro, Sabrina M L; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C A; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L; Jenkins, Rosalind E; Nordling, Åsa; Mkrtchian, Souren; Park, B Kevin; Kitteringham, Neil R; Goldring, Christopher E P; Lauschke, Volker M; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  4. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease

    PubMed Central

    Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  5. Expression of human. alpha. sub 1 -antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes

    SciTech Connect

    Kay, M.A.; Baley, P.; Rothenberg, S.; Leland, F; Fleming, L.; Ponder, K.P.; Liu, Tajen; Finegold, M.; Darlington, G.; Pokorny, W.; Woo, S.L.C. )

    1992-01-01

    The liver represents an excellent organ for gene therapy since many genetic disorders result from the deficiency of liver-specific gene products. The authors have previously demonstrated that transgenic mouse hepatocytes can be heterologously transplanted into congenic recipients where they survived indefinitely and continued to function as hepatocytes. Here they demonstrate the autologous transplantation of retrovirally transduced canine hepatocytes. In two animals they have transplanted hepatocytes transduced with a retroviral vector containing the human {alpha}{sub 1}-antitrypsin cDNA under transcriptional control of the cytomegalovirus promotor. Both animals had significant human {alpha}{sub 1}-antitrypsin in the serum for 1 month. The results suggest that gene therapy of hepatic deficiencies may be achieved by hepatocellular transplantation after genetic reconstruction with the use of promoters of cellular genes that are active in the normal liver.

  6. Thyroid hormone stimulation of plasma protein synthesis in cultured hepatocytes.

    PubMed

    Hertzberg, K M; Pindyck, J; Mosesson, M W; Grieninger, G

    1981-01-25

    The direct effect of thyroid hormones on hepatocellular plasma protein synthesis has been studied in primary monolayer cultures derived from chick embryo liver. The chemically defined medium used for plating and maintaining the cultures contained no other hormones, protein, or serum supplement. Addition of physiological concentrations (10 nM) of triiodothyronine or thyroxine produced 3-fold or greater increases in the rates of synthesis of fibrinogen and three other major secreted proteins. By comparison albumin, transferrin, and total protein synthesis were not substantially increased. The enhanced synthesis of selected plasma proteins could be detected 6 h after initial addition of triiodothyronine. Exposure of the cells to the hormone for only 30 min was nearly as effective as continuous exposure in eliciting the ultimate response. Triiodothyronine exerted its half-maximal effect at a concentration of 1 nM. Diminished potency was associated with less iodination of the hormone; a marked reduction was noted with di-iodinated thyronine and no stimulatory activity at all with either mono- or non-iodinated thyronine. PMID:7451459

  7. Modulation of pyruvate dehydrogenase kinase activity in cultured hepatocytes by glucagon and n-octanoate.

    PubMed Central

    Fatania, H R; Vary, T C; Randle, P J

    1986-01-01

    The activity of pyruvate dehydrogenase kinase in extracts of mitochondria from rat hepatocytes cultured for 21 h in medium 199 was increased 2.5-fold by the presence of 55 nM-glucagon and 1 mM-sodium n-octanoate in the culture medium. The change was comparable with that induced in vivo by 48 h starvation. The potential contribution of branched-chain complex to estimates of PDH-complex activity in rat liver mitochondria has been defined. PMID:3707545

  8. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies.

    PubMed

    Fraczek, J; Bolleyn, J; Vanhaecke, T; Rogiers, V; Vinken, M

    2013-04-01

    Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed. PMID:23242478

  9. In vitro drug metabolism of green tea catechins in human, monkey, dog, rat and mouse hepatocytes.

    PubMed

    Chen, Wendy W; Qin, Geng-Yao; Zhang, Ting; Feng, Wan-Yong

    2012-06-01

    The metabolic fate of green tea catechins [(-)-epicatechin ((-)-EC), (-)-epicatechin-3-gallate (ECG) (-)- epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG)] in cryopreserved human, monkey, dog, rat and mouse hepatocytes was studied. Methylation, glucuronidation, sulfation and isomerization pathways of (-)-EC in all five species were found. Methylation, glucuronidation, sulfation, hydrolysis, isomerization and glucosidation pathways of ECG were found. Species differences in metabolism of (-)-EC or ECG were observed. Surprisingly, no metabolites of EGC or EGCG were detected, but chemical oxidation and polymerization were observed under these experimental conditions. It appeared that enzymatic reactions and chemical reactions were differentiated by an additional hydroxyl group on the B-ring between (-)-EC/ECG and EGC/EGCG. For (-)-EC, thirty-five metabolites including isomerized (M6. M10 and M25), glucuronidated (M3, M5 and M11), sulfated (M7, M15, M16, M18, M20, M23, M26), methylated (M2, M9, M12, M17, M19, M21, M27, M30, M32), glucuronated/methylated (M4, M8, M13, M14), sulfated/methylated (M22, M24, M28, M29, M31, M33, M34, M35) and diglucuronidate (M1), were detected and characterized. M11, M18, M19 and M23 were major metabolites in human hepatocytes; M11, M26 and M31 were major metabolites in monkey hepatocytes; M10, M20, M22, M26 and M31 were major metabolites in dog hepatocytes; M5, M6 and M10 were major metabolites in rat hepatocytes; and M5, M6 and M13 were major metabolites in mouse hepatocytes. For ECG, twelve metabolites including isomerized (M1), hydrolyzed (M3), glucosidated (M2), glucuronidated (M4 and M6), sulfated (M9, M11 and M12), methylated (M7), sulfated/glucuronidated/methylated (M8 and M10) and diglucuronidated (M5), were detected and characterized. M4, M11 and M12 were major metabolites in human hepatocytes; M11 and M12 were major metabolites in monkey hepatocytes; M3 and M11 were major metabolites in dog hepatocytes; M4, M6 and

  10. Effects of antioxidants on glutathione-S-transferase activities in hepatocyte culture

    SciTech Connect

    Chen, L.H. )

    1991-03-15

    Hepatocyte cultures from control rats and rats injected with 3-methylcholanthrene(3-MC) were used to study the effects of antioxidants on the activity of glutathione-S-transferases (GSH-S-T). This group of enzymes catalyzes conjugation of xenobiotics or their metabolites with reduced glutathione and plays an important role in detoxification of xenobiotics. In Experiment 1, treatment of hepatocyte cultures from both control and 3-MC-injected rats with 25 {mu}M or 50 {mu}M butylated hydroxyanisole (BHA) for 24 hours or 48 hours significantly increased GSH-S-T activity with I-chloro-2,4-dinitrobenzene (CDNB) as the substrate. In Experiment 2, treatment of hepatocytes from both control and 3-MC-treated rats with 25 {mu}M ethoxyquin or vitamin E, but not vitamin A or ascorbic acid, significantly increased GSH-S-T activity when CDNB, 1,2-dichloro-4-nitrobenzene or p-nitrobenzyl chloride was used as the substrate, respectively. The results suggested that BHA, ethoxyquin and vitamin E may have detoxification effects against 3-MC-induced carcinogenesis.

  11. Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes.

    PubMed Central

    Glennon, M C; Shears, S B

    1993-01-01

    We have used a non-transformed cell model, the primary cultured hepatocyte, to explore the turnover of inositol hexakisphosphate, multiple isomers of inositol pentakisphosphate and two novel diphosphoinositol polyphosphates. All of these compounds gradually accumulated radioactivity throughout a 70 h period of labelling with [3H]inositol. However, a rapid metabolic rate was revealed upon inhibition of diphosphoinositol polyphosphate biphosphatase(s) with 1 mM fluoride for 40 min: this treatment elevated levels of [3H]diphosphoinositol polyphosphates up to 10-fold, indicating that their cellular pools were normally turning over at least 10 times every 40 min. This was accompanied by a turnover of about 10% of the pool of inositol hexakisphosphate. Control experiments established that 200 nM vasopressin brought about a typical activation of phospholipase C in hepatocytes after 62 h of primary culture. This agonist treatment did not affect steady-state levels of [3H]inositol pentakisphosphates, [3H]inositol hexakisphosphate or [3H]diphosphoinositol polyphosphates. However, prolonged treatment of hepatocytes with 2 microM thapsigargin reduced steady-state levels of [3H]diphosphoinositol polyphosphates by 50-70%. This effect of thapsigargin was also observed in the presence of fluoride, indicating that thapsigargin inhibited the rate of synthesis of diphosphoinositol polyphosphates. PMID:8343137

  12. Effect of Dimethyl Sulfoxide and Melatonin on the Isolation of Human Primary Hepatocytes.

    PubMed

    Solanas, Estela; Sostres, Carlos; Serrablo, Alejandro; García-Gil, Agustín; García, Joaquín J; Aranguren, Francisco J; Jiménez, Pilar; Hughes, Robin D; Serrano, María T

    2014-01-01

    The availability of fully functional human hepatocytes is critical for progress in human hepatocyte transplantation and the development of bioartificial livers and in vitro liver systems. However, the cell isolation process impairs the hepatocyte status and determines the number of viable cells that can be obtained. This study aimed to evaluate the effects of using dimethyl sulfoxide (DMSO) and melatonin in the human hepatocyte isolation protocol. Human hepatocytes were isolated from liver pieces resected from 10 patients undergoing partial hepatectomy. Each piece was dissected into 2 equally sized pieces and randomized, in 5 of 10 isolations, to perfusion with 1% DMSO-containing perfusion buffer or buffer also containing 5 mM melatonin using the 2-step collagenase perfusion technique (experiment 1), and in the other 5 isolations to standard perfusion or perfusion including 1% DMSO (experiment 2). Tissues perfused with DMSO yielded 70.6% more viable hepatocytes per gram of tissue (p = 0.076), with a 26.1% greater albumin production (p < 0.05) than those perfused with control buffer. Melatonin did not significantly affect (p > 0.05) any of the studied parameters, but cell viability, dehydrogenase activity, albumin production, urea secretion, and 7-ethoxycoumarin O-deethylase activity were slightly higher in cells isolated with melatonin-containing perfusion buffer compared to those isolated with DMSO. In conclusion, addition of 1% DMSO to the hepatocyte isolation protocol could improve the availability and functionality of hepatocytes for transplantation, but further studies are needed to clarify the mechanisms involved. PMID:26381499

  13. Highly Efficient Differentiation of Functional Hepatocytes From Human Induced Pluripotent Stem Cells

    PubMed Central

    Ma, Xiaocui; Tschudy-Seney, Benjamin; Roll, Garrett; Behbahan, Iman Saramipoor; Ahuja, Tijess P.; Tolstikov, Vladimir; Wang, Charles; McGee, Jeannine; Khoobyari, Shiva; Nolta, Jan A.; Willenbring, Holger

    2013-01-01

    Human induced pluripotent stem cells (hiPSCs) hold great potential for use in regenerative medicine, novel drug development, and disease progression/developmental studies. Here, we report highly efficient differentiation of hiPSCs toward a relatively homogeneous population of functional hepatocytes. hiPSC-derived hepatocytes (hiHs) not only showed a high expression of hepatocyte-specific proteins and liver-specific functions, but they also developed a functional biotransformation system including phase I and II metabolizing enzymes and phase III transporters. Nuclear receptors, which are critical for regulating the expression of metabolizing enzymes, were also expressed in hiHs. hiHs also responded to different compounds/inducers of cytochrome P450 as mature hepatocytes do. To follow up on this observation, we analyzed the drug metabolizing capacity of hiHs in real time using a novel ultraperformance liquid chromatography-tandem mass spectrometry. We found that, like freshly isolated primary human hepatocytes, the seven major metabolic pathways of the drug bufuralol were found in hiHs. In addition, transplanted hiHs engrafted, integrated, and proliferated in livers of an immune-deficient mouse model, and secreted human albumin, indicating that hiHs also function in vivo. In conclusion, we have generated a method for the efficient generation of hepatocytes from induced pluripotent stem cells in vitro and in vivo, and it appears that the cells function similarly to primary human hepatocytes, including developing a complete metabolic function. These results represent a significant step toward using patient/disease-specific hepatocytes for cell-based therapeutics as well as for pharmacology and toxicology studies. PMID:23681950

  14. Preincubation of rat and human hepatocytes with cytoprotectants prior to cryopreservation can improve viability and function upon thawing.

    PubMed

    Terry, Claire; Dhawan, Anil; Mitry, Ragai R; Lehec, Sharon C; Hughes, Robin D

    2005-12-01

    Cryopreservation of human hepatocytes is important for the treatment of liver disease by hepatocyte transplantation and also for the use of hepatocytes as an in vitro model of the liver. One factor in the success of cryopreservation is the quality of cells before freezing. Preincubation of hepatocytes with cytoprotective compounds to allow recovery from the isolation process prior to cryopreservation, such as those that will boost cellular adenosine triphosphate (ATP) content or antioxidants, may improve the viability and function of cells upon thawing. Rat hepatocytes were used to investigate the effects of preincubation with 10 compounds: precursors (glucose, fructose, glutathione, and S-adenosyl-L-methionine), antioxidants (ascorbic acid and alpha-lipoic acid), and compounds with multiple effects (N-acetylcysteine, pentoxifylline, prostaglandin E(1), and tauroursodeoxycholic acid). Human hepatocytes were then used to investigate 5 of the original 10 compounds (glucose, fructose, alpha-lipoic acid, S-adenosyl-L-methionine, and pentoxifylline). Glucose preincubation (100-300 mM) improved the viability and attachment efficiency of rat hepatocytes and improved the viability and reduced lactate dehydrogenase (LDH) leakage of human hepatocytes. Fructose preincubation (100-300 mM) improved the viability and attachment efficiency of rat hepatocytes and improved the attachment efficiency of human hepatocytes. alpha-lipoic acid preincubation (0.5-5 mM) improved the viability and attachment efficiency of both rat and human hepatocytes. At a concentration of 2.5 mM alpha-lipoic acid also improved the albumin production of human hepatocytes. In conclusion, preincubation of hepatocytes prior to cryopreservation can improve the viability and function of thawed cells and may provide a method of obtaining better-quality cryopreserved hepatocytes for transplantation. PMID:16315306

  15. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    SciTech Connect

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone, tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.

  16. Differentiation of hepatocytes from pluripotent stem cells

    PubMed Central

    Mallanna, Sunil K.

    2014-01-01

    Differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells into hepatocyte-like cells provides a platform to study the molecular basis of human hepatocyte differentiation, to develop cell culture models of liver disease, and to potentially provide hepatocytes for treatment of end-stage liver disease. Additionally, hepatocyte-like cells generated from human pluripotent stem cells could serve as platforms for drug discovery, determination of pharmaceutical induced hepatotoxicity, and evaluation of idiosyncratic drug-drug interactions. Here, we describe a step-wise protocol previously developed in our laboratory that facilitates the highly efficient and reproducible differentiation of human pluripotent stem cells into hepatocyte-like cells. Our protocol uses defined culture conditions and closely recapitulates key developmental events that are found to occur during hepatogenesis. PMID:24510789

  17. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells.

    PubMed

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel; Damm, Georg

    2015-05-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 10(6) KC, 2.7 × 10(5) LEC and 4.7 × 10(5) HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4-5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  18. Functional activity of human hepatocytes under traumatic disease.

    PubMed

    Kudryavtseva, M V; Stein, G I; Shashkov, B V; Kudryavtsev, B N

    1998-03-01

    Absorption and fluorescent cytophotometry techniques were applied to studies of RNA as well as of total glycogen and its fractions as the parameters of functional activity of the hepatocytes in patients with severe mechanical trauma, both with and without autointoxication (AI). Slides were stained with gallocyanine-chromalums to determine the RNA content and were processed by the fluorescent PAS-reaction for the glycogen content. To trace the dynamics of RNA and glycogen contents in the liver punction biopsies were done in the same patients. A quick increase in the RNA content took place in both groups of patients at the first period (within the first 3 days) of traumatic disease. At the second period of disease the hepatocyte RNA content in patients without AI was found to decrease up to the initial level whereas that in patients with AI increased on the average by 36% of the initial values. The total glycogen content in hepatocytes of all the patients changed insignificantly in the course of disease but its labile fraction in patients with AI decreased to 70% of the total. The increase of hepatocyte synthetic activity and the maintenance of the high glycogen level are indicative of the large compensatory potential of the liver that enables it to carry an intensive functional load under AI conditions. PMID:9570502

  19. Effects of macroporous hydroxyapatite carriers on the growth and function of human hepatoblasts derived from fetal hepatocytes.

    PubMed

    Ishii, Takaaki; Saito, Hiroshi; Komizu, Yuji; Tomoshige, Ryuichi; Matsushita, Taku

    2016-08-01

    Improvement of three-dimensional (3D) culture conditions, including substrates for cell growth, is needed for various cell-based applications. In this study, we developed hydroxyapatite (HAp) macroporous carriers having several pore size distributions and tried to obtain the findings about the effective pore sizes for the growth and function of hepatoblasts derived from human fetal hepatocytes. Cellular CYP3A4 activity was significantly enhanced when 20% HAp macroporous carrier was used, reaching 1.49±0.28 pmol/10(6) cells/min of benzyloxyresorufin-O-dealkylation activity, which is comparable to that of primary human hepatocytes from livers of adult donors. Analysis of the pore size (the radius of curvature) distribution of each HAp carrier using a 3D-electron beam surface roughness analyzer revealed two peaks of pore size distribution at 30-40 μm and 70-80 μm, respectively. Thirty-five percent of the pores in the 20% carrier had a size distribution within 50-80 μm. Especially, pores of 70-80 μm were more abundant in the 20% HAp carrier than in the 10% and 30% HAp carriers. These results suggested that a HAp carrier with the pore size distribution of 50-80 μm might be effective for cell growth and function in human hepatoblasts derived from fetal hepatocytes. PMID:26968126

  20. Human Hepatocytes and Hematolymphoid Dual Reconstitution in Treosulfan-Conditioned uPA-NOG Mice

    PubMed Central

    Gutti, Tanuja L.; Knibbe, Jaclyn S.; Makarov, Edward; Zhang, Jinjin; Yannam, Govardhana R.; Gorantla, Santhi; Sun, Yimin; Mercer, David F.; Suemizu, Hiroshi; Wisecarver, James L.; Osna, Natalia A.; Bronich, Tatiana K.; Poluektova, Larisa Y.

    2015-01-01

    Human-specific HIV-1 and hepatitis co-infections significantly affect patient management and call for new therapeutic options. Small xenotransplantation models with human hepatocytes and hematolymphoid tissue should facilitate antiviral/antiretroviral drug trials. However, experience with mouse strains tested for dual reconstitution is limited, with technical difficulties such as risky manipulations with newborns and high mortality rates due to metabolic abnormalities. The best animal strains for hepatocyte transplantation are not optimal for human hematopoietic stem cell (HSC) engraftment, and vice versa. We evaluated a new strain of highly immunodeficient nonobese diabetic/Shi-scid (severe combined immunodeficiency)/IL-2Rγcnull (NOG) mice that carry two copies of the mouse albumin promoter-driven urokinase-type plasminogen activator transgene for dual reconstitution with human liver and immune cells. Three approaches for dual reconstitution were evaluated: i) freshly isolated fetal hepatoblasts were injected intrasplenically, followed by transplantation of cryopreserved HSCs obtained from the same tissue samples 1 month later after treosulfan conditioning; ii) treosulfan conditioning is followed by intrasplenic simultaneous transplantation of fetal hepatoblasts and HSCs; and iii) transplantation of mature hepatocytes is followed by mismatched HSCs. The long-term dual reconstitution was achieved on urokinase-type plasminogen activator–NOG mice with mature hepatocytes (not fetal hepatoblasts) and HSCs. Even major histocompatibility complex mismatched transplantation was sustained without any evidence of hepatocyte rejection by the human immune system. PMID:24200850

  1. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening.

    PubMed

    Gómez-Lechón, María José; Tolosa, Laia

    2016-09-01

    Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages. PMID:27325232

  2. Development of an in vitro high content imaging assay for quantitative assessment of CAR-dependent mouse, rat, and human primary hepatocyte proliferation.

    PubMed

    Soldatow, Valerie; Peffer, Richard C; Trask, O Joseph; Cowie, David E; Andersen, Melvin E; LeCluyse, Edward; Deisenroth, Chad

    2016-10-01

    Rodent liver tumors promoted by constitutive androstane receptor (CAR) activation are known to be mediated by key events that include CAR-dependent gene expression and hepatocellular proliferation. Here, an in vitro high content imaging based assay was developed for quantitative assessment of nascent DNA synthesis in primary hepatocyte cultures from mouse, rat, and human species. Detection of DNA synthesis was performed using direct DNA labeling with the nucleoside analog 5-ethynyl-2'-deoxyuridine (EdU). The assay was multiplexed to enable direct quantitation of DNA synthesis, cytotoxicity, and cell count endpoints. An optimized defined medium cocktail was developed to sensitize hepatocytes to cell cycle progression. The baseline EdU response to defined medium was greatest for mouse, followed by rat, and then human. Hepatocytes from all three species demonstrated CAR activation in response to the CAR agonists TCPOBOP, CITCO, and phenobarbital based on increased gene expression for Cyp2b isoforms. When evaluated for a proliferation phenotype, TCPOBOP and CITCO exhibited significant dose-dependent increases in frequency of EdU labeling in mouse and rat hepatocytes that was not observed in hepatocytes from three human donors. The observed species differences are consistent with CAR activators inducing a proliferative response in rodents, a key event in the liver tumor mode of action that is not observed in humans. PMID:27530964

  3. IFNL3 genotype is associated with differential induction of IFNL3 in primary human hepatocytes

    PubMed Central

    Kurbanov, Fuat; Kim, Yonghak; Latanich, Rachel; Chaudhari, Pooja; El-Diwany, Ramy; Knabel, Matt; Kandathil, Abraham J; Cameron, Andrew; Cox, Andrea; Jang, Yoon-Young; Thomas, David L; Balagopal, Ashwin

    2016-01-01

    Background Lambda interferons (IFNLs) have potent antiviral activity against HCV, and polymorphisms within the IFNL gene cluster near the IFNL3 gene strongly predict spontaneous- and treatment-related HCV infection outcomes. The mechanism(s) linking IFNL polymorphisms and HCV control is currently elusive. Methods IFNL induction was studied in primary human hepatocytes (PHH) from 18 human donors, peripheral blood mononuclear cells (PBMCs) from 18 human donors, multiple cell lines and induced pluripotent stem cell-derived hepatocyte-like cells (iPSC-hepatocytes) from 7 human donors. After stimulation with intracellular RNA and infectious HCV, quantitative PCR (qPCR) primers and probes were designed to distinguish and quantify closely related IFNL messenger (m)RNAs from IFNL1, IFNL2 and IFNL3. Results PHH demonstrated the most potent induction of IFNLs, although had lower pre-stimulation levels compared to PBMCs, monocytes and cell lines. PHH stimulation with cytoplasmic poly I:C induced >1,000-fold expression of IFNL1, IFNL2 and IFNL3. PHH from donors who were homozygous for the favourable IFNL3 allele (IFNL3-CC) had higher IFNL3 induction compared to PHH from IFNL3-TT donors (P=0.03). Baseline IFNL mRNA expression and induction was also tested in iPSC-hepatocytes: iPSC-hepatocytes had significantly higher baseline expression of IFNLs compared to PHH (P<0.0001), and IFNL3 induction was marginally different in iPSC-hepatocytes by IFNL genotype (P=0.07). Conclusions Hepatocytes express IFNLs when stimulated by a synthetic viral RNA that signals the cell through the cytoplasm. IFNL induction may be greater in persons with the favourable IFNL3 allele. These data provide insight into the strong linkage between IFNL3 genetics and control of HCV infection. PMID:26109548

  4. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice.

    PubMed

    Sakai, Yusuke; Yamanouchi, Kosho; Ohashi, Kazuo; Koike, Makiko; Utoh, Rie; Hasegawa, Hideko; Muraoka, Izumi; Suematsu, Takashi; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Eguchi, Susumu

    2015-10-01

    Subcutaneous liver tissue engineering is an attractive and minimally invasive approach used to curative treat hepatic failure and inherited liver diseases. However, graft failure occurs frequently due to insufficient infiltration of blood vessels (neoangiogenesis), while the maintenance of hepatocyte phenotype and function requires in vivo development of the complex cellular organization of the hepatic lobule. Here we describe a subcutaneous human liver construction allowing for rapidly vascularized grafts by transplanting engineered cellular sheets consisting of human primary hepatocytes adhered onto a fibroblast layer. The engineered hepatocyte/fibroblast sheets (EHFSs) showed superior expression levels of vascularization-associated growth factors (vascular endothelial growth factor, transforming growth factor beta 1, and hepatocyte growth factor) in vitro. EHFSs developed into vascularized subcutaneous human liver tissues contained glycogen stores, synthesized coagulation factor IX, and showed significantly higher synthesis rates of liver-specific proteins (albumin and alpha 1 anti-trypsin) in vivo than tissues from hepatocyte-only sheets. The present study describes a new approach for vascularized human liver organogenesis under mouse skin. This approach could prove valuable for establishing novel cell therapies for liver diseases. PMID:26142777

  5. Effects of nutritional and hormonal factors on the metabolism of retinol-binding protein by primary cultures of rat hepatocytes

    SciTech Connect

    Dixon, J.L.; Goodman, D.S.

    1987-01-01

    Studies were conducted to explore hormonal and nutritional factors that might be involved in the regulation of retinol-binding protein (RBP) synthesis and secretion by the liver. The studies employed primary cultures of hepatocytes from normal rats. When cells were cultured in Dulbecco's modified Eagle's medium alone, a high rate of RBP secretion was observed initially, which declined and became quite low by 24 hr. Supplementing the medium with amino acids maintained RBP and albumin secretion at moderate (but less than initial) rates for at least 3 days. Further addition of dexamethasone maintained the production and secretion rates of RBP, transthyretin, and albumin close to the initial rates for up to 3-5 days in culture as measured by radioimmunoassay. Hormonally treated hepatocytes produced and secreted RBP, transthyretin, and albumin at both absolute and relative rates similar to physiological values, as estimated from rates reported by others from studies in vivo and with perfused livers. Glucagon addition partially maintained the secretion rates of these 3 proteins, but less effectively than did dexamethasone. A number of other hormones, added singly or in combination, did not affect RBP production or secretion. Addition of retinol to the cultured normal hepatocytes was without effect upon RBP secretion. These studies show that supplementing the culture medium of hepatocytes with amino acids and dexamethasone maintains RBP production and secretion for several days. In normal hepatocytes, with ample supply of retinol available within the cell, addition of exogenous retinol does not appear to influence RBP metabolism or secretion by the cells.

  6. Transcellular transport of fluorescein in hepatocyte monolayers: evidence for functional polarity of cells in culture.

    PubMed Central

    Barth, C A; Schwarz, L R

    1982-01-01

    The rat liver in vivo transfers bile salts, proteins, and dyes from blood into bile. It is the purpose of this communication to demonstrate the maintenance of this transcellular transport in cultured adult rat hepatocytes. Two minutes after adding fluorescein (20 microgram/ml) to the culture medium, maximal cellular fluorescence was observed through the fluorescence microscope. Subsequently, intercellular clefts showed a steadily increasing fluorescence with a maximum between 5 and 20 min, resulting in a brightly fluorescent network of intercellular gaps. The following observations are taken as evidence that these findings reflect cellular uptake and canalicular secretion of the dye. First, the same sequence of observations was made upon addition of fluorescein diacetate (a nonfluorescent precursor of fluorescein), proving that the compound had been taken up and metabolized in the cells to fluorescein before secretion into intercellular clefts. Second, preincubation of the monolayers with the cholestatic bile salt taurolithocholate (100 mumol/liter) suppressed almost completely intercellular but not cellular fluorescence. It is concluded that hepatocytes in culture show a functional polarity permitting the transcellular transport of substances bound for biliary secretion. Images PMID:6956908

  7. Environmental estrogenic compounds and the induction of hepatic vitellogenin synthesis using cultured goldfish hepatocytes

    SciTech Connect

    Yao, Z.; Kraak, G.J. Van Der; Squires, E.J.

    1995-12-31

    A series of experiments were conducted to evaluate the estrogenic activity of some environmental contaminants including the {beta}-sitosterol, nonylphenol (major components of pulp mill effluent) and 3-trifluoromethyl-4-nitrophenol (TFM, a lampricide widely used in the Great Lakes), using the goldfish (Carassius auratus L.) as a model species. The in vivo exposure studies have demonstrated that all three compounds tested possess various degrees of estrogenic activity as measured by increased plasma vitellogenin (VTG) production in both the male and female fish. To understand how these compounds induce hepatic VTG synthesis and determine their potency of VTG induction, an in vitro hepatocyte culture system of goldfish was established and the induction of VTG synthesis by these compounds in the cultured hepatocytes was studied. The concentration of VTG in the plasma and in the cell culture medium was determined with a enzyme-linked immunosorbent assay. Both in vivo and in vitro studies suggest that {beta}-sitosterol has the highest estrogenic activity of VTG induction.

  8. Automated detection of hepatotoxic compounds in human hepatocytes using HepaRG cells and image-based analysis of mitochondrial dysfunction with JC-1 dye

    SciTech Connect

    Pernelle, K.; Le Guevel, R.; Glaise, D.; Stasio, C. Gaucher-Di; Le Charpentier, T.; Bouaita, B.; Corlu, A.; Guguen-Guillouzo, C.

    2011-08-01

    In this study, our goal was to develop an efficient in situ test adapted to screen hepatotoxicity of various chemicals, a process which remains challenging during the early phase of drug development. The test was based on functional human hepatocytes using the HepaRG cell line, and automation of quantitative fluorescence microscopy coupled with automated imaging analysis. Differentiated HepaRG cells express most of the specific liver functions at levels close to those found in primary human hepatocytes, including detoxifying enzymes and drug transporters. A triparametric analysis was first used to evaluate hepatocyte purity and differentiation status, mainly detoxication capacity of cells before toxicity testing. We demonstrated that culturing HepaRG cells at high density maintained high hepatocyte purity and differentiation level. Moreover, evidence was found that isolating hepatocytes from 2-week-old confluent cultures limited variations associated with an ageing process occurring over time in confluent cells. Then, we designed a toxicity test based on detection of early mitochondrial depolarisation associated with permeability transition (MPT) pore opening, using JC-1 as a metachromatic fluorescent dye. Maximal dye dimerization that would have been strongly hampered by efficient efflux due to the active, multidrug-resistant (MDR) pump was overcome by coupling JC-1 with the MDR inhibitor verapamil. Specificity of this test was demonstrated and its usefulness appeared directly dependent on conditions supporting hepatic cell competence. This new hepatotoxicity test adapted to automated, image-based detection should be useful to evaluate the early MPT event common to cell apoptosis and necrosis and simultaneously to detect involvement of the multidrug resistant pump with target drugs in a human hepatocyte environment. - Highlights: > We define conditions to preserve differentiation of selective pure HepaRG hepatocyte cultures. > In these conditions, CYPs

  9. Photolytic degradation of benorylate: effects of the photoproducts on cultured hepatocytes

    SciTech Connect

    Castell, J.V.; Gomez, M.J.; Mirabet, V.; Miranda, M.A.; Morera, I.M.

    1987-05-01

    The photodegradation of benorylate (4'-(acetamido)phenyl-2-acetoxybenzoate), a drug frequently used in rheumatoid arthritis therapy, has been examined under different sets of experimental conditions. Several photoproducts have been isolated and identified on the basis of their IR, NMR, and MS spectra. The most significant photochemical process is the photo-Fries rearrangement of benorylate, leading to 5-acetamido-2'-acetoxy-2-hydroxybenzophenone (1). This compound undergoes a rapid transacylation to the isomeric 5'-acetamido-2'-acetoxy-2-hydroxybenzophenone (2). A primary culture of rat hepatocytes has been used to evaluate the possible toxicity of these two benzophenones, keeping in mind the following criteria: leakage of cytosolic enzymes, attachment index to culture plates, gluconeogenesis from lactate and fructose, glycogen balance, and albumin synthesis. At the concentrations assayed, neither of the two major photoproducts of benorylate (benzophenones 1 and 2) had significant toxic effects on liver cells in culture.

  10. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids

    PubMed Central

    Tobita, Takamasa; Guzman-Lepe, Jorge; Takeishi, Kazuki; Nakao, Toshimasa; Wang, Yang; Meng, Fanying; Deng, Chu-Xia; Collin de l’Hortet, Alexandra; Soto-Gutierrez, Alejandro

    2016-01-01

    There are unprecedented epidemics of obesity, such as type II diabetes and non-alcoholic fatty liver diseases (NAFLD) in developed countries. A concerning percentage of American children are being affected by obesity and NAFLD. Studies have suggested that the maternal environment in utero might play a role in the development of these diseases later in life. In this study, we documented that inhibiting SIRT1 signaling in human fetal hepatocytes rapidly led to an increase in intracellular glucose and lipids levels. More importantly, both de novo lipogenesis and gluconeogenesis related genes were upregulated upon SIRT1 inhibition. The AKT/FOXO1 pathway, a major negative regulator of gluconeogenesis, was decreased in the human fetal hepatocytes inhibited for SIRT1, consistent with the higher level of gluconeogenesis. These results indicate that SIRT1 is an important regulator of lipid and carbohydrate metabolisms within human fetal hepatocytes, acting as an adaptive transcriptional response to environmental changes. PMID:26890260

  11. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids.

    PubMed

    Tobita, Takamasa; Guzman-Lepe, Jorge; Takeishi, Kazuki; Nakao, Toshimasa; Wang, Yang; Meng, Fanying; Deng, Chu-Xia; Collin de l'Hortet, Alexandra; Soto-Gutierrez, Alejandro

    2016-01-01

    There are unprecedented epidemics of obesity, such as type II diabetes and non-alcoholic fatty liver diseases (NAFLD) in developed countries. A concerning percentage of American children are being affected by obesity and NAFLD. Studies have suggested that the maternal environment in utero might play a role in the development of these diseases later in life. In this study, we documented that inhibiting SIRT1 signaling in human fetal hepatocytes rapidly led to an increase in intracellular glucose and lipids levels. More importantly, both de novo lipogenesis and gluconeogenesis related genes were upregulated upon SIRT1 inhibition. The AKT/FOXO1 pathway, a major negative regulator of gluconeogenesis, was decreased in the human fetal hepatocytes inhibited for SIRT1, consistent with the higher level of gluconeogenesis. These results indicate that SIRT1 is an important regulator of lipid and carbohydrate metabolisms within human fetal hepatocytes, acting as an adaptive transcriptional response to environmental changes. PMID:26890260

  12. Direct induction of hepatocyte-like cells from immortalized human bone marrow mesenchymal stem cells by overexpression of HNF4α.

    PubMed

    Hu, Xiaojun; Xie, Peiyi; Li, Weiqiang; Li, Zhengran; Shan, Hong

    2016-09-16

    Hepatocytes from human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are expected to be a useful source for cell transplantation. However, relatively low efficiency and repeatability of hepatic differentiation of human BM-MSCs remains an obstacle for clinical translation. Hepatocyte nuclear factor 4 alpha (HNF4α), a critical transcription factor, plays an essential role in the entire process of liver development. In this study, immortalized hBM-MSCs, UE7T-13 cells were transduced with a lentiviral vector containing HNF4α. The typical fibroblast-like morphology of the MSCs changed, and polygonal, epithelioid cells grew out after HNF4α transduction. In hepatocyte culture medium, HNF4α-transduced MSCs (E7-hHNF4α cells) strongly expressed the albumin (ALB), CYP2B6, alpha-1 antitrypsin (AAT), and FOXA2 mRNA and exhibited morphology markedly similar to that of mature hepatocytes. The E7-hHNF4α cells showed hepatic functions such as Indocyanine green (ICG) uptake and release, glycogen storage, urea production and ALB secretion. Approximately 28% of E7-hHNF4α cells expressed both ALB and AAT. Furthermore, these E7-hHNF4α cells via superior mesenteric vein (SMV) injection expressed human ALB in mouse chronic injured liver. In conclusion, this study represents a novel strategy by directly inducing hepatocyte-like cells from MSCs. PMID:27501760

  13. Glucocorticoid-dependent induction of interleukin-6 receptor expression in human hepatocytes facilitates interleukin-6 stimulation of amino acid transport.

    PubMed Central

    Fischer, C P; Bode, B P; Takahashi, K; Tanabe, K K; Souba, W W

    1996-01-01

    OBJECTIVE: The authors studied the effects of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) on glutamine and alanine transport in isolated human hepatocytes. They also evaluated the role of dexamethasone in modulating this response and its effects on the expression of the plasma membrane high-affinity IL-6 receptor. SUMMARY BACKGROUND DATA: Animal studies indicate that cytokines are important mediators of the increased hepatic amino acid uptake that occurs during cancer and sepsis, but studies in human tissues are lacking. The control of transport by cytokines and cytokine receptor expression in the liver may provide a mechanism by which hepatocytes can modulate amino acid availability during catabolic disease states. METHODS: Human hepatocytes were isolated from wedge biopsy specimens and plated in 24-well trays. Interleukin-6 and TNF-alpha, in combination with the synthetic glucocorticoid dexamethasone, were added to hepatocytes in culture, and the transport of radiolabeled glutamine and alanine was measured. Fluorescent-activated cell sorter (FACS) analysis was used to study the effects of dexamethasone on IL-6 receptor number in the well-differentiated human hepatoma HepG2. RESULTS: Both IL-6 and TNF-alpha exerted a small stimulatory effect on alanine and glutamine transport. Dexamethasone alone did not alter transport rates, but pretreatment of cells augmented the effects of both cytokines on carrier-mediated amino acid uptake. Dexamethasone pretreatment and a combination of IL-6 and TNF-alpha resulted in a greater than twofold increase in transport activity. Fluorescent-activated cell sorter analysis demonstrated that dexamethasone induced a threefold increase in the expression of high-affinity IL-6 receptors. CONCLUSIONS: Interleukin-6 and TNF-alpha work coordinately with glucocorticoids to stimulate amino acid uptake in human hepatocytes. Dexamethasone exerts a permissive effect on cytokine-mediated increases in transport by increasing IL

  14. Hypocholesterolaemic Activity of Lupin Peptides: Investigation on the Crosstalk between Human Enterocytes and Hepatocytes Using a Co-Culture System Including Caco-2 and HepG2 Cells

    PubMed Central

    Lammi, Carmen; Zanoni, Chiara; Ferruzza, Simonetta; Ranaldi, Giulia; Sambuy, Yula; Arnoldi, Anna

    2016-01-01

    Literature indicates that peptic and tryptic peptides derived from the enzymatic hydrolysis of lupin protein are able to modulate cholesterol metabolism in human hepatic HepG2 cells and that part of these peptides are absorbed in a small intestine model based on differentiated human Caco-2 cells. In this paper, a co-culture system, including Caco-2 and HepG2 cells, was investigated with two objectives: (a) to verify whether cholesterol metabolism in HepG2 cells was modified by the peptides absorption through Caco-2 cells; (b) to investigate how lupin peptides influence cholesterol metabolism in Caco-2 cells. The experiments showed that the absorbed peptides, not only maintained their bioactivity on HepG2 cells, but that this activity was improved by the crosstalk of the two cells systems in co-culture. In addition, lupin peptides showed a positive influence on cholesterol metabolism in Caco-2 cells, decreasing the proprotein convertase subtilisin/kexin type 9 (PCSK9) secretion. PMID:27455315

  15. Hypocholesterolaemic Activity of Lupin Peptides: Investigation on the Crosstalk between Human Enterocytes and Hepatocytes Using a Co-Culture System Including Caco-2 and HepG2 Cells.

    PubMed

    Lammi, Carmen; Zanoni, Chiara; Ferruzza, Simonetta; Ranaldi, Giulia; Sambuy, Yula; Arnoldi, Anna

    2016-01-01

    Literature indicates that peptic and tryptic peptides derived from the enzymatic hydrolysis of lupin protein are able to modulate cholesterol metabolism in human hepatic HepG2 cells and that part of these peptides are absorbed in a small intestine model based on differentiated human Caco-2 cells. In this paper, a co-culture system, including Caco-2 and HepG2 cells, was investigated with two objectives: (a) to verify whether cholesterol metabolism in HepG2 cells was modified by the peptides absorption through Caco-2 cells; (b) to investigate how lupin peptides influence cholesterol metabolism in Caco-2 cells. The experiments showed that the absorbed peptides, not only maintained their bioactivity on HepG2 cells, but that this activity was improved by the crosstalk of the two cells systems in co-culture. In addition, lupin peptides showed a positive influence on cholesterol metabolism in Caco-2 cells, decreasing the proprotein convertase subtilisin/kexin type 9 (PCSK9) secretion. PMID:27455315

  16. Environmental pollutants parathion, paraquat and bisphenol A show distinct effects towards nuclear receptors-mediated induction of xenobiotics-metabolizing cytochromes P450 in human hepatocytes.

    PubMed

    Vrzal, Radim; Zenata, Ondrej; Doricakova, Aneta; Dvorak, Zdenek

    2015-10-01

    Environmental pollutants parathion, bisphenol A and paraquat were not systematically studied towards the effects on the expression of phase I xenobiotics-metabolizing cytochromes P450 (CYPs). We monitored their effects on the expression of selected CYPs in primary cultures of human hepatocytes. Moreover, we investigated their effects on the receptors regulating these CYPs, particularly arylhydrocarbon receptor (AhR), pregnane X receptor (PXR) and glucocorticoid receptor (GR) by gene reporter assays. We found that parathion and bisphenol A are the activators of AhR. Moreover, they are the inducers of CYP1A1 mRNA in hepatoma cells HepG2 as well as in human hepatocytes by AhR-dependent mechanism via formation of AhR-DNA-binding complex, as revealed by gel shift assay. All three compounds possessed anti-glucocorticoid action as revealed by GR-dependent gene reporter assay and a decline in tyrosine aminotransferase (TAT) gene expression in human hepatocytes. Moreover, parathion and bisphenol A are the activators of PXR and inducers of CYP3A4 mRNA and protein in the primary cultures of human hepatocytes. In conclusion, the studied compounds displayed distinct activities towards nuclear receptors involved in many biological processes and these findings may help us to better understand their adverse actions in pathological states followed after their exposure. PMID:26196221

  17. Application of a Micropatterned Cocultured Hepatocyte System To Predict Preclinical and Human-Specific Drug Metabolism.

    PubMed

    Ballard, T Eric; Wang, Shuai; Cox, Loretta M; Moen, Mark A; Krzyzewski, Stacy; Ukairo, Okechukwu; Obach, R Scott

    2016-02-01

    Laboratory animal models are the industry standard for preclinical risk assessment of drug candidates. Thus, it is important that these species possess profiles of drug metabolites that are similar to those anticipated in human, since metabolites also could be responsible for biologic activities or unanticipated toxicity. Under most circumstances, preclinical species reflect human in vivo metabolites well; however, there have been several notable exceptions, and understanding and predicting these exceptions with an in vitro system would be very useful. Human micropatterned cocultured (MPCC) hepatocytes have been shown to recapitulate human in vivo qualitative metabolic profiles, but the same demonstration has not been performed yet for laboratory animal species. In this study, we investigated several compounds that are known to produce human-unique metabolites through CYP2C9, UGT1A4, aldehyde oxidase (AO), or N-acetyltransferase that were poorly covered or not detected at all in the selected preclinical species. To perform our investigation we used 24-well MPCC hepatocyte plates having three individual human donors and a single donor each of monkey, dog, and rat to study drug metabolism at four time points per species. Through the use of the multispecies MPCC hepatocyte system, the metabolite profiles of the selected compounds in human donors effectively captured the qualitative in vivo metabolite profile with respect to the human metabolite of interest. Human-unique metabolites that were not detected in vivo in certain preclinical species (normally dog and rat) were also not generated in the corresponding species in vitro, confirming that the MPCC hepatocytes can provide an assessment of preclinical species metabolism. From these results, we conclude that multispecies MPCC hepatocyte plates could be used as an effective in vitro tool for preclinical understanding of species metabolism relative to humans and aid in the choice of appropriate preclinical models. PMID

  18. Cultures of human liver cells in simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Yoffe, B.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Khaoustov, V. I.

    1999-01-01

    We used microgravity-simulated bioreactors that create the unique environment of low shear force and high-mass transfer to establish long-term cultures of primary human liver cells (HLC). To assess the feasibility of establishing HLC cultures, human liver cells obtained either from cells dissociated by collagenase perfusion or minced tissues were cultured in rotating vessels. Formation of multidimensional tissue-like spheroids (up to 1.0 cm) comprised of hepatocytes and biliary epithelial cells that arranged as bile duct-like structures along newly formed vascular sprouts were observed. Electron microscopy revealed clusters of round hepatocytes and bile canaliculi with multiple microvilli and tight junctions. Scanning EM revealed rounded hepatocytes that were organized in tight clusters surrounded by a complex mesh of extracellular matrix. Also, we observed that co-culture of hepatocytes with endothelial cells stimulate albumin mRNA expression. In summary, a simulated microgravity environment is conducive for the establishment of long-term HLC cultures and allows the dissection of the mechanism of liver regeneration and cell-to-cell interactions that resembles in vivo conditions.

  19. Enhancement of hepatocyte differentiation from human embryonic stem cells by Chinese medicine Fuzhenghuayu

    PubMed Central

    Chen, Jiamei; Gao, Wei; Zhou, Ping; Ma, Xiaocui; Tschudy-Seney, Benjamin; Liu, Chenghai; Zern, Mark A; Liu, Ping; Duan, Yuyou

    2016-01-01

    Chinese medicine, Fuzhenghuayu (FZHY), appears to prevent fibrosis progression and improve liver function in humans. Here we found that FZHY enhanced hepatocyte differentiation from human embryonic stem cells (hESC). After treatment with FZHY, albumin expression was consistently increased during differentiation and maturation process, and expression of metabolizing enzymes and transporter were also increased. Importantly, expression of mesenchymal cell and cholangiocyte marker was significantly reduced by treatment with FZHY, indicating that one possible mechanism of FZHY’s role is to inhibit the formation of mesenchymal cells and cholangiocytes. Edu-labelled flow cytometric analysis showed that the percentage of the Edu positive cells was increased in the treated cells. These results indicate that the enhanced proliferation involved hepatocytes rather than another cell type. Our investigations further revealed that these enhancements by FZHY are mediated through activation of canonical Wnt and ERK pathways and inhibition of Notch pathway. Thus, FZHY not only promoted hepatocyte differentiation and maturation, but also enhanced hepatocyte proliferation. These results demonstrate that FZHY appears to represent an excellent therapeutic agent for the treatment of liver fibrosis, and that FZHY treatment can enhance our efforts to generate mature hepatocytes with proliferative capacity for cell-based therapeutics and for pharmacological and toxicological studies. PMID:26733102

  20. Fluorometric assessment of acetaminophen-induced toxicity in rat hepatocyte spheroids seeded on micro-space cell culture plates.

    PubMed

    Sanoh, Seigo; Santoh, Masataka; Takagi, Masashi; Kanayama, Tatsuya; Sugihara, Kazumi; Kotake, Yaichiro; Ejiri, Yoko; Horie, Toru; Kitamura, Shigeyuki; Ohta, Shigeru

    2014-09-01

    Hepatotoxicity induced by the metabolic activation of drugs is a major concern in drug discovery and development. Three-dimensional (3-D) cultures of hepatocyte spheroids may be superior to monolayer cultures for evaluating drug metabolism and toxicity because hepatocytes in spheroids maintain the expression of various metabolizing enzymes and transporters, such as cytochrome P450 (CYP). In this study, we examined the hepatotoxicity due to metabolic activation of acetaminophen (APAP) using fluorescent indicators of cell viability and intracellular levels of glutathione (GSH) in rat hepatocyte spheroids grown on micro-space cell culture plates. The mRNA expression levels of some drug-metabolizing enzymes were maintained during culture. Additionally, this culture system was compatible with microfluorometric imaging under confocal laser scanning microscopy. APAP induced a decrease in intracellular ATP at 10mM, which was blocked by the CYP inhibitor 1-aminobenzotriazole (ABT). APAP (10mM, 24h) decreased the levels of both intracellular ATP and GSH, and GSH-conjugated APAP (APAP-GSH) were formed. All three effects were blocked by ABT, confirming a contribution of APAP metabolic activation by CYP to spheroid toxicity. Fluorometric imaging of hepatocyte spheroids on micro-space cell culture plates may allow the screening of drug-induced hepatotoxicity during pharmaceutical development. PMID:24878114

  1. Copper Nanoparticles and Copper Sulphate Induced Cytotoxicity in Hepatocyte Primary Cultures of Epinephelus coioides

    PubMed Central

    Wang, Tao; Chen, Xiaoyan; Long, Xiaohua; Liu, Zhaopu; Yan, Shaohua

    2016-01-01

    Copper nanoparticles (Cu-NPs) were widely used in various industrial and commercial applications. The aim of this study was to analyze the cytotoxicity of Cu-NPs on primary hepatocytes of E.coioides compared with copper sulphate (CuSO4). Cultured cells were exposed to 0 or 2.4 mg Cu L-1 as CuSO4or Cu-NPs for 24-h. Results showed either form of Cu caused a dramatic loss in cell viability, more so in the CuSO4 than Cu-NPs treatment. Compared to control, either CuSO4 or Cu-NPs significantly increased reactive oxygen species(ROS) and malondialdehyde(MDA) concentration in hepatocytes by overwhelming total superoxide dismutase (T-SOD) activity, catalase(CAT) activity and glutathione(GSH) concentration. In addition, the antioxidative-related genes [SOD (Cu/Zn), SOD (Mn), CAT, GPx4] were also down-regulated. The apoptosis and necrosis percentage was significantly higher after the CuSO4 or Cu-NPs treatment than the control. The apoptosis was induced by the increased cytochrome c concentration in the cytosol and elevated caspase-3, caspase-8 and caspase-9 activities. Additionally, the apoptosis-related genes (p53, p38β and TNF-α) and protein (p53 protein) were up-regulated after the CuSO4 or Cu-NPs treatment, with CuSO4 exposure having a greater effect than Cu-NPs. In conclusion, Cu-NPs had similar types of toxic effects as CuSO4 on primary hepatocytes of E.coioides, but toxicity of CuSO4 was more severe than that of Cu-NPs. PMID:26890000

  2. Copper Nanoparticles and Copper Sulphate Induced Cytotoxicity in Hepatocyte Primary Cultures of Epinephelus coioides.

    PubMed

    Wang, Tao; Chen, Xiaoyan; Long, Xiaohua; Liu, Zhaopu; Yan, Shaohua

    2016-01-01

    Copper nanoparticles (Cu-NPs) were widely used in various industrial and commercial applications. The aim of this study was to analyze the cytotoxicity of Cu-NPs on primary hepatocytes of E.coioides compared with copper sulphate (CuSO4). Cultured cells were exposed to 0 or 2.4 mg Cu L-1 as CuSO4or Cu-NPs for 24-h. Results showed either form of Cu caused a dramatic loss in cell viability, more so in the CuSO4 than Cu-NPs treatment. Compared to control, either CuSO4 or Cu-NPs significantly increased reactive oxygen species(ROS) and malondialdehyde(MDA) concentration in hepatocytes by overwhelming total superoxide dismutase (T-SOD) activity, catalase(CAT) activity and glutathione(GSH) concentration. In addition, the antioxidative-related genes [SOD (Cu/Zn), SOD (Mn), CAT, GPx4] were also down-regulated. The apoptosis and necrosis percentage was significantly higher after the CuSO4 or Cu-NPs treatment than the control. The apoptosis was induced by the increased cytochrome c concentration in the cytosol and elevated caspase-3, caspase-8 and caspase-9 activities. Additionally, the apoptosis-related genes (p53, p38β and TNF-α) and protein (p53 protein) were up-regulated after the CuSO4 or Cu-NPs treatment, with CuSO4 exposure having a greater effect than Cu-NPs. In conclusion, Cu-NPs had similar types of toxic effects as CuSO4 on primary hepatocytes of E.coioides, but toxicity of CuSO4 was more severe than that of Cu-NPs. PMID:26890000

  3. Bile Acid-Induced Necrosis in Primary Human Hepatocytes and in Patients with Obstructive Cholestasis

    PubMed Central

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-01-01

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. PMID:25636263

  4. Expression and characterization of biologically active human hepatocyte growth factor (HGF) by insect cells infected with HGF-recombinant baculovirus.

    PubMed

    Yee, C J; DeFrances, M C; Bell, A; Bowen, W; Petersen, B; Michalopoulos, G K; Zarnegar, R

    1993-08-10

    A cDNA containing the entire coding sequence of human hepatocyte growth factor (HGF) [also known as scatter factor (SF)] was inserted into the genome of Autographa california nuclear polyhedrosis virus (baculovirus) adjacent to the polyhedrin promoter by homologous recombination. Insect cells (Spodoptera frugiperda) infected with the recombinant virus secrete relatively high levels (3-8 mg/L) of biologically active HGF into the culture medium. The recombinant HGF induces pronounced morphological changes and scattering of primary cultures of rat, mouse, and human hepatocytes within 24 h after plating and stimulates DNA synthesis in these cells with the same magnitude as native HGF derived from human placenta or rabbit serum. The human recombinant HGF produced by the insect cells is N-glycosylated, binds to heparin like native HGF, and is recognized by polyclonal antiserums raised against human or rabbit HGF as assessed by immunoblot, ELISA, and immunoneutralization experiments. Metabolic radiolabeling with L-[35S]methionine (pulse-chase experiments) as well as Western blot analysis indicates that the recombinant HGF is synthesized and secreted by the infected insect cells as the unprocessed single-chain form (pro-HGF) when the cells are cultured in serum-free medium. However, when the infected insect cells are cultured in insect culture medium (Grace's medium) containing fetal bovine serum, the secreted HGF is present mainly in the mature heterodimeric form. Addition of serum to the baculovirus-expressed single-chain [125I]HGF in a cell-free system results in conversion to the heterodimeric two-chain form, and the activation is prevented by the serine protease inhibitor PMSF. Incubation of 125I-labeled pro-HGF with rat liver or spleen extracts resulted in conversion of pro-HGF to the heterodimeric two-chain form. A truncated form of HGF containing the N-terminal portion of HGF (kringles 1-3) was also produced in the same expression system. This deleted HGF, by

  5. Aneuploidy is permissive for hepatocyte-like cell differentiation from human induced pluripotent stem cells

    PubMed Central

    2014-01-01

    Background The characterization of induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) routinely includes analyses of chromosomal integrity. The belief is that pluripotent stem cells best suited to the generation of differentiated derivatives should display a euploid karyotype; although, this does not appear to have been formally tested. While aneuploidy is commonly associated with cell transformation, several types of somatic cells, including hepatocytes, are frequently aneuploid and variation in chromosomal content does not contribute to a transformed phenotype. This insight has led to the proposal that dynamic changes in the chromosomal environment may be important to establish genetic diversity within the hepatocyte population and such diversity may facilitate an adaptive response by the liver to various insults. Such a positive contribution of aneuploidy to liver function raises the possibility that, in contrast to existing dogma, aneuploid iPSCs may be capable of generating hepatocyte-like cells that display hepatic activities. Results We examined whether a human iPSC line that had multiple chromosomal aberrations was competent to differentiate into hepatocytes and found that loss of normal chromosomal content had little impact on the production of hepatocyte-like cells from iPSCs. Conclusions iPSCs that harbor an abnormal chromosomal content retain the capacity to generate hepatocyte–like cells with high efficiency. PMID:25002137

  6. Primary human hepatocytes versus hepatic cell line: assessing their suitability for in vitro nanotoxicology.

    PubMed

    Kermanizadeh, Ali; Gaiser, Birgit K; Ward, Michael B; Stone, Vicki

    2013-11-01

    The use of hepatocyte cell lines as a replacement for animal models have been heavily criticised mainly due to low expression of metabolism enzymes. This study compares primary human hepatocytes with the C3A cell line and with respect to their response to a panel of nanomaterials (NMs; two ZnO, two MWCNTs, one Ag and one positively functionalised TiO₂). The cell line was very comparable with the primary hepatocytes with regards to their cytotoxic response to the NMs (Ag > uncoated ZnO > coated ZnO). The LC₅₀ was not attained in the presence of the MWCNTs and the TiO₂ NMs. All NMs significantly increased IL-8 production, with no change in levels of TNF-α and IL-6. Albumin production was measured as an indicator of hepatic function. The authors found no change in levels of albumin with the exception of the coated ZnO NM at the LC₅₀ concentration. NM uptake was similar for both the primary hepatocytes and C3A cells as investigated by TEM. Meanwhile, the authors confirmed greater levels of CYP450 activity in untreated primary cells. This study demonstrates that the C3A cell line is a good model for investigating NM-induced hepatocyte responses with respect to uptake, cytotoxicity, pro-inflammatory cytokine production and albumin production. PMID:23009365

  7. Biotransformation of deramciclane in primary hepatocytes of rat, mouse, rabbit, dog, and human.

    PubMed

    Monostory, Katalin; Kohalmy, Krisztina; Ludányi, Krisztina; Czira, Gábor; Holly, Sándor; Vereczkey, László; Urmös, Iván; Klebovich, Imre; Kóbori, László

    2005-11-01

    The metabolic fate of deramciclane [(1R,2S,4R)-(-)-2-phenyl-2-(2'-dimethylamino-ethoxy)-1,7,7-trimethyl-bicyclo[2.2.1]heptane], a new anxiolytic drug candidate, has been determined in rat, mouse, rabbit, dog, and human hepatocytes. Rat and rabbit cells were the most active, whereas the rate of metabolism was quite slow in human hepatocytes. During biotransformation, deramciclane underwent side chain modification and oxidation at several positions of the molecule. The side chain modification led to the formation of N-desmethyl deramciclane and phenylborneol. The oxidation of deramciclane resulted in several hydroxy-, carboxy-, and N-oxide derivatives. The hydroxylation took place at primary or secondary carbons of the camphor ring as well as at the side chain; furthermore, dihydroxylated derivatives were also found. The side chain-modified metabolites were also oxidized to hydroxy- or carboxy-derivatives. Conjugation of phase I metabolites, as a route of elimination, was also observed in rat, rabbit, and dog hepatocytes. Although there were some species differences in biotransformation of deramciclane, it was concluded that phase I metabolism in human liver cells seemed to be similar to the metabolism in the hepatocytes isolated from rat. With careful approach, the rat model may be considered to be predictive for human metabolism of deramciclane. PMID:16118331

  8. APPARENT SEXUAL DIFFERENCES IN METABOLISM OF INORGANIC ARSENIC IN HUMAN HEPATOCYTES

    EPA Science Inventory

    APPARENT SEXUAL DIFFERENCES IN METABOLISM OF INORGANIC ARSENIC IN HUMAN HEPATOCYTES. M Styblo1, G A Hamilton1, E L LeCluyse1 and D J Thomas2. 1University of North Carolina, Chapel Hill, NC, USA; 2US EPA, ORD, NHEERL, Research Triangle Park, NC, USA.
    The liver is considered a m...

  9. Ultrastructural modifications in cultured fetal quail hepatocytes exposed to pesticides and PCBs.

    PubMed

    Hugla, J L; Goffinet, G; Kremers, P; Dubois, M; Lambert, V; Stouvenakers, N; Thome, J P

    1996-07-01

    There is increasing interest in cultured hepatocytes as a tool for solving toxicological and pharmacological problems while reducing laboratory animal experimentation. In the present study, fetal hepatocytes from the Japanese quail (Coturnix coturnix japonica) were used as an in vitro alternative model for evaluating the effects of PCBs and various pesticide-type chemicals on cell ultrastructure. Major alterations were demonstrated. The most striking effects of toxicants were an increase in the number of cisternae of the rough endoplasmic reticulum (RER), various alterations of mitochondrial morphology, a decreased glycogen content, vacuolization of the cytoplasm, and the appearance of concentric membrane arrays (CMA's), also called myelin-like figures. Other changes were sometimes observed, such as altered cell junctions, an increased lipid content, deformations of the nuclei, or the appearance of crystalline structures. These ultrastructural modifications seem to be dose-dependent. The present in vitro findings are validated by similar observations previously made in vivo on Japanese quail. They confirm the effectiveness of this technique as a biomonitoring tool for the evaluation of environmental quality. Yet the multiplicity of possible toxic effects, even for xenobiotics of a same category, makes it necessary to screen additional indicators of toxicity, such as the detoxifying activity of monooxygenases. PMID:8812180

  10. Transcriptional and metabolic flux profiling of triadimefon effects on cultured hepatocytes

    SciTech Connect

    Iyer, Vidya V.; Ovacik, Meric A.; Androulakis, Ioannis P.; Roth, Charles M.; Ierapetritou, Marianthi G.

    2010-11-01

    Conazoles are a class of azole fungicides used to prevent fungal growth in agriculture, for treatment of fungal infections, and are found to be tumorigenic in rats and/or mice. In this study, cultured primary rat hepatocytes were treated to two different concentrations (0.3 and 0.15 mM) of triadimefon, which is a tumorigenic conazole in rat and mouse liver, on a temporal basis with daily media change. Following treatment, cells were harvested for microarray data ranging from 6 to 72 h. Supernatant was collected daily for three days, and the concentrations of various metabolites in the media and supernatant were quantified. Gene expression changes were most significant following exposure to 0.3 mM triadimefon and were characterized mainly by metabolic pathways related to carbohydrate, lipid and amino acid metabolism. Correspondingly, metabolic network flexibility analysis demonstrated a switch from fatty acid synthesis to fatty acid oxidation in cells exposed to triadimefon. It is likely that fatty acid oxidation is active in order to supply energy required for triadimefon detoxification. In 0.15 mM triadimefon treatment, the hepatocytes are able to detoxify the relatively low concentration of triadimefon with less pronounced changes in hepatic metabolism.

  11. Under the skin: Biotransformation of para-aminophenol and para-phenylenediamine in reconstructed human epidermis and human hepatocytes.

    PubMed

    Nohynek, Gerhard J; Duche, Daniel; Garrigues, Alexia; Meunier, Pierre-Alain; Toutain, Herve; Leclaire, Jacques

    2005-09-15

    We investigated the biotransformation of the oxidative arylamine (AA) hair dye ingredients [14C]-para-aminophenol (PAP) and [14C]-para-phenylenediamine (PPD) in reconstructed human epidermis and human hepatocytes. Human epidermis quantitatively transformed PAP to its N-acetylated derivative (APAP), whereas hepatocytes transformed PAP to sulfate or glucuronic acid conjugates of APAP or PAP as well as free APAP. Epidermis and hepatocytes converted PPD to N-mono- (MAPPD) and N,N'-di-acetylated (DAPPD) derivatives. At higher concentrations of PPD (250-1000 microM), epidermis or hepatocytes produced more of the MAPPD, whereas concentrations below 250 microM and lower favoured formation of the DAPPD metabolite. When compared with epidermis, human hepatocytes had a three-fold or eight-fold greater capacity for generation of MAPPD or DAPPD, respectively. No evidence of transformation of PAP or PPD to N-hydroxylated derivatives was found in epidermis or hepatocytes. Our results suggest that (i) after dermal absorption of PAP or PPD, humans are systemically exposed to acetylated derivatives; (ii) current in vitro skin absorption studies may be inadapated for determination of human systemic exposure to AAs due to reduced or absent metabolic capacity of non-viable skin; (iii) due to qualitative differences between dermal and hepatic metabolism, oral toxicity studies may be unsuited for the hazard assessment of dermal exposure to AAs; and (iv) use of induced rodent liver S9 metabolic activation systems for in vitro genotoxicity studies may produce misleading results on the hazard of human dermal exposure to AAs. In conclusion, our data support the growing evidence that AAs are transformed in human skin and suggest that current practices of safety assessment of AAs should take these findings into account. PMID:15890478

  12. The regulation of cytoskeletal and liver-specific gene expression during liver regeneration and primary hepatocyte culture

    SciTech Connect

    Robinson, G.S.

    1989-01-01

    The focus of this dissertation is to determine what role(s) the extracellular matrix and expression of certain cytoskeletal genes play in the regulation of hepatocyte growth and the maintenance of a differential state. The expression of several cytoskeletal and liver-specific genes was examined during liver regeneration and in hepatocyte cultures maintained in a hormonally-defined, serum-free medium and plated on two different matrices: rat tail collagen and the EHS matrix. During liver regeneration and in hepatocytes cultured on rat tail collagen, there was a dramatic increase in tubulin mRNA levels coincident with but not linked to DNA synthesis. The message levels for other cytoskeletal genes similarly increased, while a decrease was observed in the mRNA levels of the liver-specific genes, serum albumin and alpha{sub 1} inhibitor III. Hepatocytes cultured on the EHS matrix resulted in the maintenance of low levels of cytoskeletal gene expression and high levels of liver-specific gene expression, similar to that observed in the normal liver. Results from subcellar fractionation and two-dimensional gel electrophoresis of {sup 35}S-labelled proteins paralleled the results seen at the mRNA level. Preliminary work suggests that microtubule organization may play a role in the expression of the liver-specific genes which encode secreted proteins. These studies, which compare hepatocytes cultured on collagen or the EHS matrix gel, reveal that both cell-cell and cell-matrix interactions play a major role in the maintenance of the differential phenotype in hepatocytes.

  13. Role of Tribbles Pseudokinase 1 (TRIB1) in human hepatocyte metabolism.

    PubMed

    Soubeyrand, Sébastien; Martinuk, Amy; Naing, Thet; Lau, Paulina; McPherson, Ruth

    2016-02-01

    Genome-wide association studies for plasma triglycerides and hepatic steatosis identified a risk locus on chromosome 8q24 close to the TRIB1 gene, encoding Tribbles Pseudokinase 1 (TRIB1). In previous studies conducted in murine models, hepatic over-expression of Trib1 was shown to increase fatty acid oxidation and decrease triglyceride synthesis whereas Trib1 knockdown mice exhibited hypertriglyceridemia. Here we have examined the impact of TRIB1 suppression in human and mouse hepatocytes. Examination of a panel of lipid regulator transcripts revealed species-specific effects, prompting us to focus on human models for the remainder of the study. Acute knockdown of TRIB1 in human primary hepatocytes resulted in decreased expression of MTTP and APOB, required for very low density lipoprotein (VLDL) assembly although particle secretion was not significantly affected. A parallel analysis performed in HepG2 revealed reduced MTTP, but not APOB, protein as a result of TRIB1 suppression. Global gene expression changes of human primary hepatocytes upon TRIB1 suppression were analyzed by clustering algorithms and found to be consistent with dysregulation of several pathways fundamental to liver function, including altered CEBPA and B transcript levels and impaired glucose handling. Indeed, TRIB1 expression in HepG2 cells was found to be inversely proportional to glucose concentration. Lastly TRIB1 downregulation in primary hepatocytes was associated with suppression of the HNF4A axis. In HepG2 cells, TRIB1 suppression resulted in reduced HNF4A protein levels while HNF4A suppression increased TRIB1 expression. Taken together these studies reveal an important role for TRIB1 in human hepatocyte biology. PMID:26657055

  14. In Vitro Metabolism of 3,4-Methylenedioxymethamphetamine in Human Hepatocytes

    PubMed Central

    Ramaley, Corinne; Leonard, Susan C.; Miller, Jeffrey D.; Wilson, Denita Takesha-Mashia; Chang, Sai Y.; Chen, Qingyu; Li, Feng; Du, Chengan

    2014-01-01

    Users of the illicit drug, 3,4-methylenedioxymethamphetamine (MDMA), show signs of neurotoxicity. However, the precise mechanism of neurotoxicity caused by use of MDMA has not yet been elucidated. Synthetic glutathione (GSH) conjugates of MDMA are transported into the brain by the GSH transporter and subsequently produce neurotoxicity. The objective of this research is to show direct evidence of the formation of GSH adducts of MDMA in human hepatocytes. High-performance liquid chromatography coupled with tandem mass spectrometry was utilized to examine in vitro incubations of MDMA with cryopreserved human hepatocytes. The use of hydrophilic liquid chromatography in combination with linear ion trap mass spectrometry permitted the identification of two possible GSH metabolites. Enhanced product ion scans of m/z = 499 and 487 amu of extracts from hepatocytes treated with 1.0 mM MDMA show a distinct fragmentation pattern (m/z 194.2, 163, 135, 105), suggesting the formation of MDMA–GSH conjugate, MDMA-SG and 3,4-dihydroxymethamphetamine-SG. The formation of an MDMA–GSH conjugate was further supported by the apparent lack of the same fragmentation pattern from hepatocyte samples without MDMA treatment. The results generated from this study yield valuable qualitative and quantitative information about the neurotoxic thioether metabolites formed from MDMA in humans. PMID:24682111

  15. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    PubMed

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-01-01

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489

  16. A Human Hepatocyte-Bearing Mouse: An Animal Model to Predict Drug Metabolism and Effectiveness in Humans

    PubMed Central

    Yoshizato, Katsutoshi; Tateno, Chise

    2009-01-01

    Preclinical studies to predict the efficacy and safety of drugs have conventionally been conducted almost exclusively in mice and rats as rodents, despite the differences in drug metabolism between humans and rodents. Furthermore, human (h) viruses such as hepatitis viruses do not infect the rodent liver. A mouse bearing a liver in which the hepatocytes have been largely repopulated with h-hepatocytes would overcome some of these disadvantages. We have established a practical, efficient, and large-scale production system for such mice. Accumulated evidence has demonstrated that these hepatocyte-humanized mice are a useful and reliable animal model, exhibiting h-type responses in a series of in vivo drug processing (adsorption, distribution, metabolism, excretion) experiments and in the infection and propagation of hepatic viruses. In this review, we present the current status of studies on chimeric mice and describe their usefulness in the study of peroxisome proliferator-activated receptors. PMID:19884982

  17. Primary cultured cells as sensitive in vitro model for assessment of toxicants--comparison to hepatocytes and gill epithelia.

    PubMed

    Zhou, Bingsheng; Liu, Chunsheng; Wang, Jingxian; Lam, Paul K S; Wu, Rudolf S S

    2006-11-16

    In an effort to develop cultured cell models for toxicity screening and environmental biomonitoring, we compared primary cultured gill epithelia and hepatocytes from freshwater tilapia (Oreochromis niloticus) to assess their sensitivity to AhR agonist toxicants. Epithelia were cultured on permeable supports (terephthalate membranes, "filters") and bathed on the apical with waterborne toxicants (pseudo in vivo asymmetrical culture conditions). Hepatocytes were cultured in multi-well plates and exposed to toxicants in culture medium. Cytochrome P4501A (measured as 7-Ethoxyresorufin-O-deethylase, EROD) was selected as a biomarker. For cultured gill epithelia, the integrity of the epithelia remained unchanged on exposure to model toxicants, such as 1,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene B[a]P, polychlorinated biphenyl (PCB) mixture (Aroclor 1254), and polybrominated diphenyl ether (PBDE) mixture (DE71). A good concentration-dependent response of EROD activity was clearly observed in both cultured gill epithelia and hepatocytes. The time-course response of EROD was measured as early as 3h, and was maximal after 6h of exposure to TCDD, B[a]P and Aroclor 1254. The estimated 6h EC50 for TCDD, B[a]P, and Aroclor 1254 was 1.2 x 10(-9), 5.7 x 10(-8) and 6.6 x 10(-6)M. For the cultured hepatocytes, time-course study showed that a significant induction of EROD took place at 18 h, and the maximal induction of EROD was observed at 24h after exposure. The estimated 24h EC50 for TCDD, B[a]P, and Aroclor 1254 was 1.4 x 10(-9), 8.1 x 10(-8) and 7.3 x 10(-6)M. There was no induction or inhibition of EROD in DE71 exposure to both gill epithelia and hepatocytes. The results show that cultured gill epithelia more rapidly induce EROD and are slightly more sensitive than cultured hepatocytes, and could be used as a rapid and sensitive tool for screening chemicals and monitoring environmental AhR agonist toxicants. PMID:16959333

  18. Long-term maintenance of liver-specific functions in three-dimensional culture of adult rat hepatocytes with a porous gelatin sponge support.

    PubMed

    Lin, K H; Maeda, S; Saito, T

    1995-02-01

    The three-dimensional culture of adult rat hepatocytes with a porous gelatin sponge (gelfoam) support was investigated. Hepatocytes were immobilized on the surface as well as within the pores of the support. The morphology of the hepatocytes immobilized on the support was close to that observed in vivo. In some parts of the support the spheroids of hepatocytes could be observed. To examine the liver-specific functions of the hepatocytes in the culture, the levels of serum albumin and bile acids secreted into the medium were assessed. The secretion of albumin and bile acids was stable over the course of 12 days, longer than that in collagen-gel culture. To elucidate further the function of hepatocytes immobilized on gelfoam, the metabolic activities of the hepatocytes, as measured by the competency of removal of NH4+ and the synthesis of urea nitrogen, were determined. The rates of ammonium removal and urea nitrogen synthesis were comparable with those in conventional monolayer culture. Albumin secretion was enhanced by the treatment of gelfoam with either heparin or acidic fibroblast growth factor (aFGF), the gelfoam having a high affinity for these substances. DNA synthesis was also enhanced by aFGF. These results demonstrate that gelfoam is a suitable support for the in vitro culture of hepatocytes. Combined with its easy manipulation, it is suggested that the culture system described could be used for both basic and applied studies. PMID:7536008

  19. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes.

    PubMed

    Han, Shuxin; Li, Tiangang; Ellis, Ewa; Strom, Stephen; Chiang, John Y L

    2010-06-01

    Vitamin D receptor (VDR) is activated by natural ligands, 1alpha, 25-dihydroxy-vitamin D(3) [1alpha,25(OH)(2)-D(3)] and lithocholic acid (LCA). Our previous study shows that VDR is expressed in human hepatocytes, and VDR ligands inhibit bile acid synthesis and transcription of the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1). Primary human hepatocytes were used to study LCA and 1alpha,25(OH)(2)-D(3) activation of VDR signaling. Confocal immunofluorescent microscopy imaging and immunoblot analysis showed that LCA and 1alpha, 25(OH)(2)-D(3) induced intracellular translocation of VDR from the cytosol to the nucleus and also plasma membrane where VDR colocalized with caveolin-1. VDR ligands induced tyrosine phosphorylation of c-Src and VDR and their interaction. Inhibition of c-Src abrogated VDR ligand-dependent inhibition of CYP7A1 mRNA expression. Kinase assays showed that VDR ligands specifically activated the c-Raf/MEK1/2/extracellular signal-regulated kinase (ERK) 1/2 pathway, which stimulates serine phosphorylation of VDR and hepatocyte nuclear factor-4alpha, and their interaction. Mammalian two-hybrid assays showed a VDR ligand-dependent interaction of nuclear receptor corepressor-1 and silencing mediator of retinoid and thyroid with VDR/retinoid X receptor-alpha (RXRalpha). Chromatin immunoprecipitation assays revealed that an ERK1/2 inhibitor reversed VDR ligand-induced recruitment of VDR, RXRalpha, and corepressors to human CYP7A1 promoter. In conclusion, VDR ligands activate membrane VDR signaling to activate the MEK1/2/ERK1/2 pathway, which stimulates nuclear VDR/RXRalpha recruitment of corepressors to inhibit CYP7A1 gene transcription in human hepatocytes. This membrane VDR-signaling pathway may be activated by bile acids to inhibit bile acid synthesis as a rapid response to protect hepatocytes from cholestatic liver injury. PMID:20371703

  20. In vitro metabolism and toxicity assessment of N-methylcarbazole in primary cultured rat hepatocytes.

    PubMed

    Yang, W; Jiang, T R; Davis, P J; Acosta, D

    1991-01-01

    N-Methycarbazole (NMC), a carcinogen and mutagen in tobacco smoke, was converted to two major metabolites by primary cultured rat hepatocytes as measured by high performance liquid chromatography (HPLC): N-hydroxymethylcarbazole (NHMC) and carbazole. These two metabolites had comparable retention times and identical ultraviolet spectra as those of reference standards. Identical retention times and mass spectra were also observed as detected by gas chromatography-mass spectroscopy (GC-MS) for NHMC and its reference standard. The toxicities of NMC and its two metabolites were assessed by lactate dehydrogenase (LDH) leakage and neutral red (NR) uptake. The rank order of cytotoxicity of NMC and its metabolites was found to be: NHMC greater than NMC greater than carbazole. Thus, we conclude that the hydroxylation of NMC to NHMC may represent a toxification step, while the further dealkylation to carbazole is most likely a detoxication process. PMID:1896996

  1. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells

    NASA Astrophysics Data System (ADS)

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.

  2. Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells.

    PubMed

    Vasanthan, Punitha; Jayaraman, Pukana; Kunasekaran, Wijenthiran; Lawrence, Anthony; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Musa, Sabri; Kasim, Noor Hayaty Abu

    2016-08-01

    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases. PMID:27379400

  3. Effect of fatty acids on lipid and apoprotein secretion and association in hepatocyte cultures.

    PubMed Central

    Patsch, W; Tamai, T; Schonfeld, G

    1983-01-01

    Increasing availability of free fatty acids (FFA) to liver results in enhanced rates of secretion of triglycerides in lipoproteins. However, as FFA uptake increases, triglyceride secretory rates reach a plateau and esterified fatty acids accumulate intracellularly, suggesting that something is limiting lipid transport out of the liver. One possibility could be the limited availability of apoproteins. To test this hypothesis, primary rat hepatocytes in culture were incubated with increasing amounts of FFA (0-2.1 mumol/dish) and the amounts of lipids and apoproteins inside the cells and in culture media were measured; the latter by specific radioimmunoassays. Media also were fractionated on Sepharose 2B and 6B columns and the elution profiles of apoproteins were obtained. With exposure to increasing amounts of free fatty acids, hepatocytes took up more fatty acids and intracellular levels of triglycerides rose (from 71 to 146 micrograms/mg cell protein). Concomitantly, media triglycerides nearly doubled (31 to 51 micrograms/mg). Incorporation of [3H]glyceride into cellular and media triglyceride also rose. However, levels of apoproteins A-I, B, C-III3, and E in cells and media were unchanged. The increasing amounts of triglycerides in media were present in larger particles, as demonstrated on gel permeation chromatography. The elution profiles of apoproteins B, C-III3, and E were altered in that a greater proportion of the apoproteins eluted with larger particles. Similar results were obtained when hepatocytes were preloaded with increasing amounts of FFA over 12 h and analyses of cells and media were carried out 8 and 22 h after removal of fatty acids from the media. During loading of cells, accumulation of cellular triglycerides was directly related to media FFA concentrations. During unloading, triglyceride secretory rates were related to cellular triglyceride levels. At higher triglyceride secretory rates larger particles were secreted and a greater proportion of

  4. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes.

    PubMed

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa; Peterson, Darrell L; Berrueta, Lisbeth; Salmen, Siham

    2016-05-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. PMID:27068374

  5. Tandem overexpression of five human factors renders murine hepatocytes susceptible to hepatitis C virus.

    PubMed

    Lv, L; Kang, Q; Yu, X; Gao, B; Hu, T; Ma, P; Zhang, Y; Yan, F; Xiao, J; Deng, J; Zhou, X; Xu, J

    2015-03-01

    Development of mouse model of hepatitis C virus (HCV) infection has great significance in drug screening and vaccine research. The barriers of interspecies transmission of HCV are increasingly better understood. Human factors, namely low-density lipoprotein receptor (hLDLR), CD81 (hCD81), scavenger receptor class B type I (hSCARB1), occludin (hOCLN) and claudin 1 (hCLDN1) are all required for rendering mouse hepatocytes permissive to HCV. With the aim to humanize mouse hepatocytes we constructed two recombinant vectors tandemly expressing the first three and the last two HCV entry factors mentioned above, respectively. Cotransfection of mouse hepatocytes with these vectors made them permissive to HCV binding and entry. Tandem overexpression of hLDLR, hSCARB1, hCD81, hCLDN1 and hOCLN is a novel approach to tailoring mouse hepatocytes to HCV binding and entry which can be further used to establish a mouse model of HCV infection as a basis for developing antiviral drugs and vaccines. PMID:25790047

  6. An improvement in the attaching capability of cryopreserved human hepatocytes by a proteinaceous high molecule, sericin, in the serum-free solution.

    PubMed

    Miyamoto, Yoshitaka; Teramoto, Naozumi; Hayashi, Shuji; Enosawa, Shin

    2010-01-01

    The methodology of cryopreservation of human hepatocytes remains unsatisfactory. Even when the viability of thawed cells is tolerable, the cells often lose the attaching capability to a culture dish, resulting in the cells' inability to survive. Previously, we described the effectiveness of maltose on the attachment of hepatocytes. This article demonstrates that a silk-derived high molecular protein, sericin, improves the cell-attaching capability in the serum-free freezing medium. When human hepatocytes [initial viability: 60.9 ± 3.1% (mean ± SD, n = 3)] were frozen with serum-free Dulbecco's modified Eagle medium (DMEM) containing 10% dimethyl sulfoxide (DMSO), the viability was 29.4 ± 3.2% and the cell-attaching capability 20.4 ± 4.1%. On the other hand, DMEM containing 10% DMSO and 1% sericin increased the values to 45.0 ± 0.8% and 26.2 ± 3.2%. Moreover, the addition of 0.1 mol/L maltose to the sericin-containing medium improved to 42.2 ± 3.2% and 51.1 ± 1.0%, as we demonstrated in a previous report. The present results indicated that sericin combined with maltose is a novel additive in the serum-free freezing medium for human hepatocytes. PMID:20525438

  7. Fibrinogen synthesis in serum-free hepatocyte cultures: Stimulation by glucocorticoids

    PubMed Central

    Grieninger, Gerd; Hertzberg, Kathe M.; Pindyck, Johanna

    1978-01-01

    Fibrinogen synthesis was investigated in cultures of chicken embryo hepatocytes initiated and maintained in chemically defined, serum-free medium. 11-Hydroxy glucocorticoids caused a 3-fold stimulation of fibrinogen synthesis. Half-maximal stimulation was achieved with 1 nM corticosterone or hydrocortisone, as compared with only 0.1 nM dexamethasone. Increased fibrinogen production in the presence of these glucocorticoids was characterized by a 4-hr delay in onset, a sensitivity to actinomycin D, and a requirement for the continuous presence of the steroid. Crossed immunoelectrophoresis permitted analysis of the simultaneous effects of glucocorticoids on the synthesis of more than 20 plasma proteins secreted in culture. The absence of an effect on the synthesis of most of these proteins was in sharp contrast to the 3-fold increase in fibrinogen production. Sera from a variety of animals also stimulated an increase in fibrinogen synthesis that was similar in degree but less specific than that due to glucocorticoids and that partially masked the response of the cells to the steroid hormones. The presence of an anticoagulant in the medium was found to be necessary for detection of the fibrinogen secreted in culture. Although insulin was routinely included in the chemically defined medium, the cells synthesized fibrinogen and responded to glucocorticoids in the absence of hormonal supplementation of the medium. These findings are consistent with the thesis that variations in glucocorticoid levels contribute to the regulation of fibrinogen production in the intact animal. Images PMID:281699

  8. Fibrinogen synthesis in serum-free hepatocyte cultures: stimulation by glucocorticoids.

    PubMed

    Grieninger, G; Hertzberg, K M; Pindyck, J

    1978-11-01

    Fibrinogen synthesis was investigated in cultures of chicken embryo hepatocytes initiated and maintained in chemically defined, serum-free medium. 11-Hydroxy glucocorticoids caused a 3-fold stimulation of fibrinogen synthesis. Half-maximal stimulation was achieved with 1 nM corticosterone or hydrocortisone, as compared with only 0.1 nM dexamethasone. Increased fibrinogen production in the presence of these glucocorticoids was characterized by a 4-hr delay in onset, a sensitivity to actinomycin D, and a requirement for the continuous presence of the steroid. Crossed immunoelectrophoresis permitted analysis of the simultaneous effects of glucocorticoids on the synthesis of more than 20 plasma proteins secreted in culture. The absence of an effect on the synthesis of most of these proteins was in sharp contrast to the 3-fold increase in fibrinogen production. Sera from a variety of animals also stimulated an increase in fibrinogen synthesis that was similar in degree but less specific than that due to glucocorticoids and that partially masked the response of the cells to the steroid hormones. The presence of an anticoagulant in the medium was found to be necessary for detection of the fibrinogen secreted in culture. Although insulin was routinely included in the chemically defined medium, the cells synthesized fibrinogen and responded to glucocorticoids in the absence of hormonal supplementation of the medium. These findings are consistent with the thesis that variations in glucocorticoid levels contribute to the regulation of fibrinogen production in the intact animal. PMID:281699

  9. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes.

    PubMed

    Bachour-El Azzi, Pamela; Sharanek, Ahmad; Burban, Audrey; Li, Ruoya; Guével, Rémy Le; Abdel-Razzak, Ziad; Stieger, Bruno; Guguen-Guillouzo, Christiane; Guillouzo, André

    2015-05-01

    The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis. PMID:25690737

  10. Use of mRNA expression to detect the induction of drug metabolising enzymes in rat and human hepatocytes

    SciTech Connect

    Richert, L. Tuschl, G.; Pekthong, D.; Mantion, G.; Weber, J.-C.; Mueller, S.O.

    2009-02-15

    It is important to investigate the induction of cytochrome P450 (CYP) enzymes by drugs. The most relevant end point is enzyme activity; however, this requires many cells and is low throughput. We have compared the CYP1A, CYP2B and CYP3A induction response to eight inducers in rat and human hepatocytes using enzyme activities (CYP1A2 (ethoxyresorufin), 2B (benzoxyresorufin for rat and bupropion for human) and CYP3A (testosterone)) and Taqman{sup TM} Low Density Array (TLDA) analysis. There was a good correlation between the induction of CYP1A2, CYP2B6 and CYP3A4 enzyme activities and mRNA expression in human hepatocytes. In contrast, BROD activities and mRNA expression in rat hepatocytes correlated poorly. However, bupropion hydroxylation correlated well with Cyp2b1 expression in rat hepatocytes. TLDA analysis of a panel of mRNAs encoding for CYPs, phase 2 enzymes, nuclear receptors and transporters revealed that the main genes induced by the 8 compounds tested were the CYPs. AhR ligands also induced UDP-glucuronosyltransferases and glutathione S-transferases in rat and human hepatocytes. The transporters, MDR1, MDR3 and OATPA were the only transporter genes significantly up-regulated in human hepatocytes. In rat hepatocytes Bsep, Mdr2, Mrp2, Mrp3 and Oatp2 were up-regulated. We could then show a good in vivo:in vitro correlation in the induction response of isolated rat hepatocytes and ex-vivo hepatic microsomes for the drug development candidate, EMD392949. In conclusion, application of TLDA methodology to investigate the potential of compounds to induce enzymes in rat and human hepatocytes increases the throughput and information gained from one assay, without reducing the predictive capacity.

  11. Improved protocols for protein and RNA isolation from three-dimensional collagen sandwich cultures of primary hepatocytes.

    PubMed

    Heidebrecht, F; Schulz, I; Keller, M; Behrens, S-E; Bader, A

    2009-10-01

    The sandwich culture is the most widely used long-term culture system for functional primary hepatocytes. Despite its advantages, the currently available protocols for protein and RNA extraction are either time-consuming or contain steps that may skewer the results. This paper describes improved protocols for RNA and protein extraction from sandwich cultures that are easy to perform, require short working time, and use no additional enzymatic reactions that could change the expression profile of the cells. The quality of the RNA is excellent, allowing also applications requiring high purity such as microarrays. In general, the protocols are suited for any cells in 3D collagen culture. PMID:19539596

  12. Hepatocyte-like cells derived from human amniotic epithelial cells can be encapsulated without loss of viability or function in vitro.

    PubMed

    Vaghjiani, Vijesh; Vaithilingam, Vijayaganapathy; Saraswati, Indah; Sali, Adnan; Murthi, Padma; Kalionis, Bill; Tuch, Bernard E; Manuelpillai, Ursula

    2014-04-15

    Placenta derived human amniotic epithelial cells (hAEC) are an attractive source of stem cells for the generation of hepatocyte-like cells (HLC) for therapeutic applications to treat liver diseases. During hAEC differentiation into HLC, they become increasingly immunogenic, which may result in immune cell-mediated rejection upon transplantation into allogeneic recipients. Placing cells within devices such as alginate microcapsules can prevent immune cell-mediated rejection. The aim of this study was to investigate the characteristics of HLC generated from hAEC and to examine the effects of encapsulation on HLC viability, gene expression, and function. hAEC were differentiated for 4 weeks and evaluated for hepatocyte-specific gene expression and function. Differentiated cells were encapsulated in barium alginate microcapsules and cultured for 7 days and the effect of encapsulation on cell viability, function, and hepatocyte related gene expression was determined. Differentiated cells performed key functions of hepatocytes including urea synthesis, drug-metabolizing cytochrome P450 (CYP)3A4 activity, indocyanine green (ICG) uptake, low-density lipoprotein (LDL) uptake, and exhibited glutathione antioxidant capacity. A number of hepatocyte-related genes involved in fat, cholesterol, bile acid synthesis, and xenobiotic metabolism were also expressed showing that the hAEC had differentiated into HLC. Upon encapsulation, the HLC remained viable for at least 7 days in culture, continued to express genes involved in fat, cholesterol, bile acid, and xenobiotic metabolism and had glutathione antioxidant capacity. CYP3A4 activity and urea synthesis by the encapsulated HLC were higher than that of monolayer HLC cultures. Functional HLC can be derived from hAEC, and HLC can be encapsulated within alginate microcapsules without losing viability or function in vitro. PMID:24295364

  13. Hepatocyte-Like Cells Derived from Human Amniotic Epithelial Cells Can Be Encapsulated Without Loss of Viability or Function In Vitro

    PubMed Central

    Vaghjiani, Vijesh; Vaithilingam, Vijayaganapathy; Saraswati, Indah; Sali, Adnan; Murthi, Padma; Kalionis, Bill; Tuch, Bernard E.

    2014-01-01

    Placenta derived human amniotic epithelial cells (hAEC) are an attractive source of stem cells for the generation of hepatocyte-like cells (HLC) for therapeutic applications to treat liver diseases. During hAEC differentiation into HLC, they become increasingly immunogenic, which may result in immune cell-mediated rejection upon transplantation into allogeneic recipients. Placing cells within devices such as alginate microcapsules can prevent immune cell-mediated rejection. The aim of this study was to investigate the characteristics of HLC generated from hAEC and to examine the effects of encapsulation on HLC viability, gene expression, and function. hAEC were differentiated for 4 weeks and evaluated for hepatocyte-specific gene expression and function. Differentiated cells were encapsulated in barium alginate microcapsules and cultured for 7 days and the effect of encapsulation on cell viability, function, and hepatocyte related gene expression was determined. Differentiated cells performed key functions of hepatocytes including urea synthesis, drug-metabolizing cytochrome P450 (CYP)3A4 activity, indocyanine green (ICG) uptake, low-density lipoprotein (LDL) uptake, and exhibited glutathione antioxidant capacity. A number of hepatocyte-related genes involved in fat, cholesterol, bile acid synthesis, and xenobiotic metabolism were also expressed showing that the hAEC had differentiated into HLC. Upon encapsulation, the HLC remained viable for at least 7 days in culture, continued to express genes involved in fat, cholesterol, bile acid, and xenobiotic metabolism and had glutathione antioxidant capacity. CYP3A4 activity and urea synthesis by the encapsulated HLC were higher than that of monolayer HLC cultures. Functional HLC can be derived from hAEC, and HLC can be encapsulated within alginate microcapsules without losing viability or function in vitro. PMID:24295364

  14. Retroviral insertional mutagenesis in telomerase-immortalized hepatocytes identifies RIPK4 as novel tumor suppressor in human hepatocarcinogenesis.

    PubMed

    Heim, D; Cornils, K; Schulze, K; Fehse, B; Lohse, A W; Brümmendorf, T H; Wege, H

    2015-01-15

    Carcinogenesis is a multistep process involving alterations in various cellular pathways. The critical genetic events driving the evolution of primary liver cancer, specifically hepatoblastoma and hepatocellular carcinoma (HCC), are still poorly understood. However, telomere stabilization is acknowledged as prerequisite for cancer progression in humans. In this project, human fetal hepatocytes were utilized as a cell culture model for untransformed, proliferating human liver cells, with telomerase activation as first oncogenic hit. To elucidate critical downstream genetic events driving further transformation of immortalized liver cells, we used retroviral insertional mutagenesis as an unbiased approach to induce genetic alterations. Following isolation of hyperproliferating, provirus-bearing cell clones, we monitored cancer-associated growth properties and characterized changes toward a malignant phenotype. Three transformed clones with the ability to form colonies in soft agar were expanded. As proof-of-principle for our experimental setup, we identified a transforming insertion on chromosome 8 within the pleiomorphic adenoma gene 1 (PLAG1), resulting in a 20-fold increase in PLAG1 expression. Upregulation of PLAG1 has already been described to promote human hepatoblastoma development. In a separate clone, a transforming insertion was detected in close proximity to the receptor-interacting serine-threonine kinase 4 (RIPK4) with an approximately eightfold suppression in RIPK4 expression. As validation for this currently unknown driver in hepatocarcinogenesis, we examined RIPK4 expression in human HCC samples and confirmed a significant suppression of RIPK4 in 80% of the samples. Furthermore, overexpression of RIPK4 in transformed human fetal hepatocytes resulted in an almost complete elimination of anchorage-independent growth. On the basis of these data, we propose RIPK4 as a novel putative tumor suppressor in human hepatocarcinogenesis. PMID:24413083

  15. Small-Molecule-Driven Hepatocyte Differentiation of Human Pluripotent Stem Cells

    PubMed Central

    Siller, Richard; Greenhough, Sebastian; Naumovska, Elena; Sullivan, Gareth J.

    2015-01-01

    Summary The differentiation of pluripotent stem cells to hepatocytes is well established, yet current methods suffer from several drawbacks. These include a lack of definition and reproducibility, which in part stems from continued reliance on recombinant growth factors. This has remained a stumbling block for the translation of the technology into industry and the clinic for reasons associated with cost and quality. We have devised a growth-factor-free protocol that relies on small molecules to differentiate human pluripotent stem cells toward a hepatic phenotype. The procedure can efficiently direct both human embryonic stem cells and induced pluripotent stem cells to hepatocyte-like cells. The final population of cells demonstrates marker expression at the transcriptional and protein levels, as well as key hepatic functions such as serum protein production, glycogen storage, and cytochrome P450 activity. PMID:25937370

  16. Encapsulated multicellular spheroids of rat hepatocytes produce albumin and urea in a spouted bed circulating culture system.

    PubMed

    Takabatake, H; Koide, N; Tsuji, T

    1991-12-01

    Multicellular spheroids are spherical cell-aggregates that retain tridimensional architecture and tissue-specific functions. For use of multicellular spheroids of hepatocytes in a bioreactor for hybrid artificial liver support, we studied the effect of encapsulation and circulating culture on their integrity and tissue-specific functions. Multicellular spheroids of rat hepatocytes were encapsulated into microdroplets of calcium alginate gel and were used as a bioreactor in medium circulating in a spouted bed chamber. Approximately 10% of the hepatocytes of an adult rat were entrapped in a bioreactor chamber, connected to a gas exchanger and a medium reservoir. The total bed volume of the system was 250 ml. The pH and DO2 of the hormonally defined circulating medium was maintained constantly. Albumin and urea were produced in a linear fashion for 64 h at the rates of 0.02 micrograms/microgram cell protein/day and 0.15-0.2 ng/micrograms cell protein/day, respectively. Viability and structural stability of the spheroids were well preserved after the culture period. These results indicate that these encapsulated multicellular hepatocyte spheroids will provide a useful bioreactor for the continuous production of albumin, in vitro and also a prototype hybrid artificial liver support. PMID:1763969

  17. Vitamin E, glutathione S-transferase and gamma-glutamyl transpeptidase activities in cultured hepatocytes of rats treated with carcinogens.

    PubMed

    Ong, F B; Wan Ngah, W Z; Top, A G; Khalid, B A; Shamaan, N A

    1994-03-01

    1. The effects of alpha-tocopherol and gamma-tocotrienol on glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (gamma-GT) activities in cultured hepatocytes prepared from rats treated with diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) were investigated. 2. Both the alpha-tocopherol and gamma-tocotrienol treated hepatocytes showed significantly higher (P < 0.05) GST activities than untreated hepatocytes prepared from the carcinogen treated rats in the first 3 days of culture. Treatment with alpha-tocopherol and gamma-tocotrienol generally resulted in a tendency to increase the GST activities above that in the untreated hepatocytes. 3. Treatment with high doses (125-250 microM) of alpha-tocopherol and low doses (12.5-25 microM) of gamma-tocotrienol generally resulted in a significant reduction in gamma-GT activities at 1-3 days. gamma-GT activities are reduced as the dose of alpha-tocopherol and gamma-tocotrienol are increased. PMID:7910569

  18. Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: In Vitro and In Vivo Evaluation

    PubMed Central

    Hamidouche, Zahia; Sokal, Etienne; Charbord, Pierre

    2016-01-01

    In line with the search of effective stem cell population that would progress liver cell therapy and because the rate and differentiation potential of mesenchymal stem cells (MSC) decreases with age, the current study investigates the hepatogenic differentiation potential of human fetal liver MSCs (FL-MSCs). After isolation from 11-12 gestational weeks' human fetal livers, FL-MSCs were shown to express characteristic markers such as CD73, CD90, and CD146 and to display adipocytic and osteoblastic differentiation potential. Thereafter, we explored their hepatocytic differentiation potential using the hepatogenic protocol applied for adult human liver mesenchymal cells. FL-MSCs differentiated in this way displayed significant features of hepatocyte-like cells as demonstrated in vitro by the upregulated expression of specific hepatocytic markers and the induction of metabolic functions including CYP3A4 activity, indocyanine green uptake/release, and glucose 6-phosphatase activity. Following transplantation, naive and differentiated FL-MSC were engrafted into the hepatic parenchyma of newborn immunodeficient mice and differentiated in situ. Hence, FL-MSCs appeared to be interesting candidates to investigate the liver development at the mesenchymal compartment level. Standardization of their isolation, expansion, and differentiation may also support their use for liver cell-based therapy development. PMID:27057173

  19. Sulfated Oxysterol, 25HC3S, is a Potent Regulator of Lipid Metabolism in Human Hepatocytes

    PubMed Central

    Ren, Shunlin; Li, Xiaobo; Rodriguez-Agudo, Daniel; Gil, Gregorio; Hylemon, Phillip; Pandak, William M.

    2009-01-01

    Recently, a novel oxysterol, 5-cholesten-3β, 25-diol 3-sulfate (25HC3S) was identified in primary rat hepatocytes following overexpression of the cholesterol transport protein, StarD1. This oxysterol was also detected in human liver nuclei. In the present study, 25HC3S was chemically synthesized. Addition of 25HC3S (6 μM) to human hepatocytes markedly inhibited cholesterol biosynthesis. Quantitative RT-PCR and Western blot analysis showed that 25HC3S strongly decreased HMG-CoA reductase mRNA and protein levels. Coincidently, 25HC3S inhibited the activation of sterol regulatory element binding proteins (SREBPs), suggesting that inhibition of cholesterol biosynthesis occurred via blocking SREBP-1 activation, and subsequently inhibiting the expression of HMG CoA reductase. 25HC3S decreased SREBP-1 mRNA levels and inhibited the expression of target genes encoding acetyl CoA carboxylase-1 (ACC-1) and fatty acid synthase (FAS). In contract, 25-hydroxycholesterol increased SREBP1 and FAS mRNA levels in primary human hepatocytes. The results imply that 25HC3S is a potent regulator of SREBPs mediated lipid metabolism. PMID:17624300

  20. Direct Reprogramming of Human Fibroblasts to Hepatocyte-Like Cells by Synthetic Modified mRNAs

    PubMed Central

    Simeonov, Kamen P.; Uppal, Hirdesh

    2014-01-01

    Direct reprogramming by overexpression of defined transcription factors is a promising new method of deriving useful but rare cell types from readily available ones. While the method presents numerous advantages over induced pluripotent stem (iPS) cell approaches, a focus on murine conversions and a reliance on retroviral vectors limit potential human applications. Here we address these concerns by demonstrating direct conversion of human fibroblasts to hepatocyte-like cells via repeated transfection with synthetic modified mRNAs. Hepatic induction was achieved with as little as three transcription factor mRNAs encoding HNF1A plus any two of the factors, FOXA1, FOXA3, or HNF4A in the presence of an optimized hepatic growth medium. We show that the absolute necessity of exogenous HNF1A mRNA delivery is explained both by the factor's inability to be activated by any other factors screened and its simultaneous ability to strongly induce expression of other master hepatic transcription factors. Further analysis of factor interaction showed that a series of robust cross-activations exist between factors that induce a hepatocyte-like state. Transcriptome and small RNA sequencing during conversion toward hepatocyte-like cells revealed global preferential activation of liver genes and miRNAs over those associated with other endodermal tissues, as well as downregulation of fibroblast-associated genes. Induced hepatocyte-like cells also exhibited hepatic morphology and protein expression. Our data provide insight into the process by which direct hepatic reprogramming occurs in human cells. More importantly, by demonstrating that it is possible to achieve direct reprogramming without the use of retroviral gene delivery, our results supply a crucial step toward realizing the potential of direct reprogramming in regenerative medicine. PMID:24963715

  1. Glutathione S-transferase and gamma-glutamyl transpeptidase activities in cultured rat hepatocytes treated with tocotrienol and tocopherol.

    PubMed

    Ong, F B; Wan Ngah, W Z; Shamaan, N A; Md Top, A G; Marzuki, A; Khalid, A K

    1993-09-01

    1. The effect of tocotrienol and tocopherol on glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (GGT) activities in cultured rat hepatocytes were investigated. 2. Tocotrienol and tocopherol significantly decreased GGT activities at 5 days in culture but tocotrienol also significantly decreased GGT activities at 1-2 days. 3. Tocotrienol and tocopherol treatment significantly decreased GST activities at 3 days compared to the control but tocotrienol also decreased GST activities at 1-3 days. 4. Tocotrienol showed a more pronounced effect at a dosage of greater than 50 microM tocotrienol at 1-3 days in culture compared to the control. PMID:7903615

  2. Contribution of CNT1 and ENT1 to ribavirin uptake in human hepatocytes.

    PubMed

    Choi, Min-Koo; Kim, Min-Hye; Maeng, Han-Joo; Song, Im-Sook

    2015-01-01

    The objective of this study was to investigate the contributions of a sodium-dependent concentrative nucleoside transporter (CNT) 1 and an equilibrative nucleoside transporter (ENT) 1 to ribavirin uptake in human hepatocytes. The initial studies in oocytes expressing CNT1 and ENT1 showed increases in ribavirin uptake, indicating that ribavirin was a substrate for both CNT1 and ENT1. The CNT1- and ENT1-mediated ribavirin uptake showed concentration dependency with the following kinetics parameters: Km 26.3 μM and Vmax 426.2 fmol/min/oocyte for CNT1; Km 70.5 μM and Vmax 134.3 fmol/min/oocyte for ENT1. Ribavirin uptake clearance in six human hepatocytes ranged from 21.3 to 300.7 μL/min. Estimation of the contributions of CNT1 and ENT1 to the hepatic uptake of ribavirin by using a relative activity factor method indicated that the relative contribution of ENT1 to the ribavirin uptake was 82.8 ± 3.9%. Real-time polymerase chain reaction analysis of CNT1 and ENT1 expressions in the hepatocytes showed that ENT1 mRNA expression was closely correlated with ribavirin uptake (R = 0.95, P = 0.003) while CNT1 was not. The findings indicated that ENT1 was the major transporter controlling the hepatic uptake of ribavirin. PMID:25011570

  3. EXPERIMENTAL HEPATOCYTE XENOTRANSPLANTATION – A COMPREHENSIVE REVIEW OF THE LITERATURE

    PubMed Central

    Zhou, Huidong; Liu, Hong; Ezzelarab, Mohamed; Schmelzer, Eva; Wang, Yi; Gerlach, Jörg; Gridelli, Bruno; Cooper, David K. C.

    2015-01-01

    Background Hepatocyte transplantation is a potential therapy for certain diseases of the liver, including hepatic failure. However, there is a limited supply of human livers as a source of cells and, after isolation, human hepatocytes can be difficult to expand in culture, limiting the number available for transplantation. Hepatocytes from other species, e.g., the pig, have therefore emerged as a potential alternative source. We searched the literature through the end of 2014 to assess the current status of experimental research into hepatocyte xenotransplantation. Literature search and results The literature search identified 51 reports of in vivo cross-species transplantation of hepatocytes in a variety of experimental models. Most studies investigated the transplantation of human (n=23) or pig (n=19) hepatocytes. No studies explored hepatocytes from genetically-engineered pigs. The spleen was the most common site of transplantation (n=23), followed by the liver (through the portal vein [n=6]) and peritoneal cavity (n=19). In 47 studies (92%), there was evidence of hepatocyte engraftment and function across a species barrier. Conclusions The data provided by this literature search strengthen the hypothesis that xenotransplantation of hepatocytes is feasible and potentially successful as a clinical therapy for certain liver diseases, including hepatic failure. By excluding vascular structures, hepatocytes isolated from genetically-engineered pig livers may address some of the immunological problems of xenotransplantation. PMID:25950141

  4. Explanted Diseased Livers – A Possible Source of Metabolic Competent Primary Human Hepatocytes

    PubMed Central

    Krech, Till; DeTemple, Daphne; Jäger, Mark D.; Lehner, Frank; Manns, Michael P.; Klempnauer, Jürgen; Borlak, Jürgen; Bektas, Hueseyin; Vondran, Florian W. R.

    2014-01-01

    Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5′-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might

  5. Role of dexamethasone and insulin on the development of the five urea-cycle enzymes in cultured rat foetal hepatocytes.

    PubMed Central

    Husson, A; Bouazza, M; Buquet, C; Vaillant, R

    1985-01-01

    The activity changes of the urea-cycle enzymes were monitored in cultured foetal hepatocytes after dexamethasone and insulin treatments. Addition of dexamethasone induced the development of carbamoyl-phosphate synthetase, argininosuccinate synthetase, argininosuccinase and arginase activities as soon as day 16.5 of gestation. When insulin was added together with dexamethasone, it markedly inhibited the steroid-induced increase in carbamoyl-phosphate synthetase, argininosuccinate synthetase and argininosuccinase activities. PMID:3883987

  6. Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes.

    PubMed

    De Gottardi, Andrea; Vinciguerra, Manlio; Sgroi, Antonino; Moukil, Moulay; Ravier-Dall'Antonia, Florence; Pazienza, Valerio; Pugnale, Paolo; Foti, Michelangelo; Hadengue, Antoine

    2007-08-01

    Hepatic steatosis is an important risk factor for the development of inflammation, fibrosis and impaired liver regeneration. The factors regulating lipid accumulation and driving hepatic steatosis toward inflammation, fibrosis and impaired regeneration are largely unknown. The aim of this study was to identify major alterations in gene expression occurring in steatotic hepatocytes, and to analyze how these changes impact cellular processes associated with steatosis. Microarray gene chips and RT-PCR were performed to analyze changes in gene expression induced in fatty human immortalized hepatocytes after treatment with 50 muM oleic acid for 7 days. Lipid metabolism and triglyceride accumulation in these cells was examined by Oil-Red-O staining, thin-layer chromatography (TLC) and immunofluorescence. Caspase 3 activity, BrdU incorporation and trypan blue exclusion were used to study apoptosis, proliferation and cell viability. Finally, quantitative analysis of signalling induced by insulin was performed by Western blot. Characterization of steatosis in three hepatocyte-derived cell lines indicated that the immortalized human hepatocytes (IHH) line was the most appropriate cell line for this study. Gene expression analysis showed significant alterations in the transcription of two major classes of genes involved either in cholesterol and fatty acid biosynthesis, as well as lipid export, or in apoptosis and cell proliferation. Such changes were functionally relevant, since TLC indicated that synthesis and accumulation of triglycerides were increased in steatotic cells, while synthesis of cholesterol and fatty acids were decreased. Lipid accumulation in IHH was associated with an increased apoptosis and an inhibition of cell proliferation and viability. No detectable changes in genes associated with insulin resistance were observed in steatotic cells, but signalling induced by insulin was more efficient in steatotic IHH as compared to control cells. We conclude that IHH

  7. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures.

    PubMed Central

    Nakamura, T; Teramoto, H; Ichihara, A

    1986-01-01

    A growth factor (HGF) stimulating DNA synthesis of adult rat hepatocytes in primary culture was found in rat platelets. HGF was purified from rat platelets to homogeneity by a three-step procedure: stimulation of its release from platelets by thrombin, cation-exchanger fast protein liquid chromatography on a Mono S column, and heparin-Sepharose chromatography. HGF was clearly distinguishable from the platelet-derived growth factor (PDGF) by fast protein liquid chromatography. HGF was a heat- and acid-labile cationic protein that was inactivated by reduction with dithiothreitol. Its molecular mass was estimated to be 27 kDa by NaDodSO4/PAGE and its amino acid composition was very different from that of PDGF. The purified HGF stimulated DNA synthesis in adult rat hepatocytes at 2 ng/ml and was maximally effective at 20 ng/ml; its effect was additive or synergistic with those of insulin and EGF, depending on their combinations. HGF did not stimulate DNA synthesis of Swiss 3T3 cells, while PDGF did not stimulate that of hepatocytes. Thus, HGF showed clearly different cell specificity from PDGF in its growth-promoting activities. These findings indicate that HGF is a growth factor in platelets for mature hepatocytes. Images PMID:3529086

  8. Relationship between autophagy and the intracellular degradation of asialoglycoproteins in cultured rat hepatocytes

    SciTech Connect

    Kindberg, G.M.; Refsnes, M.; Christoffersen, T.; Norum, K.R.; Berg, T.

    1987-05-25

    The relationship between autophagy and the intracellular distribution of endocytosed asialoorosomucoid was studied in cultured rat hepatocytes. Overt autophagy was induced by shifting the cells to a minimal salt medium. Incubation in minimal salt medium led to the formation of buoyant lysosomes at the expense of denser lysosomes manifested as a dual distribution of these organelles in Nycodenz gradients. Asialoorosomucoid was labeled with /sup 125/I-tyramine cellobiose. The labeled degradation products formed from this ligand are trapped at the site of degradation and may therefore serve as markers for the subgroup of lysosomes involved in the degradation. In control cells the degradation of the ligand was initiated in a light prelysosomal compartment and continued in denser lysosomes. In cells with high autophagic activity, the degradation of labeled asialoorosomucoid took place exclusively in a buoyant group of lysosomes. These results suggest that degradation of endocytosed ligand takes place in the same secondary lysosomes as substrate sequestered by autophagic mechanisms. These light lysosomes represent a subgroup of active lysosomes which are gradually recruited from dense bodies. Data are also presented that indicate that insulin may prevent the change in buoyant density brought about by incubation in deficient medium.

  9. Suppresion of lipid peroxidation in rat hepatocytes in primary culture by supplemental zinc

    SciTech Connect

    Coppen, D.E.; Richardson, D.E.; Cousins, R.J.

    1986-03-05

    Rat liver parenchymal cells were cultured with 1-48 ..mu..M Zn for 18 h. Lactate dehydrogenase activity of the medium showed that the zinc concentrations used did not cause cell leakage. Incubation with zinc caused increases in cellular metallothionein from 0.1 mM at 1 ..mu..M Zn to 1.0 mM at 48 ..mu..M. Free radical and peroxidation production over a subsequent 2h period induced in the hepatocytes by 3-methylindole (8mM,3MI), t-butylhydroperoxide (2mM, TBHP) or a mixture of ferric -NTA and ascorbic acid (each at 10 ..mu..M, FE + AA) were measured. Peroxidation was assessed by malondialdehyde (MDA) content and free radicals by electron paramagnetic resonance (EPR) techniques. Supplemental zinc suppressed the production of both MDA and free radicals (as assessed by the amplitude of the EPR spectra) in the cells induced by either 3MI, TBHP or FE + AA. By virtue of its high sulfhydryl content, metallothionein may play a role in free radical scavenging. However, as the zinc concentration in the media was increased so the activity of the microsomal enzyme NADPH cytochrome c reductase was significantly decreased. Thus, it could be that the change in this enzyme activity reflects in part, the mechanism by which zinc is exerting its influence in suppression of free radical production.

  10. Dexamethasone blocks arachidonate biosynthesis in isolated hepatocytes and cultured hepatoma cells

    SciTech Connect

    Marra, C.A.; de Alaniz, M.J.; Brenner, R.R.

    1986-03-01

    The effect of dexamethasone on the incorporation and conversion of (1-14C)eicosa-8,11,14-trienoic acid to arachidonic acid in isolated hepatocytes and in hepatoma tissue culture (HTC) cells was studied. In both kinds of cells, no changes in the exogenous acid incorporation were found when the hormone was added to the incubation media at 0.1 or 0.2 mM concentration, while the biosynthesis of arachidonic acid was significantly depressed. The effect on the biosynthesis was faster in isolated normal liver cells (60 min) than in tumoral cells (120 min) and reached an inhibition of ca. 50% after 3 hr of treatment. The addition of cycloheximide (10(-6) M) also caused a marked decrease in the biosynthesis of this polyunsaturated fatty acid, but when dexamethasone was added to the media simultaneously with cycloheximide, a synergistic action was not observed. The results obtained show that protein synthesis would be involved in the modulation of the biosynthesis of arachidonic acid by glucocorticoids. The changes in the delta 5 desaturation of labeled 20:3 omega 6 to arachidonic acid correlated with changes in the fatty acid composition in isolated cells.

  11. The farnesoid X receptor induces fetuin-B gene expression in human hepatocytes

    PubMed Central

    Murakami, Takeshi; Walczak, Robert; Caron, Sandrine; Duhem, Christian; Vidal, Vincent; Darteil, Raphaël; Staels, Bart

    2007-01-01

    FXR (farnesoid X receptor), a nuclear receptor activated by BAs (bile acids), is a key factor in the regulation of BA, lipid and carbohydrate metabolism. The recent development of synthetic FXR agonists and knockout mouse models has accelerated the discovery of FXR target genes. In the present study, we identify human fetuin-B as a novel FXR target gene. Treatment with FXR agonists increased fetuin-B expression in human primary hepatocytes and in the human hepatoma HepG2 cell line. In contrast, fetuin-B expression was not responsive to FXR agonist treatment in murine primary hepatocytes. Fetuin-B induction by FXR agonist was abolished upon FXR knockdown by siRNA (small interfering RNA). In addition to the previously described P1 promoter, we show that the human fetuin-B gene is also transcribed from an alternative promoter, termed P2. Transcription via the P2 promoter was induced by FXR agonist treatment, whereas P1 promoter activity was not sensitive to FXR agonist treatment. Two putative FXR-response elements [IR-1 (inverted repeat-1)] were identified in the region –1.6 kb upstream of the predicted P2 transcriptional start site. Both motifs bound FXR–RXR (retinoid X receptor) complexes in vitro and were activated by FXR in transient transfection reporter assays. Mutations in the IR-1 sites abolished FXR–RXR binding and activation. Taken together, these results identify human fetuin-B as a new FXR target gene in human hepatocytes. PMID:17655523

  12. Genes for the dimerization cofactor of hepatocyte nuclear factor-1[alpha] (DCOH) are on human and murine chromsomes 10

    SciTech Connect

    Milatovich, A.; Mendel, D.B.; Crabtree, G.R.; Francke, U. )

    1993-04-01

    Hepatocyte nuclear factor-1[alpha] (HNF-1[alpha]; gene symbol, TCF1) forms dimers with itself as well as with HNF-1[beta] and regulates the expression of several liver-specific genes. Recently, a dimerization cofactor of hepatocyte nuclear factor-1[alpha], called DCOH, has been identified. Here, the authors report the chromosomal localization of the genes for this cofactor to chromosomes 10 in both humans and mice by Southern blot analyses of somatic cell hybrids. 25 refs., 1 fig., 2 tabs.

  13. Insulin resistance in uremia. Characterization of lipid metabolism in freshly isolated and primary cultures of hepatocytes from chronic uremic rats.

    PubMed Central

    Caro, J F; Lanza-Jacoby, S

    1983-01-01

    We have studied the mechanism(s) of hyperlipidemia and liver insulin sensitivity in a rat model of severe chronic uremia (U). Basal lipid synthesis was decreased in freshly isolated hepatocytes from U when compared with sham-operated ad lib.-fed controls (alfC). Basal lipid synthesis in pair-fed controls (pfC) was in between U and alfC. Similarly, the activity of liver acetyl CoA carboxylase, fatty acid synthetase, citrate cleavage enzyme, malate dehydrogenase, and glucose-6-phosphate dehydrogenase was diminished in U. Muscle and adipose tissue lipoprotein lipase was also decreased. Insulin stimulated lipid synthesis in freshly isolated hepatocytes from alfC. Hepatocytes from U and pfC were resistant to this effect of insulin. To ascertain if the insulin resistance in U was due to starvation (chow intake 50% of alfC) or to uremia itself, the U and pfC were intragastrically fed an isocaloric diet via a Holter pump the last week of the experimental period. Hepatocytes from orally fed U and pfC were also cultured for 24 h in serum-free medium. While freshly isolated and cultured U hepatocytes remained insulin resistant, those from pfC normalized, in vivo and in vitro, when they were provided with enough nutrients. Conclusions: (a) Hyperlipidemia in uremia is not due to increased synthesis, but to defect(s) in clearance. (b) Insulin does not stimulate lipid synthesis in uremia. This finding, along with our recent demonstration that insulin binding and internalization are not decreased in the uremic liver, suggests that a post-binding defect(s) in the liver plays an important role in the mechanism(s) of insulin resistance in uremia. (c) Cultured hepatocytes from uremic rats remain insulin resistant. This quality renders these cells useful in studying the postinsulin binding events responsible for the insulin-resistant state in the absence of complicating hormonal and substrate changes that occur in vivo. PMID:6350367

  14. Metabolism of Oxycodone in Human Hepatocytes from Different Age Groups and Prediction of Hepatic Plasma Clearance

    PubMed Central

    Korjamo, Timo; Tolonen, Ari; Ranta, Veli-Pekka; Turpeinen, Miia; Kokki, Hannu

    2012-01-01

    Oxycodone is commonly used to treat severe pain in adults and children. It is extensively metabolized in the liver in adults, but the maturation of metabolism is not well understood. Our aim was to study the metabolism of oxycodone in cryopreserved human hepatocytes from different age groups (3 days, 2 and 5 months, 4 years, adult pool) and predict hepatic plasma clearance of oxycodone using these data. Oxycodone (0.1, 1, and 10 μM) was incubated with hepatocytes for 4 h, and 1 μM oxycodone also with CYP3A inhibitor ketoconazole (1 μM). Oxycodone and noroxycodone concentrations were determined at several time points with liquid chromatography–mass spectrometry. In vitro clearance of oxycodone was used to predict hepatic plasma clearance, using the well-stirred model and published physiological parameters. Noroxycodone was the major metabolite in all batches and ketoconazole inhibited the metabolism markedly in most cases. A clear correlation between in vitro oxycodone clearance and CYP3A4 activity was observed. The predicted hepatic plasma clearances were typically much lower than the published median total plasma clearance from pharmacokinetic studies. The data suggests that there are no children-specific metabolites of oxycodone. Moreover, CYP3A activity seems to be the major determinant in metabolic clearance of oxycodone regardless of age group or individual variability in hepatocyte batches. PMID:22291644

  15. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes

    PubMed Central

    Deurholt, Tanja; van Til, Niek P; Chhatta, Aniska A; ten Bloemendaal, Lysbeth; Schwartlander, Ruth; Payne, Catherine; Plevris, John N; Sauer, Igor M; Chamuleau, Robert AFM; Elferink, Ronald PJ Oude; Seppen, Jurgen; Hoekstra, Ruurdtje

    2009-01-01

    Background A clonal cell line that combines both stable hepatic function and proliferation capacity is desirable for in vitro applications that depend on hepatic function, such as pharmacological or toxicological assays and bioartificial liver systems. Here we describe the generation and characterization of a clonal human cell line for in vitro hepatocyte applications. Results Cell clones derived from human fetal liver cells were immortalized by over-expression of telomerase reverse transcriptase. The resulting cell line, cBAL111, displayed hepatic functionality similar to the parental cells prior to immortalization, and did not grow in soft agar. Cell line cBAL111 expressed markers of immature hepatocytes, like glutathione S transferase and cytokeratin 19, as well as progenitor cell marker CD146 and was negative for lidocaine elimination. On the other hand, the cBAL111 cells produced urea, albumin and cytokeratin 18 and eliminated galactose. In contrast to hepatic cell lines NKNT-3 and HepG2, all hepatic functions were expressed in cBAL111, although there was considerable variation in their levels compared with primary mature hepatocytes. When transplanted in the spleen of immunodeficient mice, cBAL111 engrafted into the liver and partly differentiated into hepatocytes showing expression of human albumin and carbamoylphosphate synthetase without signs of cell fusion. Conclusion This novel liver cell line has the potential to differentiate into mature hepatocytes to be used for in vitro hepatocyte applications. PMID:19845959

  16. Galactose-Functionalized PolyHIPE Scaffolds for Use in Routine Three Dimensional Culture of Mammalian Hepatocytes

    PubMed Central

    2013-01-01

    Three-dimensional (3D) cell culture is regarded as a more physiologically relevant method of growing cells in the laboratory compared to traditional monolayer cultures. Recently, the application of polystyrene-based scaffolds produced using polyHIPE technology (porous polymers derived from high internal phase emulsions) for routine 3D cell culture applications has generated very promising results in terms of improved replication of native cellular function in the laboratory. These materials, which are now available as commercial scaffolds, are superior to many other 3D cell substrates due to their high porosity, controllable morphology, and suitable mechanical strength. However, until now there have been no reports describing the surface-modification of these materials for enhanced cell adhesion and function. This study, therefore, describes the surface functionalization of these materials with galactose, a carbohydrate known to specifically bind to hepatocytes via the asialoglycoprotein receptor (ASGPR), to further improve hepatocyte adhesion and function when growing on the scaffold. We first modify a typical polystyrene-based polyHIPE to produce a cell culture scaffold carrying pendent activated-ester functionality. This was achieved via the incorporation of pentafluorophenyl acrylate (PFPA) into the initial styrene (STY) emulsion, which upon polymerization formed a polyHIPE with a porosity of 92% and an average void diameter of 33 μm. Histological analysis showed that this polyHIPE was a suitable 3D scaffold for hepatocyte cell culture. Galactose-functionalized scaffolds were then prepared by attaching 2′-aminoethyl-β-d-galactopyranoside to this PFPA functionalized polyHIPE via displacement of the labile pentafluorophenyl group, to yield scaffolds with approximately ca. 7–9% surface carbohydrate. Experiments with primary rat hepatocytes showed that cellular albumin synthesis was greatly enhanced during the initial adhesion/settlement period of cells on

  17. Galactose-functionalized polyHIPE scaffolds for use in routine three dimensional culture of mammalian hepatocytes.

    PubMed

    Hayward, Adam S; Eissa, Ahmed M; Maltman, Daniel J; Sano, Naoko; Przyborski, Stefan A; Cameron, Neil R

    2013-12-01

    Three-dimensional (3D) cell culture is regarded as a more physiologically relevant method of growing cells in the laboratory compared to traditional monolayer cultures. Recently, the application of polystyrene-based scaffolds produced using polyHIPE technology (porous polymers derived from high internal phase emulsions) for routine 3D cell culture applications has generated very promising results in terms of improved replication of native cellular function in the laboratory. These materials, which are now available as commercial scaffolds, are superior to many other 3D cell substrates due to their high porosity, controllable morphology, and suitable mechanical strength. However, until now there have been no reports describing the surface-modification of these materials for enhanced cell adhesion and function. This study, therefore, describes the surface functionalization of these materials with galactose, a carbohydrate known to specifically bind to hepatocytes via the asialoglycoprotein receptor (ASGPR), to further improve hepatocyte adhesion and function when growing on the scaffold. We first modify a typical polystyrene-based polyHIPE to produce a cell culture scaffold carrying pendent activated-ester functionality. This was achieved via the incorporation of pentafluorophenyl acrylate (PFPA) into the initial styrene (STY) emulsion, which upon polymerization formed a polyHIPE with a porosity of 92% and an average void diameter of 33 μm. Histological analysis showed that this polyHIPE was a suitable 3D scaffold for hepatocyte cell culture. Galactose-functionalized scaffolds were then prepared by attaching 2'-aminoethyl-β-D-galactopyranoside to this PFPA functionalized polyHIPE via displacement of the labile pentafluorophenyl group, to yield scaffolds with approximately ca. 7-9% surface carbohydrate. Experiments with primary rat hepatocytes showed that cellular albumin synthesis was greatly enhanced during the initial adhesion/settlement period of cells on the

  18. Acetaminophen cytotoxicity is ameliorated in a human liver organotypic co-culture model

    PubMed Central

    Nelson, Leonard J.; Navarro, Maria; Treskes, Philipp; Samuel, Kay; Tura-Ceide, Olga; Morley, Steven D.; Hayes, Peter C.; Plevris, John N.

    2015-01-01

    Organotypic liver culture models for hepatotoxicity studies that mimic in vivo hepatic functionality could help facilitate improved strategies for early safety risk assessment during drug development. Interspecies differences in drug sensitivity and mechanistic profiles, low predictive capacity, and limitations of conventional monocultures of human hepatocytes, with high attrition rates remain major challenges. Herein, we show stable, cell-type specific phenotype/cellular polarity with differentiated functionality in human hepatocyte-like C3A cells (enhanced CYP3A4 activity/albumin synthesis) when in co-culture with human vascular endothelial cells (HUVECs), thus demonstrating biocompatibility and relevance for evaluating drug metabolism and toxicity. In agreement with in vivo studies, acetaminophen (APAP) toxicity was most profound in HUVEC mono-cultures; whilst in C3A:HUVEC co-culture, cells were less susceptible to the toxic effects of APAP, including parameters of oxidative stress and ATP depletion, altered redox homeostasis, and impaired respiration. This resistance to APAP is also observed in a primary human hepatocyte (PHH) based co-culture model, suggesting bidirectional communication/stabilization between different cell types. This simple and easy-to-implement human co-culture model may represent a sustainable and physiologically-relevant alternative cell system to PHHs, complementary to animal testing, for initial hepatotoxicity screening or mechanistic studies of candidate compounds differentially targeting hepatocytes and endothelial cells. PMID:26632255

  19. Metabolic Rate Constants for Hydroquinone in F344 Rat and Human Liver Isolated Hepatocytes: Application to a PBPK model.

    SciTech Connect

    Poet, Torka S.; Wu, Hong; English, J C.; Corley, Rick A.

    2004-11-15

    Hydroquinone (HQ) is an important industrial chemical that also occurs naturally in foods and in the leaves and bark of a number of plant species. Exposure of laboratory animals to HQ may result in a species-, sex-, and strain-specific nephrotoxicity. The sensitivity of male F344 vs. female F344 and Sprague-Dawley rats or B6C3F1 mice appears to be related to differences in the rates of formation and further metabolism of key nephrotoxic metabolites. Metabolic rate constants for the conversion of HQ through several metabolic steps to the mono-glutathione conjugate and subsequent detoxification via mercapturic acid were measured in suspension cultures of hepatocytes isolated from male F344 rats and humans. An in vitro mathematic kinetic model was used to analyze each metabolic step by simultaneously fitting the disappearance of each substrate and the appearance of subsequent metabolites. An iterative, nested approach was used whereby downstream metabolites were considered first and the model was constrained by the requirement that rate constants determined during analysis of individual metabolic steps must also satisfy the complete, integrated metabolism scheme, including competitive pathways. The results from this study indicated that the overall capacity for metabolism of HQ and its mono-glutathione conjugate is greater in hepatocytes from humans than those isolated from rats, suggesting a greater capacity for detoxification of the glutathione conjugates. Metabolic rate constants were applied to an existing physiologically based pharmacokinetic model and the model was used to predict total glutathione metabolites produced in the liver. The results showed that body burdens of these metabolites will be much higher in rats than humans.

  20. HCV-Mediated Apoptosis of Hepatocytes in Culture and Viral Pathogenesis

    PubMed Central

    Silberstein, Erica; Ulitzky, Laura; Lima, Livia Alves; Cehan, Nicoleta; Teixeira-Carvalho, Andréa; Roingeard, Philippe; Taylor, Deborah R.

    2016-01-01

    Chronic Hepatitis C Virus (HCV) infection is associated with progressive liver injury and subsequent development of fibrosis and cirrhosis. The death of hepatocytes results in the release of cytokines that induce inflammatory and fibrotic responses. The mechanism of liver damage is still under investigation but both apoptosis and immune-mediated processes may play roles. By observing the changes in gene expression patterns in HCV-infected cells, both markers and the causes of HCV-associated liver injury may be elucidated. HCV genotype 1b virus from persistently infected VeroE6 cells induced a strong cytopathic effect when used to infect Huh7.5 hepatoma cells. To determine if this cytopathic effect was a result of apoptosis, ultrastructural changes were observed by electron microscopy and markers of programmed cell death were surveyed. Screening of a human PCR array demonstrated a gene expression profile that contained upregulated markers of apoptosis, including tumor necrosis factor, caspases and caspase activators, Fas, Bcl2-interacting killer (BIK) and tumor suppressor protein, p53, as a result of HCV genotype 1b infection. The genes identified in this study should provide new insights into understanding viral pathogenesis in liver cells and may possibly help to identify novel antiviral and antifibrotic targets. PMID:27280444

  1. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells.

    PubMed

    Wang, Yonggang; Aker, Winfred G; Hwang, Huey-min; Yedjou, Clement G; Yu, Hongtao; Tchounwou, Paul B

    2011-10-15

    Nanoparticles (NPs), including nanometal oxides, are being used in diverse applications such as medicine, clothing, cosmetics and food. In order to promote the safe development of nanotechnology, it is essential to assess the potential adverse health consequences associated with human exposure. The liver is a target site for NP toxicity, due to NP accumulation within it after ingestion, inhalation or absorption. The toxicity of nano-ZnO, TiO(2), CuO and Co(3)O(4) was investigated using a primary culture of channel catfish hepatocytes and human HepG2 cells as in vitro model systems for assessing the impact of metal oxide NPs on human and environmental health. Some mechanisms of nanotoxicity were determined by using phase contrast inverted microscopy, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, reactive oxygen species (ROS) assays, and flow cytometric assays. Nano-CuO and ZnO showed significant toxicity in both HepG2 cells and catfish primary hepatocytes. The results demonstrate that HepG2 cells are more sensitive than catfish primary hepatocytes to the toxicity of metal oxide NPs. The overall ranking of the toxicity of metal oxides to the test cells is as follows: TiO(2)

  2. Cellular and molecular analyses of hprt mutation in human hepatocyte L02 cells after exposure to carbon ions

    NASA Astrophysics Data System (ADS)

    Li, Qiang; He, Jing; Jin, Xiao-Dong; Gong, Li; Li, Sha

    Mutations play an important role in carcinogenesis. The quantitative evaluation of mutation induction by heavy charged particles helps us to delineate the risks of space radiation on astronauts, as well as the risks of heavy ions on patients during tumor therapy. Hprt mutation assay, which has been used as a biological dosimeter, is an ideal gene mutation test in mammalian cells in vitro. In order to provide basic data and evidence for the risk assessment of heavy ions, the relationships between hprt mutation induction and radiation dose in human hepatocyte L02 cells were investigated for highand low-LET carbon ions and X-rays. Moreover, the carbon ion induced hprt mutation spectrum was analyzed. In our study, human hepatocyte L02 cells were irradiated with carbon ions with LET of 30keV/µm and X-rays (0.2keV/µm), respectively. The survival fraction of L02 cells was measured by means of colony-forming assay. The mutation frequency was detected by measuring 6-thioguanine-resistant clones after 10 days of incubation at the presence of 15mg/L 6-TG. To obtain the mutation spectrum, 9 10 mutant cell clones at each dose were randomly selected from the 6-TG containing medium, and were further cultured and analyzed. The deletion patterns of the 9 exons of hprt gene were analyzed with multiplex polymerase chain reactions (multiplex PCR). Our results show that the number of mutants per 106 surviving cells increased with increasing the radiation dose for both the irradiations, and the mutation frequency increased up to 1Gy while reduced with increasing dose further. Partial deletion was the most dominant deletion pattern in the hprt mutant cells, and with the increase of dose, hprt genes tended to have more total deletions and less point deletions. It can be inferred that human hepatocyte L02 cells are more radiosensitive to high-LET carbon ions than to low-LET X-rays, and carbon ions are more effective in inducing hprt mutation in L02 cells. It has been also found that the

  3. Regulation of drug transporter expression by oncostatin M in human hepatocytes.

    PubMed

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2011-08-01

    The cytokine oncostatin M (OSM) is a member of the interleukin (IL)-6 family, known to down-regulate expression of drug metabolizing cytochromes P-450 in human hepatocytes. The present study was designed to determine whether OSM may also impair expression of sinusoidal and canalicular drug transporters, which constitute important determinants of drug hepatic clearance. Exposure of primary human hepatocytes to OSM down-regulated mRNA levels of major sinusoidal solute carrier (SLC) influx transporters, including sodium-taurocholate co-transporting polypeptide (NTCP), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1, organic cation transporter 1 and organic anion transporter 2. OSM also repressed mRNA expressions of ATP binding cassette (ABC) efflux transporters such as multidrug resistance protein (MRP) 2/ABCC2 and breast cancer resistance protein/ABCG2, without however impairing those of multidrug resistance gene 1/P-glycoprotein/ABCB1, MRP3/ABCC3, MRP4/ABCC4 and bile salt export pump/ABCB11. The cytokine concomitantly reduced NTCP, OATP1B1, OATP2B1 and ABCG2 protein expression and NTCP and OATP transport activities. OSM effects towards transporters were found to be dose-dependent and highly correlated with those of IL-6, but not with those of other inflammatory cytokines such as tumor necrosis factor-α or interferon-γ. In addition, OSM-mediated repression of some transporters such as NTCP, OATP1B1 and OATP2B1, was counteracted by knocking-down expression of the type II OSM receptor subunits through siRNA transfection. This OSM-mediated down-regulation of drug SLC transporters and ABCG2 in human hepatocytes may contribute to alterations of pharmacokinetics in patients suffering from diseases associated with increased production of OSM. PMID:21570956

  4. Ginkgolide A contributes to the potentiation of acetaminophen toxicity by Ginkgo biloba extract in primary cultures of rat hepatocytes

    SciTech Connect

    Rajaraman, Ganesh; Chen, Jie; Chang, Thomas K.H. . E-mail: tchang@interchange.ubc.ca

    2006-12-01

    The present cell culture study investigated the effect of Ginkgo biloba extract pretreatment on acetaminophen toxicity and assessed the role of ginkgolide A and cytochrome P450 3A (CYP3A) in hepatocytes isolated from adult male Long-Evans rats provided ad libitum with a standard diet. Acetaminophen (7.5-25 mM for 24 h) conferred hepatocyte toxicity, as determined by the lactate dehydrogenase (LDH) assay. G. biloba extract alone increased LDH leakage in hepatocytes at concentrations {>=} 75 {mu}g/ml and {>=} 750 {mu}g/ml after a 72 h and 24 h treatment period, respectively. G. biloba extract (25 or 50 {mu}g/ml once every 24 h for 72 h) potentiated LDH leakage by acetaminophen (10 mM for 24 h; added at 48 h after initiation of extract pretreatment). The effect was confirmed by a decrease in [{sup 14}C]-leucine incorporation. At the level present in a modulating concentration (50 {mu}g/ml) of the extract, ginkgolide A (0.55 {mu}g/ml), which increased CYP3A23 mRNA levels and CYP3A-mediated enzyme activity, accounted for part but not all of the potentiating effect of the extract on acetaminophen toxicity. This occurred as a result of CYP3A induction by ginkgolide A because triacetyloleandomycin (TAO), a specific inhibitor of CYP3A catalytic activity, completely blocked the effect of ginkgolide A. Ginkgolide B, ginkgolide C, ginkgolide J, quercetin, kaempferol, isorhamnetin, and isorhamnetin-3-O-rutinoside did not alter the extent of LDH leakage by acetaminophen. In summary, G. biloba pretreatment potentiated acetaminophen toxicity in cultured rat hepatocytes and ginkgolide A contributed to this novel effect of the extract by inducing CYP3A.

  5. An in vitro examination of selenium-cadmium antagonism using primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes.

    PubMed

    Jamwal, Ankur; Naderi, Mohammad; Niyogi, Som

    2016-02-17

    The present study evaluated the ameliorative properties of selenium (Se) against cadmium (Cd)-induced oxidative stress, using isolated rainbow trout (Oncorhynchus mykiss) hepatocytes in primary culture as the model experimental system. Cadmium (Cd) is known to induce cytotoxic effects by disrupting cellular oxidative homeostasis. On the other hand, selenium (Se) is an essential component of biological antioxidative machinery, and thus may provide protection against the toxic insults of Cd by augmenting the cellular antioxidant response. However, Se, when present above the threshold concentration, can also induce reactive oxygen species (ROS) generation and cause oxidative damage. In this experiment, trout hepatocytes in primary culture were exposed to 100 µM Cd, alone or in combination with different concentrations (25-500 µM) of selenite (SeO3(2-)) or selenomethionine (SeMet) for 48 h. Our findings indicated that both chemical forms of Se, at the lowest concentration used (25 µM), significantly reduced Cd-induced cytotoxicity (measured as cell viability). In contrast, Se at higher concentrations (≥50 µM) did not offer any protection against a Cd induced decrease in cell viability. The reduced cytotoxicity of Cd in the presence of 25 µM selenite or SeMet was associated with reduced intracellular ROS production, recovery of the cellular thiol status (ratio of reduced and oxidized glutathione), and amelioration in the activities of major enzymatic antioxidants (superoxide dismutase, catalase, and glutathione peroxidase). Co-treatment of hepatocytes with Cd and pharmacological antioxidants (TEMPO and NAC) also reduced Cd-induced oxidative stress in trout hepatocytes. This provided further evidence that Se likely ameliorates Cd toxicity via different antioxidative mechanisms. PMID:26673544

  6. Highly purified hexachlorobenzene induces cytochrome P4501A in primary cultures of chicken embryo hepatocytes

    SciTech Connect

    Mundy, Lukas J.; Jones, Stephanie P.; Crump, Doug; Herve, Jessica C.; Konstantinov, Alex; Utley, Fiona; Potter, David; Kennedy, Sean W.

    2010-11-01

    Some uncertainty exists regarding the purity of hexachlorobenzene (HCB) used in past toxicity studies. It has been suggested that reported toxic and biochemical effects initially attributed to HCB exposure may have actually been elicited by contamination of HCB by polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Herein, primary cultures of chicken embryo hepatocytes (CEH) were used to compare the potencies of two lots of reagent-grade hexachlorobenzene (HCB-old [HCB-O] and HCB-new [HCB-N]), highly purified HCB (HCB-P) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as inducers of ethoxyresorufin O-deethylase (EROD) activity, cytochrome P4501A4 (CYP1A4) messenger ribonucleic acid (mRNA) and CYP1A5 mRNA. The study also compared the EROD- and CYP1A4/5 mRNA-inducing potencies of HCB to the potencies of two mono-ortho substituted polychlorinated biphenyls (PCBs), 2,3,3',4,4'-pentachlorobiphenyl (PCB 105) and 2,3'4,4',5-pentachlorobiphenyl (PCB 118). HCB-O, HCB-N and HCB-P all induced EROD activity and up-regulated CYP1A4 and CYP1A5 mRNAs. Induction was not caused by contamination of HCB with PCDDs or PCDFs. Based upon a comparison of the EC{sub 50} and EC{sub threshold} values for EROD and CYP1A4/5 mRNA concentration-response curves, the potency of HCB relative to the potency of TCDD was 0.0001, and was similar to that of PCB 105 and PCB 118. The maximal EROD activity and CYP1A4/5 mRNA expression differed greatly between HCB and TCDD, and may contribute to an overestimation of the ReP value calculated for highly purified HCB.

  7. Structural specificity of steroids in stimulating DNA synthesis and protooncogene expression in primary rat hepatocyte cultures.

    PubMed

    Lee, C H; Edwards, A M

    2002-05-01

    Among the chemical compounds of varied structure which possess liver tumour-promoting are steroids, such as estrogens, pregnenolone derivatives and anabolic steroids. Although the mechanism(s) of tumour promotion in liver by these xenobiotics is not well understood, it is clear that growth stimulation is one important element in their action. As a basis for better defining whether steroids stimulate growth by a common mechanism or fall into sub-groups with differing actions, the effects of 46 steroids on DNA synthesis and the expression of protooncogenes c-fos and c-myc were examined in primary cultures of normal rat hepatocytes. Tentative groupings of steroids have been identified based on apparent structural requirements for stimulation of DNA synthesis, and effects of auxiliary factors in modulating this growth stimulus. For a "progestin" group, insulin appeared to be permissive for stimulation of DNA synthesis, and presence of an ester or hydroxyl group at 17alpha-position in combination with a non-polar group at C(6) appeared to be required for stimulation. For the pregnenes, dexamethasone was stimulatory. Structural requirements include a non-polar substitution at 16alpha-position and presence of a 6alpha-methyl group. Androgens were weak or ineffective stimulators of DNA synthesis. Anabolic steroids were weak to strong stimulators and alteration to A ring structure in combination with non-polar substitution at 17alpha-position appeared to be required for the activity. With the exception of the anabolic steroid, dianabol, there do not appear to be strong correlation between ability to stimulate DNA synthesis and ability to induce protooncogene expression among the steroids. This study provides a starting point for future more detailed examination of growth-stimulatory mechanism(s) of action of steroids in the liver. PMID:12127039

  8. Polyurethane foam/spheroid culture system using human hepatoblastoma cell line (Hep G2) as a possible new hybrid artificial liver.

    PubMed

    Yamashita, Y; Shimada, M; Tsujita, E; Tanaka, S; Ijima, H; Nakazawa, K; Sakiyama, R; Fukuda, J; Ueda, T; Funatsu, K; Sugimachi, K

    2001-01-01

    The risk of xenozoonosis infections poses the greatest obstacle against the clinical application of hybrid artificial liver support system (HALSS). Primary human hepatocytes are an ideal source for HALSS, but the shortage of human livers available for hepatocyte isolation limits this modality. To resolve this issue, we used human hepatocytes with replication capacity (fetal hepatocytes, Hep G2, and Huh 7) in a polyurethane foam (PUF)/spheroid culture system in vitro, and analyzed liver functions such as ammonia removal and albumin synthesis capacity; results were compared to those of porcine hepatocytes. Human fetal hepatocytes, Hep G2, and Huh 7 formed spheroids spontaneously within 24 h in a PUF/spheroid culture system; ammonia removal activity (micromol/10(6) nuclei/h) was upregulated, as was albumin synthesis activity (microg/10(6) nuclei/day). In particular, Hep G2 spheroids demonstrated high ammonia removal and albumin synthesis activities: 85% of the ammonia removal activity and 171.7% of the albumin synthesis activity of porcine hepatocytes in the monolayer culture. These results indicate the possibility of the development of a multicapillary PUF (MC-PUF) packed-bed culture system of hepatocyte spheroids as a HALSS using Hep G2. PMID:11814114

  9. Transcription Factors and Medium Suitable for Initiating the Differentiation of Human-Induced Pluripotent Stem Cells to the Hepatocyte Lineage.

    PubMed

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-09-01

    Transcription factors and culture media were investigated to determine the condition to initiate the differentiation of human-induced pluripotent stem (iPS) cells most efficiently. The expression of genes in human adult liver was compared with that in 201B7 cells (iPS cells) using cDNA microarray analysis. Episomal plasmids expressing transcription factors were constructed. 201B7 cells were transfected with the episomal plasmids and cultured in ReproFF (feeder-free media maintaining pluripotency), Leibovitz-15 (L15), William's E (WE), or Dulbecco's modified Eagle medium/Nutrient F-12 Ham (DF12) for 7 days. RNA was isolated and subjected to real-time quantitative PCR to analyze the expression of alpha-feto protein (AFP) and albumin. cDNA microarray analysis revealed 16 transcription factors that were upregulated in human adult liver relative to that in 201B7 cells. Episomal plasmids expressing these 16 genes were transfected into 201B7 cells. CCAAT/enhancer-binding protein alpha (CEBPA), CCAAT/enhancer-binding protein beta (CEBPB), forkhead box A1 (FOXA1), and forkhead box A3 (FOXA3) up-regulated AFP and down-regulated Nanog. These four genes were further analyzed. The expression of AFP and albumin was the highest in 201B7 cells transfected with the combination of CEBPA, CEBPB, FOXA1, and FOXA3 and cultured in WE. The combination of CEBPA, CEBPB, FOXA1, and FOXA3 was suitable for 201B7 cells to initiate differentiation to the hepatocyte lineage and WE was the most suitable medium for culture after transfection. J. Cell. Biochem. 117: 2001-2009, 2016. © 2016 Wiley Periodicals, Inc. PMID:26773721

  10. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    SciTech Connect

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  11. Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture.

    PubMed

    Schmidt, M; Schmitz, H-J; Baumgart, A; Guédon, D; Netsch, M I; Kreuter, M-H; Schmidlin, C B; Schrenk, D

    2005-02-01

    Recent reports on sporadic cases of liver disorders (acute hepatitis, icterus, hepatocellular necrosis) after ingestion of dietary supplements based on hydro-alcoholic extracts from green tea leaves led to restrictions of the marketing of such products in certain countries of the EU. Since green tea is considered to exert a number of beneficial health effects, and, therefore, green tea products are widely used as dietary supplements, we were interested in the possible mechanism of hepatotoxicity of green tea extracts and in the components involved in such effects. Seven hours after seeding on collagen, rat hepatocytes in primary culture were treated with various hydro-alcoholic green tea extracts (two different native 80% ethanolic dry extracts and an 80% ethanolic dry extract cleared from lipophilic compounds). Cells were washed, and reduction of resazurin, used as a viability parameter monitoring intact mitochondrial function, was determined. It was found that all seven green tea extracts examined enhanced resazurin reduction significantly at a concentration range of 100-500 microg/ml medium, while a significant decrease was observed at 1-3mg/ml medium. Decreased levels were concomitant with abundant necrosis as observed by microscopic inspection of the cultures and with increased leakage of lactate dehydrogenase activity from the cells. In a separate series of experiments, the green tea constituents (-)-epicatechin, (-)-epigallocatechin-3-gallate, caffeine and theanine were tested at concentrations reflecting their levels in a typical green tea extract. Synthetic (+)-epigallocatechin (200 microM) was used for comparison. Cytotoxicity was found with (-)-epigallocatechin-3-gallate only. The concomitant addition of 0.25 mM ascorbate/0.05 mM alpha-tocopherol had no influence on cytotoxicity. In conclusion, our results suggest that high concentrations of green tea extract can exert acute toxicity in rat liver cells. (-)-Epigallocatechin-3-gallate seems to be a key

  12. Transcriptional profiling suggests that Nevirapine and Ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes.

    PubMed

    Terelius, Ylva; Figler, Robert A; Marukian, Svetlana; Collado, Maria S; Lawson, Mark J; Mackey, Aaron J; Manka, David; Qualls, Charles W; Blackman, Brett R; Wamhoff, Brian R; Dash, Ajit

    2016-08-01

    Drug induced liver injury (DILI), a major cause of pre- and post-approval failure, is challenging to predict pre-clinically due to varied underlying direct and indirect mechanisms. Nevirapine, a non-nucleoside reverse transcriptase inhibitor (NNRTI) and Ritonavir, a protease inhibitor, are antiviral drugs that cause clinical DILI with different phenotypes via different mechanisms. Assessing DILI in vitro in hepatocyte cultures typically requires drug exposures significantly higher than clinical plasma Cmax concentrations, making clinical interpretations of mechanistic pathway changes challenging. We previously described a system that uses liver-derived hemodynamic blood flow and transport parameters to restore primary human hepatocyte biology, and drug responses at concentrations relevant to in vivo or clinical exposure levels. Using this system, primary hepatocytes from 5 human donors were exposed to concentrations approximating clinical therapeutic and supra-therapeutic levels of Nevirapine (11.3 and 175.0 μM) and Ritonavir (3.5 and 62.4 μM) for 48 h. Whole genome transcriptomics was performed by RNAseq along with functional assays for metabolic activity and function. We observed effects at both doses, but a greater number of genes were differentially expressed with higher probability at the toxic concentrations. At the toxic doses, both drugs showed direct cholestatic potential with Nevirapine increasing bile synthesis and Ritonavir inhibiting bile acid transport. Clear differences in antigen presentation were noted, with marked activation of MHC Class I by Nevirapine and suppression by Ritonavir. This suggests CD8+ T cell involvement for Nevirapine and possibly NK Killer cells for Ritonavir. Both compounds induced several drug metabolizing genes (including CYP2B6, CYP3A4 and UGT1A1), mediated by CAR activation in Nevirapine and PXR in Ritonavir. Unlike Ritonavir, Nevirapine did not increase fatty acid synthesis or activate the respiratory electron chain

  13. Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes

    PubMed Central

    Benson, Eric A.; Eadon, Michael T.; Desta, Zeruesenay; Liu, Yunlong; Lin, Hai; Burgess, Kimberly S.; Segar, Matthew W.; Gaedigk, Andrea; Skaar, Todd C.

    2016-01-01

    Membrane drug transporters contribute to the disposition of many drugs. In human liver, drug transport is controlled by two main superfamilies of transporters, the solute carrier transporters (SLC) and the ATP Binding Cassette transporters (ABC). Altered expression of these transporters due to drug-drug interactions can contribute to differences in drug exposure and possibly effect. In this study, we determined the effect of rifampin on gene expression of hundreds of membrane transporters along with all clinically relevant drug transporters. Methods: In this study, primary human hepatocytes (n = 7 donors) were cultured and treated for 24 h with rifampin and vehicle control. RNA was isolated from the hepatocytes, mRNA expression was measured by RNA-seq, and miRNA expression was analyzed by Taqman OpenArray. The effect of rifampin on the expression of selected transporters was also tested in kidney cell lines. The impact of rifampin on the expression of 410 transporter genes from 19 different transporter gene families was compared with vehicle control. Results: Expression patterns of 12 clinically relevant drug transporter genes were changed by rifampin (FDR < 0.05). For example, the expressions of ABCC2, ABCB1, and ABCC3 were increased 1.9-, 1.7-, and 1.2-fold, respectively. The effects of rifampin on four uptake drug transporters (SLCO1B3, SLC47A1, SLC29A1, SLC22A9) were negatively correlated with the rifampin effects on specific microRNA expression (SLCO1B3/miR-92a, SLC47A1/miR-95, SLC29A1/miR-30d#, and SLC22A9/miR-20; r < −0.79; p < 0.05). Seven hepatic drug transporter genes (SLC22A1, SLC22A5, SLC15A1, SLC29A1, SLCO4C1, ABCC2, and ABCC4), whose expression was altered by rifampin in hepatocytes, were also present in a renal proximal tubular cell line, but in renal cells rifampin did not alter their gene expression. PXR expression was very low in the kidney cells; this may explain why rifampin induces gene expression in a tissue-specific manner. Conclusion

  14. Establishment of a primary hepatocyte culture from the small Indian mongoose (Herpestes auropunctatus) and distribution of mercury in liver tissue.

    PubMed

    Horai, Sawako; Yanagi, Kumiko; Kaname, Tadashi; Yamamoto, Masatatsu; Watanabe, Izumi; Ogura, Go; Abe, Shintaro; Tanabe, Shinsuke; Furukawa, Tatsuhiko

    2014-11-01

    The present study established a primary hepatocyte culture for the small Indian mongoose (Herpestes auropunctatus). To determine the suitable medium for growing the primary hepatic cells of this species, we compared the condition of cells cultured in three media that are frequently used for mammalian cell culture: Dulbecco's Modified Eagle's Medium, RPMI-1640, and William's E. Of these, William's E medium was best suited for culturing the hepatic cells of this species. Using periodic acid-Schiff staining and ultrastructural observations, we demonstrated the cells collected from mongoose livers were hepatocytes. To evaluate the distribution of mercury (Hg) in the liver tissue, we carried out autometallography staining. Most of the Hg compounds were found in the central region of hepatic lobules. Smooth endoplasmic reticulum, which plays a role inxenobiotic metabolism, lipid/cholesterol metabolism, and the digestion and detoxification of lipophilic substances is grown in this area. This suggested that Hg colocalized with smooth endoplasmic reticulum. The results of the present study could be useful to identify the detoxification systems of wildlife with high Hg content in the body, and to evaluate the susceptibility of wildlife to Hg toxicity. PMID:25142347

  15. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes.

    PubMed

    Neiman, Jaclyn A Shepard; Raman, Ritu; Chan, Vincent; Rhoads, Mary G; Raredon, Micha Sam B; Velazquez, Jeremy J; Dyer, Rachel L; Bashir, Rashid; Hammond, Paula T; Griffith, Linda G

    2015-04-01

    In vitro models that recapitulate the liver's structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricated coupled to chemically activated, commercially available filters (polycarbonate and polyvinylidene fluoride) using a chemistry that permitted cell viability, and was robust enough to withstand perfused culture of up to 1 µL/s for at least 7 days. SLA energy dose, photoinitiator concentrations, and pretreatment conditions were screened to determine conditions that maximized cell viability and hydrogel bonding to the filter. Multiple open channel geometries were readily achieved, and included ellipses and rectangles. Rectangular open channels employed for subsequent studies had final dimensions on the order of 350 µm by 850 µm. Cell seeding densities and flow rates that promoted cell viability were determined. Perfused culture of primary hepatocytes in hydrogel scaffolds in the presence of soluble epidermal growth factor (EGF) prolonged the maintenance of albumin production throughout the 7-day culture relative to 2D controls. This technique of bonding hydrogel scaffolds can be employed to fabricate soft scaffolds for a number of bioreactor configurations and applications. PMID:25384798

  16. Tissue culture system for infection with human hepatitis delta virus.

    PubMed Central

    Sureau, C; Jacob, J R; Eichberg, J W; Lanford, R E

    1991-01-01

    An in vitro culture system was developed for assaying the infectivity of the human hepatitis delta virus (HDV). Hepatocytes were isolated from chimpanzee liver and grown in a serum-free medium. Cells were shown to be infectible by HDV and to remain susceptible to infection for at least 3 weeks in culture, as evidenced by the appearance of RNA species characteristic of HDV replication as early as 6 days postinfection. When repeated experiments were carried out on cells derived from an animal free of hepatitis B virus (HBV), HDV infection occurred in a consistent fashion but there was no indication of infection with the HBV that was present in the inoculum. Despite numerous attempts with different sources of HBV inocula free of HDV, there was no evidence that indicated susceptibility of these cells to HBV infection. This observation may indicate that HBV and HDV use different modes of entry into hepatocytes. When cells derived from an HBV-infected animal were exposed to HDV, synthesis and release of progeny HDV particles were obtained in addition to HBV replication and production of Dane particles. Although not infectible with HBV, primary cultures of chimpanzee hepatocytes are capable of supporting part of the life cycle of HBV and the entire life cycle of HDV. Images PMID:2041075

  17. Synthesis and secretion of plasma proteins by embryonic chick hepatocytes: changing patterns during the first three days of culture

    PubMed Central

    1978-01-01

    A simple model system is described for studying synthesis of plasma proteins. The system is based on chick embryo hepatocytes in primary monolayer culture which synthesize a broad spectrum of plasma proteins and secrete them into the culture medium. The secreted proteins are stable and consist almost exclusively of plasma proteins. The cultured cells are nonproliferating hepatic parenchymal cells whose cell mass remains constant in culture. By a modification of Laurell's rocket immunoelectrophoresis, the secreted plasma proteins can be detected in nanogram amounts in 3 microliter of unconcentrated culture medium. Kinetics of secretion are obtained by sequential assay of proteins accumulating in the medium. In this system it is demonstrated that: (a) intracellular plasma protein levels are equivalent to less than 5% of the daily secretion; (b) synthesis and secretion are continuous; and (c) the overall half-time for plasma protein movement along the secretory pathway is less than 10 min. From these results, it follows that the rate at which the plasma proteins are secreted gives a valid estimate of their rate of synthesis. This feature of the culture and the sensitivity of the assay allow routine measurements of plasma protein synthesis without disruption of the cells and without the use of radioisotopes. It is shown, furthermore, that the overall rate of plasma protein synthesis in cultured hepatocytes is constant over a 3- day period and is similar to that of the intact liver. 3,000,000 cells, containing 1 mg cell protein, synthesize 0.2 mg of plasma proteins daily, amounting to one-fifth of hepatocellular protein synthesis. Under the conditions used, albumin synthesis steadily decreases with culture time whereas the synthesis of many other plasma proteins increases. The observed phenotypic changes and reorganization of plasma protein synthesis illustrate how the system may be exploited for studying the regulatory processes governing plasma protein synthesis. PMID

  18. Water-Stable Metal-Organic Framework/Polymer Composites Compatible with Human Hepatocytes.

    PubMed

    Neufeld, Megan J; Ware, Brenton R; Lutzke, Alec; Khetani, Salman R; Reynolds, Melissa M

    2016-08-01

    Metal-organic frameworks (MOFs) have demonstrated promise in biomedical applications as vehicles for drug delivery, as well as for the ability of copper-based MOFs to generate nitric oxide (NO) from endogenous S-nitrosothiols (RSNOs). Because NO is a participant in biological processes where it exhibits anti-inflammatory, antibacterial, and antiplatelet activation properties, it has received significant attention for therapeutic purposes. Previous work has shown that the water-stable MOF H3[(Cu4Cl)3-(BTTri)8] (H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), or CuBTTri, produces NO from RSNOs and can be included within a polymeric matrix to form NO-generating materials. While such materials demonstrate potential, the possibility of MOF degradation leading to copper-related toxicity is a concern that must be addressed prior to adapting these materials for biomedical applications. Herein, we present the first cytotoxicity evaluation of an NO-generating CuBTTri/polymer composite material using 3T3-J2 murine embryonic fibroblasts and primary human hepatocytes (PHHs). CuBTTri/polymer films were prepared from plasticized poly(vinyl chloride) (PVC) and characterized via PXRD, ATR-FTIR, and SEM-EDX. Additionally, the ability of the CuBTTri/polymer films to enhance NO generation from S-nitroso-N-acetylpenicillamine (SNAP) was evaluated. Enhanced NO generation in the presence of the CuBTTri/polymer films was observed, with an average NO flux (0.90 ± 0.13 nmol cm(-2) min(-1)) within the range associated with antithrombogenic surfaces. The CuBTTri/polymer films were analyzed for stability in phosphate buffered saline (PBS) and cell culture media under physiological conditions for a 4 week duration. Cumulative copper release in both cell media (0.84 ± 0.21%) and PBS (0.18 ± 0.01%) accounted for less than 1% of theoretical copper present in the films. In vitro cell studies performed with 3T3-J2 fibroblasts and PHHs did not indicate significant toxicity, providing further

  19. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes

    SciTech Connect

    Cawley, D.B.; Simpson, D.L.; Herschman, H.R.

    1981-06-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.

  20. Sandwich-Cultured Hepatocytes: An In Vitro Model to Evaluate Hepatobiliary Transporter-Based Drug Interactions and Hepatotoxicity

    PubMed Central

    Swift, Brandon; Pfeifer, Nathan D.; Brouwer, Kim L.R.

    2011-01-01

    Sandwich-cultured hepatocytes (SCH) are a powerful in vitro tool that can be utilized to study hepatobiliary drug transport, species differences in drug transport, transport protein regulation, drug-drug interactions, and hepatotoxicity. This review provides an up-to-date summary of the SCH model, including a brief history of, and introduction to, the use of SCH, as well as methodology to evaluate hepatobiliary drug disposition. A summary of the literature that has utilized this model to examine the interplay between drug metabolizing enzymes and transport proteins, drug-drug interactions at the transport level, and hepatotoxicity as a result of altered hepatic transport also is provided. PMID:20109035

  1. Secretory expression and characterization of a recombinant-deleted variant of human hepatocyte growth factor in Pichia pastoris

    PubMed Central

    Liu, Zhi-Min; Zhao, Hong-Liang; Xue, Chong; Deng, Bing-Bing; Zhang, Wei; Xiong, Xiang-Hua; Yang, Bing-Fen; Yao, Xue-Qin

    2005-01-01

    AIM: To study the secretory expression of human hepatocyte growth factor (hdHGF) gene in Pichia pastoris. METHODS: The full-length gene of human cDNA encoding the deleted variant of hdHGF was cloned by RT-PCR and overlapping-fragment PCR technique using mRNA of human placenta as a template. The cloned hdHGF cDNA was inserted into the Escherichia coli-yeast shuttle vector of pPIC9. The constructed plasmid, pPIC9-hdHGF, was transformed into the GS115 cells of the methylotrophic yeast, P pastoris, using a chemical method. The Mut+ transformants were screened to obtain high-expression strains by the test and analysis of expressed products of shake-flask culture. A secretory form of rhdHGF was made with the aid of the leader peptide sequence of Saccharomyces cerevisiae α-factor. RESULTS: The expressed products, which showed a band of molecular mass of about 80 ku, were observed on 15% SDS-PAGE and identified by Western blotting and N-terminal amino acid sequencing. In the high cell density culture of 5 L fermentor by fed-batch culture protocol, the cell biomass was reached at approximately 135 g (DCW)/L. The productivity of secreted total supernant protein concentration attained a high-level expression of more than 8.0 g/L and the ratio of rhdHGF band area was about 12.3% of the total band area scanned by SDS-PAGE analysis, which estimated that the product of rhdHGF was 500-900 mg/L. CONCLUSION: The P pastoris system represents an attractive tool of generating large quantities of hdHGF for both research and industrial purposes. PMID:16437654

  2. Expression of two CYP1A genes in {beta}NF and TCDD-treated rainbow trout primary hepatocyte culture

    SciTech Connect

    Rabergh, C.M.; Lipsky, M.M.; Vroliijk, N.H.; Chen, T.T.

    1995-12-31

    In mammalian systems, it is well known that two CYP1A genes are expressed in response to environmental toxicants such as polycyclic aromatic hydrocarbons (PAHs) and TCDD (2,3,7,3-tetrachlorodibenzo-p-dioxin). The presence of two CYP1A genes in fish has been previously reported, though expression of these two genes has not been characterized. In this study, the authors examined the expression of these two genes in primary culture of rainbow trout hepatocytes treated with {beta}NF and TCDD. Hepatocytes were isolated by a modified two-step collagenase perfusion of the liver and cultured on polylysine coated dishes. The optimum time and concentration of induction was determined for both chemicals. The expression of the genes was also studied in long-term cultures up to 20 days. RNA was isolated by the method of Chomzynski and Sacchi and the RNase protection assay was used to detect the expression of the CYP1A genes by using antisense riboprobes specific for the MRNA of each gene. A differential concentration- and time-dependent expression of the two genes was observed in cells treated with {beta}NF and TCDD. Whether these two genes are paralogous, i.e., produced by gene duplication within the species, or whether one of them may in fact be an orthologue to a mammalian counterpart within the CYP1A family, remains to be determined.

  3. Hepatocyte-derived cultured cells with unusual cytoplasmic keratin-rich spheroid bodies

    SciTech Connect

    Delavalle, Pierre-Yves; Alsaleh, Khaled; Pillez, Andre; Cocquerel, Laurence; Allet, Cecile; Dumont, Patrick; Loyens, Anne; Leteurtre, Emmanuelle; Omary, M. Bishr; Dubuisson, Jean; Rouille, Yves; Wychowski, Czeslaw

    2011-11-01

    Cytoplasmic inclusions are found in a variety of diseases that are characteristic morphological features of several hepatic, muscular and neurodegenerative disorders. They display a predominantly filamentous ultrastructure that is also observed in malignant rhabdoid tumor (MRT). A cellular clone containing an intracytoplasmic body was isolated from hepatocyte cell culture, and in the present study we examined whether this body might be related or not to Mallory-Denk body (MDB), a well characterized intracytoplasmic inclusion, or whether this cellular clone was constituted by malignant rhabdoid tumor cells. The intracytoplasmic body was observed in electron microscopy (EM), confocal immunofluorescence microscopy and several proteins involved in the formation of its structure were identified. Using light microscopy, a spheroid body (SB) described as a single regular-shaped cytoplasmic body was observed in cells. During cytokinesis, the SB was disassembled and reassembled in a way to reconstitute a unique SB in each progeny cell. EM examination revealed that the SB was not surrounded by a limiting membrane. However, cytoplasmic filaments were concentrated in a whorled array. These proteins were identified as keratins 8 and 18 (K8/K18), which formed the central core of the SB surrounded by a vimentin cage-like structure. This structure was not related to Mallory-Denk body or aggresome since no aggregated proteins were located in SB. Moreover, the structure of SB was not due to mutations in the primary sequence of K8/K18 and vimentin since no difference was observed in the mRNA sequence of their genes, isolated from Huh-7 and Huh-7w7.3 cells. These data suggested that cellular factor(s) could be responsible for the SB formation process. Aggregates of K18 were relocated in the SB when a mutant of K18 inducing disruption of K8/K18 IF network was expressed in the cellular clone. Furthermore, the INI1 protein, a remodeling-chromatin factor deficient in rhabdoid cells, which

  4. Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues

    PubMed Central

    Unzu, Carmen; Friedli, Marc; Bosman, Alexis; Jaconi, Marisa E.; Wildhaber, Barbara E.; Rougemont, Anne-Laure

    2016-01-01

    Induced pluripotent stem cells (iPSC) are a most promising approach to the development of a hepatocyte transplantable mass sufficient to induce long-term correction of inherited liver metabolic diseases, thus avoiding liver transplantation. Their intrinsic self-renewal ability and potential to differentiate into any of the three germ layers identify iPSC as the most promising cell-based therapeutics, but also as drivers of tumor development. Teratoma development currently represents the gold standard to assess iPSC pluripotency. We analyzed the tumorigenic potential of iPSC generated from human hepatocytes (HEP-iPSC) and compared their immunohistochemical profiles to that of tumors developed from fibroblast and hematopoietic stem cell-derived iPSC. HEP-iPSC generated tumors significantly presented more malignant morphological features than reprogrammed fibroblasts or CD34+ iPSC. Moreover, the protooncogene myc showed the strongest expression in HEP-iPSC, compared to only faint expression in the other cell subsets. Random integration of transgenes and the use of potent protooncogenes such as myc might be a risk factor for malignant tumor development if hepatocytes are used for reprogramming. Nonviral vector delivery systems or reprogramming of cells obtained from less invasive harvesting methods would represent interesting options for future developments in stem cell-based approaches for liver metabolic diseases. PMID:26880963

  5. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    SciTech Connect

    Xie, Yuchao; McGill, Mitchell R.; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Jaeschke, Hartmut

    2014-09-15

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH compared to

  6. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes

    PubMed Central

    Davidson, Matthew D.; Ballinger, Kimberly R.; Khetani, Salman R.

    2016-01-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations. PMID:27312339

  7. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes.

    PubMed

    Davidson, Matthew D; Ballinger, Kimberly R; Khetani, Salman R

    2016-01-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations. PMID:27312339

  8. Amelioration of Hyperbilirubinemia in Gunn Rats after Transplantation of Human Induced Pluripotent Stem Cell-Derived Hepatocytes

    PubMed Central

    Chen, Yong; Li, Yanfeng; Wang, Xia; Zhang, Wei; Sauer, Vanessa; Chang, Chan-Jung; Han, Bing; Tchaikovskaya, Tatyana; Avsar, Yesim; Tafaleng, Edgar; Madhusudana Girija, Sanal; Tar, Krisztina; Polgar, Zsuzsanna; Strom, Stephen; Bouhassira, Eric E.; Guha, Chandan; Fox, Ira J.; Roy-Chowdhury, Jayanta; Roy-Chowdhury, Namita

    2015-01-01

    Summary Hepatocyte transplantation has the potential to cure inherited liver diseases, but its application is impeded by a scarcity of donor livers. Therefore, we explored whether transplantation of hepatocyte-like cells (iHeps) differentiated from human induced pluripotent stem cells (iPSCs) could ameliorate inherited liver diseases. iPSCs reprogrammed from human skin fibroblasts were differentiated to iHeps, which were transplanted into livers of uridinediphosphoglucuronate glucuronosyltransferase-1 (UGT1A1)-deficient Gunn rats, a model of Crigler-Najjar syndrome 1 (CN1), where elevated unconjugated bilirubin causes brain injury and death. To promote iHep proliferation, 30% of the recipient liver was X-irradiated before transplantation, and hepatocyte growth factor was expressed. After transplantation, UGT1A1+ iHep clusters constituted 2.5%–7.5% of the preconditioned liver lobe. A decline of serum bilirubin by 30%–60% and biliary excretion of bilirubin glucuronides indicated that transplanted iHeps expressed UGT1A1 activity, a postnatal function of hepatocytes. Therefore, iHeps warrant further exploration as a renewable source of hepatocytes for treating inherited liver diseases. PMID:26074313

  9. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.

    PubMed

    Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J

    2016-01-01

    Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. PMID:27532814

  10. Differential Transcriptional Responses to Interferon-α and Interferon-γ in Primary Human Hepatocytes

    PubMed Central

    Nanda, Santosh; Ji, Xuhuai; Calderon-Rodriguez, Gloria M.; Greenberg, Harry B.; Liang, T. Jake

    2010-01-01

    Interferon (IFN) plays a central role in the innate and adaptive antiviral immune responses. While IFN-α is currently approved for treating chronic hepatitis B and hepatitis C, in limited studies, IFN-γ has not been shown to be effective for chronic hepatitis B or C. To identify the potential mechanism underlying the differential antiviral effects of IFN-α and IFN-γ, we used cDNA microarray to profile the global transcriptional response to IFN-α and IFN-γ in primary human hepatocytes, the target cell population of hepatitis viruses. Our results reveal distinct patterns of gene expression induced by these 2 cytokines. Overall, IFN-α induces more genes than IFN-γ at the transcriptional level. Distinct sets of genes were induced by IFN-α and IFN-γ with limited overlaps. IFN-α induces gene transcription at an early time point (6 h) but not at a later time point (18 h), while the effects of IFN-γ are more prominent at 18 h than at 6 h, suggesting a delayed transcriptional response to IFN-γ in the hepatocytes. These findings indicate differential actions of IFN-α and IFN-γ in the context of therapeutic intervention for chronic viral infections in the liver. PMID:20038212

  11. PPAR{alpha} regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes

    SciTech Connect

    Thulin, Petra; Rafter, Ingalill; Stockling, Kenneth; Tomkiewicz, Celine; Norjavaara, Ensio; Aggerbeck, Martine; Hellmold, Heike; Ehrenborg, Ewa; Andersson, Ulf; Cotgreave, Ian; Glinghammar, Bjoern

    2008-08-15

    In this work, we investigated a potential mechanism behind the observation of increased aminotransferase levels in a phase I clinical trial using a lipid-lowering drug, the peroxisome proliferator-activated receptor (PPAR) {alpha} agonist, AZD4619. In healthy volunteers treated with AZD4619, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were elevated without an increase in other markers for liver injury. These increases in serum aminotransferases have previously been reported in some patients receiving another PPAR{alpha} agonist, fenofibrate. In subsequent in vitro studies, we observed increased expression of ALT1 protein and mRNA in human hepatocytes after treatment with fenofibric acid. The PPAR effect on ALT1 expression was shown to act through a direct transcriptional mechanism involving at least one PPAR response element (PPRE) in the proximal ALT1 promoter, while no effect of fenofibrate and AZD4619 was observed on the ALT2 promoter. Binding of PPARs to the PPRE located at - 574 bp from the transcriptional start site was confirmed on both synthetic oligonucleotides and DNA in hepatocytes. These data show that intracellular ALT expression is regulated by PPAR agonists and that this mechanism might contribute to increased ALT activity in serum.

  12. The potential of induced pluripotent stem cell derived hepatocytes.

    PubMed

    Hannoun, Zara; Steichen, Clara; Dianat, Noushin; Weber, Anne; Dubart-Kupperschmitt, Anne

    2016-07-01

    Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers. PMID:26916529

  13. Human Hepatocyte Growth Factor Promotes Functional Recovery in Primates after Spinal Cord Injury

    PubMed Central

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI. PMID:22140459

  14. Sensitivity of bald eagle (Haliaeetus leucocephalus) hepatocyte cultures to induction of cytochrome P4501A by 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Kennedy, Sean W; Jones, Stephanie P; Elliott, John E

    2003-01-01

    Graded doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were added to primary hepatocyte cultures of bald eagle (Haliaeetus leucocephalus) embryos to determine their sensitivity to induction of cytochrome P4501A (CYP1A) and porphyrin accumulation. No porphyrin accumulation was observed, but both CYP1A catalytic activity (using the ethoxyresorufin-O-deethylase (EROD) assay) and immunodetectable CYP1A were induced by relatively high concentrations of TCDD. Bald eagle hepatocytes were less sensitive to CYP1A induction than hepatocytes from any other avian species that we have studied to date. These in vitro results are in general agreement with recent assessments of field data, which indicate that bald eagles are relatively insensitive to some of the effects of TCDD and related compounds. Preparation of bald eagle hepatocytes was challenging because existing methods did not yield monolayers of cells. Here we describe details of a new method that was successful for bald eagle hepatocytes. This new method is used routinely in our laboratory to prepare hepatocyte cultures from birds for examination of various biochemical responses to environmental contaminants. PMID:12739865

  15. Increase in cellular pool of low-molecular-weight iron during ethanol metabolism in rat hepatocyte cultures. Relationship with lipid peroxidation.

    PubMed

    Sergent, O; Morel, I; Cogrel, P; Chevanne, M; Pasdeloup, N; Brissot, P; Lescoat, G; Cillard, P; Cillard, J

    1995-01-01

    Ethanol-induced lipid peroxidation was studied in primary rat hepatocyte cultures supplemented with ethanol at the concentration of 50 mM. Lipid peroxidation was assessed by two indices: (1) conjugated dienes by second-derivative UV spectroscopy in lipid extract of hepatocytes (intracellular content), and (2) free malondialdehyde (MDA) by HPLC-UV detection and quantitation for the incubation medium (extracellular content). In cultures supplemented with ethanol, free MDA increased significantly in culture media, whereas no elevation of conjugated diene level was observed in the corresponding hepatocytes. The cellular pool of low-mol-wt (LMW) iron was also evaluated in the hepatocytes using an electron spin resonance procedure. An early increase of intracellular LMW iron (< or = 1 hr) was observed in ethanol-supplemented cultures; it was inhibited by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, whereas alpha-tocopherol, which prevented lipid peroxidation, did not inhibit the increase of LMW iron. Therefore, the LMW iron elevation was the result of ethanol metabolism and was not secondarily induced by lipid hydroperoxides. Thus, ethanol caused lipid peroxidation in rat hepatocytes as shown by the increase of free MDA, although no conjugated diene elevation was detected. During ethanol metabolism, an increase in cellular LMW iron was observed that could enhance conjugated diene degradation. PMID:7779546

  16. Metabolic Consequences of TGFβ Stimulation in Cultured Primary Mouse Hepatocytes Screened from Transcript Data with ModeScore

    PubMed Central

    Hoppe, Andreas; Ilkavets, Iryna; Dooley, Steven; Holzhütter, Hermann-Georg

    2012-01-01

    TGFβ signaling plays a major role in the reorganization of liver tissue upon injury and is an important driver of chronic liver disease. This is achieved by a deep impact on a cohort of cellular functions. To comprehensively assess the full range of affected metabolic functions, transcript changes of cultured mouse hepatocytes were analyzed with a novel method (ModeScore), which predicts the activity of metabolic functions by scoring transcript expression changes with 987 reference flux distributions, which yielded the following hypotheses. TGFβ multiplies down-regulation of most metabolic functions occurring in culture stressed controls. This is especially pronounced for tyrosine degradation, urea synthesis, glucuronization capacity, and cholesterol synthesis. Ethanol degradation and creatine synthesis are down-regulated only in TGFβ treated hepatocytes, but not in the control. Among the few TGFβ dependently up-regulated functions, synthesis of various collagens is most pronounced. Further interesting findings include: down-regulation of glucose export is postponed by TGFβ, TGFβ up-regulates the synthesis capacity of ketone bodies only as an early response, TGFβ suppresses the strong up-regulation of Vanin, and TGFβ induces re-formation of ceramides and sphingomyelin. PMID:24957771

  17. Suppression of CYP2B Induction by Alendronate-Mediated Farnesyl Diphosphate Synthase Inhibition in Primary Cultured Rat Hepatocytes

    PubMed Central

    Jackson, Nancy M.; Kocarek, Thomas A.

    2008-01-01

    We previously reported that squalestatin 1-mediated induction of CYP2B expression is attributable to squalene synthase inhibition and accumulation of an endogenous isoprenoid(s) that is capable of activating the constitutive androstane receptor. To determine whether squalestatin 1-mediated CYP2B induction is strictly dependent upon the biosynthesis of farnesyl pyrophosphate (FPP), the substrate for squalene synthase, the effects of alendronate, a nitrogen-containing bisphosphonate inhibitor of farnesyl diphosphate synthase, were determined on basal, squalestatin 1-inducible, and phenobarbital-inducible CYP2B expression in primary cultured rat hepatocytes. Alendronate treatment alone had no effect on CYP2B or CYP3A mRNA expression in the hepatocyte cultures, but alendronate co-treatment completely suppressed squalestatin 1-mediated CYP2B mRNA induction at concentrations (60 and 100 μM) that effectively inhibited cellular farnesyl diphosphate synthase activity, as assessed by reductions of squalestatin 1-mediated FPP accumulation, and that were not toxic to the cells, as indicated by a lack of effect on MTT activity. Alendronate co-treatment also partially suppressed phenobarbital-inducible CYP2B expression, and this suppressive effect was attenuated by additional co-treatment with the upstream pathway inhibitor, pravastatin. These findings demonstrate that squalestatin 1-mediated CYP2B induction cannot occur in the absence of FPP biosynthesis, but also indicate that one or more upstream isoprenoids, possibly isopentenyl pyrophosphate and/or dimethylallyl pyrophosphate, function to antagonize the CYP2B induction process. PMID:18617600

  18. Inhibition of bile canalicular network formation in rat sandwich cultured hepatocytes by drugs associated with risk of severe liver injury.

    PubMed

    Takemura, Akinori; Izaki, Aya; Sekine, Shuichi; Ito, Kousei

    2016-09-01

    Idiosyncratic drug-induced liver injury is a clinical concern with serious consequences. Although many preclinical screening methods have been proposed, it remains difficult to identify compounds associated with this rare but potentially fatal liver condition. Here, we propose a novel assay system to assess the risk of liver injury. Rat primary hepatocytes were cultured in a sandwich configuration, which enables the formation of a typical bile canalicular network. From day 2 to 3, test drugs, mostly selected from a list of cholestatic drugs, were administered, and the length of the network was semi-quantitatively measured by immunofluorescence. Liver injury risk information was collected from drug labels and was compared with in vitro measurements. Of 23 test drugs examined, 15 exhibited potent inhibition of bile canalicular network formation (<60% of control). Effects on cell viability were negligible or minimal as confirmed by lactate dehydrogenase leakage and cellular ATP content assays. For the potent 15 drugs, IC50 values were determined. Finally, maximum daily dose divided by the inhibition constant gave good separation of the highest risk of severe liver toxicity drugs such as troglitazone, benzbromarone, flutamide, and amiodarone from lower risk drugs. In conclusion, inhibitory effect on the bile canalicular network formation observed in in vitro sandwich cultured hepatocytes evaluates a new aspect of drug toxicity, particularly associated with aggravation of liver injury. PMID:27256767

  19. Hepatocyte nuclear factor-4alpha and bile acids regulate human concentrative nucleoside transporter-1 gene expression.

    PubMed

    Klein, Kerstin; Kullak-Ublick, Gerd A; Wagner, Martin; Trauner, Michael; Eloranta, Jyrki J

    2009-04-01

    The concentrative nucleoside transporter-1 (CNT1) is a member of the solute carrier 28 (SLC28) gene family and is expressed in the liver, intestine, and kidneys. CNT1 mediates the uptake of naturally occurring pyrimidine nucleosides, but also nucleoside analogs used in anticancer and antiviral therapy. Thus expression levels of CNT1 may affect the pharmacokinetics of these drugs and the outcome of drug therapy. Because little is known about the transcriptional regulation of human CNT1 gene expression, we have characterized the CNT1 promoter with respect to DNA response elements and their binding factors. The transcriptional start site of the CNT1 gene was determined by 5'-RACE. In silico analysis revealed the existence of three putative binding sites for the nuclear receptor hepatocyte nuclear factor-4alpha (HNF-4alpha) within the CNT1 promoter. A luciferase reporter gene construct containing the CNT1 promoter region was transactivated by HNF-4alpha in human cell lines derived from the liver, intestine, and kidneys. Consistent with this, we showed in electromobility shift assays that HNF-4alpha specifically binds to two conserved direct repeat-1 motifs within the proximal CNT1 promoter. In cotransfection experiments, the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha further increased, whereas the bile acid-inducible corepressor small heterodimer partner reduced, HNF-4alpha-dependent CNT1 promoter activity. Consistent with the latter phenomenon, CNT1 mRNA expression levels were suppressed in primary human hepatocytes upon bile acid treatment. Supporting the physiological relevance and species conservation of this effect, ileal Cnt1 mRNA expression was decreased upon bile acid feeding and increased upon bile duct ligation in mice. PMID:19228884

  20. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells.

    PubMed

    Peters, Derek T; Henderson, Christopher A; Warren, Curtis R; Friesen, Max; Xia, Fang; Becker, Caroline E; Musunuru, Kiran; Cowan, Chad A

    2016-05-01

    Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. PMID:27143754

  1. Induction of Highly Functional Hepatocytes from Human Umbilical Cord Mesenchymal Stem Cells by HNF4α Transduction

    PubMed Central

    Huang, Qingfeng; Xia, Qiang; Bian, Jianmin

    2014-01-01

    Aim To investigate the differentiation potential of human umbilical mesenchymal stem cells (HuMSCs) and the key factors that facilitate hepatic differentiation. Methods HuMSCs were induced to become hepatocyte-like cells according to a previously published protocol. The differentiation status of the hepatocyte-like cells was examined by observing the morphological changes under an inverted microscope and by immunofluorescence analysis. Hepatocyte nuclear factor 4 alpha (HNF4α) overexpression was achieved by plasmid transfection of the hepatocyte-like cells. The expression of proteins and genes of interest was then examined by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. Results Our results demonstrated that HuMSCs can easily be induced into hepatocyte-like cells using a published differentiation protocol. The overexpression of HNF4α in the induced HuMSCs significantly enhanced the expression levels of hepatic-specific proteins and genes. HNF4α overexpression may be associated with liver-enriched transcription factor networks and the Wnt/β-Catenin pathway. Conclusion The overexpression of HNF4α improves the hepatic differentiation of HuMSCs and is a simple way to improve cellular sources for clinical applications. PMID:25137413

  2. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    SciTech Connect

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A. . E-mail: phcbua@nus.edu.sg

    2006-11-15

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 {mu}M) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction.

  3. Lack of effect of furfural on unscheduled DNA synthesis in the in vivo rat and mouse hepatocyte DNA repair assays and in precision-cut human liver slices.

    PubMed

    Lake, B G; Edwards, A J; Price, R J; Phillips, B J; Renwick, A B; Beamand, J A; Adams, T B

    2001-10-01

    The ability of furfural to induce unscheduled DNA synthesis (UDS) in hepatocytes of male and female B6C3F(1) mice and male F344 rats after in vivo administration and in vitro in precision-cut human liver slices has been studied. Preliminary toxicity studies established the maximum tolerated dose (MTD) of furfural to be 320 and 50 mg/kg in the mouse and rat, respectively. Furfural was dosed by gavage at levels of 0 (control), 50, 175 and 320 mg/kg to male and female mice and 0, 5, 16.7 and 50 mg/kg to male rats. Hepatocytes were isolated by liver perfusion either 2-4 h or 12-16 h after treatment, cultured in medium containing [3H]thymidine for 4 h and assessed for UDS by grain counting of autoradiographs. Furfural treatment did not produce any statistically significant increase or any dose-related effects on UDS in mouse and rat hepatocytes either 2-4 h or 12-16 h after dosing. In contrast, UDS was markedly induced in mice and rats 2-4 h after treatment with 20 mg/kg dimethylnitrosamine and 12-16 h after treatment of mice and rats with 200 mg/kg o-aminoazotoluene and 50 mg/kg 2-acetylaminofluorene (2-AAF), respectively. Precision-cut human liver slices from four donors were cultured for 24 h in medium containing [3H]thymidine and 0-10 mM furfural. Small increases in the net grain count (i.e. nuclear grain count less mean cytoplasmic grain count) observed with 2-10 mM furfural were not due to any increase in the nuclear grain count. Rather, it was the result of concentration-dependent decreases in the mean cytoplasmic grain counts and to a lesser extent in nuclear grain counts, due to furfural-induced cytotoxicity. In contrast, marked increases in UDS (both net grain and nuclear grain counts) were observed in human liver slices treated with 0.02 and 0.05 mM 2-AAF, 0.002 and 0.02 mM aflatoxin B(1) and 0.005 and 0.05 mM 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. This study demonstrates that furfural does not induce UDS in the hepatocytes of male and female B6C3F

  4. Physiological oxygen tensions modulate expression of the mdr1b multidrug-resistance gene in primary rat hepatocyte cultures.

    PubMed Central

    Hirsch-Ernst, K I; Kietzmann, T; Ziemann, C; Jungermann, K; Kahl, G F

    2000-01-01

    P-Glycoprotein transporters encoded by mdr1 (multidrug resistance) genes mediate extrusion of an array of lipophilic xenobiotics from the cell. In rat liver, mdr transcripts have been shown to be expressed mainly in hepatocytes of the periportal region. Since gradients in oxygen tension (pO(2)) may contribute towards zonated gene expression, the influence of arterial and venous pO(2) on mRNA expression of the mdr1b isoform was examined in primary rat hepatocytes cultured for up to 3 days. Maximal mdr1b mRNA levels (100%) were observed under arterial pO(2) after 72 h, whereas less than half-maximal mRNA levels (40%) were attained under venous pO(2). Accordingly, expression of mdr protein and extrusion of the mdr1 substrate rhodamine 123 were maximal under arterial pO(2) and reduced under venous pO(2). Oxygen-dependent modulation of mdr1b mRNA expression was prevented by actinomycin D, indicating transcriptional regulation. Inhibition of haem synthesis by 25 microM CoCl(2) blocked mdr1b mRNA expression under both oxygen tensions, whereas 80 microM desferrioxamine abolished modulation by O(2). Haem (10 microM) increased mdr1b mRNA levels under arterial and venous pO(2). In hepatocytes treated with 50 microM H(2)O(2), mdr1b mRNA expression was elevated by about 1.6-fold at venous pO(2) and 1.5-fold at arterial pO(2). These results support the conclusion that haem proteins are crucial for modulation of mdr1b mRNA expression by O(2) in hepatocyte cultures and that reactive oxygen species may participate in O(2)-dependent signal transduction. Furthermore, the present study suggests that oxygen might be a critical modulator for zonated secretion of mdr1 substrates into the bile. PMID:10947958

  5. An Algorithm that Predicts the Viability and the Yield of Human Hepatocytes Isolated from Remnant Liver Pieces Obtained from Liver Resections

    PubMed Central

    Laubender, Rüdiger P.; Fröse, Natalja; Thasler, Reinhard M. K.; Schiergens, Tobias S.; Mansmann, Ulrich; Thasler, Wolfgang E.

    2014-01-01

    Isolated human primary hepatocytes are an essential in vitro model for basic and clinical research. For successful application as a model, isolated hepatocytes need to have a good viability and be available in sufficient yield. Therefore, this study aims to identify donor characteristics, intra-operative factors, tissue processing and cell isolation parameters that affect the viability and yield of human hepatocytes. Remnant liver pieces from tissue designated as surgical waste were collected from 1034 donors with informed consent. Human hepatocytes were isolated by a two-step collagenase perfusion technique with modifications and hepatocyte yield and viability were subsequently determined. The accompanying patient data was collected and entered into a database. Univariate analyses found that the viability and the yield of hepatocytes were affected by many of the variables examined. Multivariate analyses were then carried out to confirm the factors that have a significant relationship with the viability and the yield. It was found that the viability of hepatocytes was significantly decreased by the presence of fibrosis, liver fat and with increasing gamma-glutamyltranspeptidase activity and bilirubin content. Yield was significantly decreased by the presence of liver fat, septal fibrosis, with increasing aspartate aminotransferase activity, cold ischemia times and weight of perfused liver. However, yield was significantly increased by chemotherapy treatment. In conclusion, this study determined the variables that have a significant effect on the viability and the yield of isolated human hepatocytes. These variables have been used to generate an algorithm that can calculate projected viability and yield of isolated human hepatocytes. In this way, projected viability can be determined even before isolation of hepatocytes, so that donors that result in high viability and yield can be identified. Further, if the viability and yield of the isolated hepatocytes is lower

  6. Glucagon, cyclic AMP and adrenaline stimulate the degradation of low-density lipoprotein by cultured rat hepatocytes.

    PubMed Central

    Brown, N F; Salter, A M; Fears, R; Brindley, D N

    1989-01-01

    Rat hepatocytes were preincubated for 16 h with hormones or drugs and then for a further 8 h with 125I-human low-density lipoprotein (LDL). Glucagon (via cyclic AMP) and adrenaline (via cyclic AMP and alpha-effects) increased the binding of 125I-LDL to the LDL receptor, and the degradation of LDL to [125I]iodotyrosine. The effects on degradation were antagonized by dexamethasone, and the action of cyclic AMP on binding and degradation was inhibited by actinomycin D. The results are discussed in relation to the control of lipoprotein metabolism in diabetes. PMID:2552996

  7. Total synthesis of biotinylated N domain of human hepatocyte growth factor.

    PubMed

    Raibaut, Laurent; Vicogne, Jérome; Leclercq, Bérénice; Drobecq, Hervé; Desmet, Rémi; Melnyk, Oleg

    2013-06-15

    Hepatocyte growth factor/scatter factor (HGF/SF) is the high affinity ligand of MET tyrosine kinase receptor. We report here the total synthesis of a biotinylated analogue of human HGF/SF N domain. Functionally, N domain is part of the HGF/SF high affinity binding site for MET and also the main HGF/SF binding site for heparin. The 97 Aa linear chain featuring a C-terminal biotin group was assembled in high yield using an N-to-C one-pot three segments assembly strategy relying on a sequential Native Chemical Ligation (NCL)/bis(2-sulfanylethyl)amido (SEA) native peptide ligation process. The folded protein displayed the native disulfide bond pattern and showed the ability to bind heparin. PMID:23523386

  8. Markers of electrophilic stress caused by chemically reactive metabolites in human hepatocytes.

    PubMed

    Takakusa, Hideo; Masumoto, Hiroshi; Mitsuru, Ayako; Okazaki, Osamu; Sudo, Kenichi

    2008-05-01

    The metabolic activation of a drug to an electrophilic reactive metabolite and its covalent binding to cellular macromolecules is considered to be involved in the occurrence of idiosyncratic drug toxicity (IDT). As a cellular defense system against oxidative and electrophilic stress, phase II enzymes are known to be induced through a Kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2/antioxidant response element system. We presumed that it is important for the risk assessment of drug-induced hepatotoxicity and IDTs to observe the biological responses evoked by exposure to reactive metabolites, and then investigated the mRNA induction profiles of phase II enzymes in human hepatocytes after exposure to problematic drugs associated with IDTs, such as ticlopidine, diclofenac, clozapine, and tienilic acid, as well as safe drugs such as levofloxacin and caffeine. According to the results, the problematic drugs exhibited inductive effects on heme oxygenase 1 (HO-1), which contrasted with the safe drugs; therefore, the induction of HO-1 mRNA seems to be correlated with the occurrence of drug toxicity, including IDT caused by electrophilic reactive metabolites. Moreover, glutathione-depletion and cytochrome P450 (P450)-inhibition experiments have shown that the observed HO-1 induction was triggered by the electrophilic reactive metabolites produced from the problematic drugs through P450-mediated metabolic bioactivation. Taken together with our present study, this suggests that HO-1 induction in human hepatocytes would be a good marker of the occurrence of metabolism-based drug-induced hepatotoxicity and IDT caused by the formation of electrophilic reactive metabolites. PMID:18227147

  9. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease.

    PubMed

    Oe, Shinji; Miyagawa, Koichiro; Honma, Yuichi; Harada, Masaru

    2016-09-10

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease. PMID:27502587

  10. Differentiation of human embryonic stem cells to hepatocyte-like cells on a new developed xeno-free extracellular matrix.

    PubMed

    Farzaneh, Zahra; Pakzad, Mohammad; Vosough, Massoud; Pournasr, Behshad; Baharvand, Hossein

    2014-08-01

    Human embryonic stem cells (hESCs) provide a new source for hepatocyte production in translational medicine and cell replacement therapy. The reported hESC-derived hepatocyte-like cells (HLCs) were commonly generated on Matrigel, a mouse cell line-derived extracellular matrix (ECM). Here, we performed the hepatic lineage differentiation of hESCs following a stepwise application of growth factors on a newly developed serum- and xeno-free, simple and cost-benefit ECM, designated "RoGel," which generated from a modified conditioned medium of human fibroblasts. In comparison with Matrigel, the differentiated HLCs on both ECMs expressed similar levels of hepatocyte-specific genes, secreted α-fetoprotein, and metabolized ammonia, showed glycogen storage activity as well as low-density lipoprotein and indocyanine green uptake. The transplantation of hESC-HLCs into the carbon tetrachloride-injured liver demonstrated incorporation of the cells into the host mouse liver and the expression of albumin. The results suggest that the xeno-free and cost-benefit matrix may be applicable in bioartificial livers and also may facilitating a clinical application of human pluripotent stem cell-derived hepatocytes in the future. PMID:24477550

  11. IL-1 receptor antagonist (IL-1Ra) does not inhibit the production of C-reactive protein or serum amyloid A protein by human primary hepatocytes. Differential regulation in normal and tumour cells.

    PubMed Central

    Gabay, C; Genin, B; Mentha, G; Iynedjian, P B; Roux-Lombard, P; Guerne, P A

    1995-01-01

    The synthesis of some class 1 acute-phase proteins (APP), including C-reactive protein (CRP) and serum amyloid A (SAA) protein is completely blocked by the IL-1 receptor antagonist (IL-1Ra), whereas the production of fibrinogen, a class 2 APP, is increased by IL-1Ra in hepatoma cells, but this has never been tested in human hepatocytes in primary culture. Since previous studies on the contributions of cytokine inhibitors in connective tissues diseases suggested that IL-1 and tumour necrosis factor-alpha (TNF-alpha) might play an important role in the regulation of CRP, we decided to examine in more detail the respective roles of IL-1 beta, IL-6, and TNF-alpha and their inhibitors in the production of APP by human primary hepatocytes versus the hepatoma cell line PLC/PRF/5. In the hepatoma cell line, IL-1 beta and/or TNF-alpha had synergistic effects with IL-6 on the production of CRP and SAA. In contrast, these cytokines were devoid of effect in normal hepatocytes. The production of fibrinogen was increased by IL-6 and decreased by IL-1 (and TNF-alpha) in both cell types. The secretion of CRP and SAA by primary hepatocytes incubated with a cytokine-rich mononuclear cell-conditioned medium was totally unaffected by IL-1Ra or anti-TNF-alpha antibodies. In contrast, the addition of IL-1Ra increased the production of fibrinogen by both hepatoma cells and primary hepatocytes incubated with the mononuclear cell-conditioned medium. We therefore conclude that IL-1 beta and TNF-alpha do not exert any significant effect on the synthesis of CRP and SAA by human primary hepatocytes. Images Fig. 6 PMID:7743670

  12. Triglyceride Mobilization from Lipid Droplets Sustains the Anti-Steatotic Action of Iodothyronines in Cultured Rat Hepatocytes.

    PubMed

    Grasselli, Elena; Voci, Adriana; Demori, Ilaria; Vecchione, Giulia; Compalati, Andrea D; Gallo, Gabriella; Goglia, Fernando; De Matteis, Rita; Silvestri, Elena; Vergani, Laura

    2015-01-01

    Adipose tissue, dietary lipids and de novo lipogenesis are sources of hepatic free fatty acids (FFAs) that are stored in lipid droplets (LDs) as triacylglycerols (TAGs). Destiny of TAGs stored in LDs is determined by LD proteomic equipment. When adipose triglyceride lipase (ATGL) localizes at LD surface the lipid mobilization is stimulated. In this work, an in vitro model of cultured rat hepatocytes mimicking a mild steatosis condition was used to investigate the direct lipid-lowering action of iodothyronines, by focusing, in particular, on LD-associated proteins, FFA oxidation and lipid secretion. Our results demonstrate that in "steatotic" hepatocytes iodothyronines reduced the lipid excess through the recruitment of ATGL on LD surface, and the modulation of the LD-associated proteins Rab18 and TIP47. As an effect of ATGL recruitment, iodothyronines stimulated the lipid mobilization from LDs then followed by the up-regulation of carnitine-palmitoyl-transferase (CPT1) expression and the stimulation of cytochrome-c oxidase (COX) activity that seems to indicate a stimulation of mitochondrial function. The lipid lowering action of iodothyronines did not depend on increased TAG secretion. On the basis of our data, ATGL could be indicated as an early mediator of the lipid-lowering action of iodothyronines able to channel hydrolyzed FFAs toward mitochondrial beta-oxidation rather than secretion. PMID:26793120

  13. The influence of glucocorticoid on the fibrinogen messenger RNA content of rat liver in vivo and in hepatocyte suspension culture.

    PubMed Central

    Princen, H M; Moshage, H J; de Haard, H J; van Gemert, P J; Yap, S H

    1984-01-01

    The plasma concentration of fibrinogen, one of the major acute-phase proteins produced by the liver, increases during the acute-phase response as a result of enhanced synthesis in liver. Since adrenal-cortical hormones have been thought to have a key role in the regulation of the fibrinogen synthesis, fibrinogen-polypeptide mRNA sequences were determined in the present study, by using a specific complementary-DNA probe, in RNA fractions obtained from rat hepatocytes exposed to glucocorticoids in vitro (hepatocyte suspension cultures) and in vivo. Maximal induction of the fibrinogen-polypeptide mRNA (to 400% of the control value) was found in vitro at 0.1 microM-dexamethasone after 9 h of incubation. The same magnitude of induction was obtained with 20 microM-cortisol or 60 microM-corticosterone. In contrast with the findings in vitro, no induction of the fibrinogen-polypeptide mRNA was observed in the liver at various times after injection of different doses of glucocorticoids into rats. These results suggest that more complex regulatory mechanisms are involved and that glucocorticoids are not the sole regulatory factors in vivo in the enhanced synthesis of fibrinogen during the acute-phase response. PMID:6547834

  14. Ultrastructural features of hepatocytes in cultured Eurasian perch ( Perca fluviatilis L.) as affected by nutritional and husbandry conditions.

    PubMed

    Blanchard, Gersande; Gardeur, Jean N; Mathis, Nicolas; Brun-Bellut, Jean; Kestemont, Patrick

    2008-08-01

    A wide range of factors can be attributed to the syndrome of fatty liver observed in some cultured fish species. The objective of the study was therefore to quantify different hepatocyte ultrastructural features as potentially influenced by twelve nutritional and husbandry factors, in order to discriminate the most influent factors in Eurasian perch (Perca fluviatilis), a typical carnivorous temperate fish species. Twenty-four groups of juveniles (initial weight 57.6 (SD 14.4) g) were intensively reared for 116 d and fed sixteen different isoproteic diets. The distribution of the experimental treatments was based on a multivariate fractional factorial design (L(24) 2(12)) with either high (+1) or low (-1) level of each of the following factors: diet (lipid and protein sources, lipid content, astaxanthin enrichment), feeding level, daily and weekly distribution frequency, fish density, initial weight heterogeneity, temperature, photoperiod, and light spectrum. Liver lipid droplets, glycogen, mitochondria and rough endoplasmic reticulum (RER) were semi-quantified and analysed by a soft imaging system using transmission electronic microscopy photographs. Important variability of hepatocyte ultrastructural features was observed. The present study confirms that the rearing temperature, through its influences in the general metabolic activity, seems to be the main factor modifying mainly lipid droplet accumulation and RER development. However, factors that could be pooled under the designation of factors leading to food accessibility and lipid and protein quality intensify or compensate the effect of temperature. PMID:18304390

  15. Human hepatocytes express absent in melanoma 2 and respond to hepatitis B virus with interleukin-18 expression.

    PubMed

    Pan, Xingfei; Xu, Haixia; Zheng, Changlong; Li, Mei; Zou, Xiaofang; Cao, Hong; Xu, Qihuan

    2016-08-01

    Absent in melanoma 2 (AIM2) is a recently recognized cytoplasmic receptor which could sense cytoplasmic double-stranded DNA (dsDNA). After AIM2 detects the presence of parasitic nucleic acids (dsDNA) derived from invasive bacteria or viral genomes (for example, vaccinia virus and cytomegalovirus) within infected cells, AIM2 inflammasome could be formed. The formed AIM2 inflammasome could induce innate immune response and increase expressions of IL-1β and IL-18. Hepatitis B virus (HBV) is a hepatotropic, non-cytopathic double-stranded DNA virus. The immune response to viral antigens or virus is thought to be responsible for both liver damage and viral clearance in patients with HBV infection. However, there are no reports about whether AIM2 inflammasome exists in hepatocytes. In the present study, we investigated the presence and activity of AIM2 inflammasome in human hepatocytes. We found that AIM2 was expressed in cytoplasm of hepatocytes, and IL-18 expression was increased after AIM2 sensed HBV in hepatocytes in vitro. These results showed that AIM2 inflammasome was active in hepatocytes. We also found that hepatic AIM2 expression of chronic hepatitis B (CHB) patients was higher than that of controls. Hepatic AIM2 expression levels were positively correlated to the severity of liver inflammation. IL-18 is already considered to be associated with hepatic injury during HBV infection. In conclusion, we, therefore, believe that AIM2 inflammasome in hepatocytes might play an important role in the development and maintenance of HBV-related hepatitis. PMID:27094165

  16. Humanism in Black Culture.

    ERIC Educational Resources Information Center

    Aschenbrenner, Joyce C.

    We can identify black culture in terms of certain institutions and values which they share as members of an ethnic group, while recognizing that individual families and communities identify in important respects with other groups. The ascription of a humanistic character--defined as those values and institutions which black Americans have in…

  17. Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins.

    PubMed

    Ufelmann, Helena; Krüger, Thomas; Luckas, Bernd; Schrenk, Dieter

    2012-03-11

    Contamination of water, foods and food supplements by various genera of cyanobacteria is a serious health problem worldwide for humans and animals, largely due to the toxic effects of microcystins (MCs) and nodularin (NOD), a group of hepatotoxic cyclic peptides. The toxins occur in variable structures resulting in more than 90 different MCs and 8 different NODs, many of them not having been investigated for their toxic potency. Potent MCs such as MC-LR have been shown to elicit their hepatotoxic potency via inhibition of hepatic protein phosphatases (PP) 1 and 2A leading to over-phosphorylation of vital cellular proteins. This mechanism of action is also thought to be responsible for the long term tumor promoting action of certain MCs and NOD in the liver. Here, we report on the isolation of certain MCs and NOD as well as a number of their desmethylated derivatives from algae bloom. Subsequently, we determined the cytotoxicity of these compounds in isolated primary human and rat hepatocytes in culture. In parallel experiments, we analyzed the inhibitory potency of these congeners on PP1 and 2A using commercially available enzymes. We found in primary rat hepatocytes that MC-LR, -YR and NOD were cytotoxic, namely in the 10 to >50 nM range, while MC-RR was not. The desmethylated congeners of MC-LR, -YR, and NOD were equally or more-toxic as/than their fully methylated counterparts. In primary human hepatocytes we could show that MC-LR, NOD and the desmethylated variants [³Asp]MC-LR, [⁷Dha]MC-LR and [¹Asp]NOD were cytotoxic in the 20 to >600 nM range. Inhibition data with human, bovine and rabbit protein phosphatases 1 and 2A were roughly in accordance with the cytotoxicity findings in human and rat hepatocytes, i.e. desmethylation had no pronounced effects on the inhibitory potencies. Thus, a variety of naturally occurring desmethylated MC and NOD congeners have to be considered as being at least as toxic as the corresponding fully methylated derivatives. PMID

  18. Impact of Environmental Chemicals on the Transcriptome of Primary Human Hepatocytes: Potential for Health Effects.

    PubMed

    Mitchell, Robert D; Dhammi, Anirudh; Wallace, Andrew; Hodgson, Ernest; Roe, R Michael

    2016-08-01

    New paradigms for human health risk assessment of environmental chemicals emphasize the use of molecular methods and human-derived cell lines. In this study, we examined the effects of the insect repellent DEET (N,N-diethyl-m-toluamide) and the phenylpyrazole insecticide fipronil (fluocyanobenpyrazole) on transcript levels in primary human hepatocytes. These chemicals were tested individually and as a mixture. RNA-Seq showed that 100 μM DEET significantly increased transcript levels (α = 0.05) for 108 genes and lowered transcript levels for 64 genes and fipronil at 10 μM increased the levels of 2246 transcripts and decreased the levels for 1428 transcripts. Fipronil was 21-times more effective than DEET in eliciting changes, even though the treatment concentration was 10-fold lower for fipronil versus DEET. The mixture of DEET and fipronil produced a more than additive effect (levels increased for 3017 transcripts and decreased for 2087 transcripts). The transcripts affected for all chemical treatments were classified by GO analysis and mapped to chromosomes. The overall treatment responses, specific pathways, and individual transcripts affected were discussed at different levels of fold-change. Changes found in transcript levels in response to treatments will require further research to understand their importance in overall cellular, organ, and organismic function. PMID:27091632

  19. Rat primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-dimensional culture on a polystyrene scaffold designed for routine use.

    PubMed

    Schutte, Maaike; Fox, Bridget; Baradez, Marc-Olivier; Devonshire, Alison; Minguez, Jesus; Bokhari, Maria; Przyborski, Stefan; Marshall, Damian

    2011-10-01

    The in vitro evaluation of hepatotoxicity is an essential stage in the research and development of new pharmaceuticals as the liver is one of the most commonly impacted organs during preclinical toxicity studies. Fresh primary hepatocytes in monolayer culture are the most commonly used in vitro model of the liver but often exhibit limited viability and/or reduction or loss of important liver-specific functions. These limitations could potentially be overcome using three-dimensional (3D) culture systems, but their experimental nature and limited use in liver toxicity screening and drug metabolism has impaired their uptake into commercial screening programs. In this study we use a commercially available polystyrene scaffold developed for routine 3D cell culture to maintain primary rat hepatocytes for use in metabolism and toxicity studies over 72 h. We show that primary hepatocytes retain their natural cuboidal morphology with significantly higher viability (>74%) than cells grown in monolayer culture (maximum of 57%). Hepatocytes in the 3D scaffolds exhibit differential expression of genes associated with phase I, II, and III drug metabolism under basal conditions compared with monolayer culture and can be induced to stably express significantly higher levels of the cytochrome-P450 enzymes 1A2, 2B1, and 3A2 over 48 h. In toxicity studies the hepatocytes in the 3D scaffolds also show increased sensitivity to the model toxicant acetaminophen. These improvements over monolayer culture and the availability of this new easy to use 3D scaffold system could facilitate the uptake of 3D technologies into routine drug screening programs. PMID:21675871

  20. INTEGRATED DISINFECTION BY-PRODUCTS (DBP) MIXTURES RESEARCH: GENE EXPRESSION ALTERATIONS IN PRIMARY RAT HEPATOCYTE CULTURES EXPOSED TO DBP MIXTURES FORMED BY CHLORINATION AND OZONATION/POSTCHLORINATION

    EPA Science Inventory

    What is the study?
    This study was designed to provide data on the in vitro toxicity of water concentrates containing complex mixtures of DBPs. Rat hepatocytes in primary culture were exposed for 24 hr to full strength, 1:10 or 1:20 dilutions of chlorination or ozonation/chl...

  1. Identification and characterization of a Nuclear Factor Kappa B p65 proteolytic fragment in nuclei of porcine hepatocytes in monolayer culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hepatocytes prepared from suckling pigs, and maintained in monolayer culture were used to investigate transcription factor activity at the cellular level. The hepatic response to proinflammatory signals is controlled by the activation of several transcription factors, including, Nuclear Factor-Kapp...

  2. Reconstruction of hepatic stellate cell-incorporated liver capillary structures in small hepatocyte tri-culture using microporous membranes.

    PubMed

    Kasuya, Junichi; Sudo, Ryo; Masuda, Genta; Mitaka, Toshihiro; Ikeda, Mariko; Tanishita, Kazuo

    2015-03-01

    In liver sinusoids, hepatic stellate cells (HSCs) locate the outer surface of microvessels to form a functional unit with endothelia and hepatocytes. To reconstruct functional liver tissue in vitro, formation of the HSC-incorporated sinusoidal structure is essential. We previously demonstrated capillary formation of endothelial cells (ECs) in tri-culture, where a polyethylene terephthalate (PET) microporous membrane was intercalated between the ECs and hepatic organoids composed of small hepatocytes (SHs), i.e. hepatic progenitor cells, and HSCs. However, the high thickness and low porosity of the membranes limited heterotypic cell-cell interactions, which are essential to form HSC-EC hybrid structures. Here, we focused on the effective use of the thin and highly porous poly( d, l-lactide-co-glycolide) (PLGA) microporous membranes in SH-HSC-EC tri-culture to reconstruct the HSC-incorporated liver capillary structures in vitro. First, the formation of EC capillary-like structures was induced on Matrigel-coated PLGA microporous membranes. Next, the membranes were stacked on hepatic organoids composed of small SHs and HSCs. When the pore size and porosity of the membranes were optimized, HSCs selectively migrated to the EC capillary-like structures. This process was mediated in part by platelet-derived growth factor (PDGF) signalling. In addition, the HSCs were located along the outer surface of the EC capillary-like structures with their long cytoplasmic processes. In the HSC-incorporated capillary tissues, SHs acquired high levels of differentiated functions, compared to those without ECs. This model will provide a basis for the construction of functional, thick, vascularized liver tissues in vitro. PMID:23086892

  3. Bridging in vitro and in vivo metabolism and transport of faldaprevir in human using a novel cocultured human hepatocyte system, HepatoPac.

    PubMed

    Ramsden, Diane; Tweedie, Donald J; Chan, Tom S; Taub, Mitchell E; Li, Yongmei

    2014-03-01

    An increased appreciation of the importance of transporter and enzyme interplay in drug clearance and a desire to delineate these mechanisms necessitates the utilization of models that contain a full complement of enzymes and transporters at physiologically relevant activities. Additionally, the development of drugs with longer half-lives requires in vitro systems with extended incubation times that allow characterization of metabolic pathways for low-clearance drugs. A recently developed coculture hepatocyte model, HepatoPac, has been applied to meet these challenges. Faldaprevir is a drug in late-stage development for the treatment of hepatitis C. Faldaprevir is a low-clearance drug with the somewhat unique characteristic of being slowly metabolized, producing two abundant hydroxylated metabolites (M2a and M2b) in feces (∼40% of the dose) without exhibiting significant levels of circulating metabolites in humans. The human HepatoPac model was investigated to characterize the metabolism and transport of faldaprevir. In human HepatoPac cultures, M2a and M2b were the predominant metabolites formed, with extents of formation comparable to in vivo. Direct glucuronidation of faldaprevir was shown to be a minor metabolic pathway. HepatoPac studies also demonstrated that faldaprevir is concentrated in liver with active uptake by multiple transporters (including OATP1B1 and Na(+)-dependent transporters). Overall, human HepatoPac cultures provided valuable insights into the metabolism and disposition of faldaprevir in humans and demonstrated the importance of enzyme and transporter interplay in the clearance of the drug. PMID:24366904

  4. Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules.

    PubMed

    Tasnim, Farah; Phan, Derek; Toh, Yi-Chin; Yu, Hanry

    2015-11-01

    Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy, disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers, urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen, Chlorpromazine, Diclofenac, Digoxin, Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore, SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development. PMID:26310107

  5. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes

    SciTech Connect

    Rachek, Lyudmila I.; Yuzefovych, Larysa V.; LeDoux, Susan P.; Julie, Neil L.; Wilson, Glenn L.

    2009-11-01

    Thiazolidinediones (TZDs), such as troglitazone (TRO) and rosiglitazone (ROSI), improve insulin resistance by acting as ligands for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma). TRO was withdrawn from the market because of reports of serious hepatotoxicity. A growing body of evidence suggests that TRO caused mitochondrial dysfunction and induction of apoptosis in human hepatocytes but its mechanisms of action remain unclear. We hypothesized that damage to mitochondrial DNA (mtDNA) is an initiating event involved in TRO-induced mitochondrial dysfunction and hepatotoxicity. Primary human hepatocytes were exposed to TRO and ROSI. The results obtained revealed that TRO, but not ROSI at equimolar concentrations, caused a substantial increase in mtDNA damage and decreased ATP production and cellular viability. The reactive oxygen species (ROS) scavenger, N-acetyl cystein (NAC), significantly diminished the TRO-induced cytotoxicity, suggesting involvement of ROS in TRO-induced hepatocyte cytotoxicity. The PPARgamma antagonist (GW9662) did not block the TRO-induced decrease in cell viability, indicating that the TRO-induced hepatotoxicity is PPARgamma-independent. Furthermore, TRO induced hepatocyte apoptosis, caspase-3 cleavage and cytochrome c release. Targeting of a DNA repair protein to mitochondria by protein transduction using a fusion protein containing the DNA repair enzyme Endonuclease III (EndoIII) from Escherichia coli, a mitochondrial translocation sequence (MTS) and the protein transduction domain (PTD) from HIV-1 TAT protein protected hepatocytes against TRO-induced toxicity. Overall, our results indicate that significant mtDNA damage caused by TRO is a prime initiator of the hepatoxicity caused by this drug.

  6. Antiviral activity of various interferons and pro-inflammatory cytokines in non-transformed cultured hepatocytes infected with hepatitis B virus.

    PubMed

    Isorce, Nathalie; Testoni, Barbara; Locatelli, Maëlle; Fresquet, Judith; Rivoire, Michel; Luangsay, Souphalone; Zoulim, Fabien; Durantel, David

    2016-06-01

    In HBV-infected patients, therapies with nucleoside analogues or IFNα remain ineffective in eradicating the infection. Our aim was to re-analyze the anti-HBV activity of a large panel of IFNs and cytokines in vitro using non-transformed cultured hepatocytes infected with HBV, to identify new immune-therapeutic options. HepaRG cells and primary human hepatocytes were infected with HBV and, when infection was established, treated with various concentrations of different IFNs or inflammatory cytokines. Viral parameters were evaluated by quantifying HBV nucleic acids by qPCR and Southern Blot, and secreted HBV antigens were evaluated using ELISA. The cytokines tested were type-I IFNs, IFNγ, type-III IFNs, TNFα, IL-6, IL-1β, IL-18 as well as nucleos(t)ide analogues tenofovir and ribavirin. Cytokines and drugs, with the exception of IL-18 and ribavirin, exhibited a suppressive effect on HBV replication at least as strong as, but often stronger than, IFNα. The cytokine presenting the highest effect on HBV DNA was IL-1β, which exerted its inhibition within picomolar range. Importantly, we noticed differential effects on other parameters (HBV RNA, HBeAg, HBsAg) between both IFNs and inflammatory cytokines, thus suggesting different mechanisms of action. The combination of IL-1β and already used therapies, i.e. IFNα or tenofovir, demonstrated a stronger or similar anti-HBV activity. IL-1β was found to have a very potent antiviral effect against HBV in vitro. HBV was previously shown to promptly inhibit IL-1β production in Kupffer cells. Strategies aiming at unlocking this inhibition and restoring local production of IL-1β may help to further inhibit HBV replication in vivo. PMID:26971407

  7. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.

    PubMed

    Kandel, Benjamin A; Thomas, Maria; Winter, Stefan; Damm, Georg; Seehofer, Daniel; Burk, Oliver; Schwab, Matthias; Zanger, Ulrich M

    2016-09-01

    The ligand-activated nuclear receptor pregnane X receptor (PXR, NR1I2) and the constitutive androstane receptor (CAR, NR1I3) are two master transcriptional regulators of many important drug metabolizing enzymes and transporter genes (DMET) in response to xenobiotics including many drugs. The peroxisome proliferator-activated receptor alpha (PPARα, NR1C1), the target of lipid lowering fibrate drugs, primarily regulates fatty acid catabolism and energy-homeostasis. Recent research has shown that there are substantial overlaps in the regulated genes of these receptors. For example, both CAR and PXR also modulate the transcription of key enzymes involved in lipid and glucose metabolism and PPARα also functions as a direct transcriptional regulator of important DMET genes including cytochrome P450s CYP3A4 and CYP2C8. Despite their important and widespread influence on liver metabolism, comparative data are scarce, particularly at a global level and in humans. The major objective of this study was to directly compare the genome-wide transcriptional changes elucidated by the activation of these three nuclear receptors in primary human hepatocytes. Cultures from six individual donors were treated with the prototypical ligands for CAR (CITCO), PXR (rifampicin) and PPARα (WY14,643) or DMSO as vehicle control. Genomewide mRNA profiles determined with Affymetrix microarrays were analyzed for differentially expressed genes and metabolic functions. The results confirmed known prototype target genes and revealed strongly overlapping sets of coregulated but also distinctly regulated and novel responsive genes and pathways. The results further specify the role of PPARα as a regulator of drug metabolism and the role of the xenosensors PXR and CAR in lipid metabolism and energy homeostasis. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26994748

  8. In vitro evaluation of hepatotoxic drugs in human hepatocytes from multiple donors: Identification of P450 activity as a potential risk factor for drug-induced liver injuries.

    PubMed

    Utkarsh, Doshi; Loretz, Carol; Li, Albert P

    2016-08-01

    A possible risk factor for drug-induced hepatotoxicity is drug metabolizing enzyme activity, which is known to vary among individuals due to genetic (genetic polymorphism) and environmental factors (environmental pollutants, foods, and medications that are inhibitors or inducers of drug metabolizing enzymes). We hypothesize that hepatic cytochrome P450-dependent monooxygenase (CYP) activity is one of the key risk factors for drug induced liver injuries (DILI) in the human population, especially for drugs that are metabolically activated to cytotoxic/reactive metabolites. Human hepatocytes from 19 donors were evaluated for the activities of 8 major P450 isoforms: CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Extensive individual variations were observed, consistent with what is known to be in the human population. As CYP3A4 is known to be one of the most important P450 isoforms for drug metabolism, studies were performed to evaluate the relationship between the in vitro cytotoxicity of hepatotoxic drugs and CYP3A4 activity. In a proof of concept study, hepatocytes from six donors (lots) representing the observed range of CYP3A4 activities were chosen for the evaluation of in vitro hepatotoxicity of four drugs known to be associated with acute liver failure: acetaminophen, cyclophosphamide, ketoconazole, and tamoxifen. The hepatocytes were cultured in collagen-coated plates and treated with the hepatotoxicants for approximately 24 h, followed by viability determination based on cellular adenosine triphosphate (ATP) contents. HH1023, the lot of hepatocytes with the highest CYP3A4 activity, was found to be the most sensitive to the cytotoxicity of all 4 hepatotoxic drugs, thereby suggesting that high CYP3A4 activity may be a risk factor. To further validate the relationship, a second study was performed with hepatocytes from 16 donors. In this study, the hepatocytes were quantified for CYP3A4 activity at the time of treatment. Results of the

  9. Combined use of N-acetylcysteine and Liberase improves the viability and metabolic function of human hepatocytes isolated from human liver

    PubMed Central

    Bartlett, David C.; Hodson, James; Bhogal, Ricky H.; Youster, Janine; Newsome, Phil N.

    2014-01-01

    Background aims Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver, and the results of hepatocyte isolation from such tissue are inferior compared with normal tissue. Liberase and N-acetylcysteine (NAC) have been shown separately to improve viability of isolated hepatocytes. This study aims to determine the effect of Liberase and NAC in combination on human hepatocyte isolation from normal and diseased liver tissues. Methods Hepatocytes were isolated from 30 liver specimens through the use of a standard collagenase digestion technique (original protocol) and another 30 with the addition of NAC and standard collagenase substituted by Liberase (new protocol). Viability and success, defined as maintenance of cell adhesion and morphology for 48 hours, were assessed. Metabolic function was assessed by means of albumin and urea synthesis. Results Baseline factors were similar for both groups. The delay to tissue processing was slightly shorter in the new protocol group (median, 2 versus 4 hours; P = 0.007). The success rate improved from 12 of 30 (40.0%) to 21 of 30 (70.0%) with the use of the new protocol (P = 0.037), and median viable cell yield increased from 7.3 × 104 to 28.3 × 104 cells/g tissue (P = 0.003). After adjusting for delay, success rate (P = 0.014) and viable cell yield/g tissue (P = 0.001) remained significantly improved. Albumin and urea synthesis were similar or superior in the new protocol group. Conclusions NAC and Liberase improve the success of hepatocyte isolation, with a significantly higher yield of viable cells. The use of these agents may improve the availability of hepatocytes for transplantation and laboratory research. PMID:24642019

  10. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    SciTech Connect

    Zhou Yijun . E-mail: zhou-yijun@hotmail.com; Wang Jiahe; Zhang Jin

    2006-06-02

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-{kappa}B, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-{kappa}B, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease.

  11. Uptake and metabolism of vinca alkaloids by freshly isolated human hepatocytes in suspension.

    PubMed

    Zhou, X J; Placidi, M; Rahmani, R

    1994-01-01

    A study was carried out to evaluate the uptake, release and metabolism of four currently used vinca alkaloids, including vinblastine, vincristine, vindesine and navelbine, using freshly isolated human hepatocytes in suspension. The drugs were rapidly taken up and intensely metabolised by the cells, giving a number of yet unidentified biotransformation products. Navelbine was the most rapidly and intensely accumulated drug followed by vinblastine, vindesine and vincristine. The extent of cell uptake appeared to parallel the lipophilicities of these compounds. Interestingly, we found a significant correlation between the mean uptake rates of the vinca alkaloids into the cells, which were 0.279, 0.343, 0.568 and 0.834 pmol/min/10(6) cells for vincristine, vindesine, vinblastine and navelbine, respectively, and the in vivo plasma clearances of the drugs (r = 0.9995, p < 0.001). This finding is of great importance as regards a better understanding of the structure-activity relationship among this class of antitumour drugs, as well as a reliable extrapolation of in vitro results to the in vivo situation. PMID:8074443

  12. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support

    PubMed Central

    Giri, Shibashish; Bader, Augustinus

    2014-01-01

    Background Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Methods Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. Results After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5–7 days. The remaining transfected hepatocytes persisted for 2–4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose

  13. Na(+)-Ca sup 2+ exchange in cultured rat hepatocytes: Evidence against a role in cytosolic Ca sup 2+ regulation or signaling

    SciTech Connect

    Lidofsky, S.D.; Xie, M.H.; Scharschmidt, B.F. )

    1990-07-01

    Plasma membrane Na(+)-Ca2+ exchange contributes importantly to the regulation of cytosolic Ca2+ concentration ((Ca2+)i) in excitable cells. Despite extensive study in excitable tissues, the role of this transporter in the regulation of (Ca2+)i in hepatocytes is unknown, and conflicting information has been reported regarding the presence of Na(+)-Ca2+ exchange in hepatocyte plasma membrane vesicles. We have therefore assessed the role of Na(+)-dependent Ca2+ transport in the regulation of (Ca2+)i in rat hepatocytes in primary culture under basal conditions and after exposure to vasopressin, a hormone that elevates (Ca2+)i. Ca2+ efflux, measured using 45Ca, did not differ in the presence or absence of extracellular Na+, either under basal conditions or in response to vasopressin. (Ca2+)i, measured using the Ca2(+)-sensitive dye fura-2, was not altered by transient or prolonged exposure to Na(+)-free media or by exposure to ouabain in concentrations sufficient to produce a five-fold elevation in intracellular Na+ concentration. The (Ca2+)i response to vasopressin was also unaffected by Na+ removal or ouabain. By contrast, in cultured rat cardiac myocytes, cells that possess Na(+)-Ca2+ exchange, transient or prolonged Na+ removal as well as ouabain exposure produced greater than fivefold increases in (Ca2+)i compared with controls. We conclude that Na(+)-Ca2+ exchange does not contribute to the regulation of (Ca2+)i in hepatocytes.

  14. Hepatoprotective and antioxidative effects of total phenolics from Laggera pterodonta on chemical-induced injury in primary cultured neonatal rat hepatocytes.

    PubMed

    Wu, Yihang; Yang, Leixiang; Wang, Fang; Wu, Xiumei; Zhou, Changxin; Shi, Shuyun; Mo, Jianxia; Zhao, Yu

    2007-08-01

    Although Laggera pterodonta as a folk medicine has been widely used for several centuries to ameliorate some inflammatory ailments as hepatitis in China, there have been no studies of the hepatoprotective and antioxidative effects of this plant. In this paper, the hepatoprotective effect of total phenolics from L. pterodonta (TPLP) against CCI4-, D-GalN-, TAA-, and t-BHP-induced injury was examined in primary cultured neonatal rat hepatocytes. TPLP inhibited the cellular leakage of two enzymes, hepatocyte ASAT and ALAT, caused by these chemicals and improved cell viability. Moreover, TPLP afforded much stronger protection than the reference drug silibinin. Meanwhile, DPPH and superoxide radicals scavenging activities of TPLP were also determined. The present investigation is the first to report chemical-induced injury model in primary cultured neonatal rat hepatocytes and provide evidence for the hepatoprotective and antioxidative effects of L. pterodonta. Neutralizing reactive oxygen species by nonenzymatic mechanisms may be one of main mechanisms of TPLP against chemical-induced hepatocyte injury. Furthermore, The total phenolic content of L. pterodonta and its main component type were quantified, and its principle components isochlorogenic acids were isolated and authenticated. These data support the folkloric uses of L. pterodonta in the treatment of hepatitis. PMID:17329003

  15. Hepatocytes as Immunological Agents.

    PubMed

    Crispe, Ian N

    2016-01-01

    Hepatocytes are targeted for infection by a number of major human pathogens, including hepatitis B virus, hepatitis C virus, and malaria. However, hepatocytes are also immunological agents in their own right. In systemic immunity, they are central in the acute-phase response, which floods the circulation with defensive proteins during diverse stresses, including ischemia, physical trauma, and sepsis. Hepatocytes express a variety of innate immune receptors and, when challenged with pathogen- or damage-associated molecular patterns, can deliver cell-autonomous innate immune responses that may result in host defense or in immunopathology. Important human pathogens have evolved mechanisms to subvert these responses. Finally, hepatocytes talk directly to T cells, resulting in a bias toward immune tolerance. PMID:26685314

  16. Studies on the metabolism of metallothionein and alkaline phosphatase of adult rat primary hepatocyte cultures: role of fetal calf serum and agonists of the phosphoinositide cascade.

    PubMed

    Krämer, K; Markwitan, A; Pallauf, J

    1993-09-01

    Adult rat primary hepatocytes maintained in DMEM/F12 (Ham) media were used as a model system for studying the role of fetal calf serum (FCS) and agonists of the phosphoinositide cascade in the metabolism of metallothionein (MT) and alkaline phosphatase (ALP). Experiments were performed both after a 24 h preincubation with FCS and with bovine serum albumin (BSA). Hepatocytes were treated with dexamethasone (DEX), zinc (Zn) and with the agonists of the phosphoinositide cascade A23187, 1,2-dioctanoyl-sn-glycerol (DiC8), 12-O-tetradecanoylphorbol-13-acetate (TPA), angiotensin II (AT), platelet activating factor (PAF), Arg8-vasopressin (VP) and were analyzed for MT and ALP activity in cell homogenates. Cell viability was evaluated by lactate dehydrogenase (LDH) liberation into culture medium, induction of tyrosine aminotransferase (TAT) through DEX and by trypan blue exclusion. Overall, cell viability was improved by the FCS pretreatment and by DEX. Exposure of hepatocytes to the established direct inducers Zn and DEX of MT resulted in a manifold increase in MT, independent of whether the cultures were FCS pretreated or not. The FCS preincubation produced a moderate elevation of ALP activity by stimulating cell viability. However, ALP was unaltered in response to Zn and DEX. None of the experiments conducted with agonists of the phosphoinositide cascade led to an elevation of MT and ALP. Only the incubation of hepatocytes with A23187 resulted in a concentration dependent significant decrease of MT and ALP. This observation was due to a cytotoxic effect of A 23187, displayed by LDH leakage and an increase in the number of cells stained with trypan blue. In conclusion, in primary hepatocyte cultures agonists of the phosphoinositide did not have an effect on the metabolism of MT and ALP. Previous in vivo results indicating alterations of Zn metabolism in liver, therefore seem to be caused by indirect systemic responses. PMID:8237077

  17. In silico models for dynamic connected cell cultures mimicking hepatocyte-endothelial cell-adipocyte interaction circle.

    PubMed

    Andreoni, Chiara; Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Vozzi, Giovanni

    2014-01-01

    The biochemistry of a system made up of three kinds of cell is virtually impossible to work out without the use of in silico models. Here, we deal with homeostatic balance phenomena from a metabolic point of view and we present a new computational model merging three single-cell models, already available from our research group: the first model reproduced the metabolic behaviour of a hepatocyte, the second one represented an endothelial cell, and the third one described an adipocyte. Multiple interconnections were created among these three models in order to mimic the main physiological interactions that are known for the examined cell phenotypes. The ultimate aim was to recreate the accomplishment of the homeostatic balance as it was observed for an in vitro connected three-culture system concerning glucose and lipid metabolism in the presence of the medium flow. The whole model was based on a modular approach and on a set of nonlinear differential equations implemented in Simulink, applying Michaelis-Menten kinetic laws and some energy balance considerations to the studied metabolic pathways. Our in silico model was then validated against experimental datasets coming from literature about the cited in vitro model. The agreement between simulated and experimental results was good and the behaviour of the connected culture system was reproduced through an adequate parameter evaluation. The developed model may help other researchers to investigate further about integrated metabolism and the regulation mechanisms underlying the physiological homeostasis. PMID:25502576

  18. In Silico Models for Dynamic Connected Cell Cultures Mimicking Hepatocyte-Endothelial Cell-Adipocyte Interaction Circle

    PubMed Central

    Andreoni, Chiara; Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Vozzi, Giovanni

    2014-01-01

    The biochemistry of a system made up of three kinds of cell is virtually impossible to work out without the use of in silico models. Here, we deal with homeostatic balance phenomena from a metabolic point of view and we present a new computational model merging three single-cell models, already available from our research group: the first model reproduced the metabolic behaviour of a hepatocyte, the second one represented an endothelial cell, and the third one described an adipocyte. Multiple interconnections were created among these three models in order to mimic the main physiological interactions that are known for the examined cell phenotypes. The ultimate aim was to recreate the accomplishment of the homeostatic balance as it was observed for an in vitro connected three-culture system concerning glucose and lipid metabolism in the presence of the medium flow. The whole model was based on a modular approach and on a set of nonlinear differential equations implemented in Simulink, applying Michaelis-Menten kinetic laws and some energy balance considerations to the studied metabolic pathways. Our in silico model was then validated against experimental datasets coming from literature about the cited in vitro model. The agreement between simulated and experimental results was good and the behaviour of the connected culture system was reproduced through an adequate parameter evaluation. The developed model may help other researchers to investigate further about integrated metabolism and the regulation mechanisms underlying the physiological homeostasis. PMID:25502576

  19. Involvement of hepatocyte growth factor-induced epithelial-mesenchymal transition in human adenomyosis.

    PubMed

    Khan, Khaleque Newaz; Kitajima, Michio; Hiraki, Koichi; Fujishita, Akira; Nakashima, Masahiro; Masuzaki, Hideaki

    2015-02-01

    Adenomyosis is commonly believed to arise from the basalis endometrium. As an estromedin growth factor, hepatocyte growth factor (HGF) exhibits multiple functions in endometriosis, a disease commonly believed to arise from the functionalis endometrium. Here, we investigated the role of HGF in the occurrence of epithelial-mesenchymal transition (EMT) in adenomyosis. Full-thickness-biopsy specimens from endometrium to myometrium were collected after hysterectomy from women with and without adenomyosis. The relationship between HGF and E-cadherin (epithelial cell marker) and N-cadherin (mesenchymal cell markers) was examined at the gene and protein levels using endometrial epithelial cells (EECs) in culture and tissues by quantitative RT-PCR and immunohistochemistry. The gene and protein expressions of two transcriptional repressors of E-cadherin, SLUG and SNAIL, were examined using Ishikawa cells and in response to HGF and estrogen (E2). HGF down-regulated E-cadherin and up-regulated N-cadherin mRNA expression in EECs, and an inverse relationship in protein expression between HGF and E-cadherin was observed in basalis endometria derived from women with diffuse and focal adenomyosis. HGF induced morphological changes of EECs from a cobblestone-like appearance to spindle-shaped cells and promoted migration of EECs. Ishikawa cells exhibited up-regulation of SLUG/SNAIL gene expression in response to both HGF and E2 with an additive effect between them. HGF- and E2-promoted SLUG/SNAIL gene expression was significantly abrogated after pretreatment of cells with anti-HGF antibody or ICI 182720, an estrogen receptor antagonist. HGF may be involved in gland invagination deep into the myometrium by inducing EMT at the endo-myometrial junction in women with adenomyosis. PMID:25505196

  20. Insulin inhibits delta-aminolevulinate synthase gene expression in rat hepatocytes and human hepatoma cells.

    PubMed

    Scassa, M E; Varone, C L; Montero, L; Cánepa, E T

    1998-11-01

    Insulin has been known to regulate intracellular metabolism by modifying the activity or location of many enzymes but it is only in the past few years that the regulation of gene expression is recognized to be a major action of this hormone. The present work provides evidences that insulin inhibits delta-aminolevulinate synthase (ALA-S) gene expression, the enzyme which governs the rate-limiting step in heme biosynthesis. The addition of 5 nM insulin to hepatocytes culture led to a significant decrease of both basal and phenobarbital-induced ALA-S mRNA in a dose-dependent manner, as measured by Northern and slot-blot analysis. Several clues as to how insulin regulates ALA-S transcription were determined. The inhibitory effect is achieved at physiological concentrations but much higher proinsulin doses are needed. Insulin's effect is rapid, quite specific, and protein synthesis is not required. Moreover, ALA-S mRNA half-life is not modified by the presence of the peptidic hormone. Our results demonstrate that the insulin effect is dominant; it overrides 8-CPT-cAMP plus phenobarbital-mediated induction. Also, insulin requires the activation of protein kinase C to exert its full effect. On the other hand, a 870-bp fragment of the ALA-S promoter region is able to sustain the inhibition of CAT expression in plasmid-transfected HepG2 cells. Thus, these results indicate that insulin plays an important role in regulating ALA-S expression by inhibiting its transcription. PMID:9806796

  1. Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation.

    PubMed

    Wu, Ning; Zhang, Yu-Ling; Wang, Hai-Tian; Li, Da-Wei; Dai, Hui-Juan; Zhang, Qi-Qi; Zhang, Jiang; Ma, Yong; Xia, Qiang; Bian, Jian-Min; Hang, Hua-Lian

    2016-05-01

    Mesenchymal stem cells (MSCs) hold promise as cellular vehicles for the delivery of therapeutic gene products because they can be isolated, expanded, and genetically modified in vitro and possess tumor-oriented homing capacity in vivo. (1) Hepatocyte nuclear factor 4α (HNF4α) is a dominant transcriptional regulator of hepatocyte differentiation and hepatocellular carcinogenesis (HCC). (2,3) We have previously demonstrated that overexpression of HNF4α activates various hepatic-specific genes and enhances MSC differentiation. (4) However, the extent that overexpression of HNF4α in MSCs influences HCC progression has yet to be examined. Here we sought to investigate what effect MSCs overexpressing HNF4α (MSC-HNF4α) have on human hepatoma cells in vitro and in vivo. Conditioned medium collected from in vitro MSC-HNF4α cultures significantly inhibited hepatoma cell growth and metastasis compared with controls. Additionally, nude mice administered MSC-HNF4α exhibited significantly smaller tumors compared with controls in vivo. Immunoblot analysis of HCC cells treated with MSC-HNF4α displayed downregulated β-catenin, cyclinD1, c-Myc, MMP2 and MMP9. Taken together, our results demonstrate that MSC-HNF4α inhibits HCC progression by reducing hepatoma cell growth and metastasis through downregulation of the Wnt/β-catenin signaling pathway. PMID:27124543

  2. Cytochrome P4501A induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin and two chlorinated dibenzofurans in primary hepatocyte cultures of three avian species.

    PubMed

    Hervé, Jessica C; Crump, Doug; Jones, Stephanie P; Mundy, Lukas J; Giesy, John P; Zwiernik, Matthew J; Bursian, Steven J; Jones, Paul D; Wiseman, Steve B; Wan, Yi; Kennedy, Sean W

    2010-02-01

    Relative potencies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 2,3,7,8-tetrachlorodibenzofuran (TCDF) were determined in vitro in primary hepatocyte cultures of chicken (Gallus gallus), ring-necked pheasant (Phasianus colchicus), and Japanese quail (Coturnix japonica) embryos. Concentration-dependent effects on ethoxyresorufin O-deethylase (EROD) activity and expression of cytochrome P4501A4 and cytochrome P4501A5 (CYP1A4 and CYP1A5) messenger RNA (mRNA) were determined in hepatocytes exposed to serial dilutions of TCDD, PeCDF, or TCDF for 24 h. In chicken hepatocytes, the three compounds were equipotent inducers of EROD activity and CYP1A4/CYP1A5 mRNA expression. However, in ring-necked pheasant and Japanese quail hepatocytes, PeCDF was more potent than TCDD (3- to 5-fold in ring-necked pheasant and 13- to 30-fold in Japanese quail). Among species, the rank order of sensitivity (most to least) to EROD and CYP1A4/CYP1A5 mRNA induction for TCDD and TCDF was chicken > ring-necked pheasant > Japanese quail. In contrast, the three species were approximately equisensitive to EROD and CYP1A4/CYP1A5 mRNA induction by PeCDF. It has generally been assumed that TCDD is the most potent "dioxin-like compound" (DLC) and that the chicken is the most sensitive avian species to CYP1A induction by all DLCs. This study indicates that PeCDF is more potent than TCDD in ring-necked pheasant and Japanese quail hepatocytes and that ring-necked pheasant, Japanese quail, and chicken hepatocytes are equally sensitive to CYP1A induction by PeCDF. PMID:19884122

  3. Fluid shear stress modulation of hepatocyte-like cell function.

    PubMed

    Rashidi, Hassan; Alhaque, Sharmin; Szkolnicka, Dagmara; Flint, Oliver; Hay, David C

    2016-07-01

    Freshly isolated human adult hepatocytes are considered to be the gold standard tool for in vitro studies. However, primary hepatocyte scarcity, cell cycle arrest and the rapid loss of cell phenotype limit their widespread deployment. Human embryonic stem cells and induced pluripotent stem cells provide renewable sources of hepatocyte-like cells (HLCs). Despite the use of various differentiation methodologies, HLCs like primary human hepatocytes exhibit unstable phenotype in culture. It has been shown that the functional capacity can be improved by adding back elements of human physiology, such as cell co-culture or through the use of natural and/or synthetic surfaces. In this study, the effect of fluid shear stress on HLC performance was investigated. We studied two important liver functions, cytochrome P450 drug metabolism and serum protein secretion, in static cultures and those exposed to fluid shear stress. Our study demonstrates that fluid shear stress improved Cyp1A2 activity by approximately fivefold. This was paralleled by an approximate ninefold increase in sensitivity to a drug, primarily metabolised by Cyp2D6. In addition to metabolic capacity, fluid shear stress also improved hepatocyte phenotype with an approximate fourfold reduction in the secretion of a foetal marker, alpha-fetoprotein. We believe these studies highlight the importance of introducing physiologic cues in cell-based models to improve somatic cell phenotype. PMID:26979076

  4. Effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression in primary cultures of normal rat hepatocytes

    SciTech Connect

    Barraud, B.; Balavoine, S.; Feldmann, G.; Lardeux, B.

    1996-04-01

    While the effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression have been investigated in various hepatoma cell lines, the individual and combined effects of these components on the expression of this gene have been rarely studied in cultured normal rat hepatocytes. In this cell model, we have shown that mRNA levels of {alpha}{sub 1}-acid glycoprotein were not decreased at least during the first 24 h of culture under basal conditions. During these short-term cultures, the expression of {alpha}{sub 1}-acid glycoprotein in normal hepatocytes showed a high degree of responsiveness to dexamethasone alone (20-fold increase) and to dexamethasone associated with various cytokines (interleukin-1{beta}, interleukin-6 and tumor necrosis factor {alpha}) with a 40 to 100-fold increase depending on the cytokine. Insulin alone did not modify {alpha}{sub 1}-acid glycoprotein mRNA; however, this hormone exerted a positive effect (about 50% increase) in the presence of dexamethasone or dexamethasone with cytokines. These results indicate that the regulation of {alpha}{sub 1}-acid glycoprotein in cultured normal rat hepatocytes presents major differences when compared to reported observations in rat hepatoma cell lines. 49 refs., 2 figs., 2 tabs.

  5. Phenobarbital induction of cytochromes P-450. High-level long-term responsiveness of primary rat hepatocyte cultures to drug induction, and glucocorticoid dependence of the phenobarbital response.

    PubMed Central

    Waxman, D J; Morrissey, J J; Naik, S; Jauregui, H O

    1990-01-01

    The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove

  6. Exploring the cell signalling in hepatocyte differentiation.

    PubMed

    Vasconcellos, Rebecca; Alvarenga, Érika C; Parreira, Ricardo C; Lima, Swiany S; Resende, Rodrigo R

    2016-11-01

    The liver is the second largest organ in the human body and is responsible for several functions that directly contribute to homeostasis. Hepatocytes are the main parenchymal liver cells that regulate multiple biochemical and metabolic functions and the synthesis of substances important to the body. Mesenchymal stem cells (MSCs) are a group of stem cells derived from the mesoderm, which can be obtained from various tissues. Under certain conditions, MSCs can differentiate into several cell types, including hepatocytes. Post-transcriptional regulations of liver development signalling and hepatocyte differentiation have been demonstrated. At the post-transcriptional level, microRNAs have emerged as precursors for determining cell fate during differentiation. MicroRNAs (miRNAs) are small non-coding RNAs involved in the post-transcriptional regulation of gene expression. They can determine the stem cell fate by repressing the translation of target mRNAs. In this review, we outline signalling pathways involved in stem cell differentiation to hepatocytes and its interplay with liver development. Hepatic differentiation models in two-dimensional and three-dimensional cultures used to analyse signalling mechanisms will be described. We also highlight the possible miRNAs involved in this process and the transdifferentiation signalling mechanisms present in hepatocytes. PMID:27555287

  7. Ado-Trastuzumab Emtansine Targets Hepatocytes Via Human Epidermal Growth Factor Receptor 2 to Induce Hepatotoxicity.

    PubMed

    Yan, Haoheng; Endo, Yukinori; Shen, Yi; Rotstein, David; Dokmanovic, Milos; Mohan, Nishant; Mukhopadhyay, Partha; Gao, Bin; Pacher, Pal; Wu, Wen Jin

    2016-03-01

    Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) approved for the treatment of HER2-positive metastatic breast cancer. It consists of trastuzumab, a humanized mAb directed against HER2, and a microtubule inhibitor, DM1, conjugated to trastuzumab via a thioether linker. Hepatotoxicity is one of the serious adverse events associated with T-DM1 therapy. Mechanisms underlying T-DM1-induced hepatotoxicity remain elusive. Here, we use hepatocytes and mouse models to investigate the mechanisms of T-DM1-induced hepatotoxicity. We show that T-DM1 is internalized upon binding to cell surface HER2 and is colocalized with LAMP1, resulting in DM1-associated cytotoxicity, including disorganized microtubules, nuclear fragmentation/multiple nuclei, and cell growth inhibition. We further demonstrate that T-DM1 treatment significantly increases the serum levels of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase in mice and induces inflammation and necrosis in liver tissues, and that T-DM1-induced hepatotoxicity is dose dependent. Moreover, the gene expression of TNFα in liver tissues is significantly increased in mice treated with T-DM1 as compared with those treated with trastuzumab or vehicle. We propose that T-DM1-induced upregulation of TNFα enhances the liver injury that may be initially caused by DM1-mediated intracellular damage. Our proposal is underscored by the fact that T-DM1 induces the outer mitochondrial membrane rupture, a typical morphologic change in the mitochondrial-dependent apoptosis, and mitochondrial membrane potential dysfunction. Our work provides mechanistic insights into T-DM1-induced hepatotoxicity, which may yield novel strategies to manage liver injury induced by T-DM1 or other ADCs. PMID:26712117

  8. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes

    PubMed Central

    Resseguie, Mary; Song, Jiannan; Niculescu, Mihai D.; da Costa, Kerry-Ann; Randall, Thomas A.; Zeisel, Steven H.

    2008-01-01

    Choline is an essential nutrient for humans, though some of the requirement can be met by endogenous synthesis catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). Premenopausal women are relatively resistant to choline deficiency compared with postmenopausal women and men. Studies in animals suggest that estrogen treatment can increase PEMT activity. In this study we investigated whether the PEMT gene is regulated by estrogen. PEMT transcription was increased in a dose-dependent manner when primary mouse and human hepatocytes were treated with 17-β-estradiol for 24 h. This increased message was associated with an increase in protein expression and enzyme activity. In addition, we report a region that contains a perfect estrogen response element (ERE) ∼7.5 kb from the transcription start site corresponding to transcript variants NM_007169 and NM-008819 of the human and murine PEMT genes, respectively, three imperfect EREs in evolutionarily conserved regions and multiple imperfect EREs in nonconserved regions in the putative promoter regions. We predict that both the mouse and human PEMT genes have three unique transcription start sites, which are indicative of either multiple promoters and/or alternative splicing. This study is the first to explore the underlying mechanism of why dietary requirements for choline vary with estrogen status in humans.—Resseguie, M., Song, J., Niculescu, M. D., da Costa, K., Randall, T. A., Zeisel, S. H. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. PMID:17456783

  9. Thrombospondin-related adhesive protein (TRAP) of Plasmodium falciparum: expression during sporozoite ontogeny and binding to human hepatocytes.

    PubMed Central

    Robson, K J; Frevert, U; Reckmann, I; Cowan, G; Beier, J; Scragg, I G; Takehara, K; Bishop, D H; Pradel, G; Sinden, R

    1995-01-01

    Plasmodium sporozoites collected from oocysts, haemocoel and salivary glands of the mosquito show profound differences in their biological properties such as motility, ability to induce protective immune response and infectivity for vertebrate host cells. Sporozoites from salivary glands are much more infectious than those from oocysts and haemocoel. Differential expression of proteins, such as the circumsporozoite (CS) protein and the thrombospondin-related adhesive protein (TRAP), implicated in sporozoite recognition and entry into hepatocytes may account for the development of infectivity during ontogeny. We have carried out a series of experiments to: (i) analyse the expression and localization of TRAP in P.falciparum sporozoites during development in the mosquito; and (ii) elucidate the biochemical and adhesive properties of recombinant TRAP. Our data indicate that TRAP is not expressed in oocysts, whereas variable amounts of CS protein are found in this parasite developmental stage. Hemocoel sporozoites display the distinct phenotypes TRAP- CS protein+ and TRAP+ CS protein+ at a frequency of 98.5 and 1.5% respectively. Salivary gland sporozoites are all TRAP+ CS protein+. We also provide experimental evidence showing that recombinant TRAP binds to the basolateral cell membrane of hepatocytes in the Disse's space and that sulfated glycoconjugates function as TRAP ligands on human hepatocytes. Images PMID:7664729

  10. Growth-dependent inhibition of CCAAT enhancer-binding protein (C/EBP alpha) gene expression during hepatocyte proliferation in the regenerating liver and in culture.

    PubMed Central

    Mischoulon, D; Rana, B; Bucher, N L; Farmer, S R

    1992-01-01

    As an approach to understanding physiological mechanisms that control the proliferation of highly differentiated cells, we are addressing whether certain hepatic transcription factors participate in mechanisms that control the growth of hepatocytes. We have focused on CCAAT enhancer-binding protein (C/EBP alpha), a transcription factor which is highly abundant in normal liver and is considered to regulate expression of many genes, including some involved in energy metabolism (S. L. McKnight, M. D. Lane, and S. Gluecksohn-Walsh. Genes Dev. 3:2021-2024, 1989). Using Northern (RNA) blot analysis, we have examined the expression of C/EBP alpha mRNA during liver regeneration and in primary cultures of hepatocytes. C/EBP alpha mRNA levels decrease 60 to 80% within 1 to 3 h after partial hepatectomy as the cells move from G0 to G1 and decrease further when cells progress into S phase. Run-on transcription analysis is in agreement with the Northern blot data, thus suggesting that C/EBP alpha is transcriptionally regulated in regenerating liver. C/EBP alpha mRNA expression also decreases dramatically during the growth of freshly isolated normal hepatocytes cultured under conventional conditions (on dried rat tail collagen; stimulated to proliferate by epidermal growth factor [EGF] and insulin). Cultures of hepatocytes on rat tail collagen in the presence or absence of EGF clearly show that within 3 h, EGF depresses C/EBP alpha mRNA expression and that this effect is substantially greater by 4 h. Inhibition of protein synthesis in the liver by cycloheximide or in cultured hepatocytes by puromycin or cycloheximide effectively blocks the down-regulation of C/EBP alpha gene expression, apparently by stabilizing the normal rapid turnover of the C/EBP alpha mRNA (half-life of <2 h). This drop in C/EBP alpha gene expression in response to activation of hepatocyte growth is consistent with the proposal that C/EBP alpha has an antiproliferative role to play in highly differentiated

  11. Inhibition of preS1-hepatocyte interaction by an array of recombinant human antibodies from naturally recovered individuals

    PubMed Central

    Sankhyan, Anurag; Sharma, Chandresh; Dutta, Durgashree; Sharma, Tarang; Chosdol, Kunzang; Wakita, Takaji; Watashi, Koichi; Awasthi, Amit; Acharya, Subrat K.; Khanna, Navin; Tiwari, Ashutosh; Sinha, Subrata

    2016-01-01

    Neutralizing monoclonal antibodies are being found to be increasingly useful in viral infections. In hepatitis B infection, antibodies are proven to be useful for passive prophylaxis. The preS1 region (21–47a.a.) of HBV contains the viral hepatocyte-binding domain crucial for its attachment and infection of hepatocytes. Antibodies against this region are neutralizing and are best suited for immune-based neutralization of HBV, especially in view of their not recognizing decoy particles. Anti-preS1 (21–47a.a.) antibodies are present in serum of spontaneously recovered individuals. We generated a phage-displayed scFv library using circulating lymphocytes from these individuals and selected four preS1-peptide specific scFvs with markedly distinct sequences from this library. All the antibodies recognized the blood-derived and recombinant preS1 containing antigens. Each scFv showed a discrete binding signature, interacting with different amino acids within the preS1-peptide region. Ability to prevent binding of the preS1 protein (N-terminus 60a.a.) to HepG2 cells stably expressing hNTCP (HepG2-hNTCP-C4 cells), the HBV receptor on human hepatocytes was taken as a surrogate marker for neutralizing capacity. These antibodies inhibited preS1-hepatocyte interaction individually and even better in combination. Such a combination of potentially neutralizing recombinant antibodies with defined specificities could be used for preventing/managing HBV infections, including those by possible escape mutants. PMID:26888694

  12. Toxicity and intracellular accumulation of bile acids in sandwich-cultured rat hepatocytes: role of glycine conjugates.

    PubMed

    Chatterjee, Sagnik; Bijsmans, Ingrid T G W; van Mil, Saskia W C; Augustijns, Patrick; Annaert, Pieter

    2014-03-01

    Excessive intrahepatic accumulation of bile acids (BAs) is a key mechanism underlying cholestasis. The aim of this study was to quantitatively explore the relationship between cytotoxicity of BAs and their intracellular accumulation in sandwich-cultured rat hepatocytes (SCRH). Following exposure of SCRH (on day-1 after seeding) to various BAs for 24h, glycine-conjugated BAs were most potent in exerting toxicity. Moreover, unconjugated BAs showed significantly higher toxicity in day-1 compared to day-3 SCRH. When day-1/-3 SCRH were exposed (0.5-4h) to 5-100μM (C)DCA, intracellular levels of unconjugated (C)DCA were similar, while intracellular levels of glycine conjugates were up to 4-fold lower in day-3 compared to day-1 SCRH. Sinusoidal efflux was by far the predominant efflux pathway of conjugated BAs both in day-1 and day-3 SCRH, while canalicular BA efflux showed substantial interbatch variability. After 4h exposure to (C)DCA, intracellular glycine conjugate levels were at least 10-fold higher than taurine conjugate levels. Taken together, reduced BA conjugate formation in day-3 SCRH results in lower intracellular glycine conjugate concentrations, explaining decreased toxicity of (C)DCA in day-3 versus day-1 SCRH. Our data provide for the first time a direct link between BA toxicity and glycine conjugate exposure in SCRH. PMID:24211540

  13. Inhibitory effect of leupeptin on the intracellular maturation of lysosomal cathepsin L in primary cultures of rat hepatocytes.

    PubMed

    Nishimura, Y; Kato, K; Furuno, K; Himeno, M

    1995-07-01

    To investigate the intracellular processing event for lysosomal cathespin L, we examined the effect of leupeptin, a non-covalent cysteine proteinase inhibitor, on the intracellular processing kinetics of cathepsin L as analyzed by pulse-chase experiments in vivo with [35S]methionine in primary cultures of rat hepatocytes. This revealed that cathepsin L was initially synthesized as proenzyme of molecular weight 39 kDa and the proenzyme was subsequently processed to the mature form of the enzyme, 30 and 25 kDa. In the leupeptin-treated cells, the proteolytic conversion of cellular procathepsin L, of molecular weight 39 kDa, to the mature enzyme was significantly inhibited and considerable amounts of proenzyme were found in the cell after 8 h chase periods. Furthermore, the subcellular fractionation experiment demonstrated that the intracellular processing of procathepsin L in the high density lysosomal fraction was significantly inhibited and that considerable amounts of the procathepsin L form were still observed in the dense lysosomal fraction after a 2 h chase period. These results suggest that leupeptin treatment caused significant inhibition of the intracellular maturation of cathepsin L. These findings show that cysteine proteinase plays an important role in the intracellular proteolytic processing and activation of lysosomal cathepsin L in vivo and that this processing event occurs within the lysosomes. PMID:7581248

  14. Effect of proteasome inhibition on toxicity and CYP3A23 induction in cultured rat hepatocytes: Comparison with arsenite

    SciTech Connect

    Noreault-Conti, Trisha L.; Jacobs, Judith M.; Trask, Heidi W.; Wrighton, Steven A.; Sinclair, Jacqueline F.; Nichols, Ralph C. . E-mail: ralph.c.nichols@dartmouth.edu

    2006-12-15

    Previous work in our laboratory has shown that acute exposure of primary rat hepatocyte cultures to non-toxic concentrations of arsenite causes major decreases in the DEX-mediated induction of CYP3A23 protein, with minor decreases in CYP3A23 mRNA. To elucidate the mechanism for these effects of arsenite, the effects of arsenite and proteasome inhibition, separately and in combination, on induction of CYP3A23 protein were compared. The proteasome inhibitor, MG132, inhibited proteasome activity, but also decreased CYP3A23 mRNA and protein. Lactacystin, another proteasome inhibitor, decreased CYP3A23 protein without affecting CYP3A23 mRNA at a concentration that effectively inhibited proteasome activity. This result, suggesting that the action of lactacystin is similar to arsenite and was post-transcriptional, was confirmed by the finding that lactacystin decreased association of DEX-induced CYP3A23 mRNA with polyribosomes. Both MG132 and lactacystin inhibited total protein synthesis, but did not affect MTT reduction. Arsenite had no effect on ubiquitination of proteins, nor did arsenite significantly affect proteasomal activity. These results suggest that arsenite and lactacystin act by similar mechanisms to inhibit translation of CYP3A23.

  15. Hepatoprotective Activity of Water Extracts from Chaga Medicinal Mushroom, Inonotus obliquus (Higher Basidiomycetes) Against Tert-Butyl Hydroperoxide-Induced Oxidative Liver Injury in Primary Cultured Rat Hepatocytes.

    PubMed

    Hong, Ki Bae; Noh, Dong Ouk; Park, Yooheon; Suh, Hyung Joo

    2015-01-01

    We examined the hepatoprotective activity of Inonotus obliquus water extract (IO-W) against tert-butyl hydroperoxide (t-BHP)-induced oxidative liver injury in the primary cultured rat hepatocyte. The 50% radical scavenging concentrations (SC50s) of IO-W for radical-scavenging activity against 2,2'-azino-bis-(3-ethylbenzothi- azoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) were 5.19 mg/mL and 0.39 mg/mL, respectively. IO-W pretreatment to the primary cultured hepatocytes significantly (p<0.05) protected the cells from t-BHP-induced cytotoxic injury even at a low concentration of IO-W (10 µg/mL). The cellular leakage of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as malondialdehyde (MDA) formation caused by t-BHP were significantly (p<0.05) suppressed by IO-W pretreatment (>100 µg/ mL). In conclusion, this study demonstrates that IO-W exhibited hepatoprotective activity against t-BHP-induced oxidative liver injury in the primary cultured hepatocyte probably via its abilities of quenching free radicals, inhibiting the leakage of ALT, AST, and LDH, and decreasing MDA formation. PMID:26853962

  16. Hepatitis C Virus Infection Suppresses the Interferon Response in the Liver of the Human Hepatocyte Chimeric Mouse

    PubMed Central

    Tsuge, Masataka; Fujimoto, Yoshifumi; Hiraga, Nobuhiko; Zhang, Yizhou; Ohnishi, Mayu; Kohno, Tomohiko; Abe, Hiromi; Miki, Daiki; Imamura, Michio; Takahashi, Shoichi; Ochi, Hidenori; Hayes, C. Nelson; Miya, Fuyuki; Tsunoda, Tatsuhiko; Chayama, Kazuaki

    2011-01-01

    Background and Aims Recent studies indicate that hepatitis C virus (HCV) can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. Methods Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-α was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. Results HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (P = 5.90E-16 ∼ 3.66E-03). IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (P = 6.0E-12). Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (P = 5.22×10−10 ∼ 1.95×10−2). Conclusions These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy. PMID:21886832

  17. Transcriptional Regulation of CYP2B6 Expression by Hepatocyte Nuclear Factor 3β in Human Liver Cells

    PubMed Central

    Li, Linhao; Li, Daochuan; Heyward, Scott; Wang, Hongbing

    2016-01-01

    CYP2B6 plays an increasingly important role in xenobiotic metabolism and detoxification. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) have been established as predominant regulators for the inductive expression of CYP2B6 gene in human liver. However, there are dramatic interindividual variabilities in CYP2B6 expression that cannot be fully explained by the CAR/PXR-based modulation alone. Here, we show that expression level of CYP2B6 was correlated with that of hepatocyte nuclear factor 3β (HNF3β) in human primary hepatocytes prepared from 35 liver donors. Utilizing recombinant virus-mediated overexpression or knockdown of HNF3β in HepG2 cells, as well as constructs containing serial deletion and site-directed mutation of HNF3β binding motifs in CYP2B6 luciferase reporter assays, we demonstrated that the presence or lack of HNF3β expression markedly correlated with CYP2B6 gene expression and its promoter activity. Novel enhancer modules of HNF3β located upstream of the CYP2B6 gene transcription start site were identified and functionally validated as key elements governing HNF3β-mediated CYP2B6 expression. Chromatin immunoprecipitation assays in human primary hepatocytes and surface plasmon resonance binding affinity experiments confirmed the essential role of these enhancers in the recruitment of HNF3β to the promoter of CYP2B6 gene. Overall, these findings indicate that HNF3β represents a new liver enriched transcription factor that is involved in the transcription of CYP2B6 gene and contributes to the large interindividual variations of CYP2B6 expression in human population. PMID:26930610

  18. Why does human culture increase exponentially?

    PubMed

    Enquist, M; Ghirlanda, S; Jarrick, A; Wachtmeister, C-A

    2008-08-01

    Historical records show that culture can increase exponentially in time, e.g., in number of poems, musical works, scientific discoveries. We model how human capacities for creativity and cultural transmission may make such an increase possible, suggesting that: (1) creativity played a major role at the origin of human culture and for its accumulation throughout history, because cultural transmission cannot, on its own, generate exponentially increasing amounts of culture; (2) exponential increase in amount of culture can only occur if creativity is positively influenced by culture. The evolution of cultural transmission is often considered the main genetic bottleneck for the origin of culture, because natural selection cannot favor cultural transmission without any culture to transmit. Our models suggest that an increase in individual creativity may have been the first step toward human culture, because in a population of creative individuals there may be enough non-genetic information to favor the evolution of cultural transmission. PMID:18571686

  19. Toxic effects of wastewaters collected at upstream and downstream sites of a purification station in cultures of rainbow trout hepatocytes.

    PubMed

    Risso-de Faverney, C; Devaux, A; Lafaurie, M; Girard, J P; Rahmani, R

    2001-08-01

    The toxic effects of wastewater samples, collected in December 1998, from upstream (U) and downstream (D) sites of the purification station of the town of Nice (South-East France on the coast of the Mediterranean Sea) were assessed undiluted and at various dilutions (75%, 50%, and 25% of collected water sample), on trout hepatocyte cultures treated for 48 or 72 h. Chemical contamination (PCBs, PAHs, Cd, Cu, Pb, and Zn) was also evaluated by chemical analysis. The water samples from the upstream site were more cytotoxic than those from the downstream site. The induction of CYP1A enzyme and metallothioneins (MTs) were selected as specific indicators of exposure to organic contaminants and metals, respectively. CYP1A-related EROD activity as well as protein expression were found to be greatly induced after 72 h exposure of the hepatocytes to the undiluted water samples (U(100%) and D(100%)), but CYP1A1 mRNA was significantly overexpressed only by samples from the upstream site. Maximal MT levels were reached after 48 h of treatment with the least concentrated water samples (U(25%) and D(25%)). Glutathione S-transferase (GST) activities were similarly increased under the same conditions. On the other hand, there was no significant glutathione peroxidase (GPx) activity response. Induction of apoptosis was analyzed by using as markers both the fragmentation of the nuclear DNA into oligonucleosomal-length fragments recognized as a "DNA ladder" and the activation of DEVD (Asp-Glu-Val-Asp)-dependent protease considered as the central mediator of programmed cell death. Significant DNA cleavage was only detectable after 72-h exposure to the most concentrated water samples from upstream sites (U(75%) and U(100%)). DEVD-dependent protease activities were significantly increased, mainly in cells exposed to U(75%) and D(25%) for 72 h. In addition, pollution-related DNA damage assessed by using the Comet assay was approximatively 1.5 times greater than that of the control level

  20. Continuous but not intermittent administration of growth hormone to hypophysectomized rats increases apolipoprotein-E secretion from cultured hepatocytes.

    PubMed

    Sjöberg, A; Oscarsson, J; Edén, S; Olofsson, S O

    1994-02-01

    Hypophysectomy of female rats has been shown to decrease the serum levels of apolipoprotein E (apoE). Continuous but not intermittent administration of GH to hypophysectomized (HX) rats increases these levels to those of normal rats, indicating that the sexually dimorphic secretion of GH is important in the regulation of apoE metabolism. In this study, these effects of GH were further investigated by studying the biosynthesis and secretion of apoE from isolated hepatocytes. Hepatocytes were isolated from HX rats as well as from HX rats that had received hormonal treatment with T4 and cortisol (C) or T4 and C together with GH given either as two daily sc injections (GH x 2) or as a continuous infusion (GHc). Hypophysectomy decreased by 47% the amount of apoE present in the culture medium after a 4-h incubation. Treatment of HX rats with T4 and C alone or in combination with GH x 2 did not influence the amount apoE present in the medium, whereas treatment with T4, C, and GHc increased the amount of apoE to that of normal controls. The different levels of apoE in the medium was not due to differences in the disappearance of apoE, indicating that it was caused by changes in the rate of apoE secretion. Consistent with this, hypophysectomy decreased the rate of intracellular accumulation of apoE measured by incubation of the cells with [35S]methionine for 0, 8, and 20 min. Treatment with T4, C, and GHc increased the rate of accumulation, but T4, C, and GH x 2 had no effect. The differences in the initial rate of intracellular accumulation of apoE were not due to variations in apoE messenger RNA pools or to differences in the degradation of apoE at a step early in the secretory pathway. These results indicate that the differences in the initial rate of accumulation of apoE results from differences in the translational rate. The major amount of apoE that was secreted to the medium appeared in the high-density lipoprotein fraction, whereas small amounts were present in the

  1. Cryopreservation in situ of cell monolayers on collagen vitrigel membrane culture substrata: ready-to-use preparation of primary hepatocytes and ES cells.

    PubMed

    Miyamoto, Yoshitaka; Enosawa, Shin; Takeuchi, Tomoyo; Takezawa, Toshiaki

    2009-01-01

    Cryopreservation is generally performed on cells in suspension. In the case of adherent cells such as hepatocytes, a loss of their ability to attach is a more serious problem than a decreased viability after cryopreservation. We herein report a novel technology of direct in situ cryopreservation of cells cultured on collagen vitrigel membranes, which have excellent mechanical strength and can be easily handled by tweezers even when coated with cultured cells. Rat primary hepatocytes, mitomycin C-treated mouse fibroblasts (feeder cells for ES cells), and mouse ES cells on the feeder cells were cultured on collagen vitrigel membranes for 1 day. The membranes with cells attached were then plucked up from the dish, soaked in cryopreservation medium containing 10% dimethyl sulfoxide, frozen using a controlled-rate freezer, and transferred to liquid nitrogen. The cells cultured on plastic cell culture dishes were also frozen as controls. After storage in liquid nitrogen for periods from 1 week to 3 months, the cryopreserved membranes with the cells still attached were thawed by adding warmed culture medium. Cell viability estimated by morphology and functional staining with calcein showed significant improvement in comparison to cells cryopreserved without the collagen vitrigel membrane. The recoveries of living cells after cryopreservation were 26.7%, 76.2%, and 58.6% for rat hepatocytes, mitomycin C-treated mouse fibroblasts, and mouse ES cells on collagen vitrigel membranes, respectively. In contrast, essentially no cells at all remained on the plastic cell culture dishes after thawing. Because adherent cell storage under these conditions is very convenient, the use of this technique employing collagen vitrigel membranes should be generally applicable to the cryopreservation of adherent cells that are otherwise problematic to store as frozen stocks. PMID:19775524

  2. Assessment of competitive and mechanism-based inhibition by clarithromycin: use of domperidone as a CYP3A probe-drug substrate and various enzymatic sources including a new cell-based assay with freshly isolated human hepatocytes.

    PubMed

    Michaud, Veronique; Turgeon, Jacques

    2010-04-01

    Clarithromycin is involved in a large number of clinically relevant drug-drug interactions. Discrepancies are observed between the magnitude of drug interactions predicted from in vitro competitive inhibition studies and changes observed clinically in the plasma levels of affected CYP3A substrates. The formation of metabolic-intermediate complexes has been proposed to explain these differences. The objectives of our study were: 1) to determine the competitive inhibition potency of clarithromycin on the metabolism of domperidone as a CYP3A probe drug using human recombinant CYP3A4 and CYP3A5 isoenzymes, human liver microsomes and cultured human hepatocytes; 2) to establish the modulatory role of cytochrome b5 on the competitive inhibition potency of clarithromycin; 3) to demonstrate the clarithromycin-induced formation of CYP450 metabolic-intermediate complexes in human liver microsomes; and 4) to determine the extent of CYP3A inhibition due to metabolic-intermediate complex formation using human liver microsomes and cultured human hepatocytes. At high concentrations (100 µM), clarithromycin had weak competitive inhibition potency towards CYP3A4 and CYP3A5. Inhibition potency was further decreased by the addition of cytochrome b5 (9-19%). Clarithromycin-induced metabolic-intermediate complexes were revealed by spectrophotometry analysis using human liver microsomes while time- and concentration-dependent mechanism-based inhibitions were quantified using isolated hepatocytes. These results indicate that mechanism-based but not competitive inhibition of CYP3As is the major underlying mechanism of drug-drug interactions observed clinically with clarithromycin. Drug interactions between clarithromycin and several CYP3A substrates are predicted to be insidious; the risk of severe adverse events should increase over time and persist for a few days after cessation of the drug. PMID:20446912

  3. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes.

    PubMed Central

    Sanderson, J T; Letcher, R J; Heneweer, M; Giesy, J P; van den Berg, M

    2001-01-01

    We investigated a potential mechanism for the estrogenic properties of three chloro-s-triazine herbicides and six metabolites in vitro in several cell systems. We determined effects on human aromatase (CYP19), the enzyme that converts androgens to estrogens, in H295R (adrenocortical carcinoma), JEG-3 (placental choriocarcinoma), and MCF-7 (breast cancer) cells; we determined effects on estrogen receptor-mediated induction of vitellogenin in primary hepatocyte cultures of adult male carp (Cyprinus carpio). In addition to atrazine, simazine, and propazine, two metabolites--atrazine-desethyl and atrazine-desisopropyl--induced aromatase activity in H295R cells concentration-dependently (0.3-30 microM) and with potencies similar to those of the parent triazines. After a 24-hr exposure to 30 microM of the triazines, an apparent maximum induction of about 2- to 2.5-fold was achieved. The induction responses were confirmed by similar increases in CYP19 mRNA levels, determined by reverse-transcriptase polymerase chain reaction. In JEG-3 cells, where basal aromatase expression is about 15-fold greater than in H295R cells, the induction responses were similar but less pronounced; aromatase expression in MCF-7 cells was neither detectable nor inducible under our culture conditions. The fully dealkylated metabolite atrazine-desethyl-desisopropyl and the three hydroxylated metabolites (2-OH-atrazine-desethyl, -desisopropyl, and -desethyl-desisopropyl) did not induce aromatase activity. None of the triazine herbicides nor their metabolites induced vitellogenin production in male carp hepatocytes; nor did they antagonize the induction of vitellogenin by 100 nM (EC(50) 17beta-estradiol. These findings together with other reports indicate that the estrogenic effects associated with the triazine herbicides in vivo are not estrogen receptor-mediated, but may be explained partly by their ability to induce aromatase in vitro. PMID:11675267

  4. Activation of signalling pathways during hepatocyte isolation: relevance to toxicology in vitro.

    PubMed

    Paine, Alan J; Andreakos, Evangelos

    2004-04-01

    The "Holy Grail" of in vitro toxicology is to develop assay systems that mimic the in vivo situation and hence reduce the need for toxicity tests employing experimental animals. However a major problem to be overcome with cell culture models is the rapid loss of differentiated phenotype that markedly limits extrapolation of results to the whole animal (i.e. human) situation. This limitation is most obvious in the application of hepatocyte cultures to predict pathways of metabolism mediated toxicity and results from the rapid loss of cytochrome P450 content. Here we demonstrate that changes in hepatocyte gene expression (e.g. MAP kinase and NF-kappaB activation) occur very early into the well established hepatocyte isolation procedure employing collagenase suggesting that hepatocytes are undergoing a pro-inflammatory ('acute phase') response before they are cultured. Data is presented indicating that the stimulus is, in part, due to oxidative stress but the demonstration of endotoxins in collagenase preparations is likely to exacerbate the situation. Thus appreciation of these early events during hepatocyte isolation represents the surest foundation for the successful application of cultured hepatocytes to toxicology rather than relying on traditional manipulations of hepatocyte culture medium/substratum once differentiated phenotype has already been lost. PMID:14757109

  5. Induction of cytochrome P4501A by highly purified hexachlorobenzene in primary cultures of ring-necked pheasant and Japanese quail embryo hepatocytes.

    PubMed

    Mundy, Lukas J; Crump, Doug; Jones, Stephanie P; Konstantinov, Alex; Utley, Fiona; Potter, David; Kennedy, Sean W

    2012-04-01

    Primary cultures of ring-necked pheasant (Phasianus colchicus) and Japanese quail (Coturnix japonica) embryo hepatocytes were used to compare the potencies of highly purified hexachlorobenzne (HCB-P), reagent-grade HCB (RG-HCB) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as inducers of ethoxyresorufin O-deethylase (EROD) activity, cytochrome P4501A (CYP1A4) messenger ribonucleic acid (mRNA) and CYP1A5 mRNA. HCB-P, RG-HCB and TCDD all induced EROD activity and up-regulated CYP1A4 and CYP1A5 mRNA. Induction was not caused by contamination of HCB with polychlorinated dibenzo-p-dioxins, dibenzofurans or biphenyls. Based upon a comparison of the EC(50) and EC(threshold) values for EROD and CYP1A4/5 concentration-response curves, the potency of HCB relative to TCDD was 0.001 in ring-necked pheasant and 0.01 in Japanese quail embryo hepatocytes. Differences in species sensitivity to HCB were found to be mainly dictated by differences in species sensitivity to TCDD rather than differences in the absolute potency of HCB. Consequently, ring-necked pheasant and Japanese quail embryo hepatocytes were found to be equally sensitive to HCB exposure. Species sensitivity comparisons were also made with chicken (Gallus gallus domesticus) and revealed that chicken embryo hepatocytes were less responsive to EROD induction (lower maximal response) by HCB compared to the embryo hepatocytes of pheasant and quail. PMID:22227438

  6. Hepatocytes maintain greater fluorescent bile acid accumulation and greater sensitivity to drug‐induced cell death in three‐dimensional matrix culture

    PubMed Central

    Murray, John W.; Han, Dennis; Wolkoff, Allan W.

    2014-01-01

    Abstract Primary hepatocytes undergo phenotypic dedifferentiation upon isolation from liver that typically includes down regulation of uptake transporters and up regulation of efflux transporters. Culturing cells between layers of collagen in a three‐dimensional (3D) “sandwich” is reported to restore hepatic phenotype. This report examines how 3D culturing affects accumulation of fluorophores, the cytotoxic response to bile acids and drugs, and whether cell to cell differences in fluorescent anion accumulation correlate with differences in cytotoxicity. Hepatocytes were found to accumulate fluorescent bile acid (FBA) at significantly higher levels than the related fluorophores, carboxyfluorescein diacetate, (4.4‐fold), carboxyfluorescein succinimidyl ester (4.8‐fold), and fluorescein (30‐fold). In 2D culture, FBA accumulation decreased to background levels by 32 h, Hoechst nuclear accumulation strongly decreased, and nuclear diameter increased, indicative of an efflux phenotype. In 3D culture, FBA accumulation was maintained through 168 h but at 1/3 the original intensity. Cell to cell differences in accumulated FBA did not correlate with levels of liver zonal markers L‐FBAP (zone 1) or glutamine synthetase (zone 3). Cytotoxic response to hydrophobic bile acids, acetaminophen, and phalloidin was maintained in 3D culture, and cells with higher FBA accumulation showed 12–18% higher toxicity than the total population toward hydrophobic bile acids (P < 0.05). Long‐term imaging showed oscillations in the accumulation of FBA over periods of hours. Overall, the studies suggest that high accumulation of FBA can indicate the sensitivity of cultured hepatocytes to hydrophobic bile acids and other toxins. PMID:25524275

  7. Comparative Analysis of Temporal and Dose-Dependent TCDD-Elicited Gene Expression in Human, Mouse, and Rat Primary Hepatocytes

    PubMed Central

    Zacharewski, Timothy R.

    2013-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)–elicited time- and dose-dependent differential gene expression was compared in human, mouse, and rat primary hepatocytes. Comprehensive time course (10 nM TCDD or dimethyl sulfoxide vehicle control for 1, 2, 4, 8, 12, 24, and 48h) studies identified 495, 2305, and 711 differentially expressed orthologous genes in human, mouse, and rat hepatocytes, respectively. However, only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 100 mouse, and 443 rat genes at 12h and 615 human, 426 mouse, and 314 rat genes at 24h. Comparable EC50 values were obtained for AhR battery genes including Cyp1a1 (0.1 nM human, 0.05 nM mouse, 0.08 nM rat at 24h) and Tiparp (0.97 nM human, 0.63 nM mouse, 0.14 nM rat at 12h). Overrepresented functions and pathways included amino acid metabolism in humans, immune response in mice, and energy homeostasis in rats. Differentially expressed genes functionally associated with lipid transport, processing, and metabolism were overrepresented in all three species but exhibited species-specific expression consistent with the induction of hepatic steatosis in mice but not in rats following a single oral gavage of TCDD. Furthermore, human primary hepatocytes showed lipid accumulation following 48h of treatment with TCDD, suggesting that AhR-mediated steatosis in mice more closely resembles human hepatic fat accumulation compared with that in rats. Collectively, these results suggest that species-specific gene expression profiles mediate the species-specific effects of TCDD despite the conservation of the AhR and its signaling mechanism. PMID:23418086

  8. Formation of GSH-trapped reactive metabolites in human liver microsomes, S9 fraction, HepaRG-cells, and human hepatocytes.

    PubMed

    Lassila, Toni; Rousu, Timo; Mattila, Sampo; Chesné, Christophe; Pelkonen, Olavi; Turpeinen, Miia; Tolonen, Ari

    2015-11-10

    The objective was to compare several in vitro human liver-derived subcellular and cellular incubation systems for the formation of GSH-trapped reactive metabolites. Incubations of pooled human liver microsomes, human liver S9 fractions, HepaRG-cells, and human hepatocytes were performed with glutathione as a trapping agent. Experiments with liver S9 were performed under two conditions, using only NADPH and using a full set of cofactors enabling also conjugative metabolism. Ten structurally different compounds were used as a test set, chosen as either "positive" (ciprofloxacin, clozapine, diclofenac, ethinyl estradiol, pulegone, and ticlopidine) or "negative" (caffeine, citalopram, losartan, montelukast) compounds, based on their known adverse reactions on liver or bone marrow. GSH conjugates were observed for seven of the ten compounds; while no conjugates were observed for caffeine, citalopram, or ciprofloxacin. Hepatocyte and HepaRG assays produced a clearly lower number and lower relative abundance of GSH conjugates compared to assays with microsomes and S9 fractions. The major GSH conjugates were different for many compounds in cellular subfractions and cell-based systems. Hepatocytes generally produced a higher number of GSH conjugates than HepaRG cells, although the differences were minor. The results show that the hepatic enzyme system used for screening of GSH-trapped reactive metabolites do have a high impact on the results, and results between different systems are comparable only qualitatively. PMID:26263063

  9. Culturing of HepG2 cells with human serum improve their functionality and suitability in studies of lipid metabolism.

    PubMed

    Pramfalk, Camilla; Larsson, Lilian; Härdfeldt, Jennifer; Eriksson, Mats; Parini, Paolo

    2016-01-01

    Primary human hepatocytes are considered to be the “gold standard” in studies of lipid metabolism despite a number of disadvantages like large inter-donor differences and inability to proliferate. Human hepatoma HepG2 cells retain many hepatocyte-specific functions but do also exhibit disadvantages like secretion of lipoproteins and bile acids that do not emulate human hepatocytes in vivo. The aim of this study was to investigate whether supplementation of the culturing media with human serum could improve the functionality of HepG2 cells and thereby make them more apposite in studies of lipid metabolism. The cells were cultured with human sera (2%) from three healthy individuals or with fetal bovine serum (10%). Lipoprotein, apolipoprotein, bile acid, albumin, and proprotein subtilisin/kexin type 9 (Pcsk9) concentrations in the cell media, as well as gene and protein expressions were then measured. We found apoB-containing LDL-sized but also apoA1-containing HDL-sized particles, increased bile acid and Pcsk9 concentrations in the cell media, as well as increased expression of genes involved in lipid metabolism and differentiation in HepG2 cells cultured with human sera. Thus, supplementation of the culturing media with human serum improves the functionality of HepG2 cells and makes them more apposite in studies of lipid metabolism. PMID:26515253

  10. A novel herbal formulation "LiverCare" differentially regulates primary rat hepatocyte and hepatocarcinoma cell proliferation in vitro.

    PubMed

    Vidyashankar, Satyakumar; Varma, Sandeep R; Azeemudin, Mohammed; Godavarthi, Ashok; Krishna, Nandakumar S; Patki, Pralhad Sadashiv

    2011-09-01

    Hepatocyte growth factor (HGF) plays an important role in hepatocyte proliferation. HGF expression is regulated by various signaling molecules and nuclear receptors. In the present study, LiverCare(®) (LC), a novel polyherbal formulation (The Himalaya Drug Company, Bangalore, India), was evaluated for its efficacy, using co-cultures of primary rat hepatocytes-non-parenchymal cells (NPCs) and human hepatocellular carcinoma cells (HepG2). The rate of primary hepatocyte co-culture proliferation was significantly and dose-dependently increased by LC as determined by [(3)H]thymidine incorporation into newly synthesized DNA and cell proliferation assay. LC also increased HGF expression in primary hepatocyte co-culture. Albumin and urea content remained constant during proliferation of hepatocyte co-cultures in the presence of LC with decreased activity of alanine aminotransferase. It is interesting that LC inhibited incorporation of [(3)H]thymidine into DNA in HepG2 cells. LC enhanced peroxisome proliferator-activated receptor-α expression during hepatocyte proliferation, whereas tumor necrosis factor-α expression remained unaffected. In conclusion, our study clearly showed that LC differentially regulates primary rat hepatocytes and human hepatocarcinoma cell proliferation. LC may be a promising candidate for treating degenerative liver diseases by enhancing liver regeneration. PMID:21812649

  11. BOLISM OF ARSENITE IN CULTURED PRIMARY HEPATOCYTES FROM SIX MAMMALIAN SPECIES

    EPA Science Inventory

    Inorganic arsenic (iAs) is an environmental toxin and carcinogen. Biomethylation is the major pathway for the metabolism of iAs in many mammalian species, including the human. The liver is considered the primary site for iAs methylation and As (+3 oxidation state) methyltransfera...

  12. Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes

    PubMed Central

    Takayama, Kazuo; Morisaki, Yuta; Kuno, Shuichi; Nagamoto, Yasuhito; Harada, Kazuo; Furukawa, Norihisa; Ohtaka, Manami; Nishimura, Ken; Imagawa, Kazuo; Sakurai, Fuminori; Tachibana, Masashi; Sumazaki, Ryo; Noguchi, Emiko; Nakanishi, Mahito; Hirata, Kazumasa; Kawabata, Kenji; Mizuguchi, Hiroyuki

    2014-01-01

    Interindividual differences in hepatic metabolism, which are mainly due to genetic polymorphism in its gene, have a large influence on individual drug efficacy and adverse reaction. Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem (iPS) cells have the potential to predict interindividual differences in drug metabolism capacity and drug response. However, it remains uncertain whether human iPSC-derived HLCs can reproduce the interindividual difference in hepatic metabolism and drug response. We found that cytochrome P450 (CYP) metabolism capacity and drug responsiveness of the primary human hepatocytes (PHH)-iPS-HLCs were highly correlated with those of PHHs, suggesting that the PHH-iPS-HLCs retained donor-specific CYP metabolism capacity and drug responsiveness. We also demonstrated that the interindividual differences, which are due to the diversity of individual SNPs in the CYP gene, could also be reproduced in PHH-iPS-HLCs. We succeeded in establishing, to our knowledge, the first PHH-iPS-HLC panel that reflects the interindividual differences of hepatic drug-metabolizing capacity and drug responsiveness. PMID:25385620

  13. Improved survival of porcine acute liver failure by a bioartificial liver device implanted with induced human functional hepatocytes.

    PubMed

    Shi, Xiao-Lei; Gao, Yimeng; Yan, Yupeng; Ma, Hucheng; Sun, Lulu; Huang, Pengyu; Ni, Xuan; Zhang, Ludi; Zhao, Xin; Ren, Haozhen; Hu, Dan; Zhou, Yan; Tian, Feng; Ji, Yuan; Cheng, Xin; Pan, Guoyu; Ding, Yi-Tao; Hui, Lijian

    2016-02-01

    Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system. PMID:26768767

  14. Improved survival of porcine acute liver failure by a bioartificial liver device implanted with induced human functional hepatocytes

    PubMed Central

    Shi, Xiao-Lei; Gao, Yimeng; Yan, Yupeng; Ma, Hucheng; Sun, Lulu; Huang, Pengyu; Ni, Xuan; Zhang, Ludi; Zhao, Xin; Ren, Haozhen; Hu, Dan; Zhou, Yan; Tian, Feng; Ji, Yuan; Cheng, Xin; Pan, Guoyu; Ding, Yi-Tao; Hui, Lijian

    2016-01-01

    Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system. PMID:26768767

  15. Human neonatal hepatocyte transplantation induces long-term rescue of unconjugated hyperbilirubinemia in the Gunn rat.

    PubMed

    Tolosa, Laia; López, Silvia; Pareja, Eugenia; Donato, María Teresa; Myara, Anne; Nguyen, Tuan Huy; Castell, José Vicente; Gómez-Lechón, María José

    2015-06-01

    Crigler-Najjar type 1 disease is a rare inherited metabolic disease characterized by high levels of unconjugated bilirubin due to the complete absence of hepatic uridine diphosphoglucuronate-glucuronosyltransferase activity. Hepatocyte transplantation (HT) has been proposed as an alternative treatment for Crigler-Najjar syndrome, but it is still limited by the quality and the low engraftment and repopulation ability of the cells used. Because of their attachment capability and expression of adhesion molecules as well as the higher proportion of hepatic progenitor cells, neonatal hepatocytes may have an advantage over adult cells. Adult or neonatal hepatocytes were transplanted into Gunn rats, a model for Crigler-Najjar disease. Engraftment and repopulation were studied and compared by immunofluorescence (IF). Additionally, the serum bilirubin levels, the presence of bilirubin conjugates in rat serum, and the expression of uridine diphosphate glucuronosyltransferase 1 family polypeptide A1 (UGT1A1) in rat liver samples were also analyzed. Here we show that neonatal HT results in long-term correction in Gunn rats. In comparison with adult cells, neonatal cells showed better engraftment and repopulation capability 3 days and 6 months after transplantation, respectively. Bilirubinemia decreased in the transplanted animals during the whole experimental follow-up (6 months). Bilirubin conjugates were also present in the serum of the transplanted animals. Western blots and IF confirmed the presence and expression of UGT1A1 in the liver. This work is the first to demonstrate the advantage of using neonatal hepatocytes for the treatment of Crigler-Najjar in vivo. PMID:25821167

  16. D-galactosamine induced hepatocyte apoptosis is inhibited in vivo and in cell culture by a calcium calmodulin antagonist, chlorpromazine, and a calcium channel blocker, verapamil.

    PubMed

    Tsutsui, Shigeki; Itagaki, Shin-ichi; Kawamura, Seiji; Harada, Ken-ichi; Karaki, Hideaki; Doi, Kunio; Yoshikawa, Yasuhiro

    2003-01-01

    Studies were conducted in C57BL/6N Crj male mice and in cultured hepatocytes to clarify the relationship between galactosamine (GaIN) induced apoptosis and [Ca2+]i kinetics. Chlorpromazine (CPZ), a Ca(2+)-calmodulin antagonist, and verapamil (VR), a Ca(2+)-channel blocker each inhibited GaIN-induced DNA fragmentation and the appearance of apoptotic bodies. The kinetics of calcium uptake were evaluated using a calcium analyzer with the acetoxymethyl ester of fura-PE3 (fura-PE3/AM, 2.5 microM) as the calcium reporter. An increase in [Ca2+]i was detected in the cultured hepatocytes within 3 hours after treatment with 20 mM GaIN; this increase was inhibited by pretreatment with either 20 microM CPZ or 30 microM VR. Ca2+ imaging by confocal laser scanning microscopy showed that increase in [Ca2+]i after treatment with GaIN was initially localized around nuclei, while [Ca2+]i signals were later diffuse and observed throughout the cytoplasm. The activities of lactate dehydrogenase (LDH) and serum glutamate-pyruvate transaminase (sGPT), used as indicators of plasma membrane damage and leakage, however, were not reduced by pretreatment with CPZ or VR. From these findings, we infer that the DNA fragmentation in GaIN-induced hepatocyte apoptosis is associated with an elevation in the perinuclear concentration of Ca2+, but GaIN-induced necrotic cell death is triggered through pathway(s) that are insensitive to blockage of Ca2+ influx and therefore appear to occur independently of elevation in [Ca2+]i. These results help to clarify the role of calcium flux in hepatocyte apoptosis and necrosis induced by exposure to hepatotoxins in vivo and in vitro. PMID:12638236

  17. Platelet-activating factor stimulates metabolism of phosphoinositides via phospholipase A2 in primary cultured rat hepatocytes

    SciTech Connect

    Okayasu, T.; Hasegawa, K.; Ishibashi, T.

    1987-07-01

    Addition of platelet-activating factor (PAF) to cells doubly labeled with (/sup 14/C)glycerol plus (/sup 3/H)arachidonic acid resulted in a transient decrease of (/sup 14/C)glycerol-labeled phosphatidylinositol (PI) and a transient increase of (/sup 14/C)glycerol-labeled lysophosphatidylinositol (LPI). (/sup 3/H)Arachidonate-labeled PI, on the other hand, decreased in a time-dependent manner. The radioactivity in phosphatidylethanolamine, phosphatidylcholine, sphingomyelin, and phosphatidylserine did not change significantly. The /sup 3/H//sup 14/C ratio decreased in PI in a time-dependent manner, suggesting the involvement of a phospholipase A2 activity. Although PAF also induced a gradual increase of diacylglycerol (DG), the increase of (/sup 14/C)glycerol-labeled DG paralleled the loss of triacyl (/sup 14/C)glycerol and the /sup 3/H//sup 14/C ratio of DG was 16 times smaller than that of PI. Thus, DG seemed not to be derived from PI. In myo- (/sup 3/H)inositol-prelabeled cells, PAF induced a transient decrease of (/sup 3/H)phosphatidylinositol-4,5-bis-phosphate (TPI) and (/sup 3/H)phosphatidylinositol-4-phosphate (DPI) at 1 min. PAF stimulation of cultured hepatocytes prelabeled with /sup 32/Pi induced a transient decrease of (/sup 32/P)polyphosphoinositides at 20 sec to 1 min. (/sup 32/P)LPI appeared within 10 sec after stimulation and paralleled the loss of (/sup 32/P)PI. (/sup 3/H)Inositol triphosphate, (/sup 3/H)inositol diphosphate, and (/sup 3/H)inositol phosphate, which increased in a time-dependent manner upon stimulation with adrenaline, did not accumulate with the stimulation due to PAF. These observations indicate that PAF causes degradation of inositol phospholipids via phospholipase A2 and induces a subsequent resynthesis of these phospholipids.

  18. Similarities and Differences in the Expression of Drug-Metabolizing Enzymes between Human Hepatic Cell Lines and Primary Human HepatocytesS⃞

    PubMed Central

    Guo, Lei; Dial, Stacey; Shi, Leming; Branham, William; Liu, Jie; Fang, Jia-Long; Green, Bridgett; Deng, Helen; Kaput, Jim

    2011-01-01

    In addition to primary human hepatocytes, hepatoma cell lines, and transfected nonhepatoma, hepatic cell lines have been used for pharmacological and toxicological studies. However, a systematic evaluation and a general report of the gene expression spectra of drug-metabolizing enzymes and transporters (DMETs) in these in vitro systems are not currently available. To fill this information gap and to provide references for future studies, we systematically characterized the basal gene expression profiles of 251 drug-metabolizing enzymes in untreated primary human hepatocytes from six donors, four commonly used hepatoma cell lines (HepG2, Huh7, SK-Hep-1, and Hep3B), and one transfected human liver epithelial cell line. A large variation in DMET expression spectra was observed between hepatic cell lines and primary hepatocytes, with the complete absence or much lower abundance of certain DMETs in hepatic cell lines. Furthermore, the basal DMET expression spectra of five hepatic cell lines are summarized, providing references for researchers to choose carefully appropriate in vitro models for their studies of drug metabolism and toxicity, especially for studies with drugs in which toxicities are mediated through the formation of reactive metabolites. PMID:21149542

  19. Regulation of polyunsaturated fatty acid biosynthesis by seaweed fucoxanthin and its metabolite in cultured hepatocytes.

    PubMed

    Aki, Tsunehiro; Yamamoto, Masaya; Takahashi, Toshiaki; Tomita, Kohki; Toyoura, Rieko; Iwashita, Kazuhiro; Kawamoto, Seiji; Hosokawa, Masashi; Miyashita, Kazuo; Ono, Kazuhisa

    2014-02-01

    The effects of a seaweed carotenoid, fucoxanthin, and its physiological metabolite, fucoxanthinol, on the biosynthesis of polyunsaturated fatty acids (PUFA) were investigated using cultured rat hepatoma BRL-3A. The metabolism of α-linolenic acid (18:3n-3) was suppressed by the addition of these carotenoids, resulting in a decrease in the content of eicosapentaenoic acid (20:5n-3), which suggested a down-regulation of metabolic enzymes such as fatty acid desaturase and elongase. An increase in the content of docosahexaenoic acid (22:6n-3), as observed in previous studies in vivo, might be a buffering action to maintain the membrane fluidity. The suppressive effect of fucoxanthinol on ∆6 fatty acid desaturase was not at the level of gene expression but due to specific modifications of the protein via a ubiquitin-proteasome system. A proteomic analysis revealed several factors such as phosphatidylethanolamine-binding protein that might be involved in the observed action of fucoxanthin. These findings will contribute to studies on the elucidation of the precise molecular mechanisms underlying the regulation of PUFA biosynthesis by fucoxanthin. PMID:24174374

  20. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  1. Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and BimEL-dependent mechanism in primary human hepatocytes

    SciTech Connect

    Bumpus, Namandje N.

    2011-12-15

    Chronic use of efavirenz (EFV) has been linked to incidences of hepatotoxicity in patients receiving EFV to treat HIV-1. While recent studies have demonstrated that EFV stimulates hepatic cell death a role for the metabolites of efavirenz in this process has yet to be examined. In the present study, incubation of primary human hepatocytes with synthetic 8-hydroxyEFV (8-OHEFV), which is the primary metabolite of EFV, resulted in cell death, caspase-3 activation and reactive oxygen species formation. The metabolite exerted these effects at earlier time points and using lower concentrations than were required for the parent compound. In addition, pharmacological inhibition of cytochrome P450-dependent metabolism of EFV using 1-aminobenzotriazole markedly decreased reactive oxygen species formation and cell death. Treatment of primary human hepatocytes with EFV and 8-OHEFV also stimulated phosphorylation of c-Jun N-terminal kinase (JNK) as well as phosphorylation of the JNK substrate c-Jun. Further, the mRNA and protein expression of an isoform of Bim (Bcl-2 interacting mediator of cell death) denoted as BimEL, which is proapoptotic and has been shown to be modulated by JNK, was increased. Inhibition of JNK using SP600125 prevented the EFV- and 8-OHEFV-mediated cell death. Silencing of Bim using siRNA transfected into hepatocytes also prevented cell death resulting from 8-OHEFV-treatment. These data suggest that the oxidative metabolite 8-OHEFV is a more potent inducer of hepatic cell death than the parent compound EFV. Further, activation of the JNK signaling pathway and BimEL mRNA expression appear to be required for EFV- and 8-OHEFV-mediated hepatocyte death. -- Highlights: Black-Right-Pointing-Pointer 8-Hydroxyefavirenz is a more potent stimulator of cell death than efavirenz. Black-Right-Pointing-Pointer Efavirenz and 8-hydroxyefavirenz increase JNK activity and BimEL mRNA expression. Black-Right-Pointing-Pointer JNK and Bim are required for efavirenz- and 8

  2. Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS

    PubMed Central

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-01

    Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048

  3. Kinetic evaluation of free malondialdehyde and enzyme leakage as indices of iron damage in rat hepatocyte cultures. Involvement of free radicals.

    PubMed

    Morel, I; Lescoat, G; Cillard, J; Pasdeloup, N; Brissot, P; Cillard, P

    1990-06-01

    The present study relates to the effect of ferric iron supplementation on lipid peroxidation of adult rat hepatocyte pure cultures. Lipid peroxidation was evaluated by free malondialdehyde (MDA) using size exclusion chromatography (HPLC) as a specific and sensitive method. The ferric iron used under its complexed form with nitrilotriacetic acid (NTA) exhibited a prooxidant activity corresponding to an increase of free MDA recovery in the cells and in the culture medium. This enhancement of lipid peroxidation in the hepatocyte cultures supplemented with ferric iron was correlated with an intracellular enzyme leakage (lactate dehydrogenase and transaminase), suggesting that lipid peroxidation and enzyme release represented good parameters for cytotoxicity evaluation. The toxic effect of Fe-NTA on hepatocyte cultures was a function of the incubation time (from 0 to 48 hr) and of the concentration of ferric iron loading (i.e. 5, 20 and 100 microM). The mechanism by which Fe-NTA induced cellular damage involved free radical production, as increasing amounts of free radical scavengers corresponded to diminishing rates of both total free MDA and enzyme release. However, this reducing capacity varied from one scavenger to another, where they exhibited preferentially a decrease in lipid peroxidation or in enzyme leakage. This suggested a dissociation between the two parameters of cytotoxicity considered. Lipid peroxidation corresponding to alterations of both inner membranes and the plasma membrane, whereas enzyme release mainly corresponded to the damage of plasma membrane. Subsequently, some scavengers (superoxide dismutase, mannitol, alpha tocopherol, beta carotene) presented an intracellular activity, as they reduced mostly lipid peroxidation. Other ones (catalase, dimethylpyrroline N-oxide, thiourea) seemed essentially efficient in protecting the external plasma membrane, as shown an important decrease in enzyme leakage. PMID:2344365

  4. A three-dimensional collagen-sponge-based culture system coated with simplified recombinant fibronectin improves the function of a hepatocyte cell line.

    PubMed

    Nishida, Yuuki; Taniguchi, Akiyoshi

    2016-03-01

    Hepatocytes are widely used in pharmaceutical drug discovery tests, but their hepatic functions decrease rapidly during in vitro culture. Many culture systems have been devised to address this problem. We here report that a three-dimensional (3D) collagen-based scaffold coated with simplified recombinant fibronectin (FN) enhanced the function of a hepatocyte cell line. The developed culture system uses a honeycomb collagen sponge coated with collagen-binding domain (CBD)-cell attachment site (CAS), a chimeric protein comprising the CBD and CAS of FN. The function of HepG2 cells grown on honeycomb collagen sponge coated with CBD-CAS was investigated by determining the messenger RNA (mRNA) expression levels of several genes. The mRNA expression level of albumin increased 3.25 times in cells grown on CBD-CAS-coated honeycomb collagen sponge for 3 days; the expression level of CCAAT/enhancer binding protein (C/EBPα) increased 40-fold after 1 d and up to 150-fold after 3 d. These results suggested that CBD-CAS-coated honeycomb collagen sponge could improve the functions of hepatocytes by inducing C/EBPα expression. The activation of cytochrome P450 (CYP) enzymes in HepG2 cells grown on CBD-CAS-coated honeycomb collagen sponge was measured at the mRNA level and was found to increase between two and six times compared to cells grown without the CBD-CAS coating, showing that this culture system induced CYP gene expression and thus may be useful in drug metabolism assays. PMID:26714750

  5. Combined Stimulation with the Tumor Necrosis Factor α and the Epidermal Growth Factor Promotes the Proliferation of Hepatocytes in Rat Liver Cultured Slices.

    PubMed

    Finot, Francis; Masson, Régis; Desmots, Fabienne; Ribault, Catherine; Bichet, Nicole; Vericat, Joan A; Lafouge, Patricia; Guguen-Guillouzo, Christiane; Loyer, Pascal

    2012-01-01

    The culture liver slices are mainly used to investigate drug metabolism and xenobiotic-mediated liver injuries while apoptosis and proliferation remain unexplored in this culture model. Here, we show a transient increase in LDH release and caspase activities indicating an ischemic injury during the slicing procedure. Then, caspase activities decrease and remain low in cultured slices demonstrating a low level of apoptosis. The slicing procedure is also associated with the G0/G1 transition of hepatocytes demonstrated by the activation of stress and proliferation signalling pathways including the ERK1/2 and JNK1/2/3 MAPKinases and the transient upregulation of c-fos. The cells further progress up to mid-G1 phase as indicated by the sequential induction of c-myc and p53 mRNA levels after the slicing procedure and at 24 h of culture, respectively. The stimulation by epidermal growth factor induces the ERK1/2 phosphorylation but fails to activate expression of late G1 and S phase markers such as cyclin D1 and Cdk1 indicating that hepatocytes are arrested in mid-G1 phase of the cell cycle. However, we found that combined stimulation by the proinflammatory cytokine tumor necrosis factor α and the epidermal growth factor promotes the commitment to DNA replication as observed in vivo during the liver regeneration. PMID:23119170

  6. Combined Stimulation with the Tumor Necrosis Factor α and the Epidermal Growth Factor Promotes the Proliferation of Hepatocytes in Rat Liver Cultured Slices

    PubMed Central

    Finot, Francis; Masson, Régis; Desmots, Fabienne; Ribault, Catherine; Bichet, Nicole; Vericat, Joan A.; Lafouge, Patricia; Guguen-Guillouzo, Christiane; Loyer, Pascal

    2012-01-01

    The culture liver slices are mainly used to investigate drug metabolism and xenobiotic-mediated liver injuries while apoptosis and proliferation remain unexplored in this culture model. Here, we show a transient increase in LDH release and caspase activities indicating an ischemic injury during the slicing procedure. Then, caspase activities decrease and remain low in cultured slices demonstrating a low level of apoptosis. The slicing procedure is also associated with the G0/G1 transition of hepatocytes demonstrated by the activation of stress and proliferation signalling pathways including the ERK1/2 and JNK1/2/3 MAPKinases and the transient upregulation of c-fos. The cells further progress up to mid-G1 phase as indicated by the sequential induction of c-myc and p53 mRNA levels after the slicing procedure and at 24 h of culture, respectively. The stimulation by epidermal growth factor induces the ERK1/2 phosphorylation but fails to activate expression of late G1 and S phase markers such as cyclin D1 and Cdk1 indicating that hepatocytes are arrested in mid-G1 phase of the cell cycle. However, we found that combined stimulation by the proinflammatory cytokine tumor necrosis factor α and the epidermal growth factor promotes the commitment to DNA replication as observed in vivo during the liver regeneration. PMID:23119170

  7. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line

    PubMed Central

    Li, Xiaoming; Xu, Min; Wang, Fei; Ji, Yong; DavidsoN, W. Sean; Li, Zongfang; Tso, Patrick

    2015-01-01

    We have previously shown that the nuclear receptor, NR1D1, is a cofactor in ApoA-IV-mediated downregulation of gluconeogenesis. Nuclear receptor, NR4A1, is involved in the transcriptional regulation of various genes involved in inflammation, apoptosis, and glucose metabolism. We investigated whether NR4A1 influences the effect of ApoA-IV on hepatic glucose metabolism. Our in situ proximity ligation assays and coimmunoprecipitation experiments indicated that ApoA-IV colocalized with NR4A1 in human liver (HepG2) and kidney (HEK-293) cell lines. The chromatin immunoprecipitation experiments and luciferase reporter assays indicated that the ApoA-IV and NR4A1 colocalized at the RORα response element of the human G6Pase promoter, reducing its transcriptional activity. Our RNA interference experiments showed that knocking down the expression of NR4A1 in primary mouse hepatocytes treated with ApoA-IV increased the expression of NR1D1, G6Pase, and PEPCK, and that knocking down NR1D1 expression increased the level of NR4A1. We also found that ApoA-IV induced the expression of endogenous NR4A1 in both cultured primary mouse hepatocytes and in the mouse liver, and decreased glucose production in primary mouse hepatocytes. Our findings showed that ApoA-IV colocalizes with NR4A1, which suppresses G6Pase and PEPCK gene expression at the transcriptional level, reducing hepatic glucose output and lowering blood glucose. The ApoA-IV-induced increase in NR4A1 expression in hepatocytes mediates further repression of gluconeogenesis. Our findings suggest that NR1D1 and NR4A1 serve similar or complementary functions in the ApoA-IV-mediated regulation of gluconeogenesis. PMID:26556724

  8. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure.

    PubMed

    Liu, Mingying; Yang, Jiacai; Hu, Wenjun; Zhang, Shichang; Wang, Yingjie

    2016-02-01

    Recently, cell-based therapies have attracted attention as promising treatments for acute liver failure (ALF). Bone marrow-derived mesenchymal stem cells (MSCs) are potential candidates for co-culture with hepatocytes in poly(lactic acid-glycolic acid) (PLGA) scaffolds to support hepatocellular function. However, the mechanism of culturing protocol using PLGA scaffolds for MSC differentiation into hepatocyte-like cells as well as the therapeutic effect of cell seeded PLGA scaffolds on ALF remain unsatisfactory in clinical application. Here, MSCs and hepatocytes were co-cultured at ratios of 1:2.5 (MSCs: Hep), 1:5 and 1:10, respectively. The proliferation abilities of these co-cultured cells were detected by CCK8, MTT, EdU and by scanning electron microscopy (SEM), and the ability of MSCs to differentiate into hepatocytes was detected by PCR, western blot and immunofluorescence staining. Therapeutic trials of cell seeded PLGA scaffolds were conducted through mouse abdominal cavity transplantation. Results showed that the 1:5 group showed significantly higher cellular proliferation than the 1:2.5 and 1:10 groups, supernatant albumin and urea nitrogen levels were also significantly higher in the 1:5 group than in other two groups. Similarly, the 1:5 group demonstrated better DNA transcription and liver-specific protein (albumin, CK18 and P450) production. Meanwhile, the GalN-stimulated levels of ALT, AST and TBil in mouse serum were down-regulated significantly more by (MSC  +  Hep)-PLGA scaffold treatment than MSC-PLGA or Hep-PLGA scaffold treatments. Furthermore, the (MSC  +  Hep)-PLGA scaffold-treated ALF mice showed a lower immunogenic response level than the other two groups. These data suggested that the ratio of 1:5 (MSC:Hep) co-cultures was the optimal ratio for MSCs to support hepatocellular metabolism and function in PLGA scaffolds in vitro, the (MSC  +  Hep)-PLGA scaffold treatment could perform better restoration for damaged liver

  9. A novel matrix for the short-term storage of cells: utility in drug metabolism and drug transporter studies with rat, dog and human hepatocytes.

    PubMed

    Palmgren, Anna-Pia; Fihn, Britt-Marie; Bird, James; Courtney, Paul; Grime, Ken

    2013-06-01

    1. The SureTran matrix is a novel method facilitating short-term maintenance of fresh primary hepatocyte cellular function and offers the potential use of primary cells "as fresh" for several days post isolation. In the study presented, the maintenance of several key phase I and II drug metabolizing enzyme and drug transporter activities is demonstrated with rat and dog hepatocytes preserved for up to 7 days after cell isolation. 2. Intrinsic clearance values were determined for 60 new chemical entities using rat hepatocytes freshly isolated at AstraZeneca and rat hepatocytes prepared at the facilities of Abcellute Ltd (SureTran purveyors), stored and incubated 24 hours after isolation. A very good correspondence in the intrinsic clearance values underlines the utility of the cell maintenance matrix. 3. For human hepatocytes many of the enzyme activities assayed were well maintained for 7 days of storage but some declined to below 50% of initial values between day 4 and 7 of storage. Human OATP1B1 activity was only determined with one batch and declined to 51% of the initial test value by day 4 and further down to 35% by day 7. PMID:23137276

  10. Effect of diphenyl ether herbicides and oxadiazon on porphyrin biosynthesis in mouse liver, rat primary hepatocyte culture and HepG2 cells.

    PubMed

    Krijt, J; van Holsteijn, I; Hassing, I; Vokurka, M; Blaauboer, B J

    1993-01-01

    The effects of the herbicides fomesafen, oxyfluorfen, oxadiazon and fluazifop-butyl on porphyrin accumulation in mouse liver, rat primary hepatocyte culture and HepG2 cells were investigated. Ten days of herbicide feeding (0.25% in the diet) increased the liver porphyrins in male C57B1/6J mice from 1.4 +/- 0.6 to 4.8 +/- 2.1 (fomesafen) 16.9 +2- 2.9 (oxyfluorfen) and 25.9 +/- 3.1 (oxadiazon) nmol/g wet weight, respectively. Fluazifop-butyl had no effect on liver porphyrin metabolism. Fomesafen, oxyfluorfen and oxadiazon increased the cellular porphyrin content of rat hepatocytes after 24 h of incubation (control, 3.2 pmol/mg protein, fomesafen, oxyfluorfen and oxadiazon at 0.125 mM concentration 51.5, 54.3 and 44.0 pmol/mg protein, respectively). The porphyrin content of HepG2 cells increased from 1.6 to 18.2, 10.6 and 9.2 pmol/mg protein after 24 h incubation with the three herbicides. Fluazifop-butyl increased hepatic cytochrome P450 levels and ethoxy- and pentoxyresorufin O-dealkylase (EROD and PROD) activity, oxyfluorfen increased PROD activity. Peroxisomal palmitoyl CoA oxidation increased after fomesafen and fluazifop treatment to about 500% of control values both in mouse liver and rat hepatocytes. Both rat hepatocytes and HepG2 cells can be used as a test system for the porphyrogenic potential of photobleaching herbicides. PMID:8517781

  11. Activation of the Nrf2 Pathway by Inorganic Arsenic in Human Hepatocytes and the Role of Transcriptional Repressor Bach1

    PubMed Central

    Liu, Dan; Duan, Xiaoxu; Dong, Dandan; Bai, Caijun; Li, Xin; Sun, Guifan; Li, Bing

    2013-01-01

    Previous studies have proved that the environmental toxicant, inorganic arsenic, activates nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in many different cell types. This study tried to explore the hepatic Nrf2 pathway upon arsenic treatment comprehensively, since liver is one of the major target organs of arsenical toxicity. Our results showed that inorganic arsenic significantly induced Nrf2 protein and mRNA expression in Chang human hepatocytes. We also observed a dose-dependent increase of antioxidant response element- (ARE-) luciferase activity. Both the mRNA and protein levels of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) were all upregulated dramatically. On the other hand, entry and accumulation of Nrf2 protein in the nucleus, while exportting the transcriptional repressor BTB and CNC homology 1 (Bach1) from nucleus to cytoplasm, were also confirmed by western blot and immunofluorescence assay. Our results therefore confirmed the arsenic-induced Nrf2 pathway activation in hepatocytes and also suggested that the translocation of Bach1 was associated with the regulation of Nrf2 pathway by arsenic. Hepatic Nrf2 pathway plays indispensable roles for cellular defenses against arsenic hepatotoxicity, and the interplay of Bach1 and Nrf2 may be helpful to understand the self-defensive responses and the diverse biological effects of arsenicals. PMID:23738048

  12. Cell sources for in vitro human liver cell culture models.

    PubMed

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  13. PPO/PEO modified hollow fiber membranes improved sensitivity of 3D cultured hepatocytes to drug toxicity via suppressing drug adsorption on membranes.

    PubMed

    Shen, Chong; Meng, Qin; He, Wenjuan; Wang, Qichen; Zhang, Guoliang

    2014-11-01

    The three dimensional (3D) cell culture in polymer-based micro system has become a useful tool for in vitro drug discovery. Among those polymers, polysulfone hollow fiber membrane (PSf HFM) is commonly used to create a microenvironment for cells. However, the target drug may adsorb on the polymeric surface, and this elicits negative impacts on cell exposure due to the reduced effective drug concentration in culture medium. In order to reduce the drug adsorption, PSf membrane were modified with hydrophilic Pluronic (PEO-b-PPO-b-PEO) copolymers, L121, P123 and F127 (PEO contents increase from 10%, 30% to 70%), by physical adsorption. As a result, the hydrophilicity of HFMs increased at an order of PSfF127>P123>L121 HFMs. The three modified membrane all showed significant resistance to adsorption of acid/neutral drugs. More importantly, the adsorption of base drugs were largely reduced to an average value of 11% on the L121 HFM. The improved resistance to drug adsorption could be attributed to the synergy of hydrophobic/neutrally charged PPO and hydrophilic PEO. The L121 HFM was further assessed by evaluating the drug hepatotoxicity in 3D culture of hepatocytes. The base drugs, clozapine and doxorubicin, showed more sensitive hepatotoxicity on hepatocytes in L121 HFM than in PSf HFM, while the acid drug, salicylic acid, showed the similar hepatotoxicity to hepatocytes in both HFMs. Our finding suggests that PSf HFM modified by PEO-b-PPO-b-PEO copolymers can efficiently resist the drug adsorption onto polymer membrane, and consequently improve the accuracy and sensitivity of in vitro hepatotoxic drug screening. PMID:25454662

  14. Hepatocyte Transplantation

    PubMed Central

    Mitry, Ragai R; Hughes, Robin D; Dhawan, Anil

    2011-01-01

    Hepatocyte transplantation (HTx) has been developed for use in liver-based metabolic disorders and in acute liver failure. Worldwide, there are around 80 patients that have been transplanted with hepatocytes. Almost all reported studies prove feasibility and safety of the procedure with short- to medium-term success. Availability of good quality hepatocytes (HCs) is the main limiting factor, and therefore alternative sources of cells such as stem cells are being investigated. Other limiting factors include cell engraftment, survival, and function of transplanted cells. It remains to be seen if progress in HTx research can overcome these hurdles leading to the wider use of the technique as an alternative to liver transplantation in the future. PMID:25755322

  15. The Effect of Heliotrine, a Pyrrolizidine Alkaloid, on Human Liver Cells in Culture

    PubMed Central

    Sullman, Susan F.; Zuckerman, A. J.

    1969-01-01

    The effects of heliotrine on human embryo hepatocytes in culture and on cells of a continuous cell line derived from human liver were investigated. Cell necrosis did not occur but cytological changes consisting mainly of cytoplasmic vacuolation were produced in the hepatocytes. Progressive hypertrophy of the hepatocytes and of cells of the continuous line was observed. The enlargement of the cells increased both with the concentration and the period of exposure to the alkaloid. Heliotrine inhibited the synthesis of nucleic acids and protein by all the cell types present in primary cultures of the liver. The experimental data indicated that the action of heliotrine was primarily on the synthesis of DNA but some inhibition of RNA synthesis also occurred. It is proposed that heliotrine acts mainly in the major groove of the DNA helix inhibiting the DNA polymerase but there is also an effect on the RNA polymerase in the minor groove. The mechanism of action of heliotrine could be similar to the action of some of the antibiotics, in particular aflatoxin B1. ImagesFigs. 5-8Figs. 1-2 PMID:5806426

  16. Hepatocyte cell therapy in liver disease.

    PubMed

    Bartlett, David Christopher; Newsome, Philip N

    2015-01-01

    Liver disease is a leading cause of morbidity and mortality. Liver transplantation remains the only proven treatment for end-stage liver failure but is limited by the availability of donor organs. Hepatocyte cell therapy, either with bioartificial liver devices or hepatocyte transplantation, may help address this by delaying or preventing liver transplantation. Early clinical studies have shown promising results, however in most cases, the benefit has been short lived and so further research into these therapies is required. Alternative sources of hepatocytes, including stem cell-derived hepatocytes, are being investigated as the isolation of primary human hepatocytes is limited by the same shortage of donor organs. This review summarises the current clinical experience of hepatocyte cell therapy together with an overview of possible alternative sources of hepatocytes. Current and future areas for research that might lead towards the realisation of the full potential of hepatocyte cell therapy are discussed. PMID:26212798

  17. Effect of glucocorticoids, insulin and a growth promoting tripeptide on the biosynthesis of plasma proteins in serum-free hepatocyte cultures.

    PubMed

    Fouad, F M; Abd-El-Fattah, M; Scherer, R; Ruthenstroth-Bauer, G

    1981-01-01

    The effect of cortisol, dexamethasone, insulin and a liver cell growth promoting tripeptide on the secretion of plasma proteins into the medium of rat hepatocytes in monolayer cultures was studied. Cortisol and dexamethasone resulted in equal to or approximately 2.5-fold increase in the fibrinogen synthesis with general suppression of albumin and alpha-lipoprotein synthesis. On the other hand, insulin inhibited the biosynthesis of most plasma proteins except for the complement system and transferrin. Concentrations of alpha-lipoprotein, alpha-1-macroglobulin and haptoglobin were moderately elevated when the tripeptide Gly-His-Lys was applied in low concentration. PMID:7018103

  18. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    PubMed

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  19. PROLINE IS REQUIRED FOR THE STIMULATION OF DNA SYNTHESIS IN HEPATOCYTE CULTURES BY EGF (EPIDERMAL GROWTH FACTOR)

    EPA Science Inventory

    Epidermal growth factor (EGF) has been shown to stimulate DNA synthesis in rat parenchymal hepatocytes both in vivo and in vitro (4,9). The authors report here that this response in vitro is dependent on the amino acids present in the media. Of all the amino acids, proline has th...

  20. Nitric oxide (NO) pretreatment increases cytokine-induced NO production in cultured rat hepatocytes by suppressing GTP cyclohydrolase I feedback inhibitory protein level and promoting inducible NO synthase dimerization.

    PubMed

    Park, Joon-Hong; Na, Hee-Jun; Kwon, Young-Guen; Ha, Kwon-Soo; Lee, Seon-Jin; Kim, Chun-Ki; Lee, Kwang-Soon; Yoneyama, Toshie; Hatakeyama, Kazuyuki; Kim, Peter K M; Billiar, Timothy R; Kim, Young-Myeong

    2002-12-01

    Nitric oxide (NO) regulates the biological activity of many enzymes and other functional proteins as well as gene expression. In this study, we tested whether pretreatment with NO regulates NO production in response to cytokines in cultured rat hepatocytes. Hepatocytes were recovered in fresh medium for 24 h following pretreatment with the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) and stimulated to express the inducible NO synthase (iNOS) with interleukin-1beta and interferon-gamma or transfected with the human iNOS gene. NO pretreatment resulted in a significant increase in NO production without changing iNOS expression for both conditions. This effect, which did not occur in macrophages and smooth muscle cells, was inhibited when NO was scavenged using red blood cells. Pretreatment with oxidized SNAP, 8-Br-cGMP, NO(2)(-), or NO(3)(-) did not increase the cytokine-induced NO production. SNAP pretreatment increased cytosolic iNOS activity measured only in the absence of exogenous tetrahydrobiopterin (BH(4)). SNAP pretreatment suppressed the level of GTP cyclohydrolase I (GTPCHI) feedback regulatory protein (GFRP) and increased GTPCHI activity without changing GTPCHI protein level. SNAP pretreatment also increased total cellular levels of biopterin and active iNOS dimer. These results suggest that SNAP pretreatment increased NO production from iNOS by elevating cellular BH(4) levels and promoting iNOS subunit dimerization through the suppression of GFRP levels and subsequent activation of GTPCHI. PMID:12359727

  1. Mitochondrial Respiratory Defect Causes Dysfunctional Lactate Turnover via AMP-activated Protein Kinase Activation in Human-induced Pluripotent Stem Cell-derived Hepatocytes.

    PubMed

    Im, Ilkyun; Jang, Mi-Jin; Park, Seung Ju; Lee, Sang-Hee; Choi, Jin-Ho; Yoo, Han-Wook; Kim, Seyun; Han, Yong-Mahn

    2015-12-01

    A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD(+)/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver. PMID:26491018

  2. Expression of human factor IX in rabbit hepatocytes by retrovirus-mediated gene transfer: Potential for gene therapy of hemophilia B

    SciTech Connect

    Thompson, A.R. Puget Sound Blood Center, Seattle, WA ); Darlington, G. ); Armentano, D.; Woo, S.L.C.

    1990-08-01

    Hemophilia B (Christmas disease) is a chromosome X-linked blood clotting disorder which results when factor IX is deficient or functionally defective. The enzyme is synthesized in the liver, and the existence of animal models for this genetic disease will permit the development of somatic gene therapy protocols aimed at transfer of the functional gene into the liver. The authors report the construction of an N2-based recombinant retroviral vector, NCMVFIX, for efficient transfer and expression of human factor IX cDNA in primary rabbit hepatocytes. In this construct the human cytomegalovirus immediate early promoter directs the expression of factor IX. Hepatocytes were isolated from 3-week-old New Zealand White rabbits, infected with the recombinant virus, and analyzed for secretion of active factor IX. The infected rabbit hepatocytes produced human factor IX that is indistinguishable from enzyme derived from normal human plasma. The recombinant protein is sufficiently {gamma}-carboxylated and is functionally active in clotting assays. These results establish the feasibility of using infected hepatocytes for the expression of this protein and are a step toward the goal of correcting hemophilia B by hepatic gene transfer.

  3. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity

    SciTech Connect

    Kiang, Tony K.L.; Teng Xiaowei; Surendradoss, Jayakumar; Karagiozov, Stoyan; Abbott, Frank S.; Chang, Thomas K.H.

    2011-05-01

    The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role for metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.

  4. The carbocyclic analog of 2'-deoxyguanosine induces a prolonged inhibition of duck hepatitis B virus DNA synthesis in primary hepatocyte cultures and in the liver.

    PubMed Central

    Fourel, I; Saputelli, J; Schaffer, P; Mason, W S

    1994-01-01

    The carbocyclic analog of 2'-deoxyguanosine (2'-CDG) is a strong inhibitor of hepatitis B virus (HBV) DNA synthesis in HepG2 cells (P.M. Price, R. Banerjee, and G. Acs, Proc. Natl. Acad. USA 86:8543-8544, 1989). We now report that 2'-CDG inhibited duck hepatitis B virus (DHBV) DNA synthesis in primary cultures of duck hepatocytes and in experimentally infected ducks. Like foscarnet (phosphonoformic acid [PFA]) and 2'-,3'-dideoxycytidine (ddC), 2'-CDG blocked viral DNA replication in primary hepatocyte cultures when present during an infection but failed to inhibit the DNA repair reaction that occurs during the initiation of infection to convert virion relaxed circular DNA to covalently closed circular DNA, the template for viral mRNA transcription. Moreover, as for PFA and ddC, viral RNA synthesis was detected when infection was initiated in the presence 2'-CDG. In another respect, however, 2'-CDG exhibited antiviral activity unlike that of ddC or PFA: a single 1-day treatment of hepatocytes with 2'-CDG blocked initiation of viral DNA synthesis for at least 8 days, irrespective of whether DHBV infection was carried out at the time of drug treatment or several days later. Furthermore, orally administered 2'-CDG was long-acting against DHBV in experimentally infected ducklings. Virus replication was delayed by up to 4 days in ducklings infected after administration of 2'-CDG. These observations of long-lasting efficacy in vitro and in vivo even after oral administration suggest that this inhibitor or a nucleoside with similar pharmacological properties may be ideal for reducing virus replication in patients with chronic HBV infection. Images PMID:8289335

  5. In vitro glucuronidation of 2,2-bis(bromomethyl)-1,3-propanediol by microsomes and hepatocytes from rats and humans.

    PubMed

    Rad, Golriz; Hoehle, Simone I; Kuester, Robert K; Sipes, I Glenn

    2010-06-01

    2,2-Bis(bromomethyl)-1,3-propanediol (BMP) is a brominated flame retardant used in unsaturated polyester resins. In a 2-year bioassay BMP was shown to be a multisite carcinogen in rats and mice. Because glucuronidation is the key metabolic transformation of BMP by rats, in this study the in vitro hepatic glucuronidation of BMP was compared across several species. In addition, the glucuronidation activities of human intestinal microsomes and specific human hepatic UDP-glucuronosyltransferase (UGT) enzymes for BMP were determined. To explore other possible routes of metabolism for BMP, studies were conducted with rat and human hepatocytes. Incubation of hepatic microsomes with BMP in the presence of UDP-glucuronic acid resulted in the formation of a BMP monoglucuronide. The order of hepatic microsomal glucuronidation activity of BMP was rats, mice > hamsters > monkeys > humans. The rate of glucuronidation by rat hepatic microsomes was 90-fold greater than that of human hepatic microsomes. Human intestinal microsomes converted BMP to BMP glucuronide at a rate even lower than that of human hepatic microsomes. Among the human UGT enzymes tested, only UGT2B7 had detectable glucuronidation activity for BMP. BMP monoglucuronide was the only metabolite formed when BMP was incubated with suspensions of freshly isolated hepatocytes from male F-344 rats or with cryopreserved human hepatocytes. Glucuronidation of BMP in human hepatocytes was extremely low. Overall, the results support in vivo studies in rats in which BMP glucuronide was the only metabolite found. The poor glucuronidation capacity of humans for BMP suggests that the pharmacokinetic profile of BMP in humans will be dramatically different from that of rodents. PMID:20200232

  6. In Vitro Glucuronidation of 2,2-Bis(bromomethyl)-1,3-propanediol by Microsomes and Hepatocytes from Rats and Humans

    PubMed Central

    Rad, Golriz; Hoehle, Simone I.; Kuester, Robert K.

    2010-01-01

    2,2-Bis(bromomethyl)-1,3-propanediol (BMP) is a brominated flame retardant used in unsaturated polyester resins. In a 2-year bioassay BMP was shown to be a multisite carcinogen in rats and mice. Because glucuronidation is the key metabolic transformation of BMP by rats, in this study the in vitro hepatic glucuronidation of BMP was compared across several species. In addition, the glucuronidation activities of human intestinal microsomes and specific human hepatic UDP-glucuronosyltransferase (UGT) enzymes for BMP were determined. To explore other possible routes of metabolism for BMP, studies were conducted with rat and human hepatocytes. Incubation of hepatic microsomes with BMP in the presence of UDP-glucuronic acid resulted in the formation of a BMP monoglucuronide. The order of hepatic microsomal glucuronidation activity of BMP was rats, mice ≫ hamsters > monkeys ⋙ humans. The rate of glucuronidation by rat hepatic microsomes was 90-fold greater than that of human hepatic microsomes. Human intestinal microsomes converted BMP to BMP glucuronide at a rate even lower than that of human hepatic microsomes. Among the human UGT enzymes tested, only UGT2B7 had detectable glucuronidation activity for BMP. BMP monoglucuronide was the only metabolite formed when BMP was incubated with suspensions of freshly isolated hepatocytes from male F-344 rats or with cryopreserved human hepatocytes. Glucuronidation of BMP in human hepatocytes was extremely low. Overall, the results support in vivo studies in rats in which BMP glucuronide was the only metabolite found. The poor glucuronidation capacity of humans for BMP suggests that the pharmacokinetic profile of BMP in humans will be dramatically different from that of rodents. PMID:20200232

  7. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology

    PubMed Central

    Gille, Christoph; Bölling, Christian; Hoppe, Andreas; Bulik, Sascha; Hoffmann, Sabrina; Hübner, Katrin; Karlstädt, Anja; Ganeshan, Ramanan; König, Matthias; Rother, Kristian; Weidlich, Michael; Behre, Jörn; Holzhütter, Herrmann-Georg

    2010-01-01

    We present HepatoNet1, the first reconstruction of a comprehensive metabolic network of the human hepatocyte that is shown to accomplish a large canon of known metabolic liver functions. The network comprises 777 metabolites in six intracellular and two extracellular compartments and 2539 reactions, including 1466 transport reactions. It is based on the manual evaluation of >1500 original scientific research publications to warrant a high-quality evidence-based model. The final network is the result of an iterative process of data compilation and rigorous computational testing of network functionality by means of constraint-based modeling techniques. Taking the hepatic detoxification of ammonia as an example, we show how the availability of nutrients and oxygen may modulate the interplay of various metabolic pathways to allow an efficient response of the liver to perturbations of the homeostasis of blood compounds. PMID:20823849

  8. Differential Response of Human Hepatocyte Chromatin to HDAC Inhibitors as a Function of Microenvironmental Glucose Level.

    PubMed

    Felisbino, Marina Barreto; Alves da Costa, Thiago; Gatti, Maria Silvia Viccari; Mello, Maria Luiza Silveira

    2016-10-01

    Diabetes is a complex multifactorial disorder characterized by chronic hyperglycemia due to impaired insulin secretion. Recent observations suggest that the complexity of the disease cannot be entirely accounted for genetic predisposition and a compelling argument for an epigenetic component is rapidly emerging. The use of histone deacetylase inhibitor (HDACi) in clinical setting is an emerging area of investigation. In this study, we have aimed to understand and compare the response of hepatocyte chromatin to valproic acid (VPA) and trichostatin A (TSA) treatments under normoglycemic or hyperglycemic conditions to expand our knowledge about the consequences of HDACi treatment in a diabetes cell model. Under normoglycemic conditions, these treatments promoted chromatin remodeling, as assessed by image analysis and H3K9ac and H3K9me2 abundance. Simultaneously, H3K9ac marks shifted to the nuclear periphery accompanied by HP1 dissociation from the heterochromatin and a G1 cell cycle arrest. More striking changes in the cell cycle progression and mitotic ratios required drastic treatment. Under hyperglycemic conditions, high glucose per se promoted chromatin changes similar to those promoted by VPA and TSA. Nonetheless, these results were not intensified in cells treated with HDACis under hyperglycemic conditions. Despite the absence of morphological changes being promoted, HDACi treatment seems to confer a physiological meaning, ameliorating the cellular hyperglycemic state through reduction of glucose production. These observations allow us to conclude that the glucose level to which the hepatocytes are subjected affects how chromatin responds to HDACi and their action under high-glucose environment might not reflect on chromatin remodeling. J. Cell. Physiol. 231: 2257-2265, 2016. © 2016 Wiley Periodicals, Inc. PMID:26888775

  9. Activation of the Constitutive Androstane Receptor Inhibits Gluconeogenesis without Affecting Lipogenesis or Fatty Acid Synthesis in Human Hepatocytes

    PubMed Central

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao; Heyward, Scott; Moeller, Timothy; Swaan, Peter W.; Wang, Hongbing

    2014-01-01

    Objective Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods Ligand-based structure-activity models were used for virtual screening of the Specs database (www.specs.net) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. PMID:24878338

  10. Synergistic effects of tethered growth factors and adhesion ligands on DNA synthesis and function of primary hepatocytes cultured on soft synthetic hydrogels

    PubMed Central

    Mehta, Geeta; Williams, Courtney M.; Alvarez, Luis; Lesniewski, Martha; Kamm, Roger D.; Griffith, Linda G.

    2010-01-01

    The composition, presentation, and spatial orientation of extracellular matrix molecules and growth factors are key regulators of cell behavior. Here, we used self-assembling peptide nanofiber gels as a modular scaffold to investigate how fibronectin-derived adhesion ligands and different modes of epidermal growth factor (EGF) presentation synergistically regulate multiple facets of primary rat hepatocyte behavior in the context of a soft gel. In the presence of soluble EGF, inclusion of dimeric RGD and the heparin binding domain from fibronectin (HB) increased hepatocyte aggregation, spreading, and metabolic function compared to unmodified gels or gels modified with a single motif, but unlike rigid substrates, gels failed to induce DNA synthesis. Tethered EGF dramatically stimulated cell aggregation and spreading under all adhesive ligand conditions and also preserved metabolic function. Surprisingly, tethered EGF elicited DNA synthesis on gels with RGD and HB. Phenotypic differences between soluble and tethered EGF stimulation of cells on peptide gels are correlated with differences in expression and phosphorylation the EGF receptor and its heterodimerization partner ErbB2, and activation of the downstream signaling node ERK1/2. These modular matrices reveal new facets of hepatocellular biology in culture and may be more broadly useful in culture of other soft tissues. PMID:20304480

  11. Direct effect of insulin on the synthesis of specific plasma proteins: biphasic response of hepatocytes cultured in serum- and hormone-free medium.

    PubMed Central

    Liang, T J; Grieninger, G

    1981-01-01

    Monolayers of chicken embryo hepatocytes. cultured in chemically defined medium, retain the ability to synthesize a wide spectrum of plasma proteins for several days in the absence of added hormones. Addition of insulin to the medium elicited a biphasic stimulation of plasma protein synthesis: a rapid response of the synthesis of a limited number of plasma proteins (e.g., albumin and alpha 1-globulin "M"), then, after prolonged exposure to the hormone, the involvement of additional plasma proteins (e.g., fibrinogen and lipoproteins). Synthesis of transferrin and a few other plasma proteins was not affected by the presence of insulin. The degree of stimulation for the most response plasma proteins ranged between 2- to 4-fold during the early phase and 10- and even 30-fold during the late phase of the cells' response t insulin. Stimulated synthesis in the early phase was detected within 1 hr and was rapidly reversible. Plasma protein synthesis in culture was sensitive to concentrations of insulin below 0.35 nM, well within the physiological range. The delayed response was elicited only at higher hormone levels. Parallels between the control of synthesis of plasma proteins in this system and that observed in diabetic animals suggest that the embryonic chicken hepatocytes may be a useful model for studying liver function in diabetes as well as insulin action in general. Images PMID:7031664

  12. Visual Culture, Art History and the Humanities

    ERIC Educational Resources Information Center

    Castaneda, Ivan

    2009-01-01

    This essay will discuss the need for the humanities to address visual culture studies as part of its interdisciplinary mission in today's university. Although mostly unnoticed in recent debates in the humanities over historical and theoretical frameworks, the relatively new field of visual culture has emerged as a corrective to a growing…

  13. Culture Representation in Human Reliability Analysis

    SciTech Connect

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  14. Antioxidative effect of a chymotrypsin inhibitor from Momordica cochinchinensis (Cucurbitaceae) seeds in a primary rat hepatocyte culture.

    PubMed

    Tsoi, Alex Yuen-Kam; Ng, Tzi-Bun; Fong, Wing-Ping

    2005-10-01

    The antioxidative activity of a chymotrypsin-specific potato type I inhibitor from Momordica cochinchinensis (MCoCI) (Cucurbitaceae) has been investigated using the primary rat hepatocyte system. tert-Butyl hydroperoxide (t-BHP) was used to induce oxidative stress. Pretreatment of hepatocytes with MCoCI for 24 h significantly reversed t-BHP-induced cell damage, and the associated glutathione depletion and lipid peroxidation. The activities of glutathione-S-transferase and superoxide dismutase were also increased. These results suggested that MCoCI possessed antioxidative activity which may account for some of the pharmacological effects of Momordica cochinchinensis seeds, the traditional Chinese medicine known as Mubiezhi, from which MCoCI was isolated. PMID:15849778

  15. Human nature, cultural diversity and evolutionary theory

    PubMed Central

    Plotkin, Henry

    2011-01-01

    Incorporating culture into an expanded theory of evolution will provide the foundation for a universal account of human diversity. Two requirements must be met. The first is to see learning as an extension of the processes of evolution. The second is to understand that there are specific components of human culture, viz. higher order knowledge structures and social constructions, which give rise to culture as invented knowledge. These components, which are products of psychological processes and mechanisms, make human culture different from the forms of shared knowledge observed in other species. One serious difficulty for such an expanded theory is that social constructions may not add to the fitness of all humans exposed to them. This may be because human culture has existed for only a relatively short time in evolutionary terms. Or it may be that, as some maintain, adaptation is a limited, even a flawed, aspect of evolutionary theory. PMID:21199849

  16. Protective effect of nifedipine against cytotoxicity and intracellular calcium alterations induced by acetaminophen in rat hepatocyte cultures.

    PubMed

    Ellouk-Achard, S; Mawet, E; Thibault, N; Dutertre-Catella, H; Thevenin, M; Claude, J R

    1995-01-01

    Alteration of calcium homeostasis has been proposed to play a major role in cell necrosis induced by a variety of chemical agents such as acetaminophen (APAP). In this study, a potential protective effect of the dihydropyridine calcium channel blocking agent, nifedipine, was investigated in vitro on acetaminophen-induced hepatocyte damage. Rat hepatocytes were exposed during 20 hours to various concentrations of APAP (0.50 to 4.00 mM). The following metabolic and functional parameters were investigated: -lactate dehydrogenase (LDH) release as an indicator of plasma membrane integrity, -cell viability evaluated by the colorimetric MTT assay, and intracellular calcium concentration as evaluated by two fluorimetric methods: a scanning laser cytometer using indo-1-AM as fluorescent probe and a fluorescence plate reader using fluo-3-AM as calcium indicator. Incubation of hepatocytes with APAP alone in the range 0.50 to 4.00mM resulted in a dose-response relationship with regard to LDH release (243% to 750% of control) and to the loss of cell viability (0 to 67% of control). Moreover these results were correlated with a significant increase in cytosolic calcium content (189 to 406 nM). Nifedipine treatment prior to APAP exposure, partially prevented LDH release, the plasma membrane blebbing, and thereby the loss of viability. In addition, intracellular calcium level progressively returned within the limits of the control values with increasing concentrations of nifedipine. It can be concluded that, in vitro conditions, nifedipine pretreatment exhibits a preventive effect against acetaminophen hepatocyte injury. PMID:7497906

  17. Metabolic pathways of 4-bromo-2,5-dimethoxyphenethylamine (2C-B): analysis of phase I metabolism with hepatocytes of six species including human.

    PubMed

    Carmo, Helena; Hengstler, Jan G; de Boer, Douwe; Ringel, Michael; Remião, Fernando; Carvalho, Félix; Fernandes, Eduarda; dos Reys, Lesseps A; Oesch, Franz; de Lourdes Bastos, Maria

    2005-01-01

    4-Bromo-2,5-dimethoxyphenethylamine (2C-B) is a psychoactive designer drug of abuse that is sold under the street names "Venus", "Bromo", "Erox", "XTC" or "Nexus". Concern has been raised because only little is known about its toxicity and metabolism in humans. In the present study we incubated 2C-B with human, monkey, dog, rabbit, rat and mouse hepatocytes to identify the metabolites formed and to determine possible toxic effects as evidenced by an ATP assay. Our data allow construction of the main metabolic pathways of 2C-B. Oxidative deamination results in the 2-(4-bromo-2,5-dimethoxyphenyl)-ethanol (BDMPE) and 4-bromo-2,5-dimethoxyphenylacetic acid (BDMPAA) metabolites. Additionally, 4-bromo-2,5-dimethoxybenzoic acid (BDMBA) can be produced also by oxidative deamination. Further metabolism of BDMPE and BDMPAA may occur by demethylation. Alternatively, the later metabolites can be generated by demethylation of 2C-B followed by oxidative deamination. Two remarkable interspecies differences in metabolism of 2C-B were observed (i) a hitherto unknown metabolite, 4-bromo-2,5-dimethoxy-phenol (BDMP), was identified after incubation only with mouse hepatocytes; (ii) 2-(4-bromo-2-hydroxy-5-methoxyphenyl)-ethanol (B-2-HMPE) was produced by hepatocytes from human, monkey and rabbit but not by dog, rat and mouse. Comparing the toxic effects of 2C-B between hepatocytes of the six examined species we observed only minor interspecies differences. However, large inter-individual differences in susceptibility of hepatocytes from three human donors were observed. PMID:15590110

  18. Effects of Adenovirus-Mediated Delivery of the Human Hepatocyte Growth Factor Gene in Experimental Radiation-Induced Heart Disease

    SciTech Connect

    Hu Shunying; Chen Yundai; Li Libing; Chen Jinlong; Wu Bin; Zhou, Xiao; Zhi Guang; Li Qingfang; Wang Rongliang; Duan Haifeng; Guo Zikuan; Yang Yuefeng; Xiao Fengjun; Wang Hua; Wang Lisheng

    2009-12-01

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrast echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 +- 9.01 vs. 41.94 +- 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 +- 1303 vs. 1667 +- 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 +- 1084 vs. 1566 +- 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.

  19. Ameliorative effects of docosahexaenoic acid on the toxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in cultured rat hepatocytes.

    PubMed

    Turkez, Hasan; Geyikoglu, Fatime; Yousef, Mokhtar I

    2016-06-01

    The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant toxicant that mediates carcinogenic effects associated with oxidative DNA damage. Docosahexaenoic acid (DHA) with antioxidant functions has many biochemical, cellular, and physiological functions for cells. The present study assessed, for the first time, the ameliorative effect of DHA in alleviating the toxicity of TCDD on primary cultured rat hepatocytes (HEPs). In vitro, isolated HEPs were incubated with TCDD (5 and 10 μM) in the presence and absence of DHA (5, 10, and 20 μM) for 48 h. The cell viability was detected by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) release. DNA damage was analyzed by liver micronucleus assay and 8-oxo-2-deoxyguanosine (8-OH-dG) level. In addition, total antioxidant capacity (TAC) and total oxidative stress (TOS) were assessed to determine the oxidative injury in HEPs. The results of MTT and LDH assays showed that TCDD decreased cell viability but not DHA. On the basis of increasing treatment concentrations, the dioxin caused significant increases of micronucleated HEPs and 8-OH-dG as compared to control culture. TCDD also led to significant increases in TOS content. On the contrary, in cultures treated with DHA, the level of TAC was significantly increased during treatment in a concentration-dependent fashion. DHA showed therapeutic potential against TCDD-mediated cell viability and DNA damages. As conclusion, this study provides the first evidence that DHA has protective effects against TCDD toxicity on primary cultured rat hepatocytes. PMID:25187318

  20. Alirocumab, a Therapeutic Human Antibody to PCSK9, Does Not Affect CD81 Levels or Hepatitis C Virus Entry and Replication into Hepatocytes

    PubMed Central

    Ramanathan, Aarti; Gusarova, Viktoria; Stahl, Neil; Gurnett-Bander, Anne; Kyratsous, Christos A.

    2016-01-01

    Background Proprotein convertase subtilisin/kexin type 9 (PSCK9) is secreted mainly from the liver and binds to the low-density lipoprotein receptor (LDLR), reducing LDLR availability and thus resulting in an increase in LDL-cholesterol. While the LDLR has been implicated in the cell entry process of the hepatitis C virus (HCV), overexpression of an artificial non-secreted, cell membrane-bound form of PCSK9 has also been shown to reduce surface expression of CD81, a major component of the HCV entry complex, leading to concerns that pharmacological inhibition of PCSK9 may increase susceptibility to HCV infection by increasing either CD81 or LDLR availability. Here, we evaluated effects of PCSK9 and PCSK9 blockade on CD81 levels and HCV entry with a physiologically relevant model using native secreted PCSK9 and a monoclonal antibody to PCSK9, alirocumab. Methods and Results Flow cytometry and Western blotting of human hepatocyte Huh-7 cells showed that, although LDLR levels were reduced when cells were exposed to increasing PCSK9 concentrations, there was no correlation between total or surface CD81 levels and the presence and amount of soluble PCSK9. Moreover, inhibiting PCSK9 with the monoclonal antibody alirocumab did not affect expression levels of CD81. In an in vitro model of HCV entry, addition of soluble PCSK9 or treatment with alirocumab had no effect on the ability of either lentiviral particles bearing the HCV glycoproteins or JFH-1 based cell culture virus to enter hepatocytes. Consistent with these in vitro findings, no differences were observed in hepatic CD81 levels using in vivo mouse models, including Pcsk9-/- mice compared with wild-type controls and hyperlipidemic mice homozygous for human Pcsk9 and heterozygous for Ldlr deletion, treated with either alirocumab or isotype control antibody. Conclusion These results suggest that inhibition of PCSK9 with alirocumab has no effect on CD81 and does not result in increased susceptibility to HCV entry

  1. Dating human cultural capacity using phylogenetic principles

    PubMed Central

    Lind, J.; Lindenfors, P.; Ghirlanda, S.; Lidén, K.; Enquist, M.

    2013-01-01

    Humans have genetically based unique abilities making complex culture possible; an assemblage of traits which we term “cultural capacity”. The age of this capacity has for long been subject to controversy. We apply phylogenetic principles to date this capacity, integrating evidence from archaeology, genetics, paleoanthropology, and linguistics. We show that cultural capacity is older than the first split in the modern human lineage, and at least 170,000 years old, based on data on hyoid bone morphology, FOXP2 alleles, agreement between genetic and language trees, fire use, burials, and the early appearance of tools comparable to those of modern hunter-gatherers. We cannot exclude that Neanderthals had cultural capacity some 500,000 years ago. A capacity for complex culture, therefore, must have existed before complex culture itself. It may even originated long before. This seeming paradox is resolved by theoretical models suggesting that cultural evolution is exceedingly slow in its initial stages. PMID:23648831

  2. Dating human cultural capacity using phylogenetic principles.

    PubMed

    Lind, J; Lindenfors, P; Ghirlanda, S; Lidén, K; Enquist, M

    2013-01-01

    Humans have genetically based unique abilities making complex culture possible; an assemblage of traits which we term "cultural capacity". The age of this capacity has for long been subject to controversy. We apply phylogenetic principles to date this capacity, integrating evidence from archaeology, genetics, paleoanthropology, and linguistics. We show that cultural capacity is older than the first split in the modern human lineage, and at least 170,000 years old, based on data on hyoid bone morphology, FOXP2 alleles, agreement between genetic and language trees, fire use, burials, and the early appearance of tools comparable to those of modern hunter-gatherers. We cannot exclude that Neanderthals had cultural capacity some 500,000 years ago. A capacity for complex culture, therefore, must have existed before complex culture itself. It may even originated long before. This seeming paradox is resolved by theoretical models suggesting that cultural evolution is exceedingly slow in its initial stages. PMID:23648831

  3. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  4. Analysis of intracellular reducing levels in human hepatocytes on three-dimensional focusing microchip.

    PubMed

    Xu, Chunxiu; Cai, Longfei

    2014-02-01

    A novel three-dimensional hydrodynamic focusing microfluidic device integrated with high-throughput cell sampling and detection of intracellular contents is presented. It has a pivotal role in maintaining the reducing environment in cells. Intracellular reducing species such as vitamin C and glutathione in normal and tumor cells were labeled by a newly synthesized 2,2,6,6-tetramethyl-piperidine-1-oxyl-based fluorescent probe. Hepatocytes are adherent cells, which are prone to attaching to the channel surface. To avoid the attachment of cells on the channel surface, a single channel microchip with three sheath-flow channels located on both sides of and below the sampling channel was developed. Hydrostatic pressure generated by emptying the sample waste reservoir was used as driving force of fluid on the microchip. Owing to the difference between the liquid levels of the reservoirs, the labeled cells were three-dimensional hydrodynamically focused and transported from the sample reservoir to the sample waste reservoir. Hydrostatic pressure takes advantage of its ease of generation on a microfluidic chip without any external pressure pump, which drives three sheath-flow streams to constrain a sample flow stream into a narrow stream to avoid blockage of the sampling channel by adhered cells. The intracellular reducing levels of HepG2 cells and L02 cells were detected by home-built laser-induced fluorescence detector. The analysis throughput achieved in this microfluidic system was about 59-68 cells/min. PMID:23297173

  5. Cell Culture, Technology: Enhancing the Culture of Diagnosing Human Diseases

    PubMed Central

    Alshrari, Ahmed Subeh; Syahida, Ahmad; Sekawi, Zamberi

    2016-01-01

    Cell culture involves a complex of processes of cell isolation from their natural environment (in vivo) and subsequent growth in a controlled environmental artificial condition (in vitro). Cells from specific tissues or organs are cultured as short term or established cell lines which are widely used for research and diagnosis, most specially in the aspect of viral infection, because pathogenic viral isolation depends on the availability of permissible cell cultures. Cell culture provides the required setting for the detection and identification of numerous pathogens of humans, which is achieved via virus isolation in the cell culture as the “gold standard” for virus discovery. In this review, we summarized the views of researchers on the current role of cell culture technology in the diagnosis of human diseases. The technological advancement of recent years, starting with monoclonal antibody development to molecular techniques, provides an important approach for detecting presence of viral infection. They are also used as a baseline for establishing rapid tests for newly discovered pathogens. A combination of virus isolation in cell culture and molecular methods is still critical in identifying viruses that were previously unrecognized. Therefore, cell culture should be considered as a fundamental procedure in identifying suspected infectious viral agent. PMID:27134874

  6. Cell Culture, Technology: Enhancing the